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SUMMARY

The development of non-fullerene acceptors (NFAs) has facilitated
the realization of efficient organic solar cells (OSCs) with minimal
burn-in losses and excellent long-term stability. However, the role
of NFA molecular structures on device stability remains unclear,
limiting commercialization of NFA-based OSCs. Herein, the photo-
stability of 10 OSC devices, fabricated with various NFAs (O-IDTBR,
EH-IDTBR, ITIC, and ITIC-M) blended with donor polymers (PTB7-Th,
PffBT4T-2OD, and PBDB-T), is investigated. O-IDTBR and EH-IDTBR
form highly stable devices with all three polymers, whereas ITIC and
ITIC-M devices suffer from burn-in losses and long-term degrada-
tion. Conformational instability is found to be responsible for the
poor photostability of ITIC and ITIC-M, resulting in poor device sta-
bility. Twisting and potential breakage of the chemical bond that
links the end group to the main backbone of ITIC and ITIC-M mole-
cules causes undesirable conformational changes. Potential strate-
gies to overcome such detrimental photo-induced conformational
changes in NFAs are proposed.

INTRODUCTION

In recent years, the rapid development of non-fullerene acceptors (NFAs) has led to

significant improvements in the performance of organic photovoltaics,1–9 with po-

wer conversion efficiencies (PCEs) reaching more than 18% for single-junction binary

devices.10 In comparison to their fullerene counterparts, NFAs offer several key ad-

vantages. The ease of adaption of their chemical structures enables a high degree of

tunability in their optoelectronic properties. By tuning the band gap, the absorption

region can be shifted into the UV, visible, or infra-red regions to target different ap-

plications (e.g., for semi-transparent solar cells11 or indoor light harvesting12,13). In

addition, through optimization of their molecular orbital energetics, high open-cir-

cuit voltages can be attained with minimal voltage losses.14 It is also foreseen that

NFAs may offer simpler synthetic pathways that have the potential to reduce fabri-

cation costs.3,15

Organic solar cells (OSCs) are achieving the efficiencies required for commercial

viability. However, device stability requires further improvement to make them a

competitive next-generation photovoltaic (PV) technology. OSCs typically suffer

from rapid degradation under light exposure, induced by different mechanisms de-

pending on the atmosphere.16–19 Under ambient conditions, there is rapid degrada-

tion that has been linked with the degradation of donor polymers20–23 and, more
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recently, photooxidation of acceptors.24–28 Illumination under inert atmospheres

can also induce a rapid loss of solar cell performance, resulting in a reduction in ef-

ficiency of�10%–30%within the first tens to hundreds of hours (often called burn-in),

followed by a more gradual loss over the next thousands of hours. Because a sub-

stantial proportion of device performance can be lost through this initial rapid

burn-in process, significant research efforts have been dedicated to unraveling its

origins. For example, photo-induced fullerene dimerization has been identified as

a major degradation mechanism for polymer:PC61BM OSCs, leading to loss of

short-circuit current (JSC) during illumination.29 We and others have identified the

formation of disordered states, leading to increased charge traps and voltage losses

upon photodegradation.30,31 Morphological degradation caused by inadvertent

heating during illumination was also found to cause a rapid loss in JSC because of

thermodynamically driven demixing of intermixed amorphous regions of the bulk

heterojunction.32–35 Encouragingly, the rapid development of NFAs allows the

burn-in degradation of someOSC systems to be effectively addressed. For example,

multiple NFA-based OSC systems were found to exhibit minimal burn-in losses, and

extrapolated OSC lifetimes of more than 10 years have been demonstrated.30,36,37

Despite intensive mechanistic studies into this topic, the origins of burn-in are

debated. The various degradation mechanisms identified suggest multiple origins

that strongly depend on the material system being investigated. However, to

date, few studies have been dedicated to understanding how burn-in is influenced

by the choice of donor and acceptor components of the active layer. Despite

some NFA-based OSCs demonstrating minimal burn-in and good lifetimes, there

remains a lack of fundamental understanding of the generality of this improved pho-

tostability to other classes of NFAs and donor polymers, especially in terms of the

underlying degradation mechanisms and hence the molecular design rules for

improving lifetimes of NFA-based OSCs.

To date, the IDTBR2 and ITIC5–8,38 families have been established among the most

promising NFAs, achieving OSC efficiencies of more than 12%39 and 14%,40 respec-

tively. For IDTBR-based NFAs, burn-in free devices have been demonstrated for

some systems,30,34,36 but the generality of this behavior to other systems requires

further study. The photostability of ITIC-based acceptors in inert conditions is

comparatively less clear, and it seems that several factors can affect device photo-

stability. Some studies have reported that ITIC-based materials may be chemically

incompatible with commonly used transport layers.41,42 Another study demon-

strated extrapolated operational device lifetimes of up to 10 years for some ITIC de-

rivatives when used with PBDB-T, although these devices still suffered from a small

burn-in loss.37 This study also showed device stability to strongly depended on the

end groups and side chains of the ITIC-based acceptors, suggesting that further sta-

bility enhancements are possible by optimization of the material design of NFAs at a

molecular level.37 Du et al.43 also highlighted the importance of initial morphology

on device stability for polymer:ITIC-4F-based devices, with performance deteriora-

tion being linked with polymer reorganization and diffusion-limited aggregation of

NFAs.

Herein, we report an in-depth investigation of the photostability of OSCs based on

several popular NFAs, namely, O-IDTBR, EH-IDTBR, ITIC, and ITIC-M. These accep-

tors are blended with a range of benchmark donor polymers with varying energetics

and crystallinity—PTB7-Th, PffBT4T-2OD, and PBDB-T—to give a range of photoac-

tive layers.7,44–47 OSCs are fabricated and their photostability is systematically

tested under continuous white LED illumination in an inert atmosphere. The photo-

stability of the investigated systems is found to be highly dependent on the choice of
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NFA but relatively insensitive to the choice of donor polymer. Devices using NFAs

from the IDTBR family suffer minimal burn-in across all investigated polymers,

whereas all devices using ITIC-based NFAs show more severe burn-in and contin-

uous long-term degradation. Using advanced characterization measurements, we

find that ITIC and ITIC-M are susceptible to photo-induced chemical degradation.

This leads to decreased optical absorption and increased charge trapping, resulting

in poor device stability. Such behavior is not observed for O-IDTBR or EH-IDTBR,

correlating with the superior stability of these devices. This work represents the first

systematic study to address the generality of burn-in behavior in polymer:NFA

OSCs. In addition, it highlights the importance of NFA molecular design as a key

strategy to improve the photostability of fullerene-free OSCs.

RESULTS

Device characterization

Three donor polymers (PTB7-Th, PffBT4T-2OD, and PBDB-T)44–46 and four NFAs (O-

IDTBR, EH-IDTBR, ITIC, and ITIC-M)2,5,7 are investigated in this work. The chemical

structures of thesematerials are shown in Figure 1, and the full chemical names are pro-

vided inNote S1. All binary donor:acceptor combinationswere investigated, except for

PffBT4T-2OD:ITIC and PffBT4T-2OD:ITIC-M due to the poor initial performance of

these systems. The details of active-layer preparation and deposition can be found in

the Table S1. To monitor performance during continuous photoexcitation, devices

were placed into a nitrogen-filled environmental chamber and illuminated with a 1

sun equivalent intensity white LED array (spectrum shown in Figure S1). The evolution

of the photovoltaic parameters during continuous photoexcitation is shown in Figure 2.

All O-IDTBR- and EH-IDTBR-based OSCs exhibit superior photostability upon 120 h

of light soaking, undergoing negligible degradation across all photovoltaic param-

eters. In contrast, the ITIC- and ITIC-M-based OSCs exhibit a more significant loss in

device performance, losing up to �30% of their initial performance within the first

24 h of illumination. This is followed by more gradual degradation, primarily caused

by a continuous loss of fill factor (FF) and JSC. Remarkably, degradation strongly de-

pends on the choice of NFA yet is relatively insensitive to the choice of donor poly-

mer across all investigated blends.

To investigate the origin of the strong dependence of photostability on the choice of

electron acceptor, further characterization was conducted, with PTB7-Th as a com-

mon donor polymer. PTB7-Th was selected because of the good performance

achieved when blended with all investigated NFAs (Table S2). Although PBDB-

T:ITIC and PBDB-T:ITIC-M devices use 1,8-diiodooctane (DIO) during fabrication,

the corresponding PTB7-Th devices do not. This excludes DIO-related stability is-

sues48–51 from being solely responsible for the poor device stability of the ITIC

and ITIC-M devices.

The formation of additional sub-band tail states (also known as shallow trap states) has

been previously reported during burn-in for other OSC blends.30,31,52,53 To probe the

impact of prolonged continuous photoexcitation on the transport and recombination

kinetics of charge carriers and tail-state configurations, transient photovoltage (TPV)

and charge extraction (CE) measurements were performed. Devices were measured

before and after 24 h of illumination (Figure 3), covering the burn-in period.

As shown in Figure 3A, PTB7-Th:O-IDTBR and PTB7-Th:EH-IDTBR OSCs exhibit no

noticeable change in charge carrier density (measured as a function of open-circuit

ll
OPEN ACCESS

Cell Reports Physical Science 2, 100498, July 21, 2021 3

Please cite this article in press as: Clarke et al., Non-fullerene acceptor photostability and its impact on organic solar cell lifetime, Cell Reports
Physical Science (2021), https://doi.org/10.1016/j.xcrp.2021.100498

Article



voltage, VOC) upon degradation, whereas a clear increase is seen for PTB7-Th:ITIC

and PTB7-Th:ITIC-M OSCs. This increased charge carrier density is assigned to

the additional formation of shallow sub-band tail states, as observed in our previous

studies.30 Notably, no clear change in the slope of charge carrier density is seen,

suggesting negligible changes in the distribution of the sub-band tail states upon

Figure 1. Schematic representation of the chemical structures of the donor polymers and non-fullerene acceptors used in this work

Chemical structures of the studied donor polymers (PTB7-Th, PBDB-T, and PffBT4T-2OD) and non-fullerene acceptors (O-IDTBR, EH-IDTBR, ITIC, and

ITIC-M).
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degradation for all investigated OSC systems.52 The effective drift mobility of these

NFAs was measured by charge extraction methods under short-circuit conditions,54

as shown in Figure 3B. The reduction in effective mobility of PTB7-Th:ITIC and PTB7-

Th:ITIC-M OSCs upon degradation suggests an increase in hopping steps during

transport. The magnitude of the decrease in effective mobility is in good agreement

with the increase in charge carrier lifetime measured at open circuit (shown in Fig-

ure S2). This suggests that the additional tail states are acting as traps that must first

undergo thermally activated detrapping before recombining, thereby leading to the

observed increase in lifetime and decrease in mobility. In contrast, no noticeable

change in effective mobility is seen for PTB7-Th:O-IDTBR and PTB7-Th:EH-IDTBR

OSCs, consistent with their excellent photostability.

Optical studies

To investigate photo-induced changes to the optical properties of the investigated

materials, UV-visible spectra of blend and neat films were measured. To probe the

intrinsic photostability of the donor and acceptor components, we focused on the

investigation of neat films, as shown in Figure 4. All prolonged photoexcitation

was carried out under 1 sun equivalent intensity white LED illumination inside a nitro-

gen-filled glovebox with oxygen and moisture levels below 0.5 ppm. UV-visible

spectra of fresh films were measured and subsequently repeated after 1 and

7 days of continuous photoexcitation, corresponding to the burn-in period and

beyond.

After 7 days of continuous photoexcitation, no observable change was seen in the

absorbance of PTB7-Th (Figure 4A), indicating that the donor polymer was not

Figure 2. Photostability of investigated devices

(A–D) Normalized PCE (A), VOC (B), JSC (C), and FF (D) of investigated devices during continuous photoexcitation under 1 sun equivalent intensity white

LED irradiation. Devices were kept in a nitrogen atmosphere for the duration of the test.
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significantly contributing to the burn-in and subsequent degradation of the OSCs.

Both O-IDTBR and EH-IDTBR exhibited excellent photochemical stability with negli-

gible degradation upon photoaging (Figures 4B and 4C), consistent with the

outstanding stability of O-IDTBR and EH-IDTBR OSCs. In contrast, a noticeable

loss of absorption was observed for both ITIC and ITIC-M after just one day of contin-

uous photoexcitation (Figures 4D and 4E). This continued with increased photoag-

ing time. A slight increase in the absorbance between 430 and 550 nm was also

observed (Figure S3). These observations indicate bleaching of the chromophores

and disruption/shortening of the conjugation length of ITIC and ITIC-M upon contin-

uous photoexcitation. Such changes in optical properties are in agreement with the

observed losses of JSC and efficiency of ITIC and ITIC-M-based OSCs during the

burn-in period and beyond. This bleaching is similar to the bleaching caused by

photo-induced dimerization of fullerenes, which also results in a rapid loss in JSC
of fullerene-based OSCs,29 and photobleaching of IDFBR, which was found to orig-

inate from fragmentation during continuous illumination in both air and nitrogen.26

Figure 4 focuses on neat donor and acceptor films, but similar behavior is observed

in blend films, although the rate of photodegradation is reduced (Figure S4). The

slower degradation in the blend is a result of the overlapping absorption of the

donor and acceptor, which means that the acceptor absorbs relatively less light

compared with the neat films. In addition, if the degradation mechanism goes via

the excited state, as reported previously for other OSC materials,26,55,56 it would

be suppressed in the blend due to charge-transfer (CT) quenching the excited state.

Structural investigations

To identify the molecular origins of such optical property changes, resonant molec-

ular vibrational Raman spectroscopy was used. Raman spectroscopy has been pre-

viously used to study the degradation of organic photovoltaic materials, providing

key information about photo-induced chemical and conformational changes and

Figure 3. Energetics and effective charge carrier mobilities of PTB7-Th:NFA devices

(A) Measurements of the accumulated charge density at open-circuit voltage as a function of illumination intensities, determined by charge extraction.

(B) Effective drift mobility as a function of charge carrier density determined by charge extraction measured at the short-circuit current.

Devices labeled ‘‘aged’’ were exposed to 24 h of continuous illumination under the same conditions as the stability measurements.
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their origins.26,57 As shown in Figures 5A–5C, there was no significant change in the

Raman spectra of PTB7-Th, O-IDTBR, or EH-IDTBR upon 7 days of photoaging. This

corroborates our previous findings of the good photochemical stability of these ac-

ceptors when degraded in situ under nitrogen.26 In contrast, both ITIC and ITIC-M

exhibit significant changes in their Raman spectra upon photoaging (Figures 5D

and 5E). This is indicative of more severe photochemical degradation of ITIC and

ITIC-M compared with O-IDTBR and EH-IDTBR and is in agreement with the UV-

visible spectral changes and device stability measurements. Although some subtle

changes are observed after 1 day of photoaging for ITIC and ITIC-M (Figures S5

and S6), these changes becomemore evident with increasing photoaging time, indi-

cating that the associated degradation processes continue beyond the burn-in

period. Raman spectra of ITIC and ITIC-M up to 2,250 cm�1 are shown in Figures

S7 and S8.

Overall, there is an increase in Raman intensity for both ITIC and ITIC-M when

probed at both 457 and 514 nm. This indicates the formation of a new, wider-

band-gap, Raman active-degradation product that is resonant at these wavelengths,

in agreement with the slight increase in the absorption of degraded molecules at

these wavelengths (Figure S3). To identify the changes in specific molecular vibra-

tions upon prolonged photoexcitation and understand the nature of this degrada-

tion product, the difference spectra between the fresh and the degraded films

were extracted and are shown in Figures 5F and 5G. These difference spectra high-

light the peaks associated with the degradation products whose intensities increase

because of the resonant effect of the degradation product under 457 and 514 nm

excitation. Both ITIC and ITIC-M show the same changes in molecular vibrations,

signifying the same degradation process is occurring in both molecules. The nature

Figure 4. UV-visible spectra of donor and acceptor films before and after extended photoexcitation

PTB7-Th (A), O-IDTBR (B), EH-IDTBR (C), ITIC (D), and ITIC-M (E). Continuous photoexcitation was performed inside a nitrogen-filled glovebox, with a 1

sun equivalent intensity white LED array as the illumination source. All spectra are normalized to the fresh spectrum of the corresponding material. For

PTB7-Th, O-IDTBR, and EH-IDTBR, all spectra are overlapping, because there is no change in absorbance during continuous photoexcitation.
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of these peaks was identified using density functional theory (DFT) calculations (Fig-

ures S9 and S10). There are some important differences between fresh and

degraded ITIC: the alkene peak at 1,550 cm�1 and the thiophene peak at

1,425 cm�1 are significantly quenched in the degradation product, along with the

nitrile peak at 2,220 cm�1 (shown in Figure S7). In addition, a new peak at

1,580 cm�1, possibly a new alkene mode, is seen to grow in. The peak at

1,455 cm�1 appears to gain intensity and shift to higher frequencies; this shift to

higher frequency is seen for other peaks, including the core phenyl peak at

1,600 cm�1. These peak changes are also seen when probed at 457 nm (Figure S11).

These Raman peak changes indicate important chemical and structural changes of

the NFAs upon prolonged photoexcitation. To demonstrate these peak changes

more clearly, we conducted in situ accelerated photodegradation of ITIC in a nitro-

gen-filled chamber. In situ degradation allows us to track peak changes continuously

and hence determine the exact nature of molecular structure changes upon

Figure 5. Raman spectra of neat donor and acceptor films before and after extended photoexcitation

(A–C) Normalized Raman spectra of PTB7-Th (A), O-IDTBR (B), and EH-IDTBR (C) films before and after 7 days of continuous photoexcitation.

(D and E) Raman spectra of ITIC (D) and ITIC-M (E) films before and after 7 days of continuous photoexcitation. An additional peak at 2,220 cm�1 is shown

in Figures S7 and S8.

(F) Normalized difference spectra of the fresh and 7 day aged films for both ITIC and ITIC-M.

(G) Normalized difference and fresh spectra of ITIC.

All spectra were measured under a nitrogen atmosphere with a 514 nm excitation laser.
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Figure 6. In situ Raman spectra of ITIC during laser degradation and simulated Raman spectra

(A) Baselined and normalized in situ Raman spectra taken at increasing laser degradation times under a nitrogen flow at 514 nm excitation. Arrows show

the main peak changes upon degradation.

(B) Simulated Raman spectra of ITIC in its optimized lowest-energy geometry (Opt) versus experimental fresh ITIC Raman spectra. The main alkene peak

is marked with an asterisk.
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photoexcitation.20,26 It also provides photodegradation accelerated by high-inten-

sity laser irradiation, which allows us to ensure reproducibility on a shorter timescale

and provides a more extreme situation of degradation, which assists with interpre-

tation. The baselined and normalized Raman spectra at increasing degradation

times are shown in Figure 6A. There is an increase in Raman intensity and photolu-

minescence (PL) background across the spectrum (Figure S12), similar to the preced-

ing 7 day photoaged spectra. All changes observed after 7 days of photoaging are

observed after in situ laser degradation, with some additional changes becoming

more apparent: the thiophene C=C peak at 1,250 cm�1 is quenched and shifts to

lower frequencies, and the carbonyl peak at 1,705 cm�1 shows a new high-frequency

shoulder growing in. If we take the difference spectra at early degradation times, we

obtain a spectrum similar to that shown in Figure 5F, indicating the same degrada-

tion process is occurring both in prolonged photoaging under white LED illumina-

tion and during laser degradation (Figure S12C).

To understand the origin of these changes and their implication to photostability of

ITIC, we compare our experimental data to simulatedRaman spectra. First, there is an

overall good match between the experimental and the simulated spectra. Four re-

gions of vibrations showhigher relative intensities in themeasured spectra compared

with the simulated spectra, but all are present in both (Figure 6B). These regions are

the alkene peak at 1,550 cm�1, which we ascribe to the vinylene linkage; the carbonyl

peak at 1,705 cm�1 (simulated peak highlighted in Figure S10); the thiophene region

around 1,450 cm�1; and the nitrile peak at 2,220 cm�1 (shown in Figure S7). One of

these peaks, the alkene at 1,550 cm�1, shows a large reduction in relative peak inten-

sity upon degradation. When diluted films of ITIC are fabricated by blending with

polystyrene, this peak is reduced in relative peak intensity, demonstrating the al-

kene’s sensitivity to intermolecular packing (Figure S13). Upon degradation, the

decrease in relative intensity of this peak indicates disruption of ITIC packing.

To understand the other peak changes upon degradation, we explored several degra-

dation products. One proposedmechanism that correlates well with the changes in the

measured Raman spectra, alongside the observed photobleaching, is that of photo-

induced conformational change affecting the end groups of the molecules. To verify

this conformational instability of ITIC as themain cause for its photoaging,we simulated

the Raman changes of ITIC with an increasing dihedral angle between the core and the

endgroups, rotating about the single bondon the vinylene linkage (Figure 6C, dihedral

labeled in Figure 6E). As the molecule is made less planar, the carbonyl and alkene

peaks shift to higher frequency, accounting for the new high-frequency peaks observed

experimentally. Alongside these new peaks, there is a shift to lower frequencies and

quenching of the peak at 1,250 cm�1, quenching of the shoulder of the 1,400 cm�1

peak, and a slight shift of the peak at 1,450 cm�1, as observed experimentally. This

agreement between simulated and experimentally measured spectra confirms that

the end groups are responsible for photoaging. Such conformational changes of ITIC

from a planar to a twisted structure will shorten the effective conjugation length of

the molecule. The decrease in absorption at low energy and the slight increase in ab-

sorption at higher energies might reflect such changes (Figures 4 and S3).

(C) Simulated Raman spectra at increasing dihedral angles across the single C-C bond in the vinylene linkage. Arrows highlight the main peak changes

that are consistent with those observed experimentally.

(D) Simulated Raman spectra of ITIC and the fused indacenodithiophene core, i.e., after loss of the end groups. Arrows highlight the main peak changes

that are consistent with those observed experimentally.

(E) Chemical structure of ITIC, highlighting the main vibrational modes that are affected by photoaging. The red arrow indicates the dihedral angle

modified in (C).
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Our previous studies show that conformational change can lead to bond breaking,26

which can also cause shortening of the effective conjugation length. To probe this,

we simulated Raman changes when the vinylene linkage is broken and end groups

are lost (the simulated core spectrum shown in Figure 6D). The peaks at 1,420 and

1,600 cm�1 show larger shifts to higher frequency than those induced by conforma-

tional change, which is again consistent with the experimentally observed changes.

In addition, the peaks corresponding to the end groups (i.e., the alkene, carbonyl,

and nitrile) are quenched. Therefore, we can draw the clear conclusion that there

is a reduction in the effective conjugation length. This loss of conjugation of ITIC

and ITIC-M molecules originates from the vinylene linkage between the electron-

donating core and the electron-deficient end group, consistent with the reported

chemically unstable nature of this linkage.28,41,42 Importantly, we find that even in

an inert atmosphere, this unstable vinylene linkage, which is particularly sensitive

to intermolecular packing, is vulnerable to conformational change. Such conforma-

tional change will eventually lead to irreversible bond breaking, shortening the

effective conjugation breaking of ITIC and ITIC-M. It appears that modification of

the substituents on the end group, i.e., by methylation, which affects intermolecular

packing or electron-withdrawing strength,7 influences the stability of this interunit

region (depicted in Figure S5). This is in agreement with previous studies that indi-

cated methylation of ITIC leads to poorer stability.37

Raman spectra were also measured for blend films (Figure S14). In the case of blend

films, no obvious changes were observed after 7 days of photoaging. This is not too

surprising, given the slower rate of degradation within the blends compared with

neat films, as evidenced by UV-visible spectroscopy (Figures 4 and S4). For neat

films, it was shown that in situ degradation using the Raman excitation laser as the

light source caused the same degradation as observed after prolonged photoexci-

tation under the white LED source (Figure S12), albeit at a faster rate. When blend

films were degraded in situ with the Raman excitation laser in a nitrogen environ-

ment, the same peak changes were observed in the blend as were observed for

the neat films, demonstrating that the same degradation process is occurring in

the blend, despite the slower rate of degradation (Figure S15).

Luminescence studies

PL and electroluminescence (EL) measurements were also performed on the PTB7-

Th:NFA devices before and after 24 h of continuous photoexcitation, covering the

burn-in period (Figure 7). PL and EL emission from OSCs can be affected by

numerous factors. For example, PL is sensitive to changes that affect the absorption

properties of the photoactive materials, exciton diffusion behavior, and exciton

dissociation, whereas EL can be affected by changes in the energetics of various

layers, carrier mobility, and trapping behavior. All of these properties are in turn

sensitive to the photoactive-layer morphology, meaning it is not always straightfor-

ward to determine the responsible factor that leads to changes in PL and EL

spectra; nevertheless, the techniques can provide complimentary evidence along-

side other experimental techniques and may help to suggest potential degradation

pathways.

For both PTB7-Th:O-IDTBR and PTB7-Th:EH-IDTBR OSCs, no significant change

(less than 10% increase in intensity) in PL emission was observed after 24 h of contin-

uous photoexcitation. Combined with the negligible changes in EL emission of these

devices, this provides further evidence that the constituent materials are stable. Due

to the sensitive nature of these techniques to small changes in morphology and

transport behavior, these data also suggests that there are no obvious changes to
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the morphology of the photoactive layer during the initial burn-in period. This is

consistent with the observed burn-in-free, excellent device stability of these blends

and agrees well with previous reports by others of the good morphological stability

of the PTB7-Th:EH-IDTBR blend.34

For the PTB7-Th:ITIC device, although there may be a slight increase in PL emission,

changes of this kind are relatively small. A larger 3.5-fold increase was observed for

the PTB7-Th:ITIC-Mdevice after this periodof continuous photoexcitation. The slight

difference in the shapeof the fresh PTB7-Th:ITIC-Mdevice PLpeak results from its low

emission, which is slightly distorted by the small amount of emission from the encap-

sulation glue (glue emission shown in Figure S16). Comparison of the blend emission

with neatmaterial PL (Figure S17) indicated that the observedblendPL emission orig-

inates from donor and/or acceptor excitons, rather than fromCT-state emission. This

means that after a period of prolonged photoexcitation, there is an increase in the

number of photogenerated excitons that proceed to radiatively recombine within

the PTB7-Th:ITIC-M device.

Figure 7. Photoluminescence and electroluminescence spectra of PTB7-Th:NFA devices before

and after extended photoexcitation

(A and B) Photoluminescence (A) and electroluminescence (B) spectra of PTB7-Th:NFA devices

before and after 24 h of continuous photoexcitation under the same conditions as were used during

stability measurements. The slight difference in the shape of the fresh PTB7-Th:ITIC-M device PL

peak results from its low emission, which is slightly distorted by the small amount of emission from

the encapsulation glue (glue emission shown in Figure S16).
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Several factors may cause such an increase in PL emission. For example, the

observed changes in intermolecular interactions and conformational changes of

ITIC and ITIC-M outlined previously may inhibit exciton diffusion and/or dissocia-

tion, leading to an increase in the number of excitons that radiatively recombine.

Changes to the morphology of the blend during continuous photoexcitation may

also contribute to the observed increases in PL emission.58–61 Morphological

changes have been widely reported to be responsible for burn-in degradation

for several OSC blends, including demixing of amorphous regions for both poly-

mer:fullerene32,33,62 and polymer:NFA34,63,64 devices, as well as crystallization and

diffusion-limited aggregation of NFAs.42,43,62,63 Recently, transmission electron mi-

croscopy (TEM) imaging of PTB7-Th:ITIC films before and after photoaging under

similar conditions to those used in this work suggested that demixing likely occurs

in this blend linked with poor miscibility between donor and acceptor.34 Increases

in PL emission, as observed here, were also reported and may be explained by

the coarsening of domains, leading to a reduced probability of exciton dissocia-

tion.34 To probe the possibility of large-scale phase segregation, atomic force

microscopy (AFM) measurements were carried out on PTB7-Th:ITIC and PTB7-

Th:ITIC-M films before and after 7 days of continuous photoexcitation with a 1 sun

equivalent intensity white LED source in a nitrogen environment (Figure S18). No

clear changes in the AFM images were observed after 7 days of photoaging. This

suggests that there is no obvious large-scale phase separation.

The conformational changes of ITIC and ITIC-M may explain the increase in PL emis-

sion upon photodegradation of the blend. Although exciton emission from the neat

ITIC and ITIC-M decreases upon photodegradation (Figure S19), the resulting

disruption to packing and energetics, as a result of conformational changes, can

cause an increase in PL of the blend by hindering exciton dissociation, resulting in

more excitonic emission. We also cannot rule out more subtle morphological

changes. For example, ITIC has also been observed to reorientate from more

face-on to more edge-on orientation during photoexcitation under nitrogen.37

Additionally, diffusion-limited NFA aggregation, leading to the formation of iso-

lated acceptor domains, has also been reported for ITIC-4F.43 Such changes in

morphology could also contribute to an increase in PL emission and may act along-

side the photo-induced chemical degradation reported herein.

Contrasting the PTB7-Th:O-IDTBR and PTB7-Th:EH-IDTBR devices, a �50% reduc-

tion in EL emission is observed for PTB7-Th:ITIC and PTB7-Th:ITIC-M devices. Given

the negligible change in series resistance after extended photoexcitation (Fig-

ure S20), the injection of current will cause a similar voltage drop for both fresh

and photoaged devices. Therefore, the reduction in emission implies the recombi-

nation in the photoactive layer is less radiative. This behavior is consistent with our

previously discussed results. This decrease in EL emission can be explained by the

observed conformational changes to ITIC and ITIC-M. These changes result in

disruption to intermolecular packing, intra- and intermolecular charge transport,

and increased energetic disorder and trap formation, thereby causing a reduction

in EL emission and correlating well with device stability. The EL emission of the

neat materials is shown in Figure S21 for reference.

DISCUSSION

Photostability is a widely recognized challenge for OSCs, and a detailed understand-

ing of the degradation mechanisms is required to enable the design of high-perfor-

mance stable OSCs. Our study addresses the photostability of NFA-based OSCs
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and investigates the generality of behavior across a range of donor polymers and

electron acceptors. We demonstrate that rational design and choice of suitable elec-

tron acceptors, instead of donor polymers, might be a more effective strategy to

achieve long-term photostability of OSCs. Through a range of characterization tech-

niques, we show that photochemical stability of NFAs must be addressed for good

device stability to be achieved. Due to combined excellent photochemical and likely

morphological stability,34 IDTBR-based OSCs can achieve good photostability with

minimal burn-in losses.30,36 Unfortunately the maximum efficiencies achieved by

IDTBR-based acceptors are slightly lower compared with ITIC-based materials.

However, despite good device performance, both ITIC and ITIC-M suffer from

more severe photochemical degradation of their molecular structure during contin-

uous photoexcitation in inert atmospheres, leading to poor device stability.

We find that ITIC and ITIC-M degrade in the same way during continuous photoex-

citation. We observe several key changes in the Raman spectra that, alongside simu-

lated Raman spectra, allow us to explain the location of this photodegradation,

namely, the interunit region, and propose themechanism behind it. An initial confor-

mational change—specifically, twisting of the end group (the single bond that con-

nects the core to the end groups)—is observed, which can lead to the more extreme

situation in which the vinylene linkage breaks. Gas-phase single-molecule DFT sim-

ulations of these proposed alterations show similar outcomes in both situations and

agree with the changes observed experimentally. Such changes would reduce the

effective conjugation length of the molecule, in agreement with the decrease in

the main UV-visible absorption peaks of ITIC and ITIC-M upon photoaging (Figures

4D and 4E), alongside a slight increase in higher-energy absorption (Figure S3).

These changes would also affect molecular packing, which is observed by the

decrease in the relative intensity of the Raman peaks sensitive to intermolecular

packing. The methylation of the end group, which affects intermolecular packing

or electron-withdrawing strength,7 may also affect the stability of this interunit re-

gion, with ITIC-M appearing to suffer from more rapid degradation compared

with ITIC, as shown by the larger changes in both UV-visible (Figure 4) and PL (Fig-

ure S19) spectra of neat materials after a period of continuous photoaging. These

changes are reflected in the overall Raman intensity increase (Figures 5D, 5E, and

S5) associated with the slight increase in absorption at the probing wavelengths (Fig-

ure S3), which is indicative of the formation of a degradation product with a wider

band gap. In agreement with previous reports,37 this suggests that the strategy of

methylation to improve the performance of ITIC may compromise the photostability

of ITIC-based OSCs, although intermolecular interactions and different morphol-

ogies in the blend may also affect the rate of photodegradation in devices.

We consider the potential impact of the different 3D packing structures observed for

IDTBR and ITIC acceptors on the photo-induced conformational changes. Despite

p-stacking distances being similar in their crystal structures,65,66 the difference in

side chains and the resulting stabilizing interactions between them can influence

morphological and conformational stability. The flexible aliphatic side chains of

IDTBR can pack tightly,66 maximizing and stabilizing dispersive interactions,

whereas the bulky phenyl-hexyl side chains in ITIC are not as conducive to such sta-

ble packing. In fact, ITIC has been shown to pack differently in its crystal structure

compared with spin-coated thin films, which tend to be more disordered because

of these bulky side chains.67,68 These side chains were designed specifically to

reduce molecular planarity and inhibit self-aggregation, which can be detrimental

to performance.5 However, this disorder and comparatively poorer dispersive inter-

actions of the hexyl-phenyl side chains could make ITIC more susceptible to
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morphological and conformational changes, leading to poor device stability. Else-

where, it has been observed that the inclusion of thiophene in the side chains

(ITIC-Th) improves crystallinity and packing,47 which in turn correlates with the

observed improved stability of ITIC-Th devices, highlighting the important role

that side chain engineering can have with regards to NFA stability.37

Within PTB7-Th:ITIC and PTB7-Th:ITIC-M devices, we also observe a distinctly larger

increase in PL emission upon photoaging compared with PTB7-Th:O-IDTBR and

PTB7-Th:EH-IDTBR devices, and the increase was especially large for ITIC-M. This

PL emission originates from donor and/or acceptor excitons, rather than CT-state

emission. Such behavior is explained by reduced rates of exciton dissociation. The

conformational change of ITIC and ITIC-M will affect both intra- and intermolecular

interactions in blends, in turn affecting associated photophysical processes such as

charge generation and transport. The disrupted interactions would hinder exciton

dissociation in blends, leading to more excitonic emission of the neat materials, as

observed in our work. This result highlights the important interplay between molec-

ular conformational stability and molecular-scale morphological stability, in which

initial conformational change can disrupt molecular interactions.

Although no macro-scale morphological changes were observed after photodegra-

dation, we cannot exclude the possibility of other morphological instabilities

contributing to these observed PL changes, especially with previous reports high-

lighting the tendency of crystallization and small-scale aggregation of ITIC-based

acceptors during aging43,47 and that the poor miscibility between PTB7-Th and

ITIC can lead to demixing of intermixed domains.34 Such changes may occur in par-

allel with the photo-induced chemical degradation reported herein, but these

changes are not large enough to be probed by AFM measurements. Therefore,

our results identify the molecular-scale conformational and morphological changes

as critical origins of the photostability of NFAs and NFA-based OSCs. These obser-

vations are consistent with the differing stabilities of the investigated devices. Spe-

cifically, O-IDTBR and EH-IDTBR are more resistant to photochemical degradation

upon continuous photoexcitation in inert atmospheres. Within PTB7-Th devices,

the minimal changes in device performance, PL or EL emission, and TPV/CE addi-

tionally suggests that the blend morphologies are relatively stable, likely partly

because of the stabilizing interactions between the side chains of these acceptors.

Consequentially, no obvious changes in charge transport and trapping behavior

are observed for these devices, and initial good performance is maintained during

continuous illumination.

However, ITIC and ITIC-M appear to suffer photochemical degradation upon contin-

uous illumination in inert atmospheres, associated with twisting about the single

bond on the vinylene linkage and possible complete breaking of this link between

the core and the end group. These changes reduce the effective conjugation length

of the molecules, reducing their absorption and likely affecting packing and intra-

and intermolecular charge transport. This, in combination with morphological

changes that may occur, can explain the poor device stability and increased charge

trapping.

When investigating the differences between ITIC and IDTBR, we noted from quan-

tum chemical simulations (Figure S22) that the charge distribution within ITIC shows

a strong intramolecular charge-transfer (ICT) character with a strong dipole moment

between the electron-rich core and the electron-withdrawing end groups; however,

IDTBR shows a weaker charge distribution. Although this strong ICT character may
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improve charge generation,69 its impact on photochemical stability is unclear and

requires further investigation.

Our study highlights the importance of rational NFA molecular design to improve

OSC stability. It is necessary for these design rules to complement those for efficiency

optimization in the early stages of material design. We have shown that some of the

most popular NFAs lack good stability due to their susceptibility to photochemical

degradation during illumination, even in inert conditions. In addition, because of

the strong dependence of degradation behavior on the choice of NFA and relative

independence of donor polymer within our investigated systems, we consider new

molecular design of NFAs as a key strategy to improve the stability of OSCs. We pro-

pose the following design rules for improved NFA stability. Primarily, we draw atten-

tion to the vinylene linkage between the donor core and the acceptor units within

ITIC, which we identified as themain point of degradation. Interestingly, the vinylene

linkage between electron-withdrawing benzothiadiazole (BT) and rhodanine groups

of IDTBR appears to be less prone to degradation. Therefore, the real weak pointmay

be better described as the interunit region between the donor core and the acceptor

components about which rotation can occur. This links with our previous studies on

IDTBR, where we show that the core-BT linkage is susceptible to degradation,26

although it is necessary to explore the generality of this further. To stabilize this inter-

unit region, strong conformational lockers could be applied to resist the photo-

induced conformational changes that lead to degradation, such as in the chemically

similar Y6NFA, although the impact on device performance in Y6 has yet to be estab-

lished.53 In addition, we suggest that to enable stable and resilient packing, bulky

side chains should be avoided in favor of alkyl side chains or alternatives with hetero-

atoms that improve intermolecular interactions. However, we acknowledge that a

careful balance may be required to prevent excessive self-aggregation, which can

be problematic for highly planar molecules.5 End-group substitution is another

important consideration, and we show that end-group methylation may need to be

avoided, althoughmore work is needed to understand the role of end-groupmethyl-

ation on stability. Others have suggested that end-group fluorination, rather than

methylation, could be an effective strategy to improve stability.37 Finally, although

molecular design of NFAs is important, the design of matching polymer donors

should also be considered with great care, in terms of both their intrinsic stability

and their molecular interactions with acceptors, which can determine their miscibility

and the morphological stability of devices.32–34,62–64

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Zhe Li (zhe.li@qmul.ac.uk).

Materials availability

No new materials were generated within this work. The full chemical names of the

donor and acceptor materials used in this work are provided in Note S1. All donor

polymers were purchased from 1-Material. ITIC and ITIC-M were also purchased

from 1-Material. O-IDTBR and EH-IDTBR were provided by Prof. I. McCulloch’s

group. Polystyrene (MW of 280 kDa), chlorobenzene, chloroform, zinc acetate dihy-

drate, 2-methoxyethanol, and ethanolamine were purchased from Sigma Aldrich.

MoO3 (99.999%) was purchased from Strem Chemicals. Ag (99.999%) was pur-

chased from Kurt J. Lesker. The UV-curable epoxy for encapsulation was supplied

by Solarmer Materials. All materials were used as received.
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Data and code availability

� All data reported in this paper will be shared by the lead contact upon request.

� This paper does not report original code.

� Any additional information required to reanalyze the data reported in this pa-

per is available from the lead contact upon request.

Device fabrication

Devices were fabricated with the inverted architecture (indium tin oxide [ITO]/ZnO/

active layer/MoO3/Ag). Pre-coated and patterned ITO-coated glass substrates were

cleaned by ultrasonication in Hellmanex III (2% by volume in deionized water), deion-

ized water, acetone, and isopropanol. After cleaning, substrates were dried with an

air gun. Dried substrates were treated with an oxygen plasma. 219.5mg of zinc acetate

dihydratewasdissolved in 2mLof 2-methoxyethanol and60.4mLof ethanolamineover-

night at room temperature and was then spin-coated in air at 4,000 rpm onto the sub-

strates and annealed at 150�C for 10 min to form a�20 nm ZnO layer. The active layer

was thendepositedby spin coating in a nitrogen-filledgloveboxwith oxygen andmois-

ture levels below0.1ppm. Thedetails of active-layerpreparationanddeposition canbe

found in the Table S1. Subsequently, a 10 nm layer of MoO3 and 100 nm layer of silver

were deposited via thermal evaporation through a shadowmask as the hole-transport-

ing layer and top electrode, respectively. Devices were encapsulated inside a nitrogen

atmosphere with a UV-curable epoxy and a glass cover slide.

Stability testing

Encapsulated devices were placed into an environmental chamber with a glass front

for performancemonitoring under continuous illumination. The chamberwas purged

with nitrogen for at least 30min before illumination, and positive pressure of nitrogen

was maintained by passing an uninterrupted flow of nitrogen through the chamber

for the duration of themeasurements. A white LED array was used as the light source,

with the intensity of the LED array and device position adjusted such that the JSC, and

hence charge density within each device, was approximately equal to that measured

under 1 sunAM1.5G illumination. The spectrumof the LEDarray is shown in Figure S1.

The environment temperature was kept below 30�C by a water-cooling system. Dur-

ing stability measurements, current-voltage responses were measured at least once

per hour, and devices were kept under open-circuit conditions between these mea-

surements. The stability test for the PffBT4T-2OD devices was paused around the

92-h mark to reconnect one of the devices that had a poor electrical connection.

The devices were kept in the dark during and after reconnection until the chamber

had been repurged with nitrogen, after which the LED array was switched back on

and themeasurements were resumed. The light intensitymay havediffered by a small

amount after reconnection because of slight repositioning of the devices.

Transient photovoltage and charge extraction

Charge extractionmeasurements were used to determine the average charge carrier

densities in devices under different illumination levels and different biases (open cir-

cuit and short circuit in this study). For each device, the desired light intensity, and

consequently the initial bias, was provided by a ring of 12 white LEDs capable of

up to 5 sun equivalent illumination. After illumination at the desired intensity, the

LEDs were switched off and the device was switched to short circuit. The transient

voltage was then acquired with a DAQ card connected to a Tektronix TDS3032B

oscilloscope. The voltage transients were converted into current transients through

Ohm’s law. Then the current transients were integrated to obtain the total charge, Q,

which was used to calculate the carrier density, n, in the device. During TPVmeasure-

ments, the devices were held at open-circuit conditions. The same LED source was
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used for illumination, and a small optical excitation was provided by a pulsed 532 nm

Continuum Minilite Nd:YAG laser with a pulse length of less than 10 ns. This small

excitation produced a small voltage transient decay, which was measured on the

oscilloscope. The decay was fitted with a mono-exponential to obtain the small

perturbation carrier lifetime, which was used to estimate the total charge carrier life-

time within the device.

Film studies

An identical white LED array that was used for the stability tests was also used for the

continuous illumination of thin films for all film-based characterization. For film

studies, all continuous photoexcitation was performed inside a nitrogen-filled glove-

box with oxygen and moisture levels below 0.5 ppm. Cooling fans circulated nitro-

gen over the samples to keep the environmental temperature below 30�C.

UV-visible spectroscopy

A Perkin Elmer Lambda 750 spectrophotometer with an integrating sphere attach-

ment was used for all UV-visible spectroscopy. A bare glass substrate was used for

measurement of the reference spectrum.

Raman spectroscopy

A Renishaw in Via Raman microscope in a backscattering configuration with a 503

objective was used to collect Raman spectra. All measurements were conducted in

a nitrogen-purged Linkam sample chamber. All measurements were taken with a de-

focused laser spot with a radius of �10 mm. Raman spectra were collected at various

wavelengths using an argon ion laser (457, 488, and 514 nm). Acquisition times and

laser powers were optimized to give the best spectra but were kept consistent be-

tween samples that are directly compared in the text. Spectrometer calibration was

conducted using a silicon reference sample, and background PL was subtracted us-

ing a polynomial fit. Accelerated in situ degradation was carried out with a laser spot

of 10 mm and approximate power density of 3.23 106 Wm�2, giving an acceleration

factor of �3,0003 compared with AM1.5G solar illumination.

Density functional theory calculations

Density functional theory simulations were carried out usingGaussian 09 software on

the Imperial College High-Performance Computing Service.70 Single molecules

were modeled in the gas phase at the B3LYP level of theory with the basis set 6-

31G(d,p).71–74 For frequency calculations, alkyl side chains were simplified to methyl

groups to reduce computational time. Structures were optimized to a local minimum

energy conformation, with frozen dihedral angles used to simulatemolecular confor-

mational changes. Calculated frequencies were corrected using an empirical factor

of 0.97 for the frequency of vibration.75 Electrostatic potential distribution was calcu-

lated using the Merz-Kollman model with full side chains.76

Photoluminescence and electroluminescence spectroscopy

For luminescence spectroscopy, a custom-built setup was used. For photolumines-

cencemeasurements, a 405 nm laser was used as the excitation source. However, for

electroluminescence measurements, a Keithley 2400 was used to apply the voltage

to the devices and monitor the current. A current density of 200 mA cm�2 was

applied to the cells, which is sufficiently low to prevent device damage. For both

electroluminescence and photoluminescence, an AvaSpec-ULS2048x64 spectrom-

eter was used to detect the emission. A 550 nm long-pass cutoff filter was placed

between the sample and the spectrometer to remove the excitation light for photo-

luminescence measurements.
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Supplemental information can be found online at https://doi.org/10.1016/j.xcrp.
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