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ract

ichment scheme based upon the Neumann expansion method is proposed to augment the deterministic
nt vectors associated with the polynomial chaos expansion method. The proposed approach relies upon
of the random variables into two statistically independent sets. The principal variability of the system is
d by propagating a limited number of random variables through a low-ordered polynomial chaos expansion
. The remaining random variables are propagated by a Neumann expansion method. In turn, the random
s associated with the Neumann expansion method are utilised to enrich the polynomial chaos approach.
ect of this enrichment is explicitly captured in a new augmented definition of the coefficients of the
ial chaos expansion. This approach allows one to consider a larger number of random variables within the

f spectral stochastic finite element analysis in a computationally efficient manner. Closed-form expressions
rst two response moments are provided. The proposed enrichment method is used to analyse two numerical
es: the bending of a cantilever beam and the flow through porous media. Both systems contain distributed
tic properties. The results are compared with those obtained using direct Monte Carlo simulations and
e classical polynomial chaos expansion approach.

Published by Elsevier Ltd.

ds: Polynomial chaos expansion; Neumann expansion; model reduction; uncertainty quantification;
ent

troduction

stem and structural uncertainties may result in considerable differences arising in the
ses of seemingly equivalent systems. Such uncertainties can occur in numerous ways
ing during the manufacturing or assembly processes of a structure, or in an applied
Consequently, methods for quantifying and analysing stochastically parametrised
s have been developed. Through the use of such efficient numerical algorithms,
s that are governed by stochastic partial differential equations can be efficiently
ed.
e to its rigour and efficient manner, the stochastic finite element approach has
idely utilised to model and propagate uncertainty. Through this approach, one or
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distributed parameters can be modelled by random fields. In the context of elliptic
ms, the governing equation can be expressed as

−∇n [a(x, θ)∇nu(x, θ)] = p(x); x in D (1)

he Dirichlet boundary condition u(x, θ) = 0, x on ∂D. The spacial domain under
eration is defined as D ∈ Rd with piecewise Lipschitz boundary ∂D, and d is less
r equal to 3. In the above equation, x is the spatial variable, θ denotes sample space,
s the excitation, u(x, θ) is the response of the system and a(x, θ) is the random field
bing a system parameter. The random field is on a bounded domain on Rd and on
obability space (Θ,F , P ). The differential operator is given by ∇, whilst the value
s problem dependent. To solve the stochastic partial differential equation given in
ion (1), it is necessary to discretise both the response and the random field. The
se field can be discretised by utilising the conventional finite element method, while
ochastic field can be discretised, in our case, through the Karhunen-Loève expansion

a(x, θ) = a0(x) +
∞∑

i=1

√
νiξi(θ)ϕi(x) (2)

above expression a0(x) is the mean function, ξi(θ) are uncorrelated standard Gaus-
andom variables. νi and ϕi(x) correspond to the eigenvalues and eigenfunctions
autocorrelation function of the random field. Substituting the Karhunen-Loève
sion into Equation (1) and truncating the series up to M-th term, the discretised
ion can be expressed as

[
A0 +

M∑

i=1

ξi(θ)Ai

]
u(θ) = f (3)

sponse vector u(θ) may be obtained by directly solving the above equation through
e of a direct Monte Carlo method. However the convergence rate of the method
oriously slow, hence a large number of computationally expensive simulations is
ed. In order to overcome the computational cost, a number of efficient techniques
een proposed to approximate the response of structural systems. One such method
Polynomial Chaos Expansion [PCE]. The PCE method was first discussed byWiener
1938 work [1]. This work utilised both Hermite polynomials and Gaussian random
les to describe a stochastic process. The first application of the PCE method in
ction with the stochastic finite element method was conducted and was entitled the
ral Stochastic Finite Element Method. The first application of the PCE method to
e engineering systems was conducted by Gahnem and Spanons [2], and the proposed
work was entitled the Spectral Stochastic Finite Element Method. Following this,
E method has been widely applied in numerous fields including structural dynamics
heat transfer [5, 6] and fluid dynamics [7, 8]. The method has also been utilised
lyse systems undergoing static loads [9] and dynamic loads in both the time [10]
equency [11, 12] domains. In addition to analysing the responses of stochastically
etrized systems, the PCE method has also been applied to the random eigenvalue
m [13, 14]. In turn, methods which hybridise the perturbation method and the PCE
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een suggested to analyse the random eigenvalue problem [15]. These hybridised
ds have been obtained by utilising a collection of methods including the Rayleigh
nt, the power method and the inverse power method.
e of the main necessities of the PCE method is to determine the deterministic
coefficients. The methods for obtaining these deterministic coefficients can be cat-
ed into two groups, intrusive or non-intrusive methods [16]. The intrusive method
ponds to the method discussed above. This method ensures that the residual of
stic finite element formulation is orthogonal to the basis associated with the PCE
d. Non-intrusive methods are often treated as black box solvers where a number of
es are treated deterministically. Extensive literature have discussed different non-
ive methods. These approaches include projection methods [17, 18], least squares
ximations [19, 20], stochastic collocation methods [21, 22] and efficient sampling
ds such as Latin hypercube or quasi sampling methods [23, 24]. Numerous studies
been conducted to compare different non-intrusive methods [25–28]. In one such
the effect of altering the number of sample points for non-intrusive PCE methods
stematically examined [28]. The work concluded that in order to have an accurate
nt of a stochastic system, the number of sample points is required to be at least
the number of terms in PCE.
e of the main restrictions associated with the PCE is the large computational cost
ated with high dimensional systems. The number of terms associated with the PCE
ses exponentially with the dimension of the stochastically parametrized system. In
to address this issue, sparse representations of the PCE have been suggested [29–
uch methods are achieved by only retaining the dominant basis functions which are
ated with the PCE method. It has also been demonstrated that the convergence of
atistical moments can be very slow for dynamic problems. In order to address this,
hod for accelerating the convergence of the first two statistical moments has been
ted [4]. Furthermore, the PCE is reported to produce erroneous peaks at resonance
ncies [4]. This is of importance as the resonance values have physical interpretation.
comprehensive discussion about the limitations, see [34–36].
e of the most pressing issues associated with the PCE is its vulnerability to the
of dimensionality when the number of stochastic dimensions is large. In numerous
s, the number of stochastic dimensions is often truncated. This can lead to valuable
ation being omitted from the solution. As a result, this work aims to address this
y exploring a hybrid enrichment method. A limited number of hybrid methods have
uggested in conjunction with the PCE. Among the hybrid techniques, the Kriging
d [37] has recently been utilised to produce a new non-intrusive meta-modelling
d [38, 39]. In these studies, a system’s global behaviour is modelled by the PCE, and
cal behaviour by the Kriging method. The Arnoldi-based Krylov subspace technique
as also been used in conjunction with the PCE method [41]. The work applies the
di-based Krylov subspace technique to reduce the size of the governing stochastic
element equation prior to utilising the PCE method. In our proposed method, a
ised Neumann enrichment approach is proposed to enrich the PCE method. This is
ed by initially propagating a limited number of random variables through the PCE
d. The remaining random variables are utilised to enrich the PCE coefficients by
e of a Neumann series expansion.

3

Jo
ur

na
l P

re
-p

ro
of



Pryse & Adhikari / Probabilistic Engineering Mechanics 00 (2021) 1–29 4

Th
chaos
Expan
pressi
metho
provid
sion m
throug
compa
polyn
in Sec

2. Po

Le
tribut
denot
can b

where
is the
order
When
nomia
distrib

u
(j)
i1,...,i

trunca

where
be det

Journal Pre-proof
e paper is structured as follows. An overview of the well-established polynomial
expansion is given in Section 2. In a similar manner, Section 3 outlines the Neumann
sion method. Section 4 introduces the novel enrichment approach. Closed-form ex-
on for both the mean and the variance of the classical polynomial chaos expansion
d and the Neumann enriched polynomial chaos expansion method are discussed and
ed in Section 5. Section 6 utilises the Neumann enriched polynomial chaos expan-
ethod to approximate the response of a Euler-Bernoulli cantilever beam and a flow
h a porous media. Both systems contain stochastic properties. These results are
red with the benchmark direct Monte Carlo simulation approach and the classical
omial chaos method. The major findings and conclusions are consequently drawn
tion 7.

lynomial Chaos Expansion

t ξ(θ) = {ξ1(θ), ξ2(θ), . . . , ξM(θ)} be a set of M independent and identically dis-
ed input random vectors that represent the input uncertainty of a system (here θ
es the sample space). By applying the PCE approach, the stochastic response uj(θ)
e represented with a mean-square convergent series as

uj(θ) = u
(j)
i0
h0 +

∞∑

i1=1

ui1h1(ξi1(θ))

+
∞∑

i1=1

i1∑

i2=1

u
(j)
i1,i2

h1(ξi1(θ), ξi2(θ))

+

∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

u
(j)
i1,i2,i3

h1(ξi1(θ), ξi2(θ), ξi3(θ))

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

i3∑

i4=1

u
(j)
i1,i2,i3,i4

h1(ξi1(θ), ξi2(θ), ξi3(θ), ξi4(θ)) + ...

(4)

u
(j)
i1,...,ip

and u
(j)
i0

are deterministic constants to be determined and hp(ξi1(θ), ..., ξip(θ))
pth order chaos term. The accuracy of the approximation can be controlled by the
of the chaos terms. The higher the order, the more accurate the approximation.
utilising Gaussian random variables the chaos terms correspond to Hermite poly-
l, where the Hermite polynomial are orthogonal with respect to the Gaussian joint
ution function. Due to the response of Equation (3) being a vector, the scalars

p
and u

(j)
i0

can be replaced by the vectors u
(j)
i1,...,ip

∈ RN and u
(j)
i0

∈ RN . After a finite
tion, the polynomial chaos expansion can be written as

u(θ) =

P∑

k=1

Hk(ξ(θ))uk (5)

Hk(ξ(θ)) are the polynomial chaoses and uk are deterministic vectors that need to
ermined. The expression for the polynomial chaoses of order p is given by

Hk(ξ(θ)) = (−1)p
∂p

∂ξi1 . . . ∂ξip
exp− 1

2
ξT

(θ)ξ(θ) (6)
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ugh this work focuses on the Gaussian distribution, other non-Gaussian random
utions can be considered through the use of a Wiener-Askey polynomial chaos ex-
n [42, 43]. This approach provides generalized functional basis where the basis
that orthogonality with respect to the probability density functions is kept. Differ-
pes of Wiener-Askey polynomial chaoses and their corresponding random variables
pports are provided in Table 1. The value of P arising in Equation (5) is deter-

Random input Wiener-Askey chaos Support
Beta Jacobi [a,b]

Gamma Laguerre [0,∞]
Gaussian Hermite (−∞,∞)
Uniform Legendre [a,b]

1: Types of Wiener-Askey polynomial chaoses and their corresponding random
variables

by a basic random variable M and by the order of the PCE (p). In this instance,
responds to the order of the Karhunen-Loève expansion

P =

p∑

j=0

(M + j − 1)!

j!(M − 1)!
=

(
M + p

p

)
(7)

vident that P increases rapidly when either the order of the Karhunen-Loève ex-
n or the order of the Polynomial Chaos expansion is increased. This is illustrated
le 2.

Value of M 2 3 5 10 20 50 100
1st order PC 3 4 6 11 21 51 101
2nd order PC 6 10 21 66 231 1326 5151
3rd order PC 10 20 56 286 1771 23426 176851

Table 2: The value of P when M = {2, 3, 5, 10, 20, 50, 100} and p = {1, 2, 3}

e unknown deterministic vectors uk can be obtained by utilising a Galerkin error
ising approach [2]. This approach is initiated by substituting the approximation for
which is given by Equation (5), into the governing discretised model. The residual
discretised system is subsequently made orthogonal to the space spanned by the

omial chaoses. In turn, this leads to a system of linear equations of size NP ×NP ,
N corresponds to the number of degrees of freedom associated with a structure




Ã1,1 · · · Ã1,NP

Ã2,1 · · · Ã2,NP
...

...
...

ÃNP,1 · · · ÃNP,NP








ũ1

ũ2
...

ũNP





=





f̃1
f̃2
...

f̃NP





(8)

ÃU0 = F (9)
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rrectly arranging the linear equations, it can be deduced that

U0 = {uT
1 ,u

T
2 , · · · ,uT

P}T (10)

f the major drawbacks associated with the PCE approach is the high computa-
cost associated with computing the deterministic vectors uk. As the value of P
ses exponentially with M , this work aims to produce a reduced method which would
orate a limited number of random variables within the polynomial chaos expansion.

umann Expansion Method

llowing the application of the stochastic finite element method, the response vector
an be obtained by inverting the system matrix. However, due to the high compu-
al cost associated with inverting the system matrix, a Neumann expansion can be
d to approximate the inversion. In turn, an approximation for the response vector
e computed. Equation (3) can be expressed as

A0

[
I+A−1

0

∞∑

i=1

Aiξi(θ)

]
u(θ) = f0 (11)

A0 is the deterministic contribution of the system matrix, and I is a N×N identity
. By manipulating the above equation, the response vector can take the following

u(θ) =

[
I+A−1

0

∞∑

i=1

Aiξi(θ)

]−1

u0 (12)

u0 = A−1
0 f0 (13)

inverse of the system matrix exists, the inverse observed in Equation (12) can
panded by a convergent series. Thus by applying the Neumann series expansion,
ion (12) can be expressed as

u(θ) =
∞∑

k=0

(−1)k

[
A−1

0

∞∑

i=1

Aiξi(θ)

]k
u0 (14)

the first three terms of the Neumann series expansion are given by

u(θ) =


I−A−1

0

∞∑

i=1

Aiξi(θ) +

(
A−1

0

∞∑

i=1

Aiξi(θ)

)2

− . . .


u0 (15)

plying suitable truncations to the Karhunen-Loève expansion and the order of the
ann series expansion, a closed form expression for the response vector can be ob-
. One of the main limitations associated with the Neumann expansion method is
he coefficient of variation associated with the stochastic system must not exceed
Furthermore, the spectral radius of the result of A−1

0

∑∞
i=0Aiξi(θ) must be smaller

to ensure the convergence of the Neumann series expansion.
6
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umann Enriched Polynomial Chaos Expansion

artitioning the stochastic space

e exponentially increasing cost is one of the main limitations associated with the
method. As a result, the values of M and p must be kept relatively low in or-
r the PCE method to be computationally feasible. This is especially true if the
er of degrees of freedom is large. However, by limiting the value of either M or p,
le information concerning the stochastic properties of the structural system is lost.
fore, this section aims to suggest a new hybrid method which enriches a low-ordered
representation with a Neumann expansion. The crux of the proposed method is to
gate a limited number of random variables through a low-ordered PCE method be-
ropagating the remaining random variables by a Neumann expansion. The limited
er of random variables propagated through the PCE would contribute towards the
pal variability of the system. The remaining random variables would in turn enrich
sponse vector. We initially consider the stochastic finite element representation of
ems’ stiffness matrix

A(θ) = A0 +
M∑

i=1

ξi(θ)Ai (16)

s instance A0 ∈ RN×N represents a deterministic, positive definite, symmetric ma-
Ai ∈ RN×N are general symmetric matrices for i = 1, 2, . . . ,M which contribute
ds the stochastic nature of the stiffness matrix and ξi(θ) corresponds to a set of
m variables for i = 1, 2, . . . ,M . The key is to partition the random variables into
ts

x(θ) = {ξi(θ)}, i = 1, · · · ,M1

y(θ) = {ξj(θ)}, j = M1 + 1, · · · ,M (17)

x(θ) and y(θ) are vectors of dimensions M1 and M2 such that M1 + M2 = M .
tention is to construct a polynomial chaos with the vector x(θ), and then enriching
lution by performing a Neumann expansion with the vector y(θ). Our formulation
ts the fact that x(θ) and y(θ) are statistically independent random vectors. By
ng the sets x(θ) and y(θ), the system matrix can be further decomposed as

A(θ) = A0 +

M1∑

i=1

xi(θ)Ai +

M2∑

j=1

yj(θ)Bj = Ay(θ) +

M1∑

i=1

xi(θ)Ai (18)

Ay(θ) = A0 +

M2∑

j=1

yj(θ)Bj (19)

ctively the unvarying contribution seen while considering the PCE with respect to
ndom variables xi (which occupy the set x(θ)). In order to partition the stochastic
in a rational manner, the response of the system when utilising Equation (3) may
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sidered. We initially consider the response of (3) in the following form

u(θ) =

[
A0 +

M∑

i=1

Aiξi(θ)

]−1

f0

=

[
I+A−1

0

M∑

i=1

Aiξi(θ)

]−1

A−1
0 f0︸ ︷︷ ︸
u0

(20)

u0 corresponds to the response of the underlying deterministic system. By applying
-order expansion method, one has

u(θ) ≈
[
I−A−1

0

M∑

i=1

Aiξi(θ)

]
u0 (21)

rst-order perturbation is only used to determine the importance of the random
nents. It is not used to obtain the statistics of the response quantity. Subtracting
sponse of the underlying deterministic system results in

u(θ)− u0 = −
[
A−1

0

M∑

i=1

Aiξi(θ)

]
u0 (22)

plying a sensitivity analysis with respect to the random variables ξi, it is apparent

∂

∂ξi
(u(θ)− u0) = −

[
A−1

0 Ai

]
u0 (23)

∂
∂ξi

corresponds to taking the partial derivative with respect to the random variables.
call that the vector u0 is the response vector of the underlying deterministic system.
s not affected by uncertainty in the model. Therefore, the sensitivity of the stochastic
se with respect to the i-th random variable ξi is characterised by the matrix A−1

0 Ai

Several matrix norm can be used to explicitly quantify this sensitivity. We use the
nius norm and define a scalar parameter

αi =
∥∥A−1

0 Ai

∥∥
F

(24)

‖•‖F denotes the Frobenius norm. The scalars αi are referred to as the sensitivity
They are subsequently normalised, such that

γi =
αi∑M
i=1 αi

(25)

naturally implies that
∑M

i=1 γi = 1. The resulting scalars, γi, are referred to as
lative importance factors of the random components. By considering these relative
tance factors, the following inequality can be utilised to partition the stochastic

γi > h (26)
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the value of h is to be appropriately chosen. For the values of i which satisfy
ove inequality, the corresponding random variables are to occupy the set x(θ). If
cy is of importance, the value of h should be kept low in order for a larger number
principal random components to be incorporated within the PCE propagation.
er if computational speed is of most importance, the value of h should be kept high
orporate the vast majority of the random variables within the Neumann enrichment.

n enriched polynomial chaos expansion of the stochastic space

bsequently to partitioning the stochastic space, it is possible to express the response
of a stochastic system in the following form

u(θ) =

P1∑

k=1

Hk(x(θ))uk(y(θ)) (27)

Hk(ξ(θ)) are polynomial chaoses and uk(y(θ)) are vectors that need to be deter-
. The polynomial chaoses are a function of the set x(θ), whilst the vectors uk are
tion of the set y(θ). The number of terms arising in the summation is defined by

P1 =

p∑

j=0

(M1 + j − 1)!

j!(M1 − 1)!
(28)

ion (27) captures the essential idea proposed in this study. By allowing the deter-
ic PCE coefficients to be random, it reduces the ‘burden’ on the polynomial chaos
sion. The coefficient vectors uk(y(θ)) can be obtained through the following set of
P1N equations [

Ã0 +

M2∑

j=1

yj(θ)B̃j

]
Uy(θ) = F (29)

Ã0, B̃j and F are obtained by utilising the underlying PCE approach [2]. The
ient vectors can then be obtained by noting that

Uy(θ) = {uT
y1(θ),u

T
y2(θ), · · · ,uT

yP1
(θ)}T (30)

er, solving such a large system for every realisation is computationally very expen-
As a result a Neumann series expansion can be utilised to compute the enriched
ient vectors. In essence, we aim to compute the following

Uy(θ) =

[
Ã0 +

M2∑

j=1

yj(θ)B̃j

]−1

F (31)

ploying a Neumann series expansion it is possible to convey Uy(θ) as follows

Uy(θ) =


I− Ã

−1

0

M2∑

j=1

yj(θ)B̃j +

(
Ã

−1

0

M2∑

j=1

yj(θ)B̃j

)2

− · · ·


U0 (32)

=


I+

∞∑

k=1

(
−Ã

−1

0

M2∑

j=1

yj(θ)B̃j

)k

U0 (33)
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eries arising in Equation (33) can be truncated, thus allowing a low-order Neumann
expansion to approximate the vector Uy(θ)

Uy(θ) ≈


I+

P2∑

k=1

(
−Ã

−1

0

M2∑

j=1

yj(θ)B̃j

)k

U0 (34)

umber of terms retained in the series, P2, corresponds to the order of the Neumann
expansion. The number of terms retained can either be pre-defined in order to
y with computational cost, or a convergence criteria can be set

∥∥∥∥
(
−Ã

−1

0

∑M2

j=1 yj(θ)B̃j

)P2

∥∥∥∥
∥∥∥∥
∑P2

k=1

(
−Ã

−1

0

∑M2

j=1 yj(θ)B̃j

)k∥∥∥∥
≤ ε (35)

alidity of the inequality must be checked for when additional terms are retained in
ries. However, it should be noted that in order for the Neumann series to converge,

solute eigenvalues of
(
−Ã

−1

0

∑M2

j=1 yj(θ)B̃j

)k
∀ k = 1, . . . , P2 must be less than

Through this novel partioning approach, we expect that including the additional
rms substantially enriches the response vectors, and in turn, better captures the
stic properties of a randomly parametrised system.
e proposed expression for the PCE coefficients gives an alternative interpretation
ir meaning in the context of stochastic response analysis. While employing only a
approach, the set of random variables y(θ) in Equation (17) can be considered as
ed’ or ‘missing’ variables as the PCE is with x(θ) only. From the expression of the
se in Equation (34), therefore, we have

Uy(θ) ≈



I+

P2∑

k=1

(
−Ã

−1

0

M2∑

j=1

yj(θ)B̃j

)k

︸ ︷︷ ︸
the contribution of ignored random variables



U0 (36)

onsequence of considering the ‘additional’ set of random variables y(θ) is that the
ients of the classical PCE just need to be ‘corrected’ as above, leaving the rest of
E method unaltered. Therefore, this seemingly minor modification to the classical

coefficients allows us to include the effect of possibly large numbers of random
les which would otherwise be ignored or would be computationally too expensive
included in the original analysis. One can view this as a simple post processing of
sical PCE analysis. This way of viewing Equation (36) can have a profound impact
e applicability of the PCE analysis in general. For example, one can obtain the
coefficients using a non-intrusive or other efficient approaches and then apply the
tions as per Equation (36) to include the effect of other random variables which
ot originally included in the PCE analysis for computational efficiency. Therefore,
oposed scheme presents a balanced approach in comparison to when considering
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the PCE or Neumann series expansion approaches individually. For the remainder
s study, the proposed Neumann Enriched Polynomial Chaos Expansion method is
the acronym NEPC.

sponse statistics

sed upon the methods described in Sections 2 and 4, this section discusses the first
oments of the response vectors. The moments of the PCE method are initially
ered.

he polynomial chaos expansion: First moment

e to the deterministic nature of the coefficient vectors, the first moment, which
ponds to the mean of the PCE method can be easily expressed as

E {uPC(θ)} =

P1∑

k=1

E {Hk(x(θ))}u0k = u01 (37)

E{∗} corresponds to the expected value.

he polynomial chaos expansion: Second moment

a similar manner, the deterministic nature of the vectors u0k can again be utilised
ne the variance of the response vector. The expected value of uPC(θ)u

T
PC(θ) is

d as

E
{
uPC(θ)u

T
PC(θ)

}
=

P1∑

k=1

P1∑

j=1

E {Hk(x(θ))Hj(x(θ))}u0ku
T
0j (38)

the orthogonal nature of the polynomial chaoses, it can be deduced thatHk(x(θ))Hj

n k 6= j, thus the above expression can be simplified significantly

E
{
uPC(θ)u

T
PC(θ)

}
=

P1∑

k=1

E
{
H2

k(x(θ))
}
u0ku

T
0k

(39)

the variance of the ith element of the response vector can be expressed as

σ2
uPCi

= E
{
uPC(θ)u

T
PC(θ)

}
i
− E {uPC(θ)}2i (40)

E
{
uPC(θ)u

T
PC(θ)

}
i
is the ith diagonal element of the matrix E

{
uPC(θ)u

T
PC(θ)

}
and

C(θ)}2i is the squared value of the ith element of the vector E {uPC(θ)}. If needs
e standard deviation of the ith element of the response vector can be computed by

that σuPCi
=
√

σ2
uPCi

where σuPCi
is the standard deviation of the ith element.
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he Neumann enriched polynomial chaos method: First moment

e to the stochastic nature of both the scalars and the coefficient vectors associated
he NEPC method, the first moment of the response vector of the NEPC method
the following form

E {uNEPC(θ)} =

P1∑

k=1

E {Hk(x(θ))uyk(θ)} (41)

er, due to the polynomial chaoses and the stochastic vectors being independent from
other, the expected value operator can been treated as a multiplicative function,

E {uNEPC(θ)} =

P1∑

k=1

E {Hk(x(θ))}E {uyk(θ)} (42)

the expected values of the stochastic uyk(θ) vectors can be computed from

E {Uy(θ)} = E
[
uT
y1(θ) u

T
y2(θ) . . .u

T
yP1

(θ)
]T

=
[
E
{
uT
y1
(θ)
}

E
{
uT
y2
(θ)
}
. . .E

{
uT
yP1

(θ)
}]T (43)

tational convenience, the matrix Uy(θ) can be redefined

Uy(θ) =

[
I+

P2∑

k=1

(−1)kΓk(θ)

]
U0 (44)

Γk(θ) =
(
Ã

−1

0

∑M2

j=1 yj(θ)B̃j

)k
. Thus by taking the expected value of the matrix

, it is apparent that the variable Γk(θ) contains all the stochastic properties of the

E {Uy(θ)} = E

{[
I+

P2∑

k=1

(−1)kΓk(θ)

]
U0

}

=

[
I+

P2∑

k=1

(−1)kE {Γk(θ)}
]
U0

(45)

umber of terms retained in the summation, P2, corresponds to the order of the
ann expansion. We initially consider the cases for when P2 = 1 and P2 = 2. In
to gain an expression for the mean of the response vector when a first order Neuamnn
sion is utilised, the expected value of Γ1(θ) needs to be explored

E {Γ1(θ)} = E

{
Ã

−1

0

M2∑

j1=1

yj1(θ)B̃j1

}

= Ã
−1

0

M2∑

j1=1

E {yj1(θ)} B̃j1

(46)
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o yj(θ) being a Gaussian random variable, it can be deduced that E {yj1(θ)} =
us by combining the result of Equation (46) with Equation (45), it is apparent
erforming a NEPC with a first order Neumann expansion does not enrich the
ximation of the mean of the response vector in comparison to the PCE method. In
lar manner, the expected value of the mean of the approximated response vector is
ed when P2 = 2. It has already been ascertained that E {Γ1(θ)} = 0, therefore the
ted value of Γ2(θ) is considered

E {Γ2(θ)} = E





(
Ã

−1

0

M2∑

j=1

yj(θ)B̃j

)2




= Ã
−1

0

M2∑

j1=1

M2∑

j2=1

E {yj1(θ)yj2(θ)} B̃j1Ã
−1

0 B̃j2

(47)

be noted that E {yj1(θ)yj2(θ)} = 0 when j1 6= j2, thus the expression for E {Γ2(θ)}
e simplified to

E {Γ2(θ)} = Ã
−1

0

M2∑

j=1

E
{
y2j (θ)

}
B̃jÃ

−1

0 B̃j (48)

fore, it is apparent that the second term arising in the summation contained within
ion (45) enriches the mean of the response vector. In turn, the induced error is
d. To gain a general overview of the nature of the terms arising in the summation
P2 > 2, the general case for Γr is considered

Γr(θ)} = E

{(
Ã

−1

0

M2∑

j=1

yj(θ)B̃j

)r}

= Ã
−1

0

M2∑

j1=1

M2∑

j2=1

. . .

M2∑

jr=1

E {yj1(θ)yj2(θ) . . . yjr(θ)} B̃j1Ã
−1

0 B̃j2 . . . Ã
−1

0 B̃jr

(49)

mbining the above expression with the following relationship [44]

E
{
yrj
}
=

{
0, if r is odd.

σr(r − 1)!!, if r is even.
(50)

pparent that E {Γr(θ)} = 0 when the value of r is odd. Therefore, in order to enrich
ean of the response vector, considering a Neumann Expansion with a odd valued
(r) is needless. Considering an order of r−1 would be sufficient and computationally
pensive. However, by incorporating the properties of the Hermite polynomials, it
e deduced that the first moment of the NEPC method can be expressed as

E {uNEPC(θ)} = E {uy1(θ)} (51)

E {uy1(θ)} is contained within E {Uy(θ)} as shown by Equation (43).
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he Neumann enriched polynomial chaos method: Second moment

analyse the nature of the variance of the response vector, the expected value of

C(θ)u
T
NEPC(θ) must be examined

E
{
uNEPC(θ)u

T
NEPC(θ)

}
=

P1∑

k=1

P1∑

j=1

E
{
Hk(x(θ))Hj(x(θ))uyk(θ)u

T
yj
(θ)
}

(52)

ilising the orthogonal nature of the polynomial chaoses and the multiplicative nature
expected value operator, Equation (52) can be expressed as

E
{
uNEPC(θ)u

T
NEPC(θ)

}
=

P1∑

k=1

E
{
H2

k(x(θ))
}
E
{
uyk(θ)u

T
yk
(θ)
}

(53)

sult of E {H2
k(x(θ))} produces a scalar value for all values of k, whilst E

{
uyk(θ)u

T
yk
(θ)

ces an N×N matrix ∀ k, where N corresponds to the number of degrees of freedom
ated with the given structure. In order to assess the nature of E

{
uyk(θ)u

T
yk
(θ)
}
, we

ly consider the expected value of Uy(θ)U
T
y (θ)

{
Uy(θ)U

T
y (θ)

}
=

[
I+

P2∑

k1=1

(−1)k1Γk1(θ)

]
U0U

T
0

[
I+

P2∑

k2=1

(−1)k2Γk2(θ)

]T
(54)

Γk(θ) =
(
Ã

−1

0

∑M2

j=1 yj(θ)B̃j

)k
is defined for notational convenience. By defining

U0U
T
0 , Equation (54) can be expressed as

Uy(θ)U
T
y (θ)

}
= E





[
P0 +

(
P2∑

k1=1

(−1)k1Γk1(θ)

)
P0

][
I+

P2∑

k2=1

(−1)k2Γk2(θ)

]T


= P0 +

[
P2∑

k=1

(−1)kE {Γk(θ)}
]
P0 +P0

P2∑

k=1

(−1)kE
{
ΓT
k (θ)

}

+
P2∑

k1=1

P2∑

k2=1

(−1)k1+k2E
{
Γk1(θ)P0Γ

T
k2
(θ)
}

(55)

rly to the discussion held for the mean of the response vector, we initially consider
ses when P2 = 1 and P2 = 2. When P2 = 1, it is apparent that E {Γ1} = 0 from
ion (46). By also noting that E {yj1(θ)yj2(θ)} = 0 when j1 6= j2, it is apparent that

{
Γ1(θ)P0Γ

T
1 (θ)

}
= E





(
Ã

−1

0

M2∑

j1=1

yj1(θ)B̃j1

)
P0

(
Ã

−1

0

M2∑

k1=1

yk1(θ)B̃k1

)T




= Ã
−1

0

[
M2∑

j=1

E
{
y2j (θ)

}
B̃jP0B̃

T

j

]
Ã

−T

0

(56)
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resulting in

E
{
Uy(θ)U

T
y (θ)

}
= P0 + Ã

−1

0

[
M2∑

j=1

E
{
y2j (θ)

}
B̃jP0B̃

T

j

]
Ã

−T

0 (57)

{
uyk(θ)u

T
yk
(θ)
}

matrices ∀ k can be obtained from the result of Equation (57).

atrices E
{
uyk(θ)u

T
yk
(θ)
}
form diagonal block matrices contained within the matrix

(θ)UT
y (θ)

}
. When a second order Neumann expansion approach is utilised, the

tation of the matrix Uy(θ)U
T
y (θ) takes the following form

Uy(θ)U
T
y (θ)

}
= P0 + E {Γ2(θ)}P0 +P0E

{
ΓT
2 (θ)

}
+

2∑

k=1

E
{
Γk(θ)P0Γ

T
k (θ)

}
(58)

E {Γ2(θ)} = Ã
−1

0

M2∑

j=1

E
{
y2j (θ)

}
B̃jÃ

−1

0 B̃j (59)

E
{
ΓT
2 (θ)

}
=

[
M2∑

j=1

E
{
y2j (θ)

}
B̃

T

j Ã
−T

0 B̃
T

j

]
Ã

−T

0 (60)

Γ2(θ)P0Γ
T
2 (θ)

}
= E

{(
Ã

−1

0

M2∑

j1=1

M2∑

j2=1

yj1(θ)yj2(θ)B̃j1Ã
−1

0 B̃j2

)
P0

(
Ã

−1

0

M2∑

k1=1

M2∑

k2=1

yk1(θ)yk2(θ)B̃k1Ã
−1

0 B̃k2

)T}

= Ã
−1

0

[
M2∑

j=1

E
{
y4j (θ)

}
B̃jÃ

−1

0 B̃jP0B̃
T

j Ã
−T

0 B̃
T

j +

M2∑

j=1

M2∑

k=1

E
{
y2j (θ)y

2
k(θ)

} [
B̃jÃ

−1

0 B̃jP0B̃
T

k Ã
−T

0 B̃
T

k+

B̃jÃ
−1

0 B̃kP0B̃
T

k Ã
−T

0 B̃
T

j + B̃jÃ
−1

0 B̃kP0B̃
T

j Ã
−T

0 B̃
T

k

]]
Ã

−T

0

(61)

xpression for E
{
Γ1(θ)P0Γ

T
1 (θ)

}
is given by Equation (56). It can be intuitively

ed that E {Γ1(θ)} = E
{
ΓT
1 (θ)

}
= E

{
Γ1(θ)P0Γ

T
2 (θ)

}
= E

{
Γ2(θ)P0Γ

T
1 (θ)

}
= 0.

rly to the previous case, the E
{
uyk(θ)u

T
yk
(θ)
}
matrices ∀ k can be obtained from

agonal block matrices contained within the matrix E
{
Uy(θ)U

T
y (θ)

}
. Contrary to

ean of the response vector, it is apparent that considering a Neumann Expansion
an odd valued order enriches the variance of the response vector. This can be
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ged by re-examining the generic case stated in Equation (55). When considering
st term arising in

∑P2

k1=1

∑P2

k2=1(−1)k1+k2E
{
Γk1(θ)P0Γ

T
k2
(θ)
}
, it can be deduced that

{
ΓP2(θ)Γ

T
P2
(θ)
}
= Ã

−1

0

[
M2∑

j1=1

M2∑

j2=1

. . .

M2∑

jP2
=1

M2∑

k1=1

M2∑

k2=1

. . .

M2∑

kP2
=1

E
{
yj1(θ)yj2(θ) . . .

yjP2
(θ)yk1(θ)yk2(θ) . . . ykP2

(θ)
}
B̃j1Ã

−1

0 B̃j2 . . .

Ã
−1

0 B̃jP2
B̃

T

kP2
Ã

−T

0 . . . B̃
T

k2
Ã

−T

0 B̃
T

k1

]
Ã

−T

0

(62)

yj1(θ) = yj2(θ) = . . . = yjP2
(θ) = yk1(θ) = yk2(θ) = ykP2

(θ) it is evident that

j1(θ)yj2(θ) . . . yjP2
(θ)yk1(θ)yk2(θ) . . . ykP2

(θ)
}
= E

{
y2P2(θ)

}
= σ2P2(2P2 − 1)!! (63)

fore it is apparent that
∑P2

k1=1

∑P2

k2=1(−1)k1+k2E
{
Γk1(θ)P0Γ

T
k2
(θ)
}
6= 0 irrespective

being an odd or an even number. In turn, it can be deduced that that the value
uNEPC(θ)u

T
NEPC(θ)

}
will be enriched for every value of P2 as P2 is increased. As

he case of the PCE method, the variance of the ith element of the response vector
ned as

σ2
uNEPCi

= E
{
uNEPC(θ)u

T
NEPC(θ)

}
i
− E {uNEPC(θ)}2i (64)

E
{
uNEPC(θ)u

T
NEPC(θ)

}
i
is the ith diagonal element of the matrix E

{
uNEPC(θ)u

T
NEP

{uNEPC(θ)}2i is the squared value of the ith element of the vector E {uNEPC(θ)}.
tandard deviation of the ith element of the response vector can be computed by

σuNEPCi
=
√

σ2
uNEPCi

(65)

σuNEPCi
is the standard deviation of the ith element.

merical examples

us far a potentially promising method which enriches the coefficient vectors that are
ated with the PCE method has been suggested. In this section the proposed method
lied to analyse the bending of twelve Euler-Bernoulli cantilever beams which have
stic properties and a flow through a stochastic porous media. The results obtained
utilising the proposed scheme are compared with the responses obtained when using
assical PCE method and the benchmark DMCS method. Thus the following three
ds are employed.

Direct Monte Carlo Simulation [DMCS] with full set of random variables:
u(θ) = A−1(θ)f0

Classical Polynomial Chaos Expansion [PC] with random variables in partition x
only:
u(θ) ≈∑P1

k=1Hk(x(θ))u0k

Neumann Enriched Polynomial Chaos Expansion [NEPC] with full set of random
variables:
u(θ) ≈∑P1

k=1Hk(x(θ))uyk(θ)
16
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uler-Bernoulli cantilever beams

l the beams under consideration are 1.00 m in length (L), and have a rectangular
section of width 0.03 m and height 0.003 m. Figure 1 illustrates the configuration.
gh the use of the stochastic finite element method, the beams have been discretised
00 elements. Due to the beams being clamped, the displacement and rotational
s of freedom at the clamped ends are zero. A deterministic vertical static point
f magnitude f0 = 1.00 N is exerted at the free tip of each beam.

ig. 1: The configuration of the stochastically parametrised cantilever beams.

eterministic values of the Young’s modulus and the second moment of area for each
are E0 = 2 × 1011 Nm−2 and I0 = 1.25 × 10−10 m4 respectively. The chosen value
e Young’s modulus corresponds to steel. The bending rigidity of the beams, EI, is
ed to be a stationary Gaussian random field of the following form

EI(x, θ) = EI0(1 + a(x, θ)) (66)

EI0 denotes the mean value of the bending rigidity. The function a(x, θ) repre-
the stationary Gaussian random field which has a mean of zero. The notation x
ponds to the coordinate direction along the length of the beam. The autocovariance
of the random field is given by

C(x1, x2) = e−(|x1−x2|)/µ (67)

µ is the correlation length. Three different values for the correlation length are
ered: µ = {L, L/25, L/50}. Varying the value of µ results in models which require
rent number of terms retained in the Karhunen-Loève expansion. Having a small
ation length requires the retention of more terms. Consequently, the size of the
system associated with the PC and NEPC methods will be extremely large due to
sult of Equation (7). In turn, each value of correlation length has been modelled for
ifferent input values of the standard deviation: σa = {0.05, 0.10, 0.15, 0.20}. This
for the methods to be compared under different levels of uncertainty. This results
lve different configurations.
e number of terms retained in each of the configurations’ Karhunen-Loève expan-
have been computed by analysing the decaying nature of the eigenvalues that arise
ation (2). The terms which satisfy the following inequality have been retained

νj
ν1

≥ ε2 (68)
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ν1 is the value of the largest eigenvalue and νj the value of the jth eigenvalue. The
nce value ε2 is to be selected appropriately. For the given numerical example, ε2 has
et to 0.10. Thus for the twelve configuration, the following number of terms have
etained in the Karhunen-Loève expansions

Standard deviation
0.05 0.10 0.15 0.20

Correlation
Length

L 4 4 4 4
L/25 36 36 36 36
L/50 71 71 71 71

3: The number of terms retained in the Karhunen-Loève expansions whilst em-
g the NEPC methods.

r the virtue of comparing, the value of M1 (the number of random variables asso-
with the polynomial chaos contribution) has been fixed to 2 for all configurations.
esult, the value of M2 (the number of additional random terms associated with the
ing method) equates to M − 2, where the value of M corresponds to the number of
retained in the respective Karhunen-Loève expansions. 10, 000 Monte Carlo simula-
amples are considered for each configuration. It has been verified that using 10, 000
es gives a satisfactory convergence for the first two moments of the quantities of
st.
gures 2, 3 and 4 illustrate the normalised probability density function of the de-
n at the tip of the beam for all twelve configurations. The normalisation factor
ponds to f0L3

3EI0
where f0 is the magnitude of the static point force which is placed at

of the beam. All the methods have initially been implemented with second order
omial chaoses. The PC method has incorporated M1 terms from the Karhunen-
expansions, thus the enriched NEPC methods incorporate an additional M2 terms.
PC method were to incorporate the same number of random variables as the NEPC
ds, the size of the linear system which would require solving could become in-
ly large. When considering the cases which have a correlation length of L/50, a
00× 525, 600 system would be required to be solved if M terms were to be retained
PC method. In our cases, both the PC and NEPC methods require a 1, 200×1, 200
ystem to be solved only once. For the NEPC methods, three different values for the
of the Neumann series expansion have been considered. NEPC1 has incorporated
order expansion, whilst NEPC2 and NEPC3 have incorporated a second and third
expansion respectively. These have been presented in order to illustrate the effect
ying the order of the Neumann series expansion.
hen analysing Figure 2 it is apparent that all the reduced methods produce proba-
density functions which mimics the benchmark approach when σa = 0.05. However
σa = 0.20, a clear discrepancy is visible between the reduced methods and the
mark solution. Since the enriching methods do not visibly improve upon the PC
d, it can be concluded that the majority of the induced error seen in the normalised
bility density function of the deflection at the tip of the beam can be contributed
order of the polynomial chaoses. When the correlation length is reduced, a clear
vement can be seen when the NEPC methods are implemented in comparison to
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: The probability density function of the vertical displacement at the tip of the
The response is shown for all values of the standard deviation of the bending

y σa = {0.05, 0.10, 0.15, 0.20} when the correlation length is set at µ = L/50.

C method. This is most apparent when µa = L/50. The NEPC1 method visually
rs to improve the second moment, whilst the NEPC2 method visually appears to
ve both the first and second moments of the normalised deflection at the tip of the
This coincides with the discussion held in Section 5.
analyse the error arising from the mean of the normalised response vector, the
lised approximate L2 relative error is considered. This enables the error arising
the mean of the normalised response vector to be characterised by a single value.
pproximate L2 relative error of the mean of the normalised response vector is defined
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ε̂
µ
L2 =

||µDMCS − µCM ||L2

||µDMCS||L2

(69)

µDMCS denotes the mean of the response vector obtained by using the benchmark
S method and µCM the mean of the response vector obtained by a comparable
d. The normalised approximate L2 relative error has been explored for different
of the Neumann expansion and for different orders of the polynomial chaoses. All
cantilever beams cases have been depicted in Figures 5, 6 and 7. Six different values
e orders of the Neumann series expansion are given along the x-axis. The case of
the order equates to zero corresponds to the classical PC method. Three different
for the order of the polynomial chaoses are explored. “OPC = 1” corresponds to
st order, “OPC = 2” to the second and “OPC = 3” corresponds to the third.
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: The normalised approximate L2 relative error of the mean of the response vector
values of the standard deviation of the bending rigidity σa = {0.05, 0.10, 0.15, 0.20}.
ormalised approximate L2 relative error of the mean of the response vector has been
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is set at µ = L.
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.

is apparent that the effect of increasing the order of the polynomial chaos diminishes
h the correlation length decreases and as the value of the standard deviation in-
s. Thus if the correlation length is sufficiently small a low-ordered polynomial chaos
sion is sufficient in conjunction with the proposed enrichment method. The step
ature of the normalised approximate L2 relative error consolidates that using an
alued order for the Neumann series expansion is purposeless. Using an order that
ponds to the previous even value returns an equivalent value for the normalised
ximate L2 relative error of the mean.
a similar manner the normalised approximate L2 relative error of the standard
ion of the normalised response vector is also considered

ε̂σL2(θ) =
||σDMCS(θ)− σCM(θ)||L2

||σDMCS(θ)||L2

(70)

σDMCS denotes the standard deviation of the response vector obtained by using the
mark DMCS method and σCM denotes the standard deviation of the response vector
ed by a comparable method. The error measurement has again been explored for
nt orders of the Neumann and the polynomial chaoses. The normalised approximate
ative error of the standard deviation is depicted in Figures 8, 9 and 10. Similarly to
se of the normalised approximate L2 relative error of the mean, six different values
e order of the Neumann series expansion are given along the x-axis. Three different
for the polynomial chaoses are explored. “OPC = 1” again corresponds to the first
“OPC = 2” to the second and “OPC = 3” corresponds to the third.
can be observed that increasing the order of the polynomial chaos expansion pro-
a lower quantity of error. However, as the order of the Neumann series expansion
ses the reduction in the induced error saturates. The lower the order of the poly-
l chaos expansion and the smaller the value of σa the earlier the saturation. This
st apparent when the correlation length is set to L. In a similar manner to the
lised approximate L2 relative error of the mean, the higher the value of σa the
r the difference between the induced errors when altering the order of the poly-

21

Jo
ur

na
l P

re
-p

ro
of



Pryse & Adhikari / Probabilistic Engineering Mechanics 00 (2021) 1–29 22

0

N
or

m
al

is
ed

 L
2
 e

rr
or

of
 th

e 
st

an
da

rd
 d

ev
ia

tio
n

10-6

10-4

10-2

100

(a

Fig. 8
respon
{0.05,
deviat
chaos
{0, 1,

0

N
or

m
al

is
ed

 L
2
 e

rr
or

of
 th

e 
st

an
da

rd
 d

ev
ia

tio
n

10-6

10-4

10-2

100

(a

Fig. 9
respon
{0.05,
deviat
chaos
{0, 1,

nomia
appro
nature
in ord

Journal Pre-proof
Order of the Neumann Expansion
1 2 3 4 5

OPC = 1
OPC = 2
OPC = 3

) σ = 0.05

Order of the Neumann Expansion
0 1 2 3 4 5

N
or

m
al

is
ed

 L
2
 e

rr
or

of
 th

e 
st

an
da

rd
 d

ev
ia

tio
n

10-6

10-4

10-2

100

OPC = 1
OPC = 2
OPC = 3

(b) σ = 0.10

Order of the Neumann Expansion
0 1 2 3 4 5

N
or

m
al

is
ed

 L
2
 e

rr
or

of
 th

e 
st

an
da

rd
 d

ev
ia

tio
n

10-6

10-4

10-2

100

OPC = 1
OPC = 2
OPC = 3

(c) σ = 0.15

Order of the Neumann Expansion
0 1 2 3 4 5

N
or

m
al

is
ed

 L
2
 e

rr
or

of
 th

e 
st

an
da

rd
 d

ev
ia

tio
n

10-6

10-4

10-2

100

OPC = 1
OPC = 2
OPC = 3

(d) σ = 0.20

: The normalised approximate L2 relative error of the standard deviation of the
se vector for all values of the standard deviation of the bending rigidity σa =
0.10, 0.15, 0.20}. The normalised approximate L2 relative error of the standard
ion of the response vector has been depicted for different orders of the polynomial
expansion (P1 = {1, 2, 3}) and for different orders of the Neumann expansion (P2 =
2, 3, 4, 5}) when the correlation length is set at µ = L.
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: The normalised approximate L2 relative error of the standard deviation of the
se vector for all values of the standard deviation of the bending rigidity σa =
0.10, 0.15, 0.20}. The normalised approximate L2 relative error of the standard
ion of the response vector has been depicted for different orders of the polynomial
expansion (P1 = {1, 2, 3}) and for different orders of the Neumann expansion (P2 =
2, 3, 4, 5}) when the correlation length is set at µ = L/25.

.

l chaoses. As expected, a step-wise pattern is not apparent in the normalised
ximate L2 relative error of the standard deviation. However due to the step-wise
of the normalised approximate L2 relative error of the mean, care must be taken

er to choose the optimal order for the Neumann series expansion.
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10: The normalised approximate L2 relative error of the standard deviation of
sponse vector for all values of the standard deviation of the bending rigidity σa =
0.10, 0.15, 0.20}. The normalised approximate L2 relative error of the standard
ion of the response vector has been depicted for different orders of the polynomial
expansion (P1 = {1, 2, 3}) and for different orders of the Neumann expansion (P2 =
2, 3, 4, 5}) when the correlation length is set at µ = L/50.

low through a stochastic porous media

order to scrutinise the proposed method in a higher spatial domain, a two-dimensiona
n is examined. This is undertaken by considering a flow through a two-dimensional
s media, where it is assumed that the porous media contains stochastic proper-
he two-dimensional domain under consideration is a rectangle of length L = 0.50
height H = 0.30 m. This is illustrated by Figure 11. Through the use of the

stic finite element method, the rectangular domain is represented by an uniform
8 mesh containing 540 square elements. The centre of the domain is represented
coordinate (0.00, 0.00). Our measurement of interest is head of the system. This

ity is subsequently computed at each of the nodes of the domain. The head, h, is
to 0.00 cm along x = −0.25 m, y = [0.08, 0.15] m. This ensures that the system
s a steady state. A constant flux q = 1.00 cm s−1 is applied along x = [0.12, 0.15] m,
0.15 m. The flux is zero along the remaining boundary i.e. q = 0.00 cm s−1. To take

Fig. 11: The configuration of the stochastically parametrised flow system.

nt of the stochasticity of the system, a Gaussian hydraulic conductivity (k) which
two-dimensional autocovariance kernel is considered. To obtain the two-dimensional
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ovariance kernel, two one-dimensional exponential autocovariance kernels are consid-
The first one-dimensional exponential autocovariance kernel depends on x and has
elation length of 3L

2
whilst the the second depends on y and has a correlation length

To obtain the two-dimensional autocovariance kernel, the product of both the one-
sional exponential autocovariance kernels are taken. In both the one-dimensional
ential autocovariance kernels, 8 terms have been retained in the Karhunen-Loève
sions. This results in the full Karhunen-Loève expansion containing 64 terms in
on to the deterministic matrix A0. The mean of the hydraulic conductivity is set
1 cm s−1. The value of the input standard deviation is set as : σa = {0.15}.

l the considered methods 5, 000 samples have been observed. 5, 000 samples ensures
nvergence of the first two moments of interest. For the PC method 4 terms from
arhunen-Loève expansions have been considered. Thus the enriched NEPC method
orates an additional 60 terms from the Karhunen-Loève expansions. Both methods
tilised second order polynomial chaoses. If the PC method were to incorporate 64
from the Karhunen-Loève expansions, a linear system of size 1, 252, 680×1, 252, 680
require solving.
gure 12 illustrates the mean of the head for the four methods under examination.
ther examine the effectiveness of the approximation methods in capturing the mean
S method, the percentage error of the mean of the head is illustrated in Figure 13.
ercentage error of the mean is represented by

ε̄% = 100× |mDMCS−mCOMP|
mDMCS

(71)

mDMCS corresponds to the mean of the DMCS method and mCOMP corresponds
mean of a comparable method. It is apparent from Figure 13 that both the PC and
1 methods induce the same quantity of error. When a second order Neumann ex-
n is utilised within the Neumann Enriched Polynomial Chaos method i.e. NEPC2,
le reduction in the error is noticeable. In a similar manner, the standard deviation
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2: Contour plots of the mean of the head (cm) obtained by using the DMCS, PC,
1 and NEPC2 methods. The x and y axis are respectively the positions in the x
ion with x ∈ [−0.25, 0.25] and y in the direction with y ∈ [−0.15, 0.15].

head is illustrated in Figure 14 for all four methods. Contrary to the mean of the
a visible and evident difference is seen between the approximation methods. To
r illustrate the differences, the percentage error of the standard deviation, ε̃%, is
ered

ε̃% = 100× |sDMCS− sCOMP|
sDMCS

(72)
24

Jo
ur

na
l P

re
-p

ro
of



Pryse & Adhikari / Probabilistic Engineering Mechanics 00 (2021) 1–29 25

Fig. 1
utilisi
x and
in the

where
corres
the pe
expan
the pe
Sectio

(

Fig. 1
DMC
in the

Fig. 1
head
DMC
x ∈ [−

Journal Pre-proof
  0%

0.5%

  1%

1.5%

(a) PC

  0%

0.5%

  1%

1.5%

(b) NEPC1

  0%

0.5%

  1%

1.5%

(c) NEPC2

3: Contour plots of the percentage error arising in the mean of the head (cm) when
ng the PC, NEPC1 and NEPC2 methods in comparison to the DMCS method. The
y axis are respectively the positions in the x direction with x ∈ [−0.25, 0.25] and y
direction with y ∈ [−0.15, 0.15].

sDMCS corresponds to the standard deviation of the DMCS method and sCOMP
ponds to the standard deviation of a comparable method. The contour plots of
rcentage error are depicted in Figure 15. By increasing the order of the Neumann
sion method contained within the Neumann Enriched Polynomial Chaos method
rcentage error visibly decreases. This is in agreement with the discussion held in
n 5. The probability density function of the head of the system is illustrated for
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4: Contour plots of the standard deviation of the head (cm) obtained by using the
S, PC, NEPC1 and NEPC2 methods. The x and y axis are respectively the positions
x direction with x ∈ [−0.25, 0.25] and y in the direction with y ∈ [−0.15, 0.15].
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5: Contour plots of the percentage error arising in the standard deviation of the
(cm) when utilising the PC, NEPC1 and NEPC2 methods in comparison to the
S method. The x and y axis are respectively the positions in the x direction with
0.25, 0.25] and y in the direction with y ∈ [−0.15, 0.15].
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ifferent locations in the spatial domain in Figure 16. These locations posses the
ing coordinates: (0.00, 0.00) and (−0.15, 0.08). The probability density functions
r enhances the accuracy improvement obtained following the implementation of the
ann Enriched Polynomial Chaos method. Figure 16 also illustrates the mean and
rd deviation of the head along all nodes of the structure when y = 0.00 m.
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6: The probability density function of the head (cm) computed by the DMCS, PC,
1 and NEPC2 methods at (0.00, 0.00) and (−0.15, 0.08) as well as the mean and
rd deviation of the head along y = 0.00 m.

mmary and conclusion

is paper brings together two very different uncertainty propagation approaches,
y the polynomial chaos and Neumann expansion. These methods have been his-
lly viewed as incompatible as polynomial chaos is a ‘global representation’ while
eumann expansion is a ‘local representation’. A novel polynomial chaos enrichment
d has been proposed to approximate the response of stochastically parametrised
s. The proposed method is initiated by partitioning the random variables asso-
with the stochastic finite element method into two sets. Based on a first-order

ivity analysis, relative importance factors have been introduced to rationally par-
the stochastic space into two sets. A low-ordered polynomial chaos expansion is
ted on the first set whilst the second set is utilised to enrich the deterministic vectors
ated with the polynomial chaos expansion [PCE]. The enrichment is based upon a
ann series expansion. The enrichment method results in the following seemingly
modification to the unknown vectors associated with the classical PCE method

Uy(θ) ≈



I+

P2∑

k=1

(
−Ã

−1

0

M2∑

j=1

yj(θ)B̃j

)k

︸ ︷︷ ︸
the contribution of the enrichment method



U0 (73)

the additional contribution associated with the enrichment method is computed
ilising a Neumann series expansion of order P2. The enrichment method ensures
large number of random variables can be utilised in conjunction with the PCE

26

Jo
ur

na
l P

re
-p

ro
of



Pryse & Adhikari / Probabilistic Engineering Mechanics 00 (2021) 1–29 27

frame
statist
metho

•

•

•

Th
bendi
media
metho
metho
rando
metho
in the
to det
with b
input

Ackn

Th
Netwo
of NR

[1] N
[2] R

D
[3] A

M
[4] E

ic
an

[5] L.
In
pp

[6] V
In

[7] H
D

[8] O
Fl

Journal Pre-proof
work. Exact closed-form expressions have been developed to obtain the first two
ical moments of the response vector. The primary advantages of the proposed
d include:

The ability to tailor computational cost and accuracy by suitably partitioning the
space of random variables, selecting the order of the polynomial chaos and selecting
the order of the Neumann expansion.

The traditional polynomial chaos approach appears as a special case when the space
of random variables is not partitioned.

Should a truncated set of variables be used in a polynomial chaos expansion; the
approach provides an explicit quantification of the impact of the ignored random
variables on the response statistics.

e Neumann enriched polynomial chaos method has been applied to analyse the
ng of an Euler-Bernoulli cantilever beam and the head of a flow through a porous
. The results have been compared with the classical polynomial chaos expansion
d and the direct Monte Carlo method. It is apparent that utilising the enrichment
d can significantly reduce the error in comparison to the PCE method with original
m variables. It has been proven and demonstrated that employing the enrichment
d with a Neumann series of an even valued order is required to ensure a reduction
induced error of the first two moments of the response. Further research is needed
ermine the optimal order and the optimal number of random variables associated
oth the polynomial chaos and Neumann series expansions. The case when the basic
variables appear as nonlinear functions should be considered in future research.
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