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Abstract. We study a nonlinear Schrödinger-Poisson system which reduces to the nonlinear and
nonlocal PDE

−∆u+ u+ λ2

(
1

ω|x|N−2
? ρu2

)
ρ(x)u = |u|q−1u x ∈ RN ,

where ω = (N − 2)|SN−1|, λ > 0, q ∈ (1, 2∗ − 1), ρ : RN → R is nonnegative, locally bounded,
and possibly non-radial, N = 3, 4, 5 and 2∗ = 2N/(N − 2) is the critical Sobolev exponent. In our
setting ρ is allowed as particular scenarios, to either 1) vanish on a region and be finite at infinity,
or 2) be large at infinity. We find least energy solutions in both cases, studying the vanishing case
by means of a priori integral bounds on the Palais-Smale sequences and highlighting the role of
certain positive universal constants for these bounds to hold. Within the Ljusternik-Schnirelman
theory we show the existence of infinitely many distinct pairs of high energy solutions, having a
min-max characterisation given by means of the Krasnoselskii genus. Our results cover a range of
cases where major loss of compactness phenomena may occur, due to the possible unboundedness
of the Palais-Smale sequences, and to the action of the group of translations.
MSC: 35Q55, 35J20, 35B65, 35J60.
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1. Introduction

This paper is devoted to the nonlinear and nonlocal equation

(E) −∆u+ u+ λ2

(
1

ω|x|N−2
? ρu2

)
ρ(x)u = |u|q−1u x ∈ RN ,

where ω = (N − 2)|SN−1|, λ > 0, q ∈ (1, 2∗− 1), ρ : RN → R is nonnegative, locally bounded, and
possibly non-radial, N = 3, 4, 5 and 2∗ = 2N/(N − 2) is the critical Sobolev exponent.

We are mainly concerned with the existence and multiplicity of solutions, together with their
variational characterisation. This brings us to addressing issues related to a suitable functional
setting and its relevant properties, such as those related to separability and compactness. In
particular, the variational formulation of (E) requires in general a functional setting different
from the standard Sobolev space H1(RN ). This is the case if the right hand side of the classical
Hardy-Littlewood-Sobolev inequality

(HLS)

ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

|x− y|N−2
dx dy . ||ρu2||2

L
2N
N+2 (RN )

,

is not finite for some u ∈ H1(RN ). In what follows, we consider separately two assumptions on ρ:

(ρ1) ρ−1(0) has non-empty interior and there exists M > 0 such that

|x ∈ RN : ρ(x) ≤M | <∞;

(ρ2) for every M > 0,

|x ∈ RN : ρ(x) ≤M | <∞.
1
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These are reminiscent of analogous assumptions considered in the ‘local’ context of the nonlinear
Schrödinger equation by Bartsch and Wang in [6]. In particular, we will refer to (ρ1) as to the
vanishing case, and to (ρ2) as to the coercive case, as the latter assumption is verified if ρ is locally
bounded such that ρ(x)→∞ as |x| → ∞, yielding compactness properties in the functional setting
which are stronger than in the other case. It is clear that (ρ1) is compatible with ρ exploding,
as well as with ρ having a finite limit at infinity. The latter is a situation which yields loss of
compactness phenomena to occur, in part due, in the present subcritical regime, to the action
of the group of translations in RN . In this vanishing case we prove uniform a priori bounds on
suitable sequences of approximated critical points, which allow us to construct nontrivial weak
limits having a definite variational nature.
To state and prove our results we define E(RN ) ⊆ H1(RN ) as

E(RN ) :=
{
u ∈W 1,1

loc (RN ) : ‖u‖E(RN ) < +∞
}
,

with norm

‖u‖E(RN ) :=

(ˆ
RN

(|∇u|2 + u2) dx+ λ

(ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

|x− y|N−2
dx dy

)1/2
)1/2

.

Variants of the space E(RN ) have been studied since the work of P.L. Lions [34], see e.g. [46],
and [8],[17], [39]. Solutions to (E) are the critical points of the C1(E(RN );R) energy functional

(1.1) Iλ(u) =
1

2

ˆ
RN

(|∇u|2 + u2) +
λ2

4

ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

ω|x− y|N−2
dx dy − 1

q + 1

ˆ
RN
|u|q+1.

One could regard (E) as formally equivalent to a nonlinear Schrödinger-Poisson system

(1.2)

{
−∆u+ u+ λ2ρ(x)φu = |u|q−1u, x ∈ RN ,
−∆φ = ρ(x)u2, x ∈ RN .

In fact, it is well-known from classical potential theory that if u2ρ ∈ L1
loc(RN ) is such that

(1.3)

ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

|x− y|N−2
dx dy < +∞,

then

(1.4) φu(x) =

ˆ
RN

ρ(y)u2(y)

ω|x− y|N−2
dy

is the unique weak solution in D1,2(RN ) of the Poisson equation

(1.5) −∆φ = ρ(x)u2

and it holds that

(1.6)

ˆ
RN
|∇φu|2 =

ˆ
RN

ρφuu
2 dx =

ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

ω|x− y|N−2
dx dy.

Here we set
D1,2(RN ) = {u ∈ L2∗(RN ) : ∇u ∈ L2(RN )},

equipped with norm
‖u‖D1,2(RN ) = ‖∇u‖L2(RN ).

By elliptic regularity, the local boundedness of ρ implies that any pair (u, φ) ∈ E(RN )×D1,2(RN )

solution to (1.2) is such that u and φ are both of class C1,α
loc (RN ). In particular, if u ≥ 0 is non-

trivial, it holds that u, φ > 0. Note that inf Iλ = −∞, however it is an easy exercise to see that
Iλ is bounded below on the set of its nontrivial critical points by a positive constant. It therefore
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makes sense to define a solution u ∈ E(RN ) to (E) as a groundstate if it is nontrivial, and if it
holds that Iλ(u) ≤ Iλ(v) for every nontrivial critical point v ∈ E(RN ) of Iλ.

Since the classical work of Ambrosetti-Rabinowitz [4], considerable advances have been made
in the understanding of several classes of nonlinear elliptic PDE’s in the absence of either the
so-called Palais-Smale or the Ambrosetti-Rabinowitz conditions, yet achieving in the spirit of [4]
existence and multiplicity results; see e.g. [2, 3, 50, 53]. In addition to those of Strauss [48]
and Berestycki-Lions [13], which have been a breakthrough in the study of autonomous scalar
field equations on the whole of RN , a great deal of work, certainly inspired by that of Floer and
Weinstein [26], has been devoted to the study of nonlinear Schrödinger equations with nonradial
potentials and involving various classes of nonlinearities:

(1.7) −∆u+ V (x)u = f(x, u), x ∈ RN .

The classical works of Rabinowitz [44] and Benci-Cerami [10] have provided a penetrating analysis
on equations like (1.7), and inspired the work on various remarkable variants of it, under different
hypotheses on V and f which may allow loss of compactness phenomena to occur. Authors have
contributed to understand these phenomena in a min-max setting, in analogy to what had been
discovered and highlighted in the context of minimisation problems by P.L. Lions in [35] and
related papers. An interesting case has been considered by Bartsch and Wang [6] who proved
existence and multiplicity of solutions to (1.7) for V (x) = 1 +λ2ρ(x), and with ρ satisfying either
(ρ1) or (ρ2). Years later Jeanjean and Tanaka in [31] and related papers, have looked into cases
where f(x, u) may violate the Ambrosetti-Rabinowitz condition. Remarkably, they have been able
to overcome the possible unboundedness of the Palais-Smale sequences, with an approach which
is reminiscent of the ‘monotonicity trick’ introduced for a different problem by Struwe [49].

Even though our equation (E) is formally a nonlocal variant of the above nonlinear Schrödinger
equation, there are some specific variational features that we wish to highlight, which are not
shared with (1.7). Firstly, although our nonlinearity f(x, u) = |u|q−1u does satisfy the Ambrosetti-
Rabinowitz condition, to the best of our knowledge it is still not known whether the boundedness
of the Palais-Smale sequences holds for q ∈ (2, 3). We stress that for this reason and in this range of
exponents, it is not known whether the Palais-Smale condition holds, even with ρ ≡ 1 and working
with the subspace of radial functions in H1(RN ). In the range q ∈ (2, 3], the relation between the
mountain-pass level and the infimum over the Nehari manifold for the functional Iλ associated to
(E) seems non-straightforward; we recall that these levels coincide when dealing with (1.7) for a
fairly broad class of nonlinearities f, see e.g. [53, p. 73]. In the case of pure power nonlinearities
and q ∈ (1, 2], and unlike for the action functional associated with (1.7), the variational properties
of Iλ are particularly sensitive to λ, yielding existence, multiplicity (of a local minimiser and at
the same time of a mountain-pass solution) and nonexistence results, see e.g. [45, 46] and [38].
Finally, a natural functional setting associated to (E) may not be necessarily a Hilbert space. In
fact note that assumption (ρ1) is compatible with a situation where ρ(x)→ ρ∞ > 0 as |x| → ∞,
in which the space E(RN ) ' H1(RN ), as well as with the case ρ(x) → ∞ as |x| → ∞, in which
E(RN ) ⊂ H1(RN ); we tackle the case of vanishing ρ with a unified approach for these particular
sub-cases.

Variants of (E) appear in the study of the quantum many–body problem, see [9], [20], [36]. The
convolution term represents a repulsive interaction between particles, whereas the local nonlin-
earity |u|q−1u is a generalisation of the u5/3 term introduced by Slater [47] as local approximation
of the exchange term in Hartree–Fock type models, see e.g. [15], [37]. In the last few decades,
nonlocal equations like (E) have received increasing attention on questions related to existence,
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non-existence, variational setting and singular limit in the presence of a parameter. We draw the
reader’s attention to [1], [11], [20] and references therein, for a broader mathematical picture on
questions related to Schrödinger-Poisson type systems. Relevant contributions to the existence
of positive solutions, mostly for q > 3 = N, such as [23, 21], are based on the classification of
positive solutions given by Kwong [32] to

−∆u+ u = uq, x ∈ R3,

regarded as a ‘limiting’ PDE when ρ(x) → 0, as |x| → ∞. Recently in [51, 40], in the case
ρ(x)→ 1, as |x| → ∞, the relation between (1.2) and

(1.8)

{
−∆u+ u+ λ2φu = |u|q−1u, R3

−∆φ = u2 R3

as a limiting problem, has been studied, though a full understanding of the set of positive solutions
to (1.8) has not yet been achieved.

Considerably fewer results have been obtained in relation to the multiplicity of solutions. It is
worth mentioning [5] whose (radial) approach is suitable in the presence of constant potentials.
More precisely Ambrosetti-Ruiz [5] have studied the problem (1.8) with λ > 0 and 1 < q < 5.
When q ∈ (1, 2) ∩ (3, 5) their approach relies on the symmetric version of the Mountain-Pass
Theorem [4], whereas for q ∈ (2, 3] and in the spirit of [31, 49], they develop a min-max approach
to the multiplicity which in fact improves upon [4] and is based on the existence of bounded
Palais-Smale sequences at specific levels associated with the perturbed functional

Iµ,λ(u) =
1

2

ˆ
R3

(|∇u|2 + u2) +
λ2

4

ˆ
R3

ˆ
R3

u2(x)u2(y)

ω|x− y|
dx dy − µ

q + 1

ˆ
R3

|u|q+1dx,

for a dense set of values µ ∈
[

1
2 , 1
)
.

1.1. Main Results. In the vanishing case (ρ1) our main result is the following.

Theorem 1.1 (Groundstates for q ≥ 3 under under (ρ1)). Let N = 3, ρ ∈ L∞loc(RN ) be

nonnegative, satisfying (ρ1), and q ∈ [3, 2∗ − 1). There exists a positive constant λ∗ = λ∗(q,M)
such that for every λ ≥ λ∗, (E) admits a positive groundstate solution u ∈ E(R3). For q > 3, u is
a mountain-pass solution.

We point out that by construction λ∗ = max{λ0, λ1}, where λ0 and λ1 are universal constants
defined in Proposition 5 and in Proposition 6, which ensure that, for every λ ≥ λ∗, certain Palais-
Smale sequences possess weak limits with a precise variational characterisation.
This result extends to a nonlocal equation that of Bartsch-Wang [6], as we are able to show in the
spirit of their work that for λ large, there are no Palais-Smale sequences at the mountain-pass level
which are weakly convergent to zero, in a context where the embedding of E(R3) into Lq+1(R3) is
in general non-compact. This is the case if for instance ρ(x)→ ρ∞ > M, as |x| → ∞. In this case
E(R3) ' H1(R3), with equivalent norms by (HLS), and the non-compactness of the embedding is
a well-known fact. Under (ρ1), a condition ‘at infinity’ for certain Palais-Smale sequences to be
relatively compact is given in Proposition 7 and Proposition 8.
It is worth observing that the arguments of Proposition 6 can be adapted to the original result of
Bartsch and Wang [6, Section 5] on the nonlinear Schrödinger equation to prove in their setting,
for the whole range of exponents and for λ large enough, the existence of a mountain-pass solution
and hence, using the Nehari characterisation of the mountain-pass level [53, p. 73], the existence
of a groundstate solution. We prove Proposition 6 highlighting how the ‘interaction’ between λ
and M appearing in (ρ1) yields the desired estimates. To this aim we carry out a Brezis-Lieb type
splitting argument in the spirit of [18], combining it with a simple weighted L3 estimate given in



SOLUTIONS TO SCHRÖDINGER-POISSON SYSTEM 5

Lemma 2.3, together with the relation between the mountain-pass level and the infimum on the
Nehari manifold, which may be sensitive to whether q = 3 or q > 3.
To prove Theorem 1.1 we follow a Nehari constraint approach, paying attention to the more del-
icate case q = 3. For this exponent, it is not clear whether the mountain-pass level is critical.
From a variational perspective, this is another point that makes our work different from [6]; see
also Theorem 1.4 below. We stress here that (ρ1) may not be enough for the right continuity of
the mountain-pass levels cλ(q) to hold as q → 3+.

In the coercive case (ρ2) we show that E(RN ) is compactly embedded in Lp(RN ) for any
2 < p < 2∗ and λ > 0. This is used to prove the following.

Theorem 1.2 (Groundstates for q ≥ 3 under (ρ2)). Let N = 3, ρ ∈ L∞loc(R3) be nonnegative,
satisfying (ρ2), and q ∈ [3, 2∗−1). Then, for any fixed λ > 0, (E) has both a positive mountain-pass
solution and a positive groundstate solution in E(R3), whose energy levels coincide for q > 3.

Note that in this case the compact embedding result provided by Lemma 4.1 allows us to have
a ‘variationally’ stronger result for q = 3, to be compared with Theorem 1.1. Namely, we can show
that the mountain-pass level is critical, using that the Palais-Smale condition is satisfied under
(ρ2) and for 3 ≤ q < 5. A positive mountain-pass solution, which may not be a groundstate for
q = 3, is constructed as a strong limit of a Palais-Smale sequence living nearby the positive cone
in E(R3).

When dealing with the range q ∈ (2, 3), we overcome the possible unboundedness of the Palais-
Smale sequences, combining tools developed in this paper, with the approach of Jeanjean and
Tanaka [31]. Roughly speaking, the proof is based on constructing a sequence (un)n∈N of critical
points to suitable approximated functionals

In(u) =
1

2

ˆ
RN

(|∇u|2 + u2) +
λ2

4

ˆ
RN

ρ(x)φuu
2 − µn

q + 1

ˆ
RN
|u|q+1,

which accumulates around the desired solution when letting µn → 1− as a result of satisfying a
Pohozaev-type condition stated in Lemma 2.4 (which guarantees its boundedness), and by the
compactness property provided by Lemma 4.1. More precisely, we have the following.

Theorem 1.3 (Groundstates for q < 3 under (ρ2)). Let N = 3, 4, 5, q ∈ (2, 3) if N = 3 and

q ∈ (2, 2∗ − 1) if N = 4, 5. Let λ > 0, and assume ρ ∈ L∞loc(RN ) ∩W 1,1
loc (RN ) is nonnegative and

satisfies (ρ2). Moreover suppose that kρ(x) ≤ (x,∇ρ) for some k > −2(q−2)
(q−1) . Then, (E) has a

mountain-pass solution u ∈ E(RN ). Moreover, there exists a groundstate solution.

Remark 1.1. The same proof when working instead with the functional

I+(u) =
1

2

ˆ
RN

(
|∇u|2 + u2

)
+
λ2

4

ˆ
RN

ρ(x)φuu
2 − 1

q + 1

ˆ
RN

uq+1
+ ,

allows to show that mountain-pass and groundstate critical points exist for this functional, and
are positive by construction.

Under (ρ2) and for q ≤ 3, the relation between mountain-pass solutions and groundstates
found in Theorem 1.2 for q = 3 and Theorem 1.3 for q < 3 seems not obvious; in particular, it is
not clear whether they actually coincide. We are able to get more insight about the variational
nature of these solutions in the case ρ is homogeneous of a suitable order k̄ > 0, as shown in the
following theorem. It is worth pointing out that this homogeneity condition is not compatible
with ρ vanishing on a region.
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Theorem 1.4 (Homogeneous case for q ≤ 3 : mountain-pass solutions vs. groundstates).
Let N = 3, 4, 5, q ∈ (2, 3] if N = 3 and q ∈ (2, 2∗ − 1) if N = 4, 5. Suppose λ > 0 and

ρ ∈ L∞loc(RN ) ∩W 1,1
loc (RN ) is nonnegative, satisfies (ρ2), and is homogeneous of degree k̄, namely

ρ(tx) = tk̄ρ(x) for all t > 0, for some

k̄ >

(
max

{
N

4
,

1

q − 1

}
· (3− q)− 1

)
+

.

Then, the mountain-pass solutions that we find in Theorem 1.2 (q = 3) and Theorem 1.3 (q < 3)
are groundstates.

We prove the above theorem analysing some relevant scaling properties of Iλ in Proposition 4,
which allows us to characterise the mountain-pass level in terms of the infimum over a certain
manifold, defined as a suitable combination of the Nehari and Pohozaev identities. We believe
that this manifold is a natural constraint. We point the reader to Remark 2.2, in which we give
an explanation of the lower bound assumption on k̄.

In the spirit of Ambrosetti-Rabinowitz [4] and under (ρ2) we show that (1.2) possesses infinitely
many high energy solutions. In our context it seems appropriate to distinguish the cases q ∈ (3, 5)
and q ∈ (2, 3] when working within the Ljusternik-Schnirelman theory. Since for q ∈ (3, 5) Lemma
4.1 implies that the Palais-Smale condition is satisfied, we can use the Z2-equivariant Mountain-
Pass theorem, adapting to E(RN ) arguments similar to those developed for a different functional
setting by Szulkin; see [52]. To this aim, in Lemma 2.1 we prove that for N ≥ 3 E(RN ) is a
separable Banach space, by constructing a suitable linear isometry of E(RN ) onto the Cartesian
product ofH1(RN ) with some of the mixed norm Lebesgue spaces studied by Benedek and Panzone
[12], namely L4(RN ;L2(RN )). As a consequence of this identification, we can show that E(RN )
admits a Markushevic basis, that is a set of elements {(em, e∗m)}m∈N ⊂ E(RN ) × E∗(RN ) such
that the duality product < en, e

∗
m >= δnm for all n,m ∈ N, the em’s are linearly dense in E(RN ),

and the weak∗-closure of span{e∗m}m∈N is E∗(RN ). We use this, combined with Lemma 4.1 to
obtain lower bounds on the energy which allow us to show the divergence of a sequence of min-
max critical levels defined by means of the classical notion of Krasnoselskii genus; see Lemma 5.1
below. This yields the following

Theorem 1.5 (Infinitely many high energy solutions for q > 3). Let N = 3, q ∈ (3, 2∗− 1)
and λ > 0. Suppose ρ ∈ L∞loc(R3) is nonnegative and satisfies (ρ2). Then, there exist infinitely

many distinct pairs of critical points ±um ∈ E(RN ), m ∈ N, for Iλ such that Iλ(um) → +∞ as
m→ +∞.

When q < 3, the above construction is not directly applicable because of the possible un-
boundedness of the Palais-Smale sequences. Here we use a deformation lemma due to Ambrosetti
and Ruiz [5], in the flavor of the work of Jeanjean and Tanaka, which is suitable for Ljusternik-
Schnirelman type results. Assuming that ρ(x) is homogeneous of some order k̄ > 0, allows us to
define as in [5], certain classes of admissible subsets of E(RN ) and hence of min-max levels; see
Lemma 2.6 and Lemma 5.6 below. This together with the aforementioned Pohozaev type inequal-
ity (which in the present homogeneous case becomes an identity by Euler’s classical theorem) and
Lemma 4.1, allows us to show that these min-max levels are critical, and that they are arbitrarily
large, by Lemma 5.1 again. We therefore have the following.

Theorem 1.6 (Infinitely many high energy solutions for q ≤ 3). Let N = 3, 4, 5. Assume

q ∈ (2, 3] if N = 3 and q ∈ (2, 2∗− 1) if N = 4, 5. Suppose λ > 0 and ρ ∈ L∞loc(RN )∩W 1,1
loc (RN ) is

nonnegative, satisfies (ρ2), and is homogeneous of degree k̄, namely, ρ(tx) = tk̄ρ(x) for all t > 0,
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for some

k̄ >

(
max

{
N

4
,

1

q − 1

}
· (3− q)− 1

)
+

.

Then, there exist infinitely many distinct pairs of critical points, ±um ∈ E(RN ), m ∈ N, for Iλ
such that Iλ(um)→ +∞ as m→ +∞.

Remark 1.2. For q = 3, the homogeneity assumption on ρ is not used to prove the boundedness of
the Palais-Smale sequences which holds for this exponent, but rather it is used in the construction
of the min-max levels.

Remark 1.3. For N = 3, 4, we can cover all k̄ > 0. For N = 5, the threshold for k̄ is sensitive
to the range of q. Namely, if q ∈ (11

5 , 2
∗− 1), we can cover all k̄ > 0, however if q ∈ (2, 11

5 ), this is
not the case.

1.2. Outline. The paper is organised as follows. In Section 2 we deal with general facts about
the functional setting, we prove the separability of E(RN ) and other properties that will be used
throughout, comprising positivity and regularity. We prove a Pohozaev type necessary condition
that will be extensively used in the existence proofs, and that in this section is applied to a
nonexistence result for q = 2∗−1. Here we also discuss the min-max setting and related properties,
which hold for a generic locally bounded ρ.

In Section 3 we work under the vanishing assumption (ρ1). Here we develop a set of uniform
integral estimates which hold for all the values of λ above certain lower thresholds. We conclude the
section with the proof of the existence of groundstates, Theorem 1.1, and provide with Proposition
7 and Proposition 8, some new compactness results on sequences of approximated critical points
of Iλ.

Section 4 is devoted to the coercive case (ρ2). For any fixed arbitrary λ > 0 we prove the
compactness Lemma 4.1, and the existence results Theorem 1.2, Theorem 1.3, and Theorem 1.4.

Section 5 is entirely devoted to the multiplicity of high energy solutions. In particular, in
Section 5.1 we prove Lemma 5.1 that is key to show later in the proofs the existence of a blowing
up sequence of infinitely many distinct critical levels of high energy. In Section 5.2 we recall the
notion of the Krasnoselskii genus and its properties, and deal with the proof of Theorem 1.5.
Finally, in Section 5.3 we prove Theorem 1.6.
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2. Preliminaries

We introduce the functional setting for our problem and provide a few preliminary lemmas that
hold for all nonnegative ρ ∈ L∞loc(RN ) and will be used under all assumptions on ρ.

2.1. Functional setting. For what follows, we will need some properties of the functional setting
which are contained in the next lemma.

Lemma 2.1 (Properties of E(RN )). Assume N ≥ 3, and ρ ≥ 0 is a measurable function. The
space E(RN ) is a separable Banach space that admits a Markushevic basis, that is a fundamental
and total biorthogonal system, {(em, e∗m)}m∈N ⊂ E(RN ) × E∗(RN ). Namely, < en, e

∗
m >= δnm

for all n,m ∈ N, the em’s are linearly dense in E(RN ), and the weak∗-closure of span{e∗m}m∈N is
E∗(RN ).
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Proof. Following [39], we note that we can equip E(RN ) with the equivalent norm

(2.1) ‖u‖1 =

(
‖u‖2H1(RN ) + λ

(ˆ
RN

∣∣I1 ? (
√
ρ|u|)2

∣∣2)1/2
)1/2

.

Here, we have set α = 1 in Iα : RN → R, the Riesz potential of order α ∈ (0, N), defined for
x ∈ RN \ {0} as

Iα(x) =
Aα
|x|N−α

, Aα =
Γ(N−α2 )

Γ(α2 )πN/22α
,

and the choice of normalisation constant Aα ensures that the kernel Iα enjoys the semigroup
property

Iα+β = Iα ? Iβ for each α, β ∈ (0, N) such that α+ β < N.

We first notice that the operator T : E(RN )→ H1(RN )× L4(RN ;L2(RN )) defined by

(Tu)(x0, x1, x2) = [u(x0), (λI1(x2 − x1)ρ(x1))
1
2u(x1)],

is a linear isometry from E(RN ) into the product space H1(RN )×L4(RN ;L2(RN )), endowed with
the norm

‖[u, v]‖× =
(
‖u‖2H1(RN ) + ‖v‖2L4(RN ;L2(RN ))

)1/2
.

Here L4(RN ;L2(RN )) is the mixed norm Lebesgue space of functions v : RN ×RN → R such that

||v||L4(RN ;L2(RN )) =

(ˆ
RN

(ˆ
RN
|v(x1, x2)|2 dx1

)2

dx2

)1/4

< +∞,

see [12]. Since L4(RN ;L2(RN )) is a separable (see e.g. [43, p. 107]) Banach space (see e.g. [12]),
it follows that the linear subspace T (E(RN )) ⊆ H1(RN ) × L4(RN ;L2(RN )), and hence E(RN ),
also satisfies each of these properties. Since every separable Banach space admits a Markushevic
basis (see e.g. [29]), the proof is complete. �

Reasoning as in [46] and [39] it is easy to see that C∞c (RN ) is dense in E(RN ) and that the unit
ball in E(RN ) is weakly compact; in fact this space is uniformly convex and hence is reflexive.
The following variant to the classical Brezis-Lieb lemma will be useful to study the convergence
of bounded sequences in E(RN ); see e.g. [7], [39].

Lemma 2.2 (Nonlocal Brezis-Lieb lemma). Assume N ≥ 3 and ρ(x) ∈ L∞loc(RN ) is nonneg-

ative. Let (un)n∈N ⊂ E(RN ) be a bounded sequence such that un → u almost everywhere in RN .
Then it holds that

lim
n→∞

[
‖∇φun‖2L2(RN ) − ‖∇φ(un−u)‖2L2(RN )

]
= ‖∇φu‖2L2(RN ).

The next simple estimate is based on an observation of P.-L. Lions, given in [36] for ρ ≡ 1; see
also [46], and [8], [39].

Lemma 2.3 (Coulomb-Sobolev inequality). Assume N ≥ 3, ρ(x) ∈ L∞loc(RN ) is nonnegative.

Then the following inequality holds for all u ∈ E(RN ),

(2.2)

ˆ
RN

ρ(x)|u|3 ≤
(ˆ

RN
|∇u|2

) 1
2
(ˆ

RN
|∇φu|2

) 1
2

.

Proof. Testing the Poisson equation (1.5) with |u|, the statement follows immediately by Cauchy-
Schwarz inequality. �
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2.2. Regularity and positivity. Using standard elliptic regularity theory and the maximum
principle, we now provide a result giving the regularity and positivity of the solutions to the
Schrödinger-Poisson system.

Proposition 1. [Regularity and positivity] Let N ∈ [3, 6] and q ∈ [1, 2∗− 1], ρ ∈ L∞loc(RN ) be

nonnegative and ρ(x) 6≡ 0 and (u, φu) ∈ E(RN )×D1,2(RN ) be a nontrivial weak solution to

(2.3)

{
−∆u+ bu+ cρ(x)φu = d|u|q−1u, x ∈ RN ,
−∆φ = ρ(x)u2, x ∈ RN ,

with b, c, d ∈ R+. Then, u, φu ∈ W 2,s
loc (RN ), for every s ≥ 1, and so u, φu ∈ C1,α

loc (RN ); moreover
φu > 0. If, in addition, u ≥ 0, then u > 0 everywhere.

Proof. Under the hypotheses of the proposition, both u and φu have weak second derivatives in
Lsloc(RN ) for all s < +∞. To show this, note that from the first equation in (2.3), we have that
−∆u = g(x, u), where

|g(x, u)| = |(−bu− cρ(x)φuu+ d|u|q−1u|
≤ C(1 + |ρφu|+ |u|q−1)(1 + |u|)
=: h(x)(1 + |u|).

Using our assumptions on ρ, φu, u, and that q ≤ 2∗ − 1, we can show that h ∈ LN/2loc (RN ), which

implies that u ∈ Lsloc(RN ) for all s < +∞ (see e.g. [50, p.270]). Note that here the restriction

on the dimension implies that φu ∈ LN/2loc (RN ). Since u2ρ ∈ Lsloc(RN ) for all s < +∞, then by

the second equation in (2.3) and the Calderón-Zygmund estimates, we have that φu ∈ W 2,s
loc (RN )

(see e.g. [28]). This then enables us to show that g ∈ Lsloc(RN ) for all s < +∞, which implies,

by Calderón-Zygmund estimates, that u ∈ W 2,s
loc (RN ) (see e.g. [28]). The C1,α

loc (RN ) regularity of
both u, φu is a consequence of Morrey’s embedding theorem. Finally, the strict positivity is a
consequence of the strong maximum principle with L∞loc(RN ) coefficients [42], and this concludes
the proof. �

2.3. Nonexistence. The following lemma, proved in the Appendix, will be extensively used.

Lemma 2.4. [Pohozaev-type condition] Assume N ∈ [3, 6], q ∈ [1, 2∗ − 1], ρ ∈ L∞loc(RN ) ∩
W 1,1

loc (RN ) is nonnegative, and kρ(x) ≤ (x,∇ρ) for some k ∈ R. Let (u, φu) ∈ E(RN )×D1,2(RN )
be a weak solution to (2.3). Then, it holds that

N − 2

2

ˆ
RN
|∇u|2 dx+

Nb

2

ˆ
RN

u2 dx

+
(N + 2 + 2k)c

4

ˆ
RN

ρφuu
2 dx− Nd

q + 1

ˆ
RN
|u|q+1 dx ≤ 0.

(2.4)

In particular the above is an identity, provided kρ(x) = (x,∇ρ) (by Euler’s theorem, this is the
case if ρ is homogeneous of order k, see e.g. [27, p. 296]).

Although we will use the above necessary condition mainly for existence purposes, this also
allows us to find a family of nonexistence results in a certain range of the parameters N, q, λ, k.

Proposition 2 (Nonexistence: the critical case q = 2∗ − 1). Assume N ∈ [3, 6], q = 2∗ − 1,

ρ ∈ L∞loc(RN ) ∩ W 1,1
loc (RN ) nonnegative, kρ(x) ≤ (x,∇ρ) for some k ≥ N−6

2 , and λ > 0. Let

(u, φu) ∈ E(RN )×D1,2(RN ) be a weak solution to (1.2). Then, (u, φu) = (0, 0).
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Proof. Combining the Nehari identity I ′λ(u)(u) = 0 with Lemma 2.4 yields(N − 2

2
− N

q + 1

)ˆ
RN
|∇u|2 dx+

(N
2
− N − 2

2

)ˆ
RN

u2 dx+
(2k + 6−N

4

)
λ2

ˆ
RN

ρφuu
2 dx ≤ 0.

Hence, ˆ
RN

u2 dx ≤ 0,

and this concludes the proof. �

Remark 2.1. Similar nonexistence results have been obtained in the case of constant potentials
and for N = 3, in [25]. We point out that the in the above proposition λ > 0 is arbitrary and the
condition on ρ is compatible with (ρ1), as well as with (ρ2). It is interesting to note that for N = 6
we have q = 2∗−1 = 2, namely nonexistence occurs in a ‘low-q’ regime, under both conditions (ρ1)
and (ρ2). The proof shows also that for supercritical exponents q+ 1 > 2∗ and higher dimensions,
under further regularity assumptions required for Lemma 2.4 to hold, nonexistence also occurs.

Proposition 3 (Nonexistence: the case q ∈ (1, 2]). Assume N ≥ 3, q ∈ (1, 2], ρ ∈ L∞loc(RN )

and ρ(x) ≥ 1 almost everywhere and λ ≥ 1
2 . Let u ∈ E(RN ) ∩ Lq+1(RN ) satisfy

(2.5) −∆u+ u+ λ2

(
1

ω|x|N−2
? ρu2

)
ρ(x)u = |u|q−1u, in D′(RN ).

Then, u ≡ 0.

We note that this proposition is stated to cover also the dimensions N > 2
(
q+1
q−1

)
, namely the

supercritical cases 3 ≥ q + 1 > 2∗ where E(RN ) does not embed in Lq+1(RN ).

Proof. By density we can test (2.5) by u and so we obtain

(2.6)

ˆ
RN
|∇u|2 + u2 + λ2ρ(x)φuu

2 − |u|q+1 = 0.

Following [45, Theorem 4.1], by Lemma 2.3 and Young’s inequality we have

(2.7)

ˆ
RN

ρ(x)|u|3 ≤
ˆ
RN
|∇u|2 +

1

4

ˆ
RN

ρ(x)φuu
2.

Combining (2.6) and (2.7), we have for all λ ≥ 1
2

0 ≥
ˆ
RN

u2 + ρ(x)|u|3 − |u|q+1 ≥
ˆ
RN

f(u),

where f(u) = u2 + |u|3 − |u|q+1 is positive except at zero. Hence u ≡ 0, and this concludes the
proof. �

2.4. Min-max setting. The present section is devoted to the min-max properties of Iλ, which
will be used in our existence results.

Lemma 2.5 (Mountain-Pass Geometry for Iλ). Assume N = 3, 4, 5, ρ(x) ∈ L∞loc(RN ) is
nonnegative and q ∈ (2, 2∗ − 1]. Then, it holds that

(i) Iλ(0) = 0 and there exist constants r, a > 0 such that Iλ(u) ≥ a if ‖u‖E(RN ) = r;

(ii) there exist v ∈ E(RN ) with ‖v‖E(RN ) > r such that Iλ(v) ≤ 0.
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Proof. Statement (i) follows reasoning as in Lemma 2.8. To show (ii), pick u ∈ C1(RN ), supported
in the unit ball, B1. Setting vt(x) := t2u(tx) we find that

Iλ(vt) =
t6−N

2

ˆ
RN
|∇u|2 +

t4−N

2

ˆ
RN

u2 +
t6−N

4
λ2

ˆ
RN

ˆ
RN

u2(y)ρ(yt )u
2(x)ρ(xt )

ω|x− y|N−2
dy dx

− t(2q+2−N)

q + 1

ˆ
RN
|u|q+1.

(2.8)

Since for every t ≥ 1 and for almost every x ∈ B1 we have ρ(x/t) ≤ ||ρ||L∞(B1), the fact that
2q+ 2 > 6 in (2.8) yields Iλ(vt)→ −∞ as t→ +∞, and this is enough to conclude the proof. �

To prove our results for q < 3, we will need to work with a perturbed functional, Iµ,λ : E(RN )→
RN , defined by

(2.9) Iµ,λ(u) =
1

2

ˆ
RN

(|∇u|2 + u2) +
λ2

4

ˆ
RN

ρφuu
2 − µ

q + 1

ˆ
RN
|u|q+1, µ ∈

[
1

2
, 1

]
.

As in Lemma 2.5, Iµ,λ has the mountain-pass geometry in E(RN ) for all µ ∈
[

1
2 , 1
]
. This, as

well as the monotonicity of Iµ,λ with respect to µ, imply that we can define the min-max level
associated with Iµ,λ as

(2.10) cµ,λ = inf
γ∈Γλ

max
t∈[0,1]

Iµ,λ(γ(t)), µ ∈
[

1

2
, 1

]
where

(2.11) Γλ = {γ ∈ C([0, 1], E(RN )) : γ(0) = 0, I 1
2
,λ(γ(1)) < 0}.

Since the mapping [1/2, 1] 3 µ 7→ cµ,λ is non-increasing and left-continuous in µ (see [5, Lemma
2.2]) and the non-perturbed functional Iλ has the mountain-pass geometry by Lemma 2.5, we are
now in position to define the min-max level associated with Iλ for all q ∈ (2, 2∗ − 1).

Definition 1 (Definition of mountain-pass level for Iλ). We set

(2.12) cλ =

{
c1,λ, q ∈ (2, 3),
inf
γ∈Γ̄λ

max
t∈[0,1]

Iλ(γ(t)), q ∈ [3, 2∗ − 1),

where c1,λ is given by (2.10) and Γ̄λ is the family of paths defined as

(2.13) Γ̄λ =
{
γ ∈ C([0, 1];E(RN )) : γ(0) = 0, Iλ(γ(1)) < 0

}
.

The remainder of this subsection is devoted to further characterisations of the min-max level
cλ for q ≤ 3. We first require the following technical lemma.

Lemma 2.6. Suppose N ≥ 3, q > 2 and ν > max
{
N
2 ,

2
q−1

}
. Let k̄ ∈

(
ν(3−q)−2

2 , 4ν−N−2
2

)
. Define

f : R+
0 → R as

f(t) = at2ν+2−N + bt2ν−N + ct4ν−N−2−2k̄ − dtν(q+1)−N , t ≥ 0,

where a, b, c, d ∈ R are such that a, b, d > 0, c ≥ 0. Then, f has a unique critical point correspond-
ing to its maximum.

Remark 2.2. We point out that our range of parameters ensures that f(t) → −∞ as t → +∞
and it holds that(

ν(3− q)− 2

2
,
4ν −N − 2

2

)⋂(
(ν + 1)(3− q)− 2

2
,
4(ν + 1)−N − 2

2

)
6= ∅.



12 TOMAS DUTKO, CARLO MERCURI, AND TERESA MEGAN TYLER

In Theorem 1.4 and Theorem 1.6, we use Lemma 2.6, assuming

k̄ > max

{
N

4
,

1

q − 1

}
(3− q)− 1

for k̄ to belong to one of these intervals.

Proof of Lemma 2.6. Note that by our assumptions, we can write

f(t) =
k∑
i=1

ait
pi − tp,

where ai ≥ 0, 0 ≤ pi < p and both ai, pi 6= 0 for some i. Setting s = tp, we find

f(s) =
k∑
i=1

ais
pi
p − s.

It follows that f(s) is strictly concave and has a unique critical point, which is a maximum. Since
our assumptions ensure that f(t)→ −∞ as t→ +∞, we can conclude. �

To state our next result, for any ν ∈ R, we set

(2.14) M̄λ,ν =
{
u ∈ E(RN ) \ {0} : Jλ,ν(u) = 0

}
,

where Jλ,ν : E(RN )→ RN is defined as

Jλ,ν(u) =
2ν + 2−N

2

ˆ
RN
|∇u|2 +

2ν −N
2

ˆ
RN

u2

+
4ν −N − 2− 2k̄

4
· λ2

ˆ
RN

ρφuu
2 − ν(q + 1)−N

q + 1

ˆ
RN
|u|q+1.

(2.15)

Notice that, if ρ is homogeneous of order k̄, Jλ,ν(u) is the derivative of the polynomial f(t) =
Iλ(tνu(t·)) at t = 1.

Proposition 4 (Mountain-pass characterisation of groundstates). Let N = 3, 4, 5, q ∈
(2, 3] if N = 3 and q ∈ (2, 2∗ − 1) if N = 4, 5. Suppose ρ ∈ L∞loc(RN ) ∩W 1,1

loc (RN ) is nonnegative

and is homogeneous of degree k̄, namely ρ(tx) = tk̄ρ(x) for all t > 0, for some

k̄ > max

{
N

4
,

1

q − 1

}
(3− q)− 1.

Then, there exists ν > max{N2 ,
2
q−1} such that

cλ = inf
u∈M̄λ,ν

Iλ(u) = inf
u∈E(RN )\{0}

max
t≥0

Iλ(tνu(t·)),

where cλ and M̄λ,ν are defined in (2.12) and (2.14), respectively.

Proof. We first note that under the assumptions on the parameters, it holds that

4ν −N − 2

2
>

(ν + 1)(3− q)− 2

2
.

It follows from this and the lower bound assumption on k̄ that we can always find at least one
interval (

ν(3− q)− 2

2
,
4ν −N − 2

2

)
, with ν > max

{
N

2
,

2

q − 1

}
,

that contains k̄. We fix ν corresponding to such an interval. We break the remainder of the proof
into a series of claims.
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Claim 1. infu∈E(RN )\{0}maxt≥0 Iλ(tνu(t·)) ≤ infu∈M̄λ,ν
Iλ(u)

To see this, let u ∈ E(RN ) \ {0} be fixed and consider the function

g(t) = Iλ(tνu(t·))

= at2ν+2−N + bt2ν−N + ct4ν−N−2−2k̄ − dtν(q+1)−N , t ≥ 0,
(2.16)

where

a =
1

2

ˆ
RN
|∇u|2, b =

1

2

ˆ
RN

u2, c =
λ2

4

ˆ
RN

ρφuu
2, d =

1

q + 1

ˆ
RN
|u|q+1.

By Lemma 2.6, it holds that g has a unique critical point, t = τu, corresponding to its maximum.
Moreover, we can see that

g′(t) =
dIλ(tνu(t·))

dt

=
2ν + 2−N

2
· t2ν+1−N

ˆ
RN
|∇u|2 +

2ν −N
2

· t2ν−N−1

ˆ
RN

u2

+
4ν −N − 2− 2k̄

4
· t4ν−N−3−2k̄ · λ2

ˆ
RN

ρφuu
2 − ν(q + 1)−N

q + 1
· tν(q+1)−N−1

ˆ
RN
|u|q+1,

and so

g′(t) = 0 ⇐⇒ tνu(t·) ∈ M̄λ,ν .

Taken together, we have shown that for any u ∈ E(RN ) \ {0}, there exists a unique t = τu such
that τνuu(τu·) ∈ M̄λ,ν and the maximum of Iλ(tνu(t·)) for t ≥ 0 is achieved at τu. Thus, it holds
that

inf
u∈E(RN )\{0}

max
t≥0

Iλ(tνu(t·)) ≤ max
t≥0

Iλ(tνu(t·)) = Iλ(τνuu(τu·)), ∀u ∈ E(RN ) \ {0},

from which we can deduce that the claim holds.

Claim 2. cλ ≤ infu∈E(RN )\{0}maxt≥0 Iλ(tνu(t·)).

By the assumptions on our parameters, we can deduce that ν(q + 1) − N > 2ν + 2 − N and
ν(q + 1)−N > 4ν −N − 2− 2k̄. It follows that Iλ(tνu(t·)) < 0 for every u ∈ E(RN ) \ {0} and t
large. Similarly, I 1

2
,λ(tνu(t·)) < 0 for every u ∈ E(RN ) \ {0} and t large. Therefore, we obtain

cλ ≤ max
t≥0

Iλ(tνu(t·)), ∀u ∈ E(RN ) \ {0},

and the claim follows.

Claim 3. infu∈M̄λ,ν
Iλ(u) ≤ cλ.

We define

Aλ,ν =
{
u ∈ E(RN ) \ {0} : Jλ,ν(u) > 0

}
∪ {0},

and first note that Aλ,ν contains a small ball around the origin. Indeed, arguing as in the proof

of Lemma 2.8, we can show that for every u ∈ E(RN ) \ {0} and any β > 0, we have

Jλ,ν(u) ≥ 2ν −N
2
||u||2H1(RN ) −

(
4ν −N − 2− 2k̄

ω

)(
β − 1

4

)
||u||4H1(RN )

+

(
4ν −N − 2− 2k̄

ω

)(
β − 1

4β

)
||u||4E(RN ) −

S
−(q+1)
q+1 (ν(q + 1)−N)

q + 1
||u||q+1

H1(RN )
.
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We now pick δ =

(
(2ν−N)(q+1)Sq+1

q+1

4(ν(q+1)−N)

)1/(q−1)

and note that since ν > N
2 , it follows that δ > 0. We

assume ||u||E(RN ) < δ and choosing β > 1 sufficiently near 1 we obtain

Jλ,ν(u) ≥
[

2ν −N
4

−
(

4ν −N − 2− 2k̄

ω

)(
β − 1

4

)
δ2

]
||u||2H1(RN ) +

(
4ν −N − 2− 2k̄

ω

)(
β − 1

4β

)
||u||4E(RN )

≥
(

4ν −N − 2− 2k̄

ω

)(
β − 1

4β

)
||u||4E(RN ),

which is strictly positive by our choice of ν. This is enough to prove that Aλ,ν contains a small
ball around the origin. Now, notice that if u ∈ Aλ,ν , then g′(1) > 0, where g is defined in (2.16).
Since g(0) = 0 and we showed in Claim 1 that τu is the unique critical point of g corresponding to

its maximum, it follows that 1 < τu. Using the facts that Iλ(0) = 0 and g′(t) = dIλ(tνu(t·))
dt ≥ 0 for

all t ∈ [0, τu], we obtain that Iλ(tνu(t·)) ≥ 0 for all t ∈ [0, τu] and, in particular, at t = 1. Thus,
we have shown Iλ(u) ≥ 0, which also implies that I 1

2
,λ(u) ≥ 0, for every u ∈ Aλ,ν . Therefore,

every γ ∈ Γλ and every γ ∈ Γ̄λ, where Γλ and Γ̄λ are given by (2.11) and (2.13) respectively, has
to cross M̄λ,ν , and so the claim holds.

Conclusion. Putting the claims together, it is clear that the statement holds. �

2.5. Palais-Smale sequences. We recall that a sequence (un)n∈N ⊂ E(RN ) is said to be a
Palais-Smale sequence for Iλ at some level c ∈ R if

I(un)→ c, I ′(un)→ 0, as n→∞.
If any such a sequence is relatively compact in the E(RN ) topology, then we say that the functional
Iλ satisfies the Palais-Smale condition at level c.

Lemma 2.7 (Boundedness of Palais-Smale sequences). Assume N = 3, 4, ρ ∈ L∞loc(RN ) is

nonnegative, q ∈ [3, 2∗ − 1], and (un)n∈N ⊂ E(RN ) is a Palais-Smale sequence for Iλ at any level
c > 0. Then, for any fixed λ > 0, (un)n∈N is bounded in E(RN ).

We stress that our assumption on N yields 3 ≤ 2∗ − 1.

Proof. For convenience, set

an = ||un||H1(RN ), bn = λ

(ˆ
RN

φunu
2
nρ(x)

) 1
2

, cq = min

{(
q − 1

2

)
,

(
q − 3

4

)}
and note that, as n→ +∞,

(2.17) C1 + o(1)||un||E(RN ) ≥ (q + 1)Iλ(un)− I ′λ(un)(un) =

(
q − 1

2

)
a2
n +

(
q − 3

4

)
b2n

for some C1 > 0. Assuming ||un||E(RN ) → +∞, we show a contradiction in each of the cases:

(i) an, bn → +∞,
(ii) an bounded and bn → +∞,

(iii) an → +∞ and bn bounded.

First consider q > 3. If bn → +∞, for large n we have b2n ≥ bn and by (2.17) we get

C1 + o(1)||un||E(RN ) ≥ cq||un||2E(RN ), n→ +∞,

a contradiction in case (i) and (ii). If an → +∞ and bn is bounded, then ||un||E(RN ) ∼ an, hence

C1 + o(1)an ≥ cqa2
n, n→ +∞,
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a contradiction in case (iii). This makes the proof complete for q > 3.
Consider now q = 3. By Sobolev inequality we have

C2 ≥ Iλ(un) ≥ 1

2
a2
n +

1

4
b2n − C3a

4
n,

for some C2, C3 > 0, which yields a contradiction in case (ii). On the other hand if an → +∞,
from the same estimate we have

(2.18) bn . a
2
n, n→ +∞.

Note that (2.17) yields

(2.19) C1 + o(1)||un||E(RN ) ≥ a2
n, n→ +∞.

Dividing by ||un||E(RN ) =
(
a2
n + bn

) 1
2 , we get a4n

a2n+bn
= o(1), n→ +∞, hence

bn & a
4
n, n→ +∞,

a contradiction in case (iii). This and (2.18), give

a4
n . a

2
n, n→ +∞,

a contradiction in case (i). This completes the proof. �

Lemma 2.8 (Lower bound uniform in λ for PS sequences at level cλ). Assume N = 3, 4, 5,
λ > 0, q ∈ (2, 2∗−1], ρ ∈ L∞loc(RN ) is nonnegative. There exists a universal constant α = α(q) > 0

independent of λ such that for any Palais-Smale sequence (un)n∈N ⊂ E(RN ) for Iλ at level cλ, it
holds that

lim inf
n→∞

‖un‖q+1
Lq+1(RN )

≥ α.

Proof. For every u ∈ E(RN ), denoting Sq+1 the best constant such that Sq+1‖u‖Lq+1(RN ) ≤
‖u‖H1(RN ), we have

Iλ(u) ≥ 1

2
||u||2H1(RN ) +

λ2

4

ˆ
R3

ρφuu
2 −

S
−(q+1)
q+1

q + 1
||u||q+1

H1(RN )
.

Since ωλ2
´
RN ρφuu

2 =
(
||u||2

E(RN )
− ||u||2

H1(RN )

)2
, estimating the term ||u||2

E(RN )
||u||2

H1(RN )
with

Young’s inequality, we have for any β > 0

Iλ(u) ≥ 1

2
||u||2H1(RN ) −

1

ω

(
β − 1

4

)
||u||4H1(RN ) +

1

ω

(
β − 1

4β

)
||u||4E(RN ) −

S
−(q+1)
q+1

q + 1
||u||q+1

H1(RN )
.

We now pick δ =

(
(q+1)Sq+1

q+1

4

)1/(q−1)

and assume ||u||E(RN ) < δ, which also implies that ||u||H1(RN ) <

δ. Then, choosing β > 1 sufficiently near 1 we obtain

Iλ(u) ≥
[

1

4
− 1

ω

(
β − 1

4

)
δ2

]
||u||2H1(RN ) +

1

ω

(
β − 1

4β

)
||u||4E(RN )

≥ 1

ω

(
β − 1

4β

)
||u||4E(RN ).

We note here that both δ and β depend on q but not on λ. Thus, we have shown that if ||u||E(RN ) =

δ/2, then Iλ(u) ≥ c, for some c > 0 independent of λ. So, since every path connecting the origin
to where the functional Iλ is negative crosses the sphere of radius δ/2, it follows that

cλ ≥ c for every λ ≥ 0.



16 TOMAS DUTKO, CARLO MERCURI, AND TERESA MEGAN TYLER

For convenience, set

an = ||un||H1(RN ), b2n = λ

(ˆ
RN

φunu
2
nρ(x)

) 1
2

,

where (un)n∈N is an arbitrary Palais-Smale sequence at the level cλ. It holds that

cλ + o(1)− ‖I ′λ(un)‖E′(RN )‖un‖E(RN ) ≤ Iλ(un)− I ′λ(un)un

=

(
1

2
− 1

)
a2
n +

(
1

4
− 1

)
b4n +

(
1− 1

q + 1

)
‖un‖q+1

q+1.

By concavity note that ‖un‖E(RN ) ≤ an + bn, hence the above yields

c+ o(1)−‖I ′λ(un)‖E′(RN )(an + bn) +
1

2

(
a2
n + b4n

)
︸ ︷︷ ︸

cn

≤ ‖un‖q+1
q+1,

and it is easy to see that lim inf cn ≥ 0. The conclusion follows then with α := c.
�

3. The case of ρ vanishing on a region

Throughout this section we will make the assumption that

(ρ1) ρ−1(0) has non-empty interior and there exists M > 0 such that

|x ∈ RN : ρ(x) ≤M | <∞.

In what follows it is convenient to set

A(R) = {x ∈ RN : |x| > R, ρ(x) ≥M},

B(R) = {x ∈ RN : |x| > R, ρ(x) < M},

for any R > 0.

Lemma 3.1 (Key vanishing property). Suppose ρ is a measurable function and that for some
M ∈ R it holds that

B := |x ∈ RN : ρ(x) < M | <∞.

Then

lim
R→∞

|B(R)| = 0.

Proof. The conclusion follows by the dominated convergence theorem as B(R) ⊆ B yields

|B(R)| =
ˆ
B
χB(R)(x) dx ≤ |B|.

�

Lemma 3.2 (Uniform bounds in λ for PS sequences at level cλ). Assume N = 3, 4,
ρ ∈ L∞loc(RN ) is nonnegative, satisfying (ρ1), q ∈ [3, 2∗−1], λ > 0. There exists a universal constant

C = C(q,N) > 0 independent of λ, such that for any Palais-Smale sequence (un)n∈N ⊂ E(RN )
for Iλ at level cλ it holds that ‖un‖E(RN ) < C.
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Proof. Let v ∈ C∞c (RN ) \ {0} have support in ρ−1(0). Pick tv > 0 such that I0(tvv) < 0 and set
vt = ttvv. Then, by definition of cλ,

(3.1) cλ ≤ max
t∈[0,1]

Iλ(vt) = max
t≥0

I0(tv) =: c 1.

Note that since (un) is bounded by Lemma 2.7, it holds that

cλ = lim
n→∞

(Iλ(un)− 1

q + 1
I ′λ(un) · un)

= lim
n→∞

((1

2
− 1

q + 1

)
‖un‖2H1(RN ) + λ2

(1

4
− 1

q + 1

) ˆ
RN

φunρ(x)u2
n

)
.

The conclusion follows immediately in the case q > 3. For q = 3 the above yields a uniform bound
independent on λ for the H1(RN ) norm and hence for the Lq+1(RN ) norm as well by Sobolev’s
inequality. Since

λ2 lim sup
n→∞

ˆ
RN

φunu
2
nρ(x) ≤ 4

(
cλ + lim sup

n→∞

(
‖un‖2H1(RN ) + ‖un‖q+1

Lq+1(RN )

))
,

this concludes the proof. �

Lemma 3.3 (Control on the tails of uniformly bounded sequences). Assume N = 3, 4, 5,
ρ ∈ L∞loc(RN ) is nonnegative, satisfying (ρ1), and (un)n∈N ⊂ E(RN ) is bounded uniformly with
respect to λ. Then, for every β > 0 there exists λβ > 0 and Rβ > 0 such that for λ > λβ and
R > Rβ,

||un||3L3(RN\BR) < β.

Proof. By Lemma 2.3 we have

(3.2) λ

ˆ
RN

ρ(x)|un|3 ≤ C‖un‖3E(RN ) ≤ C
′,

for some positive constant C ′ independent of λ. Henceˆ
A(R)
|un|3 ≤

C ′

λM
.

Also observe that by Hölder’s inequality and Lemma 3.1 we haveˆ
B(R)
|un|3 ≤

(ˆ
RN
|un|2

∗
) 3

2∗
(ˆ

B(R)
1
) 2∗−3

2∗

≤ C ′′‖un‖3E(RN ) · |B(R)|
2∗−3
2∗

≤ C ′′′|B(R)|
2∗−3
2∗ → 0.

as R → ∞, again for some uniform constant C ′′′ > 0. Note that our assumption on N yields
3 < 2∗. This is enough to conclude the proof. �

Proposition 5 (Nonzero weak limits of PS sequences at level cλ for λ large). Let
N = 3, ρ ∈ L∞loc(RN ) be nonnegative, satisfying (ρ1), and q ∈ [3, 5). There exist universal positive

constants λ0 = λ0(q,M) and α0 = α0(q), such that if for some λ ≥ λ0, u ∈ E(R3) is the weak
limit of a Palais-Smale sequence for Iλ at level cλ, then it holds thatˆ

R3

|u|3 dx > α0.

1In fact this bound holds in dimensions N = 3, 4, 5 and every q ∈ (2, 2∗ − 1].
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Proof. Let (un)n∈N ⊂ E(R3) be an arbitrary Palais-Smale sequence at level cλ. Note that we can
pick α(q) > 0 independent of λ and of the sequence such that

lim inf
n→∞

‖un‖3L3(R3) ≥ α(q).

Indeed by interpolation
ˆ
R3

|un|q+1 ≤
( ˆ

R3

|un|3
) 5−q

3
(ˆ

R3

|un|6
) q−2

3

and the claim follows by Sobolev inequality and the uniform bound given by Lemma 3.2 and
by Lemma 2.8. In particular, recall that by Lemma 3.2, there exists a universal constant C =
C(q,N) > 0 independent of λ and of the sequence, such that ‖un‖E(RN ) < C. By Lemma 3.3,

it follows than that we can pick λ0(q,M) and Rα > 0 such that such that for every λ ≥ λ0 and
every R > Rα we have

lim sup
n→∞

‖un‖3L3(R3\BR) <
α

2
.

By the classical Rellich theorem, passing if necessary to a subsequence, we can assume that un → u
in L3

loc(R3). Therefore, for every R > Rα, we have

‖u‖3L3(BR) = lim
n→∞

‖un‖3L3(BR) ≥ lim inf
n→∞

‖un‖3L3(R3) − lim sup
n→∞

‖un‖3L3(R3\BR) >
α

2
.

The conclusion follows with α0 = α/2. �

Proposition 6 (Energy estimates for λ large). Let N = 3, ρ ∈ L∞loc(R3) be nonnegative,
satisfying (ρ1), and q ∈ [3, 5). Let λ0 be defined as in Proposition 5. There exists a universal
constant λ1 = λ1(q,M) > 0 such that, if λ ≥ max (λ0, λ1) and u is the nontrivial weak limit in
E(R3) of some Palais-Smale sequence (un)n∈N ⊂ E(R3) for Iλ at level cλ, then it holds that

• Iλ(u) = cλ, for q ∈ (3, 5),

• infv∈Nλ Iλ(v) ≤ Iλ(u) ≤ cλ, for q = 3.

In particular, for all λ ≥ max (λ0, λ1) , the mountain-pass level cλ is critical for q ∈ (3, 5), as well
as the level Iλ(u) for q = 3.

Proof. By Proposition 5, for every q ∈ [3, 2∗−1) and λ ≥ λ0, passing if necessary to a subsequence,
we can assume that un ⇀ u ∈ E(R3) \ {0} weakly in E(R3) and almost everywhere, for some
Palais-Smale sequence (un)n∈N ⊂ E(R3) for Iλ at level cλ. By a standard argument u is a critical
point of Iλ. For sake of clarity we break the proof into two steps.
Step 1: We first show that there exists a universal constant C = C(q) > 0 such that for every
λ ≥ λ0, R > 0 and n ∈ N, it holds that

(3.3)

Iλ(un − u) ≥

1

4
− SλS−1

(ˆ
A(R)
|un − u|6

) 2
3

ˆ
R3

|∇(un − u)|2

− C|B(R)|
5−q
6 − 1

q + 1

ˆ
|x|<R

|un − u|q+1,

where

Sλ := (q − 2)[3(q + 1)]
−3
q−2

(
2(5− q)
λM

) 5−q
q−2

,
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S = 3(π/2)4/3 is the Sobolev constant, and M is defined as in (ρ1). Reasoning as in Lemma 2.3
and by Lemma 3.3 we obtain,

Iλ(un − u) ≥ 1

4

ˆ
R3

|∇(un − u)|2 +
1

4

ˆ
R3

|∇(un − u)|2

+
λ2

4

ˆ
R3

φ(un−u)(un − u)2ρ(x)− 1

q + 1

ˆ
R3

|un − u|q+1

≥ 1

4

ˆ
R3

|∇(un − u)|2 +
λ

2

ˆ
R3

ρ(x)|un − u|3 −
1

q + 1

ˆ
R3

|un − u|q+1

≥ 1

4

ˆ
R3

|∇(un − u)|2 +
λM

2

ˆ
A(R)
|un − u|3 −

1

q + 1

ˆ
R3

|un − u|q+1.(3.4)

Note that ˆ
R3

|un − u|q+1 =

ˆ
|x|<R

...+

ˆ
A(R)

...+

ˆ
B(R)

...

Using that (un)n∈N is uniformly bounded in E(R3) and arguing as in Lemma 3.3 and by Sobolev
inequality, we have

(3.5)

ˆ
B(R)
|un − u|q+1 ≤ C1‖un − u‖q+1

L6(R3)
|B(R)|

5−q
6 ≤ C2|B(R)|

5−q
6 .

By the interpolation and Young’s inequalities we obtain for all δ > 0 that

1

q + 1

ˆ
A(R)
|un − u|q+1 ≤ 1

q + 1

(ˆ
A(R)
|un − u|3

) 5−q
3
(ˆ

A(R)
|un − u|6

) q−2
3

≤
(

5− q
3

)(
δ

q + 1

) 3
5−q
ˆ
A(R)
|un − u|3 +

(
q − 2

3

)
δ
−3
q−2

ˆ
A(R)
|un − u|6.

In particular, we can set

δ =

(
λM

2
· 3

5− q

) 5−q
3

(q + 1).

Hence

1

q + 1

ˆ
A(R)
|un − u|q+1 ≤ λM

2

ˆ
A(R)
|un − u|3 + Sλ

ˆ
A(R)
|un − u|6

≤ λM

2

ˆ
A(R)
|un − u|3 + SλS

−1

(ˆ
A(R)
|un − u|6

) 2
3 ˆ

R3

|∇(un − u)|2,(3.6)

where we have used Sobolev’s inequality written as

S

(ˆ
A(R)
|un − u|6

) 1
3

≤
ˆ
R3

|∇(un − u)|2.

Putting together (3.4), (3.5) and (3.6), the claim (3.3) follows.
Step 2: Conclusion. By the classical Brezis-Lieb lemma and Lemma 2.2 we have

(3.7) cλ = lim
n→∞

Iλ(un) = Iλ(u) + lim
n→∞

Iλ(un − u).

Note that there exists a positive constant λ1 = λ1(q,M) such that for every λ ≥ λ1 it holds that

(3.8)
1

4
− SλS−3C

4 ≥ 0,
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where C is defined via Lemma 3.2 by the property ‖un‖E(R3) < C. Note that, again by the
Brezis-Lieb lemma, we haveˆ

A(R)
|un − u|6 =

ˆ
A(R)
|un|6 −

ˆ
A(R)
|u|6 + on(R),

with limn→∞ on(R) = 0 for any fixed R > 0; since by Sobolev’s inequality it holds that

ˆ
A(R)
|un|6 ≤ S−3

(ˆ
R3

|∇un|2
)3

≤ S−3C
6
,

we obtain the estimate

(3.9) lim sup
R→∞

lim sup
n→∞

ˆ
A(R)
|un − u|6 ≤ S−3C

6
.

We conclude, by (3.3), (3.8), (3.9) and the classical Rellich theorem that

lim
n→∞

Iλ(un − u) ≥ lim inf
R→∞

lim inf
n→∞

1

4
− SλS−1

(ˆ
A(R)
|un − u|6

) 2
3

ˆ
R3

|∇(un − u)|2

≥
[

1

4
− SλS−3C

4
]

lim inf
n→∞

ˆ
R3

|∇(un − u)|2 ≥ 0,

and hence by (3.7) that Iλ(u) ≤ cλ. On the other hand, since u ∈ Nλ, it holds that

inf
v∈Nλ

Iλ(v) ≤ Iλ(u) ≤ cλ,

and this completes the proof for q = 3. For q ∈ (3, 2∗ − 1), since

cλ = inf
v∈Nλ

Iλ(v),

it follows that Iλ(u) = cλ, and this concludes the proof. �

Remark 3.1 (On the Palais-Smale condition). When q > 3, the fact that lim Iλ(un−u) = 0
for λ large suggests that the Palais-Smale condition at the mountain-pass level cλ can be recovered
in some cases. To illustrate this, note that the assumption (ρ1) is compatible with having, say
ρ(x)→ 2M, as |x| → ∞, namely a situation where lack of compactness phenomena may occur for
the system (1.2) as a consequence of the invariance by translations of (1.8), which plays the role
of a ‘problem at infinity’, see e.g. [40]. We stress here that ρ may approach its limit from below
as well as from above. To see that in this case the Palais-Smale condition is satisfied for λ large,

denote by Iρ≡2M
λ the functional associated to (E) with ρ ≡ 2M, and observe that in this situation

E(R3) ' H1(R3), with equivalent norms by (HLS). Reasoning as in [40, Proposition 1.6], there

exist l ∈ N∪{0}, functions (v1, . . . , vl) ⊂ H1(R3), and sequences of points (yjn)n∈N ⊂ R3, 1 ≤ j ≤ l,
such that, passing if necessary to a subsequence,

• vj are possibly nontrivial critical points of Iρ≡2M
λ for 1 ≤ j ≤ l,

• |yjn| → +∞, |yjn − yj
′
n | → +∞ as n→ +∞ if j 6= j′,

• ||un − u−
∑l

j=1 vj(· − y
j
n)||H1(R3) → 0 as n→ +∞,

• cλ = Iλ(u) +
∑l

j=1 I
ρ≡2M
λ (vj).
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It is standard to see that Iρ≡2M
λ is uniformly bounded below on the set of its nontrivial critical

points by a positive constant, independent on λ. It then follows that for all λ ≥ max (λ0, λ1) ,
Proposition 6 and the above yield cλ = Iλ(u) and at the same time l = 0; as a consequence the
Palais-Smale condition is satisfied at the level cλ. These considerations yield the following

Proposition 7 (Palais-Smale condition under (ρ1)). Let N = 3 < q and ρ ≥ 0 be locally
bounded such that (ρ1) is satisfied and such that ρ(x) → ρ∞ > M as |x| → ∞. Let λ0 and λ1 be
as in Proposition 6. Then, for all λ ≥ max (λ0, λ1) , Iλ satisfies the Palais-Smale condition at the
mountain-pass level cλ.

It is not obvious how to prove the above proposition in the case q = 3; nevertheless the
same considerations on strong convergence apply instead to approximated critical points of Iλ
constrained on the Nehari manifold, see the proof Theorem 1.1 and Proposition 8 below.

3.1. Proof of Theorem 1.1. Now that we have the necessary preliminaries we present the proof
of Theorem 1.1.

Proof of Theorem 1.1. We recall that

Nλ :=
{
u ∈ E(R3) \ {0} : Gλ(u) = 0

}
,

where

Gλ(u) = I ′λ(u)(u) = ||u||2H1(R3) + λ2

ˆ
R3

ρφuu
2 − ||u||q+1

Lq+1(R3)
.

We note that for all q ∈ [3, 2∗− 1), it is standard to see that Nλ is nonempty. Moreover, we claim
that the conditions

(i) ∃r > 0 : Br ∩Nλ = ∅,
(ii) G′λ(u)(u) 6= 0, ∀u ∈ Nλ,

are satisfied, and so, by standard arguments, it follows that the Nehari manifold Nλ is a natural
constraint (see e.g. [3]). Indeed, for (i), we notice that if u ∈ Nλ, then

0 = ||u||2H1(R3) + λ2

ˆ
R3

ρφuu
2 − ||u||q+1

Lq+1(R3)
≥ ||u||2H1(R3) − S

−(q+1)
q+1 ||u||q+1

H1(R3)
,

from which it follows that

(3.10) ||u||E(R3) ≥ ||u||H1(R3) ≥ S
(q+1)/(q−1)
q+1 , ∀u ∈ Nλ.

Setting r = S
(q+1)/(q−1)
q+1 − δ for some small δ > 0 yields (i). For (ii), we notice that if u ∈ Nλ,

then by the definition of the Nehari manifold, the assumption q ≥ 3 and (3.10), it holds that

G′λ(u)(u) = 2||u||2H1(R3) + 4λ2

ˆ
R3

ρφuu
2 − (q + 1)||u||q+1

Lq+1(R3)

= (1− q)||u||2H1(R3) + (3− q)λ2

ˆ
R3

ρφuu
2

≤ (1− q)S2(q+1)/(q−1)
q+1

< 0.

(3.11)

Thus, the claim holds and so the Nehari manifold is a natural constraint. Now, if q ∈ (3, 2∗ − 1),
setting λ∗ = max{λ0, λ1}, the conclusion follows immediately from Proposition 6 and the following
characterisation of the mountain-pass level,

cλ = inf
v∈Nλ

Iλ(v).
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On the other hand, assume q = 3 and λ ≥ max{λ0, λ1}. We note that

c∗λ := inf
v∈Nλ

Iλ(v)

is well-defined since Nλ is nonempty, and so, we take (w̃n)n∈N ⊂ Nλ to be a minimising sequence
for Iλ on Nλ, namely, Iλ(w̃n) → c∗λ. By the Ekeland variational principle (see e.g. [24]), there
exists another minimising sequence (wn)n∈N ⊂ Nλ and ξn ∈ R such that

(3.12) Iλ(wn)→ c∗λ,

(3.13) I ′λ(wn)(wn) = 0,

and

(3.14) I ′λ(wn)− ξnG′λ(wn)→ 0, in (E(R3))′.

Now, by Proposition 6, (3.1), (3.12) and (3.13), it holds that

lim
n→+∞

(
Iλ(wn)− 1

q + 1
I ′λ(wn)(wn)

)
= c∗λ ≤ cλ ≤ c̄,

for some c̄ independent of λ. We can therefore argue as in Lemma 3.2 to show that

(3.15) ||wn||E(R3) < C̄,

where C̄ > 0 is the same constant independent of λ given by Lemma 3.2. Moreover, since
(wn)n∈N ⊂ Nλ, it follows using (3.10) that

||wn||4L4(R3) = ||wn||2H1(R3) + λ2

ˆ
R3

ρφwnw
2
n ≥ ||wn||2H1(R3) ≥ S

4
4 > 0.

Thus, by interpolation it holds

S4
4 ≤
ˆ
R3

|wn|4 ≤
(ˆ

R3

|wn|3
) 2

3
(ˆ

R3

|wn|6
) 1

3

,

and so, by the Sobolev inequality and (3.15), it follows that we can pick α > 0 independent of λ
such that

lim inf
n→∞

‖wn‖3L3(R3) ≥ α.

Moreover, by Lemma 3.3, we can set λ∗ = max{λ0, λ1} and Rα > 0 such that such that for every
λ ≥ λ∗ and every R > Rα we have

lim sup
n→∞

‖wn‖3L3(R3\BR) <
α

2
.

Now, since (wn)n∈N is bounded, passing if necessary to a subsequence, we can assume that wn ⇀ w
in E(R3) and wn → w in L3

loc(R3). It follows that for every λ ≥ λ∗ and R > Rα,

‖w‖3L3(BR) ≥ lim inf
n→∞

‖wn‖3L3(R3) − lim sup
n→∞

‖wn‖3L3(R3\BR) >
α

2
,

and so w 6≡ 0. We now notice that by (3.13), (3.14), and (3.15), it holds, up to a constant
independent of λ, that

o(1) = ||I ′λ(wn)− ξnG′λ(wn)||(E(R3))′

& |I ′λ(wn)(wn)− ξnG′λ(wn)(wn)|
= |ξnG′λ(wn)(wn)|,

for some ξn ∈ R. Since (wn) ⊂ Nλ, by (3.11), we have that G′λ(wn)(wn) < −2S4
4 < 0, and so the

above yields ξn → 0. Moreover, using (3.15) and the inequality

|D(f, g)|2 ≤ D(f, f)D(g, g),
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where

D(f, g) :=

ˆ
R3

ˆ
R3

f(x)g(y)

|x− y|
dx dy,

for f, g measurable and nonnegative functions (see [33, p.250]), it follows that G′λ(wn) is bounded.
Taken together, we have that ξnG

′
λ(wn) → 0, and using this and (3.14), we obtain I ′λ(wn) → 0.

Hence, (wn)n∈N is a Palais-Smale sequence for Iλ at level c∗λ, and so, since we have also shown
that wn ⇀ w 6≡ 0 in E(R3), a standard argument yields that w is a nontrivial critical point of Iλ.
Namely, w ∈ Nλ, and thus

(3.16) c∗λ ≤ Iλ(w).

On the other hand, arguing as in Proposition 6, replacing un, u, and cλ with wn, w, and c∗λ,
respectively, for every λ ≥ λ∗, we obtain

(3.17) Iλ(w) ≤ c∗λ.
For the reader convenience we recall that λ1 is chosen in Proposition 6 so that for every λ ≥ λ1, it
holds that 1

4 − SλS
−3C̄4 ≥ 0, where C̄ is defined via Lemma 3.2 by the property ||un||E(R3) < C̄.

Going through the same argument with (wn)n∈N, since (wn)n∈N is bounded by precisely the same
uniform constant, namely ||wn||E(R3) < C̄, we conclude that (3.17) holds for every λ ≥ λ∗, as
λ∗ ≥ λ1 by construction. Putting (3.16) and (3.17) together yields

Iλ(w) = inf
v∈Nλ

Iλ(v).

Since Iλ(w) = Iλ(|w|) and w ∈ Nλ if and only if |w| ∈ Nλ, we can assume w ≥ 0, and it follows
that w > 0 by Proposition 1. This completes the proof. �

As a byproduct of the above proof, we have the following

Proposition 8 (Constrained Palais-Smale condition under (ρ1)). Let N = 3 = q and ρ ≥ 0
be locally bounded such that (ρ1) is satisfied and such that ρ(x) → ρ∞ > M as |x| → ∞. Let λ0

and λ1 be as in Proposition 6. Then, for all λ ≥ max (λ0, λ1) , the restriction Iλ|Nλ satisfies the
Palais-Smale condition at the level

c∗λ = inf
v∈Nλ

Iλ(v).

That is, every sequence (un)n∈N ⊂ E(R3) ' H1(R3) such that

I(un)→ c∗λ, ∇Iλ(un)|Nλ → 0 in H−1(R3)

is relatively compact.

Proof. The proof follows reasoning exactly as in Remark 3.1. We leave out the details. �

4. The case of coercive ρ

In the present section λ > 0 is an arbitrary fixed value, and on ρ we make the assumption that

(ρ2) For every M > 0,

|x ∈ RN : ρ(x) ≤M | <∞.

Lemma 4.1 (Compactness property). Let N = 3, 4, 5, ρ ∈ L∞loc(RN ) be nonnegative, satisfying

(ρ2), and q ∈ (1, 2∗ − 1). Then, E(RN ) is compactly embedded into Lq+1(RN ).

Proof. By Lemma 2.3, multiplying by λ we obtain

(4.1) λ

ˆ
RN

ρ(x)|u|3 ≤
( 1

ω

) 1
2 ‖u‖3E(RN ).

Set
A(R) = {x ∈ RN : |x| > R, ρ(x) ≥M},
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B(R) = {x ∈ RN : |x| > R, ρ(x) < M}.
Without loss of generality, assume that (un)n∈N ⊂ E(RN ) is such that un ⇀ 0. For convenience,
write ˆ

RN\BR
|un|3 =

ˆ
A(R)
|un|3 +

ˆ
B(R)
|un|3

where BR is a ball of radius R centred at the origin. Fix δ > 0 and pick M , r, C, such that

M > 2
λδ

(
1
ω

) 1
2 supn‖un‖3E(RN )

, r = 2∗

3 > 1 and

C ≥ sup
u∈E(RN )\{0}

‖u‖3
L2∗ (RN )

‖u‖3
E(RN )

.

Let 1
r + 1

r′ = 1. By Lemma 3.1, for every M > 0, and every R > 0 large enough, it holds that

(4.2) |B(R)| ≤
[ δ

2C supn‖un‖3E(RN )

]r′
.

Since N = 3, 4, 5, we can pick r = 2∗

3 > 1 such that by Hölder inequality it holds thatˆ
B(R)
|un|3 ≤

(ˆ
B(R)
|un|2

∗
) 1
r
( ˆ

B(R)
1
) 1
r′

≤ ‖un‖3L2∗ (RN )
· |B(R)|

1
r′

≤ C‖un‖3E(RN ) · |B(R)|
1
r′ ≤ δ

2
,

Moreover, by our choice of M and (4.1), we see that

ˆ
A(R)
|un|3 ≤

1

λM

(
1

ω

) 1
2

||un||3E(RN ) ≤
δ

2
.

By the classical Rellich theorem, and since δ was arbitrary, this is enough to prove our lemma for
q = 2. By interpolation the case q 6= 2 follows immediately, and this concludes the proof. �

Using the above lemma, and for q ≥ 3, it is easy to see that the Palais-Smale condition holds
for Iλ at any level.

Lemma 4.2 (Palais-Smale condition). Let N = 3, ρ ∈ L∞loc(RN ) be nonnegative, satisfying
(ρ2), and q ∈ [3, 2∗ − 1). Then, Iλ satisfies the Palais-Smale condition at every level c ∈ R.

Proof. Since by Lemma 4.1 the embedding of E(R3) into Lq+1(R3) is compact, using Lemma 2.2,
the conclusion follows arguing as in [17, p. 1077]. �

4.1. Proof of Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. Using Lemma 2.5 and Lemma 4.2, the Mountain-Pass Theorem yields the
existence a mountain-pass type solution for all q ∈ [3, 2∗ − 1). Namely, there exists u ∈ E(RN )
such that Iλ(u) = cλ and I ′λ(u) = 0, where cλ is given in (2.12). For q > 3, the mountain-pass
level cλ has the characterisation

cλ = inf
u∈Nλ

Iλ(u), Nλ := {u ∈ E(RN ) \ {0} | I ′λ(u)(u) = 0},

and it follows that u is a groundstate solution of Iλ. Since Iλ(u) = Iλ(|u|), we can assume u ≥ 0,
and so u > 0 by the strong maximum principle, Proposition 1. For q = 3, we can show the
existence of a positive mountain-pass solution applying the general min-max principle [53, p.41],
and observing that, in our context, we can restrict to admissible curves γ’s which map into the
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positive cone P := {u ∈ E(R3) : u ≥ 0}. In fact, arguing as in [41, p.481], since Iλ satisfies the
mountain-pass geometry by Lemma 2.5, it is possible to select a Palais-Smale sequence (un)n∈N
at the level cλ such that

dist(un, P )→ 0,

from which it follows that (un)− → 0 in L6(R3), see also [16, Lemma 2.2]. Then, by construction
and up to a subsequence, there exists a weak limit u ≥ 0, and hence, by Lemma 4.2 a nontrivial
nonnegative solution, the positivity of which holds by Proposition 1.
The existence of a positive groundstate can be shown with a mild modification to the proof of
Theorem 1.1, using here that all the relevant convergence statements hold for any fixed λ > 0 as
a consequence of assumption (ρ2) and Lemma 4.1. This is enough to conclude. �

Proof of Theorem 1.3. We can argue as in [40, Theorem 1.3], based on [31] and on the compactness
of the embedding of E(RN ) into Lq+1(RN ). The latter is provided in our context by Lemma
4.1. By these, there exists an increasing sequence µn → 1 and (un)n∈N ∈ E(RN ) such that
Iµn,λ(un) = cµn,λ and I ′µn,λ(un) = 0, where Iµn,λ and cµn,λ are defined as in (2.9) and (2.10). By
Lemma 2.4, we see that

(4.3)
N − 2

2

ˆ
RN

(|∇un|2 + u2
n) +

(
N + 2 + 2k

4

)ˆ
RN

ρ(x)φunu
2
n −

Nµn
q + 1

ˆ
RN
|un|q+1 ≤ 0.

Setting αn =
´
RN (|∇un|2 + u2

n), γn = λ2
´
RN ρ(x)φunu

2
n, δn = µn

´
RN |un|

q+1, we can put together
the equalities Iµn,λ(un) = cµn,λ and I ′µn,λ(un)(un) = 0 with (4.3) obtaining the system

(4.4)


αn + γn − δn = 0,
1
2αn + 1

4γn − 1
q+1δn = cµn,λ,

N−2
2 αn +

(
N+2+2k

4

)
γn − N

q+1δn ≤ 0,

which yields

δn ≤
cµn,λ(6−N + 2k)(q + 1)

2(q − 2) + k(q − 1)
, γn ≤

2cµn,λ
(
2(q + 1)−N(q − 1)

)
2(q − 2) + k(q − 1)

, and αn = δn − γn.

We note that k > −2(q−2)
(q−1) > N−6

2 since q < 2∗ − 1, and so since αn, γn, δn are all nonnegative, it

follows that αn, γn, δn are all bounded. Hence the sequence (un)n∈N is bounded and there exists
u ∈ E(RN ) such that, up to a subsequence, un ⇀ u in E(RN ). Using Lemma 4.1 and arguing as
in [17, Theorem 1] we obtain that ‖un‖2E(RN )

→ ‖u‖2
E(RN )

and

(4.5) cµn,λ = Iµn,λ(un)→ Iλ(u).

It follows that un → u in E(RN ), which combined with the left-continuity property of the levels
[5, Lemma 2.2], namely cµn,λ → c1,λ = cλ as µn ↗ 1, yields Iλ(u) = cλ. Since u is a critical
point by the weak convergence, it follows that u is mountain-pass solution. Finally, the existence
of a groundstate solution is based on minimising over the set of nontrivial critical points of Iλ,
and carrying out an identical argument to the above to show the strong convergence of such a
minimising sequence, again using Lemma 4.1. This concludes the proof. �

4.2. Proof of Theorem 1.4. Under an additional hypotheses on ρ, we now prove that the energy
level of the groundstate solutions coincide with the mountain-pass level.

Proof of Theorem 1.4. By Proposition 4, it holds that

cλ = inf
u∈M̄λ,ν

Iλ(u),

where M̄λ,ν is defined in (2.14). Since Jλ,ν(u) = 0 is equivalent to the Pohozaev equation given
by Lemma 2.4 minus the equation νI ′λ(u)(u) = 0, it is clear that M̄λ,ν contains all of the critical
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points of Iλ, and thus the mountain-pass solutions that we find in Theorem 1.2 (q = 3) and
Theorem 1.3 (q < 3) are groundstates. This completes the proof. �

5. Multiplicity results: coercive ρ

In the current section, we discuss the existence of high energy solutions in the case ρ satisfies
(ρ2). Throughout what follows, we denote the unit ball in E(RN ) by B1. Moreover, since λ does
not play any role and can be fixed arbitrarily under assumption (ρ2), we set λ ≡ 1 for the sake of
simplicity and define

I(u) :=
1

2

ˆ
RN

(|∇u|2 + u2) +
1

4

ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

|x− y|N−2
dx dy − 1

q + 1

ˆ
RN
|u|q+1.

5.1. Preliminaries. We will now discuss some preliminaries that will be used in proving both
Theorem 1.5 and 1.6. Following [4] we set

(5.1) Â0 = {u ∈ E(RN ) : I(u) ≥ 0},
and

Γ∗ = {h ∈ C(E(RN ), E(RN )) : h(0) = 0, h is an odd homeomorphism of E(RN )(5.2)

onto E(RN ), h(B1) ⊂ Â0}.
In the next lemma, we establish a result that allows us to obtain high energy solutions in our
Banach space setting. Before stating the lemma, we note that since the biorthogonal system given
by Lemma 2.1 is fundamental, then, for any m ∈ N, it holds that

E(RN ) = span{e1, . . . , em} ⊕ span{em+1, . . . }.
Thus, throughout what follows we set

Em = span{e1, . . . , em},
E⊥m = span{em+1, . . . },

and note that, for any m ∈ N, Em and E⊥m define algebraically and topologically complementary
subspaces of E(RN ).

Lemma 5.1 (Divergence of min-max levels dm). Let N ≥ 3 and q > 1. Suppose ρ ∈ L∞loc(RN )
is nonnegative, satisfying (ρ2). Define

(5.3) dm := sup
h∈Γ∗

inf
u∈∂B1∩E⊥m−1

I(h(u)),

where Γ∗ is given by (5.2). Then, dm → +∞ as m→ +∞.

Proof. First we set

T =
{
u ∈ E(RN ) \ {0} : ||u||2H1(RN ) = ||u||q+1

Lq+1(RN )

}
and

d̃m = inf
u∈T∩E⊥m

||u||E(RN ),

and claim that d̃m → +∞ as m → +∞. To see this, assume to the contrary that there exists
um ∈ T ∩ E⊥m and some d > 0 such that ||um||E(RN ) ≤ d for all m ∈ N. Since < e∗n, um >= 0 for

all m ≥ n and the e∗n’s are total by Lemma 2.1, then it follows that um ⇀ 0 in E(RN ) (see e.g.
[52]). Since E(RN ) is compactly embedded into Lq+1(RN ) by Lemma 4.1, it follows that um → 0
in Lq+1(RN ). However, since um ∈ T , it follows from the Sobolev inequality that

||um||q+1
H1(RN )

≥ Sq+1
q+1 ||um||

q+1
Lq+1(RN )

= Sq+1
q+1 ||um||

2
H1(RN ),
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from which we deduce
||um||q+1

Lq+1(RN )
≥ S2(q+1)/(q−1)

q+1 > 0.

This shows that um is bounded away from 0 in Lq+1(RN ), a contradiction, and so we have proved
that

(5.4) d̃m → +∞ as m→ +∞.
Now notice that since Em and E⊥m are complementary subspaces, it holds that there exists a C̄ ≥ 1
such that each u ∈ B1 can be uniquely written as

(5.5) u = v + w, with v ∈ Em, w ∈ E⊥m,

(5.6) ||v||E(RN ) ≤ C̄||u||E(RN ) ≤ C̄,

(5.7) ||w||E(RN ) ≤ C̄||u||E(RN ) ≤ C̄,

as a consequence of the open mapping theorem, see [19, p.37]. Define hm : E⊥m → E⊥m by

hm(u) = (C̄K)−1d̃mu,

where

K > max

{
1,

(
4

q + 1

) 1
q−1

}
,

and note that hm is an odd homeomorphism of E⊥m onto E⊥m. Now, for any u ∈ E(RN ) \ {0},
there exists a unique β(u) > 0 such that β(u)u ∈ T , namely

(5.8) β(u) =

 ||u||2H1(RN )

||u||q+1
Lq+1(RN )

 1
q−1

.

If we define

I0(u) =
1

2
||u||2H1(RN ) −

1

q + 1
||u||q+1

Lq+1(RN )
,

then for each u ∈ E(RN ) \ {0}, it holds that

I0(tu) =
t2

2
||u||2H1(RN ) −

tq+1

q + 1
||u||q+1

Lq+1(RN )

is a monotone increasing function for t ∈ [0, β(u)] with a maximum at t = β(u). Note that for
each u ∈ (E⊥m ∩BC̄) \ {0}, by the definition of d̄m and β(u), we have

C̄−1d̃m ≤ C̄−1||β(u)u||E(RN ) ≤ β(u),(5.9)

and so since K ≥ 1, it holds that

(C̄K)−1d̃m ≤ C̄−1d̃m ≤ β(u), for all u ∈ (E⊥m ∩BC̄) \ {0}.
Putting everything together, it follows that

I0(hm(u)) = I0((C̄K)−1d̃mu) > 0 for all u ∈ (E⊥m ∩BC̄) \ {0}.
Moreover,

hm(0) = 0.

Therefore,

(5.10) hm(E⊥m ∩BC̄) ⊂
{
u ∈ E(RN ) : I0(u) ≥ 0

}
.

Now, for each m ∈ N and some δ > 0, define h̃m : Em × E⊥m → Em × E⊥m by

h̃m([v, w]) = [δv, (C̄K)−1d̃mw].



28 TOMAS DUTKO, CARLO MERCURI, AND TERESA MEGAN TYLER

Notice that h̃m is an odd homeomorphism of Em × E⊥m onto Em × E⊥m. Moreover, by (5.5), the
function gm : Em × E⊥m → E(RN ) defined by

gm([v, w]) = v + w,

is an odd homeomorphism. Hence, defining Hm : E(RN )→ E(RN ) as

Hm = gm ◦ h̃m ◦ g−1
m ,

we see that Hm is an odd homeomorphism of E(RN ) onto E(RN ). By (5.5)-(5.7), it holds that

B1 ⊆ gm({Em ∩BC̄} × {E⊥m ∩BC̄}),

and so

Hm(B1) ⊆ Hm(gm({Em ∩BC̄} × {E⊥m ∩BC̄}))(5.11)

= gm(h̃m({Em ∩BC̄} × {E⊥m ∩BC̄}))

= gm({δ(Em ∩BC̄)} × {C̄−1K−1d̃m(E⊥m ∩BC̄)})

=
{
u ∈ E(RN ) : u = v + w, v ∈ δ(Em ∩BC̄), w ∈ C̄−1K−1d̃m(E⊥m ∩BC̄)

}
=: Zm,δ.

Now, fix m ∈ N. We claim that

Zm,δ ⊂
{
u ∈ E(RN ) : I0(u) > 0

}
∪ {0}

for some δ = δ(m) > 0. To see this, assume, by contradiction, that there exists δj → 0 and
uj /∈

{
u ∈ E(RN ) : I0(u) > 0

}
∪ {0} such that uj ∈ Zm,δj . Then, by definition of Zm,δj , it holds

that

||uj ||E(RN ) ≤ ||vj ||E(RN ) + ||wj ||E(RN ) ≤ δjC̄ +K−1d̃m,

which implies uj is bounded. Thus, up to a subsequence uj ⇀ ū in E(RN ) and so it follows that
uj ⇀ ū in H1(RN ). Moreover, since E(RN ) is compactly embedded into Lq+1(RN ) by Lemma

4.1, it follows that uj → ū in Lq+1(RN ), with ||ū||q+1
Lq+1(RN )

> 0 by previous arguments. Thus, by

the weak lower semicontinuity of the H1(RN ) norm and the strong convergence in Lq+1(RN ), we
deduce that

1

2
||ū||2H1(RN ) ≤

1

q + 1
||ū||q+1

Lq+1(RN )
,

which implies ū /∈
{
u ∈ E(RN ) : I0(u) > 0

}
∪ {0}. On the other hand, since δj → 0, then vj → 0.

It follows from this and (5.10) that ū ∈ C̄−1K−1d̃m(E⊥m ∩BC̄) ⊂
{
u ∈ E(RN ) : I0(u) > 0

}
∪ {0}.

Hence, we have reached a contradiction and so the claim holds. Thus, using this and (5.11), for
each m ∈ N, we pick δ = δ(m) > 0 so that

Hm(B1) ⊂
{
u ∈ E(RN ) : I0(u) > 0

}
∪ {0} ⊂

{
u ∈ E(RN ) : I(u) ≥ 0

}
= Â0,

namely Hm ∈ Γ∗, where Â0 and Γ∗ are given by (5.1) and (5.2), respectively. We can therefore
see that

(5.12) dm+1 = sup
h∈Γ∗

inf
u∈∂B1∩E⊥m

I(h(u)) ≥ inf
u∈∂B1∩E⊥m

I(Hm(u)).

Now take u ∈ ∂B1 ∩ E⊥m. Then, using (5.8), (5.9) and the fact that
´
RN ρφuu

2 = ω−1(1 −
||u||2

H1(RN )
)2, it holds that

I(Hm(u)) =
1

2
(C̄−1K−1d̃m)2||u||2H1(RN ) +

1

4
(C̄−1K−1d̃m)4

ˆ
RN

ρφuu
2
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− 1

q + 1
(C̄K)−q−1d̃q+1

m ||u||q+1
Lq+1(RN )

=
1

2
(C̄−1K−1d̃m)2||u||2H1(RN ) +

1

4
(C̄−1K−1d̃m)4

ˆ
RN

ρφuu
2

− (C̄K)−q−1d̃2
m

q + 1

(
d̃m
β(u)

)q−1

||u||2H1(RN )

≥ 1

2
(C̄−1K−1d̃m)2

(
1− 2K1−q

q + 1

)
||u||2H1(RN )

+
1

4ω
(C̄−1K−1d̃m)4

(
1− ||u||2H1(RN )

)2

≥ min
{
K1d̃

2
m,K2d̃

4
m

}(
||u||4H1(RN ) − ||u||

2
H1(RN ) + 1

)
≥ 3

4
min

{
K1d̃

2
m,K2d̃

4
m

}
,

where K1 ≥ 1
4C̄2K2 by our choice of K and K2 = 1

4ωC̄4K4 . Finally, using this, (5.12), and (5.4),
we obtain

dm+1 ≥ inf
u∈∂B1∩E⊥m

I(Hm(u))

≥ 3

4
min

{
K1d̃

2
m,K2d̃

4
m

}
→ +∞, as m→ +∞.

This completes the proof. �

5.2. Proof of Theorem 1.5. In order to prove Theorem 1.5, we will need some background
material including the notion of the Krasnoselskii-genus and its properties. Throughout what
follows we let G be a compact topological group. Following [24], we begin with a number of
definitions that we will need before introducing the notion of the Krasnoselskii-genus.

Definition 2 (Isometric representation). The set {T (g) : g ∈ G} is an isometric representation
of G on E if T (g) : E → E is an isometry for each g ∈ G and the following hold:

(i) T (g1 + g2) = T (g1) ◦ T (g2) for all g1, g2 ∈ G
(ii) T (0) = I, where I : E → E is the identity map on E

(iii) (g, u) 7→ T (g)(u) is continuous.

Definition 3 (Invariant subset). A subset A ⊂ E is invariant if T (g)A = A for all g ∈ G.

Definition 4 (Equivariant mapping). A mapping R between two invariant subsets A1 and
A2, namely R : A1 → A2, is said to be equivariant if R ◦ T (g) = T (g) ◦R for all g ∈ G.

Definition 5 (The class A). We denote the class of all closed and invariant subsets of E by A.
Namely,

A := {A ⊂ E : A closed, T (g)A = A ∀g ∈ G}.

Definition 6 (G-index with respect to A). A G-index on E with respect to A is a mapping
ind : A → N ∪ {+∞} such that the following hold:

(i) ind(A) = 0 if and only if A = ∅.
(ii) If R : A1 → A2 is continuous and equivariant, then ind(A1) ≤ ind(A2).
(iii) ind(A1 ∪A2) ≤ ind(A1) + ind(A2).
(iv) If A ∈ A is compact, then there exists a neighbourhood N of A such that N ∈ A and

ind(N) = ind(A).

With these definitions in place, we are ready to introduce the concept of the Krasnoselskii-genus.
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Lemma 5.2 (The Krasnoselskii-genus). Let G = Z2 = {0, 1} and define T (0) = I, T (1) = −I,
where I : E → E is the identity map on E. Given any closed and symmetric with respect to the
origin subset A ∈ A, define γ(A) = k ∈ N if k is the smallest integer such that there exists some
odd mapping ϕ ∈ C(A,Rk \ {0}). Moreover, define γ(A) = +∞ if no such mapping exists and
γ(∅) = 0. Then, the mapping γ : A → N ∪ {+∞} is a Z2-index on E, called the Krasnoselskii-
genus.

Proof. See the proof of Proposition 2.1 in [24]. �

The next lemma gives a property of the Krasnoselskii-genus relevant for us to obtain our
multiplicity result.

Lemma 5.3 (Multiplicity from the Krasnoselskii-genus). Assume A ∈ A is such that 0 /∈ A
and γ(A) ≥ 2. Then, A has infinitely many points.

Proof. See the proof of Proposition 2.2 in [24]. �

For the proof of Theorem 1.5, we recall a classical result of Ambrosetti and Rabinowitz, [4].

Theorem 5.1 ([4]; Min-max setting high q). Let I ∈ C1(E(RN ),RN ) satisfy the following:

(i) I(0) = 0 and there exists constants R, a > 0 such that I(u) ≥ a if ||u||E(RN ) = R

(ii) If (un)n∈N ⊂ E(RN ) is such that 0 < I(un), I(un) bounded above, and I ′(un) → 0, then
(un)n∈N possesses a convergent subsequence

(iii) I(u) = I(−u) for all u ∈ E(RN )
(iv) For a nested sequence E1 ⊂ E2 ⊂ · · · of finite dimensional subspaces of E(RN ) of increas-

ing dimension, it holds that Ei ∩ Â0 is bounded for each i = 1, 2, . . ., where Â0 is given by
(5.1)

Define
bm = inf

K∈Γm
max
u∈K

I(u),

with

Γm ={K ⊂ E(RN ) : K is compact and symmetric with respect to the origin and for

all h ∈ Γ∗, it holds that γ(K ∩ h(∂B1)) ≥ m},
where Γ∗ is given by (5.2). Then, for each m ∈ N, it holds that 0 < a ≤ bm ≤ bm+1 and bm is a
critical value of I. Moreover, if bm+1 = · · · = bm+r = b, then γ(Kb) ≥ r, where

Kb := {u ∈ E(RN ) : I(u) = b, I ′(u) = 0},
is the set of critical points at any level b > 0.

Proof. See [4, Theorem 2.8]. �

We are now in position to prove Theorem 1.5.

Proof of Theorem 1.5. We aim to apply Theorem 5.1 and therefore must verify that I satisfies
assumptions (i)-(iv) of this theorem. By Lemma 2.5, I satisfies the Mountain-Pass Geometry and
thus (i) holds. By Lemma 4.2, (ii) holds. Clearly, (iii) holds due to the structure of the functional
I. We now must show that (iv) holds. We first notice by straightforward calculations that for
any u ∈ ∂B1 and any for t > 0, it holds that

I(tu) =
t2

2
||u||2H1(RN ) +

t4

4

ˆ
RN

ρφuu
2 − tq+1

q + 1

ˆ
RN
|u|q+1

=
t2

2

(
||u||2H1(RN ) +

t2

2

ˆ
RN

ρφuu
2 − 2tq−1

q + 1

ˆ
RN
|u|q+1

)
.
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We now set

α := ||u||2H1(RN ) > 0, β :=
1

2

ˆ
RN

ρφuu
2 ≥ 0, γ :=

2

q + 1

ˆ
RN
|u|q+1 > 0,

and look for positive solutions of

t2

2
(α+ βt2 − γtq−1) = 0.

Since q > 3, it holds that α+ βt2 − γtq−1 = 0 has a unique solution t = tu > 0. That is, we have
shown that for each u ∈ ∂B1, there exists a unique t = tu > 0 such that I satisfies

I(tuu) = 0

I(tu) > 0, ∀t < tu

I(tu) < 0, ∀t > tu.

Now, for any m ∈ N, we choose Em a m-dimensional subspace of E(RN ) in such a way that
Em ⊂ Em′ for m < m′. Moreover, for any m ∈ N, we set

Wm := {w ∈ E(RN ) : v = tu, t ≥ 0, u ∈ ∂B1 ∩ Em}.
Then, the function h : Em →Wm given by

h(z) = t
z

||z||
, with t = ||z||

defines a homeomorphism from Em onto Wm, and so W1 ⊂W2 ⊂ · · · is a nested sequence of finite
dimensional subspaces of E(RN ) of increasing dimension. We also notice that

Tm := sup
u∈∂B1∩Em

tu < +∞

since ∂B1∩Em is compact. So, for all t > Tm and u ∈ ∂B1∩Em, it holds that I(tu) < 0, and thus

Wm ∩ Â0 is bounded, where Â0 is given by (5.1). Since this holds for arbitrary m ∈ N, we have
shown that (iv) holds. Hence, we have shown that Theorem 5.1 applies to the functional I. If bm
are distinct for m = 1, . . . , j with j ∈ N, we obtain j distinct pairs of critical points corresponding
to critical levels 0 < b1 < b2 < · · · < bj . If bm+1 = · · · = bm+r = b, then γ(Kb) ≥ r ≥ 2. Moreover,
0 /∈ Kb since b > 0 = I(0). Further, Kb is invariant since I is an invariant functional and Kb is
closed since I satisfies the Palais-Smale condition, and so Kb ∈ A. Therefore, by Lemma 5.3, Kb

possesses infinitely many points. Finally, we note that by [4, Theorem 2.13], for each m ∈ N, it
holds that

dm ≤ bm,
where dm is defined in (5.3). It therefore follows from Lemma 5.1 that

bm → +∞, as m→ +∞.
This concludes the proof. �

5.3. Proof of Theorem 1.6. Before proving Theorem 1.6, we must establish some preliminary
results that we will need to use. The first lemma that we recall will give us an abstract definition
of the min-max levels and some properties.

Lemma 5.4 ([5]; Abstract min-max setting for low q). Consider a Banach space E, and a
functional Φµ : E → R of the form Φµ(u) = α(u) − µβ(u), with µ > 0. Suppose that α, β ∈ C1

are even functions, lim||u||→+∞ α(u) = +∞, β(u) ≥ 0, and β, β′ map bounded sets onto bounded
sets. Suppose further that there exists K ⊂ E and a class F of compact sets in E such that:
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(F .1) K ⊂ A for all A ∈ F and supu∈K Φµ(u) < cµ, where cµ is defined as:

(5.13) cµ := inf
A∈F

max
u∈A

Φµ(u).

(F .2) If η ∈ C([0, 1]× E,E) is an odd homotopy such that

• η(0, ·) = I, where I : E → E is the identity map on E
• η(t, ·) is a homeomorphism
• η(t, x) = x for all x ∈ K,

then η(1, A) ∈ F for all A ∈ F .

Then, it holds that the mapping µ 7→ cµ is non-increasing and left-continuous, and therefore is
almost everywhere differentiable.

Proof. See [5, Lemma 2.2]. �

Under the hypotheses of the previous lemma, we can now define the set of values of µ ∈
[

1
2 , 1
]

such that cµ, given by (5.13), is differentiable. Namely, we define

J :=

{
µ ∈

[
1

2
, 1

]
: the mapping µ 7→ cµ is differentiable

}
.

Corollary 1 (On density of perturbation values µ). The set J is dense in
[

1
2 , 1
]
.

Proof. Fix x ∈
[

1
2 , 1
]

and δ > 0, and denote by |·| the Lebesgue measure. Since
[

1
2 , 1
]
\J has zero

Lebesgue measure by Lemma 5.4, we have

|J ∩ (x− δ, x+ δ)| =
∣∣∣∣[1

2
, 1

]
∩ (x− δ, x+ δ)

∣∣∣∣ > 0.

It follows that J ∩ (x− δ, x+ δ) is nonempty and so we can choose y ∈ J ∩ (x− δ, x+ δ). Since
x and δ are arbitrary, this completes the proof. �

With the definition of J in place, we can also recall another vital result from [5], which will be
used to obtain the boundedness of our Palais-Smale sequences.

Lemma 5.5 ([5]; Boundedness of Palais-Smale sequences at level cµ). For any µ ∈ J ,
there exists a bounded Palais-Smale sequence for Φµ at the level cµ defined by (5.13). That is,
there exists a bounded sequence (un)n∈N ⊂ E(RN ) such that Φµ(un)→ cµ and Φ′µ(un)→ 0.

Proof. See [5, Proposition 2.3]. �

Moving toward a less abstract setting, for any µ ∈
[

1
2 , 1
]
, we define the perturbed functional

Iµ : E(RN )→ RN as

(5.14) Iµ(u) :=
1

2

ˆ
RN

(|∇u|2 + u2) +
1

4

ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

|x− y|N−2
dx dy − µ

q + 1

ˆ
RN
|u|q+1.

The next result that we will need in order to prove Theorem 1.6, follows as a result of Lemma 2.6.

Lemma 5.6 (On the sign of the energy level of Iµ along certain curves). Assume N =

3, 4, 5 and q ∈ (2, 2∗−1]. Suppose further that ρ is homogeneous of degree k̄, namely, ρ(tx) = tk̄ρ(x)
for all t > 0, for some

k̄ > max

{
N

4
,

1

q − 1

}
· (3− q)− 1.

Then, there exists ν > max
{
N
2 ,

2
q−1

}
such that for each fixed µ ∈

[
1
2 , 1
]

and each u ∈ E(RN )\{0},
there exists a unique t = tu > 0 with the property that

Iµ(tνuu(tu·)) = 0,
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Iµ(tνu(t·)) > 0, ∀t < tu,

Iµ(tνu(t·)) < 0, ∀t > tu,

where Iµ is defined in (5.14).

Proof. We first note that under the assumptions on the parameters, we can show that

4ν −N − 2

2
>

(ν + 1)(3− q)− 2

2
.

It follows from this and the lower bound assumption on k̄ that we can always find at least one
interval (

ν(3− q)− 2

2
,
4ν −N − 2

2

)
, with ν > max

{
N

2
,

2

q − 1

}
,

that contains k̄. We pick ν corresponding to such an interval and fix µ ∈
[

1
2 , 1
]
. Then, for any

u ∈ E(RN ) \ {0} and for any t > 0, using the assumption that ρ is homogeneous of degree k̄, we
find that

Iµ(tνu(t·)) =
t2ν+2−N

2

ˆ
RN
|∇u|2 +

t2ν−N

2

ˆ
RN

u2 +
t4ν−N−2

4

ˆ
RN

ˆ
RN

u2(y)ρ(yt )u
2(x)ρ(xt )

ω|x− y|N−2

− µtν(q+1)−N

q + 1

ˆ
RN
|u|q+1

=
t2ν+2−N

2

ˆ
RN
|∇u|2 +

t2ν−N

2

ˆ
RN

u2 +
t4ν−N−2−2k̄

4

ˆ
RN

ρφuu
2 − µtν(q+1)−N

q + 1

ˆ
RN
|u|q+1.

We therefore set

a =
1

2

ˆ
RN
|∇u|2, b =

1

2

ˆ
RN

u2, c =
1

4

ˆ
RN

ρφuu
2, d =

µ

q + 1

ˆ
RN
|u|q+1,

and consider the polynomial

f(t) = at2ν+2−N + bt2ν−N + ct4ν−N−2−2k̄ − dtν(q+1)−N , t ≥ 0.

Since u ∈ E(RN ) \ {0}, we can deduce that a, b, d > 0 and c ≥ 0, and so, by Lemma 2.6, it holds
that f has a unique critical point corresponding to its maximum. Thus, since Iµ(tνu(t·)) = f(t)
and, by assumptions, ν(q + 1)−N > 2ν + 2−N and ν(q + 1)−N > 4ν −N − 2− 2k̄, it follows
that there exists a unique t = tu > 0 such that the conclusion holds.

�

With the previous results established, we are finally in position to prove Theorem 1.6.

Proof of Theorem 1.6. We first note that by Lemma 5.6, we can choose ν > max
{
N
2 ,

2
q−1

}
, so

that for each u ∈ ∂B1, there exists a unique t = tu > 0 such that Iµ with µ = 1
2 , defined by (5.14),

satisfies

I 1
2
(tνuu(tu·)) = 0,

I 1
2
(tνu(t·)) > 0, ∀t < tu,

I 1
2
(tνu(t·)) < 0, ∀t > tu.(5.15)

Now, for any m ∈ N, we choose Em a m-dimensional subspace of E(RN ) in such a way that
Em ⊂ Em′ for m < m′. Moreover, for any m ∈ N, we set

Wm := {w ∈ E(RN ) : w = tνu(t·), t ≥ 0, u ∈ ∂B1 ∩ Em}.
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Then, the function h : Em →Wm given by

h(e) = tνu(t·), with t = ||e||E(RN ), u =
e

||e||E(RN )

,

defines an odd homeomorphism from Em onto Wm. We notice that it holds that

(5.16) Tm := sup
u∈∂B1∩Em

tu < +∞,

since ∂B1 ∩ Em is compact. So, the set

Am = {w ∈ E(RN ) : w = tνu(t·), t ∈ [0, Tm], u ∈ ∂B1 ∩ Em}

is compact. We now define

H := {g : E(RN )→ E(RN ) : g is an odd homeomorphism and g(w) = w for all w ∈ ∂Am},

and

Gm := {g(Am) : g ∈ H}.
We aim to verify (F .1) and (F .2) of Lemma 5.4. We take Gm as the class F and K = ∂Am and
define the min-max levels

cm,µ := inf
A∈Gm

max
u∈A

Iµ(u).

Then, since Tm ≥ tu for all u ∈ ∂B1 ∩ Em by definition, it follows from (5.15) that

Iµ(w) ≤ I 1
2
(w) ≤ 0, ∀w ∈ ∂Am, ∀µ ∈

[
1

2
, 1

]
.

Moreover, since Gm ⊂ Gm+1 for all m ∈ N, it holds that cm,µ ≥ cm−1,µ ≥ · · · ≥ c1,µ > 0. Taken
together, we have shown that

(5.17) sup
w∈∂Am

Iµ(w) ≤ 0 < cm,µ,

and thus (F .1) is verified. Moreover, for any η given by (F .2) and any g ∈ H, it holds that
g̃ = η(1, g) belongs to H, and so (F .2) is satisfied. Since (F .1) and (F .2) are satisfied, Lemma
5.4 applies. Thus, for any m ∈ N, we denote by Jm the set of values µ ∈

[
1
2 , 1
]

such that the
function µ 7→ cm,µ is differentiable. We then let

M :=
⋂
m∈N
Jm.

We note that since [
1

2
, 1

]
\M =

⋃
m∈N

([
1

2
, 1

]
\ Jm

)
and [1

2 , 1]\Jm has zero Lebesgue measure for each m by Lemma 5.4, then it follows that
[

1
2 , 1
]
\M

has zero Lebesgue measure. Arguing as in the proof of Corollary 1, we obtain thatM is dense in[
1
2 , 1
]
. We can now apply Proposition 5.5 with Φµ = Iµ. Namely, for each fixed m ∈ N and µ ∈M

we obtain that there exists a bounded sequence (un)n∈N ⊂ E(RN ) such that Iµ(un) → cm,µ and
I ′µ(un) → 0. The embedding of E(RN ) into Lq+1(RN ) is compact by Lemma 4.1 so, arguing as
in the proof of Theorem 1.3, we can show that the values cm,µ are critical levels of Iµ for each
m ∈ N and µ ∈ M. We then take m fixed, (µn)n∈N an increasing sequence in M such that
µn → 1, and (un)n∈N ⊂ E(RN ) such that I ′µn(un) = 0 and Iµn(un) = cm,µn . We note that since

ρ is homogeneous of degree k̄ by assumption, it follows from [27, p. 296] that k̄ρ(x) = (x,∇ρ).
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So, setting αn =
´
RN (|∇un|2 + u2

n), γn =
´
RN ρ(x)φunu

2
n, δn = µn

´
RN |un|

q+1 and using the
Pohozaev-type condition deduced in Lemma 2.4, we obtain the system

(5.18)


αn + γn − δn = 0,
1
2αn + 1

4γn − 1
q+1δn = cm,µn ,

N−2
2 αn +

(
N+2+2k

4

)
γn − N

q+1δn ≤ 0.

Since the assumptions on k̄ guarantee that k̄ > −2(q−2)
(q−1) > N−6

2 for q ∈ (2, 3] if N = 3 and for

q ∈ (2, 2∗ − 1) if N = 4, 5, it follows that we can solve this system and show that αn, γn, δn are
all bounded as in the proof of Theorem 1.3. Moreover, continuing to argue as in the proof of
this theorem and using the compact embedding of E(RN ) into Lq+1(RN ), we can then prove that
for each fixed m there exists u ∈ E(RN ) such that, up to a subsequence, un → u in E(RN ),
I(u) = I1(u) = cm,1, and I ′(u) = I ′1(u) = 0. It therefore remains to show that I(u) = cm,1 → +∞
as m→ +∞. In order to do so, we define

Γ̃m :=
{
g ∈ C(Em ∩B1, E(RN )) : g is odd, one-to-one, I(g(y)) ≤ 0 for all y ∈ ∂(Em ∩B1)

}
,

G̃m :=
{
A ⊂ E(RN ) : A = g(Em ∩B1), g ∈ Γ̃m

}
,

b̃m := inf
A∈G̃m

max
u∈A

I(u).

We then note that by [4, Corollary 2.16], it holds that

dm ≤ b̃m,

where dm is given by (5.3). It therefore follows from Lemma 5.1 that

(5.19) b̃m → +∞, as m→ +∞.

We will now show Gm ⊆ G̃m. We take A ∈ Gm. Then, by definition, there exists g ∈ H such that
A = g(Am). We define an odd homeomorphism ϕ : Em ∩B1 → Am by

ϕ(e) = tνu(t·), with t = Tm||e||E(RN ), u =
e

||e||E(RN )

,

where Tm is defined in (5.16), and set g̃ = g ◦ ϕ. Since we can write A = g̃(Em ∩ B1), then by

the definition of G̃m we need only to show that g̃ ∈ Γ̃m. Clearly, g̃ ∈ C(Em ∩ B1, E(RN )) is
odd and one-to-one. Moreover, for every y ∈ ∂(Em ∩ B1), setting w = ϕ(y) ∈ ∂Am, we have
I(g̃(y)) = I(g(w)). Since g ∈ H and w ∈ ∂Am, then by definition it holds that g(w) = w. Putting
everything together, we have

I(g̃(y)) = I(g(w)) = I(w) ≤ sup
w∈∂Am

I(w) ≤ 0,

where the final inequality follows from (5.17). Hence, we have shown g̃ ∈ Γ̃m and so Gm ⊆ G̃m.
Therefore, for each m ∈ N, it follows that

b̃m = inf
A∈G̃m

max
u∈A

I(u) ≤ inf
A∈Gm

max
u∈A

I(u) = cm,1,

and so, by (5.19), we conclude that

cm,1 → +∞, as m→ +∞,

as required. �
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Appendix A: Proof of the Pohozaev-type condition

Proof of Lemma 2.4. With the regularity remarks of Proposition 1 in place, we now multiply the
first equation in (2.3) by (x,∇u) and integrate on BR(0) for some R > 0. We will compute each
integral separately. We first note thatˆ

BR

−∆u(x,∇u) dx =
2−N

2

ˆ
BR

|∇u|2 dx

− 1

R

ˆ
∂BR

|(x,∇u)|2 dσ +
R

2

ˆ
∂BR

|∇u|2 dσ.

(5.20)

Fixing i = 1, . . . , N , integrating by parts and using the divergence theorem, we then see that,ˆ
BR

bu(xi∂iu) dx = b

[
−1

2

ˆ
BR

u2 dx+
1

2

ˆ
BR

∂i(u
2xi) dx

]
= b

[
−1

2

ˆ
BR

u2 dx+
1

2

ˆ
∂BR

u2 x
2
i

|x|
dσ

]
.

So, summing over i, we get

(5.21)

ˆ
BR

bu(x,∇u) dx = b

[
−N

2

ˆ
BR

u2 dx+
R

2

ˆ
∂BR

u2 dσ

]
.

Again, fixing i = 1, . . . , N , integrating by parts and using the divergence theorem, we find that,ˆ
BR

cρφuuxi(∂iu) dx = c

[
− 1

2

ˆ
BR

ρφuu
2 dx− 1

2

ˆ
BR

φuu
2xi(∂iρ) dx

− 1

2

ˆ
BR

ρu2xi(∂iφu) dx+
1

2

ˆ
BR

∂i(ρφuu
2xi) dx

]
= c

[
− 1

2

ˆ
BR

ρφuu
2 dx− 1

2

ˆ
BR

φuu
2xi(∂iρ) dx

− 1

2

ˆ
BR

ρu2xi(∂iφu) dx+
1

2

ˆ
∂BR

ρφuu
2 x

2
i

|x|
dσ

]
.

Thus, summing over i, we getˆ
BR

cρφuu(x,∇u) dx = c

[
− N

2

ˆ
BR

ρφuu
2 dx− 1

2

ˆ
BR

φuu
2(x,∇ρ) dx

− 1

2

ˆ
BR

ρu2(x,∇φu) dx+
R

2

ˆ
∂BR

ρφuu
2 dσ

]
.(5.22)

Finally, once more fixing i = 1, . . . , N , integrating by parts and using the divergence theorem, we
find that, ˆ

BR

d|u|q−1u(xi∂iu) dx = d

[
−1

q + 1

ˆ
BR

|u|q+1 dx+
1

q + 1

ˆ
∂BR

|u|q+1 x
2
i

|x|
dσ

]
,

and so, summing over i, we see thatˆ
BR

d|u|q−1u(x,∇u) dx = d

[
−N
q + 1

ˆ
BR

|u|q+1 dx

+
R

q + 1

ˆ
∂BR

|u|q+1 dσ

]
.

(5.23)
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Putting (5.20), (5.21), (5.22) and (5.23) together, we see that

2−N
2

ˆ
BR

|∇u|2 dx− 1

R

ˆ
∂BR

|(x,∇u)|2 dσ +
R

2

ˆ
∂BR

|∇u|2 dσ

+ b

[
− N

2

ˆ
BR

u2 dx+
R

2

ˆ
∂BR

u2 dσ

]
+ c

[
− N

2

ˆ
BR

ρφuu
2 dx− 1

2

ˆ
BR

φuu
2(x,∇ρ) dx

− 1

2

ˆ
BR

ρu2(x,∇φu) dx+
R

2

ˆ
∂BR

ρφuu
2 dσ

]
− d

[
−N
q + 1

ˆ
BR

|u|q+1 dx+
R

q + 1

ˆ
∂BR

|u|q+1 dσ

]
= 0.

(5.24)

We now multiply the second equation in (2.3) by (x,∇φu) and integrate on BR(0) for some R > 0.
By a simple calculation we see that

ˆ
BR

ρu2(x,∇φu) dx =

ˆ
BR

−∆φu(x,∇φu) dx

=
2−N

2

ˆ
BR

|∇φu|2 dx− 1

R

ˆ
∂BR

|(x,∇φu)|2 dσ

+
R

2

ˆ
∂BR

|∇φu|2 dσ.

Substituting this into (5.24) and rearranging, we get

N − 2

2

ˆ
BR

|∇u|2 dx+
Nb

2

ˆ
BR

u2 dx+
(N + k)c

2

ˆ
BR

ρφuu
2 dx

+
c(2−N)

4

ˆ
BR

|∇φu|2 dx− Nd

q + 1

ˆ
BR

|u|q+1 dx

≤ N − 2

2

ˆ
BR

|∇u|2 dx+
Nb

2

ˆ
BR

u2 dx+
Nc

2

ˆ
BR

ρφuu
2 dx

+
c

2

ˆ
BR

φuu
2(x,∇ρ) dx+

c(2−N)

4

ˆ
BR

|∇φu|2 dx− Nd

q + 1

ˆ
BR

|u|q+1 dx

= − 1

R

ˆ
∂BR

|(x,∇u)|2 dσ +
R

2

ˆ
∂BR

|∇u|2 dσ +
bR

2

ˆ
∂BR

u2 dσ

+
cR

2

ˆ
∂BR

ρφuu
2 dσ +

c

2R

ˆ
∂BR

|(x,∇φu)|2 dσ

− cR

4

ˆ
∂BR

|∇φu|2 dσ − dR

q + 1

ˆ
∂BR

|u|q+1 dσ,

(5.25)
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where we have used the assumption kρ(x) ≤ (x,∇ρ) for some k ∈ R to obtain the first inequality.
We now call the right hand side of (5.25) IR, namely

IR := − 1

R

ˆ
∂BR

|(x,∇u)|2 dσ +
R

2

ˆ
∂BR

|∇u|2 dσ +
bR

2

ˆ
∂BR

u2 dσ

+
cR

2

ˆ
∂BR

ρφuu
2 dσ +

c

2R

ˆ
∂BR

|(x,∇φu)|2 dσ

− cR

4

ˆ
∂BR

|∇φu|2 dσ − dR

q + 1

ˆ
∂BR

|u|q+1 dσ.

We note that |(x,∇u)| ≤ R|∇u| and |(x,∇φu)| ≤ R|∇φu| on ∂BR, so it holds that

|IR| ≤
3R

2

ˆ
∂BR

|∇u|2 dσ +
bR

2

ˆ
∂BR

u2 dσ

+
cR

2

ˆ
∂BR

ρφuu
2 dσ +

3cR

4

ˆ
∂BR

|∇φu|2 dσ +
dR

q + 1

ˆ
∂BR

|u|q+1 dσ.

Now, since |∇u|2, u2 ∈ L1(RN ) as u ∈ E(RN ) ⊆ H1(RN ), ρφuu
2, |∇φu|2 ∈ L1(RN ) because´

RN ρφuu
2 dx =

´
RN |∇φu|

2 dx and φu ∈ D1,2(RN ), and |u|q+1 ∈ L1(RN ) because E(RN ) ↪→
Ls(RN ) for all s ∈ [2, 2∗], then it holds that IRn → 0 as n → +∞ for a suitable sequence
Rn → +∞. Moreover, since (5.25) holds for any R > 0, it follows that

N − 2

2

ˆ
RN
|∇u|2 dx+

Nb

2

ˆ
RN

u2 dx+
(N + k)c

2

ˆ
RN

ρφuu
2 dx

+
c(2−N)

4

ˆ
RN
|∇φu|2 dx− Nd

q + 1

ˆ
RN
|u|q+1 dx ≤ 0,

and so, we obtain

N − 2

2

ˆ
RN
|∇u|2 dx+

Nb

2

ˆ
RN

u2 dx+
(N + 2 + 2k)c

4

ˆ
RN

ρφuu
2 dx− Nd

q + 1

ˆ
RN
|u|q+1 dx ≤ 0,

using the fact that
´
RN |∇φu|

2 dx =
´
RN ρφuu

2 dx. This completes the proof. �
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