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Abstract

An enrichment scheme based upon the Neumann expansion method is proposed to augment the deterministic
coefficient vectors associated with the polynomial chaos expansion method. The proposed approach relies upon
a split of the random variables into two statistically independent sets. The principal variability of the system is
captured by propagating a limited number of random variables through a low-ordered polynomial chaos expansion
method. The remaining random variables are propagated by a Neumann expansion method. In turn, the random
variables associated with the Neumann expansion method are utilised to enrich the polynomial chaos approach.
The effect of this enrichment is explicitly captured in a new augmented definition of the coefficients of the
polynomial chaos expansion. This approach allows one to consider a larger number of random variables within the
scope of spectral stochastic finite element analysis in a computationally efficient manner. Closed-form expressions
for the first two response moments are provided. The proposed enrichment method is used to analyse two numerical
examples: the bending of a cantilever beam and the flow through porous media. Both systems contain distributed
stochastic properties. The results are compared with those obtained using direct Monte Carlo simulations and
using the classical polynomial chaos expansion approach.

(© 2021 Published by Elsevier Ltd.

Keywords: Polynomial chaos expansion; Neumann expansion; model reduction; uncertainty quantification;
enrichment

1. Introduction

System and structural uncertainties may result in considerable differences arising in the
responses of seemingly equivalent systems. Such uncertainties can occur in numerous ways
including during the manufacturing or assembly processes of a structure, or in an applied
load. Consequently, methods for quantifying and analysing stochastically parametrised
systems have been developed. Through the use of such efficient numerical algorithms,
systems that are governed by stochastic partial differential equations can be efficiently
analysed.

Due to its rigour and efficient manner, the stochastic finite element approach has
been widely utilised to model and propagate uncertainty. Through this approach, one or
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more distributed parameters can be modelled by random fields. In the context of elliptic
problems, the governing equation can be expressed as

—V"a(z,0)V"u(z,0)] = p(x); xinD (1)

with the Dirichlet boundary condition u(x,0) = 0, x on 9D. The spacial domain under
consideration is defined as D € R? with piecewise Lipschitz boundary 99, and d is less
than or equal to 3. In the above equation, x is the spatial variable, # denotes sample space,
p(z) is the excitation, u(x, ) is the response of the system and a(z, 0) is the random field
describing a system parameter. The random field is on a bounded domain on R? and on
the probability space (©,F, P). The differential operator is given by V, whilst the value
of n is problem dependent. To solve the stochastic partial differential equation given in
Equation (1), it is necessary to discretise both the response and the random field. The
response field can be discretised by utilising the conventional finite element method, while
the stochastic field can be discretised, in our case, through the Karhunen-Loeve expansion

a(z,0) = ag(z) + Z VVi&i(0)pilT) (2)

In the above expression ag(x) is the mean function, &;(¢) are uncorrelated standard Gaus-
sian random variables. v; and @;(x) correspond to the eigenvalues and eigenfunctions
of the autocorrelation function of the random field. Substituting the Karhunen-Loeve
expansion into Equation (1) and truncating the series up to M-th term, the discretised
equation can be expressed as

Ay + Z {i(G)Ai] u(f) =f (3)

The response vector u(f) may be obtained by directly solving the above equation through
the use of a direct Monte Carlo method. However the convergence rate of the method
is notoriously slow, hence a large number of computationally expensive simulations is
required. In order to overcome the computational cost, a number of efficient techniques
have been proposed to approximate the response of structural systems. One such method
is the Polynomial Chaos Expansion [PCE]. The PCE method was first discussed by Wiener
in his 1938 work [1]. This work utilised both Hermite polynomials and Gaussian random
variables to describe a stochastic process. The first application of the PCE method in
conjunction with the stochastic finite element method was conducted and was entitled the
Spectral Stochastic Finite Element Method. The first application of the PCE method to
analyse engineering systems was conducted by Gahnem and Spanons [2], and the proposed
framework was entitled the Spectral Stochastic Finite Element Method. Following this,
the PCE method has been widely applied in numerous fields including structural dynamics
13, 4], heat transfer [5, 6] and fluid dynamics [7, 8]. The method has also been utilised
to analyse systems undergoing static loads [9] and dynamic loads in both the time [10]
and frequency [11, 12] domains. In addition to analysing the responses of stochastically
parametrized systems, the PCE method has also been applied to the random eigenvalue
problem [13, 14]. In turn, methods which hybridise the perturbation method and the PCE
2
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have been suggested to analyse the random eigenvalue problem [15]. These hybridised
methods have been obtained by utilising a collection of methods including the Rayleigh
quotient, the power method and the inverse power method.

One of the main necessities of the PCE method is to determine the deterministic
PCE coefficients. The methods for obtaining these deterministic coefficients can be cat-
egorised into two groups, intrusive or non-intrusive methods [16]. The intrusive method
corresponds to the method discussed above. This method ensures that the residual of
stochastic finite element formulation is orthogonal to the basis associated with the PCE
method. Non-intrusive methods are often treated as black box solvers where a number of
samples are treated deterministically. Extensive literature have discussed different non-
intrusive methods. These approaches include projection methods [17, 18], least squares
approximations [19, 20], stochastic collocation methods [21, 22] and efficient sampling
methods such as Latin hypercube or quasi sampling methods [23, 24]. Numerous studies
have been conducted to compare different non-intrusive methods [25-28]. In one such
study, the effect of altering the number of sample points for non-intrusive PCE methods
was systematically examined [28]. The work concluded that in order to have an accurate
account of a stochastic system, the number of sample points is required to be at least
twice the number of terms in PCE.

One of the main restrictions associated with the PCE is the large computational cost
associated with high dimensional systems. The number of terms associated with the PCE
increases exponentially with the dimension of the stochastically parametrized system. In
order to address this issue, sparse representations of the PCE have been suggested [29-
33]. Such methods are achieved by only retaining the dominant basis functions which are
associated with the PCE method. It has also been demonstrated that the convergence of
the statistical moments can be very slow for dynamic problems. In order to address this,
a method for accelerating the convergence of the first two statistical moments has been
suggested [4]. Furthermore, the PCE is reported to produce erroneous peaks at resonance
frequencies [4]. This is of importance as the resonance values have physical interpretation.
For a comprehensive discussion about the limitations, see [34-36].

One of the most pressing issues associated with the PCE is its vulnerability to the
curse of dimensionality when the number of stochastic dimensions is large. In numerous
studies, the number of stochastic dimensions is often truncated. This can lead to valuable
information being omitted from the solution. As a result, this work aims to address this
issue by exploring a hybrid enrichment method. A limited number of hybrid methods have
been suggested in conjunction with the PCE. Among the hybrid techniques, the Kriging
method [37] has recently been utilised to produce a new non-intrusive meta-modelling
method [38, 39]. In these studies, a system’s global behaviour is modelled by the PCE, and
the local behaviour by the Kriging method. The Arnoldi-based Krylov subspace technique
[40] has also been used in conjunction with the PCE method [41]. The work applies the
Arnoldi-based Krylov subspace technique to reduce the size of the governing stochastic
finite element equation prior to utilising the PCE method. In our proposed method, a
hybridised Neumann enrichment approach is proposed to enrich the PCE method. This is
achieved by initially propagating a limited number of random variables through the PCE
method. The remaining random variables are utilised to enrich the PCE coefficients by
the use of a Neumann series expansion.
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The paper is structured as follows. An overview of the well-established polynomial
chaos expansion is given in Section 2. In a similar manner, Section 3 outlines the Neumann
Expansion method. Section 4 introduces the novel enrichment approach. Closed-form ex-
pression for both the mean and the variance of the classical polynomial chaos expansion
method and the Neumann enriched polynomial chaos expansion method are discussed and
provided in Section 5. Section 6 utilises the Neumann enriched polynomial chaos expan-
sion method to approximate the response of a Euler-Bernoulli cantilever beam and a flow
through a porous media. Both systems contain stochastic properties. These results are
compared with the benchmark direct Monte Carlo simulation approach and the classical
polynomial chaos method. The major findings and conclusions are consequently drawn
in Section 7.

2. Polynomial Chaos Expansion

Let £(0) = {&(0),&(0),...,&m(0)} be a set of M independent and identically dis-
tributed input random vectors that represent the input uncertainty of a system (here 6
denotes the sample space). By applying the PCE approach, the stochastic response u;(6)
can be represented with a mean-square convergent series as

U (9) (J)hO + Z uuhl 5%1 ))

11=1

+ Z ul), h(€,(0),6,(0))

i1=112=1

[ ST DY (4)

+ 33N U, (& (0),6,(6), &4, (9))

i1=112=11i3=1
co 41 iz i3

+ZZZZ Uy 121511 511( )752‘2(0>7£i3(9)7§i4(9>)+

i1=1142=1143=11i4=1

where u(]) i, and u(]) are deterministic constants to be determined and h,,(&;, (0), ..., &, (0))
is the pth order chaos term. The accuracy of the approximation can be controlled by the
order of the chaos terms. The higher the order, the more accurate the approximation.
When utilising Gaussian random variables the chaos terms correspond to Hermite poly-
nomial, where the Hermite polynomial are orthogonal with respect to the Gaussian joint

distribution function. Due to the response of Equation (3) being a vector, the scalars
(],)”_,- and u(]) can be replaced by the vectors u (J) . € RY and ugg) € RY. After a finite

truncation, the polynomial chaos expansion can be written as

=) Hi(£(0))uy, ()

where Hy(&€(6)) are the polynomial chaoses and uy are deterministic vectors that need to
be determined. The expression for the polynomial chaoses of order p is given by

Hy(£(60) = (-1

N ()1 30)
8&14. s exp (6)
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Although this work focuses on the Gaussian distribution, other non-Gaussian random
distributions can be considered through the use of a Wiener-Askey polynomial chaos ex-
pansion [42, 43]. This approach provides generalized functional basis where the basis
ensure that orthogonality with respect to the probability density functions is kept. Differ-
ent types of Wiener-Askey polynomial chaoses and their corresponding random variables
and supports are provided in Table 1. The value of P arising in Equation (5) is deter-

Random input Wiener-Askey chaos Support

Beta Jacobi a,b]
Gamma Laguerre [0,00]
Gaussian Hermite (—00,00)
Uniform Legendre la,b]

Table 1: Types of Wiener-Askey polynomial chaoses and their corresponding random
input variables

mined by a basic random variable M and by the order of the PCE (p). In this instance,
M corresponds to the order of the Karhunen-Loeve expansion

P M4+ -1) [(M+p
P=3 i A7) Y

It is evident that P increases rapidly when either the order of the Karhunen-Loeéve ex-
pansion or the order of the Polynomial Chaos expansion is increased. This is illustrated
in Table 2.

Value of M 2 3 5 10 20 50 100
1st order PC 3 4 6 11 21 51 101
2nd order PC 6 10 21 66 231 1326 5151
3rd order PC 10 20 56 286 1771 23426 176851

Table 2: The value of P when M = {2,3,5,10,20,50,100} and p = {1, 2,3}

The unknown deterministic vectors u; can be obtained by utilising a Galerkin error
minimising approach [2]. This approach is initiated by substituting the approximation for
u(f), which is given by Equation (5), into the governing discretised model. The residual
of the discretised system is subsequently made orthogonal to the space spanned by the
polynomial chaoses. In turn, this leads to a system of linear equations of size NP x NP,
where N corresponds to the number of degrees of freedom associated with a structure

%171 E %1,1\/13 Uy Ji
Ayy -+ Agnp Uy B Ja (8)
IZNP,l ce A’ZNP,NP unp fN NP
or B
AU, =F 9)
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By correctly arranging the linear equations, it can be deduced that
T ..T T\T
UO:{ul)u27"'7uP} (10)

One of the major drawbacks associated with the PCE approach is the high computa-
tional cost associated with computing the deterministic vectors ug. As the value of P
increases exponentially with M, this work aims to produce a reduced method which would
incorporate a limited number of random variables within the polynomial chaos expansion.

3. Neumann Expansion Method

Following the application of the stochastic finite element method, the response vector
u(f) can be obtained by inverting the system matrix. However, due to the high compu-
tational cost associated with inverting the system matrix, a Neumann expansion can be
utilised to approximate the inversion. In turn, an approximation for the response vector
can be computed. Equation (3) can be expressed as

Ao

[ee]
IT+AN) Aigi(e)] u(d) = f (11)
i=1
where Ay is the deterministic contribution of the system matrix, and Iis a N x N identity
matrix. By manipulating the above equation, the response vector can take the following
form

~ -1
u(d) = |T+A;" >~ Aigi(e)] up (12)
i=1
where
Uy — Aalfg (13)

If the inverse of the system matrix exists, the inverse observed in Equation (12) can
by expanded by a convergent series. Thus by applying the Neumann series expansion,
Equation (12) can be expressed as

Z(_l)k [AOIZAifiw)] ug (14)

')
k=0

u(f)

where the first three terms of the Neumann series expansion are given by

u(f) = I—Aoleigi(e)Jr(Aolei@(Q)) — .| (15)

By applying suitable truncations to the Karhunen-Loeve expansion and the order of the
Neumann series expansion, a closed form expression for the response vector can be ob-
tained. One of the main limitations associated with the Neumann expansion method is
that the coefficient of variation associated with the stochastic system must not exceed
20%. Furthermore, the spectral radius of the result of Ay' >°°°  A,&(0) must be smaller
than 1 to ensure the convergence of the Neumann series expansion.

6
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4. Neumann Enriched Polynomial Chaos Expansion

4.1. Partitioning the stochastic space

The exponentially increasing cost is one of the main limitations associated with the
PCE method. As a result, the values of M and p must be kept relatively low in or-
der for the PCE method to be computationally feasible. This is especially true if the
number of degrees of freedom is large. However, by limiting the value of either M or p,
valuable information concerning the stochastic properties of the structural system is lost.
Therefore, this section aims to suggest a new hybrid method which enriches a low-ordered
PCE representation with a Neumann expansion. The crux of the proposed method is to
propagate a limited number of random variables through a low-ordered PCE method be-
fore propagating the remaining random variables by a Neumann expansion. The limited
number of random variables propagated through the PCE would contribute towards the
principal variability of the system. The remaining random variables would in turn enrich
the response vector. We initially consider the stochastic finite element representation of
a systems’ stiffness matrix

A() =Ag+ > &(O)A, (16)

In this instance Ay € RV*N represents a deterministic, positive definite, symmetric ma-
trix. A; € RV*N are general symmetric matrices for i = 1,2,..., M which contribute
towards the stochastic nature of the stiffness matrix and ;(0) corresponds to a set of
random variables for + = 1,2,..., M. The key is to partition the random variables into
two sets

X {&:(0)}, =1, M (17)
Hence x(0) and y(#) are vectors of dimensions M; and M, such that M; + My, = M.
Our intention is to construct a polynomial chaos with the vector x(6), and then enriching
our solution by performing a Neumann expansion with the vector y(#). Our formulation
exploits the fact that x(#) and y(6) are statistically independent random vectors. By
utilising the sets x() and y(#), the system matrix can be further decomposed as

A(f)=Aq+ Zl zi(0)A; + iyj(Q)Bj =A,0)+ lei(G)A,- (18)
where y
A, (0) = Ao+ > y;(0)B; (19)

is effectively the unvarying contribution seen while considering the PCE with respect to
the random variables x; (which occupy the set x(#)). In order to partition the stochastic
space in a rational manner, the response of the system when utilising Equation (3) may
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be considered. We initially consider the response of (3) in the following form

u(f) = |Aog + Z Az‘fi(e)] fo

(20)

M —1
= |I+A;") Aigi(e)] A,
u

L i=1

0

where ug corresponds to the response of the underlying deterministic system. By applying
a first-order expansion method, one has

u(f) ~ [1 —Aj! Z A,-gi(e)] ug (21)

The first-order perturbation is only used to determine the importance of the random
components. It is not used to obtain the statistics of the response quantity. Subtracting
the response of the underlying deterministic system results in

u(f) —uy = — [Agl Z Aigi(e)] up (22)

By applying a sensitivity analysis with respect to the random variables &;, it is apparent
that
0

9&;

where aag corresponds to taking the partial derivative with respect to the random variables.

Recall that the vector ug is the response vector of the underlying deterministic system.

This is not affected by uncertainty in the model. Therefore, the sensitivity of the stochastic

response with respect to the i-th random variable &; is characterised by the matrix A;'A;

only. Several matrix norm can be used to explicitly quantify this sensitivity. We use the
Frobenius norm and define a scalar parameter

(u(0) ~ o) = — [Ag* A ug (23)

o= |45, @

where ||e]|,. denotes the Frobenius norm. The scalars «; are referred to as the sensitivity
norm. They are subsequently normalised, such that
Q

- ~ 25
. S (25)

This naturally implies that Zf\il v; = 1. The resulting scalars, ~;, are referred to as
the relative importance factors of the random components. By considering these relative
importance factors, the following inequality can be utilised to partition the stochastic
space

¥ > h (26)

8
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where the value of h is to be appropriately chosen. For the values of i which satisfy
the above inequality, the corresponding random variables are to occupy the set x(6). If
accuracy is of importance, the value of h should be kept low in order for a larger number
of the principal random components to be incorporated within the PCE propagation.
However if computational speed is of most importance, the value of h should be kept high
to incorporate the vast majority of the random variables within the Neumann enrichment.

4.2. An enriched polynomial chaos expansion of the stochastic space
Subsequently to partitioning the stochastic space, it is possible to express the response
vector of a stochastic system in the following form

u(6) =) Hi(x(8))u(y(9)) (27)

where Hy(£(0)) are polynomial chaoses and uy(y(f)) are vectors that need to be deter-
mined. The polynomial chaoses are a function of the set x(¢), whilst the vectors uy are
a function of the set y(#). The number of terms arising in the summation is defined by

(M 45— 1)
HZ%W (28)

Equation (27) captures the essential idea proposed in this study. By allowing the deter-
ministic PCE coefficients to be random, it reduces the ‘burden’ on the polynomial chaos
expansion. The coefficient vectors ug(y(#)) can be obtained through the following set of
PiN x PN equations

U,0) =F (29)

Mo
Ao+ Z y;(0)B,;
7=1

where Ay, ]§j and F are obtained by utilising the underlying PCE approach [2]. The
coefficient vectors can then be obtained by noting that

U, (0) = {uy, (0), 1, (0), -+ ,uy, ()} (30)

> T2 ? TYPy
However, solving such a large system for every realisation is computationally very expen-
sive. As a result a Neumann series expansion can be utilised to compute the enriched
coefficient vectors. In essence, we aim to compute the following
-1

U,(0) = F (31)

Mo
Ao + Z y;(0)B;
j=1

By employing a Neumann series expansion it is possible to convey U,(f) as follows

U, (0) I—Kaliw)ﬁﬁ(Kaliw)ﬁj) o @

(e}

— |1+ (-Agliij)ﬁj) U, (33)

k=1

9
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The series arising in Equation (33) can be truncated, thus allowing a low-order Neumann
series expansion to approximate the vector U, (f)

U,(0) ~ I+ Z (—]&0_1 iyj(e)ﬁj> U, (34)

The number of terms retained in the series, P, corresponds to the order of the Neumann
series expansion. The number of terms retained can either be pre-defined in order to
comply with computational cost, or a convergence criteria can be set

(& =mB,)”
=t (A S 008,

(35)

The validity of the inequality must be checked for when additional terms are retained in
the series. However, it should be noted that in order for the Neumann series to converge,

k
the absolute eigenvalues of ( A, Z] Ly (0 )Bj) vV k=1,..., P, must be less than

one. Through this novel partioning approach, we expect that including the additional
M, terms substantially enriches the response vectors, and in turn, better captures the
stochastic properties of a randomly parametrised systeni.

The proposed expression for the PCE coefficients gives an alternative interpretation
to their meaning in the context of stochastic response analysis. While employing only a
PCE approach, the set of random variables y(¢) in Equation (17) can be considered as
‘ignored’ or ‘missing’ variables as the PCE is with x(#) only. From the expression of the
response in Equation (34), therefore, we have

U,(0) ~ [T+ ZQ: (_K; iyj(0)§j> Uy (36)

~
the contribution of ignored random variables

The consequence of considering the ‘additional” set of random variables y(6) is that the
coefficients of the classical PCE just need to be ‘corrected’ as above, leaving the rest of
the PCE method unaltered. Therefore, this seemingly minor modification to the classical
PCE coefficients allows us to include the effect of possibly large numbers of random
variables which would otherwise be ignored or would be computationally too expensive
to be included in the original analysis. One can view this as a simple post processing of
a classical PCE analysis. This way of viewing Equation (36) can have a profound impact
on the applicability of the PCE analysis in general. For example, one can obtain the
PCE coefficients using a non-intrusive or other efficient approaches and then apply the
corrections as per Equation (36) to include the effect of other random variables which
were not originally included in the PCE analysis for computational efficiency. Therefore,

the proposed scheme presents a balanced approach in comparison to when considering
10
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either the PCE or Neumann series expansion approaches individually. For the remainder
of this study, the proposed Neumann Enriched Polynomial Chaos Expansion method is
given the acronym NEPC.

5. Response statistics

Based upon the methods described in Sections 2 and 4, this section discusses the first
two moments of the response vectors. The moments of the PCE method are initially
considered.

5.1. The polynomial chaos expansion: First moment

Due to the deterministic nature of the coefficient vectors, the first moment, which
corresponds to the mean of the PCE method can be easily expressed as

E{upc()} = ZE{Hk 0))} o, = uy, (37)

where E{x} corresponds to the expected value.

5.2. The polynomial chaos expansion: Second moment

In a similar manner, the deterministic nature of the vectors uy, can again be utilised

to define the variance of the response vector. The expected value of upc(f)ub,(0) is
defined as

P P

E {upc(0)upc(9)} = > Y E{H(x(6))H;(x(6))} uo,ug (38)

k=1 j=1

Due to the orthogonal nature of the polynomial chaoses, it can be deduced that Hy(x(6))H
0 when k # j, thus the above expression can be simplified significantly

E {upc(O)ufe(6)} = 3 E{H}(x(6))} wo,uf, (39)

Thus the variance of the ith element of the response vector can be expressed as

2o, = E{upc(0)upc(0)}, — E{upc(6)}; (40)

g

where E {upc(0)upe(0)} is the ith diagonal element of the matrix E {upc(0)ube () } and

E {upc(0)}’ is the squared value of the ith element of the vector E{upc(6)}. If needs
be, the standard deviation of the ith element of the response vector can be computed by

noting that oy, = /07, o, where 0y, is the standard deviation of the ith element.

11
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5.8. The Neumann enriched polynomial chaos method: First moment

Due to the stochastic nature of both the scalars and the coefficient vectors associated
with the NEPC method, the first moment of the response vector of the NEPC method
takes the following form

E{ungpc(0)} =Y E{Hy(x(60))uy, (0)} (41)

However, due to the polynomial chaoses and the stochastic vectors being independent from
one another, the expected value operator can been treated as a multiplicative function,
hence

E{uyppro(9) ZE{Hk 0))} E {uy, (0)} (42)

where the expected values of the stochastic u,, (¢) vectors can be computed from

E{U,(0)) = E [u, () ul,(0)...u, (6)]"

_ [E{U;(Q)} E{ul (0)} .. .E{ugpl(e)}r

For notational convenience, the matrix U, () can be redefined

I+Z krk ] Uy (44)

k
where 'y (6) = (A S i—195(0) j) . Thus by taking the expected value of the matrix

U, (), it is apparent that the variable I';(#) contains all the stochastic properties of the
matrix

5 1U,0)) {

I+Z ’Tk] }

I+ i(—l)’“E {rk(e)}] U,

k=1

(45)

The number of terms retained in the summation, P, corresponds to the order of the
Neumann expansion. We initially consider the cases for when P, = 1 and P, = 2. In
order to gain an expression for the mean of the response vector when a first order Neuamnn
expansion is utilised, the expected value of I';(#) needs to be explored

E{T1(0)} { Zyﬁ }

Jji=1

(46)

~ &S E {0} B,
v
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Due to y;(f) being a Gaussian random variable, it can be deduced that E{y; (0)} =
0. Thus by combining the result of Equation (46) with Equation (45), it is apparent
that performing a NEPC with a first order Neumann expansion does not enrich the
approximation of the mean of the response vector in comparison to the PCE method. In
a similar manner, the expected value of the mean of the approximated response vector is
explored when P, = 2. It has already been ascertained that E {I'y(¢)} = 0, therefore the
expected value of I'y(#) is considered

EA{T2(0)} = (A Zyg )

(47)

Mo Mo

= A, S E{y,(0)y.(0)) B, A, By,

J1=172=1

It can be noted that E{y;, (6)y;,(6)} = 0 when j; # jo, thus the expression for E{I'5(0)}
can be simplified to

B0} = A, S E {120)) B,A)'B, (a9

Therefore, it is apparent that the second term arising in the summation contained within
Equation (45) enriches the mean of the response vector. In turn, the induced error is
reduced. To gain a general overview of the nature of the terms arising in the summation
when P, > 2, the general case for I',. is considered

)

(49)

M, M2 M,
~_1 ~ el ~ 1~
Ay > D D B{y (0)y(0) .y, (0)} B A, By, Ay B,
J1=1j2=1 Jr=1
By combining the above expression with the following relationship [44]
0 if r is odd.
E{y =< 50
{yj} {O'T(T — DI if r is even. (50)

it is apparent that E {I",(#)} = 0 when the value of r is odd. Therefore, in order to enrich
the mean of the response vector, considering a Neumann Expansion with a odd valued
order (7) is needless. Considering an order of r—1 would be sufficient and computationally
less expensive. However, by incorporating the properties of the Hermite polynomials, it
can be deduced that the first moment of the NEPC method can be expressed as

E{unipo(0)} = E{uy, (0)} (51)

where E {u,, (0)} is contained within E{U,(#)} as shown by Equation (43).
13
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5.4. The Neumann enriched polynomial chaos method: Second moment

To analyse the nature of the variance of the response vector, the expected value of
unprc(0)ul ppo(0) must be examined

E {unero(0)uispc(0)} = 30 S E {Hu(x(0) By (<0, OO} (52

k=1 j=1

By utilising the orthogonal nature of the polynomial chaoses and the multiplicative nature
of the expected value operator, Equation (52) can be expressed as

E {UNEPC Jujppc(d } ZE {HQ ))} E {uyk(9)u;rk(9)} (53)

The result of E { H}(x(0))} produces a scalar value for all values of k., whilst E {u,, (6)u] (6)}
produces an N x N matrix V k, where N corresponds to the number of degrees of freedom

associated with the given structure. In order to assess the nature of E {u,, (f)u] (6)}, we
initially consider the expected value of Uy(G)Ug(ﬁ)

E{U,0)U,(0)} = L+ i(—l)’”%@)] (54)

ko=1

I+Z 1)k, () ]UOUOT

k1=1

k
where ' (0) = (A Z L y;(0 )B ) is defined for notational convenience. By defining
Py = UyU}, Equation (54) can be expressed as

E{Uy(e)Uj(e)}ZE P0+<§:(—1)klr,ﬂ( > I+Z k21, (6 ]

=Po+ | Y (~D'E{TL(0)}| Po+Po Y (-1)'E{T}(6)}
+ 2 D (CDRTRE T (0Pl (6) )

(55)

Similarly to the discussion held for the mean of the response vector, we initially consider
the cases when P, = 1 and P, = 2. When P, = 1, it is apparent that E{I';} = 0 from
Equation (46). By also noting that E {y;, (0)y,,(0)} = 0 when j; # jo, it is apparent that

E {F1( POF (‘9) (A Z yj1 j1> Py <A Z ykl B/ﬁ)

J1=1 k1=1

(56)

~-T
A,

M
> E{y(0)} B,PoB,
j=1

14
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Thus resulting in

T

E{U,(0)UT(0)} =Py + A, ZQE{yg(e)}ﬁjpoﬁf A, (57)

The E {u,, ()ul (6)} matrices V k can be obtained from the result of Equation (57).
The matrices E {u,, (/)ul (6)} form diagonal block matrices contained within the matrix
E{U,(#)U,(6)}. When a second order Neumann expansion approach is utilised, the
expectation of the matrix Uy(Q)UZ(Q) takes the following form

E{U,(0)U](0)} = Po+E{T2(0)} Po + PR {T5(0)} + > E{Tu(O)PLL ()}  (58)

where
E{2(0)} = A, Y_E{y}()} B,A; B, (59)
E{T7(0)} = Z}ﬂﬁw%éﬁ%@ﬁ‘ﬁfw (60)
and

E {T,(6)PolL (6)) = E{ (&5 SOS S (0008, A, 11%) Py

J1=1j2=1

My M o T
<A0 Z ZZ/k;l(e)yk2(9>Bk1A0 Bkz) }

k1=1 ka=1

~T ~-T~T

Mo
~_1 ~ ~—1~
j=1

My Ms
~ o~ T T<T
ZZE{yf(H)yi(G)} {BjAo B;PoB, A, B+

j=1 k=1

~-T

~T~ T~ ~T ~-T~T
k I

B/A, B,P,B,A, B, +B,A, B,P,B, A, B,

(61)

The expression for E{I'y(¢)PoI'7 (6)} is given by Equation (56). It can be intuitively
deduced that E{I';(8)} = E{FlT(G)} = E{Fl(Q)Pofg(e)} = E{FQ(H)POI‘{(Q)} = 0.
Similarly to the previous case, the E {uyk(é’)uglc (0)} matrices V k can be obtained from
the diagonal block matrices contained within the matrix E {Uy(G)UZ(G)}. Contrary to
the mean of the response vector, it is apparent that considering a Neumann Expansion
with an odd valued order enriches the variance of the response vector. This can be

15
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adjudged by re-examining the generic case stated in Equation (55). When considering
the last term arising in kale kpjzl(—l)k1+k2E {Tk, (0)PoI'T ()}, it can be deduced that

My Mo Mo Mo Mo Mo

E{Tn@OT50)} =4, |33 .3 35 0 E{y,(0)y,.00)...

jlzl jg:l jp2:1 k1=1ko=1 kp2:1

~ ~—1~
Yin, Ok ()i, (0) -y, (0)} By Ag By, (62)
~—-1~ ~T ~-T ~T ~—T~T | ~-T

A.O BjPQBkPQAO "'BkQAO Bkl A.O

When y;, (0) = y;,(0) = ... = yjp, (0) = yr, (0) = yr,(0) = yi,,, (0) it is evident that
E {45 (0)972(0) - - Yin, (00, 01 (0) - -y, ()} = E {7 (0) } = > (2P — 1)1 (63)

Therefore it is apparent that 2512:1 kpjzl(—l)lierE {Tk, (0)PoI'] ()} # 0 irrespective
of P; being an odd or an even number. In turn, it can be deduced that that the value
of E{ungpc()ulzpc(0)} will be enriched for every value of P, as P, is increased. As
with the case of the PCE method, the variance of the ith element of the response vector
is defined as

Orore, = E {unprc(O)ukpre(0)}, = E{unsrc(9)}; (64)
where E {uyppc(0)uk ppe(0) }Z is the ith diagonal clement of the matrix E {uygpc(0)uk zpe(0) }

and E {ungpc(h)}; is the squared value of the ith element of the vector E{uyzpc(0)}.
The standard deviation of the ith element of the response vector can be computed by

UUNEPCi = \/ 0—12141\75'}307; (65)

where 0y p, 15 the standard deviation of the ith element.

6. Numerical examples

Thus far a potentially promising method which enriches the coefficient vectors that are
associated with the PCE method has been suggested. In this section the proposed method
is applied to analyse the bending of twelve Euler-Bernoulli cantilever beams which have
stochastic properties and a flow through a stochastic porous media. The results obtained
when utilising the proposed scheme are compared with the responses obtained when using
the classical PCE method and the benchmark DMCS method. Thus the following three
methods are employed.

e Direct Monte Carlo Simulation [DMCS] with full set of random variables:
u(d) = A'(0)f

e Classical Polynomial Chaos Expansion [PC] with random variables in partition x
only:
u(6) ~ 3L He(x(6))uo,

e Neumann Enriched Polynomial Chaos Expansion [NEPC] with full set of random
variables:
P
u(0) = 32y Hi(x(0))uy, (0) "
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6.1. Euler-Bernoulli cantilever beams

All the beams under consideration are 1.00 m in length (L), and have a rectangular
cross-section of width 0.03 m and height 0.003 m. Figure 1 illustrates the configuration.
Through the use of the stochastic finite element method, the beams have been discretised
into 100 elements. Due to the beams being clamped, the displacement and rotational
degrees of freedom at the clamped ends are zero. A deterministic vertical static point
load of magnitude fy = 1.00 N is exerted at the free tip of each beam.

£, =1.00 Nl

4

L=1.00m

Fig. 1: The configuration of the stochastically parametrised cantilever beams.

The deterministic values of the Young’s modulus and the second moment of area for each
beam are Fy = 2 x 10" Nm™? and [, = 1.25 x 10 ' m* respectively. The chosen value
for the Young’s modulus corresponds to steel. The bending rigidity of the beams, E1, is
assumed to be a stationary Gaussian random field of the following form

El(z,0) = Ely(1 + a(x,0)) (66)

where E'ly denotes the mean value of the bending rigidity. The function a(x,6) repre-
sents the stationary Gaussian random field which has a mean of zero. The notation x
corresponds to the coordinate direction along the length of the beam. The autocovariance
kernel of the random field is given by

Oy, 9) = e~ (m—e2D/n o)

where g is the correlation length. Three different values for the correlation length are
considered: p = {L, L/25, L/50}. Varying the value of u results in models which require
a different number of terms retained in the Karhunen-Loeve expansion. Having a small
correlation length requires the retention of more terms. Consequently, the size of the
linear system associated with the PC and NEPC methods will be extremely large due to
the result of Equation (7). In turn, each value of correlation length has been modelled for
four different input values of the standard deviation: o, = {0.05,0.10,0.15,0.20}. This
allows for the methods to be compared under different levels of uncertainty. This results
in twelve different configurations.

The number of terms retained in each of the configurations’ Karhunen-Loeve expan-
sions have been computed by analysing the decaying nature of the eigenvalues that arise
in Equation (2). The terms which satisfy the following inequality have been retained

Vi, (68)
"7
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where v, is the value of the largest eigenvalue and v; the value of the jth eigenvalue. The
tolerance value €5 is to be selected appropriately. For the given numerical example, €5 has
been set to 0.10. Thus for the twelve configuration, the following number of terms have
been retained in the Karhunen-Loeve expansions

Standard deviation

| 0.05 010 0.15 0.20
L 4 4 4 4
L/25 | 36 36 36 36
L/50 | 71 71 71 71

Correlation
Length

Table 3: The number of terms retained in the Karhunen-Loeve expansions whilst em-
ploying the NEPC methods.

For the virtue of comparing, the value of M; (the number of random variables asso-
ciated with the polynomial chaos contribution) has been fixed to 2 for all configurations.
As a result, the value of M, (the number of additional random terms associated with the
enriching method) equates to M — 2, where the value of M corresponds to the number of
terms retained in the respective Karhunen-Loeve expansions. 10,000 Monte Carlo simula-
tion samples are considered for each configuration. It has been verified that using 10, 000
samples gives a satisfactory convergence for the first two moments of the quantities of
interest.

Figures 2, 3 and 4 illustrate the normalised probability density function of the de-
flection at the tip of the beam for all twelve configurations. The normalisation factor
corresponds to gOEﬁz where fjy is the magnitude of the static point force which is placed at
the tip of the beam. All the methods have initially been implemented with second order
polynomial chaoses. The PC method has incorporated M; terms from the Karhunen-
Loeve expansions, thus the enriched NEPC methods incorporate an additional M; terms.
If the PC method were to incorporate the same number of random variables as the NEPC
methods, the size of the linear system which would require solving could become in-
feasibly large. When considering the cases which have a correlation length of L/50, a
525,600 x 525,600 system would be required to be solved if M terms were to be retained
in the PC method. In our cases, both the PC and NEPC methods require a 1,200 x 1,200
sized system to be solved only once. For the NEPC methods, three different values for the
order of the Neumann series expansion have been considered. NEPC1 has incorporated
a first order expansion, whilst NEPC2 and NEPC3 have incorporated a second and third
order expansion respectively. These have been presented in order to illustrate the effect
of varying the order of the Neumann series expansion.

When analysing Figure 2 it is apparent that all the reduced methods produce proba-
bility density functions which mimics the benchmark approach when o, = 0.05. However
when o, = 0.20, a clear discrepancy is visible between the reduced methods and the
benchmark solution. Since the enriching methods do not visibly improve upon the PC
method, it can be concluded that the majority of the induced error seen in the normalised
probability density function of the deflection at the tip of the beam can be contributed
to the order of the polynomial chaoses. When the correlation length is reduced, a clear

improvement can be seen when the NEPC methods are implemented in comparison to
18
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Fig. 2: The probability density function of the vertical displacement at the tip of the
beam. The response is shown for all values of the standard deviation of the bending
rigidity o, = {0.05,0.10,0.15,0.20} when the correlation length is set at u = L.
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Fig. 3: The probability density function of the vertical displacement at the tip of the
beam. The response is shown for all values of the standard deviation of the bending
rigidity o, = {0.05,0.10,0.15,0.20} when the correlation length is set at u = L/25.
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Fig. 4: The probability density function of the vertical displacement at the tip of the
beam. The response is shown for all values of the standard deviation of the bending
rigidity o, = {0.05, 0.10, 0.15, 0.20} when the correlation length is set at u = L/50.

the PC method. This is most apparent when p, = L/50. The NEPC1 method visually
appears to improve the second moment, whilst the NEPC2 method visually appears to
improve both the first and second moments of the normalised deflection at the tip of the
beam. This coincides with the discussion held in Section 5.

To analyse the error arising from the mean of the normalised response vector, the
normalised approximate L? relative error is considered. This enables the error arising
from the mean of the normalised response vector to be characterised by a single value.
The approximate L? relative error of the mean of the normalised response vector is defined

19
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as

éz’é _ ||[1prcs — Mol (69)
| pricsl| ez

where 09 denotes the mean of the response vector obtained by using the benchmark
DMCS method and p), the mean of the response vector obtained by a comparable
method. The normalised approximate L? relative error has been explored for different
orders of the Neumann expansion and for different orders of the polynomial chaoses. All
twelve cantilever beams cases have been depicted in Figures 5, 6 and 7. Six different values
for the orders of the Neumann series expansion are given along the x-axis. The case of
when the order equates to zero corresponds to the classical PC method. Three different
values for the order of the polynomial chaoses are explored. “OPC = 17 corresponds to
the first order, “OPC = 2”7 to the second and “OPC = 3” corresponds to the third.
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(a) o =0.05 (b) 0 =0.10 (c) o =0.15 (d) o =0.20

Fig. 5: The normalised approximate L? relative error of the mean of the response vector
for all values of the standard deviation of the bending rigidity o, = {0.05,0.10,0.15,0.20}.
The normalised approximate L? relative error of the mean of the response vector has been
depicted for different orders of the polynomial chaos expansion (P; = {1,2,3}) and for
different orders of the Neumann expansion (P, = {0,1,2,3,4,5}) when the correlation
length is set at u = L.
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Fig. 6: The normalised approximate L? relative error of the mean of the response vector
for all values of the standard deviation of the bending rigidity o, = {0.05,0.10,0.15,0.20}.
The normalised approximate L? relative error of the mean of the response vector has been
depicted for different orders of the polynomial chaos expansion (P, = {1,2,3}) and for
different orders of the Neumann expansion (P, = {0,1,2,3,4,5}) when the correlation
length is set at pu = L/25.
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Fig. 7: The normalised approximate L? relative error of the mean of the response vector
for all values of the standard deviation of the bending rigidity o, = {0.05,0.10,0.15,0.20}.
The normalised approximate L? relative error of the mean of the response vector has been
depicted for different orders of the polynomial chaos expansion (P; = {1,2,3}) and for
different orders of the Neumann expansion (P, = {0,1,2,3,4,5}) when the correlation
length is set at pu = L/50.

It is apparent that the effect of increasing the order of the polynomial chaos diminishes
as both the correlation length decreases and as the value of the standard deviation in-
creases. Thus if the correlation length is sufficiently small a low-ordered polynomial chaos
expansion is sufficient in conjunction with the proposed enrichment method. The step
wise nature of the normalised approximate L? relative error consolidates that using an
odd valued order for the Neumann series expansion is purposeless. Using an order that
corresponds to the previous even value returns an equivalent value for the normalised
approximate L? relative error of the mean.

In a similar manner the normalised approximate L? relative error of the standard
deviation of the normalised response vector is also considered

O . lleprrcs(0) — ocn(0)]] 12
= = oo @)l o

where o py;cs denotes the standard deviation of the response vector obtained by using the
benchmark DMCS method and o ¢, denotes the standard deviation of the response vector
obtained by a comparable method. The error measurement has again been explored for
different orders of the Neumann and the polynomial chaoses. The normalised approximate
L? relative error of the standard deviation is depicted in Figures 8, 9 and 10. Similarly to
the case of the normalised approximate L? relative error of the mean, six different values
for the order of the Neumann series expansion are given along the x-axis. Three different
orders for the polynomial chaoses are explored. “OPC = 1" again corresponds to the first
order, “OPC = 2” to the second and “OPC = 3” corresponds to the third.

It can be observed that increasing the order of the polynomial chaos expansion pro-
duces a lower quantity of error. However, as the order of the Neumann series expansion
increases the reduction in the induced error saturates. The lower the order of the poly-
nomial chaos expansion and the smaller the value of o, the earlier the saturation. This
is most apparent when the correlation length is set to L. In a similar manner to the
normalised approximate L? relative error of the mean, the higher the value of o, the

smaller the difference between the induced errors when altering the order of the poly-
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Fig. 8: The normalised approximate L? relative error of the standard deviation of the
response vector for all values of the standard deviation of the bending rigidity o, =
{0.05,0.10,0.15,0.20}. The normalised approximate L? relative error of the standard
deviation of the response vector has been depicted for different orders of the polynomial
chaos expansion (P; = {1,2,3}) and for different orders of the Neumann expansion (P, =
{0,1,2,3,4,5}) when the correlation length is set at y = L.
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Fig. 9: The normalised approximate L? relative error of the standard deviation of the
response vector for all values of the standard deviation of the bending rigidity o, =
{0.05,0.10,0.15,0.20}. The normalised approximate L? relative error of the standard
deviation of the response vector has been depicted for different orders of the polynomial
chaos expansion (P, = {1,2,3}) and for different orders of the Neumann expansion (P, =
{0,1,2,3,4,5}) when the correlation length is set at u = L/25.

nomial chaoses. As expected, a step-wise pattern is not apparent in the normalised
approximate L? relative error of the standard deviation. However due to the step-wise
nature of the normalised approximate L? relative error of the mean, care must be taken
in order to choose the optimal order for the Neumann series expansion.
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Fig. 10: The normalised approximate L? relative error of the standard deviation of
the response vector for all values of the standard deviation of the bending rigidity o, =
{0.05,0.10,0.15,0.20}. The normalised approximate L? relative error of the standard
deviation of the response vector has been depicted for different orders of the polynomial
chaos expansion (P, = {1,2,3}) and for different orders of the Neumann expansion (P, =
{0,1,2,3,4,5}) when the correlation length is set at u = L/50.

6.2. Flow through a stochastic porous media

In order to scrutinise the proposed method in a higher spatial domain, a two-dimensional
domain is examined. This is undertaken by considering a low through a two-dimensional
porous media, where it is assumed that the porous media contains stochastic proper-
ties. The two-dimensional domain under consideration is a rectangle of length L = 0.50
m and height H = 0.30 m. This is illustrated by Figure 11. Through the use of the
stochastic finite element method, the rectangular domain is represented by an uniform
30 x 18 mesh containing 540 square elements. The centre of the domain is represented
by the coordinate (0.00, 0.00). Our measurement of interest is head of the system. This
quantity is subsequently computed at each of the nodes of the domain. The head, h, is
fixed to 0.00 cm along z = —0.25 m, y = [0.08,0.15] m. This ensures that the system
reaches a steady state. A constant flux ¢ = 1.00 cm s™! is applied along z = [0.12,0.15] m,
y = —0.15 m. The flux is zero along the remaining boundary i.e. ¢ = 0.00 cm s~!. To take

g=0cms™!

77777777

1

qg=0cms~

Fig. 11: The configuration of the stochastically parametrised flow system.

account of the stochasticity of the system, a Gaussian hydraulic conductivity (k) which

has a two-dimensional autocovariance kernel is considered. To obtain the two-dimensional
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autocovariance kernel, two one-dimensional exponential autocovariance kernels are consid-
ered. The first one-dimensional exponential autocovariance kernel depends on x and has
a correlation length of % whilst the the second depends on y and has a correlation length
of % To obtain the two-dimensional autocovariance kernel, the product of both the one-
dimensional exponential autocovariance kernels are taken. In both the one-dimensional
exponential autocovariance kernels, 8 terms have been retained in the Karhunen-Loeve
expansions. This results in the full Karhunen-Loeve expansion containing 64 terms in
addition to the deterministic matrix Ay. The mean of the hydraulic conductivity is set
as k = 1 cm s71. The value of the input standard deviation is set as : o, = {0.15}.
For all the considered methods 5,000 samples have been observed. 5,000 samples ensures
the convergence of the first two moments of interest. For the PC method 4 terms from
the Karhunen-Loeve expansions have been considered. Thus the enriched NEPC method
incorporates an additional 60 terms from the Karhunen-Loeve expansions. Both methods
have utilised second order polynomial chaoses. If the PC method were to incorporate 64
terms from the Karhunen-Loeve expansions, a linear system of size 1,252,680 x 1, 252, 680
would require solving.

Figure 12 illustrates the mean of the head for the four methods under examination.
To further examine the effectiveness of the approximation methods in capturing the mean
DMCS method, the percentage error of the mean of the head is illustrated in Figure 13.
The percentage error of the mean is represented by

lmDMCS — mCOMP|
mDMCS

where mDMCS corresponds to the mean of the DMCS method and mCOMP corresponds
to the mean of a comparable method. It is apparent from Figure 13 that both the PC and
NEPC1 methods induce the same quantity of error. When a second order Neumann ex-
pansion is utilised within the Neumann Enriched Polynomial Chaos method i.e. NEPC2,
a visible reduction in the error is noticeable. In a similar manner, the standard deviation

g = 100 X

(71)

(a) DMCS (b) PC (c) NEPCI1 (d) NEPC2

Fig. 12: Contour plots of the mean of the head (cm) obtained by using the DMCS, PC,
NEPC1 and NEPC2 methods. The x and y axis are respectively the positions in the x
direction with 2 € [—0.25,0.25] and y in the direction with y € [—0.15,0.15].

of the head is illustrated in Figure 14 for all four methods. Contrary to the mean of the
head, a visible and evident difference is seen between the approximation methods. To
further illustrate the differences, the percentage error of the standard deviation, &g, is

considered
|sDMCS — sCOMP|

94 sDMCS

Eop = 100 x (72)
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(a) PC (b) NEPC1 | (c) NEPC2

Fig. 13: Contour plots of the percentage error arising in the mean of the head (cm) when
utilising the PC, NEPC1 and NEPC2 methods in comparison to the DMCS method. The
x and y axis are respectively the positions in the x direction with € [-0.25,0.25] and y
in the direction with y € [—0.15,0.15].

where sSDMCS corresponds to the standard deviation of the DMCS method and sCOMP
corresponds to the standard deviation of a comparable method. The contour plots of
the percentage error are depicted in Figure 15. By increasing the order of the Neumann
expansion method contained within the Neumann Enriched Polynomial Chaos method
the percentage error visibly decreases. This is in agreement with the discussion held in
Section 5. The probability density function of the head of the system is illustrated for

(a) DMCS (b) PC (c) NEPCI1 (d) NEPC2

Fig. 14: Contour plots of the standard deviation of the head (cm) obtained by using the
DMCS, PC, NEPC1 and NEPC2 methods. The x and y axis are respectively the positions
in the x direction with = € [—0.25,0.25] and y in the direction with y € [-0.15,0.15].

25%

(a) PC (b) NEPC1 (c) NEPC2

Fig. 15: Contour plots of the percentage error arising in the standard deviation of the
head (cm) when utilising the PC, NEPC1 and NEPC2 methods in comparison to the
DMCS method. The x and y axis are respectively the positions in the x direction with
x € [—0.25,0.25] and y in the direction with y € [—0.15,0.15].
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two different locations in the spatial domain in Figure 16. These locations posses the
following coordinates: (0.00,0.00) and (—0.15,0.08). The probability density functions
further enhances the accuracy improvement obtained following the implementation of the
Neumann Enriched Polynomial Chaos method. Figure 16 also illustrates the mean and
standard deviation of the head along all nodes of the structure when y = 0.00 m.

012 014 7
_ —DMmcs _ —DMcs *Eg‘cs
5 PC §0.12 A PC =
go1 A NEPCL g /1 - NEPC1 (5
5 7 -=- NEPC2 S 01 ! —-NEPC2] s
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> Z‘0.06 2 54
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8 8 ] 53
o002 j \ £o02 2R
\ s &
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(a) Probability (b) Probability (d) Standard
density function at  density function at (c&)ﬂi\i{lean if S%eohriad deviation of the head
(0.00, 0.00) (—0.15,0.08) 8Y=5 along y = 0.00 m

Fig. 16: The probability density function of the head (cm) computed by the DMCS, PC,
NEPC1 and NEPC2 methods at (0.00,0.00) and (—0.15,0.08) as well as the mean and
standard deviation of the head along y = 0.00 m.

7. Summary and conclusion

This paper brings together two very different uncertainty propagation approaches,
namely the polynomial chaos and Neumann expansion. These methods have been his-
torically viewed as incompatible as polynomial chaos is a ‘global representation’ while
the Neumann expansion is a ‘local representation’. A novel polynomial chaos enrichment
method has been proposed to approximate the response of stochastically parametrised
systems. The proposed method is initiated by partitioning the random variables asso-
ciated with the stochastic finite element method into two sets. Based on a first-order
sensitivity analysis, relative importance factors have been introduced to rationally par-
tition the stochastic space into two sets. A low-ordered polynomial chaos expansion is
executed on the first set whilst the second set is utilised to enrich the deterministic vectors
associated with the polynomial chaos expansion [PCE]. The enrichment is based upon a
Neumann series expansion. The enrichment method results in the following seemingly
minor modification to the unknown vectors associated with the classical PCE method

Py Mo k
U,(0) ~ |1+ Z(-Aglzyj(e)§j> U (73)

~
the contribution of the enrichment method

where the additional contribution associated with the enrichment method is computed

by utilising a Neumann series expansion of order P,. The enrichment method ensures

that a large number of random variables can be utilised in conjunction with the PCE
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framework. Exact closed-form expressions have been developed to obtain the first two
statistical moments of the response vector. The primary advantages of the proposed
method include:

e The ability to tailor computational cost and accuracy by suitably partitioning the
space of random variables, selecting the order of the polynomial chaos and selecting
the order of the Neumann expansion.

e The traditional polynomial chaos approach appears as a special case when the space
of random variables is not partitioned.

e Should a truncated set of variables be used in a polynomial chaos expansion; the
approach provides an explicit quantification of the impact of the ignored random
variables on the response statistics.

The Neumann enriched polynomial chaos method has been applied to analyse the
bending of an Euler-Bernoulli cantilever beam and the head of a flow through a porous
media. The results have been compared with the classical polynomial chaos expansion
method and the direct Monte Carlo method. It is apparent that utilising the enrichment
method can significantly reduce the error in comparison to the PCE method with original
random variables. It has been proven and demonstrated that employing the enrichment
method with a Neumann series of an even valued order is required to ensure a reduction
in the induced error of the first two moments of the response. Further research is needed
to determine the optimal order and the optimal number of random variables associated
with both the polynomial chaos and Neumann series expansions. The case when the basic
input variables appear as nonlinear functions should be considered in future research.
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