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Abstract 

Cross-sectional scanning tunneling microscopy is used to study defects on the surface of semiconductor 

laser devices.  Step defects across the active region caused by the cleave process are identified.  Curved 

blocking layers used in buried heterostructure lasers are shown to induce strain in the layers above them.  

Devices are also studied whilst powered to look at how the devices change during operation, with a 

numerical model that confirms the observed behavior.  Whilst powered, low-doped blocking layers adjacent 

to the active region are found to change in real time, with dopant diffusion and the formation of surface 

states.  A tunneling model which allows the inclusion of surface states and tip induced band bending is 

applied to analyze the effects on the tunneling current, confirming that the doping concentration is reducing 

and defect surface states are being formed. 
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1. Introduction 

Cross-sectional scanning tunneling microscopy (X-STM) on the unreconstructed (110) surface of 

semiconductor lasers gives a view across all growth layers in the devices.  For defect free surfaces there are 

no mid band gap surface states and the technique can be used to study surface morphology, cleave-induced 

defects, doping concentration, interface quality, atomic-level intermixing, potentiometry and surface 

passivation, amongst others
1,2,3,4,5

. 

 

Semiconductor lasers have a wide range of uses from optical communications to data storage
6
.  Typical 

surface defects formed during production of these devices include steps, strain-induced changes, lattice 

disordering, intermixing at heterojunctions and dopant diffusion.  These defects change the material 

properties and introduce mid band gap surface states which detrimentally affect device performance and 

ultimately lead to device failure
7
.  Surfaces of such optoelectronic devices are coated with layers of material 

which passivate these surface states by moving their bond energies out of the band gap
8,9,10

. 

 

Here X-STM is applied to the unpassivated (110) facet of semiconductor lasers to study a range surface 

defects which affect device operation.  Using a technique which allows devices to be powered whilst 

performing X-STM, devices are also studied while operating in real time, to look at defect generation and 

evolution.
11,12

.  This paper will look first at unpowered devices at rest to identify surface steps and strain.  It 

will then look at performing X-STM on biased devices and the repeatable and reversible changes that occur 

in devices when studied in this way, along with a model which predicts the same changes.  Finally low-

doped regions near the active layers are found to undergo irreversible damage whilst under operation, due to 

dopant out-diffusion and surface defect state formation.  The process is studied and modeled. 

 

2. Experimental 

Samples are cleaved in situ in a commercial ultra high vacuum system to expose a clean facet for 

investigation.  Tips are made from electrochemically etched tungsten wire, cleaned in situ using high voltage 

pulses.  The system has been modified to allow a potential to be dropped across the device being studied, 



independently of the applied gap voltage between the same sample and tip, all relative to a common ground 

point at one of the sample contacts.  This allows the device to be powered whilst the scan continues. 

 

Two types of laser device are used in this investigation: an AlGaAs/InGaAs double quantum well (DQW) 

structure, and an InP/InGaAsP buried heterostructure laser (BHL).  More detailed information on the 

experimental procedure and device properties is given elsewhere
11,13

. 

 

3. Numerical Model 

Two models are used to analyze the data which will be presented.  The first uses a method based on Duke, 

as implemented by Feenstra1
,14

.  A planar tunneling calculation is performed with no band bending in the 

sample surface, as a summation over all incoming states in k-space, with the calculated transmission factor 

for each state
11

.  The full E-k bandstructure for each material is calculated using a local pseudopotential 

method based on that of Cohen and Bergstresser, implemented by Fischetti and Laux
15,16

.  Energy diagrams 

for the devices under test were generated using a drift-diffusion model which fully coupled the electron and 

hole equations with Poisson’s equation
17

.  This gave the band profiles for both the sample at rest and showed 

how the devices behaved under bias. 

 

A second tunneling model was used to more accurately study areas in the device which changed during 

operation.  In low-doped materials the electrostatic potential of the scanning tip can induce depletion or 

accumulation layers in the sample being studied.  Some of the applied potential between the sample and tip 

is dropped across this depletion region in which the sample bands bend.  Here we use a second tunneling 

model by Feenstra which allows band bending at the surface and the inclusion of the discrete surface states 

formed by this potential variation.  The profile of the tip-induced band bending is calculated by using 

Feenstra’s SEMITIP3 which also allows the inclusion of surface defect states
18,19,20,21,22

. 

 

4. Results and discussion 

The process of cleaving the laser wafer, used both in industry and research, can leave step defects across the 

facet, as shown in figure 1(a) for the BHL.  Here, two levels of jagged step depression are visible across the 



otherwise atomically flat active region.  The total measured depth is around 0.608nm, slightly larger than the 

lattice constant of 0.587 due to surface relaxation
23

.   

 

Figure 1(b) shows a larger image of the active region of the same device, with a gradient from the top of the 

image down towards the active region, culminating in depressions visible above the curved blocking layers.  

A plot along the marked line in that image is shown in figure 1(c).  Shear force topographic images of the 

same device have shown that the origin of this gradient is not a physical height difference and therefore it 

must be an electronic effect
24

.  Spectroscopy in this region confirms that the area is undergoing tensile 

strain5.  The layers grown above the curved blocking layer are strained and relax out towards the surface 

producing the electronic effect visible with STM.  Understanding how complicated confinement structures 

alter the material parameters and therefore device operation is crucial to optimizing these new devices. 

 

Next we turn our attention to studying these devices while they are powered and active.  Figure 2 shows 

images of the DQW laser at rest and biased, and Figure 3 the BHL.  Electronic gradients exist across images 

due both to the change in contrast as the tip scans over the differently doped regions and materials, and 

because the sample is always physically tilted at this scale.  As a bias is applied to the sample these 

electronic gradients, and the relative contrast of features in the image, change.  However, the physical 

topography does not change and we can look at how a scan changes electronically simply by subtracting the 

image at bias from the image at rest.  The STM images and line plots in Figure 2 (a) - (c) and Figure 3 have 

had these gradients removed to show relative height.  Figure 2 (d) and (e) however, show the change in this 

gradient across the image as the height change over the two micrometer length off the image (solid line), and 

overlay on top the change expected from the first model presented earlier (dashed line). 

 

Electronic gradients and the relative contrast of features, such as the quantum well heights, are found to be 

reversible.  The contrast in the image changes as power is applied to the device and then reduces back to the 

starting point when power is removed from the device.  The magnitude of the change of gradients and 

features across an image is also consistent with the model.  As seen in figure 2 (d), at higher biases the 



model predicts slightly less change in the gradient due to model limitations in handling the optical behavior 

of the laser cavity.   

 

With this standard pattern of behavior established, it is then possible to look at changes that occur on the 

surface of devices when they are left to run over a long period of time, or driven with higher currents
12

.  One 

such change occurs in the low-doped regions that surround the quantum wells.  An example for the BHL is 

shown in figure 4.  The purpose of these low-doped layers is to prevent dopants in the higher-doped layers 

from diffusing in to the nominally undoped array of quantum wells and barriers.  However in both devices 

these low-doped layers undergo permanent modification during operation.  For the example in figure 4 when 

tunneling in to the BHL the p-type buffer appears brighter after modification whereas the n-type buffer 

appears darker. 

 

This modification cannot be explained by a physical surface change, or by the formation of dark-area 

defects, because one layer increases in contrast as another reduces.  Also when imaged with the opposite 

polarity gap voltage the contrast change in the buffer layers goes the other way.  It must therefore be an 

electronic change at the surface that shifts the Fermi level back towards intrinsic, which matches the 

direction of contrast change in all samples studied.  Two effects can account for such a modification; a 

reduction in the doping concentration and the formation of surface states. 

 

Since these layers are less doped, their conductivity is lower than the surrounding layers and more of applied 

device voltage would be dropped across them, causing them to heat more.  Localized heating could account 

for dopant out-diffusion from these layers.  Also, low-temperature heating of III-V surfaces is known to 

cause evaporation primarily of the anion species leading to anion-vacancy defects, which for InP and GaAs 

materials generate mid- band gap surface states
25

.  These additional states can pin the Fermi level at the 

surface and cause the bands to bend back towards mid gap. 

 

In order to look at the relative influence of these two effects on the STM process, the second model is 

applied to the change seen in both the DQW laser and the BHL.  For this, we start with an isolated layer of 



AlGaAs or InP doped as per the growth specifications to 2e17cm
-3

, assuming no surface states.  In these 

layers, and especially as the doping concentration is reduced, the tip-induced band bending effect at the 

surface becomes important.  For every point in the calculation Feesntra’s SEMITIP3 program is used to 

establish the effect of the tip’s electrostatic behavior in modifying the surface band bending of the 

semiconductor.  This result is then used in the second tunneling model discussed earlier to calculate the 

tunneling current for that condition.  A set point is established by varying the area of the tip in the 

calculation until the tunneling current matches that from the experiment.  Once this condition is established, 

the doping concentration is incrementally modified and a feedback routine modifies the tip height until the 

same tunneling current is reached.  The deflection in the tip z-height required to reach the same tunneling 

current is recorded, which mimics the information recorded from the STM process.  The density of surface 

states is then increased in the same way to again analyze the change in tip height.  A uniform distribution of 

surface states is used, with the charge neutrality level at mid gap.  There are several free parameters in this 

model and more detail is given elsewhere
22. 

 

An example of the modeled change of the tip height is given in figure 5.  As the doping concentration 

reduces (right to left, circles) the model confirms a reduction in the contrast of Δz = –130.0pm at 1e15cm
-3

.  

As the surface state density increases (left to right, crosses) a contrast reduction is again predicted, down to 

Δz = –193.2pm at 1e10cm
-2

.  The experimentally measured contrast change was Δz = –121.3pm.  For this 

example both the doping concentration reduction and the formation of surface states could be the origin of 

the observed change in the STM image – the direction of the change and the magnitude matches between 

modeling and experiment.  In other layers or with different tunneling conditions, STM can be shown through 

the model to be sensitive to just one of the processes.  In all these conditions a change is still observed in the 

low doped layers, which confirms both processes are occurring on the surface of the device. 

 

5. Summary 

X-STM has been applied to the surface of III-V optoelectronics devices to study surface defects that occur 

on experimental and commercial devices.  It can detect and quantify physical step defects on the surface and 

strain induced surface changes.  Devices can be studied at bias in order to measure the in-operation 



response, with repeatable behavior which matches modeling.  Low doped layers adjacent to the active region 

are found to irreversibly change under operation.  A tunneling model which looks at the change in doping 

concentration and the formation of surface defect states concludes that the change observed with STM is due 

both to the reduction of doping concentration and the formation of surface defect states in those layers.  This 

will be accompanied with likely out-diffusion in to neighboring layers, and increased heating, leading to the 

failure of the device. 
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Figures  
 

Figure 1: 

 

STM images of the buried heterostructure laser (a) +2.2V gap voltage, 0.3nA, showing cleave-induced steps 

across the active region, (b) +2V gap voltage, 0.5nA with (c) the z-profile along the white line shown from 

A to C. 
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Figure 2:  

 

STM images of the DQW device imaged with a gap voltage of Vgap=-3.5V, I=0.4nA.  The sample is forward 

biased with (a) Vbias=0V, I=0mA and (b) Vbias=0.98V, I=15mA, both plotted on the same z-scale.  Averaged 

line plots across the image are shown in (c).  The change in the STM z-height from the extreme left of the 

image to the extreme right as a function of sample forward bias is shown in (d) for Vgap=-3V I=0.5nA and in 

(e) for Vgap=+3V, I=1.0nA where the solid lines are the experimentally measured values and the dotted lines 

are the modeled response. 

 

 

  



Figure 3: 

STM images of the BHL device imaged at (a) Vgap = +1.89V, I=0.539nA and (b) Vgap= +1.89V, I=0.382 nA. 

The samples are biased at (a) Vbias=0V, I=0mA and (b) Vbias=0.9 V, I=53mA. Noise spikes have been 

removed from the images, and both are plotted on the same z-scale with averaged line plots along the dotted 

white lines stacked with the 0V Vbias case on top. The four diagonal stripes in each image are cleave-induced 

step defects and are not part of the discussion here. 

 

 

 

 

 

 

 

 

 

 

  



Figure 4: 

 

STM images of the buried heterostructure laser with an STM gap voltage and tunneling current of +2V and 

0.8nA with (a) a corresponding schematic.  The current through the sample is (b) 0mA (before modification) 

and (c) 35mA (during modification).  (d) shows traces of fifteen averaged horizontal lines across the scan for 

0A before modification (solid), 35mA during modification (dashed) and 0A after modification (dotted).  

Neither the images nor the line plots have been processed or smoothed. 

 

 

 
  



Figure 5: 

 

Modeled change of the tip height as the n-type layer in the BHL undergoes modification of the doping 

concentration (circles) and the surface state density (crosses), using 1nm tip separation, 10nm tip radius, 

0.6eV contact potential. 
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