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Abstract 

Holm oak decline is a complex phenomenon mainly influenced by the presence of 
Phytophthora cinnamomi and water stress. Plant functional traits (PTs) are altered 
during the decline process — initially affecting the physiological condition of the 
plants with non-visual symptoms and subsequently the leaf pigment content and can-
opy structure — being its quantification critical for the development of scalable de-
tection methods for effective management. This study examines the relationship be-
tween spectral-based PTs and oak decline incidence and severity. We evaluate the 
use of high-resolution hyperspectral and thermal imagery (< 1 m) together with a 3-
D radiative transfer model (RTM) to assess a supervised classification model of holm 
oak decline. Field surveys comprising more than 1100 trees with varying disease inci-
dence and severity were used to train and validate the model and predictions. Declin-
ing trees showed decreases of model-based PTs such as water, chlorophyll, carotenoid, 
and anthocyanin contents, as well as fluorescence and leaf area index, and increases 
in crown temperature and dry matter content, compared to healthy trees. Our clas-
sification model built using different PT indicators showed up to 82% accuracy for 
decline detection and successfully identified 34% of declining trees that were not de-
tected by visual inspection and confirmed in a re-evaluation 2 years later. Among all 
variables analysed, canopy temperature was identified as the most important variable 
in the model, followed by chlorophyll fluorescence. This methodological approach 
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identified spectral plant traits suitable for the detection of pre-symptomatic trees and 
mapping of oak forest disease outbreaks up to 2 years in advance of identification via 
field surveys. Early detection can guide management activities such as tree culling 
and clearance to prevent the spread of dieback processes. Our study demonstrates the 
utility of 3-D RTM models to untangle the PT alterations produced by oak decline 
due to its heterogeneity. In particular, we show the combined use of RTM and ma-
chine learning classifiers to be an effective method for early detection of oak decline 
potentially applicable to many other forest diseases worldwide.  
 
Keywords: High-resolution imagery, radiative transfer modelling, forest dieback, dis-
ease monitoring. 
 

1. Introduction 

Plant functional traits (PTs), such as biochemi-
cal composition, chlorophyll fluorescence, water and 
dry matter content, crown temperature, and vege-
tation structure, are closely linked to plant health 
conditions and the responses to environmental and 
biotic stressors (Ahrens et al., 2020). Changes in 
PTs may alert managers to biotic and abiotic 
stressors and thus enable timely management inter-
ventions (Cunniffe et al., 2016). Hyperspectral sig-
natures of plants provide an efficient alternative to 
standard field surveys by enabling monitoring of 
vegetation status (including biochemical and func-
tional assessments) over large areas at a reduced 
cost (Homolová et al., 2013; Rocha et al., 2019). 
Recent studies provide evidence that the quantifi-
cation of PTs from hyperspectral and thermal im-
ages can successfully detect pre-visual symptoms of 
harmful crop pathogens, such as Xylella fastidiosa 
(Xf) infection in olive trees (Zarco-Tejada et al., 
2018).  

Retrieving PTs from spectra obtained in non-ag-
ricultural contexts, such as forest canopies, is chal-
lenging because of their high variability. Natural 
forests, for example, are highly heterogenous in spe-
cies composition and canopy structure, resulting in 
spectral mixture effects produced by forest canopy 
structure, shadows, and understory. Furthermore, 

they may have high levels of intraspecific variabil-
ity, driven by microsite and ecophysiological condi-
tions (Fernández i Marti et al., 2018; Navarro-Cer-
rillo et al., 2018). The spectral mixing produced in 
heterogeneous forest canopies reduces the accuracy 
of PTs retrieved from images, especially those de-
rived from narrow regions of the spectrum such as 
the chlorophyll fluorescence emission region (Her-
nández-Clemente et al., 2017). 

Forest decline is a pervasive decrease of forest 
health resulting from a complex interaction of a po-
tentially large number of biotic and abiotic factors 
(Hutchings et al., 2000), including stresses such as 
water deficit, air pollution, and invasive pests 
(Manion and Lachance, 1992; Trumbore et al., 
2015). In the case of oak decline on the Iberian Pen-
insula, water stress and root rot caused by Phy-
tophthora cinnamomi (Pc) and related oomycetes 
are thought to be the main drivers of tree death 
(Ruiz-Gómez et al., 2019). This pathogen is one of 
the most pervasive invasive alien species in forest 
ecosystems of the northern hemisphere (Burgess et 
al., 2017). It is a challenge to identify the relation-
ship between water stress and root rot. But it has 
been observed that the reduction in water availa-
bility caused by water stress increases susceptibility 
to Pc infection (Corcobado et al., 2013). Infected 
trees exhibit regressive decline immediately after 
showing visual symptoms such as defoliation, crown 
or canopy discolouration, and brown foliage remain-
ing attached to the canopy (Camilo-Alves et al., 
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2013). After these symptoms are detected, there is 
no opportunity for forest management to prevent 
tree death. For this reason, it is critical to develop-
ing accurate methods for the early detection of oak 
decline that maximises the effectiveness of silvicul-
tural treatments such as calcium soil fertilisers, bio-
fumigant crops, or fosetyl-aluminium treatments 
(Romero et al., 2019). Understanding the early 
phase as a pre-symptomatic or non-symptomatic 
stage, where trees may be affected but have not yet 
developed symptoms. 

Several spectral-based strategies have been de-
veloped to quantify critical PTs in natural forest 
canopies, as recently reviewed by Hernández-
Clemente et al. (2019). Methodologies range from 
those based on empirical relationships between field 
observations and specific spectral bands or vegeta-
tion indices (VIs) to approaches involving 3-D radi-
ative transfer models (RTMs) or machine learning 
(ML) techniques. While empirical relationships can 
be readily developed for a wide range of traits of 
interest, 3-D RTM requires significant computa-
tional effort. A main disadvantage of the empirical 
approach is its limited generalisability to different 
spatial and temporal contexts. By contrast, RTMs 
are causal models robust to variations in geometry, 
illumination, and scene components (i.e., canopy, 
understory, soil), helping incorporate context de-
pendency and enabling generalisation to different 
environments. These properties are important for 
deriving PTs from forest canopies, where 3-D 
RTMs such as FLIGHT (North, 1996) or DART 
(Gastellu-Etchegorry et al., 1996) represent the 
spatial heterogeneity of forest canopies fairly effec-
tively (Hernández-Clemente et al., 2017, 2012; Kötz 
et al., 2004; Liu et al., 2020; Roberts et al., 2020). 
A recent study using FLIGHT8 has shown the need 
to account for effects of shrub and/or grass under-
stories in addition to tree canopies in quantifying 
variables such as chlorophyll fluorescence (Hornero 
et al., 2021). 

A semi-causal method is the combined use of 
PTs retrieved with RTMs and VIs (Zarco-Tejada 

et al., 2018). Numerous VIs have been formulated 
and tested for quantifying biomass loss related to 
advanced stages of plant diseases (Castrignano et 
al., 2020). Some formulations, such as the soil-ad-
justed vegetation index (SAVI) or the modified 
chlorophyll absorption ratio index (MCARI), have 
been shown to minimise the background and atmos-
pheric effects and perform better for forest canopies 
than traditional formulations such as NDVI 
(Hornero et al., 2020). Zarco-Tejada et al. (2001) 
demonstrated that a red edge spectral index, 
R750/R710, reduced forest shadow effects better than 
other standard chlorophyll indicators used to esti-
mate chlorophyll a and b content. 

The diagnosis of plant diseases requires quanti-
fying not only forest biomass but also the physio-
logical condition of that biomass (Cunniffe et al., 
2016). Functional PTs such as photosynthetic rate, 
water stress, leaf anthocyanin, chlorophyll a and b, 
and carotenoid content may be used for early de-
tection of diseases (Hernández-Clemente et al. 
2019). Also, a group of carotenoids, the xanthophyll 
cycle carotenoids, plays a photoprotective role, pre-
venting damage from excess light to photosynthetic 
systems, and are potentially detected through the 
photochemical reflectance index (PRI), thus serving 
as a proxy for forest health (Hernández-Clemente 
et al., 2011; Sims and Gamon, 2002). Other useful 
indicators of plant health include sun-induced chlo-
rophyll fluorescence (SIF) emission and canopy 
temperature, which are often used as powerful non-
invasive markers to track the status, resilience, and 
recovery of vegetation (Gonzalez-Dugo et al., 2014; 
Mohammed et al., 2019; Zarco-Tejada et al., 2012).  

However, the relative importance of different PT 
indicators for detecting disease remains largely un-
known for many forest species and ecosystems. Un-
derstanding the sensitivity of different spectral-
based physiological indicators for detecting forest 
decline in these heterogeneous environments will 
help guide management and future monitoring cam-
paigns. In this study, we i) expanded our under-
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standing of the contributions of different PTs in de-
tecting symptomatic and asymptomatic trees af-
fected by biotic and abiotic stressors in a holm oak 
forest and ii) used this information to construct a 
PT-based analytical approach for the early detec-
tion and severity assessment of forest decline. 

2. Materials and methods 

2.1. Study site and field data collection  

The study was conducted in an open Mediterra-
nean-like oak savannah or dehesa located in Anda-
lusia, southern Spain (37°36′45″ N, 7°21′8″ W, 
148 ha, Fig. 1). The dominant species in the forest 
was holm oak, Quercus ilex subsp. ballota (Desf.) 
Samp. Tree density ranged from 30 to 40 trees ha−1. 
There was an understory of annual plants and typ-
ical Mediterranean sclerophyllous and sub-scle-
rophyllous shrub species, i.e., Cistus spp., Pistacia 
spp., Phillyrea spp., and Rosmarinus officinalis. 
The climate at the study site is dry thermo-Medi-
terranean, with mild winters and hot summers, in-
cluding approximately 120–150 biologically dry 
days, a mean annual rainfall of 570 mm, and an 
average annual temperature of 16.8°C, according to 
the Agroclimatic Information Network of Andalusia 
(Meteorological Station of Puebla de Guzmán, 
37º33′07″ N, 07º14′54″ W). The bedrock is cal-
careous, and the terrain is characterised by smooth 
hills (slope <15%). Soils are Eutric Cambisols, 
Chromic Luvisols, and Lithosols with Dystric Cam-
bisols and Rankers (REDIAM, Junta de Andalucía, 
2021). The study area is also affected by the com-
bined effect of water deficiency and erosion, soil 
compaction, and nutrient losses (Moralejo et al., 
2009). 

Two field surveys were conducted in the study 
site in summer 2017 and summer 2019. During the 
surveys, disease severity (DS) and disease incidence 

(DI) were assessed for 1146 individual holm oak 
trees. Seem (1984) defined DS as the quantity of 
disease affecting entities within a sampling unit; DI 
is a quantal measure, defined as the proportion or 
percentage of diseased entities within a sampling 
unit. DS thus accounts for disease severity, while 
DI considers only whether a tree is affected or not.  

Based on visual inspection, we assigned individ-
ual trees to one of the four DS categories available 
(Fig. 2) depending on the proportion of the crown 
affected by defoliation (Eichhorn et al., 2017) and 
other typical Pc-induced symptoms, including dead 
branches in the crown, stem cankers, and adventi-
tious epicormic sprouts (Jung et al., 2000). DS 
ranged from 0, indicating the absence of visual 
symptoms, to 3, in which most of the branches in 
the crown were dead, following the classification of 
the Andalusian Forest Damage Monitoring Net-
work (Consejería de Medio Ambiente y Ordenación 
del Territorio, 2018) (Table 1; Fig. 2). According to 
this classification, defoliation refers to both reduced 
leaf retention and premature loss compared to reg-
ular tree growth cycles. The part of the crown that 
is evaluated includes all live branches and thin 
branches that are dead but still bear leaves. How-
ever, it excludes thick branches that have been dead 
for years and have already lost their natural buds, 
epicormic shoots below the crown, and gaps in the 
crown where branches have never existed. DI was 
either 0 or 1, indicating non-symptomatic trees and 
symptomatic trees, respectively, where non-symp-
tomatic trees corresponded to a DS of 0 and symp-
tomatic trees to any other severity (DS ≥ 1). 

The presence of Pc on holm oak roots was con-
firmed through molecular analyses in the study 
area. Soil samples were collected on three different 
trees located in the centre of the study area. The 
analysis and the results are detailed in Ruiz-Gómez 
et al. (2019).
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Figure 1. Location of the study site selected for PT retrieval through high-resolution imaging (top). The 

square shaded in red represents the area of the field survey, and the grey dots indicate individual evaluation. 
Photographs illustrating the heterogeneity of the landscape within the study area are shown below. 
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Figure 2. Examples of the four forest disease severity (DS) levels assigned to holm oak trees (N = 1146) 

during a field survey in 2017, which was repeated in 2019. The classes range from apparently healthy trees 
(DS = 0) to trees whose canopies show a prevalence of dead branches (DS = 3). 

 
 
Table 1 
Forest health condition assessment: crown-level severity and incidence levels. 

DS Level Severity Description Defoliation Incidence 

0 Healthy Symptomless or low symptom incidence 015% No incidence 

1 
Low to moderate 

severity 

Low to moderate defoliation and no or few 
additional symptoms affecting a limited part of the 

canopy 
1550% Incidence 

2 Medium to high severity 
Medium to high defoliation of the crown and several 

additional symptoms 
5085% Incidence 

3 High to extreme severity 
High defoliation uniformly distributed all over the 

crown, totally defoliated trees, and additional 
symptoms 

85100% Incidence 
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2.1.1 Leaf pigment quantification 
Biochemical measurements were taken on leaves 

from 15 selected trees in the study area in the sum-
mers of 2013, 2015, and 2017, in which the chloro-
phyll (Cab), carotenoid (Car), and anthocyanin (Anth) 
contents were measured (Table 2). Leaf pigment 
content was measured by destructive methods on 
12 samples per tree (three biological replicates per 
orientation, i.e., North, East, South, and West). 
Samples were collected from the sunlit branches at 
the top of the crown during a 1-hour window 
around solar noon. Leaves were immediately frozen 
in liquid nitrogen in the field and kept below –20°C 
until the analysis of pigment concentration was per-
formed in the laboratory. Photosynthetic pigment 
extracts (chlorophylls and carotenoids) were ob-
tained from a mixture of 2-cm2 ground leaf material 
per sample (four discs of 0.5 cm2); the leaves were 
milled in a mortar bed on ice with liquid nitrogen 
and diluted in acetone to 5 mL (in the presence of 
sodium ascorbate). Extracts were then filtered 
through a 0.45-μm PTFE hydrophobic filter to sep-
arate pigment extracts from remaining fractions. 
Extractions and measurements were performed un-
der reduced light conditions to avoid degradation of 
the pigments, with five technical replications con-
ducted per biological sample. Photosynthetic pig-
ment quantification was done through absorbance 
measurement after separation by high-precision liq-
uid chromatography (HPLC) following the method-
ology detailed by Hernández-Clemente et al. (2012). 

Anthocyanins were extracted by suspending two 
0.5-cm2 leaf discs in acidic solution (methanol 1% 
HCl) following Murray and Hackett (1991). The ab-
sorbance of anthocyanins (AAs) in the samples was 

calculated by subtracting 24% of the maximum ab-
sorbance of chlorophylls (653 nm) from the maxi-
mum absorbance of the anthocyanins (532 nm) (1) 

 
AA = 𝐴ହଷଶ − 0.24𝐴଺ହଷ    (1) 

 
Concentrations were estimated using a molar ex-

tinction coefficient of 30 mL mol–1 cm–1 (Steele et 
al., 2009). Five technical replicates were performed 
for each biological sample, and results are shown in 
units of µg cyanidin-3-glucoside equivalents per cm2 
(Lee et al., 2008). 

 
2.1.2 Plant functional traits 
Steady-state leaf fluorescence (Fs) was measured 

for 15 trees using 12 leaves per tree (three per ori-
entation) with a FluorPen FP100 (Photon Systems 
Instruments, Drásov, Czech Republic). These meas-
urements were used as a proxy of the airborne SIF 
retrievals and a field-level assessment of plant func-
tional stress for each severity level. 

In July 2013, the leaf area index (LAI) was 
measured using an LAI-2000 Plant Canopy Ana-
lyzer (LI-COR, Inc., Lincoln, NE, USA) for the 
same 15 trees as above. At each tree, the device was 
placed with the optical sensor in eight different ori-
entations under the canopy, 1 m above the ground, 
and using a 90° view-restricting cap. Measurements 
for LAI estimation included a reference reading 
above the canopy and several readings below the 
canopy. All measurements were made at dawn. The 
coordinates for all trees (both sampled and visually 
scored) were recorded using a GPS (Garmin GPS-
MAP 64s) device with a spatial accuracy below 3 
m.
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Table 2 
Summary of field measurements and surveys 

Year 
Tree-health field sur-

vey 
Cab Car Anth Fs LAI 

2013  ✓ ✓ ✓ ✓ ✓ 
2015  ✓ ✓  ✓  
2017 ✓ ✓ ✓  ✓  
2019 ✓      

Cab: chlorophyll a + b content; Car: carotenoids; Anth: anthocyanins; Fs: steady-state leaf fluorescence; 
LAI: leaf area index. 

 

2.2. Airborne hyperspectral and thermal imagery 

2.2.1. High-resolution image data collection 
We collected high-resolution images on 19 July 

2017 using a visible near-infrared (VIS-NIR) hyper-
spectral imager (Hyperspec model, Headwall Pho-
tonics Inc., Fitchburg, MA, USA), a hyperspectral 
sensor covering NIR and short-wave infrared 
(SWIR) regions (Hyperspec NIR-100, Headwall 
Photonics), and a thermal camera (FLIR SC655, 
FLIR Systems, Wilsonville, OR, USA) installed in 
tandem onboard a Cessna aircraft operated by the 
Laboratory for Research Methods in Quantitative 
Remote Sensing (QuantaLab), Spanish National 
Research Council (CSIC). The imagery was ac-
quired at 350 m above ground level with the aircraft 
flying on the solar plane, with a track width of 185 
m, resulting in 720 ha of ground surface covered 
(Fig. 3). The VIS-NIR camera operated with 260 
spectral bands (400–885 nm) and a radiometric res-
olution of 12 bits at a 1.865-nm centre wavelength 
(CWL) interval, yielding 6.4-nm full-width at half-
maximum (FWHM) spectral resolution with a 25-
μm slit. The acquisition frame rate on board the 
aircraft was 50 frames per second with an integra-
tion time of 18 ms. The focal length was 8 mm, 
producing an angular field of view (FOV) of 49.82°. 
The images derived from this sensor resulted in a 
ground resolution of 60 cm, allowing us to distin-

guish individual oak tree crowns from the back-
ground. Further details regarding the platform and 
sensor configuration can be found in Zarco-Tejada 
et al. (2013). The NIR-SWIR sensor was operated 
with 165 spectral bands (950–1750 nm), yielding 
6.05 nm FWHM (25-μm slit size) and 16-bit radio-
metric resolution. The sensor was configured with 
an acquisition rate of 25 fps with an integration 
time of 40 ms. The 12.5-mm-focal-length lens re-
sulted in an angular FOV of 38.6°, with a 90 cm/px 
spatial resolution. The FWHM and the centre 
wavelength for each spectral band were derived af-
ter spectral calibration using a monochromator 
(Cornerstone 260 1/4 m, model 74100, Newport 
Oriel Instrument, CA, USA) and an XE-1 Xenon 
calibration light source (Ocean Optics, USA). 

The thermal sensor (FLIR SC655, FLIR Sys-
tems, Inc., USA) had a resolution of 640 × 480 pix-
els and was connected to an acquisition board via 
the Gigabit Ethernet protocol. It was equipped with 
a 24.5-mm F-number 1.0 lens providing an angular 
FOV of 45 × 33.7°. The detector is a focal plane 
array uncooled microbolometer and has a spectral 
range from 7.5 to 14 μm. This camera is equipped 
with a thermoelectric cooling (TE) stabilisation sys-
tem, which enables a thermal sensitivity below 50 
mK. The characteristics of the sensors on board, as 
well as their specific setup in this study, are detailed 
in Table 3. 
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Figure 3. Flight path for image acquisition. White arrows and line indicate the flight path and the 

hashed green square is framed over the study area. The background shows the VIS-NIR hyperspectral 
mosaic, overlaid on an orthophoto from the Spanish National Geographic Institute (IGN, OrtoPNOA 2017 
CC-BY 4.0) 

 
Table 3 
Technical characteristics of the airborne imaging sensors and operational settings 

 
Hyperspectral Thermal 

VNIR NIR-100 SC655 

Wavelength range (μm) 0.4–0.885  0.95–1.75 7.5–14 
Spectral bands 260 165 1 
Spatial bands 1004 320 640 × 480 
Focal plane array detector Silicon CCD InGaAs VOx 
TE cooling No Yes Yes 
Detector pixel pitch (μm) 7.4 12 17 
FWHM (nm) 6.4 6.05 – 
Slit size (μm) 25 25 – 
Radiometric resolution (bits) 12 16 16 
Integration time (ms) 18 40 8 
Frame period (ms) 55.55 18 1000 
Aperture F/1.4 F/2.0 F/1.0 
Focal length (mm) 8 12.5 24.5 
Spatial resolution (cm/px) 60 90 60 
FOV (deg) 49.82 38.6 45 × 33.7 
Communication protocol CameraLink USB GigE 
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2.2.2. Image post-processing 
Both hyperspectral sensors were radiometrically 

calibrated by means of an integrating sphere (Uni-
form Source System, model CSTM-USS-2000C, 
Labsphere Inc., North Sutton, NH, USA) using co-
efficients derived from the calibrated light source at 
four constant levels of illumination. Atmospheric 
correction for the VIS-NIR sensor was performed 
using the total incoming radiance measured with a 
field spectroradiometer (ASD HandHeld Pro, Mal-
vern Panalytical Ltd, Malvern, England). Atmos-
pheric correction was simulated with the SMARTS 
model (Gueymard, 1995, 2001) for the NIR-100 sen-
sor, which allowed the conversion of the radiance 
images to reflectance for the full range of both sen-
sors. Optical thickness measurements from a Mi-
crotops II sunphotometer (Solar Light Co., Phila-
delphia, PA, USA) and meteorological measure-
ments from a weather station (model WXT510, 
Vaisala Corporation, Vantaa, Finland) were used as 
input parameters for the model. Additionally, the 
effects of illumination and viewing angle were also 
adjusted using cross-track correction (San and 
Süzen, 2011) in both hyperspectral processing 
chains (Fig. 4). 

Thermal calibration was conducted in the labor-
atory using a black body calibration source 
(LANDCAL model P80P, Land Instruments Inter-
national Ltd, Dronfield, England) and by indirect 
calibration using ground temperature measure-
ments with a handheld infrared thermometer (La-
serSight from Optris GmbH, Berlin, Germany) as 
described by Calderón et al. (2015) (Fig. 4). Stand-
ardised canopy temperature (Tc-Ta) was calculated 
by subtracting weather station air temperature (Ta) 
from canopy temperature derived from calibrated 
thermal imagery (Tc). 

Orthorectification of hyperspectral images was 
performed using PARGE (ReSe Applications LLC, 
Wil, Switzerland) image rectification software for 
airborne optical scanner systems. Data from inertial 
measurement units installed on each sensor (IG-
500N, SBG Systems S.A.S., Carrières-sur-Seine, 
France) were synchronised with each camera’s im-
ager and used as inputs for the software. Orthomo-
saicing thermal imagery was performed using Pix4D 
(version 3.1.23, Lausanne, Switzerland) photogram-
metry software. Data pre-processing and image cor-
rection were as described in detail by Hernández-
Clemente et al. (2012) and Zarco-Tejada et al. 
(2013).

 
Figure 4. From left to right, the images from the VIS-NIR, NIR-SWIR, and thermal sensors are shown 

over the study area. Bottom row contains zoomed-in views of scenes above (green rectangle).
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2.2.3 Spectral-based indicators 
The high-resolution imagery acquired from each 

airborne sensor allowed us to identify and delineate 
tree crowns independently, seeking to minimise the 
effect of background and shadowing. This image 
segmentation was achieved using object-based 
methods through Niblack’s threshold (Niblack, 
1986) and Sauvola’s binarisation techniques (Sau-
vola and Pietikäinen, 2000). Finally, we applied a 
binary watershed analysis using the Euclidean dis-
tance map for individual objects to automate the 
separation of the trees with overlapping crowns 
(Fig. 5). 

Mean reflectance values for each tree were used 
to calculate 96 spectral-based indicators, including: 

i) VIs related to tree crown structure, chlorophyll, 
carotenoid, anthocyanin and water contents, and 
the epoxidation state of the xanthophyll cycle (de-
tailed in Appendix A.); ii) chlorophyll fluorescence 
emission through the Fraunhofer line depth (FLD) 
method as described by Maier et al. (2003) using 
three bands for the in (L763 nm) and out (L750 nm; L780 

nm) bands (3FLD); and iii) thermal dissipation using 
Tc-Ta, as previously described. We selected indica-
tors mainly related to pigment composition and 
physiological variables to intensify the discrimina-
tory capability of the models detecting healthy trees 
from trees with low severity levels (e.g. DS0 to 
DS1).

 

 
Figure 5. Overview of the entire crowns in the study area. Zoomed-in views (of the area in the yellow 

box) in the bottom row show the tree-crown segmentation for each sensor. 
 

2.3. Model simulation analysis and plant trait 
retrieval 

Canopy structural traits and biochemical com-
position were quantified by inverting the 3-D RTM 
FLIGHT8 model, using the pixels extracted from 
the tree crowns. We selected this model to minimise 

the impact of structural canopy variations, soil 
background, shadows and understory affecting the 
retrieval of PTs in heterogeneous forest canopies 
(Hernández-Clemente et al., 2017; Hornero et al., 
2021). The model simulations were conducted using 
the atmospheric and ground data set collected dur-
ing the image acquisition. Input variables for the 
model (Table 4) were established according to the 
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field measurements, estimates from existing litera-
ture, and nominal parameters to ensure that the 
generated look-up table (LUT) covered the range of 
spectral variability in the tree crowns. The ill-posed 
problem generated when a wide range of PTs can 
be obtained from the same spectrum was alleviated 
using restricting ranges of input parameters based 
on field data measurements (Combal et al., 2003). 
The LUT calculation is processed in two phases, 

with the purpose of sequencing the inversion pro-
cess to minimise the improperly posed problem and 
using the inversion methods best suited to each 
step, as detailed in Fig. 6. FLIGHT8 is coupled to 
leaf model FLUSPECT-B in the first phase to allow 
the retrieval of sun-induced fluorescence quantum 
efficiency (Fi) and with PROSPECT-D in the sec-
ond phase to allow the retrieval of anthocyanins 
content.

 
Table 4 
Inputs for the model simulation analysis. 

Variable Units Acronym Phase 1 Phase 2 
Chlorophyll a + b content μg cm2 Cab 10–60 21–33 
Carotenoid content μg cm2 Car 1–20 1–7 
Water content Cm Cw 0.013 0–0.03 
Dry matter content g cm−2 Cdm 0.024 0.003–0.018 
Anthocyanin content g cm−2 Anth NA* 0–6 
Senescence material Fraction Cs 0 0 
Mesophyll structure – N 2.1 2.1 
Fluorescence quantum efficiency – Fi 0–0.2 NA* 
Leaf area index m2 m−2 LAI 0–4 0.1–2.5 
Leaf size m LFS 0.05 0.05 
Leaf angle distribution – LAD Spherical Spherical 
Fractional cover % FC 70 70 
Soil reflectance % Soil 1 sample 1 sample 
Understory reflectance % US 4 samples 4 samples 
Crowns shape – CSh Ellipsoid Ellipsoid 
Solar Zenith deg. SZA 25.84 25.84 
Solar Azimuth deg. SAA 108.98 108.98 

*NA: Fi and Anth are not modelled in PROSPECT-D and in Fluspect-B, respectively. 
 
In the first phase of analysis (Fig. 6 top), we 

determined LAI, Cab, Car, and the sun-induced flu-
orescence quantum efficiency (Fi). We built a LUT 
of +800k simulations coupling the FLUSPECT-B 
(Vilfan et al., 2016) leaf reflectance model with the 
FLIGHT8 (Hornero et al., 2021) canopy model. 
FLUSPECT-B considers the pigment concentra-
tions in the leaf and its photosynthetic efficiency, 
and FLIGHT8 takes into account the structural 
properties of the canopy and the effect of the soil 
and the understory. The senescence material, water 
(Cw), and dry matter (Cdm) contents, and the struc-
tural parameter N were set to nominal values using 

a value previously determined on this particular 
species in the same study area following Hernández-
Clemente et al. (2017) (Table 4 – Phase 1). For 
comparisons with airborne hyperspectral images, 
we used convoluted model simulations assuming 
Gaussian band spectral response functions for their 
corresponding FWHM, centred on the band loca-
tions of each imager. The LUT-based inversion fol-
lowed a multi-step approach in which the LAI val-
ues were determined first, followed by Cab, Car, and 
finally, Fi, using the MSR, PSSRb, CRI700m, and 
3FLD spectral-based indicators as proxies for each 
PT, respectively. 
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Figure 6. Model simulation approach diagram.
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In the second phase, parameterisations retrieved 
from each tree were used to build a LUT of +200k 
simulations by coupling the PROSPECT-D (Féret 
et al., 2017) leaf reflectance model with the 
FLIGHT8 canopy model. The leaf reflectance model 
was used to specifically quantify Anth, as well as Cw 
and Cdm (Fig. 6 bottom). For the simulations and 
images, a smoothing algorithm based on local poly-
nomial regression fitting (Cleveland et al., 1992) 
was applied to eliminate the noise affecting the 
model inversion. Through the use of wavelets 
(Strang and Nguyen, 1996), we decomposed the hy-
perspectral signatures into frequency components 
at different spectral scales, allowing us to identify 
the LUT spectra that showed a closer correspond-
ence to the image spectra, which enhances the re-
trieval of the spectral features and hence plant 
traits. The continuous wave transformation was 
performed over three spectral ranges, a) 470710 
nm, b) 670850 nm, and c) 10001300 nm and 
15001700 nm, for the retrieval of Anth, Cdm, and 
Cw, respectively. At this stage, Kattenborn et al. 
(2017) and, more recently, Suarez et al. (2021) used 
a similar method to obtain the PTs from hyperspec-
tral images; however, the methods used in this 
study differ in that a) an extended spectral range 
was used based on double-coupled hyperspectral 
imagers, and b) only the first four transformation 
scales were used to characterise more specific spec-
tral regions of interest, instead of the whole range 
of the signal. The performance of the model-based 
PTs was evaluated based on the Normalised Root 
Mean Square Error (NRMSE) (2) with the field 
data (LAI, Cab, Car, Anth). Fs/Fi were excluded from 
this comparison since they are both unitless. 

 

NRMSE = ට
ଵ

௡
∑ (𝑦௜ − 𝑦ො௜)ଶ௡

௜ୀଵ
ଵ

௬ത
   (2) 

 
where n is the number of observations, 𝑦௜ repre-

sents the ith actual observation of the PT 𝑦, 𝑦ത its 
mean and 𝑦ො௜ the predicted value from the model-
based retrieval. 

2.4. Plant trait selection and classification model 
approach 

Once the PTs were obtained for each tree, fea-
ture selection was performed using a random forest 
(RF) classifier (Breiman, 2001; Liaw and Wiener, 
2002) combined with an adaptation of an algorithm 
developed by Kursa and Rudnicki (2010), hence-
forth referred to as the Boruta algorithm. In the 
Boruta algorithm, shadow variables (permuted cop-
ies) are created by shuffling the original ones. The 
RF classifier is then applied to the initial data set, 
which is composed of the original variables and 
their shadow counterparts at the same time. The 
Boruta algorithm evaluates iteratively the im-
portance of each original variable against the 
shadow variables to determine which variables are 
essential and at what magnitude. Variables are 
marked “Unconfirmed” when they are significantly 
lower than the shadows and are permanently dis-
carded, while variables that are significantly higher 
than the shadows are marked “Confirmed”. The 
process is repeated by re-generating the shadow 
variables and continues until only confirmed varia-
bles are left or until the maximum number of iter-
ations defined at this stage is reached (set at 100 
iterations). If the second scenario occurs, some var-
iables may remain undecided, and they are consid-
ered “Tentative.” The confidence level defined in 
the Boruta algorithm was established at 99% with 
a multiple comparisons adjustment using the Bon-
ferroni method (Haynes, 2013) to control false pos-
itives. Once this process was completed, the im-
portance of each PT in the severity and incidence 
classification process was obtained. 

As an initial step, we performed the Boruta anal-
ysis using the field-based PT measurements, com-
bining 2013, 2015, and 2017 evaluations, using only 
the three variables that were measured in all three 
years (Fs, Cab, and Car) on 45 observations (15 eval-
uations and physiological measurements per year) 
and comparing them to the levels of severity and 
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incidence. The purpose of this analysis was to un-
derstand the sensitivity of field-based PT to forest 
decline.  

The feature selection process started using all 
the model-based PTs retrieved for each tree, includ-
ing 8 variables and 1146 observations. Then, the 
Boruta analysis was repeated for all the spectral-
based indicators (N = 96). The objective was to 
improve the reliability of the model using comple-
mentary information added by VIs to the initial 

model-based PT feature selection. Due to the high 
fluctuations in the importance calculation when a 
large number of variables are used, the process in 
Boruta starts with three rounds, in which only the 
selected shadow variables are compared, while in 
the remaining rounds — up to 100 iterations — the 
original variables are compared with all the shadow 
variables. Figure 7a presents an overview of the en-
tire process for the selection of variables conducted 
in this study.

 
Figure 7. Overview of the methodology used for a) the feature selection using the Boruta algorithm, 

including the iterative reduction of variables and the correlation analysis; and b) the classification ap-
proach based on 2017 with the different cases assessed and a final comparison with a subsequent evalua-
tion in 2019. 

 
To strengthen the selection of features used in 

the classification model, the PTs were set in the 
established order according to their importance, 
and the VIs were added based on their previously 
calculated importance as well. At each stage of ac-
cumulation, the variance inflation factor (VIF) — 

an indicator that measures the extent to which the 
variance of an estimated regression coefficient in-
creases due to collinearity (James et al., 2013) — 
was calculated to avoid multicollinearity among the 
predictor variables. The variable was included only 
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if the VIFs for all variables were below the 
threshold of 10. The final set of selected variables 
(PTs + VI) was used in the next screening stage. 

Finally, Pearson’s correlation analysis and p-
values were used to determine the degree of 
relationship between the previously selected 
variables. Through the calculated correlation 
matrix, the variables to be excluded were chosen to 
reduce the pair-wise correlations establishing a 
cutoff filter of 0.85 (Dormann et al., 2013). The 
Boruta algorithm was applied to the remaining 
variables to determine the importance of each 
selected variable. A principal component analysis 
(PCA) was also conducted to determine to what 
extent the components capture the majority of the 
variance and to identify the variables that provide 
the most information and whether the less relevant 
ones could be discarded to reduce the 
dimensionality of the data set. The filtered 
variables were retained for the development of the 
classification model, as shown in Figure 7. 

Two ML algorithms were used to classify disease 
incidence and severity levels: a supervised non-
linear support vector machine (SVM) with a 
Gaussian kernel radial base function (Scholkopf et 
al., 1997) and the RF algorithm (Breiman, 2001), 
which were reported as the predominant classifiers 
on airborne imaging (Gigović et al., 2019; Gualtieri 
et al., 1999; Liu et al., 2017; Pal, 2005). 

We evaluated models for two different cases 
(Fig. 7b), assessing incidence and severity 
classification from i) CASE 1, all trees assessed in 
2017 (N = 1146), and ii) CASE 2, only confirmed 
trees, which were either still affected or unaffected 
again in 2019 (N = 506). To validate the selected 
models, we performed 100 iterations in which the 
data set was randomly divided into two samples, 
the training and the test samples by 80% and 20%, 
respectively, including k-fold cross-validation, in 
which the original sample was randomly partitioned 
into 10 equal-sized subsamples and repeated five 
times. Training data were subsampled for each 
iteration to avoid disproportionate frequencies of 

classes, which could negatively impact the model 
fit. Finally, we assessed the classification accuracy 
by calculating the overall accuracy (OA) and the 
Cohen’s kappa coefficient (κ), which is based on 
comparing the observed agreement in a data set 
compared to what could occur by mere randomness 
(Richards and Jia, 1999). 

After assessing the models’ accuracy, we 
evaluated the anticipation capability using the 
visual evaluation 2 years later. In particular, we 
analysed whether the model was able to predict the 
unconfirmed cases — trees that were assessed at a 
given incidence level and in the subsequent 
assessment, 2 years later, were assessed at the 
opposing level — and refined towards those that 
improve or worsen, i.e., those that change from 
having incidence to not having it and the opposite, 
respectively. This last analysis helped us 
understand the applicability of the model to predict 
a subsequent evaluation of forest decline using the 
data from previous images and evaluations. 

3. Results 

In this section, we present the results of the 
evaluation of the field and PT indicators to predict 
oak decline. The predictions of the remote sensing 
spatial model are described below, focusing on the 
ability to discriminate between damage levels as a 
function of PT alterations caused by oak decline. 

3.1. Plant trait indicator assessment based on 
forest health field measurements 

The bi-annual empirical data collected from 
2013 to 2017 show the capability of the field-based 
PTs — Cab, Car, and Fs — to discriminate different 
levels of severity. Trees with low disease severity 
levels consistently had high values for Fs, Cab, and 
Car content (Fig. 8). Fs was identified as having 
importance values two times higher than Cab and 
Car in both severity and incidence levels (Fig. 8 
right side).
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Figure 8. Relationship between the level of severity and field-based plant traits – chlorophyll content 

(Cab), carotenoid content (Car), and steady-state leaf fluorescence (Fs) – in N = 45 trees measured in 2013, 
2015, and 2017. Importance scores for field-based plant traits in detecting oak decline computed via the 
Boruta algorithm are shown at right. 

 

 
Figure 9. Relationship between severity and plant traits retrieved from hyperspectral and thermal images 

in 2017. 
 

3.2. Spectral- and model-based plant trait 
predictors of oak decline  

As with empirical measurements, model-based 
values of Fi and pigment content (Cab and Car) were 
inversely related to severity level (Fig. 9). The 
model-based PTs corresponded well with field data, 
having relatively low normalised error (NRMSELAI 
= 0.13, NRMSECab = 0.16, NRMSECar = 0.2, and 
NRMSEAnth = 0.12) and values within the expected 
range (data not shown). In Fig. 9, we also included 

the model-based retrievals of three other PTs (Cw, 
Cdm, and Anth) and Tc-Ta derived from thermal data. 
Severity level was positively associated with Tc-Ta 
and Cdm but negatively associated with LAI, Anth, 
and Cw. These results are also consistent with the 
classification of incidence and severity obtained 
from field-based PT measurements, described in the 
previous section, where Fs was one of the most 
relevant variables to detect oak decline. 

Variable importance scores for model-based PTs 
and Tc-Ta are presented in Fig. 10. Tc-Ta and Fi had 
the highest importance scores in models 
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discriminating the first and second severity levels, 
while LAI and Cdm were determined to be the most 

important for differentiating the remaining severity 
levels (Fig. 11a). 

 
 

 
Figure 10. Overall importance scores for each plant trait when classifying both incidence and severity 

disease levels using the Boruta algorithm. 
 
 

 
Figure 11. Severity subsampling importance scores for each plant trait (PT) (a) and spectral-based 

principal component (PC) predictors’ analysis (b) for both incidence (0–1) and severity (0–3) levels using 
the model-based PTs (Cab, Car, Anth, Cw, Cdm, LAI, and Fi) and the thermal-image-based PT (Tc-Ta). The 
bidimensional plots display each variable’s loading, with vectors and the tree samples as points coloured by 
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severity and incidence levels. The vectors’ length approximates the variance represented by each variable, 
whereas the angles between them represent their correlations. 

 
The principal components PC1 and PC2 explain 

59.2% of the total variability, with 42.5% for PC1 
and 16.7% for PC2 (Fig. 11b). The PTs Tc-Ta and 
LAI were strongly negatively correlated in PC1 and 
PC2 space, having nearly the same magnitude and 
angle but different directions. These results may 
indicate that the more abundant the vegetation, the 
greater the transpiration capacity and the lower the 
temperature difference. On an orthogonal ray, we 
find Car, which is scarcely related to them, and its 
importance indicates its limited contribution to the 
model. The projection of Fi in the first two 
components was opposite that of Car, and this 
variable contributed substantially to model 
performance. This variable was more important 
than LAI for the development of an incidence 

classification model as well as distinguishing the 
first two severity levels. 

3.3. Remote sensing spatial model predictions of 
oak decline  

To find the best variables for predicting oak 
decline, the model-based PTs were combined with 
95 VIs, of which only four passed the iterative VIF 
screening and pair-wise correlation threshold: LIC3, 
CI2, GnyLi, and MND (Fig. 12a). The variables 
with the lowest correlation coefficient (<0.05) were 
Car with LAI, Anth, and MND, a result that is 
consistent with the PCA showing Car as largely 
independent from other variables.

 

 
Figure 12.  Plant traits (PTs) and vegetation indices (VIs) correlations (a) and variable importance 

scores for spectral-based PT and VIs with severity and incidence (b) to detect oak decline. 
 
The variable selection process yielded 12 final 

indicators with a VIF below the established 
threshold. Two indicators were associated with 
photosynthesis regulation: Fi and Tc-Ta. Four 
indicators were related to pigment content: Cab, Car, 
Anth, and CI2. One indicator was related to 

fractional cover, namely, LAI. Five indicators were 
related to water content: Cw, Cdm, GnyLi, MND, 
and LIC3. Among all the indicators, the variables 
contributing the most to detecting different levels 
of incidence and severity were Tc-Ta and Fi. These 
PTs were included as predictors for the final 
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classification model of oak decline; their importance 
scores are presented in Figure 12b. Variables with 
the highest importance included Tc-Ta, Fi, and CI2.  

Model accuracy was estimated on the basis of 
the total number of trees evaluated and confirmed 
cases reported in the subsequent survey (Fig. 13). 
Models classifying severity had an overall accuracy 
of 0.71 (κ = 0.51) in the best case (sampling of 
confirmed cases with RF algorithm). Models 
classifying incidence were more accurate (OA = 
0.82; κ = 0.62) for this same scenario. The SVM 
algorithm was slightly more accurate when we used 
the complete data set (all trees; N = 1146), while 
RF performed better with the reduced-input data 
set (confirmed cases; N = 506). For models 
predicting incidence, the OAs were greater than 
0.75 (thus considered ‘high’), and the Cohen’s 
kappa scores were fair to excellent, according to 
Cicchetti and Sparrow (1981). 

The findings obtained when evaluating the 
anticipation capabilities (Table 5) indicate a better 
behaviour of the RF algorithm when building the 
model with both confirmed cases — in which the 
best result is found — and all cases. When we 
analyse the prediction rate while segregating 
between trees that worsen (incidence: 0 → 1) and 
those that improve (1 → 0), for the former, the RF 
algorithm behaves better, and for the latter, SVM. 

Example predictions from a final incidence 
classification model using the SVM algorithm are 
presented in Fig. 14, with results within the 
expected performance (OA = 0.81; κ = 0.62); 
comprehensive statistics are detailed in Appendix 
B. Through this map and the field evaluations, the 
differences found can be appreciated, as well as 
their spatial variability.

 

 
Figure 13. Overall accuracy (OA) and Cohen’s kappa scores for classification models. Results were 

obtained from 100 iterations of random data subsets for training and validation (80/20). Average OA and 
kappa values are shown as horizontal bars, the former in colour and the latter as narrower grey bars with 
dotted edges. The error bars indicate the minimum and maximum OA values across iterations. 
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Table 5 
Prediction rate for non-confirmed cases (NC) using models built with all cases or only confirmed ones. 

The best results for each case are highlighted in light green and in darker green overall. 
Method Sample NC 0↔1 (%) NC 0→1 (%) NC 0←1 (%) 

SVM All cases 29.9 27.4 34.0 

SVM Confirmed cases 33.8 34.8 32.1 

RF All cases 32.1 31.9 32.0 

RF Confirmed cases 35.5 40.2 27.4 

All cases: N = 1146; confirmed cases: N = 506. 
 
 
 

 
Figure 14. Field evaluation and spatial prediction map from the model output. Yellow and green filling 

indicates incidence or not, respectively. Tree crowns with a red outline are those that differ between the 
field evaluation and the model output. 
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 4. Discussion 

The first objective of this study was to identify 
the PTs that are most useful for detecting the 
incidence and severity of decline symptoms in holm 
oak. One of the main challenges encountered in 
quantifying PTs in heterogeneous forest canopies 
was to minimise the impacts of shadows, soil 
background, and understory, which dilute the 
spectral signature of pure crowns (Hernández-
Clemente et al., 2019; Liu et al., 2020; Markiet et 
al., 2016; Pisek et al., 2015). For this reason, 
advanced 3-D simulation models designed 
specifically for heterogeneous forest canopies were a 
major methodological component of this study. The 
critical step resided in the successful retrieval of 
model-based PTs that allowed us to understand the 
contribution to each PT and complete the ML 
modelling approach with additional information 
derived from other spectral-based, uncorrelated 
variables.  

Field data confirmed the association between Q. 
ilex status and several key PTs. Trees with lower 
disease incidence had higher values of Cab, Car, and 
Fs. As symptom severity increases, the 
concentration of these pigments and the chlorophyll 
fluorescence decrease. The decrease rate we 
observed in chlorophyll fluorescence and pigment 
content associated with disease incidence are 
consistent with declines associated with drought 
and root rot stress found in other experiments 
under controlled conditions (Früchtenicht et al., 
2018; Koller et al., 2013; Ruiz Gómez et al., 2018) 
and field surveys (Baquedano and Castillo, 2007; 
Camarero et al., 2012).  

It is notable that we found Fs to be more 
important than the other two PTs in identifying 
disease incidence from field data. Among model-
based PTs retrieved from hyperspectral images, Fi 
similarly had a higher importance score than any 
other pigment content indicator for discriminating 
severity. This pattern is consistent with the 

variable importance ranking of variables in Zarco-
Tejada et al. (2018) for detecting Xf-induced 
symptoms in olive trees. 

Including spectral-based PT indicators in our 
analysis provided insight into the functional 
responses of oak trees to different disease levels. Tc-
Ta was the most important indicator, regardless of 
whether we discriminate by incidence or severity. 
Thermal imaging has improved the detection of 
several crop diseases in other studies, including 
Verticillium wilt in olive orchards (Calderón et al., 
2015), water stress in peach orchards (Gonzalez-
Dugo et al., 2020), and red leaf blotch in almond 
orchards (López-López et al., 2016). In this study, 
other important PTs included LAI and Fi, followed 
by Cdm, Cw, and Anth, and to a lesser extent Cab and 
Car. 

Focusing on the discrimination capacity of each 
PT between the different stages of severity, Tc-Ta 
was generally an important predictive variable for 
determining disease incidence, but LAI and Cdm 
were more relevant for discriminating mild and 
advanced severity classes. PCA showed that Tc-Ta 
and LAI contributed strongly to the same 
component but in opposite directions. Severity 
subsampling supports that while canopy 
temperature is particularly important for early 
incidence detection, LAI may provide more 
information about severity levels when a tree is 
infected. 

Another important aspect of this study is the 
consideration of VIs alongside other model-based 
PTs for classification. CI2, GnyLi, MND, and LIC3 
were variables that passed through selection 
criteria, providing additional information and 
avoiding collinearity with other variables. In the 
final model, Fs was selected as highly important, 
since part of the weight of LAI was distributed 
among other indicators such as CI2 or LIC3. The 
importance of indicators from the SWIR region 
(MND and GnyLi) also exceeded that of Cab, Car, 
Cdm, and Anth. 
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This study showed that remotely derived PTs 
can support the early detection of holm oak decline, 
which was the second objective of this work. By 
applying a combination of 3-D model simulation 
and statistical analysis using ML approaches, we 
found that oak forest decline can potentially be 
detected at an earlier stage and that severity levels 
can be accurately assessed at broad scales. 
Predictive model accuracy was high, with an OA > 
0.8 and  > 0.6, indicating that the PTs we 
identified may be helpful for understanding 
physiological responses to disease and other 
stressors. The model accuracy achieved in this 
study is comparable to that of prediction models 
developed for olive trees by Zarco-Tejada et al. 
(2018).  Taking advantage of a subsequent field 
evaluation performed 2 years later, the model’s 
anticipation ability was evaluated, which brought 
us significantly improved results since it managed 
to anticipate up to 40% in the best scenario.  

These results help bridge a gap in the 
understanding of how forest decline alters PTs via 
complex interactions between biotic and abiotic 
factors. Unlike in agricultural studies, where factors 
such as nutrient deficiency or water availability can 
be controlled, in forests these interactions are 
difficult to dissociate. Forest canopy heterogeneity 
poses a challenge for spectral data modelling, due 
to discontinuous architectures and interference 
from shadows, understory, and soil composition. 
The utility of satellite-based spectral indicators for 
detecting diseases has been examined by Hornero et 
al. (2020) in olive trees and Hernández-Clemente et 
al. (2017) in holm oak. A common finding in these 
studies was that the soil and the understory both 
influence the spectral signature and the fluorescence 
signal of aggregated pixels. In this work, we used 
the FLIGHT8 model, a recently improved version 
of the FLIGHT model, which minimises 
background effects by considering the spectral 
contribution of the understory. The success of the 
methods presented here may be partially due to the 
high spatial resolution of hyperspectral images 

collected and to the open nature of the woodland 
landscape. However, the FLIGHT8 model also 
accounts for increasing levels of pixel aggregation 
(e.g., using medium- to low-resolution satellite 
imagery) in heterogeneous canopies (Hornero et al., 
2021). Future work should investigate the 
assessment and validation of the methods presented 
here performed with satellite imagery and/or 
different types of forest canopies.  

In a practical level for the management of holm 
oak decline, the results show that Tc-Ta, Fi, LAI 
and Cdm are sensitive indicators to discriminate 
between DI levels [0–1]. However, being able to 
quantify between DS [0–4] is clearly advantageous 
for effective management and mitigation of forest 
decline. According to the results, monitoring holm 
oak decline should include the analysis of the 
transition between severity levels based on 
indicators such as Tc-Ta, Fi and LAI to discriminate 
between DS [0–1]; LAI, Cdm, and Tc-Ta between DS 
[1–2]; and LAI, Cdm and Cw between DS [2–3]. The 
transition between DS [0–1] is particularly 
important, as it indicates the progression between 
non-symptomatic to symptomatic trees. 

The proposed methodology has been validated 
on holm oak decline affected jointly by the presence 
of Pc and abiotic stress, mainly water stress. But 
the methods proposed here should be further tested 
to analyse the sensitivity of PTs to disentangle the 
interactive biotic and abiotic effects. Future studies 
should thus include the analysis of a wider range of 
holm oak forest locations solely affected by either 
abiotic or abiotic factors. This situation is quite 
unlikely, as it has been shown that holm oak decline 
is often linked to a combination of factors (Camilo-
Alves et al., 2013; Corcobado et al., 2014).  
However, each factor may have different 
contribution in the decline process (Colangelo et al., 
2018). Therefore, the discrimination between both 
factors should be considered in future studies. 
Furthermore, the sensitivity of PTs in oak forest 
affected by other types of pathogens or abiotic 
stress could be different. This work provides a 
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breakthrough in analysing the spectral changes 
caused by xylem-limited factors such as root rot, 
water stress or soil compaction in heterogeneous 
forest stands. The challenge is to evaluate other 
types of forest decline processes on the 
methodological and empirical basis shown in this 
work. 

Large-scale monitoring may be further improved 
by including multitemporal data to track disease 
evolution. However, such data will increase the 
complexity of analyses, particularly due to 
variation in understory and soil reflectance from 
image to image, their impact on aggregated pixels, 
and the need to account for those variations with 
RTM. The methodology presented here may be 
particularly relevant for the Sentinel-2 mission, 
which provides multitemporal data in the visible, 
infrared, and short infrared regions, and the FLEX 
mission, which will provide fluorescence data after 
2022. 

5. Conclusions 

This study develops a new methodology that 
integrates field data, airborne imagery, physical 
RTM, and empirical modelling to retrieve PTs and 
assess their association with forest decline and 
provides a tool to detect early-onset symptoms of 
decline in holm oak. Hyperspectral image data, 
including VNIR and SWIR spectral regions, 
combined with thermal imaging and RTM can be 
used to monitor the spread of forest decline over 
large areas. Thermal-based canopy temperature 
(Tc-Ta) was the most important PT in the model to 
discriminate between different levels of severity and 
incidence, followed by the fluorescence (Fi) and 
LAI, whereas LAI and Cdm were the most relevant 
indicators for discriminating advanced stages of 
severity. Additional spectral indicators such as CI2 
or LIC3 complemented LAI, and VIs in the SWIR 
region (GnyLi and MND) were more important 

than PTs such as Cab, Car, or Anth. Overall, our 
results demonstrate that an integrated approach 
combining spectral- and model-based PT retrievals 
using 3-D RTM and classification methods is 
needed for the large-scale monitoring of forest 
decline. This approach enabled the successful 
prediction of holm oak decline at an early stage; it 
is essential to monitor harmful forest diseases, and 
this task can be augmented through the retrieval of 
accurate forest health traits from advanced airborne 
imagery and satellite data observations. 
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Appendix A. 
Vegetation indices derived from airborne imagery included in this study and their formulations. 
Vegetation index Equation Reference 

Structural   
Normalized Difference Vegetation 
Index 

𝑁𝐷𝑉𝐼 = (𝑅଼଴଴ − 𝑅଺଻଴)/(𝑅଼଴଴ + 𝑅଺଻଴) (Rouse et al., 1974) 

Near-Infrared Reflectance of 
Vegetation 

𝑁𝐼𝑅௏ = 𝑅଼଴଴(𝑅଼଴଴ − 𝑅଺଻଴)/(𝑅଼଴଴ + 𝑅଺଻଴) (Badgley et al., 2017) 

Renormalized Difference Vegetation 
Index 𝑅𝐷𝑉𝐼 = (𝑅଼଴଴ − 𝑅଺଻଴)/ඥ(𝑅଼଴଴ + 𝑅଺଻଴) (Roujean and Breon, 

1995) 

Simple Ratio 𝑆𝑅 = 𝑅଼଴଴/𝑅଺଻଴ (Jordan, 1969) 
Modified Simple Ratio 𝑀𝑆𝑅 = (𝑅଼଴଴/𝑅଺଻଴ − 1)/(〖(𝑅଼଴଴/𝑅_670)〗^0.5 + 1) (Chen, 1996) 
Optimized Soil-Adjusted Vegetation 
Index 

𝑂𝑆𝐴𝑉𝐼 = (1 + 0.16)  
𝑅଼଴଴ − 𝑅଺଻଴

𝑅଼଴଴ + 𝑅଺଻଴ + 0.16
 (Rondeaux et al., 1996) 

Modified Soil-Adjusted Vegetation 
Index 

𝑀𝑆𝐴𝑉𝐼 =  (1 + 𝐿)
𝑅଼଴଴ − 𝑅଺଻଴

𝑅଼଴଴ + 𝑅଺଻଴ + 𝐿
 (Qi et al., 1994) 

Modified Triangular Vegetation Index 
1 

𝑀𝑇𝑉𝐼ଵ = 1.2(1.2(𝑅଼଴଴ − 𝑅ହହ଴) − 2.5(𝑅଺଻଴ − 𝑅ହହ଴)) (Haboudane et al., 
2004) 

Modified Triangular Vegetation Index 
1 

𝑀𝑇𝑉𝐼ଶ = 1.5
1.2(𝑅଼଴଴ − 𝑅ହହ଴) − 2.5(𝑅଺଻଴ − 𝑅ହହ଴)

ට(2𝑅଼଴଴ + 1)ଶ − ൫6𝑅଼଴଴ − 5ඥ𝑅଺଻଴൯ − 0.5

 (Haboudane et al., 
2004) 

Modified Chlorophyll Absorption Ratio 
Index 

𝑀𝐶𝐴𝑅𝐼 = ((𝑅଻଴଴ − 𝑅଺଻଴) − 0.2(𝑅଻଴଴ − 𝑅ହହ଴)) ൬
𝑅଻଴଴

𝑅଺଻଴
൰ (Haboudane et al., 

2002) 

Modified Chlorophyll Absorption Ratio 
Index 1 

𝑀𝐶𝐴𝑅𝐼ଵ = 1.2(2.5(𝑅଼଴଴ − 𝑅଺଻଴) − 1.3(𝑅଼଴଴ − 𝑅ହହ଴)) (Haboudane et al., 
2004) 

Modified Chlorophyll Absorption Ratio 
Index 2 

𝑀𝐶𝐴𝑅𝐼ଶ

= 1.5
2.5(𝑅଼଴଴ − 𝑅ହହ଴) − 1.3(𝑅଺଻଴ − 𝑅ହହ଴)

ට(2𝑅଼଴଴ + 1)ଶ − ൫6𝑅଼଴଴ − 5ඥ𝑅଺଻଴൯ − 0.5

 (Haboudane et al., 
2004) 

Enhanced Vegetation Index 𝐸𝑉𝐼 = 2.5(𝑅଼଴଴ − 𝑅଺଻଴)/(𝑅଼଴଴ + 6𝑅଺଻଴ − 7.5𝑅ସ଴଴ + 1) (Huete et al., 2002) 
Lichtenthaler 1 𝐿𝐼𝐶ଵ = (𝑅଼଴଴ − 𝑅଺଼଴)/(𝑅଼଴଴ + 𝑅଺଼଴) (Lichtenthaler, 1996) 
Pigments   
Vogelmann 1 𝑉𝑂𝐺ଵ = 𝑅଻ସ଴/𝑅଻ଶ଴ (Vogelmann, 1993) 
Vogelmann 2 𝑉𝑂𝐺ଶ = (𝑅଻ଷସ − 𝑅଻ସ଻)/(𝑅଻ଵହ + 𝑅଻ଶ଺) (Vogelmann, 1993) 
Vogelmann 3 𝑉𝑂𝐺ଷ = (𝑅଻ଷସ − 𝑅଻ସ଻)/(𝑅଻ଵହ + 𝑅଻ଶ଴) (Vogelmann, 1993) 

Gitelson and Merzlyak 1 𝐺𝑀ଵ = 𝑅଻ହ଴/𝑅ହହ଴ (Gitelson and 
Merzlyak, 1996) 

Gitelson and Merzlyak 2 𝐺𝑀ଶ = 𝑅଻ହ଴/𝑅଻଴଴ (Gitelson and 
Merzlyak, 1996) 

Transformed Chlorophyll Absorption 
Ratio 

𝑇𝐶𝐴𝑅𝐼 = 3 ቌ

(𝑅଻଴଴ −  𝑅଺଻଴) −

− 0.2 (𝑅଻଴଴ −  𝑅ହହ଴)
𝑅଻଴଴

𝑅଺଻଴

ቍ (Haboudane et al., 
2002) 

TCARI/OSAVI 𝑇𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼 =
TCARI

OSAVI
 (Haboudane et al., 

2002) 

Chlorophyll Index 𝐶𝐼 =
𝑅଻ହ଴

𝑅଻ଵ଴
 (Zarco-Tejada et al., 

2001) 

Triangular Vegetation Index  𝑇𝑉𝐼 = 0.5(120(𝑅଻ହ଴ − 𝑅ହହ଴) − 200(𝑅଺଻଴ − 𝑅ହହ଴)) (Broge and Leblanc, 
2001) 

Simple Ratio Pigment Index 𝑆𝑅𝑃𝐼 = 𝑅ସଷ଴/𝑅଺଼଴ (Penuelas et al., 1995) 
Normalized Phaeophytinization Index 𝑁𝑃𝑄𝐼 = (𝑅ସଵହ − 𝑅ସଷହ)/(𝑅ସଵହ + 𝑅ସଷହ) (Barnes et al., 1992) 
Normalized Pigment Chlorophyll Index 𝑁𝑃𝐶𝐼 = (𝑅଺଼଴ − 𝑅ସଷ଴)/(𝑅଺଼଴ + 𝑅ସଷ଴) (Penuelas et al., 1995) 
Simple Ratio 695/420 Carter 𝐶𝑇𝑅 = 𝑅଺ଽହ/𝑅ସଶ଴ (Carter, 1994) 

Simple Ratio Carotenoids 𝐶𝐴𝑅 = 𝑅ହଵହ/𝑅ହ଻଴ (Hernández-Clemente 
et al., 2012) 
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Datt Cab Cx+c Index 𝐷𝐶𝑎𝑏𝑥𝑐 = 𝑅଺଻ଶ/ (3 𝑅ହହ଴𝑅଻଴଼) (Datt, 1998) 
Datt NIR Cab Cx+c Index 𝐷𝑁𝐶𝑎𝑏𝑥𝑐 = 𝑅଼଺଴ / (𝑅ହହ଴𝑅଻଴଼) (Datt, 1998) 
Structure Insensitive Pigment Index 𝑆𝐼𝑃𝐼 = (𝑅଼଴଴ − 𝑅ସସହ)/(𝑅଼଴଴ + 𝑅଺଼଴) (Penuelas et al., 1995) 

Carotenoid Reflectance Index 550 𝐶𝑅𝐼ହହ଴ = 1/𝑅ହଵ଴ − 1/𝑅ହହ଴ (Gitelson et al., 2006, 
2003) 

Carotenoid Reflectance Index 700 𝐶𝑅𝐼଻଴଴ = 1/𝑅ହଵ଴ − 1/𝑅଻଴଴ (Gitelson et al., 2006, 
2003) 

Modified Carotenoid Reflectance Index 
550 

𝐶𝑅𝐼ହହ଴௠ = 1/𝑅ହଵହ − 1/𝑅ହହ଴ (Gitelson et al., 2006, 
2003) 

Modified Carotenoid Reflectance Index 
700 

𝐶𝑅𝐼଻଴଴௠ = 1/𝑅ହଵହ − 1/𝑅଻଴଴ (Gitelson et al., 2006, 
2003) 

Near-Infrared Carotenoid Reflectance 
Index 550 

𝑅𝐶𝑅𝐼ହହ଴ = 1/𝑅ହଵ଴ − (1/𝑅ହହ଴) 𝑅଻଻଴ (Gitelson et al., 2006, 
2003) 

Near-Infrared Carotenoid Reflectance 
Index 700 

𝑅𝐶𝑅𝐼଻଴଴ = 1/𝑅ହଵ଴ − (1/𝑅଻଴଴)  𝑅଻଻଴ (Gitelson et al., 2006, 
2003) 

Plant Senescence Reflectance Index 𝑃𝑆𝑅𝐼 = (𝑅଺଼଴ − 𝑅ହ଴଴)/𝑅଻ହ଴  (Merzlyak et al., 1999) 
Lichtenthaler 3 𝐿𝐼𝐶ଷ = 𝑅ସସ଴/𝑅଻ସ଴ (Lichtenthaler, 1996) 
PRIs   
Photochemical Reflectance Index 𝑃𝑅𝐼 = (𝑅ହ଻଴ − 𝑅ହଷଵ)/(𝑅ହ଻଴ + 𝑅ହଷଵ) (Gamon et al., 1992) 

Photochemical Reflectance Index 515 𝑃𝑅𝐼ହଵହ = (𝑅ହଵହ − 𝑅ହଷଵ)/(𝑅ହଵହ + 𝑅ହଷଵ) (Hernández-Clemente 
et al., 2011) 

Modified Photochemical Reflectance 
Index 1 

𝑃𝑅𝐼𝑀ଵ = (𝑅ହଵଶ − 𝑅ହଷଵ)/(𝑅ହଵଶ + 𝑅ହଷଵ) (Gamon et al., 1992) 

Modified Photochemical Reflectance 
Index 2 

𝑃𝑅𝐼𝑀ଶ = (𝑅଺଴଴ − 𝑅ହଷଵ)/(𝑅଺଴଴ + 𝑅ହଷଵ) (Gamon et al., 1992) 

Modified Photochemical Reflectance 
Index 3 

𝑃𝑅𝐼𝑀ଷ = (𝑅଺଻଴ − 𝑅ହଷଵ)/(𝑅଺଻଴ + 𝑅ହଷଵ) (Gamon et al., 1992) 

Modified Photochemical Reflectance 
Index 4 

𝑃𝑅𝐼𝑀ସ = (𝑅ହ଻଴ − 𝑅ହଷଵ − 𝑅଺଻଴)/(𝑅ହ଻଴ + 𝑅ହଷଵ + 𝑅଺଻଴) (Gamon et al., 1992) 

Normalized PRI 𝑃𝑅𝐼𝑛 = 𝑃𝑅𝐼/(𝑅𝐷𝑉𝐼 𝑅଻଴଴/𝑅଺଻଴) (Zarco-Tejada et al., 
2013) 

PRI⨯CI 𝑃𝑅𝐼 ⨯ 𝐶𝐼 = 𝑃𝑅𝐼(𝑅଻଺଴/𝑅଻଴଴ − 1) (Garrity et al., 2011) 
BGR   
Blueness Index 𝐵 = 𝑅ସହ଴/𝑅ସଽ଴ - 

Greenness Index 𝐺 = 𝑅ହହ଴/𝑅଺଻଴ (Zarco-Tejada et al., 
2001) 

Redness index 𝑅 = 𝑅଻଴଴/𝑅଺଻଴ (Gitelson et al., 2000) 

Blue/Green Index 1 𝐵𝐺𝐼ଵ = 𝑅ସ଴଴/𝑅ହହ଴ (Zarco-Tejada et al., 
2012, 2005) 

Blue/Green Index 2 𝐵𝐺𝐼ଵ = 𝑅ସହ଴/𝑅ହହ଴ (Zarco-Tejada et al., 
2012, 2005) 

Blue Fraction 1 𝐵𝐹ଵ = 𝑅ସ଴଴/𝑅ସଵ଴ - 
Blue Fraction 2 𝐵𝐹ଶ = 𝑅ସ଴଴/𝑅ସଶ଴ - 
Blue Fraction 3 𝐵𝐹ଷ = 𝑅ସ଴଴/𝑅ସଷ଴ - 
Blue Fraction 4 𝐵𝐹ସ = 𝑅ସ଴଴/𝑅ସସ଴ - 
Blue Fraction 5 𝐵𝐹ହ = 𝑅ସ଴଴/𝑅ସହ଴ - 

Blue/Red Index 1 𝐵𝑅𝐼ଵ = 𝑅ସଽ଴/𝑅଺ଽ଴ (Zarco-Tejada et al., 
2012) 

Blue/Red Index 2 𝐵𝑅𝐼ଶ = 𝑅ସହ଴/𝑅଺ଽ଴ (Zarco-Tejada et al., 
2012) 

Relative Greenness Index 𝑅𝐺𝐼 = 𝑅଺ଽ଴/𝑅ହହ଴ (Ceccato et al., 2001) 
Ratio Analysis of Reflectance Spectra 𝑅𝐴𝑅𝑆 =  𝑅଻ସ଺/𝑅ହଵଷ (Chappelle et al., 1992) 
Lichtenthaler 2 𝐿𝐼𝐶ଶ = 𝑅ସସ଴/𝑅଺ଽ଴ (Lichtenthaler, 1996) 
Healthy Index 𝐻𝐼 = (𝑅ହଷସ − 𝑅଺ଽ଼)/(𝑅ହଷସ + 𝑅଺ଽ଼) −  𝑅଻଴ସ/2 (Mahlein et al., 2013) 
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Curvature Optical Index 𝐶𝑈𝑅 = (𝑅଺଻ହ 𝑅଺ଽ଴)/(𝑅଺଼ଷ)ଶ (Zarco-Tejada et al., 
2000) 

NIR-VIS   
Pigment Specific Simple Ratio A 𝑃𝑆𝑆𝑅௔ = 𝑅଼଴଴/𝑅଺଼଴  (Blackburn, 1998) 
Pigment Specific Simple Ratio B 𝑃𝑆𝑆𝑅௕ = 𝑅଼଴଴/𝑅଺ଷହ (Blackburn, 1998) 
Pigment Specific Simple Ratio C 𝑃𝑆𝑆𝑅௖ = 𝑅଼଴଴/𝑅ସ଻଴ (Blackburn, 1998) 
Pigment Specific Normalised 
Difference C 

𝑃𝑆𝑁𝐷௖ = (𝑅଼଴଴ − 𝑅ସ଻଴)/(𝑅଼଴଴ + 𝑅ସ଻଴) (Blackburn, 1998) 

Anthocyanins   
Visible Atmospherically Resistant 
Index 

𝑉𝐴𝑅𝐼 = (𝑅ହହହ − 𝑅଺ହ଴)/(𝑅ହହହ + 𝑅଺ହ଴ − 𝑅ସ଻ହ) (Gitelson et al., 2001) 

Visible Atmospherically Resistant 
Index 2 

𝑉𝐴𝑅𝐼ଶ = (𝑅ହ଺଴ − 𝑅଺଺଼)/(𝑅ହ଺଴ + 𝑅଺଺଼ − 𝑅ସ଻ହ) (Gitelson et al., 2001) 

Anthocyanin Reflectance Index 1 𝐴𝑅𝐼ଵ = 1/𝑅ହହ଴ − 1/𝑅଻଴଴ (Gitelson et al., 2001) 
Anthocyanin Reflectance Index 2 𝐴𝑅𝐼ଶ = 1/𝑅ହହ଴ − 1/𝑅଻଴଴ (Gitelson et al., 2002) 
Modified Anthocyanin Reflectance 
Index 

𝑚𝐴𝑅𝐼 = 𝑅଻଺଴:଼଴଴(1/𝑅ହସ଴:ହ଺଴ − 1/𝑅଺ଽ଴:଻ଵ଴) (Gitelson et al., 2006) 

Modified Anthocyanin Reflectance 
Index 1 

𝐴𝑅𝐼ଵ𝑚 = 𝑅଻଺଴:଼଴଴(1/𝑅ହହ଴ − 1/𝑅଻଴଴) - 

Modified Anthocyanin Reflectance 
Index 2 

𝐴𝑅𝐼ଵ𝑚ଶ = 𝑅଼଴଴(1/𝑅ହହ଴ − 1/𝑅଻଴଴) - 

Nitrogen   

Double-peak Canopy Nitrogen Index 𝐷𝐶𝑁𝐼 = (𝑅଻ଶ଴ − 𝑅଻଴଴)/(𝑅଻଴଴ − 𝑅଺଻଴)/(𝑅଻ଶ଴ − 𝑅଺଻଴

+ 0.03) (Chen et al., 2010) 

SWIR   

Gnyp and Li Index 𝐺𝑛𝑦𝐿𝑖 =
(𝑅ଽ଴଴ 𝑅ଵ଴ହ଴) − (𝑅ଽହହ 𝑅ଵଶଶ଴)

(𝑅ଽ଴଴ 𝑅ଵ଴ହ଴) + (𝑅ଽହହ 𝑅ଵଶଶ଴)
 (Gnyp et al., 2014) 

CI1 𝐶𝐼ଵ = (𝑅଻ଷ଺ − 𝑅଻ଷହ) 𝑅ଽଽ଴ / 𝑅଻ଶ଴  (Bao et al., 2013) 
CI2 𝐶𝐼ଶ = (𝑅଻ଷ଺ − 𝑅଻ଷହ) 𝑅ଽ଴଴ / 𝑅଻ଶ଴ (Bao et al., 2013) 

Modified Chlorophyll Absorption Ratio 
Index 1510 

𝑀𝐶𝐴𝑅𝐼ଵହଵ଴ = ((𝑅଻଴଴ − 𝑅ଵହଵ଴)

− 0.2(𝑅଻଴଴ − 𝑅ହହ଴)) ൬
𝑅଻଴଴

𝑅ଵହଵ଴
൰ (Herrmann et al., 2010) 

Transformed Chlorophyll Absorption 
Ratio 1510 

𝑇𝐶𝐴𝑅𝐼ଵହଵ଴ = 3 ቌ

(𝑅଻଴଴ −  𝑅ଵହଵ଴) −

− 0.2 (𝑅଻଴଴ −  𝑅ହହ଴)
𝑅଻଴଴

𝑅ଵହଵ଴

ቍ (Herrmann et al., 2010) 

Optimized Soil-Adjusted Vegetation 
Index 1510 

𝑂𝑆𝐴𝑉𝐼ଵହଵ଴ = (1 + 0.16) 
𝑅଼଴଴ − 𝑅ଵହଵ଴

𝑅଼଴଴ + 𝑅ଵହଵ଴ + 0.16
 (Herrmann et al., 2010) 

TCARI/OSAVI 1510 𝑇/𝑂ଵହଵ଴ = 𝑇𝐶𝐴𝑅𝐼ଵହଵ଴ 𝑂𝑆𝐴𝑉𝐼ଵହଵ଴   (Herrmann et al., 2010) 
Normalized Ratio Index 1510 𝑁𝑅𝐼ଵହଵ଴ = (𝑅ଵହଵ଴ − 𝑅଺଺଴)/(𝑅ଵହଵ଴ + 𝑅଺଺଴) (Herrmann et al., 2010) 
Ratio Spectral Index 990 720 𝑅𝑆𝐼ଽଽ଴,଻ଶ଴ = 𝑅ଽଽ଴)/𝑅଻ଶ଴ (Yao et al., 2010) 
Normalized Ratio Index 1770 𝑁𝑅𝐼ଵ଻଻଴ = (𝑅ଵ଻଻଴ − 𝑅଺ଽଷ)/(𝑅ଵ଻଻଴ + 𝑅଺ଽଷ) (Ferwerda et al., 2005) 

Normalized Difference Nitrogen Index 𝑁𝐷𝑁𝐼 =
logଵ଴(1/𝑅ଵହଵ଴) − logଵ଴(1/𝑅ଵ଺଼଴)

logଵ଴(1/𝑅ଵହଵ଴) + logଵ଴(1/𝑅ଵ଺଼଴)
 (Serrano et al., 2002) 

Sulphur index 1080 𝑆ଵ଴଼଴ = (𝑅ଵ଴଼଴ − 𝑅଺଺଴)/(𝑅ଵ଴଼଴ + 𝑅଺଺଴) (Mahajan et al., 2014) 
Sulphur index 1260 𝑆ଵଶ଺଴ = (𝑅ଵଶ଺଴ − 𝑅଺଺଴)/(𝑅ଵଶ଺଴ + 𝑅଺଺଴) (Mahajan et al., 2014) 
Normalized 1645 1715 𝑁ଵ଺ସହ,ଵ଻ଵହ = (𝑅ଵ଺ସହ − 𝑅ଵ଻ଵହ)/(𝑅ଵ଺ସହ + 𝑅ଵ଻ଵହ) (Pimstein et al., 2011) 
Normalized 870 1450 𝑁଼଻଴,ଵସହ଴ = (𝑅଼଻଴ − 𝑅ଵସହ଴)/(𝑅଼଻଴ + 𝑅ଵସହ଴) (Pimstein et al., 2011) 
Normalized 850 1510 𝑁଼ହ଴,ଵହଵ଴ = (𝑅଼ହ଴ − 𝑅ଵହଵ଴)/(𝑅଼ହ଴ + 𝑅ଵହଵ଴) (Camino et al., 2018) 
Middle-infrared Normalized Difference 𝑀𝑁𝐷 = (𝑅ଵ଴଼଴ − 𝑅ଵ଺଻ହ)/(𝑅ଵ଴଼଴ + 𝑅ଵ଺଻ହ) (Malthus et al., 1993) 
Normalized Difference Water Index 𝑁𝐷𝑊𝐼 = (𝑅଼଺଴ − 𝑅ଵଶସ଴)/(𝑅଼଺଴ + 𝑅ଵଶସ଴) (Gao, 1996) 
Fluorescence   

3FLD 3𝐹𝐿𝐷 =
𝐸௢௨௧  ·  𝐿௜௡ − 𝐸௜௡ · 𝐿௢௨௧

𝐸௢௨௧ − 𝐸௜௡
 (Maier et al., 2003; 

Plascyk, 1975) 
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Appendix B. 
Confusion matrix and statistics from the example predictions. 

                Observation  
Prediction 

0 1 
 Accuracy 0.8116 

Kappa 0.6227 

0 310 78  95% Confidence Interval (0.783, 0.838) 

1 72 336  No-information rate 0.5201 
    Sensitivity 0.8115 
    Specificity 0.8116 
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