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Abstract

In this thesis, we mainly study some properties for certain stochastic di↵er-
ential equations.

The types of stochastic di↵erential equations we are interested in are (i)
stochastic di↵erential equations driven by Brownian motion, (ii) stochastic
functional di↵erential equations driven by fractional Brownian motion, (iii)
McKean-Vlasov stochastic di↵erential equations driven by Brownian motion,
(iv) McKean-Vlasov stochastic di↵erential equations driven by fractional
Brownian motion.

The properties we investigate include the weak approximation rate of
Euler-Maruyama scheme, the central limit theorem and moderate deviation
principle for McKean-Vlasov stochastic di↵erential equations. Additionally,
we investigate the existence and uniqueness of solution to McKean-Vlasov
stochastic di↵erential equations driven by fractional Brownian motion, and
then the Bismut formula of Lion’s derivatives for this model is also obtained.

The crucial method we utilised to establish the weak approximation rate
of Euler-Maruyama scheme for stochastic equations with irregular drift is the
Girsanov transformation. More precisely, giving a reference stochastic equa-
tions, we construct the equivalent expressions between the aim stochastic
equations and associated numerical stochastic equations in another proba-
bility spaces in view of the Girsanov theorem.

For the Mckean-Vlasov stochastic di↵erential equation model, we first
construct the moderate deviation principle for the law of the approxima-
tion stochastic di↵erential equation in view of the weak convergence method.
Subsequently, we show that the approximation stochastic equations and the
McKean-Vlasov stochastic di↵erential equations are in the same exponen-
tially equivalent family, and then we establish the moderate deviation prin-
ciple for this model.

Based on the result of Well-posedness for Mckean-Vlasov stochastic di↵er-
ential equation driven by fractional Brownian motion, by using the Malliavin
analysis, we first establish a general result of the Bismut type formula for
Lions derivative, and then we apply this result to the non-degenerate case of
this model.

Keywords: Weak approximation; moderate deviation principle; central
limit theorem; Lions derivative; Bismut formula

ii



Declarations and Statements

DECLARATION

This work has not previously been accepted in substance for any degree

and is not being concurrently submitted in candidature for any degree.

Signed . .... ................... Date .....................................

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise

stated. Where correction services have been used, the extent and nature of

the correction is clearly marked in a footnote(s).

Other sources are acknowledged by footnotes giving explicit references.

A bibliography is appended.

Signed .................. Date .....................................

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photo-

copying and for inter-library loan, and for the title and summary to be made

available to outside organisations.

Signed .. ................. Date .....................................

I hereby give consent for my thesis, if accepted, to be available for photo-

copying and for inter-library loans after expiry of a bar on access approved

by the Swansea University.

Signed .... .................. Date .....................................

iii

12/074021

12/07/2021

1210712021

Y 1210712021



Contents

1 Introduction 1

2 Preliminaries 10

2.1 Fractional integrals and derivatives . . . . . . . . . . . . . . . 10

2.2 Fractional Brownian motion . . . . . . . . . . . . . . . . . . . 11

2.3 L-derivative of measure function . . . . . . . . . . . . . . . . . 15

2.4 Theory of large deviations . . . . . . . . . . . . . . . . . . . . 17

3 Weak approximation for stochastic di↵erential equations

driven by Brownian motion 21

3.1 Weak approximation rate of EM scheme . . . . . . . . . . . . 22

3.2 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . 26

3.3 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . 36

4 Weak approximation for stochastic functional di↵erential equa-

tions driven by fractional Brownian motion 41

4.1 Well-posedness of stochastic functional di↵erential equations . 42

4.2 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . 44

4.3 Weak approximation rate of EM scheme . . . . . . . . . . . . 54

4.4 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . 59

iv



5 Moderate deviations and central limit theorem for McKean-

Vlasov stochastic di↵erential equations 72

5.1 McKean-Vlasov stochastic di↵erential equation . . . . . . . . . 73

5.2 General deviations and assumptions . . . . . . . . . . . . . . . 74

5.3 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1 Proof of the central limit theorem . . . . . . . . . . . . 77

5.4 Moderate deviation principle . . . . . . . . . . . . . . . . . . 81

5.5 Proof of the moderate deviation principle . . . . . . . . . . . . 82

5.5.1 Large deviation principle for Ȳ ✏ . . . . . . . . . . . . . 83
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Notations

a.s. : almost surely, or P� almost surely, or with probability 1.

N : set of positive integer numbers {1, 2, 3 · · · }.

a _ b : the larger number between a and b in R.

a ^ b : the smaller number between a and b in R.

[a] : the integer part of a.

R
d : d� dimensional Euclidean space.

h·, ·i : the usual inner product on R
d.

| · | : the norm on R
d, corresponding with respect to h·, ·i.

Bb(R
d) : the collection of all bounded measurable functions on R

d.

C↵([a, b];Rd) : the space of ↵� Hölder continuous functions on [a, b].

kfka,b,↵ : the Hölder norm of function f.

Bx(R) : ball with radius R and center x.

C : the space of continuous functions, i.e. C([a, b];Rd).

kfkp : =
⇣Z

Rd

|f |pdx
⌘ 1

p

for p � 1.

kfk1 : = sup
x2Rd

|f(x)|.

Pp(R
d) : the space of probability measures on R

d with finite p� th moment.

Ran(a) : the range of matrix a.
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Chapter 1

Introduction

In this thesis, we mainly investigate the weak approximation rate of Euler-

Maruyama (abbreviated as EM) scheme for certain stochastic di↵erential

equations (shorted as SDEs) with irregular coe�cients, the moderate devia-

tion principle, and the Bismut formula of Lions derivative to some McKean-

Vlasov stochastic di↵erential equations (MV-SDEs for short).

In the following part, we describe the background of the main results of

this thesis in more detail.

I Weak approximation rate of EM scheme for stochastic dif-

ferential equations driven by Brownian motion

SDEs with singular coe�cients have been extensively studied recently,

see [47, 61, 97, 99, 100, 103] and references therein. Meanwhile, in order to

understand the numerical approximation of SDEs with irregular coe�cients,

numerical schemes have been established. The strong and weak convergence

rates of EM scheme for SDEs with singular coe�cients have already been ob-

tained, see for instance [4, 5, 38, 45, 46, 48, 49, 50, 76, 79, 80, 89]. The refer-

ences [23, 51, 71, 72, 73, 77, 84] investigated Lp-approximation of solutions to

the SDEs with singular drift, and obtained the corresponding Lp-error rates
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under the di↵erential assumptions about the coe�cients. In specific, refer-

ence [72] obtained the Lp-error rate to be at least 1/2 with p 2 [1,1) for the

scalar SDEs with a piecewise Lipschitz drift, and a Lipschitz di↵usion coe�-

cient that is non-zero at the discontinuity points of the drift coe�cient. This

result has been extended to the case of scalar jump-di↵usion SDEs in [84].

Based on the assumptions in [72, 84], [71, 73] showed that the Lp-error rate

is at least 3/4 under additional piecewise smoothness assumptions on the co-

e�cients, where they employed a novel technique by studying equations with

coupled noise. They additionally showed that the 3/4 Lp-error rate cannot in

general be improved even when additionally to the assumptions in [73] fur-

ther piecewise regularity assumptions were imposed on the coe�cients of the

scalar SDEs. Under the condition of the Sobolev-Slobodeckij-type regularity

of order  2 (0, 1), [77] obtained the L2-error rate min{3/4, (1 + )/2} � "

(for arbitrarily small " > 0) of the equidistant EM scheme for scalar SDEs

with irregular drift and additive noise by using an explicit the Zvonkin-type

transformation and the Girsanov transformation.

For simplicity, we generalise the main idea of weak approximation in the

following case of stochastic di↵erential equation:

Xt = x+

Z
t

0

b(Xs)ds+ �Wt, x 2 R
d, t 2 [0, T ], (1.0.1)

where (Wt)t�0 is a d-dimensional standard Brownian motion, which is defined

in a certain probability measure space (⌦,F , (Ft)t�0,P). Moreover, b : Rd
!

R
d is a Borel measurable function, � is a d⇥d deterministic, uniformly elliptic

matrix and a := ��⇤.

Let X(�)
t , � > 0 denote the EM approximation of Xt,

X(�)
t = x+

Z
t

0

b(Xs�
)ds+ �Wt, t 2 [0, T ],

where s� = [ s
�
]�, [a] denotes the integer part of a.
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The weak convergence rate is concerned with the approximation of Ef(Xt)

by Ef(X(�)
t ) for a given function f .

To this end, we introduce a reference SDE as follows:

Yt = x+ �Wt, t 2 [0, T ],

and

R1,t = exp
nZ t

0

���1b(Xs)dWs �
1

2

Z
t

0

|��1b(Xs)|
2ds

o
,

R2,t = exp
nZ t

0

���1b(Xs�
)dWs �

1

2

Z
t

0

|��1b(Xs�
)|2ds

o
.

Under appropriate conditions, the Novikov condition holds, we then can de-

fine new measures Q1,Q2 as dQ1 = R1,tdP and dQ2 = R2,tdP. Based on this,

one can show an equivalent expression of E[f(Xt)]� E[f(Xt�
)] by using the

reference equation, that is,

E[f(Xt)]� E[f(Xt�
)] = E[f(Yt)(R1,t �R2,t)].

The weak error has been obtained for some SDEs with discontinuous drifts

in [45, 46, 78]. It is worth noting that the test function f in these references

is assumed to be Hölder continuous. When the test function f was relaxed

to be just measurable and bounded, the result of weak convergence rate of

EM scheme was obtained in [3], where the coe�cients of SDEs need to be

smooth.

Recently, [7, 89] established the weak convergence rate of EM scheme for

SDEs with irregular coe�cients by using Girsanov’s transformation. Inspired

by [5] and [7, 89], we shall give a note on the weak error for (1.0.1) with a

possibly discontinuous drift b. Moreover, the given function f is only assumed

to be bounded and measurable on R
d.
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In Chapter 3, we establish the weak approximation rate of EM scheme

for (1.0.1) with a class of low-regular drift by using the Girsanov transforma-

tion. In specific, the class of low-regular drift contains cases of non-Lipschitz

continuous function, discontinuous function). Moreover, we also give some

illustrative examples.

II Weak approximation rate of EM scheme for stochastic func-

tional di↵erential equations driven by fractional Brownian motion

The fractional Brownian motion (abbreviated as fBm) appears naturally

in modelling stochastic systems with long-range dependence phenomena.

Fractional Brownian motions with Hurst parameter H 6= 1/2 are neither

Markov processes nor (weak) semi-martingales, which makes the study of

stochastic di↵erential equations driven by fractional noise complicated. The

existence and uniqueness of solutions to fractional equations have received

much attention. [59] obtained existence and uniqueness of solutions to SDEs

driven by fractional noise with Hurst parameter H 2 (12 , 1) by using Young

integrals (see [101]) and p-variation estimate. [22] derived the existence and

uniqueness result for H 2 (14 ,
1
2) through the same rough-type arguments

as in [59]. [83] studied SDEs driven by fractional noise by using fractional

calculus developed in [102]. For more results on existence and uniqueness

of solutions to SDEs driven by fractional noise, we refer to for instance

[13, 43, 44, 55, 67, 68, 82, 92]. Stochastic functional di↵erential equations

(SFDE for short) are also used to characterise stochastic systems with mem-

ory e↵ects. For the existence and uniqueness of solutions for SFDEs with

regular coe�cients, one can consult to [33, 69, 75]. In recent years, SDEs

driven by fBm with irregular coe�cients have received much attention, e.g.

[31, 44, 65, 66]. However, for fractional SFDEs with irregular coe�cients,

even the weak existence and uniqueness results are not well studied.
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Consider the following SFDE:

dX(t) = {b(X(t)) + �Z(Xt)}dt+ �dBH(t), t > 0, (1.0.2)

with the initial datum X0 = ⇠ 2 C := C([�⌧, 0];Rd), where � 2 R
d
⌦ R

m,

b : Rd
! R

d, d � m and Z : C ! R
m are measurable, Xt is the segment

process of X(t) defined by Xt(✓) = X(t + ✓), ✓ 2 [�⌧, 0]. BH(t) is an m-

dimensional fBm on a complete probability space (⌦,F , (Ft)t�0,P).

In chapter 4, we first study the weak existence and uniqueness for (1.0.2)

(see Theorem 4.1.1). Based on the weak existence and uniqueness result, we

investigate the weak approximation rate of EM scheme for (1.0.2) by using a

measurable bounded test function (see Theorem 4.3.1). The exponential inte-

grability of functionals of the segment process is studied in our work involves

fractional calculus, which is nontrivial for the irregular drift with memory,

and it is more complicated than those of SFDEs driven by Brownian mo-

tion. The main ingredient is giving exact estimates for fractional derivatives

of functionals of the segment process truncated by gridpoints (see Lemma

4.4.2).

III Central limit theorem and Moderate deviation principle for

McKean-Vlasov stochastic di↵erential equations driven by Brown-

ian motion

As it is well known, the large deviation principle (abbreviated as LDP) is

a branch of probability theory that deals with the asymptotic behaviour of

rare events. In the case of stochastic process, the idea is to find a determin-

istic path around which the di↵usion is concentrated with high probability,

and the stochastic motion can be interpreted as a small perturbation of the

deterministic path. Moreover, it has a wide range of applications, such as in

mathematical finance, statistic mechanics and biology. Thus, the LDP for

stochastic equations has been investigated extensively; e.g. see [8, 9, 40, 70]
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and references therein.

There are two main methods to investigate the large deviations, one

method is based on contraction principle in LDP, that is, it relies on ap-

proximation arguments and exponential-type probability estimates; e.g. see

[12, 35, 36, 41, 54, 56, 70, 88] and references therein. [35, 56, 88] were

concerned about the LDP for SDEs driven by Brownian motion or Poisson

measure. In [41], the authors therein investigated how rapid-switching be-

haviour of solution(X✏

t
) a↵ects the small-noise asymptotics of X✏

t
-modulated

di↵usion processes on the certain interval. [36] investigated the LDP for

invariant distributions of memory gradient di↵usions. Other method is the

weak convergence one, which has also been applied in establishing LDP for

a various stochastic dynamic systems; e.g. see [8, 9, 15, 16, 17, 18]. Ac-

cording to the compactness argument in this method of the solution space of

the corresponding skeleton equation, the weak convergence is done for Borel

measurable functions whose existence is based on the Yamada-Watanabe

theorem. In [15, 16, 18], the authors study an LDP for SDEs and stochastic

partial di↵erential equations (SPDEs for short).

Compared with the theory of large deviations, the central limit theorem

(abbreviated as CLT) is interested in the asymptotic behaviour of stochastic

motion tends to the corresponding deterministic path in the smallest devi-

ation scale. Similarly, the moderate deviation principle (MDP for short) is

concerned with probabilities with a smaller order than in the LDP, which

deviation scale fills in the gap between the CLT scale and the LDP scale (see

[60]).

To explain these deviations, we introduce the general deviation for MV-

SDEs. This is the topic of Chapter 5.
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Consider the following MV-SDE on (Rd, h·, ·i, | · |):

dX✏

t
= bt(X

✏

t
,LX

✏

t
)dt+

p
✏�t(X

✏

t
,LX

✏

t
)dWt, X✏

0 = x, (1.0.3)

with ✏ > 0, which is called the scaling parameter. Here Wt is the d-

dimensional Brownian motion defined on a complete filtered probability space

(⌦,F , {Ft}t�0,P) and LX
✏

t
is the law of X✏

t
.

Intuitively, as the parameter ✏ tends to 0 in (5.2.1), the di↵usion term

vanishes, and we have the following ordinary di↵erential equation (ODE for

short):

dX0
t
= bt(X

0
t
, �X0

t
)dt, (1.0.4)

with the same initial datum as (1.0.3), that is, X0
0 = x. Since x is determin-

istic, we deduce that �X0
· is a Dirac measure centered on the path X0

·
.

On the general case, investigating the deviations of solution X✏

t
to (1.0.3)

from the solution X0
t
to (1.0.4) is to study the asymptotic behaviour of the

trajectory

X̄✏

t
=

1
p
✏�(✏)

(X✏

t
�X0

t
), t 2 [0, T ]. (1.0.5)

More precisely, as the parameter �(") taking value in di↵erent scale, we have

the following three cases:

(LDP) The case �(✏) = 1/
p
✏ provides some large deviation estimates. [28]

proved that the law of the solution X✏ satisfies an LDP by means of

the discussion of exponential tightness.

(CLT) If �(✏) ⌘ 1, we shall show that X
✏
�X

0
p
✏

converges to a stochastic process

in a certain sense as ✏! 0 (see Theorem 5.3.1).

(MDP) To fill in the gap between the CLT scale and LDP scale, the MDP for

X✏ is to investigate the LDP of trajectory (1.0.5), where the deviation

7



scale �(✏) satisfies

�(✏) ! 1,
p
✏�(✏) ! 0, as ✏! 0. (1.0.6)

When coe�cients in (1.0.3) are distribution independent, it reduces to the

case of classical SDEs. These deviation theories have been intensively inves-

tigated in the literature mentioned above and references therein.

Now, we introduce the main contents of Chapter 5, which is devoted to

the study of CLT and MDP for MV-SDEs.

The motivation comes from the Freidlin-Wentzell LDP in path space for

MV-SDEs in [28]. The authors in [58] investigated large and moderate devi-

ation principles for MV-SDEs with jumps.

In Chapter 5, we first show that the law of solution to a good approxima-

tion SDE of the underlying MV-SDE satisfies a MDP via weak convergence

method. Then, we show that the solution to an approximation SDE and the

solution to the MV-SDE are exponentially equivalent as the deviation scale

tends to zero. Then, the exponentially equivalent measures are indistinguish-

able in the case of LDP yielding our main result.

IV Bismut formula of Lions derivative for McKean-Vlasov stochas-

tic di↵erential equation driven by fractional Brownian motion

McKean-Vlasov (distribution dependent or mean field) stochastic di↵er-

ential equations has been studied intensively in the literature [26, 27, 64, 89,

96] and references therein. The existence of this type of SDEs has been in-

vestigated by di↵erent methods: [34] used a approximation argument about

particle systems to obtain the existence and uniqueness of weak solutions

to MV-SDEs; in [96], by iterating in distributions, a strong solution is con-

structed using SDEs with control; finally, [85] applied the fixed point theorem

to establish the existence of strong solutions to MV-SDEs.

8



The Bismut formula initiated in [11] due to Bismut, is also called Bismut-

Elworty-Li formula due to the development by Elworthy and Li in [29]. Since

then, it has become a powerful tool to characterise the regularity of distri-

bution for SDEs and SPDEs. The Bismut formula have been derived by

di↵erent methods: for instance [29] by martingale method; and [98] using

the coupling method (or Malliavin calculus) and references therein. It is

worthy noting that these results are derived for the classical SDEs.

The Lions derivative (L-derivative for short) was introduced by P.-L. Li-

ons in his lecture [19]. Since then, researchers have applied the L-derivative

of solution to this type of SDEs to characterise the properties of partial dif-

ferential equations, such as [14, 39, 52] and references therein. Recently,

[6, 87] used Malliavin calculus to derive the Bismut formula for L-derivative

of MV-SDEs and MV-SDEs with memory. It is worthy pointing that the

existing literature about the Bismut formula for SDEs and SFDEs driven by

fractional noise [2, 30, 32] only works for classical case (distribution indepen-

dent). Thus, in Chapter 6, we aim to obtain the existence and uniqueness of

solutions to MV-SDEs driven by fBm, and establish a general result for the

Bismut formula for L-derivative for this type of stochastic equations.

9



Chapter 2

Preliminaries

In this chapter, we will give some preliminary knowledge, which will be used

in the following chapters. In Section 2.1, we recall the fractional integrals

and derivatives. In Section 2.2, we introduce the fBm and the Malliavin

calculus with respect to fBm. In Section 2.3, we introduce the definition of

L-derivative of measure function. Section 2.4 is devoted to the background

of the LDP and some of its properties.

2.1 Fractional integrals and derivatives

In this section, we recall some basics of fractional integrals and derivatives,

and for more details, see [81, 89].

Let a, b 2 R with a < b. For f 2 L1(a, b) and ↵ > 0, the left-sided

fractional Riemann-Liouville integral of order ↵ of f on [a, b] is given by

I↵
a+f =

1

�(↵)

Z
x

a

f(y)

(x� y)1�↵
dy,

where x 2 (a, b) a.e. (�1)�↵ = e�i↵⇡, and � denotes the Euler function. If

↵ = n 2 N, this definition coincides with the n-order iterated integrals of f .

10



By the definition, we have the first composition formula

I↵
a+(I

�

a+f) = I↵+�

a+ f.

Fractional di↵erentiation may be introduced as an inverse operation. Let ↵ 2

(0, 1) and p � 1. If f 2 I↵
a+(L

p([a, b],R)), then the function � satisfying f =

I↵
a+� is unique in Lp([a, b],R) and it coincides with the left-sided Riemann-

Liouville derivative of f of order ↵ given by

D↵

a+f(x) =
1

�(1� ↵)

d

dx

Z
x

a

f(y)

(x� y)↵
dy.

The corresponding Weyl representation reads as follows:

D↵

a+f(x) =
1

�(1� ↵)

⇣ f(x)

(x� a)↵
+ ↵

Z
x

a

f(x)� f(y)

(x� y)1+↵
dy
⌘
, (2.1.1)

where the convergence of the integrals at the singularity y = x holds pointwise

for almost all x if p = 1 and in the Lp sense if p > 1. By the construction,

we have

I↵
a+(D

↵

a+f) = f, f 2 I↵
a+(L

p([a, b],R)),

and moreover it holds the second composition formula

D↵

a+(D
�

a+f) = D↵+�

a+ f, f 2 I↵+�

a+ (L1([a, b],R)).

2.2 Fractional Brownian motion

We first recall some basic facts about the stochastic calculus of variations

with respect to the fBm with Hurst parameter H 2 (12 , 1). We refer the

reader to [24] for further details.

For fixed T > 0, the d-dimensional fBm BH = {BH(t), t 2 [0, T ]} with

Hurst parameter H on a complete probability space (⌦,F ,P) can be defined

11



as the centered Gaussian process with covariance function

E(BH(t)BH(s)) = RH(t, s) =
1

2
(t2H + s2H � |t� s|2H).

In particular, if H = 1
2 , B

H is a Brownian motion. Besides, for p � 1, we

have

E|BH(t)� BH(s)|p = E|BH(t� s)|p = |t� s|pHE|BH(1)|p  C(p)|t� s|pH .

Then, it follows from the Kolmogorov continuity theorem that BH has �-

Hölder continuous paths, where � 2 (0, H). For each t 2 [0, T ], we denote

by Ft the �-algebra generated by {BH(s) : s 2 [0, t]} and the P-null sets.

We denote by E the set of step functions on [0, T ]. Let H be the Hilbert

space defined as the closure of E with respect to the scalar product

h(I[0,t1], · · · , I[0,td]), (I[0,s1], · · · , I[0,sd])iH =
dX

i=1

RH(ti, si).

The mapping (I[0,t1], · · · , I[0,td]) 7! (BH,1(t1), · · · , BH,d(td)) can be extended

to an isometry between H associated with fBm BH and the Gaussian space

H1. That is, H1 is a closed subspace whose elements are zero-mean Gaussian

random variables. This allows to define the Wiener integrals with respect to

BH , and denote this isometry by � 7! BH(�) =
R

T

0 �(t)dBH(t).

On the other hand, from [24], we know the covariance kernel RH(t, s) can

be written as

RH(t, s) =

Z
t^s

0

KH(t, r)KH(s, r)dr,

where KH is a square integrable kernel given by

KH(t, s) = �(H +
1

2
)�1(t� s)H�

1
2F (H �

1

2
,
1

2
�H,H +

1

2
, 1�

t

s
),

in which F (·, ·, ·, ·) is Gauss hypergeometric function (see [24]).

12



Define the linear operator K⇤

H
: E ! L2([0, T ],Rd) as follows:

(K⇤

H
�)(s) = KH(T, s)�(s) +

Z
T

s

(�(r)� �(s))
@KH

@r
(r, s)dr.

Reformulating the above equality as follows:

(K⇤

H
�)(s) =

Z
T

s

�(r)
@KH

@r
(r, s)dr.

It can be shown that for all �, 2 E ,

hK⇤

H
�, K⇤

H
 iL2([0,T ],Rd) = h�, iH,

and thereforeK⇤

H
is an isometry betweenH and L2([0, T ],Rd). Consequently,

BH has the following integral representation:

BH(t) =

Z
t

0

KH(t, s)dW (s),

where {W (t) := BH((K⇤

H
)�1I[0,t])} is a standard Brownian motion.

According to [24], the operatorKH : L2([0, T ],Rd) ! I
H+ 1

2
0+ (L2([0, T ],Rd))

associated with the kernel KH(·, ·) is defined as follows:

(KHf
i)(t) =

Z
t

0

KH(t, s)f
i(s)ds, i = 1, · · · , d. (2.2.1)

It can be proved that KH is an isomorphism. Moreover, for each f 2

L2([0, T ],Rd),

(KHf)(s) = I10+s
H�1/2IH�1/2

0+ s1/2�Hf,H >
1

2
. (2.2.2)

Consequently, for each h 2 IH+1/2
0+ (L2([0, T ],Rd)), the inverse operator K�1

H

is of the form

(K�1
H

h)(s) = sH�1/2DH�1/2
0+ s1/2�Hh0, H >

1

2
. (2.2.3)

In what follows, we give a brief account on the Malliavin calculus for fBm.

Let ⌦ be the canonical probability space C0([0, T ];Rd), the set of continuous

13



functions, null at time 0, equipped with the supremum norm. Let P be the

unique probability measure on ⌦ such that the canonical process {BH(t); t 2

[0, T ]} is a d-dimensional fBm with the Hurst parameter H. Subsequently,

we will make this assumption on the underlying probability space.

Denote S by the set of smooth and cylindrical random variables of the

form

F = f(BH(�1), · · ·, B
H(�d)),

where d � 1, f 2 C1

b
(Rd), which is the collection of f and all its partial

derivatives are bounded, �i 2 H, 1  i  d. The Malliavin derivative of F ,

denoted by DF , is defined as the H-valued random variable

DF =
dX

i=1

@f

@xi

(BH(�1), · · ·, B
H(�d))�i.

For any p � 1, we define the Sobolev space D
1,p as the completion of S with

respect to the norm

kFk
p

1,p = E|F |
p + EkDFk

p

H
.

For more details and applications on Malliavin calculus with respect to

fBm one may refer to [24, 81].

The following lemma is the Fernique-type lemma (see [62, 90]), and some

notation for future use.

Lemma 2.2.1. Let T > 0, 1/2 < � < H < 1. Then for any ↵ < 1
2T ,

E exp{↵kBH
k
2
0,T,1} < 1,

and for any ↵ < 1/(128(2T )2(H��)),

E[exp(↵kBH
k
2
0,T,�)]  (1� 128↵(2T )2(H��))�1/2.

14



Moreover, we have the following moment estimate for any k � 1:

E(kBH
k
2k
0,T,�)  32k(2T )2k(H��) (2k)!

k!
.

Meanwhile, we will denote by � and Dom� the divergence operator of D

and its domain, respectively. Let us finish this part by giving a transfer prin-

ciple that connects the derivative and divergence operators of both processes

fBm BH and Brownian motion W that are needed later on.

Proposition 2.2.2. [81, Proposition 5.2.1] For any F 2 D
1,2
W

= D
1,2,

K⇤

H
DF = D

WF,

where D
W denotes the derivative operator with respect to the underlying

Wiener process W , and D
1,2
W

the corresponding Sobolev space.

Proposition 2.2.3. [81, Proposition 5.2.2] Dom� = (K⇤

H
)�1(Dom�W ), and

for any H-valued random variable u in Dom� we have �(u) = �W (K⇤

H
u),

where �W denotes the divergence operator with respect to the underlying

Wiener process W .

Remark 2.2.1. The above proposition, together with [81, Proposition 1.3.11],

yields that if K⇤

H
u 2 L2

a
([0, T ] ⇥ ⌦,Rd) (the closed subspace of L2([0, T ] ⇥

⌦,Rd) formed by the adapted processes), then u 2 Dom�.

2.3 L-derivative of measure function

We first recall the definition of L-derivative (for more details, see [6, 87]).

Let P2(Rd) be the set of all probability measures on R
d with finite second

moment, i.e.

P2(R
d) =

n
µ 2 P(Rd) : µ(| · |2) :=

Z

Rd

|x|2µ(dx) < 1

o
,
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where µ(f) :=
R
fdµ for a measurable function f . Then P2(Rd) is a Polish

space under the Wasserstein distance

W2(µ, ⌫) := inf
⇡2C (µ,⌫)

⇣Z

Rd⇥Rd

|x� y|2⇡(dx, dy)
⌘ 1

2
, µ, ⌫ 2 P2(R

d),

where C (µ, ⌫) is the set of couplings for µ and ⌫.

For any µ 2 P2(Rd), the tangent space at µ is given by

Tµ,2 = L2(Rd
! R

d;µ) := {� : Rd
! R

d is measurable with µ(|�|2) < 1},

which is a Hilbert space under the norm k�kTµ,2 :=
�
µ(|�|2)

� 1
2 , (see [87]).

There are many monographs on L-derivative of measure function, see for

instance, [19, 86, 87]. We will now introduce the basic case of L-derivative

of measure function on the Euclidean space.

Definition 2.3.1. Let f : P2(Rd) ! R be a continuous function, and let Id

be the identity map on R
d.

(1) f is called intrinsically di↵erentiable at a point µ 2 P2(Rd), if

Tµ,2 3 � 7! DL

�
f(µ) := lim

✏#0

f(µ � (Id+ ✏�)�1)� f(µ)

✏
2 R

is a well-defined bounded linear functional. In this case, by the Riesz

representation theorem, the unique element DLf(µ) 2 Tµ,2 satisfying

hDLf(µ),�i :=

Z

Rd

hDLf(µ)(x),�(x)iµ(dx) = DL

�
f(µ), � 2 Tµ,2,

is called the intrinsic derivative of f at µ, and we denote

kDLf(µ)kTµ,2 := kDLf(µ)(·)kTµ,2 , µ 2 P2(R
d).

Moreover, if

lim
k�kTµ,2#0

|f(µ � (Id+ �)�1)� f(µ)�DL

�
f(µ)|

k�kTµ,2

= 0.

f is called L-di↵erentiable at µ with the L-derivative DLf(µ).
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(2) We write f 2 C1(P2(Rd)) if f is L-di↵erentiable at any point µ 2

P2(Rd), and the L-derivative has a version DLf(µ)(x) jointly contin-

uous in (x, µ) 2 R
d
⇥ P2(Rd). If moreover DLf(µ)(x) is bounded, we

denote f 2 C1
b
(P2(Rd)).

For a vector-valued function f = (fi), or a matrix-valued function f =

(fij) with L-di↵erentiable components, we write

DL

�
f(µ) = (DL

�
fi(µ)), or DL

�
f(µ) = (DL

�
fij(µ)), µ 2 P2(R

d).

The following lemma is the formula of L-derivative (for further details of

the proof, refer to [6, 87]).

Lemma 2.3.1. Let (⌦,F ,P) be an atomless probability space, and let X, Y 2

L2(⌦ ! R
d,P) with LX = µ. If either X and Y are bounded, and f is L-

di↵erentiable at µ, or f 2 C1
b
(P2(Rd)), then

lim
✏!0

f(LX+✏Y )� f(µ)

✏
= EhDLf(µ)(X), Y i. (2.3.1)

Consequently,

��� lim
✏#0

f(LX+✏Y )� f(µ)

✏

��� = |EhDLf(µ)(X), Y i|  kDLf(µ)kTµ,2kY kTµ,2 .

(2.3.2)

2.4 Theory of large deviations

This section is devoted to the preliminaries of the LDP, (see [25, 93]).

Throughout this section, X is a topological space so that open and closed

subsets of X are well-defined. BX denotes the Borel �-field on X . The LDP

characterises the limiting behaviour, as " ! 0, of a family of probability

measures {µ"} on (X ,B) in terms of a rate function. This characterisation
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is via asymptotic upper and lower exponential bounds on the values that µ"

assigns to measurable subsets of X .

Definition 2.4.1. A rate function I is a lower semicontinuous mapping I :

X ! [0,1] (such that for all ↵ 2 [0,1), the level set  I(↵) = {x : I(x)  ↵}

is a closed subset of X ). A good rate function is a rate function for which all

the level sets  I(↵) are compact subsets of X .

For any set �, �̄ denotes the closure of �, �0 the interior of �, and �c the

complement of �. The infimum of a function over an empty set is interpreted

as 1.

Definition 2.4.2. {µ"} satisfies the LDP with a rate function I if, for all

� 2 B,

� inf
x2�0

I(x)  lim inf
"!0

" log µ"(�)  lim sup
"!0

" log µ"(�)  � inf
x2�̄

I(x). (2.4.1)

The right- and left-hand sides of (2.4.1) are referred to as the upper and

lower bounds, respectively.

When BX ⇢ B, the LDP is equivalent to the following bounds:

(a) (Upper bound) For any closed set F ⇢ X ,

lim sup
"!0

" log µ"(F )  � inf
x2F

I(x).

(b) (Lower bound) For any open set G ⇢ X ,

lim inf
"!0

" log µ"(G) � � inf
x2G

I(x).

Having defined what is meant by an LDP, the rest of this section is devoted

to some properties of the LDP.
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Definition 2.4.3. Suppose that all the compact subsets of X belong to B. A

family of probability measures {µ"} on X is exponentiablly tight if for every

↵ < 1, there exists a compact set K↵ ⇢ X such that

lim sup
"!0

" log µ"(K
c

↵
) < �↵. (2.4.2)

The following definition shows the general result of approximate contrac-

tions.

Definition 2.4.4. Let (Y , d) be a metric space. The probability measures

{µ"} and {µ̃"} on Y are called exponentially equivalent if there exists proba-

bility spaces {(⌦,B",P")} and two families of Y-valued random variables {Z"}

and {Z̃"} with joint laws {P"} and marginals {µ"} and {µ̃"}, respectively,

such that the following condition is satisfied:

For each � > 0, the set {! : (Z̃", Z") 2 ��} is B" measurable, and

lim sup
"!0

" logP"(��) = �1,

where

�� = {(ỹ, y) : d(ỹ, y) > �} ⇢ Y ⇥ Y .

As far as the LDP is concerned, exponentially equivalent measures are

indistinguishable, as the following theorem shows.

Theorem 2.4.1. If an LDP with a good rate function I(·) holds for the

probability measures {µ"}, which are exponentially equivalent to {µ̃"}, the

the same LDP holds for {µ̃"}.

The following uniform LDP criteria was presented in [53].

Lemma 2.4.2. For any ✏ > 0, let �✏ be a measurable mapping from C([0, T ];Rd)

into C([0, T ];Rd). Suppose that {�✏
}✏>0 satisfies the following assumptions:

there exists a measurable map �0 : C([0, T ];Rd) ! C([0, T ];Rd) such that
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(a) For every N < +1 and any family {h✏; ✏ > 0} ⇢ AN satisfying that h✏

converges in distribution as SN -valued random variables to h as ✏! 0,

then

�✏

⇣
W· +

1
p
✏

Z
·

0

ḣ✏(s)ds
⌘
) �0

⇣Z ·

0

ḣ(s)ds
⌘
as ✏! 0.

(b) For every N < +1, the set {�0(
R
·

0 ḣ(s)ds);h 2 SN} is a compact

subset of C([0, T ];Rd).

Then the family {�✏
}✏>0 satisfies an LDP in C([0, T ];Rd) with the rate func-

tion I given by

I(g) := inf
h2H;g=�0(

R ·
0 ḣ(s)ds)

n1
2

Z
T

0

|ḣ(s)|2ds
o
, g 2 C([0, T ];Rd), (2.4.3)

with inf ; = 1 by convention.

We now state the classical exponential inequality for stochastic integral,

which is crucial in proving the exponential approximation, (for more details,

refer to [89, lemma 4.7] therein).

Lemma 2.4.3. Let ↵ : [0,1) ⇥ ⌦ ! R
d
⇥ R

d and � : [0,1) ⇥ ⌦ ! R
d be

(Ft)t�0-progressively measurable processes. Assume that k↵(·)kHS  A and

|�|  B. Set ⇠(t) :=
R

t

0 ↵(s)dW (s) +
R

t

0 �(s)ds for t � 0. Let T > 0 and

R > 0 satisfy d
1
2BT < R. Then

P
⇣

sup
0tT

|⇠(t)| � R
⌘
 2d exp

⇣
�(R� d

1
2BT )2

2A2dT

⌘
. (2.4.4)
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Chapter 3

Weak approximation for

stochastic di↵erential equations

driven by Brownian motion

This chapter is devoted to investigate the weak approximation rate of EM

scheme for SDEs driven by Brownian motion. The drift in this work contains

cases of non-Lipschitz continuous and discontinuous functions. Noting that,

the method of Girsanov’s transformation for the weak convergence rate of

numerical scheme does not work for SDEs with multiplicative noise. We also

give the reason.

It is worth noting that [5] obtained strong convergence rates for multidi-

mensional SDEs under an integrability condition with the aid of the Krylov

estimate and of the heat kernel estimate of the Gaussian type process estab-

lished by the parametrix method in [48]. Inspired by this work, we aim to

investigate the weak convergence of SDEs with low-regular drift. Note that

the weak convergence is concerned with the convergence of the distribution

of the solutions of SDEs.
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In Section 3.1, we give the low-regular assumption about the drift of the

model and obtain the weak approximation rate of EM scheme for this model.

Section 3.2 is devoted to the proof of the main result. In Section 3.3, we

give some illustrative examples explaining the drift could be some types of

low-regular function.

3.1 Weak approximation rate of EM scheme

Let (Rd, h·, ·i, | · |) be the d-dimensional Euclidean space. k · k denotes the

operator norm. Consider the following SDE on R
d:

dXt = b(Xt)dt+ �dWt, X0 = x 2 R
d, (3.1.1)

where (Wt)t�0 is a d-dimensional Brownian motion with respect to a complete

filtration probability space (⌦, (Ft)t�0,F ,P). The associated EM scheme

reads as follows: for any � 2 (0, 1),

dX(�)
t = b(X(�)

t�
)dt+ �dWt, X(�)

0 = x, (3.1.2)

where t� = [t/�]� and [t/�] denotes the integer part of t/�.

To obtain the main result, throughout this chapter, we assume that the

coe�cients of (3.1.1) satisfy the following assumptions:

(H1) b : Rd
! R

d is measurable and � is an invertible d ⇥ d-matrix. There

exist � 2 (0, 1) and nonnegative constants L1 and L2 such that

|b(x)|  L1 + L2|x|
�.

(H2) There exist p0 � 2, ↵ > 0 and � 2 C((0,+1); (0,+1)) with
R
0+ �

2(s)ds <

1 such that

sup
z2Rd

Z

Rd⇥Rd

|b(y)� b(x)|p0
e�

|x�z|2
s

�
|y�x|2

r

s
d

2 r
d

2

dxdy  (�(s)r↵)p0 , s > 0, r 2 [0, 1].
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The index ↵ in (H2) is used to characterise the order of the continuity, and the

function � is used to characterise the type of the continuity. From examples

of Section 3.3, it is clear that functions sharing the same order of continuity

can have di↵erent types of continuity.

By [103, Theorem 1.1], (3.1.1) has a unique strong solution under (H1).

It is clear that (3.1.2) also has a unique strong solution. We denote kfk1 =

sup
x2Rd |f(x)|. We now formulate the main result.

Theorem 3.1.1. Assume (H1)-(H2). Then for any T > 0 and any bounded

measurable function f on R
d, there exists a constant CT,p0,�,x > 0 such that

|Ef(Xt)� Ef(X(�)
t )|  CT,p0,�,xkfk1�

↵, t 2 [0, T ], (3.1.3)

where p0 is defined in (H2). If the growth condition in (H1) is replaced by

|b(x)|  L1+L2|x|, then the conclusion (3.1.3) also holds for time T satisfying

TL2k�
�1
kk�k

p
2(p0 + 1)(p0 + 3)

p0 � 1
< 1. (3.1.4)

Remark 3.1.1. When the drift b is non-regular and b is assumed to be

bounded, there are many results, (e.g. see [5, 45, 46, 77] and references

therein). In particular, we would like to highlight that authors in [77] have

obtained the rate of strong convergence for one-dimensional SDEs if b is in

L1(R) and bounded, and satisfies the Sobolev-Slobodeckij-type regularity.

This result is better than the present one in Theorem 3.1.1. However, results

in [77] relied on an Zvonkin-type transformation which can be given explicitly

in one dimension, and some favourable properties are lost in high dimensions.

The weak convergence rate can not be derived from the strong rate directly

for a bounded and measurable function f . Here, only the Girsanov transfor-

mation is used, while we allow that the SDE is multi-dimensional and that

the drift satisfies sub-linear growth condition. Our assumption (H2) also
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includes the Sobolev-Slobodeckij-type regularity (see Example 3.3.3). To ob-

tain higher convergence rate as in [77], it seems that we need to make a deep

investigation on the Zvonkin-type transformation.

In the assumption (H2), if ↵ is a decreasing function of p0, then we can

choose p0 = 2 and obtain the highest rate of convergence in (3.1.3) (see

Example 3.3.2). Moreover, we obtain the same convergence rate as long as

T satisfies (3.1.4) when b has linear growth.

Remark 3.1.2. In [5], the strong convergence and the convergence rate are

investigated with the drift satisfying an integrability condition and bound-

edness. Here we obtain the weak convergence rate of EM scheme, where the

drift does not need to be bounded, and the test function f in (3.1.3) is only

bounded and measurable, and the convergence rate is better than the rate

obtained in [5, Theorem 1.3].

Remark 3.1.3. In [78], authors considered the weak convergence rate of

the EM scheme for (3.1.1) with the drift b being of sub-linear growth and

b = bH + bA, where bH is ↵-Hölder for some ↵ 2 (0, 1) and bA belongs to a

class A, which does not contain any nontrivial Hölder continuous functions.

The order of the convergence rate obtained in [78] is ↵

2 ^
1
4 , even if bA ⌘ 0.

However, the order of the convergence rate in Theorem 3.1.1 comes from the

continuity order ↵ in (H2), and it can be greater than 1
4 .

The class A in [78, 79] is given by A-approximation. In contrast to the

A-approximation, our condition (H2) is more explicit. For instance, the class

A in [79] is a class of all bounded functions ⇣ : [0, T ] ⇥ R
d
! R such that

there exists a sequence of functions (⇣n)n2N ⇢ C1(Rd) satisfying the following

conditions:

A(i) For any L > 0, sup
t2[0,T ]

R
|x|L

|⇣n(t, x)� ⇣(t, x)|dx ! 0 as n ! 1.
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A(ii) There exists a positive constant K such that for any

sup
t2[0,T ]

sup
n2N

|⇣n(x)|  K.

A(iii) There exists a positive constant K such that for any a 2 R
d and u > 0,

sup
t2[0,T ]

sup
n2N

Z

Rd

kr⇣n(x+ a)k
e�|x|

2
/u

u(d�1)/2
dx < K(1 +

p
u).

Moreover, for any time independent function ⇣ in the class A of [79], ⇣

satisfies (H2) with p0 = 2,↵ = 1
4 and �(s) = s�

1
4

p
1 +

p
s. Indeed, according

to definition of A, the boundedness of ⇣, and there exists a sequence {⇣n}n�1

such that ⇣n 2 C1(Rd) is uniformly bounded and converges to ⇣ locally in

L1(Rd), and there exists K > 0 such that

sup
n�1, a2Rd

Z

Rd

kr⇣n(x+ a)k
e�

|x|2
s

s(d�1)/2
dx  K(1 +

p
s), (3.1.5)

noting the fact that

sup
x�0

(x�
0
e��x

2
) =

⇣ �0

2 e �

⌘�
0
/2

, �0, � > 0, (3.1.6)

we then obtain from (3.1.5) and (3.1.6) that

Z

Rd⇥Rd

|⇣(x)� ⇣(y)|2
e�

|x�z|2
s

�
|x�y|2

r

(sr)
d

2

dxdy

 k⇣k1 lim
n!+1

Z

Rd⇥Rd

|⇣n(x)� ⇣n(y)|
e�

|x�z|2
s

�
|x�y|2

r

(sr)
d

2

dxdy

= k⇣k1 lim
n!+1

Z 1

0

Z

Rd⇥Rd

kry�x⇣n(x+ ✓(y � x))k
e�

|x�z|2
s

�
|x�y|2

r

(sr)
d

2
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|x|2
s

sd/2
dx
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|h|e
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!
d✓
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Rd

Ks�
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|h|e

�|h|2
r

r
d

2
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 Ck⇣k1s�
1
2 (1 +

p
s)r

1
2 ,

where the constant C is independent of z. The class A used in [78] allows

functions in A to be just exponentially bounded (i.e. |⇣(x)|  K eKx, for

all x 2 R
d). However, they assume that the drift is only sub-linear growth.

There is no example showing that the class A used in [78] can contain func-

tions which are more irregular than functions in A of [79].

3.2 Proof of the main theorem

The key point for proving the Theorem 3.1.1 is to construct a reference SDE,

which can provide new representations of (3.1.1) and its EM approximation

SDE (3.1.2) under other probability measures which will be defined in view

of the Girsanov theorem.

We denote by Yt = x + �Wt the reference SDE of (3.1.1). One can see

that Yt is a time homogenous Markov process with heat kernel with respect

to the Lebesgue measure as follows:

pt(x, y) =
exp

n
�

h(��⇤)�1(y�x),(y�x)i
2t

o

p
(2t⇡)d det(��⇤)

, x, y 2 R
d. (3.2.1)

To complete the proof of Theorem 3.1.1, we give the following auxiliary

lemmas.

The first lemma is on the exponential estimate of |b(Yt)|. More precisely,

we give a more general result about the exponential estimate of |b(Yt)| by

using a weaker condition (H1’) below in lieu of assumption (H1).

(H1’) there exist � 2 (0, 1), nonnegative constants L1, L2 and function F � 0

with F 2 Lp1(Rd) for some p1 > d such that

|b(x)|  L1 + L2|x|
� + F (x). (3.2.2)
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Lemma 3.2.1. Assume (H1’). Then, for any � > 0, it holds that

E exp
n
�

Z
T

0

|��1b(Ys)|
2ds

o
< 1. (3.2.3)

Proof. Noting that for any " > 0, it holds that

L1 + L2|x|
�
 L1 + (1� �)L

1
1��

2

��
"

� �

1�� + "|x| =: L(") + "|x|, (3.2.4)

and the elementary inequality

(a+ b+ c)2  (2 +
1

"1
)a2 + (1 + "1 + "2)b

2 + (2 +
1

"2
)c2,

where a, b, c, "1, "2 > 0.

Combing this with (3.2.4) and the Hölder inequality, we derive from

(3.2.2) that

E exp
n
�

Z
T

0

|��1b(Ys)|
2ds

o

 E exp
n
�

Z
T

0

k��1
k
2 (L(") + "|Ys|+ F (Ys))

2 ds
o

 E exp
n
�

Z
T

0

k��1
k
2 ((L(") + "|x|) + "|Ys � x|+ F (Ys))

2 ds
o

 E exp
n
�

Z
T

0

k��1
k
2
⇣ �

2 + "�1
1

�
(L(") + "|x|)2

+ (1 + "1 + "2)"
2
|Ys � x|2 + (2 + "�1

2 )F 2(Ys)
⌘
ds
o

 exp{�Tk��1
k
2(L(") + "|x|)2

�
2 + "�1

1

�
}

⇥

✓
E exp

⇢
�(1 + "1 + "2)

2"2k��1
k
2

Z
T

0

|Ys � x|2ds

�◆ 1
1+"1+"2

⇥

✓
E exp

⇢
�(2 + "�1

2 )(1 + "1 + "2)

"1 + "2
k��1

k
2

Z
T

0

F 2(Ys)ds

�◆ "1+"2
1+"1+"2

= exp{�Tk��1
k
2(L(") + "|x|)2

�
2 + "�1

1

�
}I

1
1+"1+"2
1,T I

"1+"2
1+"1+"2
2,T . (3.2.5)

Noting that F 2 Lp1(Rd), for any 0  S  T and q satisfying d

p1
+ 1

q
< 1, we

obtain that (e.g. see [47])

E

Z
T

S

F 2(Ys)ds
���FS

�
 (T � S)

1
q kFkLp1 , (3.2.6)

27



which yields the following Khasminskii’s estimate (e.g. see [100, Lemma

3.5]): for any C > 0,

E exp

⇢
C

Z
T

0

F 2(Ys)ds

�
< 1. (3.2.7)

This implies that for any "2 > 0,

I2,T < 1. (3.2.8)

For I1,T . Noting the arbitrariness of ", "1 and "2, we can choose them

su�ciently small such that for any T > 0,

1� 2T 2(1 + "1 + "2)
2�"2k��1

k
2
k�k2 =: �̂ > 0.

This, together with the Jensen inequality and the heat kernel (3.2.1),

yields that

I1,T = E exp

⇢
�(1 + "1 + "2)

2"2k��1
k
2

Z
T

0

|Ys � x|2ds

�


1

T

Z
T

0

E exp
�
T�(1 + "1 + "2)

2"2k��1
k
2
|Ys � x|2

 
ds

=

Z
T

0

Z

Rd

exp
n
T�(1 + "1 + "2)2"2k��1

k
2
|y|2 � |�

�1
y|

2

2s

o

T
p
(2s⇡)d det(��⇤)

dyds



Z
T

0

Z

Rd

exp
n
�(1�2sT�(1+"1+"2)2"2k��1

k
2
k�k

2

2s )|��1y|2
o

T
p

(2s⇡)d det(��⇤)
dyds



Z
T

0

Z

Rd

exp
n
�( �̂

2s)|�
�1y|2

o

T
p
(2s⇡)d det(��⇤)

dyds

= �̂�
d

2 < 1. (3.2.9)

(3.2.3) follows by plugging (3.2.9) and (3.2.8) into (3.2.5).

The following lemma deals with the exponential estimate of |b(Yt�
)|, where

{Yt�
}t2[0,T ] denotes solution to the discrete-time EM scheme.
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Lemma 3.2.2. Assume (H1). Then, for any T > 0 and � > 0, it holds that

sup
0<�<1^T

E exp
n
�

Z
T

0

|��1b(Ys�
)|2ds

o
< 1. (3.2.10)

Proof. Splitting the time interval and applying (3.2.4), the elementary in-

equality, it yields that

E exp
n
�

Z
T

0

|��1b(Ys�
)|2ds

o

= E exp
n
�

Z
�

0

|��1b(Ys�
)|2ds

o
+ E exp

n
�

Z
T

�

|��1b(Ys�
)|2ds

o

 exp
�
��k��1

k
2(L(") + "x)2

 

+ E exp
n
�

Z
T

�

k��1
k
2
|L(") + "x+ "(Ys�

� x)|2ds
o

 exp{��k��1
k
2(L(") + "x)2}+ exp{�(T � �)k��1

k
2(L(") + "|x|)2

�
1 + "�1

1

�
}

⇥ E exp

⇢
�(1 + "1)"

2
k��1

k
2

Z
T

�

|Ys�
� x|2ds

�
.

(3.2.11)

Noting the arbitrariness of ", "1, we can choose them su�ciently small such

that for any T > 0,

1� 2T 2�(1 + "1)"
2
k��1

k
2
k�k2 =: �̆ > 0.

This, together with the Jensen inequality and (3.2.1), we obtain

E exp

⇢
�(1 + "1)"

2
k��1

k
2

Z
T

�

|Ys�
� x|2ds

�


1

T � �

Z
T

�

E exp{(T � �)�(1 + "1)"
2
k��1

k
2
|Ys�

� x|2}ds



Z
T

�

Z

Rd

exp{(T � �)�(1 + "1)"2k��1
k
2
|y|2 � h(��⇤)�1

y,yi

2s�
}

(T � �)
p

(2⇡s�)d det (��⇤)
dyds



Z
T

�

Z

Rd

exp{(T � �)�(1 + "1)"2k��1
k
2
k�k2|��1y|2 � |�

�1
y|

2

2s�
}

(T � �)
p

(2⇡s�)d det (��⇤)
dyds
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

Z
T

�

Z

Rd

exp{� (1�2(T��)2�(1+"1)"2k��1
k
2
k�k

2)
2s�

|��1y|2}

(T � �)
p
(2⇡s�)d det (��⇤)

dyds



Z
T

�

Z

Rd

exp{� (1�2T 2
�(1+"1)"2k��1

k
2
k�k

2)
2s�

|��1y|2}

(T � �)
p

(2⇡s�)d det (��⇤)
dyds

= �̆�
d

2 < 1. (3.2.12)

Combining this with (3.2.11), it implies that (3.2.10) holds.

Remark 3.2.1. According to the proofs of Lemma 3.2.1 and Lemma 3.2.2

(see (3.2.9), (3.2.12), and the definitions of �̂ and �̆), we have that " = O(T�1)

as T ! +1. From (3.2.4), the constant TL2(") in (3.2.5) and (3.2.11) is of

the order (1� �)2(L
2

1+�

2 T )
1+�

1�� . Hence, the larger L
2

1+�

2 T , the closer � is to 1,

the greater the upper bound of (3.2.3) and (3.2.10).

Lemma 3.2.1 and Lemma 3.2.2 serve to use the Novikov condition in the

proof of Theorem 3.1.1. For the case of � < 1, we have that � in both lemmas

is arbitrary. For the case of � = 1, with " = L2 and L(") = L1 in (3.2.4), one

can see from �̂ and �̆ that for any � > 0 and T > 0 satisfying the following

condition

2T 2�L2
2k�

�1
k
2
k�k2 < 1. (3.2.13)

Since we can choose "1 and "2 to be su�ciently small, it yields that (3.2.9)

and (3.2.12) hold.

Remark 3.2.2. The Krylov estimate (3.2.6) fails for Ys�
(see [5, Remark 2.5

] or [89]). Hence, we use (H1) in Lemma 3.2.2 instead of (H1’).

Lemma 3.2.3. Assume (H2). Then there exists a constant C� such that for

all 0 < s  t  T we have

E|b(Yt)� b(Ys)|
p0  C�(�(2sk�k

2)(2(t� s)k�k2)↵)p0 , (3.2.14)
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where � is the constant matrix of the reference SDE, p0, � and ↵ are defined

as in assumption (H2).

Proof. By the definition of reference SDE, it is easy to see that

E|b(Yt)� b(Ys)|
p0 = E|b(x+ �Wt)� b(x+ �Ws)|

p0 .

Noting that Wt � Ws and Ws are mutually independent, we obtain from

(3.2.1) and (H2) that

E|b(x+ �Wt)� b(x+ �Ws)|
p0
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Z

Rd

Z

Rd
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=
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p
(2⇡(t� s))d det(��⇤)
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(2⇡s)d det(��⇤)
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
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e
�
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�

|z|2

2k�k2s

(2(t� s)k�k2)d/2(2sk�k2)d/2
dydz
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⇡d det(��⇤)

Z

Rd

Z

Rd

|b(u)� b(v)|p0
e
�

|u�v|2

2k�k2(t�s) e
�

|v�x|2

2k�k2s

(2(t� s)k�k2)d/2(2sk�k2)d/2
dudv

 sup
x2Rd

k�k2d

⇡d det(��⇤)

Z

Rd

Z
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|b(u)� b(v)|p0
e
�

|u�v|2

2k�k2(t�s) e
�

|v�x|2

2k�k2s

(2(t� s)k�k2)d/2(2sk�k2)d/2
dudv


k�k2d

⇡d det(��⇤)
(�(2sk�k2)(2(t� s)k�k2)↵)p0 ,

which implies that (3.2.14) holds by taking C� = k�k
2d

⇡d det(��⇤) .

Now, we are in position to finish the Proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. Let

Ŵt = Wt �

Z
t

0

��1b(Ys)ds, W̃t = Wt �

Z
t

0

��1b(Ys�
)ds,

R1,T = exp
nZ T

0

h��1b(Ys), dWsi �
1

2

Z
T

0

|��1b(Ys)|
2ds

o
,
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R2,T = exp
nZ T

0

h��1b(Ys�
), dWsi �

1

2

Z
T

0

����1b(Ys�
)
��2ds

o
.

The proof is divided into two steps:

Step (i), we shall prove that the assertion holds under (H1) and (H2).

We first show that {Ŵt}t2[0,T ] is a Brownian motion under Q1 := R1,TP,

and {W̃t}t2[0,T ] is a Brownian motion under Q2 := R2,TP. In view of Lemma

3.2.1, the Girsanov theorem implies that {R1,t}t2[0,T ] is a martingale and

{Ŵt}t2[0,T ] is a Brownian motion under Q1. Similarly, it follows from Lemma

3.2.2 and Novikov’s condition that {W̃t}t2[0,T ] is a Brownian motion under

Q2.

Then, we can reformulate the reference SDE Yt = x+ �Wt as follows:

Yt = x+

Z
t

0

b(Ys)ds+ �Ŵt,

which means that (Yt, Ŵt) under Q1 is a weak solution of (3.1.1). Hence, Yt

under Q1 has the same law of Xt under P due to the pathwise uniqueness of

the solutions to (3.1.1). Similarly, reformulating Yt = x+ �Wt as follows:

Yt = x+

Z
t

0

b(Ys�
)ds+ �W̃t, (3.2.15)

(Yt, W̃t) under Q2 is also a weak solution of (3.1.2), which has a pathwise

unique solution. Hence Yt under Q2 has the same law of X(�)
t under P.

From these equivalent relations, we obtain that for any bounded measur-

able function f on R
d,

|Ef(Xt)� Ef(X(�)
t )| = |EQ1f(Yt)� EQ2f(Yt)|

= E|(R1,T �R2,T )f(Yt)|  kfk1E|R1,T �R2,T |.

Using the inequality | ex � ey |  (ex _ ey)|x � y|, Hölder’s inequality and

Minkowski’s inequality, we obtain from the definitions of R1,T and R2,T that

E|R1,T �R2,T |
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(3.2.16)

Let

M1,t =

Z
t

0

h��1b(Ys), dWsi and M2,t =

Z
t

0

h��1b(Ys�
), dWsi.

For any q > 1, using Hölder’s inequality and the fact that M̂i,t := e2qMi,t�2q2hMi,·it , i =

1, 2, is an exponential martingale, we arrive at
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Z
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.
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Similarly, we have
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⇣
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Z
T

0

|��1b(Ys)|
2ds
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.

In view of Lemma 3.2.1, we then have that

E

✓
R

p0+1
p0�1

1,T +R
p0

p0�1

1,T

◆
< 1. (3.2.17)

Similarly, we can prove by Lemma 3.2.2 that

E
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◆
< 1. (3.2.18)

Noting that
R
0+ �

2(s)ds < 1. Using Riemann sums we obtain that
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This, together with the Burkholder-Davis-Gundy (abbreviated as BDG) in-

equality and Lemma 4.2.15, yields that for p0 � 2,
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Noting that for any p � 1
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we derive from (3.2.4) and (3.2.19) that

✓
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Combining this with Lemma 4.2.15, (3.2.19) and Hölder’s inequality, we ob-

tain

G2,T =
1

2

Z
T

0

✓
E

���|��1b(Ys�
)|2 � |��1b(Ys)|

2
���
p0+1

2

◆ 2
p0+1

ds


k��1

k
2

2

Z
T

0

⇣
E|b(Ys)� b(Ys�

)|
p0+1

2 |b(Ys) + b(Ys�
)|

p0+1
2

⌘ 2
p0+1

ds


k��1

k
2

2

Z
T

0

(E|b(Ys)� b(Ys�
)|p0)

1
p0

✓
E|b(Ys) + b(Ys�

)|
p0(p0+1)

p0�1

◆ p0�1
p0(p0+1)

ds


k��1

k
2

2
CT,p0,�,L1,L2,x

Z
T

0

(E|b(Ys)� b(Ys�
)|p0)

1
p0 ds

 CT,p0,�,L("),",�,x�
↵, (3.2.22)

where

CT,p0,�,L("),",�,x =
2↵�2

k�k
2d
p0

+2↵�2
k��1

k
2CT,p0,�,L("),",x

(⇡d det(��⇤))
1
p0

Z 2k�k2T

0

�(s)ds.

The desired assertion (3.1.3) is proved by substituting (3.2.17), (3.2.18),

(3.2.20) and (3.2.22) into (3.2.16). Thus, we verified that the conclusion

holds under (H1) and (H2).

Step (ii), we prove that if b satisfies the linear growth condition, then the

conclusion (3.1.3) holds for time T satisfying (3.1.4). By Remark 3.2.1, we

can arrive at the conclusions of Lemma 3.2.1 and Lemma 3.2.2 for any �, T
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satisfying (3.2.13). Then, by checking step (i), for any � satisfying (3.2.13),

we have that

n
E exp

n
�

Z
T

0

|��1b(Ys)|
2ds

oo
_

n
sup

0<�1^T
E exp

n
�

Z
T

0

|��1b(Ys�
)|2ds

oo
< 1.

(3.2.23)

Combining this with (3.1.4), we have that

E exp

⇢
(p0 + 3)(p0 + 1)

(p0 � 1)2

Z
T

0

|��1b(Ys)|
2ds

�
< 1. (3.2.24)

It is clear that (p0+3)(p0+1)
(p0�1)2 > p0(p0+1)

(p0�1)2 > 1
2 . Taking the same arguments as in

step (i), we can then arrive at the second conclusion. The proof is therefore

complete.

Remark 3.2.3. According to the proof of this theorem, the reason why

the test function f in (3.1.3) can only be bounded measurable is that the

distributions of X(�)
t and Xt come from the same process Yt = x + �Wt by

using Girsanov’s transformation. This fails for the multiplicative noise case.

3.3 Illustrative examples

According to the proof of Theorem 3.1.1, the condition (H2) comes from the

use of the heat kernel of �Wt, (see (3.2.1) and the proof of Lemma 4.2.15).

In this section, we give several examples to illustrate the condition (H2) and

the convergence rate ↵.

Example 3.3.1. If b is Hölder continuous with exponent �, i.e.

|b(y)� b(x)|  L|x� y|�,

then (H2) holds with ↵ = �

2 and a constant function �(s). It is clear that b

has sublinear growth if � < 1. Then for any T > 0, (3.1.3) holds with ↵ = �

2 .
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Proof. By the Hölder continuity and (3.1.6), the assertion follows from the

following inequality

sup
z2Rd

Z

Rd⇥Rd

|b(y)� b(x)|p0
e�

|x�z|2
s

�
|y�x|2

r

s
d

2 r
d

2

dxdy

 Lp0 sup
z2Rd

Z

Rd⇥Rd

|y � x|�p0
e�

|x�z|2
s

�
|y�x|2

r

s
d

2 r
d

2

dxdy

 Lp0
1

s
d

2 r
d

2

✓
�p0r

e

◆�p0
2

sup
z2Rd

Z

Rd⇥Rd

e�
|x�z|2

s e�
|y�x|2

2r dxdy

 CLp0

✓
�p0r

e

◆�p0
2

.

The following example shows that (H2) can hold even if the drift term b

is not piecewise continuous.

Example 3.3.2. Let A be the Smith-Volterra-Cantor set on [0, 1], which

is constructed in the following way. As the first step, we let I1,1 =
�
3
8 ,

5
8

�
,

J1,1 =
⇥
0, 38

⇤
, J1,2 = [58 , 1] and we remove the open interval I1,1. As the second

step, we remove the middle 1
42 open intervals, denoting by I2,1 and I2,2, from

J1,1 and J1,2 respectively, i.e. I2,1 =
�

5
32 ,

7
32

�
, I2,2 =

�
25
32 ,

27
32

�
. The intervals

left are denoted by J2,1, J2,2, J2,3, J2,4, i.e.

J2,1 =


0,

5

32

�
, J2,2 =


7

32
,
3

8

�
, J2,3 =


5

8
,
25

32

�
, J2,4 =


27

32
, 1

�
.

For the n-th step, we remove the middle 1
4n open intervals In,1, · · · , In,2n�1

from Jn�1,1, · · · , Jn�1,2n�1 respectively, and the intervals left are denoted by

Jn,1, · · · , Jn,2n. Let

A =
1\

n=1

 
2n[

k=1

Jn,k

!
.

Then A is a nowhere dense set and the Lebesgue measure of A is 1/2. Define

b(x) = 1[0,1](x)�
1X

n=1

2n�1X

j=1

2�(n+j)1In,j
(x)
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= 1A(x) +
1X

n=1

2n�1X

j=1

�
1� 2�(n+j)

�
1In,j

(x).

All of the endpoints of the intervals Īn,j are the discontinuous points of b,

which is dense in A. For any interval I ⇢ [0, 1] such that I\A 6= ;, it always

contains the discontinuous points of b. However, any interval I ⇢ [0, 1] such

that I \ A = ;, it is a subset of some In,j. Hence, b is not a piecewise

continuous function. In the following, we shall show that b satisfies condition

(H2) with p0 = 2, ↵ = 1
4 and �(s) = Cs�

1
4 .

Proof. For u > 0 and any interval (a1, a2) (it is similar for [a1, a2]), it yields

that
Z +1

�1

��1(a1,a2)(x+ u)� 1(a1,a2)(x)
��2 dx

=

Z
a2�u

a1�u

1(a1,a2)c(x)dx+

Z
a2

a1

1(a1�u,a2�u)c(x)dx

=

Z (a2�u)^a1

a1�u

dx+

Z
a2

(a2�u)_a1

dx

 2 (|u| ^ (a2 � a1)) .

For u < 0, we obtain that
Z +1

�1

��1(a1,a2)(x+ u)� 1(a1,a2)(x)
��2 dx

=

Z +1

�1

��1(a1,a2)(v)� 1(a1,a2)(v � u)
��2 dv  2 (|u| ^ (a2 � a1)) .

Hence, by Jensen’s inequality, it yields that
Z +1

�1

|b(x+ u)� b(x)|2dx



Z +1

�1

⇣ ��1[0,1](x+ u)� 1[0,1](x)
��

+
+1X

n=1

2n�1X

j=1

2�(n+j)
��1In,j

(x+ z)� 1In,j
(x)

��
⌘2

dx
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

 
1 +

+1X

n=1

2n�1X

j=1

2�(n+j)

!⇢Z +1

�1

��1[0,1](x+ u)� 1[0,1](x)
��2 dx

+
+1X

n=1

2n�1X

j=1

2�(n+j)

Z +1

�1

��1In,j
(x+ u)� 1In,j

(x)
��2 dx

)

 2

 
1 +

1X

n=1

2n�1X

j=1

2�(n+j)

!2

|u| = 4|u|.

Combining this with (3.1.6), we obtain that

sup
z2R

Z

R⇥R

|b(y)� b(x)|2
e�

|x�z|2
s e�

|y�x|2
r

s
1
2 r

1
2

dxdy


1

s
1
2 r

1
2

Z

R

e�
|u|2
r

Z

R

|b(x+ u)� b(x)|2dxdu


4

s
1
2 r

1
2

Z

R

e�
|u|2
r |u|du =

⇣
Cs�

1
4 r

1
4

⌘2

.

A general class of functions that satisfies (H2) is the (fractional) Sobolev

space W �,p(Rd), see the following example:

Example 3.3.3. If there exist � > 0 and p 2 [2,1)\ (d,+1) such that the

Gagliardo seminorm of b is finite, i.e.

[b]
W�,p :=

✓Z

Rd⇥Rd

|b(x)� b(y)|p

|x� y|d+�p
dxdy

◆ 1
p

< 1,

then (H2) holds for any p0 = p with ↵ = �

2 and �(s) = C1s�
d

2 [b]p
W�,p. Hence,

if b satisfies (H1) and [b]
W�,p < 1 with p 2 [2,1) \ (d,+1), then (3.1.3)

holds.

Proof. Indeed, by Hölder’s inequality and (3.1.6), it follows that

1

(rs)
d

2

Z

Rd⇥Rd

|b(y)� b(x)|p e�
|x�z|2

s
�

|y�x|2
r dxdy
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=
1

(rs)
d

2

Z

Rd⇥Rd

|b(x)� b(y)|p

|x� y|d+�p
e�

|x�z|2
s

�
|y�x|2

r |x� y|d+�pdxdy

 C1s
�

d

2 r
�p

2

Z

Rd⇥Rd

|b(x)� b(y)|p

|x� y|d+�p
e�

|x�z|2
s

�
|y�x|2

2r dxdy

 C1s
�

d

2 r
�p

2 [b]p
W�,p .

From these examples, one can see that the drift could be very irregular.

This means that we have extended the results in [3] where the coe�cients

must be smooth. However, our method is not optimal in the Lipschitz case

since the classical weak convergence rate is ↵ = 1 for SDEs with smooth

coe�cients in [3].
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Chapter 4

Weak approximation for

stochastic functional

di↵erential equations driven by

fractional Brownian motion

In this chapter, we investigate the weak existence and uniqueness of SFDEs

with singular coe�cients, and obtain the associated weak approximation of

its truncated EM scheme.

In Section 4.1, we first give the associated assumptions about the coe�-

cients of the model, we then obtain the first main result about the existence

and uniqueness of solutions to the model. Section 4.2 is devoted to the proof

of the first main result (i.e. Theorem 4.1.1). In Section 4.3, we first introduce

other assumptions about the coe�cients in our framework (that is, weak ap-

proximation rate of EM scheme for the model (4.1.1)) and establish the main

result (i.e. Theorem 4.3.1). Finally, Section 4.4 is devoted to the proof of

Theorem 4.3.1.
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4.1 Well-posedness of stochastic functional dif-

ferential equations

Let (Rd, h·, ·i, | · |) be the d-dimensional Euclidean space. Let Rd
⌦R

m be the

set of all d⇥m-matrices. Let ⌧ > 0 be a fixed number and C = C([�⌧, 0];Rd),

which is endowed with the uniform norm kfk1 := sup
�⌧✓0 |f(✓)|. For

f 2 C([�⌧,1);Rd) and fixed t > 0, define the segment ft 2 C by ft(✓) =

f(t + ✓), ✓ 2 [�⌧, 0]. Bb(Rd) be the collection of all bounded measurable

functions on R
d. For any ↵ 2 (0, 1), let C↵(a, b) be the space of ↵-Hölder

continuous functions f on the interval [a, b] and set

kfka,b,↵ := sup
astb

|f(t)� f(s)|

|t� s|↵
.

In this chapter, for H 2 (12 , 1), we consider the following equation:

dX(t) = {b(X(t)) + �Z(Xt)}dt+ �dBH(t), t > 0, (4.1.1)

with the initial datum X0 = ⇠ 2 C , where � 2 R
d
⌦R

m, b : Rd
! R

d, d � m

and Z : C ! R
m are measurable, Xt is the segment process of X(t), and

BH(t) is an m-dimensional fBm on a complete filtration probability space

(⌦,F , (Ft)t�0,P). Consider a reference SDE as follows:

dY (t) = b(Y (t))dt+ �dBH(t), t > 0, Y (0) 2 R
d. (4.1.2)

Let ⇠ 2 C , and let Y ⇠(0)(·) be a solution of (4.1.2) with Y ⇠(0)(0) = ⇠(0). We

extend Y ⇠(0)(·) from [0,1) to [�⌧,1) in the following way:

Y ⇠(t) = ⇠(t)I[�⌧,0)(t) + Y ⇠(0)(t)I[0,1)(t), t 2 [�⌧,1), ⇠ 2 C . (4.1.3)

The weak existence and uniqueness of solutions to (4.1.1) will then be studied

by using Girsanov’s transform and the extended solutions to the reference

equation (4.1.2).
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Before move on, we first introduce the following assumptions on b and Z

for the weak existence and uniqueness result.

(A1) There exists a constant K1 2 R such that

hb(x)� b(y), x� yi  K1|x� y|2, x, y 2 R
d.

(A2) There exist C1 > 0 and q0 � 0 such that |b(x)|  C1(1+ |x|q0), x 2 R
d.

(A3) There exist ↵ 2 (H � 1/2, 1], p > 0, C2 > 0, C3 � 0 and q1 � 0 such

that

|Z(⌘1)� Z(⌘2)|  C2k⌘1 � ⌘2k
↵

1
(1 + k⌘1k

p

1
+ k⌘2k

p

1
) , (4.1.4)

h�Z(⌘1 + ⌘2), ⌘1(0)i  C3

�
1 + k⌘2k

q1
1
+ k⌘1k

2
1

�
, ⌘1, ⌘2 2 C . (4.1.5)

Then, we give the first main result of existence and uniqueness of weak

solutions to (4.1.1).

Theorem 4.1.1. Assume (A1)-(A3). For any ⇠ 2 C , there exist ✓ 2

(2H�1
2↵ , 1] and C̄1 > 0 such that

|⇠(r)� ⇠(s)|  C̄1|r � s|✓, � ⌧  r  s  0, (4.1.6)

then the equation (4.1.1) has a unique weak solution with X0 = ⇠.

Remark 4.1.1. The condition (4.1.6) is for us to use Girsanov’s transfor-

mation to remove the drift term Z(·) of equation (4.1.1). For given T > 0,

8� 2 C([�⌧, T ],Rd) with �0 = ⇠0, to ensure that {
R

s

0 Z(�r)dr}s2[0,T ] be-

longs to the Cameron-Martin space of the fBm, it is necessary that the in-

tegral
R

·

0 Z(�s)ds 2 I
H+ 1

2
0+ (L2([0, T ],Rd)). This means that we need Z(�·) 2

I
H�

1
2

0+ (L2([0, T ],Rd)). Note that for t 2 [0, T ^ ⌧ ], we have

k�·k0,t,✓ = sup
0rut

k�u � �rk1
|u� r|✓

= sup
0rut,v2[�⌧,0]

|�(u+ v)� �(r + v)|

(u� r)✓
� k⇠k�⌧,0,✓.
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Hence, despite imposing the regularity condition (4.1.4) on Z, we also need

an additional assumption on the initial value ⇠. If Z is ↵-Hölder continuous

and ⇠ is ✓-Hölder continuous, then our conditions on ⇠ yield that ✓↵ > H�
1
2 ,

which ensures that {
R

s

0 Z(�r)dr}s2[0,T ] is in the Cameron-Martin space (see

(4.2.13) for more details).

4.2 Proof of the main theorem

Before giving the proof of Theorem 4.1.1, we first introduce the following

lemma on the existence and uniqueness of solutions to reference SDE (4.1.2).

Lemma 4.2.1. Assume (A1). Then (4.1.2) has a unique strong solution and

|Y (t)|  e
K̄2t
2 |Y (0)|+

p
K̄2

✓Z
t

0

eK̄1(t�r)
��b(�BH(r))

��2 dr
◆ 1

2

+ |�BH(t)|, t � 0.

(4.2.1)

Furthermore, if (A2) holds, then

EkY k
q

0,t,� < 1, q > 0, t > 0, 0 < � < H.

Proof. (1) Let U(t) = Y (t)� �BH(t). Then U(t) satisfies

dU(t) = b(U(t) + �BH(t))dt, U(0) = Y (0). (4.2.2)

Set b̄(u, t) = b(u+ �BH(t)). Then one can see from (A1) that

hb̄(u1, t)� b̄(u2, t), u1 � u2i  K1|u1 � u2|
2,

which implies that (4.2.2) has a unique solution. Moreover, it follows from

the chain rule and the Hölder inequality that

d|U(t)|2 = 2hb̄(U(t), t), U(t)idt

44



 2K1|U(t)|2 + 2hb(�BH(t)), U(t)idt

 K̄1|U(t)|2dt+ K̄2

��b(�BH(t))
��2 dt,

which implies that

|U(t)|2 
n
K̄2

Z
t

s

��b(�BH(r))
��2 dr + |U(s)|2

o
eK̄1(t�s) .

This, together with U(t) = Y (t)� �BH(t), yields that for any t � s

|Y (t)|  e
1
2 (t�s)K̄1 |Y (s)|+

p
K̄2

✓Z
t

s

eK̄1(t�r)
��b(�BH(r))

��2 dr
◆ 1

2

+ e
K̄1(t�s)

2 |�BH(s)|+ |�BH(t)|,

which implies our first claim (4.2.1).

(2) For any 0 < � < H, we derive from (A2) that

|Y (t)� Y (s)|

(t� s)�


1

(t� s)�

Z
t

s

|b(Y (r))|dr + k�kkBH
k0,t,�


C1

(t� s)�

Z
t

s

(1 + |Y (r)|q0) dr + k�kkBH
k0,t,�

 C1(t� s)1�� + k�kkBH
k0,t,� + C13

(q0�1)+(t� s)1�� e
tK̄

+
1 q0
2 |Y (0)|q0

+ C13
(q0�1)+

⇣p
K̄2C1

�
1 + k�kq0kBH

k
q0
0,t,1

�⌘q0

e
q0K̄

+
1 t

2 tq0(t� s)1��

+ C13
(q0�1)+

�
k�kkBH

k0,t,1

�q0 (t� s)1��,

which yields

kY k0,t,� (4.2.3)

 C1t
1�� + k�kkBH

k0,t,� + C13
(q0�1)+t1��

k�kq0kBH
k
q0
0,t,1

+ C13
(q0�1)+t1�� e

tK̄
+
1 q0
2

⇣
kY k0,t,1 + tq0

⇣p
K̄2C1

�
1 + k�kq0kBH

k
q0
0,t,1

�⌘q0
⌘
.

(4.2.4)

Combining this with (4.2.1), it is clear that our second claim holds.
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Fix any T > 0. Let

n
B̃H(t)

o

t2[0,T ]
=

⇢
BH(t)�

Z
t

0

Z(Y ⇠

s
)ds

�

t2[0,T ]

,

R⇠(t) = exp

✓Z
t

0

⌧
K�1

H

✓Z
·

0

Z(Y ⇠

r
)dr

◆
(s), dB(s)

�

�
1

2

Z
t

0

����K
�1
H

✓Z
·

0

Z(Y ⇠

r
)dr

◆����
2

(s)ds

!
, t 2 [0, T ], (4.2.5)

where B(t)t�0 is a standard d-dimensional Brownian motion, and Y ⇠ satisfies

the following SDE

dY ⇠(t) = b(Y ⇠(t))dt+ �Z(Y ⇠

t )dt+ �dB̃H(t). (4.2.6)

The following lemma is for the investigation of the exponential martingale,

which is crucial to prove Theorem 4.1.1.

Lemma 4.2.2. Let the assumptions of Theorem 4.1.1 hold. Then

(1)
n
B̃H(t)

o

t2[0,T ]
is a fBm under R⇠(T )P.

(2) Assume in addition that q0 = 1 in (A2). If there exist C4 � 0, C5 � 0

and p 2 (0, 1) such that

|Z(⌘1)� Z(⌘2)|  C4{k⌘1 � ⌘2k
↵

1
^ (1 + C5(k⌘1k

p

1
+ k⌘2k

p

1
))},

(4.2.7)

then for any C � 0, it holds that

E exp

(
C

Z
T

0

����K
�1
H

✓Z
·

0

Z(Y ⇠

r
)dr

◆����
2

(s)ds

)
< 1. (4.2.8)

(3) If q0 = 1, (4.2.7) holds with p = 1 and T > 0 satisfying

1

(1�H)⇡

n
24C2

4C
2
5T

2(H � 1/2)2k�k2 +
n3✓2T 3�2H22H�1

(✓ �H + 1
2)

2
k�k2

(4.2.9)
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+ 3C2
4T

2(1+↵✓�✓)(1 + (H � 1/2)2C2
0)k�k

2↵
o
1[↵=1]

o

 2�9
n
1 + C1Te

TK̄
+
1

2

⇣
L1�(K̄1, K̄2, T ) + 2 + T

p
K̄2C1

⌘o�2

,

(4.2.10)

where C0 is defined in Theorem 4.3.1, then (4.2.8) holds for some C >

1.

Proof. If (4.1.6) holds for ✓ � H, then one sees that (4.1.6) holds for ✓ 2

(H�1/2, H). Hence, we shall assume that ✓ 2 (H�1/2, H) in the following

proof.
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where B is Beta function.

Combining this with (4.2.12), we arrive at
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Let

⌧n = inf
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We then know {R⇠(r^⌧n)}r2[0,T ] which was defined in (4.2.5) is an exponential

martingale. The Girsanov theorem (e.g. see [81, Proposition 4.1.2]) implies

that
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Let u⇠(t) = Y ⇠(t)��B̃H
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Combining this with Gronwall’s lemma, it yields that
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Similarly, following the proof of (4.2.3), we get for � 2 (0, H) that
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Combining this with (4.2.15), and that {B̃H

n
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Hence, it follows from the Fatou lemma and the martingale convergence
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For J3, one gets from (4.2.7) that
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where we used [31, Lemma 3.4] in the last inequality, and it yields that

|J3(s)|
2
 C6s

1�2H(1 + C5kY
⇠
k
p

�⌧,s,1)2

+ C7

�
1 + C5kY

⇠
k
p

�⌧,s,1

� 2✓↵�2H+1
✓↵

kY ⇠
k

2H�1
✓

�⌧,s,✓
, (4.2.18)

where

C6 = 8C2
4 , C7 =

✓
✓↵2H

(↵✓ �H + 1/2)(H � 1/2)

◆2

.

Since kY ⇠
k�⌧,s,1  (s _ ⌧)✓kY ⇠

k�⌧,s,✓ + |⇠(0)|, it follows from (4.2.17) and

(4.2.18) that

E exp

(
C

Z
T

0

����K
�1
H

✓Z
·

0

Z(Y ⇠

r
)dr

◆
(s)

����
2

ds

)

 E exp

✓
CT

✓
1 + kY ⇠

k
2p_ 2✓↵p+(2H�1)(↵�p)

✓↵

�⌧,T,✓

◆◆

= E exp

✓
CT

✓
1 + kY ⇠

k
2p+ (2H�1)(↵�p)+

✓↵

�⌧,T,✓

◆◆
.

For p < 1, it is clear that
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Then (4.2.8) follows from (4.2.3) with q0 = 1, � = ✓ and the Fernique-type

lemma 2.2.1.

(3) For p = 1, substituting (4.2.17) and (4.2.18) into (4.2.11), we have
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It follows from (4.2.1) and (A2) with q0 = 1, we have
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Therefore, for T > 0 such that (4.2.9) holds, it follows from Lemma 2.2.1

that there is some C > 1 such that
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Proof of Theorem 4.1.1

We first show the existence of weak solution to (4.1.1). It follows from

(A1)-(A3) and Lemma 4.2.2 that R⇠(t) is an exponential martingale. Then

the Girsanov theorem implies that B̃H(t) is a fBm under Q
⇠ := R⇠(T )P.

Reformulating the reference equation (4.1.2) as equation (4.2.6), then under

the complete filtration probability (⌦,F , (Ft)t2[0,T ],Q⇠), (Y ⇠(t), B̃H(t))t2[0,T ]

is a weak solution of (4.1.1).

We shall show the uniqueness of weak solutions to (4.1.1) (see [97, The-

orem 2.1] for more proof details). For the rest of this section, we sketch the

proof as follows:
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For i = 1, 2, let (Y (i),⇠(t), BH
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under Q(i)
n coincides with the law of (Y ⇠(t), BH(t))
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Consequently,
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holds for any n � 1. Letting n ! 1, we obtain

EP(1)

h
F
⇣
Y (1),⇠([0, T ]), BH

1 ([0, T ])
⌘i

= EP(2)

h
F
⇣
Y (2),⇠([0, T ]), BH

2 ([0, T ])
⌘i

.

This, together with the arbitrariness of F , yields that P(1),⇠ = P
(2),⇠. Thus,

the uniqueness of weak solution to (4.1.1) is verified.

4.3 Weak approximation rate of EM scheme

In this section, we shall study the weak convergence of the numerical approxi-

mation to (4.1.1). In (4.1.1), � is a d⇥m matrix with d � m. For d > m, this
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equation is obviously degenerate. In this case, we shall introduce the pseudo-

inverse of � to cover some degenerate models, such as stochastic Hamiltonian

systems. Denote by Ran(�) the range of �, i.e. Ran(�) = �(Rm). If Ran(�)

contains nonzero vectors, then ��⇤ is a bijective from Ran(�) onto Ran(�),

whose inverse is denoted by (��⇤)�1
���
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. Let ⇡⇤ be the orthogonal projec-

tion from R
d to Ran(�). Then R

d has the following decomposition:

R
d = ⇡⇤R

d
� (Id⇥d � ⇡⇤)R

d
⌘ Ran(�)� (Id⇥d � ⇡⇤)R

d,

where Id⇥d is the identity matrix of Rd. We define �̂�1, the pseudo-inverse

of �, as follows

�̂�1v = �⇤

✓
(��⇤)�1

���
Ran(�)

⇡⇤v

◆
, v 2 R

d.

Then k�̂�1
k =

����(��
⇤)�1

���
Ran(�)

����. In particular, if � is of the form

0

@ 0

�0

1

A

with �0 is an invertible m ⇥m-matrix and 0 is a (d �m) ⇥m zero matrix,

then

�̂�1 =
�
0⇤, ��1

0

�
, k�̂�1

k = k��1
0 k.

To obtain the result of numerical approximation, we give stronger as-

sumptions on b and Z as follows:

(H1) (A1) holds and there exists a constant L1 > 0 such that

|b(x)� b(y)|  L1|x� y|, x, y 2 R
d. (4.3.1)

Moreover, if Ran(�) 6= R
d, we also assume that there exist a matrix A

on (Id⇥d � ⇡⇤)(Rd) and a measurable function b⇤ : Ran(�) ! (Id⇥d �

⇡⇤)(Rd) such that

(Id⇥d � ⇡⇤)b(x) = A(Id⇥d � ⇡⇤)x+ b⇤(⇡⇤x), x 2 R
d.
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(H2) Z is Hölder continuous with the exponent ↵ 2 (1� 1
2H , 1], that is

|Z(⇠)� Z(⌘)|  L2k⇠ � ⌘k↵
1
, ⇠, ⌘ 2 C . (4.3.2)

(H3) the initial value ⇠ 2 C is Hölder continuous with exponent ✓ 2 (2H�1
2↵ , 1],

that is,

|⇠(t)� ⇠(s)|  L3|t� s|✓, s, t 2 [�⌧, 0]. (4.3.3)

By these conditions, it follows from Theorem 4.1.1 that (4.1.1) has a unique

weak solution with X0 = ⇠.

Remark 4.3.1. Since the pseudo-inverse of � is the inverse of � if it is

invertible, our setting can unify non-degenerate and some degenerate models.

A typical example for the equation with {0} ( Ran(�) ( R
d is the following

stochastic Hamiltonian system (d = 2m):

8
<

:
dX(1)(t) = X(2)(t)dt

dX(2)(t) = b0(X(1)(t), X(2)(t))dt+ Z0(X
(1)
t , X(2)

t )dt+ �0dBH(t),

where �0 is an invertible m⇥m-matrix. For any ⌘1, ⌘2 2 C , x = (x(1), x(2)) 2

R
2m, we set

b(x(1), x(2)) =

0

@ x(2)

b0(x(1), x(2))

1

A , Z(⌘1, ⌘2) =

0

@ 0

��1
0 Z0(⌘1, ⌘2)

1

A , � =

0

@ 0

�0

1

A .

Then

dX(t) ⌘ d

0

@ X(1)(t)

X(2)(t)

1

A = (b(X(t)) + �Z(Xt)) dt+ �dBH(t),

and in this case, ⇡⇤(x(1), x(2)) = (0, x(2)), b⇤((0, x(2))) = (x(2), 0) and A ⌘ 0

in (H1).
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We can construct the EM scheme now. Let � 2 (0, 1) be the step-size

given by � = ⌧/M for some M 2 N su�ciently large. The continuous time

EM scheme associated with (4.1.1) is defined as below: for t > 0,

dX(�)(t) = {(Id⇥d � ⇡⇤)b(X
(�)(t)) + ⇡⇤b(X

(�)(t�)) + �Z(X̂(�)
t )}dt+ �dBH(t),

(4.3.4)

with the initial value X(�)(u) = X(u) = ⇠(u), u 2 [�⌧, 0], where t� := [t/�]�,

[t/�] denotes the integer part of t/�, and X̂(�)
t 2 C is defined as follows

X̂(�)
t (u) = X(�)((t+ u) ^ t�), u 2 [�⌧, 0].

For t 2 [0, �), one gets that

X̂(�)
t (u) = X(�)((t+ u) ^ 0) = ⇠((t+ u) ^ 0),

and

⇡⇤X
(�)(t) = ⇡⇤X

(�)(0) + ⇡⇤b(X
(�)(0))t+

Z
t

0

�Z(X̂(�)
s

)ds+ �BH(t).

Then it follows from (H1) that

(Id⇥d � ⇡⇤)X
(�)(t)

= (Id⇥d � ⇡⇤)X
(�)(0) +

Z
t

0

(Id⇥d � ⇡⇤)b(⇡⇤X
(�)(s) + (Id⇥d � ⇡⇤)X

(�)(s))ds

= (Id⇥d � ⇡⇤)X
(�)(0) +

Z
t

0

A(Id⇥d � ⇡⇤)X
(�)(s)ds+

Z
t

0

b⇤(⇡⇤X
(�)(s))ds,

which implies that

(Id⇥d � ⇡⇤)X
(�)(t) = eAt(Id⇥d � ⇡⇤)X

(�)(0) +

Z
t

0

eA(t�s) b⇤(⇡⇤X
(�)(s))ds.

Thus, X(�)(t) = (Id⇥d � ⇡⇤)X(�)(t) + ⇡⇤X(�)(t) can be obtained explicitly on

[0, �]. By induction, we can get X(�)(t) explicitly on [0, T ].
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Let

K̄1 = 2K1 + 1[K1�0] +
|K1|

2
1[K1<0], K̄2 = 1[K1�0] +

2

|K1|
1[K1<0],

and

�(K̄1, K̄2, T ) =

s
K̄2

�
eK̄1T �1

�

K̄1
.

Our main result on the weak convergence of EM scheme to (4.1.1) is stated

as follows.

Theorem 4.3.1. Assume (H1)-(H3) and Ran(�) 6= {0}. For � 2 (0, 1) if T

satisfies

2L2
1T

2(H��)+1
k�̂�1

k
2
k�k2�2�

⇡(1�H)

n
3


1 + C0(H �

1

2
)

�2
T 1�2H

+ 2�1�2H
h4(1�H) + 4H

1�H
+
⇡�(1�H)

6T

io

+
2L2

2

⇡

n3[1 + C0(H �
1
2)]

2T 2(1+↵���)
k�k2↵

(1�H)

+ T 2(H��+↵��↵(�^✓))
k�k2↵

h
B

2(12 ,
1
2 + ↵(� ^ ✓)�H)T 2↵(�^✓)+1�2H

2↵(� ^ ✓) + 3� 4H

+ �2↵(�^✓)+1�2H 16H(1�H) + 4H

(1�H)2

io
1[↵=1]

< 2�9
{1 + L1T (L1�(K̄1, K̄2, T ) + 1)}�2, (4.3.5)

where � 2 (2(↵+1)H�1
4↵ , H) and C0 =

R 1

0
u

1
2�H

�1

(1�u)
1
2+H

du, then for any bounded

measurable function f on R
d, there exists a constant CT which is independent

of � such that for t 2 [0, T ]

|Ef(X(t))� Ef(X(�)(t))|  CT �
↵(�^✓)+ 1

2�H . (4.3.6)

Remark 4.3.2. The convergence result only holds for t 2 [0, T ] and T

satisfies (4.3.5). Letting � ! 0, (4.3.5) converges to

2L2
2

⇡

n3[1 + C0(H �
1
2)]

2T 2(1+↵���)
k�k2↵

(1�H)

58



+
B

2(12 ,
1
2 + ↵(� ^ ✓)�H)k�k2↵T 1+2↵��2�

2↵(� ^ ✓) + 3� 4H

o
1[↵=1]

< 2�9
{1 + L1T (L1�(K̄1, K̄2, T ) + 1)}�2.

It is easy to see that for any fixed � 2 (0, 1), there always exists T > 0 such

that (4.3.5) holds.

4.4 Proof of the main theorem

Before giving the proof for Theorem 4.3.1, we prepare two lemmas. The

lemma below shows the estimates of (Y ⇠(t))t2[0,T ], the solution to (4.1.2) in

the sense of uniform and Hölder norms, respectively.

Lemma 4.4.1. Assume (H1). Then for any T > 0

kY ⇠
k�⌧,T,1 (4.4.1)

 k⇠k1 + |b(0)|�(K̄1, K̄2, T ) +
�
L1�(K̄1, K̄2, T ) + 1

�
k�kkBH

k0,T,1.

kY ⇠
k�⌧,T,�^✓

 T 1��^✓
�
|b(0)|+ |b(0)|L1�(K̄1, K̄2, T ) + |⇠(0)|

�
+ k�kkBH

k0,T,�^✓

+ L1T
1��^✓

�
L1�(K̄1, K̄2, T ) + 1

�
k�kkBH

k0,T,1 + k⇠k�⌧,0,�^✓.

Proof. The first inequality follows from (4.2.1) and (H1) directly. Since b is

Lipschitz continuous, we have

|b(x)|  |b(0)|+ L1|x|.

Taking into account the following inequality

kY ⇠
k�⌧,T,�^✓  k⇠k�⌧,0,�^✓ + kY ⇠

k0,T,�^✓,

the proof of the second inequality is similar to the second part of the proof

of Lemma 4.2.1.
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For the sake of simplicity, we denote

h⇠(t) = �̂�1
{b(Y ⇠(t))� b(Y ⇠(t�)}� Z(Ŷ ⇠

t ), t � 0,

with

Ŷ ⇠

t (u) = Y ⇠((t+ u) ^ t�), u 2 [�⌧, 0].

Let

BH

h
(t) = BH(t) +

Z
t

0

h⇠(s)ds,

R⇠,�(t) = exp
n
�

Z
t

0

D
K�1

H

� Z ·

0

h⇠(s)ds
�
(r), dB(r)

E

�
1

2

Z
t

0

���K�1
H

� Z ·

0

h⇠(s)ds
�
(r)

���
2

dr
o
, t 2 [0, T ], (4.4.2)

and dQ⇠,� = R⇠,�(T )dP. Then it follows from Lemma 4.4.2 below and the

Girsanov theorem that Q⇠,� is a probability and (BH

h
(t))t2[0,T ] is a fBm under

Q
⇠,�. Since ���1 = ⇡⇤, we can rewrite the reference SDE (4.1.2) into the

following form:

dY ⇠(t) = {(Id⇥d � ⇡⇤)b(Y
⇠(t)) + ⇡⇤b(Y

⇠(t�)) + �Z(Ŷ ⇠

t )}dt+ �dBH

h
(t),

(4.4.3)

which implies that (Y ⇠(t), BH

h
(t))t2[0,T ] is a weak solution of (4.3.4). This,

together with the pathwise uniqueness of solution to (4.3.4), yields the weak

uniqueness. Then, we have

|Ef(X(t))� Ef(X(�)(t))| = |EQ⇠f(Y ⇠(t))� EQ⇠,�f(Y ⇠(t))|

= |E(R⇠(t)�R⇠,�(t))f(Y ⇠(t))|.

Hence, in the following discussion, we shall prove that {R⇠,�(t)}t2[0,T ] is an

exponential martingale, and give estimates of R⇠(t)�R⇠,�(t).
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Lemma 4.4.2. Under the assumptions of Theorem 4.3.1, we have

E exp

⇢
C

Z
t

0

|K�1
H

� Z ·

0

h⇠(s)ds
�
|
2(r)dr

�
< 1,

for some C > 1.

Proof. The definition of inverse operator K�1
H

(2.2.3) yields that

K�1
H

⇣Z ·

0

h⇠(s)ds
⌘
(r) = rH�

1
2D

H�
1
2

0+ [·
1
2�Hh⇠(·)](r)

= rH�
1
2

1

�(32 �H)

⇣r 1
2�Hh⇠(r)

rH�
1
2

+ (H �
1

2
)

Z
r

0

r
1
2�Hh⇠(r)� s

1
2�Hh⇠(s)

(r � s)H+ 1
2

ds
⌘

=
r

1
2�Hh⇠(r)

�(32 �H)
+

rH�
1
2

�(32 �H)
(H �

1

2
)

Z
r

0

r
1
2�Hh⇠(r)� s

1
2�Hh⇠(s)

(r � s)H+ 1
2

ds

=
r

1
2�Hh⇠(r)

�(32 �H)
+

rH�
1
2

�(32 �H)
(H �

1

2
)

Z
r

0

(r
1
2�H

� s
1
2�H)h⇠(r)

(r � s)H+ 1
2

ds

+
rH�

1
2

�(32 �H)
(H �

1

2
)

Z
r

0

s
1
2�H(h⇠(r)� h⇠(s))

(r � s)H+ 1
2

ds

= [1 + C0(H �
1

2
)]
r

1
2�Hh⇠(r)

�(32 �H)
+

rH�
1
2

�(32 �H)
(H �

1

2
)

Z
r

0

s
1
2�H(h⇠(r)� h⇠(s))

(r � s)H+ 1
2

ds

=: Ĵ1(r) + Ĵ2(r). (4.4.4)

For Ĵ1, it follows from (H1) and (H2) that

|h⇠(r)|  k�̂�1
k|b(Y ⇠(r))� b(Y ⇠(r�))|+ |Z(Ŷ ⇠

r
)|

 k�̂�1
kL1kY

⇠
k0,r,��

� + |Z(0)|+ L2kY
⇠
k
↵

�⌧,r,1
.

For Ĵ2, note that

Z
r

0

s
1
2�H

|h⇠(r)� h⇠(s)|

(r � s)H+ 1
2

ds

=

Z
r

0

s
1
2�H

���
�̂�1(b(Y ⇠(r))� b(Y ⇠(r�)))� Z(Ŷ ⇠

r
))

(r � s)H+ 1
2

�
�̂�1(b(Y ⇠(s))� b(Y ⇠(s�))) + Z(Ŷ ⇠

s
))

(r � s)H+ 1
2

���ds
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

Z
r

0

k�̂�1
ks

1
2�H

|b(Y ⇠(r))� b(Y ⇠(r�))� (b(Y ⇠(s))� b(Y ⇠(s�)))|

(r � s)H+ 1
2

ds

+

Z
r

0

s
1
2�H

|Z(Ŷ ⇠

r
)� Z(Ŷ ⇠

s
))|

(r � s)H+ 1
2

ds

=: I1(r) + I2(r).

Next, we shall give the estimations of Ii(r), i = 1, 2, respectively. For

I1(r), it follows from (H1) that

|b(Y ⇠(r))� b(Y ⇠(r�))� (b(Y ⇠(s))� b(Y ⇠(s�)))|

 2L1kY
⇠
k0,r,�

h
�� ^

(r � s)� + (r� � s�)�

2

i

= L1kY
⇠
k0,r,�

8
>>><

>>>:

(r � s)�, r� < s < r,

(r � s)� + (r� � s�)�, r � � < s < r�,

2��, 0 < s < r � �.

Since

|r� � s�| = |[
r

�
]� � [

s

�
]�|  |[

r

�
]� � [

r � �

�
]�|  �, r � � < s < r�,

and for r � �, one gets that

Z
r

r�

s1/2�H

(r � s)H+1/2��
ds 

2�1/2+��H

1 + 2� � 2H
r1/2�H

�
,

Z
r�

0

2��

(r � s)H+1/2sH�1/2
ds

=

Z
r�

r�/2

2��

(r � s)1/2+HsH�1/2
ds+

Z
r�/2

0

2��

(r � s)1/2+HsH�1/2
ds


2��(r � r�)

1
2�H

(r�/2)H�1/2(H � 1/2)
+

2��
�
r�

2

� 3
2�H

(r � r�/2)
H+1/2 �3

2 �H
� ,

Taking the above inequalities into account, we obtain

|I1(r)|
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 2L1k�̂
�1
kkY ⇠

k0,r,�

("
��+1/2�H

(2� + 1� 2H)rH�1/2
�

+
��(r � r�)

1
2�H

(r�/2)H�1/2(H � 1/2)

+
��
�
r�

2

� 3
2�H

(r � r�/2)
H+1/2 �3

2 �H
�

3

51[r��] +
1

2
B(

3

2
�H, � +

1

2
�H)r�+1�2H1[0r<�]

9
=

; .

We now calculate I2(r). One can see that

kŶ ⇠

r
� Ŷ ⇠

s
k
↵

1

= sup
�⌧u0

|Y ⇠((r + u) ^ r�)� Y ⇠((s+ u) ^ s�)|↵

|(r + u) ^ r� � (s+ u) ^ s�|↵(�^✓)
|(r + u) ^ r� � (s+ u) ^ s�|

↵(�^✓)

 kY ⇠
k
↵

�⌧,r,�^✓
sup

�⌧u0
|(r + u) ^ r� � (s+ u) ^ s�|

↵(�^✓).

Since for s+ u > s� and r + u < r�, we have

(s+ u) ^ s� = s�; (r + u) ^ r� = r + u; s� � s < u < r� � r.

Then, it yields that

sup
s��s<u<r��r

|(r + u) ^ r� � (s+ u) ^ s�| = sup
s��s<u<r��r

|r + u� s�| = |r� � s�|.

Similarly, for s+ u < s� and r + u > r�, we have

sup
r��r<u<s��s

|(r + u) ^ r� � (s+ u) ^ s�| = |r� � s�|.

Then it is easy to see that

sup
u2[�⌧,0]

|(r + u) ^ r� � (s+ u) ^ s�| = (r � s) _ (r� � s�).

Consequently,

kŶ ⇠

r
� Ŷ ⇠

s
k
↵

1
 kY ⇠

k
↵

�⌧,r,�^✓
((r � s) _ (r� � s�))

↵(�^✓),

and, it implies that

I2(r) =

Z
r

0

s
1
2�H

|Z(Ŷ ⇠

r
)� Z(Ŷ ⇠

s
))|

(r � s)H+ 1
2

ds
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

Z
r

0

L2kŶ ⇠

r
� Ŷ ⇠

s
k
↵

1

(r � s)1/2+HsH�1/2
ds

 L2kY k
↵

�⌧,r,�^✓

Z
r

0

(r � s)↵(�^✓) _ (r� � s�)↵(�^✓)

(r � s)1/2+HsH�1/2
ds.

Since r� � s� = 0 for s 2 [r�, r],

Z
r

0

(r � s)↵(�^✓) _ (r� � s�)↵(�^✓)

(r � s)1/2+HsH�1/2
ds

=

Z
r

0

(r � s)↵(�^✓)

(r � s)1/2+HsH�1/2
1[r�s�r��s� ]ds

+

Z
r�

0

(r� � s�)↵(�^✓)

(r � s)1/2+HsH�1/2
1[r�s<r��s� ]ds.

For r � r� + s� < s, it is clear that r� � s� � (r � s)  �, so

(r� � s�)
↵(�^✓) = (r� � s� � r + s+ (r � s))↵(�^✓)  (r � s)↵(�^✓) + �↵(�^✓),

which implies that

Z
r�

0

(r� � s�)↵(�^✓)

(r � s)1/2+HsH�1/2
1[r�s<r��s� ]ds



Z
r�

0

(r � s)↵(�^✓) + �↵(�^✓)

(r � s)1/2+HsH�1/2
1[r�s<r��s� ]ds.

Moreover, we have

Z
T

0

✓Z
r�

0

�↵(�^✓)1[r�s<r��s� ]

(r � s)1/2+HsH�1/2
ds

◆2

dr (4.4.5)



Z
T

�

✓Z
r�

0

�↵(�^✓)

(r � s)1/2+HsH�1/2
ds

◆2

dr



N�1X

k=1

Z (k+1)�

k�

0

@ �↵(�^✓)
�
r�

2

� 3
2�H

(r � r�/2)
H+1/2 �3

2 �H
� +

�↵(�^✓)(r � r�)
1
2�H

(r�/2)H�1/2(H � 1/2)

1

A
2

dr

 2�2↵(�^✓)
N�1X

k=1

✓
16H(k�)2�4H�

(3� 2H)2
+

22H�1�2�2H

(H � 1/2)2(2� 2H)(k�)2H�1

◆

 2�2↵(�^✓)+1�2H

✓
16H

(3� 2H)2
+

22H

(2H � 1)2(1�H)

◆N�1X

k=1

(k�)1�2H�
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
�2↵(�^✓)+1�2H

1�H

✓
16H

(3� 2H)2
+

22H

(2H � 1)2(1�H)

◆
T 2�2H , (4.4.6)

and

Z
T

0

✓Z
r

0

(r � s)↵(�^✓)

(r � s)1/2+HsH�1/2
ds

◆2

dr (4.4.7)

=
T 2↵(�^✓)+3�4H

B
2(32 �H,↵(� ^ ✓) + 1

2 �H)

2↵(� ^ ✓) + 3� 4H
.

Substituting Ĵ1, I1(r) and I2(r) into (4.4.4), and taking into account (4.4.5)

and (4.4.7), we arrive at

Z
T

0

���K�1
H

⇣Z ·

0

h⇠(s)ds
⌘
(r)

���
2

dr


2L2

1k�̂
�1
k
2
kY ⇠

k
2
0,T,�

�2(32 �H)(1�H)

n
3


1 + C0(H �

1

2
)

�2
T 2�2H�2�

+ 2(2H � 1)2T �2�+1�2H
h 1

(1 + 2� � 2H)2
+

24H�1

(3� 2H)2
+

22H�1

(2H � 1)2(1�H)

+
B

2(32 �H, � + 1
2 �H)(1�H)�

8(1 + � �H)T

io

+
6[1 + C0(H �

1
2)]

2T 2(1�H)

�2(32 �H)(1�H)

⇣
|Z(0)|2 + L2

2kY
⇠
k
2↵
�⌧,T,1

⌘

+
2L2

2(2H � 1)2T 2H�1
kY ⇠

k
2↵
�⌧,T,�^✓

�2(32 �H)

h
B

2(32 �H,↵(� ^ ✓) + 1/2�H)T 2↵(�^✓)+3�4H

2↵(� ^ ✓) + 3� 4H

+
�2↵(�^✓)+1�2HT 2�2H

1�H

⇣ 16H

(3� 2H)2
+

22H

(2H � 1)2(1�H)

⌘i
. (4.4.8)

Since �(32 � H) � �(12) =
p
⇡ and � 2 (2(↵+1)H�1

4↵ , H), it follows from

Lemma 4.4.1 and (4.3.5) that there exists C > 1 such that

E exp
n
C

Z
T

0

���K�1
H

⇣Z ·

0

h⇠(s)ds
⌘
(r)

���
2

dr
o
< 1.

We are now in the position to complete the Proof of Theorem 4.3.1.
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Proof. Let

M1(t) =

Z
t

0

D
K�1

H

⇣Z ·

0

Z(Y ⇠

s
)ds

⌘
(r), dB(r)

E
,

M2(t) =

Z
t

0

D
K�1

H

⇣Z ·

0

h⇠(s)ds
⌘
(r), dB(r)

E
, t � 0.

By the weak uniqueness of solution to (4.1.1), the Hölder inequality and the

following inequality

| ex � ey |  (ex _ ey)|x� y|,

we then have that 8f 2 Bb(Rd),

|Ef(X(t))� Ef(X(�)(t))| = |EQ⇠f(Y ⇠(t))� EQ⇠,�f(Y ⇠(t))|

= |E(R⇠(t)�R⇠,�(t))f(Y ⇠(t))|

 kfk1E|R⇠(t)�R⇠,�(t)|

 kfk1E
�
R⇠(t) _R⇠,�(t)

� ��logR⇠(t)� logR⇠,�(t)
��

 kfk1⇥1(t)(⇥2(t) +⇥3(t)), t 2 [0, T ], (4.4.9)

where

⇥1(t) =
�
E(R⇠(t))q

� 1
q +

�
E(R⇠,�(t))q

� 1
q ,

⇥2(t) =

 
E

����
Z

t

0

hK�1
H

✓Z
·

0

(Z(Y ⇠

s
) + h⇠(s))ds

◆
(r), dB(r)i

����

q

q�1

! q�1
q

,

⇥3(t)

=
1

2

0

@E

�����

Z
t

0

 ����K
�1
H

✓Z
·

0

Z(Y ⇠

s
)ds

◆
(r)

����
2

�

����K
�1
H

✓Z
·

0

h⇠(s)ds

◆
(r)

����
2
!
dr

�����

q

q�1

1

A

q�1
q

,

where the parameter q > 1.

It follows from Lemma 4.2.2 with C5 = 0 and C4 = L2 that there is some

C > 1 such that E exp{ChM1i(T )} < 1. Thus, for 2q2 � q  C, we have

E(R⇠(t))q = E exp
⇣
qM1(t)� q2hM1i(t) + (q2 � q/2)hM1i(t)

⌘
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 (E exp(2qM1(t)� 2q2hM1i(t)))
1/2
�
E exp((2q2 � q)hM1i(t))

�1/2



⇣
E exp

⇣
(2q2 � q)

Z
t

0

���K�1
H

⇣Z ·

0

Z(Y ⇠

s
)ds

⌘
(r)

���
2

dr
⌘⌘1/2

< 1.

Similarly, following from Lemma 4.4.2, there is q > 1 such that

sup
t2[0,T ]

�
E(R⇠,�(t))q

� 1
q < 1.

Hence, there is q > 1 and some constant CT such that

⇥1(t)  CT . (4.4.10)

In the following proof, we fix some q > 1 such that (4.4.10) holds.

It is easy to see that

K�1
H

⇣Z ·

0

(Z(Y ⇠

s
) + h⇠(s))ds

⌘
(r) = rH�

1
2D

H�
1
2

0+ [·
1
2�H(Z(Y ⇠

·
) + h⇠(·))](r)

=
rH�

1
2

�(32 �H)

⇣r1/2�H(Z(Y ⇠

r
) + h⇠(r))

rH�1/2

+ (H �
1

2
)

Z
r

0

r1/2�H(Z(Y ⇠

r
) + h⇠(r))� s1/2�H(Z(Y ⇠

s
) + h⇠(s))

(r � s)H+1/2
ds
⌘

 [1 + C0(H �
1

2
)]
r

1
2�H(Z(Y ⇠

r
) + h⇠(r))

�(32 �H)

+
rH�

1
2

�(32 �H)
(H �

1

2
)

Z
r

0

s
1
2�H(Z(Y ⇠

r
) + h⇠(r)� Z(Y ⇠

s
)� h⇠(s))

(r � s)H+ 1
2

ds

=: I3(r) + I4(r). (4.4.11)

Next, we give the estimates for Ii(r), i = 3, 4, respectively.

For I3(r), by (H1) and (H2), it yields that

|I3(r)| (4.4.12)

 [1 + C0(H �
1

2
)]

r
1
2�H

�(32 �H)
(k�̂�1

k|b(Y ⇠(r))� b(Y ⇠(r�))|+ |Z(Y ⇠

r
)� Z(Ŷ ⇠

r
)|)
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 [1 + C0(H �
1

2
)]

r
1
2�H

�(32 �H)
(L1k�̂

�1
kkY ⇠

k0,r,��
� + L2kY

⇠

r
� Ŷ ⇠

r
k
↵

1
)



⇥
1 + C0(H �

1
2)
⇤
r

1
2�H

�(32 �H)

�
L1k�̂

�1
kkY ⇠

k0,r,��
� + L2kY

⇠
k
↵

0,r,��
↵�
�
. (4.4.13)

For I4(r), it yields from the definition of h⇠ that

|I4(r)| 
rH�

1
2

�(32 �H)
(H �

1

2
)

Z
r

0

s
1
2�H(Z(Y ⇠

r
) + h⇠(r)� Z(Y ⇠

s
)� h⇠(s))

(r � s)H+ 1
2

ds


rH�

1
2

�(32 �H)
(H �

1

2
)k�̂�1

k

Z
r

0

s1/2�H

���
b(Y ⇠(r))� b(Y ⇠(r�))

(r � s)H+1/2

�
b(Y ⇠(s))� b(Y ⇠(s�))

(r � s)H+1/2

���ds

+
rH�

1
2

�(32 �H)
(H �

1

2
)

Z
r

0

s1/2�H
|Z(Y ⇠

r
)� Z(Ŷ ⇠

r
)� (Z(Y ⇠

s
)� Z(Ŷ ⇠

s
))|

(r � s)H+1/2
ds

= I41(r) + I42(r). (4.4.14)

In the same way of estimating I1 in the proof of Lemma 4.4.2, we have

I41(r)  2
rH�

1
2

�(32 �H)
(H �

1

2
)L1k�̂

�1
kkY ⇠

k0,r,�

nh ��+1/2�H

(2� + 1� 2H)rH�1/2
�

+
��(r � r�)

1
2�H

(r�/2)H�1/2(H � 1/2)
+

��
�
r�

2

� 3
2�H

�
r � r�/2

�H+1/2�3
2 �H

�
i
1[r��]

+
1

2
B(� +

1

2
�H,

3

2
�H)r�+1�2H1[0r<�]

o
. (4.4.15)

On the other hand, it follows from (H2) that

|Z(Y ⇠

r
)� Z(Ŷ ⇠

r
)� (Z(Y ⇠

s
)� Z(Ŷ ⇠

s
))|  L2kY

⇠

r
� Ŷ ⇠

r
k
↵

1
+ L2kY

⇠

s
� Ŷ ⇠

s
k
↵

1

 2L2kY k
↵

�⌧,r,�^✓
�↵(�^✓),

and

|Z(Y ⇠

r
)� Z(Ŷ ⇠

r
)� (Z(Y ⇠

s
)� Z(Ŷ ⇠

s
))|

 L2kY
⇠

r
� Y ⇠

s
k
↵

1
+ L2kŶ

⇠

r
� Ŷ ⇠

s
k
↵

1
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 L2kY k
↵

�⌧,r,�^✓
|r � s|↵(�^✓) + L2kY k

↵

�⌧,r,�^✓

⇣
|r � s|↵(�^✓) _ |r� � s�|

↵(�^✓)
⌘

= L2kY k
↵

�⌧,r,�^✓

⇣
|r � s|↵(�^✓) + |r � s|↵(�^✓) _ |r� � s�|

↵(�^✓)
⌘
.

Combining these two upper bounds, we have

|Z(Y ⇠

r
)� Z(Ŷ ⇠

r
)� (Z(Y ⇠

s
)� Z(Ŷ ⇠

s
))|

 2L2kY
⇠
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↵

�⌧,r,�^✓

⇣
�↵(�^✓) ^
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2

⌘
.

Since for r � �,

�↵(�^✓) ^
|r � s|↵(�^✓) + |r � s|↵(�^✓) _ |r� � s�|↵(�^✓)

2
= �↵(�^✓), s 2 [0, r � �],

one gets that

Z
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1
2�H
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�
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2�H
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Z
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2
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Z
r

r�
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1
2�H

�
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1
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
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1
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�
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1
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Thus, we obtain

|I42(r)| 
2L2(H �

1
2)r

H�
1
2

�(32 �H)
kY ⇠

k
↵

�⌧,r,�^✓
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+
�↵(�^✓)

�
r�

2

� 3
2�H
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H+1/2 �3
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2r
1
2�H

�
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1
2�H
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3

2
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�
.

Substituting (4.4.15), (4.4.16), (4.4.12) and (4.4.14) into (4.4.11), we arrive

at
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���
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(4.4.17)

This, together with the BDG inequality, yields that

⇥2(t)  CT

⇣
E

✓Z
T
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���K�1
H

⇣Z ·

0

(Z(Y ⇠

s
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⌘
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���
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◆ q

(q�1)2 ⌘ q�1
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 CT �
↵(�^✓)+ 1

2�H .

For ⇥3, it follows from Hölder’s inequality and (4.4.17) that

⇥3(t) 
1

2

0
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T

0

����K
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·
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(Z(Y ⇠

s
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����
2
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⇥

⇣
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◆
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! q
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Note that

Z
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����K
�1
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✓Z
·

0

(Z(Y ⇠

s
)� h⇠(s))ds

◆����
2
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 2

Z
T
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����K
�1
H

✓Z
·

0

(Z(Y ⇠

s
) + h⇠(s))ds

◆����
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Z
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����K
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H

✓Z
·

0

h⇠(s)ds

◆����
2
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it follows from (4.4.17) and (4.4.8) that

0

@E

 Z
T

0

����K
�1
H

✓Z
·

0

(Z(Y ⇠

s
)� h⇠(s))ds

◆����
2
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A
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< 1.

We then obtain that

⇥3(t)  CT �
↵(�^✓)+ 1

2�H .

Finally, the desired assertion is established from (4.4.9) and the estimates

of ⇥i(t), i = 1, 2, 3.
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Chapter 5

Moderate deviations and

central limit theorem for

McKean-Vlasov stochastic

di↵erential equations

Inspired by the Freidlin-Wentzell LDP in path space for MV-SDEs in [28],

we will consider the MDP and CLT for MV-SDEs in this chapter.

In Section 5.1, we introduce the MV-SDEs and its particular properties.

In Section 5.2, we recall the general deviations of the solution to the MV-

SDEs, and give the associated assumptions about the coe�cients of the MV-

SDEs (that is, the Lipschitz condition about the coe�cients, the gradient

of coe�cients with respect to the space variable, and the L-derivative of

coe�cients with respect to the measure variable, respectively).

Section 5.3 describes the CLT for MV-SDEs, and the proof is provided in

subsection 5.3.1.

In Section 5.4, we establish the MDP for MV-SDEs.
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Section 5.5 is devoted to the proof of Throrem 5.4.1. More precisely,

in view of the weak convergence methods and exponential approximation,

Subsection 5.5.1 is devoted to the LDP for Ȳ ". In Subsection 5.5.2, we show

X̄" and Ȳ " are exponentially equivalent.

Section 5.6 provides an illustrative example to verify that it satisfies the

assumptions in this chapter work.

5.1 McKean-Vlasov stochastic di↵erential equa-

tion

In recent years, MV-SDEs have been received increasing attention by re-

searchers. They are also called mean-field SDEs or distribution dependent

SDEs, which are much more involved than classical SDEs as the drift and

di↵usion coe�cients depend on the solution and the law of solution. In a

nutshell, this kind of equations play important role in characterising non-

linear Fokker-Planck equations and environment dependent financial sys-

tems (see [26, 27, 32, 37, 64, 94, 95] and references therein). Also, this

kind of SDEs have been applied to characterise the PDEs involving the L-

derivative, which was introduced by P.-L. Lions in his lecture notes [19], see

also [11, 20, 39, 52, 86, 87] for more details. Additionally, the analysis of

stochastic particle systems has been developed as a crucial mathematic tool

for modelling systems in economics and finance.

Compared with the classical SDEs (the law of solution to this equation

satisfies the linear PDE), the law of solution to MV-SDEs satisfies the non-

linear Kolmogorov-Fokker-Planck equation. To explain it, we introduce the

following model on R
d:

dXµ

t = b(Xµ

t ,LX
µ

t
)dt+ �(Xµ

t ,LX
µ

t
)dWt, LX0 = µ, (5.1.1)
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where Wt is a d-dimensional Brownian motion on a complete filtration prob-

ability space (⌦, {Ft}t�0,F ,P). µt := LX
µ

t
denotes the law of solution to

(5.1.1) at time t with the initial distribution µ, and

b : Rd
⇥ P2(R

d) ! R
d, � : Rd

⇥ P2(R
d) ! R

d
⌦ R

d,

are measurable.

Let Lµ = h@x·, b(x, µ)i+
1
2tr

�
��⇤@2

x2 ·
�
. Then, Itô’s formula yields that

Ef(Xµ

t ) = Ef(X0) +

Z
t

0

ELµf(X
µ

s
)ds, 8f 2 Bb(R

d).

This, together with the arbitrariness of f , implies the following non-linear

Fokker-Planck equation:

@tµt = L⇤

µt
µt,

where L⇤

µ
is the adjoint operator of Lµ. For more properties of MV-SDEs,

(see, e.g. [6, 87] and references therein).

5.2 General deviations and assumptions

Let (Rd, h·, ·i, |·|) be the d-dimensional Euclidean space. Consider the Cameron-

Martin space

H =
n
h 2 C([0, T ];Rd) : h(0) = 0, ḣ(t) exists for a.e. t, khkH :=

⇣Z T

0

|ḣ(t)|2dt
⌘ 1

2
o
,

where 0 denotes the vector with components 0.

Let A denote the class of Rd-valued {Ft}-predictable processes h(!, ·)

belonging to H a.s.. For each N > 0, let

SN =
n
h 2 H;

Z
T

0

|ḣ(s)|2ds  N
o
.
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SN is endowed with the weak topology induced by H. Define

AN := {h 2 A , h(!, ·) 2 SN , P� a.s.}.

In this chapter, we use the symbol “ ) ” to denote the convergence in

distribution.

Consider the following MV-SDE on (Rd, h·, ·i, | · |):

dX✏

t
= bt(X

✏

t
,LX

✏

t
)dt+

p
✏�t(X

✏

t
,LX

✏

t
)dWt, X✏

0 = x, (5.2.1)

with ✏ > 0, which is called as the scaling parameter. Here Wt is the d-

dimensional Brownian motion defined on a complete filtered probability space

(⌦,F , {Ft}t�0,P), LX
✏

t
is the law of X✏

t
.

Intuitively, as the parameter ✏ tends to 0 in (5.2.1), the di↵usion term

vanishes and we have the following ordinary di↵erential equation:

dX0
t
= bt(X

0
t
, �X0

t
)dt, (5.2.2)

with the same initial datum as (5.2.1), that is, X0
0 = x. Since x is determin-

istic, we deduce that �X0
· is a Dirac measure centered on the path X0

·
.

On the general case, the investigation of the deviations of solution X✏

t
to

(5.2.1) from the solution X0
t
to (5.2.2) is to study the asymptotic behaviour

of the trajectory

X̄✏

t
=

1
p
✏�(✏)

(X✏

t
�X0

t
), t 2 [0, T ], (5.2.3)

it yields the following three cases:

(LDP) The case �(✏) = 1/
p
✏ provides an LDP. [28] proved that the law of the

solution X✏ satisfies an LDP by means of the discussion of exponential

tightness.
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(CLT) The case �(✏) ⌘ 1 describes a CLT for solution X✏. That is, X
✏
�X

0
p
✏

con-

verges to a stochastic process in a certain sense as ✏! 0, see Theorem

5.3.1.

(MDP) To fill in the gap between the CLT scale and the LDP scale, the MDP

for X✏ is investigating the LDP of trajectory (5.2.3), where the devia-

tion scale �(✏) satisfies

�(✏) ! 1,
p
✏�(✏) ! 0, as ✏! 0. (5.2.4)

To obtain the main results of this chapter, we assume that the coe�cients

b and � satisfy the following conditions:

(H1) For any t � 0, bt 2 C1,(1,0)(Rd
⇥ P2(Rd)). Moreover, there exists an

increasing function K : [0,1) ! [0,1) such that

max{krbt(·, µ)(x)k, kD
Lbt(x, ·)(µ)kTµ,2}  K(t), (5.2.5)

k�t(x, µ)� �t(y, ⌫)k  K(t)(|x� y|+W2(µ, ⌫)), (5.2.6)

t � 0, x, y 2 R
d, µ, ⌫ 2 P2(R

d),

and

|bt(0, �0)|+ k�t(0, �0)k  K(t), t � 0. (5.2.7)

(H2) rbt(·, µ)(x) and DLbt(x, ·)(µ) satisfy

krbt(·, µ)(x)�rbt(·, ⌫)(y)k  K(t)(|x� y|+W2(µ, ⌫)), (5.2.8)

and

|DLbt(x, ·)(µ)(z1)�DLbt(y, ·)(⌫)(z2)|

 K(t)(|x� y|+W2(µ, ⌫) + |z1 � z2|),

for all t � 0, x, y, z1, z2 2 R
d.

76



Remark 5.2.1. By (H1), we have for t � 0, x, y 2 R
d, µ, ⌫ 2 P2(Rd) that

|bt(x, µ)� bt(y, µ)|  K(t)(|x� y|+W2(µ, ⌫)). (5.2.9)

5.3 Central limit theorem

The first main result is to investigate the CLT for (X✏)✏2(0,1) to (5.2.1), which

is stated as follows:

Theorem 5.3.1. Under assumptions (H1) and (H2),

E

⇣
sup

0tT

���
X✏

t
�X0

t
p
✏

� Zt

���
p⌘

. ✏
p

2 , for any p � 2,

where Zt solves

dZt = rZt
bt(·, �X0

t
)(X0

t
)dt+ EhDLbt(y, ·)(�X0

t
)(X0

t
), Zti|y=X

0
t
dt (5.3.1)

+ �(X0
t
, �X0

t
)dWt, Z0 = 0.

Here, and in what follows, for x, y 2 R
d and µ 2 P2(Rd), ryf(·, µ)(x)

constitutes the directional derivative of function f at x in direction y.

5.3.1 Proof of the central limit theorem

Before giving the proof of Theorem 5.3.1, we prepare the following lemmas.

The existence and uniqueness of solution to (5.2.1) has been proved in

[96]. The following Lemma gives the uniformly p-th moment estimates on

X✏

t
and X0

t
.

Lemma 5.3.2. Under assumption (H1). 8p � 2, we have

E

⇣
sup

0tT

|X✏

t
|
p

⌘
_

⇣
sup

0tT

|X0
t
|
p

⌘
< 1, (5.3.2)

with the initial value X0
0 = X✏

0 = x 2 R
d.
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Proof. It is easy to get from (H1) that

|bt(x, µ)| _ k�t(x, µ)k  K(t)(1 + |x|+W2(µ, �0)). (5.3.3)

Noting that W2(LX✏
s
, �0)p  (E|X✏

s
|
2)p/2, by the BDG inequality and (5.3.3),

one has

E

⇣
sup

0tT

|X✏

t
|
p

⌘
 3p�1

|x|p + C(T, p)E

Z
T

0

(1 + |X✏

s
|
p)ds,

and

⇣
sup

0tT

|X0
t
|
p

⌘
 C(T, p)

Z
T

0

(1 + |X0
s
|
p)ds,

thus, (5.3.2) follows from Gronwall’s inequality.

Lemma 5.3.3. Under (H1) and (H2), we have 8p � 2

E

⇣
sup

0tT

|Z✏

t
|
p

⌘
_ E

⇣
sup

0tT

|Zt|
p

⌘
< 1, (5.3.4)

where Z✏

·
:= X

✏
· �X

0
·p

✏
and Zt is defined in (5.3.1).

Proof. By (5.2.1) and (5.2.2), we know that Z✏

t
satisfies

dZ✏

t
=

1
p
✏
(bt(X

✏

t
,LX

✏

t
)� bt(X

0
t
, �X0

t
))dt+ �t(X

✏

t
,LX

✏

t
)dWt. (5.3.5)

To prove E

⇣
sup0tT

|Z✏

t
|
p

⌘
< 1, 8p � 2, it su�ces to show

E

⇣
sup

0tT

|X✏

t
�X0

t
|
p

⌘
 C(T, p)✏

p

2 . (5.3.6)

Indeed, by (5.2.9), (5.3.3), Hölder’s inequality and BDG’s inequality, one

gets that

E

⇣
sup

0tT

|X✏

t
�X0

t
|
p

⌘

 2p�1
n
E

���
Z

T

0

|bs(X
✏

s
,LX✏

s
)� bs(X

0
s
, �X0

s
)|ds

���
p
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+ ✏p/2E
⇣

sup
0tT

���
Z

t

0

�s(X
✏

s
,LX✏

s
)dWs

���
p⌘o

 C(T, p)
nZ T

0

(|X✏

s
�X0

s
|+W2(LX✏

s
, �X0

s
))pds

+ ✏p/2
⇣Z T

0

(E|X✏

s
|
2 + 1)ds

⌘p/2o

 C(T, p)

Z
T

0

E|X✏

s
�X0

s
|
pds+ ✏p/2C(T, p)

⇣
1 +

Z
T

0

E|X✏

s
|
pds

⌘
,

where the last inequality is due to the fact that W2(LX✏
s
, �0)2  E|X✏

s
|
2.

Then, (5.3.6) follows from (5.3.2) and the Gronwall inequality.

Similarly, by (H2) and (5.3.2), we derive from (5.3.1) that

E

⇣
sup

0tT

|Zt|
p

⌘
 C(T, p)

Z
T

0

E|Zt|
pdt+ C(T, p)

Z
T

0

(1 + |X0
t
|
p)dt

 C(T, p)
⇣
1 +

Z
T

0

E|Zt|
pdt

⌘
.

This, together with Gronwall’s inequality, implies the desired assertion (5.3.4).

Now, we are in position to finish the Proof of Theorem 5.3.1.

Proof. By the definitions of Z✏

t
and Zt, we derive that

Z✏

t
� Zt

=

Z
t

0

⇣ 1
p
✏
(bs(X

✏

s
,LX✏

s
)� bs(X

0
s
,LX✏

s
))�rZ✏

s
bs(·,LX✏

s
)(X0

s
)
⌘
ds

+

Z
t

0

⇣ 1
p
✏
(bs(X

0
s
,LX✏

s
)� bs(X

0
s
, �X0

s
))� EhDLbs(y, ·)(�X0

s
)(X0

s
), Z✏

s
i|y=X0

s

⌘
ds

+

Z
t

0

(rZ✏
s
bs(·,LX✏

s
)(X0

s
)�rZs

bs(·, �X0
s
)(X0

s
))ds

+

Z
t

0

(EhDLbs(y, ·)(�X0
s
)(X0

s
), Z✏

s
i|y=X0

s
� EhDLbs(y, ·)(�X0

s
)(X0

s
), Zsi|y=X0

s
)ds

+

Z
t

0

(�s(X
✏

s
,LX✏

s
)� �s(X

0
s
, �X0

s
))dWs.
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By (H2), Lemma 2.3.1, Hölder’s inequality and BDG’s inequality, one gets

that

E

⇣
sup

0tT

|Z✏

t
� Zt|

p

⌘
(5.3.7)

 C(T, p)

Z
T

0

E

���
Z 1

0

rZ✏
s
bs(·,LX✏

s
)(R✏

s
(r))dr �rZ✏

s
bs(·,LX✏

s
)(X0

s
)
���
p

ds

+ C(T, p)

Z
T

0

E

���
Z 1

0

EhDLbs(y, ·)(LR✏
s(r))(R

✏

s
(r)), Z✏

s
i|y=X0

s
dr

� EhDLbs(y, ·)(�X0
s
)(X0

s
), Z✏

s
i|y=X0

s

���
p

ds

+ C(T, p)

Z
T

0

E|rZ✏
s�Zs

bs(·,LX✏
s
)(X0

s
)|pds

+ C(T, p)

Z
T

0

⇣
E|rZs

bs(·,LX✏
s
)(X0

s
)�rZs

bs(·, �X0
s
)(X0

s
)|p
⌘
ds

+ C(T, p)

Z
T

0

E

���EhDLbs(y, ·)(�X0
s
)(X0

s
), Z✏

s
i|y=X0

s

� EhDLbs(y, ·)(�X0
s
)(X0

s
), Zsi|y=X0

s

���
p

ds

+ C(T, p)

Z
T

0

E|�s(X
✏

s
,LX✏

s
)� �s(X

0
s
, �X0

s
)|pds

=:
6X

i=1

Ji(T ), I = 1, 2, · · · , 6,

where R✏

s
(r) = X0

s
+ r(X✏

s
�X0

s
), r 2 [0, 1].

By (H1), (H2), (5.3.4) and Hölder’s inequality, we have

5X

i=1

Ji(T ) (5.3.8)

 C(T, p)
nZ T

0

(E|Z✏

s
|
2)

p

2E

⇣Z 1

0

((E|R✏

s
(r)�X0

s
|
2)1/2 +W2(LR✏

s(r), �X0
s
))dr

⌘p

ds

+ ✏p/2
Z

T

0

E|Z✏

s
|
2pds+

Z
T

0

E|Z✏

s
� Zs|

pds+

Z
T

0

E(|Zs|W2(LX✏
s
, �X0

s
))pds

o

 C(T, p)
n
✏p/2

Z
T

0

�
E|Z✏

s
|
2p + E|Zs|

p
E|Z✏

s
|
p
�
ds+

Z
T

0

E|Z✏

s
� Zs|

pds
o
,

where we usedW2(LR✏
s(r), �X0

s
)  r

p
✏(E|Z✏

s
|
2)1/2 andW2(LX✏

s
, �X0

s
)  ✏1/2(E|Z✏

s
|
2)1/2

in the last inequality.
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Moreover, we obtain from (H1), (5.3.4) and Hölder’s inequality that

J6(T )  C(T, p)

Z
T

0

(✏p/2E|Z✏

s
|
p + EW2(LX✏

s
, �X0

s
)p)ds (5.3.9)

 C(T, p)

Z
T

0

✏p/2E|Z✏

s
|
pds.

Collecting the estimates (5.3.8) and (5.3.9) into (5.3.7), we arrive at

E

⇣
sup

0tT

|Z✏

t
� Zt|

p

⌘

 C(T, p)
n
✏p/2

Z
T

0

�
E|Z✏

s
|
2p + E|Zs|

p
E|Z✏

s
|
p
�
ds+

Z
T

0

E|Z✏

s
� Zs|

pds
o
.

This, together with the Gronwall inequality, yields that

E

⇣
sup

0tT

|Z✏

t
� Zt|

p

⌘
 CT,p✏

p/2.

The desired assertion is obtained by taking ✏! 0.

5.4 Moderate deviation principle

The main result of this section is the MDP for (X✏)✏2(0,1) to (5.2.1), which is

stated as follows:

Theorem 5.4.1. Under assumptions (H1) and (5.2.8) of (H2). Then, X̄✏

·
,

defined in (5.2.3), satisfies an LDP on C([0, T ];Rd) with the rate function I

which is defined by

I(g) := inf
{h2H;g=�0(

R ·
0 ḣ(s)ds)}

n
khk2

H

2

o
, g 2 C([0, T ];Rd), (5.4.1)

where, by convention, I(g) = 1 if {h 2 H; g = �0(
R

·

0 ḣ(s)ds)} = ; and

Y h

·
:= �0(

R
·

0 ḣ(s)ds) satisfies the following equation:

dY h

t
=
n
r

Y
h

t

bt(·, �X0
t
)(X0

t
) + �t(X

0
t
, �X0

t
)ḣ(t)

o
dt. (5.4.2)

Remark 5.4.1. Theorems 5.3.1 and 5.4.1 can be extended to the case of

path-distribution dependent SDEs, and the Lipschitz condition imposed on

the drift can be relaxed to the monotone condition.
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5.5 Proof of the moderate deviation principle

From (5.2.1)-(5.2.3), we can see that X̄✏ satisfies the following equation:

X̄✏

t
=

1
p
✏�(✏)

Z
t

0

[bs(X
✏

s
,LX✏

s
)� bs(X

0
s
, �X0

s
)]ds+

1

�(✏)

Z
t

0

�s(X
✏

s
,LX✏

s
)dWs.

(5.5.1)

Subsequently, we aim to show that the law of X̄✏

t
satisfies an LDP. To this

end, we first recall that the LDP for stochastic processes, the idea is to

identify a deterministic path around which the di↵usion is concentrated with

overwhelming probability, so that the stochastic motion can be seen as a

small random perturbation of this deterministic path. In particular, this

means that the law of X̄✏

t
is close to some Dirac mass if ✏ is small. We

therefore proceed in two steps towards the aim of proving that the law of X̄✏

satisfies an LDP.

Firstly, note that LX
✏

t
will converge to �X0

t
in distribution as the deviation

scale �(✏) satisfying (5.2.4). We replace LX
✏

t
by �X0

t
in (5.5.1) and obtain an

approximation equation of (5.5.1) as follows:

Ȳ ✏

t
=

1
p
✏�(✏)

Z
t

0

[bs(Ỹ
✏

s
, �X0

s
)� bs(X

0
s
, �X0

s
)]ds+

1

�(✏)

Z
t

0

�s(Ỹ
✏

s
, �X0

s
)dWs,

(5.5.2)

where dỸ ✏

t
= bt(Ỹ ✏

t
, �X0

t
)dt +

p
✏�t(Ỹ ✏

t
, �X0

t
)dWt and Ȳ ✏

t
= Ỹ

✏

t
�X

0
tp

✏�(✏) . Then, we

establish the law of Ȳ ✏

t
satisfying an LDP.

Secondly, we claim that X̄✏

t
and Ȳ ✏

t
are exponentially equivalent. Thus,

we obtain that the law of X̄✏

t
satisfies an LDP with the good rate function

I(g) given in (5.4.1) due to the fact the LDP does not distinguish between

exponentially equivalent families.

Note that (5.5.2), is indeed a classical SDEs with time dependent variable,

the LDP for this type model has been investigated extensively in the existing

literatures. To make the contents is self-contained, we sketch the proof of
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the law of Ȳ ✏ satisfying an LDP in the following subsection.

5.5.1 Large deviation principle for Ȳ ✏

Lemma 5.5.1. Under the assumptions of Theorem 5.4.1, the family of (Ȳ ✏)✏>0

satisfies an LDP in C([0, T ];Rd) equipped with the topology of the uniform

norm with the good rate function I(g) given in (5.4.1).

According to the Lemma 2.4.2, to complete the proof of Lemma 5.5.1, we

only need to verify the conditions (a) and (b) in Lemma 2.4.2.

By the Yamada-Watanabe theorem, there exists a measurable map �✏ :

C([0, T ];Rd) ! C([0, T ];Rd) such that Ȳ ✏

·
= �✏

⇣
1

�(✏)W·

⌘
.

Since EP

⇣
exp

�
1
2

R
T

0 |ḣ✏(s))|2ds
 ⌘

< 1 for h✏ 2 AN , that is, the Novikov

condition holds. By the Girsanov theorem, we know that

1

�(✏)
W̃t =

1

�(✏)
Wt +

Z
t

0

ḣ✏(s)ds

is a Brownian motion under the probability measure P✏ := RTP, where

RT = exp
n
�

Z
T

0

ḣ✏(s)d
Ws

�(✏)
�

1

2

Z
T

0

|ḣ✏(s)|
2ds

o

is an exponential martingale.

Furthermore, we obtain that Ȳ ✏,h✏

·
= �✏

⇣
1

�(✏)W·+
R

·

0 ḣ✏(s)ds
⌘
, which solves

dȲ ✏,h✏

t =
1

p
✏�(✏)

[bt(Y
✏,h✏

t , �X0
t
)� bt(X

0
t
, �X0

t
)]dt (5.5.3)

+
1

�(✏)
�t(Y

✏,h✏

t , �X0
t
)dWt + �t(Y

✏,h✏

t , �X0
t
)ḣ✏(t)dt,

where Y ✏,h✏

t := X0
t
+
p
✏�(✏)Ȳ ✏,h✏

t .

The following Lemmas play the key roles in the proof of Lemma 5.5.1.
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Lemma 5.5.2. Under assumptions (H1) and (H2). Then, for any h 2 H,

equation (5.4.2) admits a unique solution Y h

·
in C([0, T ];Rd). Moreover, for

any N > 0, there exists a constant CN,T such that

sup
h2SN

n
sup

0tT

|Y h

t
|

o
 CN,T . (5.5.4)

Proof. By (H1) and (H2), the coe�cients of (5.4.2) satisfy the Lipschitz con-

dition, which implies that equation (5.4.2) admits a unique solution. More-

over, note that the coe�cient functions satisfy the linear growth condition,

and the fact that W2(LY
h

t

, �0)2  E|Y h

t
|
2, we can obtain the estimate (5.5.4)

by using the Gronwall inequality. Here we omit the details of the proof.

Firstly, we prove that the condition (b) of Lemma 2.4.2 holds.

Lemma 5.5.3. Under assumptions (H1) and (H2). Then, for any positive

number N < 1, the family

KN :=
n
�0
⇣Z ·

0

ḣ(s)ds
⌘
;h 2 SN

o
,

is compact in C([0, T ];Rd), where the map �0 is defined in Theorem 5.4.1.

Proof. For anyN < 1, the setKN is compact provided that the compactness

of SN and the continuity of the map �0 from SN to C([0, T ];Rd). To this

end, it su�ces to claim that �0 is a continuous map from SN to C([0, T ];Rd).

Let hn ! h in SN as n ! 1. Then

Y hn

t
� Y h

t
=

Z
t

0

r
{Y

hn
s �Y h

s }
bs(·, �X0

s
)(X0

s
)ds+

Z
t

0

�s(X
0
s
, �X0

s
)(ḣn(s)� ḣ(s))ds

=: In1 (t) + In2 (t).

By (H2), (5.3.2) and (5.3.3), it is easy to see that

|In1 (t)| 

Z
t

0

K(s)(1 + |X0
s
|+W2(�X0

s
, �0))|Y

hn

s
� Y h

s
|ds.
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Let gn(t) =
R

t

0 �s(X
0
s
, �X0

s
)ḣn(s)ds. By (H1), Lemma 5.3.2, and hn, h 2

SN , we derive that

|gn(t)| 
⇣Z t

0

k�s(X
0
s
, �X0

s
)k2ds

⌘1/2⇣Z t

0

|ḣn(s)|
2ds

⌘1/2



⇣Z t

0

K2(s)(1 + |X0
s
|+W2(�X0

s
, �0))

2ds
⌘1/2⇣Z t

0

|ḣn(s)|
2ds

⌘1/2

< 1.

Similarly, we see that for any 0  t1  t2  T ,

|gn(t2)� gn(t1)| 

Z
t2

t1

k�s(X
0
s
, �X0

s
)k|ḣn(s)|ds



Z
t2

t1

K(s)(1 + |X0
s
|+W2(�X0

s
, �0))|ḣn(s)|ds

 C(T )(t2 � t1)
1/2
⇣Z t2

t1

|ḣn(s)|
2ds

⌘1/2

 C(T,N)(t2 � t1)
1/2.

Hence, the family of functions {gn}n�1 are equicontinuous in C([0, T ];Rd).

According to the Azelà-Ascoli theorem, {gn}n�1 is relatively compact in

C([0, T ];Rd), let g be any limit point of {gn}n�1. Noting hn ! h on SN , we

have

lim
n!1

Z
t

0

�s(X
0
s
, �X0

s
)ḣn(s)ds =

Z
t

0

�s(X
0
s
, �X0

s
)ḣ(s)ds, 8t 2 [0, T ],

that is, limn!1 sup
t2[0,T ] |I

n

2 (t)| = 0. This, together with (5.3.2), yields that

sup
0tT

|Y hn

t
� Y h

t
|



Z
T

0

K(t)(1 + |X0
t
|+W2(�X0

t
, �0))|Y

hn

t
� Y h

t
|dt+ sup

0tT

In2 (t),

and by the Gronwall inequality, we arrive at

sup
0tT

|Y hn

t
� Y h

t
|  exp

nZ T

0

K(t)(1 + |X0
t
|+W2(�X0

t
, �0))dt

o
sup

0tT

In2 (t)
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 C(T,N) sup
0tT

In2 (t) ! 0, as n ! 1,

which yields that �0 is a continuous map, we therefore complete the proof.

Before verifying condition (a), we give an estimate for the second moment

of Ȳ ✏,h✏

t .

Lemma 5.5.4. Assume (H1). Then, there exists an ✏0 2 (0, 1) such that

for some CT ,

E

⇣
sup

0tT

|Ȳ ✏,h✏

t |
2
⌘
 CT , ✏ 2 (0, ✏0), h✏ 2 AN . (5.5.5)

where Ȳ ✏,h✏

·
is defined in (5.5.3).

Proof. Note that Ȳ ✏,h✏

·
can be decomposed into the following three parts

Ȳ ✏,h✏

t =

Z
t

0

1
p
✏�(✏)

[bs(Y
✏,h✏

s
, �X0

s
)� bs(X

0
s
, �X0

s
)]ds

+

Z
t

0

1

�(✏)
�s(Y

✏,h✏

s
, �X0

s
)dWs +

Z
t

0

�s(Y
✏,h✏

s
, �X0

s
)ḣ✏(s)ds

=:
3X

i=1

J ✏,h✏

i
(t).

By (H1), we have

E

⇣
sup

0tT

|J ✏,h✏

1 (t)|2
⌘


TK(T )

✏�2(✏)

Z
T

0

E|Y ✏,h✏

s
�X0

s
|
2dds  CT

Z
T

0

E|Ȳ ✏,h✏

s
|
2ds.

By the BDG inequality, (5.3.2) and (5.3.3), one has

E

⇣
sup

0tT

|J ✏,h✏

2 (t)|2
⌘


CT

�2(✏)

Z
T

0

E[1 + |Y ✏,h✏

s
|
2 +W2(�X0

s
, �0)

2]ds


CT

�2(✏)

Z
T

0

[1 + E|Y ✏,h✏

s
�X0

s
|
2 + E|X0

s
|
2]ds


CT

�2(✏)

Z
T

0

[1 + ✏�2(✏)E|Ȳ ✏,h✏

s
|
2 + E|X0

s
|
2]ds


CT

�2(✏)
+ ✏CT

Z
T

0

E|Ȳ ✏,h✏

s
|
2ds.
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Applying the Hölder inequality, and recalling h✏ 2 AN , we obtain from (5.3.2)

and (5.3.3) that

E

⇣
sup

0tT

|J ✏,h✏

3 (t)|2
⌘

 CTE

Z
T

0

[1 + |Y ✏,h✏

s
|
2 +W2(�X0

s
, �0)

2]|ḣ✏(s)|
2ds

 CT

⇣
1 +

⇣
sup

0tT

|X0
t
|
2
⌘
+ ✏�2(✏)E

⇣
sup

0tT

|Ȳ ✏,h✏

t |
2
⌘⌘Z T

0

|ḣ✏(s)|
2ds

 CT

⇣
1 + ✏�2(✏)E

⇣
sup

0tT

|Ȳ ✏,h✏

t |
2
⌘⌘

.

Thus, the above estimates yield that

E

⇣
sup

0tT

|Ȳ ✏,h✏

t |
2
⌘

 CT

⇣
1 +

1

�2(✏)
+ ✏�2(✏)E

⇣
sup

0tT

|Ȳ ✏,h✏

t |
2
⌘
+ (1 + ✏)

Z
T

0

E|Ȳ ✏,h✏

t |
2dt

⌘
.

Taking ✏ > 0 su�ciently small, such that CT ✏�2(✏) 
1
2 , leads to

E

⇣
sup

0tT

|Ȳ ✏,h✏

t |
2
⌘
 CT

⇣
1 +

1

�2(✏)
+ (1 + ✏)

Z
T

0

E

⇣
sup
0st

|Ȳ ✏,h✏

s
|
2
⌘
dt
⌘
.

The desired assertion follows from Gronwall’s inequality and due to the fact

that 1
�2(✏) ! 0 as ✏! 0.

We are now in the position to verify the condition (a) of Lemma 2.4.2.

Lemma 5.5.5. Under assumptions (H1) and (H2), for every fixed N 2 N,

let h✏, h 2 AN be such that h✏ ) h as ✏! 0. Then �✏

⇣
1

�(✏)W·+
R

·

0 ḣ✏(s)ds
⌘
)

�0
⇣ R

·

0 ḣ(s)ds
⌘
in C([0, T ];Rd).

Proof. By the Skorokhod representation theorem [10, Theorem 6.7, p70],

there exists a probability space (⌦̃, F̃ , F̃t, P̃), and a Brownian motion W̃ on

this basis, a family of F̃t-predictable processes {h̃✏; ✏ > 0}, h̃ taking values
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on AN , P̃- a.s., such that the joint law of (h✏, h,W ) under P coincides with

the law of (h̃✏, h̃, W̃ ) under P̃ and

lim
✏!0

hh̃✏ � h̃, gi = 0, 8g 2 H, P̃� a.s..

Let Ỹ ✏,h̃✏ be the solution of (5.5.3) replacing h✏ by h̃✏ and W by W̃ , and Ỹ h̃

be the solution of (5.4.2) replacing h by h̃. Thus, to this end, it su�ces to

verify

lim
✏!0

kỸ ✏,h̃✏ � Ỹ h̃
k = 0, in probability.

In the following, we drop o↵ the ·̃ in the notation for the sake of simplicity.

Note that Ȳ ✏,h✏

t � Y h

t
can be decomposed to the following three parts:

Ȳ ✏,h✏

t � Y h

t

=


1

p
✏�(✏)

Z
t

0

[bs(Y
✏,h✏

s
, �X0

s
)� bs(X

0
s
, �X0

s
)]ds�

Z
t

0

rY h
s
bs(·, �X0

s
)(X0

s
)ds

�

+

Z
t

0

h
�s(Y

✏,h✏

s
, �X0

s
)ḣ✏(s)� �s(X

0
s
, �X0

s
)ḣ(s)

i
ds+

1

�(✏)

Z
t

0

�s(Y
✏,h✏

s
, �X0

s
)dWs

=:
3X

i=1

I✏,h✏

i
(t).

By (H2), we have

|I✏,h✏

1 (t)|

=

Z
t

0

���
Z 1

0

r
Ȳ

✏,h✏
s

bs(·, �X0
s
)(X0

s
+ r(Y ✏,h✏

s
�X0

s
))dr �rY h

s
bs(·, �X0

s
)(X0

s
)
���ds



Z
t

0

���
Z 1

0

r
{Ȳ

✏,h✏
s �Y h

s }
bs(·, �X0

s
)(X0

s
+ r(Y ✏,h✏

s
�X0

s
))dr

���ds

+

Z
t

0

���
Z 1

0

rY h
s
bs(·, �X0

s
)(X0

s
+ r(Y ✏,h✏

s
�X0

s
))dr �rY h

s
bs(·, �X0

s
)(X0

s
)
���ds

 K(t)

Z
t

0

⇣
|Ȳ ✏,h✏

s
� Y h

s
|+

p
✏�(✏)

2
|Y h

s
||Ȳ ✏,h✏

s
|

⌘
ds.

By (5.5.4) and (5.5.5), it follows that

E

⇣
sup

0tT

|I✏,h✏

1 (t)|2
⌘
. ✏�2(✏) +

Z
T

0

E|Ȳ ✏,h✏

s
� Y h

s
|
2ds.
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By (H1) and (5.3.3), it follows that

|I✏,h✏

2 (t)|



���
Z

t

0

h
�s(Y

✏,h✏

s
, �X0

s
)� �s(X

0
s
, �X0

s
)
i
ḣ✏(s)ds

���+
���
Z

t

0

�s(X
0
s
, �X0

s
)(ḣ✏(s)� ḣ(s))ds

���



Z
t

0

K(s)|Y ✏,h✏

s
�X0

s
||ḣ✏(s)|ds+

Z
t

0

|�s(X
0
s
, �X0

s
)(ḣ✏(s)� ḣ(s))|ds


p
✏�(✏)

Z
t

0

K(s)|Ȳ ✏,h✏

s
||ḣ✏(s)|ds+

Z
t

0

K(s)(1 + |X0
s
|)|ḣ✏(s)� ḣ(s)|ds,

thus, by Hölder’s inequality and (5.3.2), it follows that

E

⇣
sup

0tT

|I✏,h✏

2 (t)|2
⌘
. ✏�2(✏) +

Z
T

0

E|ḣ✏(s)� ḣ(s)|2ds.

By the BDG inequality, (5.3.3) and (5.5.4), we arrive at

E

⇣
sup

0tT

|I✏,h✏

3 (t)|2
⌘


1

�2(✏)

Z
T

0

E

⇣
k�s(Y

✏,h✏

s
, �X0

s
)� �s(X

0
s
, �X0

s
)k2 + k�s(X

0
s
, �X0

s
)k2

⌘
ds


1

�2(✏)
+ ✏

Z
T

0

E|Ȳ ✏,h✏

s
|
2ds.

Taking the above estimates into consideration, it follows that

E

⇣
sup

0tT

|Ȳ ✏,h✏

t � Y h

t
|
2
⌘


1

�2(✏)
+ ✏(�2(✏) + 1) +

Z
T

0

E|ḣ✏(s)� ḣ(s)|2ds+

Z
T

0

E|Ȳ ✏,h✏

s
� Y h

s
|
2ds,

thus, the desired assertion follows from the Gronwall inequality and taking

✏! 0.

Proof of Lemma 5.5.1

The conclusion of Lemma 5.5.1 follows from Lemma 2.4.2, and from Lem-

mas 5.5.3 and 5.5.5.
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5.5.2 X̄✏
and Ȳ ✏

are exponentially equivalent

The following lemma shows that X̄✏ and Ȳ ✏ are exponentially equivalent.

Lemma 5.5.6. For any � > 0, we have

lim sup
✏!0

✏ log
⇣
P

n
sup

0tT

|X̄✏

t
� Ȳ ✏

t
| � �

o⌘
= �1. (5.5.6)

The proof of Lemma 5.5.6 is based on the following lemma, (for more

details, please refer to [25, Lemma 5.6.18]).

Lemma 5.5.7. Let bt, �t be progressively measurable processes, (wt)t�0 is a

d-dimensional Brownian motion, and let

dzt = btdt+
p
✏�tdwt, t � 0,

where z0 is deterministic. Let ⌧1 2 [0, 1] be a stopping time with respect to

the filtration of {wt, t 2 [0, 1]}. Suppose that the coe�cients of the di↵usion

matrix � are uniformly bounded, and for some constants M,B, ⇢ and any

t 2 [0, ⌧1],

|�t|  M(⇢2 + |zt|
2)1/2, |bt|  B(⇢2 + |zt|

2)1/2.

Then for any � > 0 and any ✏  1,

✏ logP
⇣

sup
t2[0,⌧1]

|zt| � �
⌘
 K + log

⇣⇢2 + |z0|2

⇢2 + �2

⌘
,

where K = 2B +M2(2 + d).

Now, we are in position to finish the Proof of Lemma 5.5.6.

Proof. Without loss of generality, we may choose R > 0 such that the initial

data x is in the ball BR+1(0) ( with center 0 and radius R+1). We also assume

that X0
t
does not leave this ball up to time T . We define the stopping time

⌧ 0
R
:= inf

n
t : t � 0

���|X̄✏

t
|_|Ȳ ✏

t
| � R+1

o
, then we denote by ⌧R = min{T, ⌧ 0

R
}.
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Subsequently, we consider z̄t := X̄✏

t
� Ȳ ✏

t
, the new process satisfies the

following equation

dz̄t =

Z
t

0

bsds+
p
✏

Z
t

0

�sdWs, z̄0 = 0, (5.5.7)

where

bt :=
bt(X✏

t
,LX

✏

t
)� bt(Ỹ ✏

t
, �X0

t
)

p
✏�(✏)

, �t :=
�t(X✏

t
,LX

✏

t
)� �t(Ỹ ✏

t
, �X0

t
)

p
✏�(✏)

.

Note that both bt and �t are progressively measurable processes. Assume

t  ⌧R, we then derive from (5.2.9) that

|bt| =
|bt(X✏

t
,LX

✏

t
)� bt(X✏

t
, �X0

t
) + bt(X✏

t
, �X0

t
)� bt(Ỹ ✏

t
, �X0

t
)|

p
✏�(✏)


K(t)W2(LX

✏

t
, �X0

t
)

p
✏�(✏)

+
K(t)|X✏

t
� Ỹ ✏

t
|

p
✏�(✏)

 K(t)(⇢2(✏) + |z̄t|
2)1/2,

where ⇢2(✏) = sup0tT
E|X̄✏

t
|
2. In the same vein, we have

|�t|  K(t)(⇢2(✏) + |z̄t|
2)1/2.

Note that z̄0 = 0, for any �, ⇢✏ and for any small enough ✏, we derive from

Lemma 5.5.7 that

✏ logP
⇣

sup
t2[0,⌧R]

|z̄t| � �
⌘
 KT + log

⇣ ⇢2(✏)

⇢2(✏) + �2

⌘
.

In the same way as in the proof of (5.3.6), one can show that ⇢2(✏) converges

to 0 as ✏! 0. Hence, we deduce that

lim sup
✏!0

✏ logP
⇣

sup
t2[0,⌧R]

|z̄t| � �
⌘
= �1. (5.5.8)

Now, since

{kX̄✏
� Ȳ ✏

k1 � �} ⇢ {⌧R  T} [
n

sup
0t⌧R

|X̄✏

t
� Ȳ ✏

t
| � �

o
,
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we can conclude as long as we show that

lim
R!1

lim sup
✏!0

✏ log
⇣
P{⌧R < T}

⌘
= �1.

Define ⌘R := {t : t � 0, |Ȳ ✏

t
| � R}, i.e. the first time of Ȳ ✏ exits from the

ball BR(0) (with center 0 and radius R).

Letting ⌧R < T , we then have {|X̄✏

⌧R
| _ |Ȳ ✏

⌧R
| = R + 1}, which yields the

following two cases:

(i) If |Ȳ ✏

⌧R
| = R+1, then we have immediately ⌘R < T . This implies that

P{⌧R < T}  P{⌘R < T}.

(ii) If |X̄✏

⌧R
| = R + 1, one can derive that

P{⌧R < T}  P{|X̄✏

⌧R
| = R + 1}

= P

⇢
sup

t2[0,⌧R]
|z̄t| �

1

2
, |X̄✏

⌧R
| = R + 1

�
+ P

⇢
sup

t2[0,⌧R]
|z̄t| <

1

2
, |X̄✏

⌧R
| = R + 1

�

 P

⇢
sup

t2[0,⌧R]
|z̄t| �

1

2

�
+ P{⌘R < T}.

To finish the proof, it is su�cient to prove by (5.5.8) that the probability

of Ȳ ✏ exits the ball BR(0) is very small as ✏ goes to zero, i.e.

lim
R!1

lim sup
✏!0

✏ log
⇣
P{⌘R < T}

⌘
= �1.

Recall that Ȳ ✏ satisfies an LDP for the uniform norm with good rate function

I(g) given in (5.4.1). Then, for any closed set F ⇢ C([0, T ];Rd) we have

lim sup
✏!0

✏ logP{Ȳ ✏
2 F}  � inf

g2F

I(g).

As a consequence,

lim sup
✏!0

✏ log
⇣
P{⌘R < T}

⌘
= lim sup

✏!0
✏ log

⇣
P

n
sup

0tT

|Ȳ ✏

t
| � R

o⌘

 � inf
{h2H;g=�0(

R ·
0 ḣ(s)ds),kgk1�R}

1

2

Z
T

0

|ḣ(s)|2ds.
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We remark that the infimum of I(g) on the set of paths exiting from the ball

BR(0) goes to infinity as R goes to infinity.

By (H1) and (5.3.2), we obtain that

|g(t)| 

Z
t

0

|rg(s)bs(·, �X0
s
)(X0

s
) + �s(X

0
s
, �X0

s
)ḣ(s)|ds



Z
t

0

|K(s)(|g(s)|+ (1 + |X0
s
|)|ḣ(s)|)ds

 Ct

⇣Z t

0

|g(s)|ds+
⇣Z t

0

|ḣ(s)|2ds
⌘1/2⌘

,

and by the Gronwall lemma, we have

|g(t)|  Ct

⇣Z t

0

|ḣ(s)|2ds
⌘1/2

< 1.

By taking R ! 1, it yields that {h 2 H; g = �0(
R

·

0 ḣ(s)ds), kgk1 � R} = ;,

which implies I(g) = �1. That is, X̄✏ and Ȳ ✏ are exponentially equivalent.

Proof of Theorem 5.4.1 The conclusion of Theorem 5.4.1 follows from

Lemma 5.5.1 and Lemma 5.5.6.

5.6 Illustrative Example

In this section, we give an illustrate example.

Example 5.6.1. For any g 2 C2
b
(Rd), define the function of µ as µ 7!

µ(g) :=
R
Rd gdµ. Consider the following MV-SDE on R

d:

dX✏

t
= {X✏

t
+ (LX

✏

t
(g))2}dt+

p
✏{X✏

t
+ LX

✏

t
(g))}dWt, (5.6.1)

with the initial value X✏

0. When ✏ ! 0, we obtain the following ordinary

di↵erential equation:

dX0
t
= {X0

t
+ (�X0

t
(g))2}dt. (5.6.2)
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We now check that the coe�cients of (5.6.1) satisfy (H1) and (H2).

Letting b(x, µ) = x + (µ(g))2, we have rb(·, µ)(x) = I, where I is the

d ⇥ d identity matrix. It is easy to check that (H1) and (H2) hold for the

spatial component of b. Now, we check that (H1) and (H2) also hold for the

measure component of b.

Firstly, we verify the condition (H1). By the Taylor expansion, one gets

that

lim
k�kTµ,2!0

1

k�kTµ,2

���µ � (Id+ �)�1(g)� µ(g)� hrg,�(x)i
���

= lim
k�kTµ,2!0

1

k�kTµ,2

���
Z

Rd

{g(x+ �(x))� g(x)� hrg,�(x)i}µ(dx)
���

 lim
k�kTµ,2!0

kr
2gk1

2k�kTµ,2

���
Z

Rd

|�(x)|2µ(dx)

 lim
k�kTµ,2!0

kr
2gk1k�kTµ,2 = 0.

That is, DLµ(g) = rg. Similarly, we can show that DLb(x, ·)(µ) = 2µ(g)rg.

This, together with g 2 C2
b
(Rd), yields that kDLb(x, ·)(Lx(g))kTµ,2  K,

where K = 2max{sup
x2Rd |g(x)|, supx2Rd krg(x)k}.

We now check the condition (H2). For X, Y,� 2 L2(⌦ ! R
d,P),

|EhDLb(x, ·)(LX(g))(X),�i � EhDLb(x, ·)(LY (g))(Y ),�i|

=
���Eh2(LX(g)rg)(X),�i � Eh2(LY (g)rg)(Y ),�i

���

 2(E|�|2)1/2(E|(LX(g)rg)(X)� (LY (g)rg)(Y )|2)1/2

 4(E|�|2)1/2
�
(E|LX(g)� LY (g)rg(X)|2)1/2 + (E|LY (g)(rg(X)�rg(Y ))|2)1/2

 

 C(E|�|2)1/2(E|X � Y |
2)1/2),

where we have used kDLµ(g)kTµ,2 < 1 in the last inequality, .

Similarly, we can also check that � satisfies (H1). By theorem 5.3.1, we

then obtain that Zt satisfies

dZt = Ztdt+ Eh2(�0
Xt
(g)rg)(X0

t
), Ztidt+ {X0

t
+ (LX

0
t
(g))}dWt.
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Chapter 6

Bismut formula of Lions

derivative for Mckean-Vlasov

stochastic di↵erential equations

driven by fractional Brownian

motion

In this chapter, we investigate the Bismut formula of L-derivative for MV-

SDEs driven by fBm in view of the Malliavin analysis method.

In Section 6.1, we show the well-posedness of MV-SDEs driven by fBm

under the Lipschitz condition of coe�cients.

In Section 6.2, we give the results of partial derivative in initial value and

Malliavin derivative of MV-SDEs driven by fBm, that is, Propositions 6.2.2

and 6.2.3.

In Section 6.3, we show a general result of Bismut formula of L-derivative

for MV-SDEs driven by fBm (Theorem 6.3.1), and Subsection 6.3.1 is devoted
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to its proof.

In Section 6.4, we apply the general result (Theorem 6.3.1) to the non-

degenerate case. More precisely, Subsection 6.4.1 is devoted to the explicit

assumptions on the coe�cients and the main result. Subsection 6.4.2 is

devoted to the proof of Theorem 6.3.1.

6.1 Well-posedness of McKean-Vlasov stochas-

tic di↵erential equations

Given a complete filtration probability space (⌦,F , (Ft)t�0,P) and (BH

t
)t�0

is a d-dimensional fBm with Hurst parameter H 2 (12 , 1). Consider the

following MV-SDE:

dXt = b(t,Xt,LXt
)dt+ �(t,LXt

)dBH

t
, X0 = ⇠, (6.1.1)

where b : ⌦⇥ [0, T ]⇥R
d
⇥P✓(Rd) ! R

d, � : [0, T ]⇥P✓(Rd) ! R
d
⌦R

d and

✓ 2 [1,1).

To obtain the existence and uniqueness of (6.1.1), we give the assumption

for (b, �) as follows:

(H) There exists a non-decreasing function K(t) such that for any t 2

[0, T ], x, y 2 R
d, µ, ⌫ 2 P✓(Rd),

|b(t, x, µ)� b(t, y, ⌫)|  K(t)(|x� y|+W✓(µ, ⌫)),

k�(t, µ)� �(t, ⌫)k  K(t)W✓(µ, ⌫),

and

|b(t, 0, �0)|+ k�(t, �0)k  K(t).
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For any p � 1, let S
p([0, T ]) be the space of Rd-valued, continuous F -

adapted processes  on [0, T ] satisfying

k kSp :=

 
E sup

t2[0,T ]
| (t)|p

!1/p

< 1,

and let the letter C with or without indices denotes generic constants, whose

value may change from line to line.

Definition 6.1.1. A stochastic process X = (Xt)0tT on R
d is called a

solution of (6.1.1), if X 2 S
p([0, T ]) and P-a.s.,

Xt = ⇠ +

Z
t

0

b(s,Xs,LXs
)ds+

Z
t

0

�(s,LXs
)dBH

s
, t 2 [0, T ].

Remark 6.1.1. Observing that the di↵usion term �(·,LX·) is a deterministic

function, then
R

t

0 �(s,LXs
)dBH

s
is regarded as a Wiener integral with respect

to fBm.

Theorem 6.1.1. Suppose that (H) holds and ⇠ 2 Lp(⌦,F0,P). Then the

equation (6.1.1) has a unique solution X 2 S
p([0, T ]) with any p � ✓ and

p > 1/H.

To finish the proof of this Theorem, we prepare the following Lemmas.

The following lemma presents the Hardy-Littlewood inequality (see, e.g., [91,

Theroem 1]).

Lemma 6.1.2. Let 1 < p̃ < q̃ < 1 and 1
q̃
= 1

p̃
� ↵. If f : R+ ! R

belongs to Lp̃(0,1), then I↵0+f(x) converges absolutely for almost every x,

and moreover

kI↵0+fkLq̃(0,1)  Cp̃,q̃kfkLp̃(0,1)

holds for some positive constant Cp̃,q̃.

The below lemma is due to [63, Theorem 1].
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Lemma 6.1.3. Let Z be a fractional Brownian motion with H > 1
2 . We

have the inclusion: for every T < 1, there exists a constant C(H, r) such

that for every r > 0, for every a, b with 0  a < b < 1 we have

E

⇣���
Z

b

a

f(u)dZu

���
r⌘

 C(H, r)kfkr
L1/H(a,b), (6.1.2)

and

E

⇣���
Z

b

a

f(u)dZu

Z
b

a

g(u)dZu

���
r⌘

 C(H, r)kfkr
L1/H(a,b)kgk

r

L1/H(a,b). (6.1.3)

Now, we are in position to finish the Proof of Theorem 6.1.1.

Proof. Define recursively (Xn)n�1 as follows: X0
t
= ⇠, t 2 [0, T ] and for each

n � 1,

Xn

t
= ⇠ +

Z
t

0

b(s,Xn�1
s

,L
X

n�1
s

)ds+

Z
t

0

�(s,L
X

n�1
s

)dBH

s
, t 2 [0, T ].

The rest of the proof will be divided into three steps.

Step 1. Claim: For any p � ✓ and p > 1/H, if E(sup
t2[0,T ] |X

n

t
|
p) < 1,

then there holds E(sup
t2[0,T ] |X

n+1
t |

p) < 1. Owing to the Hölder inequality

and (H), we have for any p � ✓,

E

⇣
sup

t2[0,T ]
|Xn+1

t
|
p

⌘

 3p�1
E|⇠|p + 3p�1

E

����
Z

T

0

b(s,Xn

s
,LXn

s
)ds

����
p

+ 3p�1
E

 
sup

t2[0,T ]

����
Z

t

0

�(s,LXn
s
)dBH

s

����
p
!

 3p�1
E|⇠|p + (3T )p�1

E

Z
T

0

Kp(s)(1 + |Xn

s
|+W✓(LXn

s
, �0))

pds

+ 3p�1
E

 
sup

t2[0,T ]

����
Z

t

0

�(s,LXn
s
)dBH

s

����
p
!

 3p�1
E|⇠|p + 32(p�1)(TK(T ))p

 
1 + 2E

⇣
sup

t2[0,T ]
|Xn

t
|
p

⌘!
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+ 3p�1
E

 
sup

t2[0,T ]

����
Z

t

0

�(s,LXn
s
)dBH

s

����
p
!
. (6.1.4)

Next, we shall provide an estimate for the last term of the right-hand side

of (6.1.4), whose argument is partially borrowed from [1, Theorem 4].

We take � satisfying 1 � H < � < 1 � 1/p because pH > 1. Using the

fact that
R

t

s
(t � r)��(r � s)��1dr = C�, the stochastic Fubini theorem and

the Hölder inequality, we get

E

 
sup

t2[0,T ]

����
Z

t

0

�(s,LXn
s
)dBH

s

����
p
!

= C�p

�
E

 
sup

t2[0,T ]

����
Z

t

0

✓Z
t

s

(t� r)��(r � s)��1dr

◆
�(s,LXn

s
)dBH

s

����
p
!

= C�p

�
E

 
sup

t2[0,T ]

����
Z

t

0

(t� r)��

✓Z
r

0

(r � s)��1�(s,LXn
s
)dBH

s

◆
dr

����
p
!


C�p

�

(p� 1� �p)p�1
E

 
sup

t2[0,T ]
tp�1��p

Z
t

0

����
Z

r

0

(r � s)��1�(s,LXn
s
)dBH

s

����
p

dr

!


C�p

�

(p� 1� �p)p�1
T p�1��p

Z
T

0

E

����
Z

r

0

(r � s)��1�(s,LXn
s
)dBH

s

����
p

dr, (6.1.5)

where we have used the condition � < 1� 1/p in the first inequality. Notice

that for each r 2 [0, T ],
R
r

0 (r � s)��1�(s,LXn
s
)dBH

s
is a centered Gaussian

random variable. Then by the Kahane-Khintchine formula, we obtain that

there exists a constant Cp > 0 such that

E

����
Z

r

0

(r � s)��1�(s,LXn
s
)dBH

s

����
p

 Cp

 
E

����
Z

r

0

(r � s)��1�(s,LXn
s
)dBH

s

����
2
! p

2

 Cp

✓Z
r

0

Z
r

0

(r � u)��1
k�(u,LXn

u
)k(r � v)��1

k�(v,LXn
v
)k|u� v|2H�2dudv

◆ p

2

 Cp,H

✓Z
r

0

(r � s)
��1
H k�(s,LXn

s
)k

1
H ds

◆pH

, (6.1.6)
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where the last inequality is due to the argument of Lemma 6.1.3.

Substituting (6.1.6) into (6.1.5) and using the condition 1 �H < � and

Lemma 6.1.2 with q̃ = pH and ↵ = 1� 1��

H
(imply p̃ = pH

p(�+H�1)+1), we have

E

 
sup

t2[0,T ]

����
Z

t

0

�(s,LXn
s
)dBH

s

����
p
!

 C�,p,HT
p�1��p

Z
T

0

✓Z
r

0

(r � s)
��1
H k�(s,LXn

s
)k

1
H ds

◆pH

dr

 C�,p,HT
p�1��p

✓Z
T

0

k�(r,LXn
r
)k

p

p(�+H�1)+1dr

◆p(�+H�1)+1

 C�,p,HT
pH�1

Z
T

0

k�(s,LXn
s
)kpds, (6.1.7)

where we used the Hölder inequality in the last inequality, and remark that

C�,p,H above may depend only on p and H by choosing proper �.

Observe that, by (H) and p � ✓ we have
Z

T

0

k�(s,LXn
s
)kpds 

Z
T

0

Kp(s)
�
1 +W✓(LXn

s
, �0)

�p
ds

 2p�1Kp(T )T

 
1 + E

⇣
sup

t2[0,T ]
|Xn

t
|
p

⌘!
.

Then, plugging this into (6.1.7) yields

E

 
sup

t2[0,T ]

����
Z

t

0

�(s,LXn
s
)dBH

s

����
p
!

 Cp,HK
p(T )T pH

 
1 + E

⇣
sup

t2[0,T ]
|Xn

t
|
p

⌘!
.

Combining this with (6.1.4) and the assumption that E
�
sup

t2[0,T ] |X
n

t
|
p
�
< 1

yields the desired claim.

Step 2. Existence. To this end, we shall prove the convergence of Xn in

S
p([0, T ]) with any p > 1/H and p � ✓. For any t 2 [0, T ], we get

E

⇣
sup
s2[0,t]

|Xn

s
�Xn�1

s
|
p

⌘
(6.1.8)

 2p�1
E

⇣
sup
s2[0,t]

���
Z

s

0

⇣
b(r,Xn�1

r
,L

X
n�1
r

)� b(r,Xn�2
r

,L
X

n�2
r

)
⌘
dr
���
p⌘
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+ 2p�1
E

⇣
sup
s2[0,t]

���
Z

s

0

⇣
�(r,L

X
n�1
r

)� �(r,L
X

n�2
r

)
⌘
dBH

r

���
p⌘

=: 2p�1I1(t) + 2p�1I2(t).

For the term I1(t), from (H) and p � ✓ we obtain

I1(t)  tp�1
E

Z
t

0

��b(r,Xn�1
r

,L
X

n�1
r

)� b(r,Xn�2
r

,L
X

n�2
r

)
��p dr

 tp�1
E

Z
t

0

⇥
K(r)

�
|Xn�1

r
�Xn�2

r
|+W✓(LX

n�1
r

,L
X

n�2
r

)
�⇤p

dr

 2p�1Kp(t)tp�1
E

Z
t

0

�
|Xn�1

r
�Xn�2

r
|
p + E|Xn�1

r
�Xn�2

r
|
p
�
dr

 2pKp(t)tp�1

Z
t

0

E

⇣
sup

u2[0,r]
|Xn�1

u
�Xn�2

u
|
p

⌘
dr. (6.1.9)

As for the term I2(t), owing to p > 1/H and p � ✓, (6.1.7) and (H) we have

I2(t) = E

⇣
sup
s2[0,t]

���
Z

s

0

⇣
�(r,L

X
n�1
r

)� �(r,L
X

n�2
r

)
⌘
dBH

r

���
p⌘

 Cp,Ht
pH�1

Z
t

0

k�(r,L
X

n�1
r

)� �(r,L
X

n�2
r

)kpdr

 Cp,Ht
pH�1

Z
t

0

Kp(r)W✓(LX
n�1
r

,L
X

n�2
r

)pdr

 Cp,HK
p(t)tpH�1

Z
t

0

E|Xn�1
r

�Xn�2
r

|
pdr

 Cp,HK
p(t)tpH�1

Z
t

0

E

⇣
sup

u2[0,r]
|Xn�1

u
�Xn�2

u
|
p

⌘
dr. (6.1.10)

Plugging (6.1.9) and (6.1.10) into (6.1.8) yields

E

⇣
sup
s2[0,t]

|Xn

s
�Xn�1

s
|
p

⌘
(6.1.11)

 2p�1Kp(t)(2ptp�1 + Cp,Ht
pH�1)

Z
t

0

E

⇣
sup

u2[0,r]
|Xn�1

u
�Xn�2

u
|
p

⌘
dr

 Cp,H,T

Z
t

0

E

⇣
sup

u2[0,r]
|Xn�1

u
�Xn�2

u
|
p

⌘
dr
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with Cp,H,T := 2p�1Kp(T )(2pT p�1 + Cp,HT pH�1).

Hence, by the iteration we arrive at

E

⇣
sup
s2[0,t]

|Xn

s
�Xn�1

s
|
p

⌘
 C1C

n

p,H,T

tn�1

(n� 1)!
,

where C1 := E

⇣
sup

t2[0,T ] |X
1
t
� ⇠|p

⌘
< 1 due to Step 1.

Consequently, (Xn)n�1 is a Cauchy sequence in S
p([0, T ]) with any p � ✓

and p > 1
H
, and then the limit, denoted by X, is a solution of (6.1.1).

Step 3. Uniqueness. Let X and Y be two solutions of (6.1.1). Along the

same lines with Step 2, we derive that as in (6.1.11),

E

⇣
sup
s2[0,t]

|Xs � Ys|
p

⌘
 Cp,H,T

Z
t

0

E

⇣
sup

u2[0,r]
|Xu � Yu|

p

⌘
dr, t 2 [0, T ].

Then, the Gronwall lemma implies that Xt = Yt, t 2 [0, T ], P-a.s.. The

proof is now complete.

6.2 Partial derivative in initial value andMalli-

avin derivative

Consider (6.1.1) with distribution independent �(t), i.e.

dXt = b(t,Xt,LXt
)dt+ �(t)dBH

t
, (6.2.1)

where X0 2 L2(⌦,F0,P) with LX0 = µ.

The drift b satisfies the following assumption:

(A) For every t 2 [0, T ], b(t, ·, ·) 2 C1,(1,0)(Rd
⇥ P2(Rd)). Moreover, there

exists a constant K > 0 such that

krb(t, ·, µ)(x)k+ kDLb(t, x, ·)(µ)k  K, t 2 [0, T ], x 2 R
d, µ 2 P2(R

d).
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Note that by the fundamental theorem for Bochner integral (see, for instance,

[57, Proposition A.2.3]) and the definitions of L-derivative and the Wasser-

stein distance, (A) implies

|b(t, x, µ)� b(t, y, ⌫)|  K(|x� y|+W2(µ, ⌫)), t 2 [0, T ],

with x, y 2 R
d, µ, ⌫ 2 P2(Rd).

Then, it follows from Theorem 6.1.1 that (6.2.1) has a unique solution.

6.2.1 Partial derivative in the initial value

To investigate the partial derivative in initial value of (6.2.1), we first in-

troduce a family of auxiliary equations. For any " > 0 and ⌘ 2 L2(⌦ !

R
d,F0,P), let (X"

t
)t2[0,T ] solve

dX"

t
= b(t,X"

t
,LX

"

t
)dt+ �(t)dBH

t
, X"

0 = X0 + "⌘, (6.2.2)

and define

⌥"

t
:=

X"

t
�Xt

"
, t 2 [0, T ], " > 0.

Lemma 6.2.1. Assume that (A1) holds. Then

sup
">0

E

 
sup

t2[0,T ]
|⌥"

t
|
2

!
 2 e8K

2
T
E|⌘|2, (6.2.3)

and

sup
"2(0,1],t2[0,T ]

|⌥"

t
|
2


⇣
2|⌘|2 + 8(KT )2 e8(KT )2

E|⌘|2
⌘
e4(KT )2 . (6.2.4)

Proof. By (6.2.1)-(6.2.2) and (A1), we have for any t 2 [0, T ] and " > 0,

sup
s2[0,t]

|X"

s
�Xs|

2
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 2"2|⌘|2 + 2 sup
s2[0,t]

����
Z

s

0

�
b(r,X"

r
,LX"

r
)� b(r,Xr,LXr

)
�
dr

����
2

 2"2|⌘|2 + 4K2T sup
s2[0,t]

Z
s

0

�
|X"

r
�Xr|

2 +W2(LX"
r
,LXr

)2
�
dr.

Taking the expectation on both sides of the above inequality, we get

E

✓
sup
s2[0,t]

|X"

s
�Xs|

2

◆
 2"2E|⌘|2 + 8K2T

Z
t

0

E

✓
sup

u2[0,r]
|X"

u
�Xu|

2

◆
dr,

which implies (6.2.3) and then (6.2.4) due to the Gronwall inequality.

With Lemma 6.2.1 in hand, we can present the partial derivative in initial

value of the equation (6.2.1). Consider now the following linear random ODE

on R
d: for any ⌘ 2 L2(⌦ ! R

d,F0,P) and t 2 [0, T ],

d�⌘

t =
⇥
r�⌘

t
b(t, ·,LXt

)(Xt) +
�
EhDLb(t, y, ·)(LXt

)(Xt),�
⌘

t i
�
|y=Xt

⇤
dt, �⌘

0 = ⌘,

(6.2.5)

where

EhDLb(t, y, ·)(LXt
)(Xt),�

⌘

t i :=
�
EhDLbi(t, y, ·)(LXt

)(Xt),�
⌘

t i
�
1id

2 R
d.

Obviously, (A1) implies that the ODE has a unique solution {�⌘

t }t2[0,T ] sat-

isfying

E

 
sup

t2[0,T ]
|�⌘

t |
2

!
 CT,KE|⌘|

2. (6.2.6)

Proposition 6.2.2. Assume that (A1) holds. Then for any ⌘ 2 L2(⌦ !

R
d,F0,P), the limit r⌘Xt := lim"#0 ⌥"

t
exists in L2(⌦ ! C([0, T ];Rd),P)

such that r⌘Xt = �⌘

t holds for each t 2 [0, T ], i.e., r⌘Xt is the unique

solution of (6.2.5).

Proof. To simplify the notation, we denoteX"

✓
(t) = Xt+✓(X"

t
�Xt), ✓ 2 [0, 1].

By (6.2.1) and (6.2.2), we obtain that for any t 2 [0, T ],

d⌥"

t
=

b(t,X"

t
,LX

"

t
)� b(t,Xt,LXt

)

"
dt
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=


1

"

Z 1

0

d

d✓
b(t,X"

✓
(t),LX

"

t
)d✓ +

1

"

Z 1

0

d

d✓
b(t,Xt,LX

"

✓
(t))d✓

�
dt

=

Z 1

0

r⌥"

t
b(t, ·,LX

"

t
)(X"

✓
(t))d✓

+

Z 1

0

(EhDLb(t, y, ·)(LX
"

✓
(t))(X

"

✓
(t)),⌥"

t
i)|y=Xt

d✓

�
dt

with ⌥"

0 = ⌘. Here, we have used Lemma 2.3.1 in the last equality.

Then, combining this with (6.2.5) yields that for each t 2 [0, T ],

d(⌥"

t
� �⌘

t ) =
⇥
�"

1(t) +r⌥"

t
��⌘

t
b(t, ·,LXt

)(Xt)
⇤
dt

+
⇥
�"

2(t) +
�
EhDLb(t, y, ·)(LXt

)(Xt),⌥
"

t
� �⌘

t i
�
|y=Xt

⇤
dt,

with ⌥"

0 � �⌘

0 = 0, where

�"

1(t) :=

Z 1

0

⇥
r⌥"

t
b(t, ·,LX

"

t
)(X"

✓
(t))�r⌥"

t
b(t, ·,LXt

)(Xt)
⇤
d✓,

�"

2(t) :=

Z 1

0

�
EhDLb(t, y, ·)(LX

"

✓
(t))(X

"

✓
(t))�DLb(t, y, ·)(LXt

)(Xt),⌥
"

t
i
�
|y=Xt

d✓.

Consequently, by (A1) we get

|⌥"

t
� �⌘

t |
2
 4T

Z
t

0

�
|�"

1(s)|
2 + |�"

2(s)|
2
�
ds

+ 4K2T

Z
t

0

�
|⌥"

s
� �⌘

s
|
2 + E|⌥"

s
� �⌘

s
|
2
�
ds.

Taking into account of (6.2.3) and (6.2.6), the Gronwall inequality leads to

E

 
sup

t2[0,T ]
|⌥"

t
� �⌘

t |
2

!
 4T e8(KT )2

Z
T

0

E
�
|�"

1(s)|
2 + |�"

2(s)|
2
�
ds. (6.2.7)

By the Hölder inequality and (6.2.3), one sees that

|�"

1(s)|
2 + |�"

2(s)|
2



Z 1

0

|rb(s, ·,LX"
s
)(X"

✓
(s))�rb(s, ·,LXs

)(Xs)|
2d✓ · |⌥"

s
|
2
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+ E|⌥"

s
|
2

Z 1

0

�
E|DLb(s, y, ·)(LX

"

✓
(s))(X

"

✓
(s))�DLb(s, y, ·)(LXs

)(Xs)|
2
�
|y=Xs

d✓

(6.2.8)

 4K2(|⌥"

s
|
2 + E|⌥"

s
|
2),

and

lim
"#0

E

 
sup
✓2[0,1]

|X"

✓
(s)�Xs|

2

!
 lim

"#0
E|X"

s
�Xs|

2 = 0.

Then using the condition b(s, ·, ·) 2 C1,(1,0)(Rd
⇥P2(Rd)) of (A1) and (6.2.3)

again, we obtain that |�"

1(s)|
2 + |�"

2(s)|
2 converges to 0 in probability as "

goes to 0.

By (6.2.8), the dominated convergence theorem and the second assertion

of Lemma 6.2.1 we conclude that

lim
"#0

E

"
sup

s2[0,T ]

�
|�"

1(s)|
2 + |�"

2(s)|
2
�
#
= 0.

This, along with (6.2.7), implies

lim
"#0

E

 
sup

t2[0,T ]
|⌥"

t
� �⌘

t |
2

!
= 0,

which completes the proof.

6.2.2 Malliavin derivative

For the Malliavin derivative of the equation (6.2.1), consider for each h 2 H

and " > 0 the SDE: for t 2 [0, T ],

dX",h

t = b(t,X",h

t ,LXt
)dt+ �(t)d(BH

t
+ "(RHh)(t)), X",h

0 = X0. (6.2.9)

It is easy to see that under (A1) there exists a unique solution X",h to (6.2.9).

Using the pathwise uniqueness of (6.2.1) and the fact thatXt can be regarded
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as a functional of BH and X0, the Malliavin directional derivative of Xt along

RHh is shown by

DRHhXt := lim
"#0

X",h

t �Xt

"

if the limit exists in L2(⌦ ! C([0, T ];Rd),P). The above step is partially

borrowed from [87, Proposition 3.5]. Noting that LXt
in (6.2.9) is indepen-

dent of ", by the same arguments as in [30, Lemma 3.1 and Proposition 3.1]

we have the following result.

Proposition 6.2.3. Assume that (A1) holds. Then for any ⌘ 2 L2(⌦ !

R
d,F0,P) and h 2 H, the limit

lim
"#0

X",h

t �Xt

"

exists in L2(⌦ ! C([0, T ];Rd),P) such that DRHhXt = (hDX i

t
, hiH)1id 2

R
d holds for every t 2 [0, T ] and satisfies

DRHhXt =

Z
t

0

rDRHhXs
b(s, ·,LXs

)(Xs)ds+

Z
t

0

�(s)d(RHh)(s), t 2 [0, T ].

(6.2.10)

6.3 General result of Bismut formula for Li-

ons derivative

In this section, we aim to establish a general result of Bismut type formula

of the L-derivative for (6.2.1). More precisely, for any µ 2 P2(Rd), let

(Xµ

t )t2[0,T ] be the solution to (6.2.1) with LX0 = µ and denote P ⇤

t
µ = LX

µ

t

for every t 2 [0, T ]. Now, define

(Ptf)(µ) :=

Z

Rd

fd(P ⇤

t
µ) = Ef(Xµ

t ), t 2 [0, T ], f 2 Bb(R
d).

107



For any t 2 (0, T ], µ 2 P2(Rd) and � 2 L2(Rd
! R

d, µ), the aim of this

section is to find an integrable random variable Mt(µ,�) such that

DL

�
(Ptf)(µ) = E (f(Xµ

t )Mt(µ,�)) , f 2 Bb(R
d).

To this end, let X
µ",�

t denote the solution of (6.2.1) with initial data X
µ",�

0 =

(Id + "�)(X0), where " 2 [0, 1] and � 2 Tµ,2. According to Proposition 6.2.2

and 6.2.3, r�(X0)X
µ",�

· and D
RHh

",�

s0
X

µ",�

· below are both well-defined for any

s0 2 [0, T ), and satisfy (6.2.5) with ⌘ = �(X0) and (6.2.10), respectively. In

order to ease notations, we simply write µ",� = L(Id+"�)(X0), and if s0 = 0 or

" = 0, we often suppress s0 or " (e.g., RHh
",�

0 = RHh",�, h0,�
0 = h�, X

µ0,�

t =

Xµ

t .).

The theorem below shows the general result of Bismut formula of L-

derivative for (6.2.1).

Theorem 6.3.1. Assume that for any " 2 [0, 1] and s0 2 [0, T ), there exists

h",�

s0
2 Dom� \H such that

D
RHh

",�

s0
X

µ",�

T
= r�X

µ",�

T
, (6.3.1)

with (RHh",�

s0
)(t) = 0 for all t 2 [0, s0], where r�X

µ",�

T
is in (6.2.5) and

D
RHh

",�

s0
X

µ",�

T
solves (6.2.10) with h",�

s0
replacing h�. Moreover, suppose that

Z 1

0

�
E�2(h✓,�

s0
)
� 1

2 d✓ < 1, (6.3.2)

and

lim
"!0+

E|�(h",�)� �(h�)|2 = 0, 8� 2 Tµ,2. (6.3.3)

Then, there holds that

(i) For any f 2 Bb(Rd), then PTf is intrinsically di↵erentiable at µ, such

that

DL

�
(PTf)(µ) = E(f(Xµ

T
)�(h�)), 8� 2 Tµ,2.
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(ii) If moreover

E�2(h�)  L̃k�k2
Tµ,2

, (6.3.4)

with a constant L̃ > 0 and

lim
k�kTµ,2!0

sup
"2(0,1]

E|�(h",�)� �(h�)|2

k�k2
Tµ,2

= 0, (6.3.5)

then for any f 2 Bb(Rd), PTf is L-di↵erentiable at µ.

6.3.1 Proof of the general result

Before providing the proof of Theorem 6.3.1, we prepare the following lemma.

Lemma 6.3.2. Assume that for any " 2 [0, 1] and s0 2 [0, T ), there exists

h",�

s0
2 Dom� \ H such that (6.3.1) holds with (RHh",�

s0
)(t) = 0 for all t 2

[0, s0]. Then for any " 2 [0, 1], s0 2 [0, T ) and f 2 Bb(Rd),

E(f(X
µ",�

T
)� f(Xµ

T
)|Fs0) =

Z
"

0

E

⇣
f(X

µ⌧,�

T
)�(h⌧,�

s0
)
���Fs0

⌘
d⌧.

In particular, it holds

E(f(X
µ",�

T
)� f(Xµ

T
)) =

Z
"

0

E
�
f(X

µ⌧,�

T
)�(h⌧,�)

�
d⌧.

Proof. Since D
RHh

",�

s0
X

µ",�

T
= r�(X0)X

µ",�

T
, we deduce that for any f 2 C1

b
(Rd),

E(f(X
µ",�

T
)� f(Xµ

T
)|Fs0) = E

✓Z
"

0

d

d⌧
f(X

µ⌧,�

T
)d⌧
���Fs0

◆

= E

✓Z
"

0

hrf(X
µ⌧,�

T
),r�(X0)X

µ⌧,�

T
id⌧
���Fs0

◆

=

Z
"

0

E

⇣
hrf(X

µ⌧,�

T
),r�(X0)X

µ⌧,�

T
i

���Fs0

⌘
d⌧

=

Z
"

0

E

⇣
hrf(X

µ⌧,�

T
),D

RHh
⌧,�

s0
X

µ⌧,�

T
i

���Fs0

⌘
d⌧

=

Z
"

0

E

⇣
D

RHh
⌧,�

s0
f(X

µ⌧,�

T
)
���Fs0

⌘
d⌧
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=

Z
"

0

E

⇣
hDf(X

µ⌧,�

T
), h⌧,�

s0
iH

���Fs0

⌘
d⌧. (6.3.6)

Now, let ⇣ 2 DomD be any bounded and Fs0-measurable smooth random

variable, by [81, Proposition 1.2.3] we have for any ⌧ 2 [0, "],

E
�
⇣hDf(X

µ⌧,�

T
), h⌧,�

s0
iH

�

= E
⇥⌦
D(⇣f(X

µ⌧,�

T
)), h⌧,�

s0

↵
H
� f(X

µ⌧,�

T
)hD⇣, h⌧,�

s0
iH

⇤

= E
⇥
⇣f(X

µ⌧,�

T
)�(h⌧,�

s0
)� f(X

µ⌧,�

T
)hD⇣, h⌧,�

s0
iH

⇤

= E
⇥
⇣f(X

µ⌧,�

T
)�(h⌧,�

s0
)� f(X

µ⌧,�

T
)hK⇤

H
D⇣, K⇤

H
h⌧,�

s0
iL2([0,T ];Rd)

⇤
, (6.3.7)

where the last equality is due to the fact that K⇤

H
is an isometry between H

and a closed subspace of L2([0, T ];Rd).

Using Proposition 2.2.2 and the fact that (DW ⇣)(t) = 0 for all t > s0, we get

⌦
K⇤

H
D⇣, K⇤

H
h⌧,�

s0

↵
L2([0,T ];Rd)

=
⌦
D

W ⇣, K⇤

H
h⌧,�

s0

↵
L2([0,T ];Rd)

=

Z
T

0

⌦
(DW ⇣)(t), (K⇤

H
h⌧,�

s0
)(t)
↵
dt

=

Z
s0

0

⌦
(DW ⇣)(t), (K⇤

H
h⌧,�

s0
)(t)
↵
dt = 0. (6.3.8)

Here we have used K⇤

H
h⌧,�

s0
= K�1

H
(RHh⌧,�

s0
) and the fact that (RHh⌧,�

s0
)(t) = 0

for t 2 [0, s0] in the last equality.

Substituting (6.3.8) into (6.3.7) implies

E
⇥
⇣hDf(X

µ⌧,�

T
), h⌧,�

s0
iH

⇤
= E

⇥
⇣f(X

µ⌧,�

T
)�(h⌧,�

s0
)
⇤
.

Hence, combining this with (6.3.6), we obtain

E(f(X
µ",�

T
)� f(Xµ

T
)|Fs0) =

Z
"

0

E

⇣
f(X

µ⌧,�

T
)�(h⌧,�

s0
)
���Fs0

⌘
d⌧, f 2 C1

b
(Rd).

(6.3.9)
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Set

⌫",�
s0

(A) :=

Z
"

0

E
�
IA(X

µ⌧,�

T
)|�(h⌧,�

s0
)|
�
d⌧, A 2 B(Rd),

which is a finite measure on R
d. Then C1

b
(Rd) is dense in L1(Rd,L

X
µ
",�

T

+

LX
µ

T

+ ⌫",�
s0

). Therefore, (6.3.9) holds for any f 2 Bb(Rd). The proof now is

complete.

Now, we are in position to complete the Proof of Theorem 6.3.1

Proof. We divide the proof into two steps.

Step 1. Claim: For any f 2 Bb(Rd), PTf is intrinsically di↵erentiable at

µ = LX0 (namely (PTf)(µ � (Id + ·)�1) : L2(Rd
! R

d, µ) ! R is Gâteaux

di↵erentiable at 0), and moreover DL

�
(PTf)(µ) = E(f(Xµ

T
)�(h�)) holds for

each � 2 L2(Rd
! R

d, µ).

Due to Lemma 6.3.2, we deduce that for any f 2 Bb(Rd) and � 2

L2(Rd
! R

d, µ),

(PTf)(µ � (Id + "�)�1)� (PTf)(µ)

"
� E(f(Xµ

T
)�(h�))

=
(PTf)(L(Id+"�)(X0))� (PTf)(LX0)

"
� E(f(Xµ

T
)�(h�))

=
Ef(X

µ",�

T
)� Ef(Xµ

T
)

"
� E(f(Xµ

T
)�(h�))

=
1

"

Z
"

0

E
�
f(X

µ⌧,�

T
)�(h⌧,�)

�
d⌧ � E(f(Xµ

T
)�(h�))

=
1

"

Z
"

0

E
⇥
f(X

µ⌧,�

T
)(�(h⌧,�)� �(h�))

⇤
d⌧ +

1

"

Z
"

0

E
⇥
(f(X

µ⌧,�

T
)� f(Xµ

T
))�(h�)

⇤
d⌧

=: I1(�) + I2(�). (6.3.10)

By (6.3.3) and f 2 Bb(Rd), we obtain

lim sup
"!0+

|I1(�)|  kfk1 lim
"!0+

1

"

Z
"

0

�
E|�(h⌧,�)� �(h�)|2

� 1
2 d⌧

 kfk1 lim
"!0+

�
E|�(h",�)� �(h�)|2

� 1
2 = 0. (6.3.11)

111



For I2(�), we get for any s0 2 (0, T ),

|I2(�)| 
1

"

Z
"

0

��E
⇥�
f(X

µ⌧,�

T
)� f(Xµ

T
)
��
�(h�)� E(�(h�)|Fs0)

�⇤�� d⌧

+
1

"

Z
"

0

��E
⇥
(f(X

µ⌧,�

T
)� f(Xµ

T
))E
�
�(h�)|Fs0

�⇤�� d⌧

 2kfk1
��E�(h�)� E(�(h�)|Fs0)

��

+
1

"

Z
"

0

��E
⇥
(f(X

µ⌧,�

T
)� f(Xµ

T
))E
�
�(h�)|Fs0

�⇤�� d⌧.

(6.3.12)

On the one hand, it is easy to see that

lim
s0!T�

E
���(h�)� E(�(h�)|Fs0)

�� = 0. (6.3.13)

On the other hand, note that by Lemma 6.3.2 again, we have

���E[(f(Xµ⌧,�

T
)� f(Xµ

T
))E(�(h�)|Fs0)]

���

=
���E
h
E(�(h�)|Fs0)E

�
f(X

µ⌧,�

T
)� f(Xµ

T
)|Fs0

�i���

=

����E

E
�
�(h�)|Fs0

� Z ⌧

0

E

⇣
f(X

µ✓,�

T
)�(h✓,�

s0
)
���Fs0

⌘
d✓

�����

=

����
Z

⌧

0

E
⇥
E
�
�(h�)|Fs0

�
f(X

µ✓,�

T
)�(h✓,�

s0
)
⇤
d✓

����

 kfk1(E�2(h�))
1
2

Z
⌧

0

�
E�2(h✓,�

s0
)
� 1

2 d✓,

which goes to zero as ⌧ ! 0 due to (6.3.2). This means that the function

⌧ 7! E[(f(X
µ⌧,�

T
) � f(Xµ

T
))E(�(h�)|Fs0)] is continuous at 0. We then derive

that for each s0 2 (0, T ),

lim
"!0+

1

"

Z
"

0

��E
⇥
(f(X

µ⌧,�

T
)� f(Xµ

T
))E(�(h�)|Fs0)

⇤�� d⌧ = 0. (6.3.14)

Hence, plugging (6.3.13) and (6.3.14) into (6.3.12) implies that lim"!0+ |I2(�)| =

0. Combining this with (6.3.10) and (6.3.11), it yields the desired assertion.
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Step 2. Claim: For any f 2 Bb(Rd), PTf is L-di↵erentiable at µ = LX0

(namely (PTf)(µ � (Id+ ·)�1) : L2(Rd
! R

d, µ) ! R is Fréchet di↵erentiable

at 0).

According to the definition of L-derivative, it is enough to show that for

any f 2 Bb(Rd),

lim
k�kTµ,2!0

|(PTf)(µ � (Id + �)�1)� (PTf)(µ)� E(f(Xµ

T
)�(h�))|

k�kTµ,2

= 0.

Applying Lemma 6.3.2 with " = 1, we deduce from (6.3.4) that for any

f 2 Bb(Rd),

|(PTf)(µ � (Id + �)�1)� (PTf)(µ)� E(f(Xµ

T
)�(h�))|

k�kTµ,2

=
|Ef(X

µ1,�

T
)� Ef(Xµ

T
)� E(f(Xµ

T
)�(h�))|

k�kTµ,2

=

���
R 1

0 [E(f(X
µ⌧,�

T
)�(h⌧,�))� E(f(Xµ

T
)�(h�))]d⌧

���
k�kTµ,2



���
R 1

0 E[f(X
µ⌧,�

T
)(�(h⌧,�)� �(h�))]d⌧

���
k�kTµ,2

+

���
R 1

0 E[(f(X
µ⌧,�

T
)� f(Xµ

T
))�(h�)]d⌧

���
k�kTµ,2



kfk1
R 1

0

⇣
E
���(h⌧,�)� �(h�)

��2
⌘ 1

2
d⌧

k�kTµ,2

+ L̃

Z 1

0

(E|f(X
µ⌧,�

T
)� f(Xµ

T
)|2)

1
2d⌧

=: J1(�) + J2(�).

Obviously, it follows from (6.3.5) that limk�kTµ,2!0 J1(�) = 0.

For J2(�), note first that by the Lusin theorem (see, e.g. [21, Theorem 7.4.4]),

there exist {fn}n�1 ⇢ Cb(Rd) and compact sets {Kn}n�1 such that

fn|Kn
= f |Kn

, kfnk1  kfk1, L
X

µ
⌧,�

T

(Kc

n
) + LX

µ

T

(Kc

n
) 

1

n2
.

Then, we obtain

(E|f(X
µ⌧,�

T
)� f(Xµ

T
)|2)

1
2
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

⇣
E|f(X

µ⌧,�

T
)� fn(X

µ⌧,�

T
|
2I{f 6= fn}

⌘ 1
2
+ (E|fn(X

µ⌧,�

T
)� fn(X

µ

T
)|2)

1
2

+
⇣
E|fn(X

µ

T
)� f(Xµ

T
)|2I{f 6= fn}

⌘ 1
2


4kfk1

n
+ (E|fn(X

µ⌧,�

T
)� fn(X

µ

T
)|2)

1
2 . (6.3.15)

Note that for any ⌧ 2 [0, 1], we have

lim sup
k�kTµ,2!0

E|X
µ⌧,�

T
�Xµ

T
|
2
 C lim

k�kTµ,2!0
k�k2

Tµ,2
= 0,

where C is a positive constant. Consequently, the dominated convergence

theorem yields that for every n � 1,

lim
k�kTµ,2!0

E|fn(X
µ⌧,�

T
)� fn(X

µ

T
)|2 = 0.

Combining this with (6.3.15), we obtain that limk�kTµ,2!0 J2(�) = 0, which

completes the proof.

6.4 Bismut type formula: the non-degenerate

case

This part is devoted to applying the general Theorem 6.3.1 to the non-

degenerate case of (6.2.1).

6.4.1 Assumptions and main result

To applying our general result to the non-degenerate case, in additional to

(A1), we also need the following assumptions:

(A2) There exists a constant K̃ > 0 such that
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(i) for any t, s 2 [0, T ], x, y, z1, z2 2 R
d, µ, ⌫ 2 P2(Rd),

krb(t, ·, µ)(x)�rb(s, ·, ⌫)(y)k+ |DLb(t, x, ·)(µ)(z1)�DLb(s, y, ·)(⌫)(z2)|

 K̃(|t� s|↵0 + |x� y|�0 + |z1 � z2|
�0 +W2(µ, ⌫)),

where ↵0 2 (H � 1/2, 1] and �0, �0 2 (1� 1/(2H), 1].

(ii) � is invertible and ��1 is Hölder continuous of order �0 2 (H � 1/2, 1]:

k��1(t)� ��1(s)k  K̃|t� s|�0 , 8t, s 2 [0, T ].

(A3) The derivatives

@t(D
Lb(·, x, ·)(µ)(y))(t), r(DLb(t, ·, ·)(µ)(y))(x),

DL(DLb(t, x, ·)(·)(y))(µ)(z), r(DLb(t, x, ·)(µ)(·))(y)

exist and are bounded continuous in the corresponding elements (t, x, µ, y)

or (t, x, µ, y, z). We denote the bounded constants by a common one

K̄ > 0.

Now, we state the main result of this part as follows:

Theorem 6.4.1. Assume (A1), (A2) and (A3). Then for any µ 2 P2(Rd)

and f 2 Bb(Rd), PTf is L-di↵erentiable at µ such that

DL

�
(PTf)(µ) = E

✓
f(Xµ

T
)

Z
T

0

hK�1
H

(RHh
�)(t), dWti

◆
, 8� 2 Tµ,2, (6.4.1)

where h�
2 Dom� \H and satisfies for every t 2 [0, T ],

(RHh
�)(t) =

Z
t

0

��1(s)
h 1
T
r�(X0)X

µ

s
+

s

T

⇥
�
EhDLb(s, y, ·)(LX

µ

s
)(Xµ

s
),r�(X0)X

µ

s
i
�
|y=X

µ

s

i
ds. (6.4.2)
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Remark 6.4.1. By (2.2.3), one can recast the term K�1
H

(RHh�)(t) in the

theorem as

K�1
H

(RHh
�)(t)

=
(H �

1
2)t

H�
1
2

�(32 �H)

"
t1�2H��1(t)%(t)

H �
1
2

+ ��1(t)%(t)

Z
t

0

t
1
2�H

� s
1
2�H

(t� s)
1
2+H

ds

+ %(t)

Z
t

0

��1(t)� ��1(s)

(t� s)
1
2+H

s
1
2�Hds+

Z
t

0

%(t)� %(s)

(t� s)
1
2+H

��1(s)s
1
2�Hds

#
,

where for any s 2 [0, T ],

%(s) =
1

T
r�(X0)X

µ

s
+

s

T

�
EhDLb(s, y, ·)(LX

µ

s
)(Xµ

s
),r�(X0)X

µ

s
i
�
|y=X

µ

s
.

6.4.2 Proof for the result of non-degenrate case

In order to prove the theorem, we prepare the following lemmas. The lemma

below provides the estimates of the process {r�(X0)X
µ",�

t �r�(X0)X
µ

t }t2[0,T ]

in the sense of L1-norm and in the sense of L2-norm conditionally to F0,

respectively.

Lemma 6.4.2. Assume that (A1) and (A2) are satisfied. Then for any

t 2 [0, T ],

E|r�(X0)X
µ",�

t �r�(X0)X
µ

t |  C
T,K,K̃

`(",�)k�kTµ,2 , (6.4.3)

and

E(|r�(X0)X
µ",�

t �r�(X0)X
µ

t |
2
|F0)

 C
T,K,K̃

⇣
˜̀2
1(",�)k�k

2
Tµ,2

+ ˜̀2
2(",�)k�k

2
Tµ,2

+ ˜̀2
3(",�)|�(X0)|

2
⌘
,(6.4.4)

where

`(",�) = "�0k�k�0
Tµ,2

+ "�0k�k�0
Tµ,2

+ "k�kTµ,2 ,
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˜̀
1(",�) = "�0k�k�0

Tµ,2
+ "�0k�k�0

Tµ,2
+ "k�kTµ,2 + "

�0
2 k�k

�0
2
Tµ,2

+ "
1
2k�k

1
2
Tµ,2

,

˜̀
2(",�) = "

�0
2 |�(X0)|

�0
2 + "�0 |�(X0)|

�0 ,

˜̀
3(",�) = "

�0
2 k�k

�0
2
Tµ,2

+ "
1
2k�k

1
2
Tµ,2

+ "
�0
2 |�(X0)|

�0
2 . (6.4.5)

Remark 6.4.2. By a straightforward calculation, one can see that

lim
"!0

h
`(",�) + ˜̀

1(",�) + E

⇣
˜̀
2(",�) + ˜̀2

3(",�)
⌘i

= 0,

lim
|�kTµ,2!0

sup
"2(0,1]

h
`(",�) + ˜̀

1(",�)) + E

⇣
˜̀
2(",�) + ˜̀2

3(",�)
⌘i

= 0.

Proof. By Proposition 6.2.2 with ⌘ = �(X0), we get for every t 2 [0, T ],

r�(X0)X
µ",�

t �r�(X0)X
µ

t

=

Z
t

0


r

r�(X0)
X

µ
",�

s

b(s, ·,L
X

µ
",�

s

)(X
µ",�

s )�rr�(X0)
X

µ

s
b(s, ·,LX

µ

s
)(Xµ

s
)

+
⇣
EhDLb(s, y, ·)(L

X
µ
",�

s

)(X
µ",�

s ),r�(X0)X
µ",�

s i

⌘ ���
y=X

µ
",�

s

�
�
EhDLb(s, y, ·)(LX

µ

s
)(Xµ

s
),r�(X0)X

µ

s
i
�
|y=X

µ

s

�
ds.

Let ⇣t = |r�(X0)X
µ",�

t �r�(X0)X
µ

t |. Then, by (A1) and (A2) we have for

any t 2 [0, T ],

E(⇣t|F0)  K

Z
t

0

(E(⇣s|F0) + E⇣s)ds

+ K̃

Z
t

0

E

⇣
(|X

µ",�

s �Xµ

s
|
�0 +W2(LX

µ
",�

s

,LX
µ

s
))|r�(X0)X

µ

s
|
��F0

⌘
ds

+ K̃

Z
t

0

⇣
E(|X

µ",�

s �Xµ

s
|
�0 |F0) +W2(LX

µ
",�

s

,LX
µ

s
)
⌘
E|r�(X0)X

µ

s
|ds

+ K̃

Z
t

0

E
�
|X

µ",�

s �Xµ

s
|
�0 |r�(X0)X

µ

s
|
�
ds.

Notice that by (A1), we derive for any p > 0,

sup
s2[0,T ]

E(|X
µ",�

s �Xµ

s
|
p
|F0)  Cp,T,K"

p

h
k�kp

Tµ,2
+ |�(X0)|

p

i
, (6.4.6)
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and

sup
s2[0,T ],"2[0,1]

E(|r�(X0)X
µ",�

s |
p
|F0)  Cp,T,K

h
k�kp

Tµ,2
+ |�(X0)|

p

i
. (6.4.7)

Consequently, by (6.4.6) and (6.4.7) we obtain that for any t 2 [0, T ],

E(⇣t|F0)  K

Z
t

0

(E(⇣s|F0) + E⇣s)ds+ C
T,K,K̃

�(",�),

where

�(",�) = "�0k�k�0+1
Tµ,2

+ "�0k�k�0+1
Tµ,2

+ "k�k2
Tµ,2

+ "�0k�kTµ,2 |�(X0)|
�0

+
h
"�0

⇣
k�k�0

Tµ,2
+ |�(X0)|

�0

⌘
+ "k�kTµ,2

i
|�(X0)|.

Taking the expectation on both sides and applying the Gronwall lemma, we

obtain

E⇣t  C
T,K,K̃

E�(",�)  C
T,K,K̃

`(",�)k�kTµ,2 , (6.4.8)

where `(",�) is defined in (6.4.5). Hence, this leads to our first claim (6.4.3).

Next, we focus on proving (6.4.4). Applying the chain rule to ⇣2
t
and

using (A2) yield that for any t 2 [0, T ],

d⇣2
t


n
2K⇣2

t
+ 2K⇣tE⇣t

+ 3K̃(|r�(X0)X
µ",�

t |
2 + |r�(X0)X

µ

t |
2)
⇣
|X

µ",�

t �Xµ

t |
�0 +W2(LX

µ
",�

t

,LX
µ

t
)
⌘

+ 2K̃⇣t(E|r�(X0)X
µ

t |
2)

1
2

⇣
|X

µ",�

t �Xµ

t |
�0 +W2(LX

µ
",�

t

,LX
µ

t
)

+(E|X
µ",�

t �Xµ

t |
2�0)

1
2

⌘o
dt.

Then, by the Hölder inequality we deduce that for any t 2 [0, T ],

E(⇣2
t
|F0)  2K

Z
t

0

⇥
E(⇣2

s
|F0) + E(⇣s|F0)E⇣s

⇤
ds

+ 3K̃

Z
t

0

h�
E(|r�(X0)X

µ",�

s |
4
|F0)

� 1
2 + (E

�
|r�(X0)X

µ

s
|
4
|F0)

� 1
2

i
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⇥

h�
E(|X

µ",�

s �Xµ

s
|
2�0
��F0)

� 1
2 +W2(LX

µ
",�

s

,LX
µ

s
)
i
ds

+ 2K̃

Z
t

0

E(⇣2
s
|F0)

1
2 (E|r�(X0)X

µ

s
|
2)

1
2 ⇥

h
(E(|X

µ",�

s �Xµ

s
|
2�0 |F0))

1
2

+W2(LX
µ
",�

s

,LX
µ

s
) + (E|X

µ",�

s �Xµ

s
|
2�0)

1
2

i
ds



Z
t

0

h
(2K +K2 + K̃2)E(⇣2

s
|F0) + (E⇣s)

2
i
ds

+ 3K̃

Z
t

0

h�
E(|r�(X0)X

µ",�

s |
4
|F0)

� 1
2 + (E

�
|r�(X0)X

µ

s
|
4
|F0)

� 1
2

i

⇥

h�
E(|X

µ",�

s �Xµ

s
|
2�0
��F0)

� 1
2 + (E|X

µ",�

s �Xµ

s
|
2)

1
2

i
ds

+ 3

Z
t

0

E|r�(X0)X
µ

s
|
2
h
E(|X

µ",�

s �Xµ

s
|
2�0 |F0) + E|X

µ",�

s �Xµ

s
|
2

+ E|X
µ",�

s �Xµ

s
|
2�0
i
ds.

Combining this with (6.4.6), (6.4.7) and (6.4.8) and applying the Gronwall

lemma, we conclude that that for any t 2 [0, T ],

E(⇣2
t
|F0)  C

T,K,K̃

⇣
`2(",�)k�k2

Tµ,2
+ �̃(",�)

⌘
,

where

�̃(",�) =
⇣
k�k2

Tµ,2
+ |�(X0)|

2
⌘ h
"�0

⇣
k�k�0

Tµ,2
+ |�(X0)|

�0

⌘
+ "k�kTµ,2

i

+ k�k2
Tµ,2

h
"2�0

⇣
k�k2�0

Tµ,2
+ |�(X0)|

2�0

⌘
+ "2�0k�k2�0

Tµ,2
+ "2k�k2

Tµ,2

i
.

This, together with (6.4.5), yields that (6.4.4) holds. The proof is therefore

complete.

The following lemma describes the time continuity for the processes X
µ",�

t

in the sense of Lp-norm andr�(X0)X
µ",�

t in the sense of Lp-norm conditionally

to F0, respectively.

Lemma 6.4.3. Under assumptions (A1) and (A2). Then, we have for any

p 2 (1/H, 2],

sup
"2[0,1]

E|X
µ",�

t �X
µ",�

s |
p
 Cp,T,K,H |t� s|pH , 8t, s 2 [0, T ], (6.4.9)
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and

E(|r�(X0)X
µ",�

t �r�(X0)X
µ",�

s |
p
|F0)  Cp,T,K

⇣
k�kp

Tµ,2
+ |�(X0)|

p

⌘
|t� s|p.

(6.4.10)

Proof. (6.4.9) derives from the same lines as in Step 1 of Theorem 6.1.1. By

(6.4.7), it is easy to see that (6.4.10) holds. Thus, we omit the proof here.

In the sequel, we are going to finish the proof of Theorem 6.4.1. To apply

the general type Bismut formula (Theorem 6.3.1), it su�ces to check the

conditions therein in the non-degenerate setting. We will verify conditions

in Theorem 6.3.1 one by one.

Firstly, for any " 2 [0, 1] and s0 2 [0, T ), let

h̃",�

s0
(t) =

Z
t

t^s0

��1(s)


1

T � s0
r�(X0)X

µ",�

s

+
s� s0
T � s0

⇣
EhDLb(s, y, ·)(L

X
µ
",�

s

)(X
µ",�

s ),r�(X0)X
µ",�

s i

⌘
|
y=X

µ
",�

s

�
ds

=:

Z
t

0

��1(s)%",s0(s)I{s>s0}ds, t 2 [0, T ].

Owing to (A1) and (A2), one can verify that h̃",�

s0
(t) 2 I

H+ 1
2

0+ (L2([0, T ],Rd)),

which means that h",�

s0
2 H such that RHh",�

s0
is well-defined.

Next, we intend to show h",�

s0
2 Dom�.

It is easy to check that (RHh",�

s0
)(t) = 0 for all t 2 [0, s0]. Moreover, ap-

plying the chain rule to t�s0
T�s0

r�(X0)X
µ",�

t yields D
RHh

",�

s0
X

µ",�

T
= r�(X0)X

µ",�

T
.

By Remark 2.2.1 and Proposition 2.2.3, we then obtain that h",�

s0
2 Dom� and

�(h",�

s0
) = �W (K⇤

H
h",�

s0
) =

R
T

0 hK�1
H

(RHh",�

s0
)(t), dWti, provided thatK�1

H
(RHh",�

s0
) =

K⇤

H
h",�

s0
2 L2([0, T ]⇥ ⌦,Rd).

Subsequently, we prove that K⇤

H
h",�

s0
2 L2([0, T ]⇥ ⌦,Rd).

It is clear that the operator K�1
H

preserves the adaptability property.
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With the help of (2.1.1) and (2.2.3), we have

K�1
H

✓Z
·

0

��1(s)%",s0(s)I{s>s0}ds

◆
(t)

= tH�
1
2D

H�
1
2

0+

h
·
1
2�H��1(·)%",s0(·)I{·>s0}

i
(t)

=
H �

1
2

�(32 �H)

"
t
1
2�H��1(t)%",s0(t)I{t>s0}

H �
1
2

+ ��1(t)%",s0(t)

Z
t

0

I{t>s0} � I{s>s0}

(t� s)
1
2+H

ds

+ tH�
1
2��1(t)%",s0(t)

Z
t

0

t
1
2�H

� s
1
2�H

(t� s)
1
2+H

I{s>s0}ds

+ tH�
1
2%",s0(t)

Z
t

0

��1(t)� ��1(s)

(t� s)
1
2+H

s
1
2�HI{s>s0}ds

+ tH�
1
2

Z
t

0

%",s0(t)� %",s0(s)

(t� s)
1
2+H

��1(s)s
1
2�HI{s>s0}ds

#

=:
H �

1
2

�(32 �H)
[I1(t) + I2(t) + I3(t) + I4(t) + I5(t)]. (6.4.11)

From (6.4.7), it follows that

sup
s2[0,T ],"2[0,1]

E|%",s0(s)|
2
 Cs0,T,Kk�k

2
Tµ,2

.

Additionally, one sees that

Z
t

0

I{t>s0} � I{s>s0}

(t� s)
1
2+H

ds =
1

H �
1
2

⇣
(t� s0)

1
2�H

� t
1
2�H

⌘
I{t>s0}

and

Z
t

0

s
1
2�H

� t
1
2�H

(t� s)
1
2+H

ds = t1�2H

Z 1

0

r
1
2�H

� 1

(1� r)
1
2+H

dr < 1. (6.4.12)

Combining the above estimates, it yields from (A2)(ii) that

E|I1(t)|
2 + E|I3(t)|

2
 Cs0,T,K,Hk�k

2
Tµ,2

t1�2H , (6.4.13)
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Tµ,2
t2�0�2H+1, (6.4.15)
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which means that Ii 2 L2([0, T ]⇥ ⌦,Rd), i = 1, · · · , 4.

Before handing I5, we set for any " 2 (0, 1], t 2 [0, T ] and y 2 R
d,

b̄"(t, y) := DLb(t, y, ·)(L
X

µ
",�

t

)(X
µ",�

t ), b̄(t, y) := DLb(t, y, ·)(LX
µ

t
)(Xµ

t ).

By a direct calculation, we can reduce the integrability of I5 to that of the

following three terms in L2([0, T ]⇥ ⌦,Rd):

tH�
1
2

Z
t

0

|r�(X0)X
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1
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Z
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t i
�
|
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µ
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t
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µ
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s

���
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s
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2�Hds,

tH�
1
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�
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µ
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s

���

(t� s)
1
2+H

s
1
2�Hds.

Combining this with (A2), we then obtain that

E|I5(t)|
2
 C

s0,T,K,K̃,H
k�k2

Tµ,2

h
t3�2H + t2↵0�2H+1 + t2�0H�2H+1 + t
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E
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s
1
2�Hds
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. (6.4.16)

Note that there hold

sup
r2[0,T ]

|X
µ",�

r |  CT,K,H

⇣
1 + kId + "�kTµ,2 + |X0 + "�(X0)|+
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⌘
,
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⇣
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⌘
,

where k
R

·

0 �(r)dB
H

r
k1 := sup

t2[0,T ] |
R

t

0 �(r)dB
H

r
|.

Then, it follows from (A1) that
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Z
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2
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⌘
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122



 CT,K,H

⇣
1 + kId + "�kTµ,2 + |X0 + "�(X0)|

+
���
Z

·

0

�(r)dBH

r

���
1

⌘
(t� s). (6.4.17)

Consequently, this implies
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t1+2(H�&0)�0�2H , (6.4.18)

where we use the Hölder continuity of
R

·

0 �(r)dB
H

r
of order H � &0 with

&0 2 (0, 1/2) and

���
Z

·

0

�(r)dBH

r

���
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:= sup
0s<tT

���
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0 �(r)dB
H

r
�
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0 �(r)dB
H
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���
|t� s|H�&0

.

Plugging (6.4.18) into (6.4.16) yields that I5 2 L2([0, T ] ⇥ ⌦,Rd). Then we

get the desired claim.

Since

E�2(h",�

s0
) = E�2

W
(K⇤

H
h",�

s0
) =

Z
T

0

E|K�1
H

(RHh
",�

s0
)(t)|2dt,

By (6.4.13)-(6.4.16), we then have that

Z 1

0

�
E�2(h⌧,�

s0
)
� 1

2 d⌧ < 1 and E�2(h�)  C
T,K,K̃,H

k�k2
Tµ,2

. (6.4.19)

Finally, we shall estimate E|�(h",�)��(h�)|. As before, we write %" = %",0

and % = %0,0 for simplicity. Using the linearity of the operator K�1
H

and
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applying the BDG inequality and the Hölder inequality, we have

E|�(h",�)� �(h�)| (6.4.20)

= E
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(6.4.21)

By (2.1.1) and (2.2.3) again, we have
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2
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1
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��1(s)s
1
2�Hds

#
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H �

1
2

�(32 �H)
[J1(t) + J2(t) + J3(t) + J4(t)].

(6.4.22)

Owing to (A2)(ii) and (6.4.12), we get

3X

i=1

E(|Ji(t)|
2
|F0)  C

T,K̃,H

�
t1�2H + t2�0�2H+1

�
E
�
|(%" � %)(t)|2|F0

�
,
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which leads to

E

 Z
T

0

3X

i=1

E(|Ji(t)|
2
|F0)dt

! 1
2

 C
T,K̃,H

E

 
sup

t2[0,T ]
E
�
|(%" � %)(t)|2|F0

�
! 1

2

.

(6.4.23)

For notation simplicity, we set �µ",�

t := r�(X0)X
µ",�

t and �µ,�

t := r�(X0)X
µ

t .

Note that by (A1) and (A2), we obtain for any t 2 [0, T ],

E
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�
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µ

t |)
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t � �µ,�

t |)2
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h ⇣
`2(",�) + ˜̀2

1(",�) + "2�0k�k2�0
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+ "2k�k2
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+ "2�0k�k2�0
Tµ,2

⌘
k�k2

Tµ,2

+ (˜̀22(",�) + "2�0 |�(X0)|
2�0)k�k2

Tµ,2
+ ˜̀2

3(",�)|�(X0)|
2
i
,

where the last inequality is due to (6.4.6), (6.4.7) and Lemma 6.4.2. Then,

combining this with Remark 6.4.2 and (6.4.23) yields

lim
"!0

E

 Z
T

0

3X

i=1

E(|Ji(t)|
2
|F0)dt

! 1
2

= 0, (6.4.24)

and

lim
k�kTµ,2!0

sup
"2(0,1]

E

⇣R
T

0

P3
i=1 E(|Ji(t)|

2
|F0)dt

⌘ 1
2

k�kTµ,2

= 0. (6.4.25)

For the term associated with J4(t), observe first that for any 0  s < t  T ,

(%" � %)(t)� (%" � %)(s) =
6X

i=1

⇥i(t, s), (6.4.26)

where
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T
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⌘
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,
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⇥2(t, s) =
t� s

T

h⇣
Ehb̄"(t, y),�µ",�

t i

⌘
�

⇣
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t i
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D
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t � �µ",�

s

⌘
�

⇣
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t � �µ,�

s

⌘E⌘
,

⇥4(t, s) =
s

T

�
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s
� �µ,�

s
i
�
,
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s

T

⇣
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t � �µ,�

s
i

⌘
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s
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⇣
Eh(b̄"(t, y)� b̄"(s, z))� (b̄(t, ỹ)� b̄(s, z̃)),�µ,�

t i

⌘
,

with y = X
µ",�

t , ỹ = Xµ

t , z = X
µ",�

s and z̃ = Xµ

s
.

Owing to (A1), (A2), (6.4.6), (6.4.7), (6.4.10) and Lemma 6.4.2, one has

that
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(6.4.27)
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(6.4.30)

For ⇥4(t, s), by (A2)(i), (6.4.3) and (6.4.9) we first have
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+ K̃E
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t �X
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(6.4.31)

Next, we focus on dealing with the last two terms of the right-hand side of

(6.4.31). Using (6.4.17), (6.4.3), (6.4.4) and the fact that BH is independent

of F0, we obtain
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Observe that by (6.4.4), we derive
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where we use the Hölder inequality with 2+�0

4 + 2��0

4 = 1 and the relation

(1� 1
2H )�0  1� �0

2 in the last inequality. Note that if �0 2 (1� �0

2 , 1], we
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may choose �̃0 2 [1� 1
2H , 1� �0

2 ] to replace such �0 in the first inequality of

(6.4.31) due to the boundedness of DLb. In this case, (6.4.35) below holds

with �0 replaced by �̃0, which also implies the desired convergence of the

term involved ⇥4.

Substituting (6.4.33) into (6.4.32) and recalling that " 2 [0, 1] imply
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For the other term, applying the fact that BH is independent of F0 again

and (6.4.4), one sees that
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Plugging this and (6.4.34) into (6.4.31), we arrive at
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Hence, combining this with (6.4.18) and the fact that BH is independent of

F0 again leads to
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(6.4.35)

As far as ⇥6(t, s) is concerned, using (A3) and Lemma 2.3.1, we derive that

for any " 2 [0, 1], s, t 2 [0, T ] and y, z 2 R
d,

b̄"(t, y)� b̄"(s, z) = DLb(t, y, ·)(L
X

µ
",�

t

)(X
µ",�

t )�DLb(s, z, ·)(L
X

µ
",�

s

)(X
µ",�

s )

=

Z 1

0

d

d✓
DLb(✓s,t, y, ·)(LX

µ
",�

t

)(X
µ",�

t )d✓

+

Z 1

0

d

d✓
DLb(s, z + ✓(y � z), ·)(L

X
µ
",�

t

)(X
µ",�

t )d✓

+

Z 1

0

d

d✓
DLb(s, z, ·)(L

X
",�

s,t
(✓))(X

µ",�

t )d✓

+

Z 1

0

d

d✓
DLb(s, z, ·)(L

X
µ
",�

s

)(X",�

s,t (✓))d✓

=

Z 1

0

@✓s,t(D
Lb(·, y, ·)(L

X
µ
",�

t

)(X
µ",�

t ))(✓s,t)(t� s)d✓

+

Z 1

0

r(DLb(s, ·, ·)(L
X

µ
",�

t

)(X
µ",�

t ))(z + ✓(y � z))(y � z)d✓

+

Z 1

0
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EhDL(DLb(s, z, ·)(·)(u))(L

X
",�
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",�
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µ",�

t �X
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s i
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|
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µ
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+

Z 1

0

r(DLb(s, z, ·)(L
X

µ
",�
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)(·))(X",�

s,t (✓))(X
µ",�

t �X
µ",�

s )d✓,

where for any ✓ 2 [0, 1], ✓s,t := s+ ✓(t� s) and X",�

s,t (✓) := X
µ",�

s + ✓(X
µ",�

t �

X
µ",�

s ).

Then by (A1), (A3) and (6.4.9), we have

|⇥6(t, s)|  CT,K,K̄,H

h 4X

i=1

⇤i + |(X
µ",�

t �X
µ",�

s )� (Xµ

t �Xµ

s
)|

+ "(t� s)k�kTµ,2

i
k�kTµ,2 ,
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where

⇤1 := (t� s)
⇣
E

Z 1

0

��@✓s,t(DLb(·, y, ·)(L
X

µ
",�

t

)(X
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Z 1

0
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E|DL(DLb(s, z, ·)(·)(u))(L
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⌘ 1
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and recall that for any ✓ 2 [0, 1], Xs,t(✓) = Xµ

s
+ ✓(Xµ

t �Xµ

s
).

Note that due to (6.4.6), it follows that as " or k�kTµ,2 goes to zero,

X
µ",�

s and X",�

s,t (✓) converge respectively to Xµ

s
and Xs,t(✓) in probability for

any s, t 2 [0, T ] and ✓ 2 [0, 1]. Then, using (A3) again and applying the

dominated convergence theorem, we deduce that

lim
"!0

E

0

@
Z

T

0

E

0

@t2H�1

 Z
t

0

|⇥6(t, s)|s
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A dt

1

A

1
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= 0 (6.4.36)

and

lim
k�kTµ,2!0

sup
"2(0,1]

E

 
R
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0 E

 
t2H�1
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t

0
|⇥6(t,s)|s

1
2�H

(t�s)
1
2+H

ds

◆2 ��F0

!
dt

! 1
2

k�kTµ,2

= 0.

(6.4.37)
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Hence, combining (6.4.27)-(6.4.30), (6.4.35)-(6.4.36) with (6.4.26) and Re-

mark 6.4.2, we conclude that

lim
"!0

E

✓Z
T

0

E(|J4(t)|
2
|F0)dt

◆ 1
2

= 0

and

lim
k�kTµ,2!0

sup
"2(0,1]

E

⇣R
T

0 E(|J4(t)|2|F0)dt
⌘ 1

2

k�kTµ,2

= 0.

In conjunction with (6.4.20), (6.4.24) and (6.4.25), the above inequalities

imply

lim
"!0+

E|�(h",�)� �(h�)| = 0, (6.4.38)

and

lim
k�kTµ,2!0

sup
"2(0,1]

E|�(h",�)� �(h�)|

k�kTµ,2

= 0. (6.4.39)

Now, we are going to finish the Proof of Theorem 6.4.1.

Proof. (a) By (6.4.19), (6.4.38), we verify the conditions (6.3.1)-(6.3.3) of

Theorem 6.3.1. We then obtain that PTf is intrinsically di↵erentiable at µ,

and DL

�
(PTf)(µ) satisfies (6.4.1).

(b) By (6.4.19) and (6.4.39), it is easy to see that (6.3.4) and (6.3.5) of

Theorem 6.3.1 hold in this case. Combining this with the result of (a), we

obtain that PTf is L-di↵erentiable at µ. The proof is therefore complete.

We conclude this section with a remark.

Remark 6.4.3. (i) Compared with the relevant result on MV-SDE driven

by the standard Brownian motion (H = 1
2) shown in [87, Theorem 2.1], one

can see that our result Theorem 6.4.1 applies to more general SDEs since we
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replace B
1
2 with fractional Brownian motion BH with arbitrary H 2 (12 , 1)

as driving process. Furthermore, due to the appearance of J4(t) in (6.4.22),

essential di�culties are overcome in the analysis of Bismut formula for the

L-derivative.

(ii) Combining the above proof with Remark 6.4.1, we can derive the

estimate of the L-derivative as the following:

kDL(PTf)(µ)k = sup
k�kTµ,21

|DL

�
(PTf)(µ)|  C

⇥
(PTf

2)(µ)� (PTf(µ))
2
⇤ 1

2 a(T ),

(6.4.40)

where C is a positive constant depending only on K, K̃,H, and

a(T ) = C(1 + T )
⇣ 1

TH
+ TH(�0�1) + TH(�0�1) + T ↵0�H + T �0�H + 1 + T 1�H

⌘
.

Indeed, according to Theorem 6.4.1 and the Hölder inequality, we have

|DL

�
(PTf)(µ)|

2 =
h
E

⇣
f(Xµ

T
)

Z
T

0

hK�1
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(RHh
�)(t), dWti

⌘i2

=
h
E
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)� PTf(µ))

Z
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(RHh
�)(t), dWti

⌘i2



h
(PTf

2)(µ)� (PTf(µ))
2
i Z T

0

E|K�1
H

(RHh
�)(t)|2dt.

Taking the same argument as in (6.4.13), (6.4.15) and (6.4.16), applying

Remark 6.4.1 and taking into account of the relation sup
s2[0,T ] E|%(s)|

2


C( 1
T
+ 1)2k�k2

Tµ,2
, we obtain the estimate (6.4.40).

In addition, following the same argument as in the proof of [87, Corollary 2.2

(2)] and using (6.4.40), we give the total variation distance estimate for the

di↵erence between LX
µ

T

and LX
⌫

T
with di↵erent initial distributions µ and ⌫:

kLX
µ

T

� LX
⌫

T
kvar := sup

A2B(Rd)

|LX
µ

T

(A)� LX
⌫

T
(A)|  CW2(µ, ⌫)a(T ).
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Remark 6.4.4. The general result of the Bismut formula of L-derivative

for MV-SDEs driven by fBm can also be applied to the degenerate case

by imposing the similar conditions as (A2) and (A3), on the coe�cients of

the degenerate model. Moreover, as the byproduct, the associated gradient

estimate can also be established.
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