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Abstract

In this thesis we investigate classical integrability of the string worldsheet on different super-
gravity backgrounds. We focus in particular on the class of half-supersymmetric AdS7 solutions
of Massive Type IIA supergravity, that are thought to be the near-horizon limit of a D6-D8-
NS5 Hanany-Witten brane set-up, and are dual to six-dimensional conformal field theories
with N = (1, 0) supersymmetry. We use both analytical and numerical methods to show the
(bosonic sector of the) string worldsheet is non-integrable on most of these backgrounds. The
backgrounds on which the string is integrable are an infinite massless solution (corresponding
to an infinite constant quiver), and a background corresponding to an infinite linear quiver
theory.

In addition we find that the (bosonic sector of the) string is integrable on a background
that we call AdS7 × (S3)λ. For this background we show that it corresponds to a 6d SCFT
with an infinitely long quiver with an infinite number of flavour groups, all proportional to
the colour groups. We study this particular supergravity background in detail, and suggest it
corresponds to the large-N limit of the dual SCFT in the limit where the Chern-Simons level
k goes to infinity.

This integrable AdS7 × (S3)λ background can be obtained as the λ-deformation of
AdS7×S3. In this context we study integrable deformations of supergravity backgrounds in
the last part of this thesis, in particular non-Abelian T-duality. We present another back-
ground on which the string is integrable by performing two non-Abelian T-dualities on two
three-spheres inside the AdS5×S5 solution and study the resulting background.
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I. INTRODUCTION

Chapter 1

Introduction

In the early 90’s research in (super)string theory blossomed and lead to the study of D-branes
(planes on which strings can end), whose fluctuations at low energies look like higher dimen-
sional quantum field theories. This lead to a completely new framework in mathematical
physics, where one could now understand (supersymmetric) quantum field theories in terms
of these D-branes. This allowed many of the developments in mathematical physics that were
made over the decades prior (such as dualities between different field theories) to now be
understood conceptually in terms of D-branes.

About the same time it came to be understood that the strings and D-branes one studies
in superstring theory should be thought of as various limits of two dimensional surfaces (so
called M2-branes), that can end on other M2-branes or on M5-branes. Unfortunately these
M-theory branes remain at present much less understood. Various mathematical structures
that are needed to describe the physics of M-theory remain difficult to work out and seem to
require the introduction of new and more general mathematics. The most infamous example
of this is the enigmatic six-dimensional N = (2, 0) theory, that is thought to describe the low
energy fluctuations of a stack of M5-branes with M2-branes stretching between them. Not
only does this field theory contain ‘higher’ gauge fields (for which it is yet conceptually unclear
how their field strength should be constructed in the non-Abelian case), it is also thought this
theory cannot be formulated in terms of quantum corrections on top of a classical Lagrangian
description.

In an attempt to learn more about six-dimensional theories, we study six-dimensionalN = (1, 0)
theories in this thesis. The main contribution of this thesis is classifying which of these
N = (1, 0) theories could be integrable. Integrability essentially means that a particular system
has a very simple dynamical structure underlying it.

Using the AdS/CFT correspondence, we do indeed find that (the bosonic sector) of some
of these 6d N = (1, 0) theories are integrable in the large-N limit when their quiver structure
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is of a particular form. We find that this is the case for both an infinite constant quiver, and
and infinite linear quiver theory. In addition we find that an infinite quiver where all colour
groups are proportional to the flavour groups is intergable. This integrable 6d SCFT and its
holographic dual are the topic of further investigations in chapter 6.

Finding an example of an integrable 6d SCFT could provide a useful starting point from
where we can learn more about the structure of 6d SCFTs, as well as the more general struc-
tures needed to describe them properly within the framework of quantum field theory. We
can at present only hope that this potentially could have applications describing yet unknown
aspects of the real world.

“If you are receptive and humble, mathematics will lead you by the hand”
− Paul Dirac

1.1 Organisation of this Thesis

• In chapter 2 we introduce the reader to the Green-Schwarz superstring. We give a very
pedagogical introduction to integrability, superstring theory on group manifolds and their
cosets, and show explicitly how one can obtain a Lax connection whose flatness condition
is equivalent to the equations of motion of the string on various supergravity backgrounds.
We also introduce integrable deformations of supergravity backgrounds like (non-)Abelian
T-dualities, that deform a the target space of the string theory but preserve integrability
on the string worldsheet.

• In chapter 3 we review the AdS/CFT correspondence and its connection to the near-
horizon limit of D-branes in more detail. We study half-BPS Dp-Dp+2-NS5 brane set-ups,
that give rise to p-dimensional half-supersymmetric SCFTs with bifundamental hyper-
multiplets giving rise to quiver structures for the colour and flavour groups. We then
introduce the half-supersymmetric AdSp+1 backgrounds that are thought to be the near-
horizon limit (for p = 3, 4, 5, 6) of these set-ups. We review several studies that have been
done on the integrability of strings on these half-supersymmetric AdSp+1 backgrounds,
and their relation with (non-)Abelian T-duality. This chapter is largely of a review nature,
and partially based on our work in [107].

• In chapter 4 we focus in more detail on the class of half-BPS AdS7 solutions, that are
dual to non-Lagrangian 6d N = (1, 0) SCFTs. We introduce these 6d SCFTs and explain
in more detail what makes it difficult to give a conventional Lagrangian description for
these theories in section 4.1. We then give a detailed account of their holographic dual
descriptions in terms of AdS7 geometries. This chapter is largely of a review nature and
partially based on the first half of our work in [136].

2



I. INTRODUCTION

• In chapter 5 we study the integrability of string embeddings on these half-BPS AdS7

geometries in detail. We use both analytical methods (based on Kovacic’s algorithm),
and numerical methods (based on Poincaré sections and Lyapunov exponents). We show
that on all (except three) AdS7 backgrounds the (bosonic sector of the) string will be
non-integrable. These results are new and based on our work in [136, 106]. The AdS7

backgrounds on which the (bosonic sector of the) string is integrable are an infinite
massless solution, a solution corresponding to an infinite linear quiver (which was not
yet emphasized in our earlier publications), and one particular special case that we call
AdS7 × (S3)λ.

• In chapter 6, we present a Lax pair for the bosonic section of the string on the AdS7×(S3)λ
background, as we showed in [106]. We find an interpretation of this geometry as being
dual to a 6d N = (1, 0) SCFT with an infinite quiver where the rank of the flavour
groups are everywhere proportional to the ranks of the colour groups. These new ideas
have been published in [107], and can also be applied to the other half-supersymmetric
AdSp+1 backgrounds that we studied earlier in chapter 3. We suggest that the Type IIA
superstring on AdS7 × (S3)λ corresponds to the large-N limit of the dual 6d SCFT, in
the limit when the Chern-Simons level of this theory is infinite. We calculate various
observables from the holographic dual description.

Besides integrability on AdS backgrounds, we are especially interested in integrable deforma-
tions in this thesis. The motivation for this is that the integrable AdS7 × (S3)λ background
can be obtained as the λ-deformation of AdS7×S3 for a particular value of λ. Integrable de-
formations allow us to start from a highly symmetric target space on which the (super)string
is integrable, and deform it to obtain a different target space that is less symmetric, while the
integrability on the string worldsheet will be preserved.

• In chapter 7 we explain the power of integrable deformations (in particular non-Abelian
T-duality) as a solution generating technique, and illustrate this by constructing a new
integrable supergravity background. We do this by performing a NATD on two SU(2)
supspaces of AdS5×S5. We then study the resulting background in detail. This chapter
is largely based on our results published in [82].

3
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II. INTEGRABILITY AND SUPERSTRING THEORY

Chapter 2

Integrability and Superstring
Theory

This chapter serves as a pedagogical introduction to the ideas of classical integrability of su-
perstring theory on group manifolds and coset spaces [13]. We will interrupt this introduction
at various points to illustrate some technicalities in more detail, where they are used as tools
in the main body of this thesis.

We will first introduce integrability in classical mechanics, field theory, and string theory
in section 2.1. We then show how these ideas apply to the bosonic string on a target space
that is equivalent to a Lie group or a coset in sections 2.2 and 2.3, where we introduce the
principal chiral, and Wess-Zumino-Witten models. Later we generalise this to the Green-
Schwarz formalism for the string on a supergroup in section 2.4, 2.5, and 2.6, and explain
how integrability is relevant for understanding the dynamics of the superstring on various
backgrounds. In section 2.7 we briefly explain the supergravity equations that follow from
requiring the beta function on the string worldsheet vanishes. In the last part of this chapter
we will introduce in detail (non-)Abelian T-duality and its relation with integrability and
integrable deformations of the string target space.

2.1 Integrability

A dynamical system is called integrable when the number of conserved quantities is equal to
the dimensionality of the system. The dynamics of an integrable system is thus maximally
constrained, and as a consequence the trajectories of the system in phase space will be (quasi)-
periodical, and are fixed on a higher dimensional torus in the phase space.

5



Let us illustrate this with the simplest example; the N -dimensional harmonic oscillator

H =
1

2

N∑
i=1

(
p2
i + ω2

i x
2
i

)
(2.1)

with position variables xi and conjugate momenta pi, and equations of motion

ṗi = − ∂H
∂xi
, → ṗi = −ω2

i xi,

ẋi = ∂H
∂pi
, → ẋi = pi.

If we plot the trajectories of (xi, pi) in phase space, we see that for each value of i they trace
out circular orbits of constant radius R2 = 1

2(p2
i + ω2

i x
2
i ). This is because the energy remains

fixed along these orbits

dE

dt
=

N∑
i=1

(
ṗipi + ω2

i ẋixi
)

= 0. (2.2)

Since this is the case for all values of i, the N -dimensional oscillator traces out an N -dimensional
torus in its 2N -dimensional phase space. Let us for a moment concentrate on the trajectories in
the four-dimensional space spanned by (xi, xj , pi, pj), which will be confined to the surface of a
two-dimensional torus. When the ratio between the different frequencies ωi and ωj is a rational
number, the orbit will close on itself after winding a certain number of times around the torus.
We then say the motion is periodic. It is of course also possible that the ratio between the
frequencies is not a rational number (for example ωi = 1 and ω2 =

√
2). When this is the case,

we say the two frequencies are incommensurable and the trajectory will trace out the surface
of the torus in phase space without coming back to itself. This is called quasi-periodic motion.

Peter Lax showed [1] that a dynamical system is integrable when there exists a pair of
time-independent Hermitian differential operators L and M , such that the equations of motion
of the system can be written as

∂tL = [M,L] (2.3)

Finding this Lax pair, or proving it does not exist, for a generic system is a non-trivial problem.
Once a Lax pair has been found one can immediately obtain the conserved quantities Qn for
the system as

Qn = Tr[Ln]. (2.4)

Using the definition for the Lax in eq.(2.3) one can see, using the cyclicity of the trace, that
these quantities are indeed conserved as

dQn
dt =

n−1∑
i=0

Tr
[
Li[M,L]Ln−1−i] = n Tr

[
Ln−1ML− L1M

]
= 0 (2.5)

For a more detailed review, see [2].
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II. INTEGRABILITY AND SUPERSTRING THEORY

For the N -dimensional harmonic oscillator this is indeed the case, and the corresponding
Lax pair is given by

L =

L1

. . .

LN

 , M =

M1

. . .

MN

 , (2.6)

where

Li =

(
pi ωixi
ωixi −pi

)
, Mi =

ωi
2

(
0 −1
1 0

)
. (2.7)

The reader can verify that Tr[Ln] gives either 0 (when n is odd), or is proportional to the
conserved energy

∑N
i=1Ei = H (when n is even).

2.1.1 Integrable Field Theories

A field theory has an infinite number of position and momentum variables, one for every point
in space, which makes it at first less obvious how to generalise the notion of conserved charges,
as their number will now be infinite.

We can however still generalise the notion of a Lax pair to apply to field theories. Since
the system now depends on both time and position, there has to be a pair L and M , in terms
of which one can write the equations of motion as

∂L

∂t
− ∂M

∂x
= [M,L] (2.8)

Note this is identical to the flatness condition for a connection, known as a Lax connection

Fab = ∂aLb − ∂bLa − [La, Lb] = 0, (2.9)

where the different spatial and temporal components of the Lax connection La = (Lt, Lx) are
now equal to the Lax pair (L,M). A field theory is thus classically integrable when it it can,
with some change of variables, be rewritten as a pure-gauge theory. A well-known example of
this is the electromagnetic vacuum, which is described by a U(1) vector field Aµ with vanishing
field strength. Similar to the case of the harmonic oscillator, the solutions are non-interacting
harmonic modes of the form Φ(t) = Aeiωt. We thus quickly see the analogy with the har-
monic oscillator: for an integrable field theory the dynamics of the field is linear, harmonic and
(quasi-)periodic. It is surprising that many complicated looking field theories can with a clever
redefinition of variables, be rewritten as a simple pure-gauge theory.

For more complicated dynamical systems (with more complicated equations of motion) we
will see that we can introduce an additional complex parameter z - known as the spectral pa-
rameter - so that the flatness condition (2.9) for the Lax connection La(z) is satisfied for all
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values of z. In chapter 2 we will show various examples of systems where the flatness condition
can be expanded into different powers of z, such that each of the different powers of z comes
with one of the different equations of motion for the system.

Analogous to how we earlier showed there is a number of (non)-local conserved charges Qn,
equal to the dimension of the system, one can define an infinite number of conserved charges
for an integrable field theory. To find these we first consider the parallel transport of the spatial
component Lx of the Lax connection along a line stretching from x− to x+

T (z) = P exp

(∫ x+

x−

dx Lx(z)

)
, (2.10)

where the points x− and x+ have to be identified by compactifying the spatial direction, and
P indicates the path-ordered exponential. Analogous to eq.(2.3) one can now show that

∂tT (z) = [Lt(z), T (z)]. (2.11)

To see the analogy with eq.(2.3 one has to remember that the temporal component of the Lax
connection Lt(z) is equal to the M(z) in eq.(2.3). From the monodromy of the Lax connection
one can then define the transfer matrix t(z), from which one can obtain an infinite set of
conserved charges Qn as the different terms in the Taylor expansion of the spectral parameter

t(z) = Tr[T (z)] =

∞∑
n=0

Qnz
n. (2.12)

2.1.2 Integrability in String Theory

Strings are 1-dimensional objects on aD-dimensional target space, and trace out a 2-dimensional
worldsheet Σ as they move in time. Their dynamics (ignoring fermionic field on the worldsheet
for the moment) is such that they minimise the area traced out by their worldsheet, and are
described by the Nambu-Goto action

SNG[Xµ] = −Ts
∫

Σ
d2z

√
−det ∂aXµ∂bXµ. (2.13)

Here the Xµ are the coordinates of the target space, with µ = 0, . . . , D. The Latin indices a, b =
0, 1 range over the two dimensional worldsheet coordinates za. These strings acts analogous to
rubber bands that want to minimise their size in order to minimise their potential energy. The
coupling T = (2πα′)−1 in front is also known as the string tension. The smaller the tension
Ts, the more wildly the strings can fluctuate with their size characterised by the string length
`s =

√
α′.

Since the quantization of the Nambu-Goto action is rather difficult, it is common to promote
the pull-back of the worldsheet metric gab = ∂aX

µ∂bXµ to be an independent field and rewrite
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II. INTEGRABILITY AND SUPERSTRING THEORY

the action as the Polyakov action

SP [Xµ, gab] =
−1

4πα′

∫
Σ
d2z
√
−ggab∂aXµ∂bX

ν , (2.14)

which can be seen to be classically equivalent to eq.(2.13) by using its equations of motion to
eliminate the worldsheet metric gab. The Polyakov action is invariant under both worldsheet
diffeomorphisms za → f(za), and local Weyl rescalings of the metric gab → e2ω(z)gab. Here - as
in the rest of this thesis - we will gauge-fix the worldsheet metric to be the flat metric ηab and
work in lightcone coordinates on the worldsheet z± = 1√

2
(τ ± σ), where the Polyakov action

(on a flat target space) takes the form

S =
1

2πα′

∫
Σ
d2z ∂aX

µ∂aXµ. (2.15)

When we now consider the Polyakov action for the string on an arbitrary background space-
time with metric Gµν(X) and an possible additional antisymmetric tensor field Bµν(X) it will
be of the form

SP =
1

2πα′

∫
Σ
d2z

(
ηabGµν(X) + εabBµν(X)

)
∂aX

µ∂bX
ν . (2.16)

This action is also known as the two-dimensional non-linear sigma model, and the equations of
motion for for this action are - as the name implies - in general non-linear.

When we take the path integral over the action in eq.(2.16) we have to sum over all possible
worldsheets, including ones where multiple strings split or join together. To suppress the
splitting and joining of strings we can add a term Sint to the action Sstring = SP + Sint, that
weights each string worldsheet in the path integral with its Euler number χ

Sint = Φ(X)χ, χ =
1

4π

∫
Σ
d2z R(z). (2.17)

Here we used that for a two dimensional worldsheet the Euler number can be directly expressed
in terms of the integral over the Ricci scalar R(z) of the string worldsheet. The dilaton on the
target space Φ(z) acts as a the string coupling gs = eΦ(X), and suppresses the amplitudes that
involve the splitting and joining of strings with a factor g−2

s .

We thus have two parameters in string theory, the string tension T = (2πα′)−1 (or string
length `s =

√
α′) and the string coupling gs = eΦ(X). The limit where we can solve the action

for the string exactly is when both gs → 0 (where we can ignore the string interactions and
consider a free string theory), and when the target spacetime only varies on scales R� `s.

In this thesis we will be especially interested in target spaces that have a large number of
isometries and can be thought of as Lie groups or their cosets. The worldsheet action of the
string then becomes a classically integrable field theory. This allows us to write the equations
of motion in Lax form, allowing exact solutions. We will introduce these ideas in more detail
in the next sections of this chapter.

9



2.2 Principal Chiral Model

A Lie group is a finite dimensional smooth manifold with a group structure. It is therefore easer
to think of more symmetric target spaces for the string as Lie groups. In this section we will
introduce the Polyakov action (2.16) on a group manifold, and demonstrate how the equations
of motion for the string are integrable and admit a Lax form in these cases an example. We
show this explicitly for the group SU(2), and then introduce symmetric spaces that can be
written as cosets of Lie groups.

We start from the action for the sigma model of eq.(2.16), and assume we have a target space
with a vanishing B-field for a moment

S =
k

2π

∫
Σ
d2z ηab∂aX

µ∂bX
νGµν . (2.18)

If the target space is a (non-Abelian) Lie group with group elements g = eX
ATA , and generators

TA, we can rewrite this action as

∂aX
µ∂aXνGµν = ∂aX

A∂aXB Tr [TATB] = Tr
[
g−1∂aX

ATA g g
−1∂aXBTB g

]
= Tr

[
g−1∂ag g

−1∂ag−1
]

= Tr
[
∂ag ∂

ag−1
]

(2.19)

where the g and g−1 cancel due to the cyclicity of the trace. Here GAB = 〈TATB〉 = Tr[TATB]
is the Killing form on the group, and we used that ∂g−1 = −g−1∂g g−1. We can write this
action either in terms of the left-invariant or right-invariant currents, that are invariant under
the multiplication of g with an arbitrary group element from the left or right respectively.

left-invariant current: JAa = g−1∂ag invariant under g → g0 g

right-invariant current: J̃Aa = ∂ag g
−1 invariant under g → g g0

Using the cyclicity of the trace this allows us to write the action as

Tr
[
∂ag ∂

ag−1
]

= Tr [JaJ
a] = Tr[J̃aJ̃

a] (2.20)

Notice the action is invariant under both a global multiplication of g with an arbitrary group
element g0 acting from either the left or right, and there is thus a global GL ×GR symmetry.
Because of this, the action is also known as the Principal Chiral Model (PCM).

Varying the action gives us the equations of motion that are equivalent to the conservation
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II. INTEGRABILITY AND SUPERSTRING THEORY

of the left (or right)-invariant current

δL ∼ 2Tr
[
δg−1∂ag g

−1∂ag + ∂aδg g
−1∂ag g−1

]
= −2 Tr

[
δg g−1(∂ag)g−1(∂ag)g−1 + δg∂a(g

−1∂ag g−1)
]

= +2 Tr[δg g−1(∂ag)g−1(∂ag)g−1 − δg g−1∂a∂
ag g−1] (2.21)

= −2 Tr[δg
(
∂ag
−1∂ag + g−1∂a∂

ag
)
g−1]

= −2 Tr[∆ ∂(g−1∂g)], → ∂aJ
a = 0

= +2 Tr[∆ ∂(∂g−1g)], → ∂aJ̃
a = 0.

Here we used that δg−1 = −g−1δg g−1, and we defined ∆ = g−1δg.

It is more convenient to just work with the currents Ja or J̃a as the fundamental field, in-
stead of the group elements g. It is convention to work with the left-invariant current Ja - also
called the Maurer-Cartan form on the group - which we will do from here on. To obtain the
equations of motion from the action (2.20) in terms of Ja, we consider the variation of Ja under
the infinitesimal variation δg = gε, with ε an arbitrary group element.

δJa = δg−1∂ag + g−1∂aδg = −εg−1∂ag + g−1∂ag ε+ ∂aε (2.22)

= ∂aε+ [Ja, ε]

When we insert this variation for δJa in the action, the commutator will drop out due to the
cyclicity of the trace. After partial integration we obtain

δL = 2Tr[Ja δJa] = −2Tr[ε ∂aJ
a], → ∂aJ

a = 0 (2.23)

Which is equivalent to the equation of motion we obtained earlier in eq.(2.21).
In addition to the equations of motion, the current Ja has the form of a pure-gauge poten-

tential and has by construction a vanishing curvature. Note this is an identity that holds by
construction and is not an equation of motion.

Fab = ∂aJb − ∂bJa + [Ja, Jb] (2.24)

= (∂ag
−1)(∂bg)− (∂bg

−1)(∂ag) + g−1∂a∂bg − g−1∂b∂ag +

+g−1(∂ag)g−1(∂bg)− g−1(∂bg)g−1(∂ag)

= 0

An Example: SU(2)

As an example we will here briefly consider the group SU(2) ∼= S3, generated by the Pauli
matrices, normalised as

TA =
1√
2

{(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
, (2.25)
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with commutation relations [TA, TB] = i
√

2εABCTC . The Killing form is then given by

GAB = 〈TATB〉 = Tr[TATB] = δAB (2.26)

We can obtain the group elements by exponentiating the generators

g = eiα~n
ATA =

(
cosα+ i cosβ sinα e−iγ sinα sinβ
−eiγ sinα sinβ cosα− i cosβ sinα

)
(2.27)

where we used the parametrisation ~nA = {− sinβ sin γ, sinβ cos γ, cosβ}.
When we have a field that takes value on a Lie group, its value on the group differs for

different points in space-time g(~x, t), so that we can take derivatives of the group element as

∂ag = eiα~n
ATA = eiα~n

ATAi(∂aα~n
A)TA (2.28)

Giving us for the left invariant current

Ja = g−1∂ag = i(∂aα~n
A)TA.

We can now decompose the matrix Ja = JAa TA into its components on the different generators
TA. We can then write

= i

− sin γ(sinβ dα+ α cosβ dβ)− α sinβ cos γ dγ
cos γ(sinβ dα+ α cosβ dβ)− α sinβ sin γ dγ

cosβ dα− α sin γ dγ

 ·
T1

T2

T3

 ,

where with dα, dβ, and dγ we mean the shorthand notation df = ∂aX
f for the coordinates

we introduced to parametrise the group. If we now work out Tr[JaJ
a], and use eq.(2.26) for

the Killing form Tr[TATB] = δAB, we see that the sigma model on SU(2) looks exactly like the
Polyakov action on the three-sphere.

Tr[JAa J
A a] = (sinβ dα+ α cosβ dβ)2 + (cosβ dα− α sin γ dγ)2 + α2 sin2 β dγ2, (2.29)

where we used the shorthand notation df2 = ∂aX
f∂bX

f .
The relation between the group manifold written in terms of of generators g = eiα~n, and

in terms of coordinates can be understood more easily be realising that one can identify the
Maurer-Cartan form Ja = g−1∂ag = JAa TA with the vielbeins on the group manifold JAa =
∂aX

µeAµ . In terms of the vielbein we can write the action of eq.(2.30) as

Tr[JaJ
a] = JAa J

a
A = ηabeAµ ∂aX

µeBν ∂bX
νGAB = ηab∂aX

µ∂bX
νGµν (2.30)

which gives us the non-linear sigma model on a target space expressed in terms of its coordinates
and metric Gµν .
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II. INTEGRABILITY AND SUPERSTRING THEORY

2.2.1 Coset Sigma Model

We will next consider the case where the group is a coset G/H. We identify the points g ∼ gh
that are related by an element h ∈ H acting from the right. This means both the action and
the equations of motion should be invariant under this multiplication with h ∈ H, so that the
entire orbit of an element g under the action of H is seen as a single equivalence class.

To this end we first split J into a part J (0) that is valued on h, and J (1) valued on the
algebra p of the remaining coset G/H.

J = J (0) ⊕ J (1). (2.31)

Under g → gh the Maurer-Cartan form transforms as Ja → h−1Jah+ h−1∂ah. The additional
component h−1dh is valued on h, and can thus only come from J (0). The two components of
the Maurer-Cartan form thus transform as

J (0) = h−1J (0)h+ h−1dh (2.32)

J (1) = h−1J (1)h (2.33)

To obtain the action for the PCM on the coset we can gauge out the subgroup H from the
action on the total group G, by introducing a gauge field Aa that is valued only on h

S =
k

2π

∫
Σ
d2z Tr[(Ja −Aa)(Ja −Aa)],

=
k

2π

∫
Σ
d2z Tr[(J0)

a −Aa)(J (0)a −Aa)− J (1)
a J (1)a]. (2.34)

When H is a Lie-subgroup, h and p are orthogonal under the Killing form, that is Tr[J (0)J (1)] =
0. The cross terms between J (0) and J (1) therefore vanish in the trace of the action above. If
we vary with respect to this gauge field Aa we find the equation of motion

δS = 2Tr[δAa(J
(0)a −Aa)], → J (0)

a = Aa (2.35)

Alternatively, we could have integrated out (J
(0)
a − Aa), which is trivial as it only appears

quadratically. In both cases we find the effective action for the remaining group elements on
G/H to be of the form

S =
k

2π

∫
Σ
d2z Tr[J (1)aJ (1)

a ]. (2.36)

When we now obtain the equations of motion we again vary Ja by an arbitrary group element
as we did in eq.(2.22). The variation of Ja can now be split in a part on h and a part on p.

δJa = ∂aε+ [Ja, ε] = ∂aε+ [J
(0)
a , ε] + [J

(1)
a , ε] = Daε+ [J

(1)
a , ε], (2.37)
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where Da = ∂a+[J (0), ·]. Note the cyclicity of the trace now only causes the [J (1), ε] commutator
to vanish. This gives us for the variation of the action and the equations of motion

δL = 2Tr[(Daε+ [J (1)
a , ε]−Aa)(Ja −Aa)] = 2Tr[ε DaJ

(1)a], → DaJ
(1)a = 0 (2.38)

where we inserted the equation of motion Aa = J
(0)
a . The current on the subgroup J (0) now

appears in the covariant derivative, so that the equations of motion transform in the adjoint
under H.

Let us now have another look at the flatness condition. By construction the Maurer-Cartan
form on the total group G is still flat, as we showed in eq.(2.24). If we now decompose J into
its h and p-valued components we can write the flatness condition on these components as

Fab = ∂aJb − ∂bJa + [Ja, Jb]

= F
(0)
ab +DaJ

(0)
b −DbJ

(0)
a + [J (1)

a , J
(1)
b ] = 0 (2.39)

Where F
(0)
ab indicates the curvature of J (0). Since the equations of motion fixed DaJ

(1)a = 0,
the flatness condition can be rewritten as

∂aJ
(0
b − ∂bJ

(0
a + [J (0), J (0] + [J (1), J (1)] = 0 (2.40)

The reader can check again that this equation now also transforms in the adjoint of h. This
gives us (in light cone coordinates) the three independent equations for the Polyakov action

D+J
(1)
− = 0

D−J
(1)
+ = 0 (2.41)

∂+J
(0)
− − ∂−J

(0)
+ +

[
J

(0)
+ , J

(0)
−

]
+
[
J

(1)
+ , J

(1)
−

]
= 0,

with Da · = [∂a + J
(0)
a , · ]

2.2.2 Symmetric Cosets and Z2 grading

Let’s briefly check the commutators of the elements H ∈ h and P ∈ p. For the above construc-
tion it is in general irrelevant how H and P commute. Since H is the Maurer-Cartan form on
a subalgebra

[H,H] ⊂ H (2.42)

and the structure constants fhhp = 0. Since the structure constants are anti-symmetric we
know that fhph = −fhph = 0. This tells us the commutator of H and P has to be of the from

[H,P ] ⊂ P (2.43)
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II. INTEGRABILITY AND SUPERSTRING THEORY

At last the commutator of H and P can - on a general coset - bring us to either H or P .

In the previous section we were considering the case where

[P, P ] ⊂ H. (2.44)

This is a special kind of coset, also known as a symmetric coset. The algebra then has an
additional structure known as a grading. We can associate a value of 0 with the elements H,
and a value of 1 with the elements of P , we find that if the commutators add these values
(modulo 2) the commutators of a symmetric coset preserve this graded structure:

[h, h] ⊂ h, [h, p] ⊂ p, [p, p] ⊂ h (2.45)

(0 + 0) = 0mod2 = 0, (0 + 1) = 1mod2 = 1, (1 + 1) = 2mod2 = 0

This grading is the reason we introduced the notation J (0) valued on g(0) = h and J (1) valued
on g(1) = p in the previous section. When there is such a grading on the algebra, it is possible
to define an involutive (or projective) automorphism Ω on the algebra; an operator Ω for which
Ω2 = I that preserves the structure of the algebra

Ω([X,Y ]) = [Ω(X),Ω(Y )]. (2.46)

The generators of H and P must have eigenvalues of ±1 under Ω, s we can choose for example

Ω(h) = h, Ω(p) = −p. (2.47)

We can now use this automorphism to separate the generators of H and P . This an be done
by decomposing the algebra g = h⊕p = g(0)⊕g(1) into the direct sum of two differently graded
eigenspaces of Ω

g(n) =
1

2
(g + (−1)nΩn(g)) , (2.48)

which transform under Ω as

Ω(g(n)) = (−1)ng(n) (2.49)

As a result it is then possible to decompose the algebra-valued Maurer-Cartan form J according
to this grading J = J (0) ⊕ J (1) so that the different currents satisfy the same commutation
relations as in eq.(2.45) [

J (i), J (j)
]
⊂ J (i+j), i, j modZ2. (2.50)

When we consider the sigma model on such a space, notice the equations of motion and the
flatness condition we obtained earlier in eq.(2.41) are now also organised according to the
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different gradings

D+J
(1)
− = 0, graded 0

D−J
(1) = 0, graded 0

∂+J
(0)
− − ∂−J

(0)
+ +

[
J

(0)
+ , J

(0)
−

]
+
[
J

(1)
+ , J

(1)
−

]
= 0, graded 1

As a consequence it is easy to write down a Lax connection, the flatness condition of which
reproduces the above equations of motion

L± = J
(0)
± + z±2J

(1)
± , (2.51)

where z is the spectral parameter.

Lie Groups and Cosets as Symmetric Spaces

Note that every Lie group itself is also a symmetric space. This can easily be seen as we can
construct every Lie group as a coset of the form

G ∼=
GL ×GR

G
(2.52)

To see the graded commutation relations of eq.(2.45) appear explicitly, we define an automor-
phism that acts on the algebra as

Ω(gL) = gR, Ω(gR) = gL (2.53)

where gL and gR are the algbras of GL and GR in the top line of eq.(2.45). We then find this
gives us for the eigenspaces

h = gL + gR, p = gL − gR, (2.54)

one can check that under this identification the commutators indeed obtain the structure of
eq.(2.52), and one can consequently write a Lax of the form in eq.(2.51) for the sigma model
on any Lie group.

The reason these cosets are called symmetric is that - when we see them as manifolds - they are
equivalent to symmetric spaces, where there is a maximal number of Killing vectors. Meaning
we can move or rotate the manifold along any of its directions and it will remain identical.
Examples of such manifolds are flat Minkowski or Euclidean space, positively curved spherical
or de Sitter space, as well as negatively curved hyperbolic and anti-de Sitter space.

Sn ∼=
SO(n+ 1)

SO(n)
, Rn ∼=

ISO(n)

SO(n)
Hn ∼=

SO(1, n)

SO(n)
(2.55)

dSn ∼=
SO(1, n)

SO(1, n− 1)
Mn ∼=

ISO(1, n)

SO(1, n)
AdSn ∼=

SO(2, n− 1)

SO(1, n− 1)
(2.56)
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Let us briefly consider the above identities in more detail. The group SO(3) can be though of
as the group of all special orthogonal rotations acting on a vector in three-dimensional space.
When we trace out the surface that is spanned by SO(3) acting on a vector it spans a two
sphere. However, S2 is actually smaller than the group SO(3), as vectors that are rotated
around their axis will all be mapped to the same point on the sphere. To obtain S2 we have
to gauge out the rotation group SO(2), so that S2 ∼= SO(3)/SO(2). Alternatively we can see
the original group as a manifold of the form SO(3) ∼= S2 ×w S1, where ×w indicates a warped
product.

2.3 Wess-Zumino-Witten Model

When we consider the beta function of the PCM, it will not vanish for a generic Lie group. The
vanishing of the beta function is however required if we want to identify the non-linear sigma
model with the Polyakov action for a string in eq.(2.16). This vanishing of the beta function can
be achieved by including the coupling to an anti-symmetric Bµν-field on the target space with
field strength H3 = dB2. This Bµν field is sometimes called a torsion term as we can think of it
as containing the torsion (anti-symmetric) terms of a more generalised metric Dµν = Gµν+Bµν .
In the physics literature it is convention to define the metric Gµν to contain symmetric terms
only, and consider the torsion of Dµν to be an independent field. We will use this notation
throughout this thesis.

If we want to adjust the PCM action in order to contain such anti-symmetric terms on the
target space, a first guess could be

S = SPCM +
k

2π

∫
Σ
d2z εabTr[JaJb], (2.57)

however, due to the cyclicity of the trace such an additional term would vanish.
In order to construct a group valued action that does give rise to such a torsion term,

Witten suggested to add a Wess-Zumino (WZ) term to the PCM action [14]. The resulting
action is known as the Wess-Zumino-Witten (WZW) model and has an action that in terms of
the group elements g is of the form

SWZW = SPCM + SWZ (2.58)

=
k

2π

∫
Σ2

d2z Tr[∂ag ∂
ag−1]− k

6π

∫
M3

d3z εabcTr[(g−1∂ag)(g−1∂bg)(g−1∂cg)],

or when written in terms of the Maurer-Cartan form

SWZW =
k

2π

∫
Σ2

Tr[JJ ]− k

6π

∫
M3

Tr[J ∧ J ∧ J ]. (2.59)

Note that this additional Wess-Zumino term does not spoil the global GR ×GL symmetry we
introduced in section 2.2, and that it furthermore involves an integral over a three-dimensional
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spaceM3. When we use the variation for Ja in eq.(2.22), we find - using partial integration and
Stoke’s theorem - that the equations of motion following from the three-dimensional WZ-term
are equivalent to a term on the boundary of M3.

δSWZ =
k

6π

∫
M3

3 Tr[δJ ∧ J ∧ J ]

=
k

6π

∫
M3

3 Tr[(dε+ [J, ε]) ∧ J ∧ J ] (2.60)

=
k

2π

∫
M3

Tr[ε d(J ∧ J)] =
k

2π

∫
Σ2

ε Tr[J ∧ J ].

Here the commutator in the second line vanishes because of the cyclicity of the trace. We should
therefore think of Σ2 as a closed two-dimensional worldsheet, and M3 the volume enclosed by
this surface. This means that though the WZ-term itself is three-dimensional, the equations of
motion following from it only depend on the field configuration on boundary Σ of the volume
M3.

The resulting equations of motion for the total WZW-model are then of the form

(ηab − εab)∂aJb = 0. (2.61)

Example for SU(2)

Let us very briefly return to the SU(2) ∼= S3 example we discussed earlier. For SU(2) the
generators are given in eq.(2.25), and the structure constants are of the form

fABC = i
√

2εABC . (2.62)

To see the effect of the WZ-term on the target space geometry expressed in terms of coordinates,
we identify the Maurer-Cartan form with the vielbeins on the target space geometry JAa =
∂aX

µeAµ . We can use the Maurer-Cartan identity for a Lie group in eq.(2.24) dJ = −J ∧ J to
rewrite the WZ-term as

J ∧ J ∧ J = −J ∧ dJ = −1

2
d(J ∧ J). (2.63)

We then see that the torsion Bµν induced by the WZ-term on the target space is related to the
commutator of the target space vielbeins, or equivalently the structure constants of the group.

The field strength H3 of the anti-symmetric field Bmuν is obtained by its exterior derivative
H3 = dB2. One can check that for SU(2) the H3 flux will be proportional to

H3 = volS3 (2.64)
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II. INTEGRABILITY AND SUPERSTRING THEORY

2.4 The Green-Schwarz Superstring

So far we have only strings with only bosonic fields on their worldsheet. These bosonic strings
suffer from various technical problems, the ground state is tachyonic and has a negative mass
squared. This implies the vacuum is unstable. A problem that can be restored by including
supersymmetry.

In the following section we will introduce the superstring. The introduction of supersym-
metry on the worldsheet theory of the string can be done in several ways that can be shown to
be equivalent:

• Ramond-Neveu-Schwarz (RNS) formalism is the original approach [16, 15], includ-
ing fermions ψµ(τ, σ) and supersymmetry on the string worldsheet. To make the resulting
theory self-consistent and realise spacetime supersymmetry in the target space, one has
to project out certain states. This is known as GSO projection [17].

• Green-Schwarz (GS) formalism [18] starts instead by considering strings that move on
a supersymmetric target space. This is done by including target space fermions θn on the
worldsheet. To ensure the resulting target space has the right amount of supersymmetry
one has to require the worldsheet action to be invariant under an addition symmetry
known as kappa-symmetry.

These different approaches can be convenient for different kinds of calculations. In this thesis
we will focus on the Green-Schwarz approach, where the supersymmetry (and integrability) of
the string directly manifest themselves in terms of the supersymmetric target space.

Just like we introduce the (bosonic) PCM and WZW-models valued on Lie groups in section
2.2 and 2.3 to threat the action for the bosonic string on symmetric spaces, we can consider
these same actions on Lie supergroups, which describe the dynamics of a superstring on a
corresponding supersymmetric target space.

In section 2.3 we saw the WZ-term ensures the action for the string world sheet is conformal.
It furthermore induces torsion on the target space. The same is the case for the WZW-model
on a supergroup. In the case of a supergroup however, the WZ-term enriches the worldsheet
with an additional fermionic symmetry, known as kappa symmetry. In the following section we
will introduce supermanifolds, supergroups, and the PCM and WZW-models on them. At the
end we will return to this additional kappa-symmetry and examine it more closely.

2.5 Supermanifolds

Supermanifolds are a generalisation of Riemannian manifolds, where we include anticommut-
ing fermionic directions θα, for which θαθβ = −θβθα. Just like a D-dimensional Riemannian
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manifoldMD locally looks like RD, a supermanifoldM(D|F ) has D commting (bosonic) direc-
tions, and F anti-commuting (fermionic) directions, and locally looks like RD×RF . Since these
fermionic coordinates anti-commute they differ from the bosonic coordinates in the following
way

dXµ ⊗ dXν = dXν ⊗ dXµ dXµ ∧ dXν = −dXν ∧ dXµ

dθα ⊗ dθβ = −dθβ ⊗ dθα dθα ∧ dθβ = dθβ ∧ dθα

We can combine the bosonic and fermionic coordinates into supercoordinates ZA = (Xµ, θα).
We will write the objects on the superspace with calligraphic capital letters, and Latin capital
indices that range over both the bosonic directions as well as the fermionic directions. We can
then decompose the supervielbein EAM into a bosonic and a fermionic part

EAM =

(
eaµ eaα
eαµ eαα

)
(2.65)

So that

EA = EAMdZM =

(
eaµdx

a + eaαdθ
α

eαµdx
µ + eααdθ

α

)
=

(
Ea
Eα
)

(2.66)

With these fermionic directions we can then generalise the conventional notions of a tangent
space and a generalised metric Dµν to a supertangent space and generalised supermetric DAB
(where for the moment we allow torsion terms in a generalised metric and do not yet promote
them to be independent fields as we did earlier for the Bµν field that carries the torsion of the
bosonic generalised metric). The generalised supermetric will now decompose into bosonic and
fermionic parts as

ds2 = DAB dZAdZB (2.67)

= Dabdx
a ⊗ dxb +Daαdx

a ⊗ dθα +Dαβdθ
α ⊗ dθβ.

In block form the generalised supermetric thus looks like

ds2 = (dxa, dθα)

(
Dab Daβ

Dαb Dαβ

)(
dxb

dθβ

)
(2.68)

Just like we can associate the torsion on a bosonic target space (the antisymmetric component
of Dab) with a B2-field, we can associate another field (known as the fermion bispinor) /Fαβ
with a non-vanishing symmetric component of Dαβ [19, 20]. Decomposing the generalised
supermetric in this way so that the torsion can be thought of as independent fields we find

DAB dZAdZB = G(ab)dx
a ⊗ dxb +B[ab]dx

a ∧ dxb

+G(aα)dx
a ⊗ dθα + Ψ[aα]dx

a ∧ dθα (2.69)

+G[αβ]dθ
α ⊗ dθβ + /F (αβ)dθ

α ∧ dθβ
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II. INTEGRABILITY AND SUPERSTRING THEORY

Here we included the additional brackets to indicate that the bosonic part of the metric G(ab)

is symmetric, the fermionic part of the metric G[αβ] is anti-symmetric, the bosonic torsion term
B[ab] is anti-symmetric, and the fermionic torsion term /F (αβ) is symmetric.

Since the anti-symmetric gamma-matrices for a basis of all possible anti-symmetric terms
in Dαβ we can decompose the fermionic torsion /F (αβ) onto a sum of gamma matrices times
anti-symmetric Ramond-Ramond fields F[ab...]. Note that even though these RR-fields tell us
about the curvature in the fermionic part of the supermetric, these fields themselves are bosonic
fields and only have Lorentz indices.

/Fαβ = F0 + ΓaαβFa +
1

2
Γ

[ab]
αβ F[ab] +

1

3!
Γ

[abc]
αβ F[abc] +

1

4!
Γ

[abcd]
αβ F[abcd] + . . . . (2.70)

When we consider strings on a superspace with 10 bosonic directions we can choose to de-
compose the 32-component fermions into two Majorana-Weyl spinors of the same or different
chiralities. This is known as the Type IIB and Type IIA description of the superstring, and
results respectively in a superspace with either N = (2, 0) or N = (1, 1) supersymmetry. It
turns out the Type IIB superspace will only have in odd RR-fluxes (F1, F3, F5 and their Hodge
duals), while the Type IIA superspace only has even RR-fluxes (F0, F2, F4 and their Hodge
duals).

Similarl to the way we can encode information about the torsion of the generalised super-
metric into these RR-flieds, the off-diagonal component of the supermetric Gaα will always be
symmetric. The torsion, or antisymmetric part Ψ[aα] can be thought of as an additional field
called the gravitino. In this section we aimed to give a brief introduction to the mathematica
structure underlying supermanifolds. In the string theory literature it is convention to specify
a supermanifold by giving the bosonic metric Gab together with the set of earlier described
fields Bab, Fab..., etc. that can be thought of as carrying the torsion on this space.

In terms of the supervielbein we can generalise the Polyakov action (2.16) to an action that
couples the string to the metric of a supertarget space as

S =
1

2πα′

∫
Σ
d2z

(
ηabEAMEBNηAB + εabBMN (Z)

)
∂aZ

M∂bZ
N + α′Φ(Z)R(z) (2.71)

where the first term with the supervielbeins will result in the bosonic metric G(ab) and anti-
symmetric (supertorsionless) part of the supermetric G[αβ]. In the above action we have chosen
to set various fields, like the gravitino, equal to zero.

An Example: The Supersphere

Let us briefly illustrate an example of a supermanifold: the supersphere. Just like we defined
the sphere to be congruent with the coset Sn ∼= SO(n + 1)/SO(n) in section 2.2.2, we can
define the supersphere

S(n|2m) ∼=
OSp(n+ 1|2m)

OSp(n|2m)
(2.72)

21



Where OSp is the orthosymplectic supergroup. Analoguous to the normal sphere, we can think
of a supersphere S(n|2) as a submanifold in R(n+1|2) of all the points in superspace Z = (~x, θ1, θ2)
that have a fixed distance to the origin.

ηabxaxb + δαβθ
αθβ = R2 (2.73)

The metric and vielbein can then be obtained using a stereographic projection of S(2|2) embed-
ded in R(3|2), analogous to the way one can obtain a metric for the stereographic projection of
the Riemann sphere on the plane [19]. The supervielbein is

Ea =

√
2

1 + Z2
dXa (2.74)

Eα =
i

(1 + Z2)
1
2

(
dθα − θαxa

1 + Z2
dxa
)

(2.75)

with the metric given by
ds2 = δabEaEb + iεαβEαEβ (2.76)

where we defined
Z2 = ~x2 + 2θ1θ2 = R2 (2.77)

which in components reads

GAB =
2δab

(1 + x2)2

(
1−

εαβθ
αθβ

1 + x2

)
(2.78)

Note that to zeroth order in bosonic coordinates we obtain the metric for the sphere Gab =
2δab(1+x2)−2 (the coordinates here are using a stereographic projection of the Riemann sphere).
Also note this is a (torsionless) superspace, and the supermetric is symmetric in its bosonic
components and anti-symmetric in its fermionic components, there are therefore no Ramon-
Ramond B2, or gravitino fields present on this background.

Just to illustrate in more detail how one can extract the Ramond-Ramond fields from the
supermetric, imagine we would change the fermionic part of the supermetric to include an
additional symmetric term

Gαβ = G(0)
[αβ] +

2δαβ
(1 + x2)2

θαθβ (2.79)

that we then associate with the fermion bispinor /Fαβ. When we consider the superspace S(2|2)

with two bosonic, an two fermionic directions, the Pauli matrices form a complete basis for the
possible anti-symmetric terms in Gαβ. We can then decompose the symmetric component of
GAB into Ramond-Ramond fields as

/F (αβ) =
2δαβ

(1 + x2)2
θαθβ (2.80)
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II. INTEGRABILITY AND SUPERSTRING THEORY

2.6 Supergroups

Analogous to how certain Lie groups can be seen as manifolds, we can construct super-Lie
groups that can be identified with supermanifolds. A conventional matrix consists of a block
of commuting numbers. By extension an (even) supermatrix (said to be of degree 0) is a block
with numbers of the form (

m q

p n

)
. (2.81)

Where the blocks m and n contain m × m and n × n matrices with commuting numbers,
while the entries in the blocks p and q are respectively n ×m and m × n matrices that con-
tain anti-commuting (Grassmannian) numbers. For an odd supermatrix - of degree 1 - the
anticommuting entries are on the diagonal, while the off-diagonal blocks contain normal com-
muting numbers instead, and one has to include the red terms in the expression below. For an
even supermatrix these red terms will vanish. We will be mainly been considered with even
supermatrices throughout this thesis.

We can define the supertrace, supertranspose and superdeterminant in a way similar to
their ‘normal’ counterparts such that all the identities we know for these objects still hold

STr(M) = Tr(m)− (−1)degMTr(n)

MST =

(
mT (−1)degMpT

−(−1)degMqT nT

)
(2.82)

sdet(M) =
det
(
m− qn−1p

)
det(n)

=
det(m)

det (n− pm−1q)

Here deg M indicates the degree of the supermatrix.

We can decompose the generators of a supergroup into bosonic generators B that are repre-
sented by matrices that have entries in the diagonal blocks m and n, and fermionic generators
Q represented by matrices with entries in the off-diagonal blocks p and q. We then see these
generators satisfy commutation relations of the form

[B,B] ⊂ B, [B,Q] ⊂ Q, [Q,Q] ⊂ B. (2.83)

Note these commutation relations have a Z2 grading under which the bosonic generators are
even and the fermionic generators are odd.

2.6.1 Maurer-Cartan form on a Supergroup

As we introduced in section 2.2, the PCM action on a Lie group can be written completely in
terms of the Maurer-Cartan form on the group Ji = g−1∂ig. To work out the Maurer-Cartan
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form of a supergroup we write the elements of the supergroup as g = g(B)eiθαQ
α
, with Qα the

fermionic generators. This gives us

Ja = e−iθαQ
α
g(B)∂a

(
g(B)eiθαQ

α
)

(2.84)

= e−iθαQ
α
(
J (B)
a + i∂aθαQ

α
)
eiθαQ

α

= e−iθαQ
αDaeiθαQ

α

= J (B)
a +DaΘ +

1

2
[Θ,DaΘ] + . . .+

1

n!
[Θ, [Θ, . . . [Θ,DaΘ] ..]] ,

where we introduced the covariant derivative Da = ∂a + J
(B)
a , used the shorthand notation

Θ = −iθαQα, and used the superscript (B) to emphasize that g(B) and J (B) are the group
elements and Maurer-Cartan form on the bosonic subgroup of the supergroup. Here we used
the Baker-Campbell-Hausdorf theorem in going to the last line.

Note the zeroth order terms in the fermions are equal to the Maurer-Cartan form on the
bosonic subgroup of the supergroup. On a general supergroup it can be a daunting task to
write out the full Maurer-Cartan form explicitly in terms of the fermionic coordinates as this
might involve many higher order terms in the fermionic coordinates. It is therefore often
more convenient to work with the Maurer-Cartan forms as fundamental fields on the string
worldsheet directly, and not write them out explicitly in coordinates.

2.6.2 PCM on a Supergroup

Let us now briefly consider the principal chiral model on a supergroup, which will now be given
in terms of supertrace over the Maurer-Cartan form on the full supergroup J as

S =
k

2π

∫
Σ

STr[JJ ] (2.85)

A supergroup always has at least a Z2 grading, as the bosonic generators form a subgroup and
the commutators are of the form

[b, b] ⊂ b, [b, f] ⊂ f, [f, f] ⊂ b (2.86)

(0 + 0) = 0mod2 = 0, (0 + 1) = 1mod2 = 1, (1 + 1) = 2mod2 = 0

which means we can decompose the Maurer-Cartan form as

J = Jb ⊕ J f. (2.87)

Here the J f are valued in the off-block-diagonal components of the supergroup. Since these
J f have vanishing supertrace the PCM action will only contain terms quadratic on J f and
decomposes as

S =
k

2π

∫
Σ
d2z STr[JbJb + J fJ f] (2.88)
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II. INTEGRABILITY AND SUPERSTRING THEORY

where the first part describes the sigma model on the bosonic target space, and the second part
describes the additional fermionic terms in the action.

2.6.3 Graded Supergroups

Analogous to how we introduced symmetric cosets in section 2.2.1, we can mod out a bosonic
subgroup from a supergroup. For some cosets the Z2 grading of the coset will in that case
combine with the fermionic Z2 grading to form a Z4 grading.

As an example, let us illustrate this for the maximally supersymmetric AdS5×S5 solution
of Type IIB supergravity, with a self-dual RR-flux F5 = vol(AdS5) + vol(S5). This superspace
is equivalent to the coset superspace

AdS5 × S5 ∼=
SU(2, 2|4)

SO(1, 4)× SO(5)
. (2.89)

Here SU(2, 2|4) is a supergroup with bosonic subgroups SU(2, 2) ∼= SO(2, 4) and SU(4) ∼=
SO(6) on its block-diagonal. We can represent the generators of the supergroup SU(2, 2|4) by
the 8× 8 complex supermatrices of the form

X =

(
su(2, 2) θ

η su(4)

)
, (2.90)

where su(2, 2) and su(4) are the even (bosonic) 4× 4 matrices respectively containing the gen-
erators of these respective (bosonic) groups. The θ and η are the 4 × 4 odd matrices whose
elements are linear in the fermionic variables.

Analogous to how we earlier introduced the Z2 graded coset spaces in section 2.2.2, we can define
an automorphism Ω for which Ω4 = I, that acts on these generators as Ω(X) = −KXSTK−1,
with

K = diag(K,K), with K =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 . (2.91)

This automorphism now allows us to decompose the generators of SU(2, 2|4) into a direct sum
of four subspaces, where each subspace is defined to be an eigenspace of Ω,

Ω(g(k)) = ikg(k), where g(k) =
1

4

(
g + i3kΩ(g) + i2kΩ2(g) + ikΩ3(g)

)
.

giving

g = g(0) ⊕ g(1) ⊕ g(2) ⊕ g(3) (2.92)
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such that [
g(i), g(j)

]
⊆ g(i+j) mod Z4, i, j = 0, 1, 2, 3 (2.93)

These different subspaces will take on the form

g(0) =
1

2

(
m−KmtK−1 0

0 n−KntK−1

)
,

g(2) =
1

2

(
m+KmtK−1 0

0 n+KntK−1

)
(2.94)

g(1) =
1

2

(
0 θ − iKηTK−1

η + iKθTK−1 0

)
,

g(3) =
1

2

(
0 θ + iKηTK−1

η − iKθTK−1 0

)
.

where K is a 4× 4 matrix for which Ω(X) = −KXSTK−1.

2.6.4 WZW-model on Supergroups

If we consider the WZW-model on a symmetric superspace (that is a coset of a super Lie group
with a Z4 grading (see section 2.6.3)), we can analogously to section 2.2.1 gauge out the bosonic
subgroup H ∈ g(0). Since H is a bosonic subgroup, the remaining bosonic part of the PCM
action contains J (2), analoguous to the bosonic coset in section 2.2.1.

The WZ-term on a Z4 graded supercoset cannot depend on J (0) as we gauge out this sub-
group, and the only relevant contributions can therefore come from

STr[(J (1) + J (2) + J (3)) ∧ (J (1) + J (2) + J (3)) ∧ (J (1) + J (2) + J (3))] (2.95)

It turns out the WZ-term can in that case be written as [9]

STr[J (2) ∧ (J (1) ∧ J (1) − J (3) ∧ J (3)] = d STr[J (1) ∧ J (3)], (2.96)

where we used the Maurer-Cartan identity dJ
(i+j)
a = [J

(i)
a , J

(j)
b ]. The WZ-term can thus be

written following eq.(2.60) as

SWZ =
k

2π

∫
Σ
d2z εabSTr[J (1)

a J (3)
a ] (2.97)

So that the full WZW-action on a supergroup can be written as

SWZW =
k

2π

∫
Σ
d2z ηabSTr[J (2)

a J
(2)
b ] + κεabSTr[J (1)

a J
(3)
b ] (2.98)
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II. INTEGRABILITY AND SUPERSTRING THEORY

where the parameter κ has to be fixed to ensure kappa symmetry on the worldsheet action
(we will come back to this in the next section). The equations of motion, along with the
Maurer-Cartan identity can then be written (in lightcone coordinates) as

D+J
(2)
− +

[
J

(1)
+ , J

(1)
−

]
= 0

D−J
(2)
+ +

[
J

(3)
− , J

(3)
+

]
= 0

∂+J
(0)
− − ∂−J

(0)
+ +

[
J

(0)
+ , J

(0)
−

]
+
[
J

(2)
+ , J

(2)
−

]
+
[
J

(3)
+ , J

(1)
−

]
+
[
J

(1)
+ , J

(3)
−

]
= 0 (2.99)

D+J
(1)
− −D−J

(1)
+ +

[
J

(3)
+ , J

(2)
−

]
= 0

D+J
(3)
− −D−J

(3)
+ +

[
J

(2)
+ , J

(1)
−

]
= 0[

J
(1)
+ , J

(2)
−

]
=
[
J

(2)
+ , J

(3)
−

]
= 0,

where Da· = ∂a + [J
(0)
a , ·]. Note that, using the commutation relations in eq.(2.93) all terms

in each line have the same grading. These equations of motion can now be obtained from the
flatness condition for a Lax connection

L± = J
(0)
± + zJ

(1)
± + z∓2J

(2)
± + z−1J

(3)
± . (2.100)

2.6.5 Kappa Symmetry

Let us now return to the kappa-symmetry for the Green-Schwarz superstring. To study this in
more detail, we will first have a look at the action for the Green-Schwarz superstring on flat
Minkowski superspace. When written explicitly in terms of coordinates Xµ and θαA the action
is of the form

SMink
GS =

−1

4πα′

∫
Σ
d2x

1

2
ηabηµνΠµ

aΠν
b + SMink

WZ , (2.101)

where Πµ
a = ∂aX

µ − θ̄AαΓµαβ∂aθ
βA,

where we wrote the target space coordinates ZA on the super-Minkowski space explicitly
in terms of both the bosonic coordinates Xµ(σ, τ) and the additional fermionic coordinates
θα(σ, τ).

For the worldsheet action to be supersymmetric it needs to be invariant under the trans-
formation

δXµ = iθ̄AαΓµαβδθ
Aβ, δθAα = 2iΓµαβΠµκ

Aα (2.102)

where κ is an arbitrary spinor. This symmetry reduces the number of physical fermionic de-
grees of freedom by half, from 32 down to 16.
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This invariance of the action can be achieved by adding an additional term, usually referred to
as the Wess-Zumino (or Chern-Simons) term. For the WZW-model on super-Minkowski space
this WZ-term is of the form

SMink
WZ =

−1

4πα′

∫
Σ
d2x εab

[
−∂aXµ

(
θ̄1Γµ∂bθ

1 − θ̄2Γµ∂bθ
2
)
− θ̄1Γµ∂aθ

1θ̄2Γµ∂bθ
2
]
. (2.103)

Finding this additional term makes it more difficult to write down the Green-Schwarz action
on an arbitrary supergeometry. If we were to replace ηµν in eq.(2.101) with an arbitrary tar-
get space metric Gµν , the additional Wess-Zumino term has to be amended appropriately to
preserve the κ-symmetry of the action. Writing down the GS action for the string, with the
appropriate WZ-term on an arbitrary background can therefore be a convoluted task.

Fortunately, when we obtain the action for the superstring as a WZW-model on a supergroup,
it is exactly the WZ-term that gives the correct κ-symmetry to the worldsheet action![24]

This action of this κ-symmetry can be understood as identifying points the supergroup,
that are related by the right action with a fermionic element eθQ [23], where Q is a fermionic
generator. Identifying these elements suggests the WZW-model on a supergroup G, means that
we are considering the coset G/Q̃, where Q̃ includes a subset of the fermionic generators.

2.7 Supergravity

So far we have been mainly concerned with the classical action for the superstring. The
requirement that beta function for the string vanishes on an arbitrary target space imposes
constraints on the background fields that couple to the string worldsheet. If we consider just
the bosonic sector of the string (with target space fields Gµν , Bµν and Φ), the one-loop beta
function for the sigma model in eq.(2.16) is

βGµν = α′
[
Rµν − 2∇µ∇νφ+

1

4
HµκσH

κσ
ν

]
+O(α′2)

βBµν = α′
[
−1

2
∇κHκµν +∇κΦHκµν

]
+O(α′2)

βΦ = α′
[
D − 26

6α′
− 1

2
∇2Φ +∇κΦ∇κΦ− 1

24
HκµνH

κµν

]
+O(α′2)

These constraints can be interpreted as equations of motion that the fields Gµν , Bµν and Φ
have to satisfy for the string theory on this target space to be consistent. These equations of
motion can be obtained from an action that consists of the Einstein-Hilbert action, coupled to
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a scalar field and an anti-symmetric three form field strength H3 = dB2

SNS =
1

168πG10

∫
d10 x

√
−G e−2Φ

(
R+ 4∂µΦ∂µΦ− 1

12
HµνρH

µνρ

)
. (2.104)

with G10 the ten dimensional Newton’s constant.

If we calculate higher loop corrections to the beta function, we would find higher order
corrections that contain higher derivatives of the curvature, Hµνρ field strength, and dilaton.
We can thus think of this action as a low energy effective action for the string backgrounds,
that is accurate when the curvature, and derivatives of Hµνρ and Φ are relatively small. Note
the higher order corrections also come with higher orders of α′. This implies the low energy
effective action is valid up to energies of order the string mass ms ∼ α′−1 ∼ `−2.

2.7.1 Including RR-fluxes

When we do the same analysis for the string on a superspace we find similar results, where the
vanishing of the beta function now implies the worldsheet action is not only conformal, but
also kappa symmetric [21, 22]. The constraints for the vanishing of the beta function will now
include the fermionic directions of the target space, which (as we showed in section 2.5) can
now be encoded in terms of Ramond-Ramond fields, as well as other fields that carry spinor
indices.

Depending on whether one considers a Type IIA or IIB superspace (with the fermionic
directions described by Majorana-Weyl spinors of opposing or equal chiralities) this leads to
backgrounds with only even or odd RR-fluxes.

If we set all fermionic field equal to zero, the backgrounds have to satisfy the supergravity
equations.

Type IIA Supergravity

For Type IIA supergravity the action contains the additional terms in the action are

SIIA = SNS + SR
IIA + SCS

IIA (2.105)

where

SR
IIA =

−1

4κ2
10

∫
d10x

(
F 2

(0) +
1

2
F 2

(2) +
1

4!
F 2

(4)

)
,

SCS
IIA =

−1

4κ2
10

∫
d10x

(
dC(3) ∧ dC(3) ∧B(2) +

1

3
F(0)dC(3) ∧B3

(2) +
1

20
F 2

(0) ∧B
5
(2)

)
.
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Here the RR-field strengths are related to their potential as

F(2) = dC(1) + F(0) ∧B(2),

F(4) = dC(3) −H(3) ∧ C(1) +
1

2
F(0) ∧B(2) ∧B(2).

Type IIB Supergravity

Analoguously, the complete Type IIB supergravity action is given by

SIIB = SNS + SR
IIB + SCS

IIB (2.106)

where

SR
IIB =

−1

4κ2
10

∫
d10x

(
F 2

(1) +
1

3!
F 2

(3) +
1

2

1

5!
F 2

(3)

)
(2.107)

SCS
IIB = − 1

4κ2
10

∫
d10x C(4) ∧H(3) ∧ dC(2) (2.108)

and where the potentials are related to the field strengths as

F(1) = dC(0)

F(3) = dC(2) − C(0) ∧H(3)

F(5) = dC(4) − C(2) ∧H(3)

Here in addition, it has to be imposed by hand that F(5) = ?F(5).

Equations of Motion

The resulting equations of motion for Type IIA and Type IIB are

Rµν + 2∇µ∇νΦ− 1

2
HµσH

σ
ν − 1

4
e2Φ

5∑
p=0

F (p)
µ F (p)

ν = 0

(
d +H(3)∧

)
?
∑
p

F(p) = 0

d
(
e−2Φ ? H(3)

)
− 1

2

∑
p

(
?F(p) ∧ F(p−2)

)
= 0

2∇2Φ− (∇Φ)2 +
1

4
R− 1

8
H2

(3) = 0
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where F
(p)
µ F

(p)
ν implies the p-form contracted with itself over all but one index, and H(3) implies

a contraction of Hµνρ with itself. Here p = 2k and is even for Type IIA, and p = 2k+ 1 and is
odd for Type IIB.

2.8 T-Duality

In the following sections we will introduce the ideas of both Abelian and non-Abelian T-duality,
and its relation with integrability. T-duality (or target-space duality) is an equality between
the worldsheet theory of the string on a target space with a compact circular direction of radius
R, and one with a circular direction of radius R−1.

More generally it states that the full quanutum theory of a string on a target space with a
compact isometry direction, metric Gµν , B-field Bµν , and dilaton Φ is equivalent to the string
on a different target space, with metric Ḡµν , B-field B̄µν and dilaton Φ̄, related to to old ones
by the Buscher rules in eq.(2.116). If we also consider RR-fluxes on the original background,
they will transform according to (2.124).

In the non-Abelian case we start from a target space with a non-Abelian isometry group,
and find - following the same procedure - a target space related to the original one by the
generalised Buscher rules in eq.(2.133). In the Abelian case the full quantum theory of the
string on the two dual spaces are equivalent. For the non-Abelian T-duality, this is no longer
the case and the full quantum theory of the string is not equivalent on the dual target spaces.

Non-Abelian T-duality does however bring us from one target space on which the world-
sheet action of the string is conformal to another one where this is also the case. Both the
original and the ‘dual’ target spaces will therefore be solutions of supergravity. This means
the non-Abelian T-duality can be used as a ‘solution generating technique’, starting from a
highly symmetric target space one can obtain more complicated supergravity solutions, where
the original isometry group on which we performed the NATD is now broken. We will illustrate
this further in chapter 7.

The ‘dual’ supergravity solutions that are obtained by performing a (non-Abelian) T-duality on
a more symmetric solution are in general more complicated and less supersymmetry, as various
isometries are broken during this procedure. However, (non-Abelian) T-duality preserves the
integrable structure of the string worldsheet. This is because the action of a T-duality on the
worldsheet can be seen as a canonical transformation in phase space, we discuss this in section
2.8.3.

2.8.1 The Buscher Rules

To derive these results we follow [25, 26], and start from a target space with a compact U(1)
isometry direction Xθ, and denote ∂aX

θ = Jθa , so we can decompose the terms in the bosonic
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sector of the σ-model as

ηabGµν ∂aX
µ∂bX

ν = ηab
(
GθθJ

θ
aJ

θ
b +GθρJ

θ
a∂bX

ρ +Gρσ∂aX
ρ∂bX

σ
)
, (2.109)

εabBµν ∂aX
µ∂bX

ν = εab
(
BθρJ

θ
a∂bX

ρ +Bρσ∂aX
ρ∂bX

σ
)
,

where the indices ρ and σ range over the remaining directions that do not involve Xθ. Note
that Jθa here is the Maurer-Cartan form on the U(1) isometry direction, following the notation
we introduced earlier in section 2.2. Inserting this separation of the θ-direction in the bosonic
σ-model

S =
1

2πα′

∫
Σ
d2z

(
ηabGµν + εabBµν

)
∂aX

µ∂bX
ν + α′Φ(X)R(z), (2.110)

then gives us

S[Xρ, Ja] =
1

2πα′

∫
Σ
d2z ηab

(
GθθJ

θ
aJ

θ
b +GθρJ

θ
a∂bX

ρ +Gρσ∂aX
ρ∂bX

σ
)

(2.111)

+εab
(
BθρJ

θ
a∂bX

ρ +Bρσ∂aX
ρ∂bX

σ
)

+ α′ΦR

We now promote the global U(1) isometry of the Xθ-direction to a local gauge symmetry on
the string worldsheet by replacing the derivatives Jθa = ∂aX

θ → DaX
θ = ∂aX

θ+Aa.
1 We then

add a Lagrange multipier term SLM to the action,

SLM =
1

2πα′

∫
Σ
dz2 θ̄εab∂aAb (2.112)

with θ̄ a Lagrange multiplier field. The equations of motion for θ̄ now imply εab∂aAb = Fab = 0.
This forces the field strength to vanish, and ensures that Aa is a flat connection Aa = ∂aλ.
With the introduction of this Lagrange multiplier term, the gauge field does not add additional
degrees of freedom to the system.

Since the gauge connection is flat, Jθa = DaX
θ = ∂aX

θ + Aa = ∂a(X
θ + λ). The different

gauge choices for λ now correspond to a coordinate transformation along the θ-direction, θ →
θ + λ. It is easiest to work with a gauge for the connection where we set λ = φ−Xθ, so that
Jθa = Aa, which we will do in the remainder of this section.

1Here we write Xθ, Jθa where the index θ only ranges over the single U(1) isometry direction. We choose to
omit this index on the gauge field Aθa in this section, and simply write Aa as the gauge field is Abelian. We
choose this notation where the group index is made explicit on the Maurer-Cartan form to make it easier for
the reader when we later generalise the results in this section to the non-Abelian case, where Xi and J ia have a
non-Abelian index i that runs over multiple generators.
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In this notation, the full partition function is written - after partial integration on the
Lagrange multiplier term - as

Z =

∫
DXρDAaDθ̄ e−iS[Xρ,Aa,θ̄], with (2.113)

S[Xρ, Aa, θ̄] =
1

2πα′

∫
Σ
d2z Aa

(
ηabGθθ

)
Ab

+2
(
ηabGθρ∂aX

ρ + εabBθρ∂aX
ρ − εab∂aθ̄

)
Ab

+ηabGρσ∂aX
ρ∂bX

σ +Bρσ∂aX
ρ∂bX

σ + α′ΦR

Integrating out θ̄ brings us back to the partition function in eq.(2.111). To obtain the T-dual
model we instead integrate out Aa, which leaves us with

Z =
1√
Gθθ

∫
DXρDθ̄ e−iS[Xρ,θ̄], with (2.114)

S[Xρ, θ̄] =
1

2πα′

∫
Σ
d2z ηabGρσ∂aX

ρ∂bX
σ +Bρσ∂aX

ρ∂bX
σ + α′ΦR+(

ηabGθρ∂aX
ρ + εabBθρ∂aX

ρ − εab∂aθ̄
) (
ηbcG

−1
θθ

) (
ηcdGθκ∂cX

κ + εcdBθκ∂cX
κ − εcd∂cθ̄

)
Where we can now collect all the crossterms of the above product to define a new target space
metric Ḡµν and B-field B̄µν . The factor

√
Gθθ

−1
in the partition function can be absorbed in

a redefinition of the dilaton.

1

4πα′

∫
Σ
d2z ηab

(
Ḡθ̄θ̄∂aθ̄∂bθ̄ + 2Ḡθ̄µ∂aθ̄∂bX

µ + Ḡµν∂aX
µ∂bX

ν
)

+

+ εab
(
2B̄θ̄µ∂aθ̄∂bX

µ + B̄µν∂aX
µ∂bX

ν
)

+ α′Φ(X)R(z) (2.115)

The partition functions for the actions in eqs.(2.110) and (2.115) now describe a closed string
on two different spaces. These two different partition functions are however identical as we
have shown, and one can go from one to the other by redefining the fields. The transformation
rules for the target space geometry before and after the duality are known as the Buscher rules
[25, 26].

D̄µν =

(
Dµν −DµθG

−1
θθ Dθν −DµθG

−1
θθ

G−1
θθ Dθν G−1

θθ

)
, (2.116)

Φ̄ = Φ− 1

2
ln(Gθθ),

where we now combine Dµν = Gµν +Bµν . The components of the metric and B-field that only
involve the other directions ρ and σ are unaffected.
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Similarly we can find the transformation rules for the generalised vielbeins under a T-duality.
To obtain the dual action we had to integrate out Aa. This is equivalent to obtaining the
equations of motion for Aa and inserting them into the action. For the action in eq.(2.113)
these are

δA+ = GθθA− +Dρθ∂−X
ρ + ∂−θ̄ = 0, (2.117)

δA− = GθθA+ +Dθρ∂+X
ρ − ∂+θ̄ = 0,

where we wrote the worldsheet coordinates in light-cone gauge. Since we can choose a conve-
nient gauge where that Jθa = Aa this then implies that the initial Maurer-Cartan forms Jθa on
the isometry direction, will transform after a T-duality as

J+ →
1

Gθθ

(
∂+θ̄ −Dθρ∂+X

ρ
)

(2.118)

J− →
−1

Gθθ

(
∂−θ̄ +Dρθ∂−X

ρ
)
.

2.8.2 Transformation of the RR-fluxes

So far we discussed how the NS-sector of the supergravity background transforms under a T-
duality. We will now focuss on the way the RR-sector transforms when we perform a T-duality
on a bosonic isometry direction.

A first way to see how a super-targetspace deforms under a T-duality is by considering a
generalisation of the Buscher rules (2.116) to those for a superspace, following section 2.5. This
then gives us

D̄AB =

(
DAB − DAθDθBGθθ

−DAθ
Gθθ

DθB
Gθθ

G−1
θθ

)
(2.119)

Here we simply applied to same Buscher rules as before, but now have capital indices A,B
that run over both the bosonic directions (indicated by small Latin indices a, b) and fermionic
directions (indiated by small Greek indices α, β) of the super targetspace.

As we explained in section 2.5, we can combine the RR-fields to form the fermion bispinor
/Fαβ that we can think of as carrying the torsion term of the purely fermionic part of the
supermetric

/Fαβ = F0 + ΓaαβFa +
1

2
Γ

[ab]
αβ F[ab] +

1

3!
Γ

[abc]
αβ F[abc] +

1

4!
Γ

[abcd]
αβ F[abcd] + . . . . (2.120)

To see how the fermion part of the generalised supermetric transforms under a T-duality we
can take the part of eq.(2.116) where A and B only run over the fermionic directions

D̄αβ = Dαβ −
DαθDθβ
Gθθ

. (2.121)
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We can then decompose D̄αβ into a symmetric and anti-symmetric part, to see what the fermion
bispinor will be after we have performed a T-duality on the superspace.

If we wan to work only with the RR-fluxes it can be more convenient to find how these RR-fluxes
directly transform under a T-duality. This was originally done in [190].

Because the different RR-fluxes have to be combined with gamma matrices to form the
fermion bispinor, the gamma matrices on the target space ‘determine’ which parts of the
fermion bispinor /Fαβ will be associated with the different RR-fluxes. Under a T-duality (on
one of the bosonic directions of the spacetime manifold) the bosonic metric and Bµν-field will
change according to the Buscher rules, and the gamma matrices on the bosonic target space
will change as well. If we can therefore figure out how the gamma matrices transform under a
T-duality, we can use the transformation of these gamma-matrices to obtain the RR-fluxs after
the T-duality.

As we have seen in eq.(2.118) the Maurer-Cartan forms J+ and J− (equivalent to the
vielbeins) of the isometry direction transform differently under a T-duality. These two vielbeins
J± describe the same target space, and are related by a Lorentz transformation

J+ = ΛJ−. (2.122)

We can then find a spinor representation corresponding to this Lorentz transformation Ω, that
will show us how the target space gamma matrices will transform

Ω−1ΓiΩ = ΛijΓ
j (2.123)

Once we obtained Ω, we can then use it directly to see how the fermion bispinor transforms
when we perform a T-duality on one of the bosonic directions of the original target space

eΦ̄/2 /̄F
αβ

= eΦ/2 /F
αβ

Ω−1. (2.124)

We will show an explicit example of this when we discuss the non-Abelian T-duality in section
2.9.1.

2.8.3 T-Duality and Integrability

If we start from an integrable string background (for example a coset space, so that we can
write a Lax connection following the ideas in section 2.2.1), the integrable structure of the
string worldsheet will be preserved under a T-duality. This can most easily be seen by thinking
of T-duality as a canonical transformation, following [83].

In the original sigma model of eq.(2.110) we have a canonical position and momentum for
the θ-direction

qθ = Xθ pθa =
∂L
∂q̇θa

= mabDµθ∂bX
µ + kab∂bX

θ, (2.125)

35



where we use the abbreviation mabDµν = ηabGµθ + εabBµθ, and k = Gθθ.
If we look how the T-duality acts on Ja = ∂aX

θ in eq.(2.118) we see, using eq.(2.116), that
the derivative q̇θa is mapped after the T-duality to minus the momentum of the worldsheet on
the dual space

q̇θa = ∂aX
θ → k−1

[
mabDθρ∂bX

ρ − εab∂bθ̄
]

=
[
mabD̄θρ∂bX

ρ − εab∂bθ̄
]

=
∂LT-dual

∂ ˙̄qθa
= −p̄θ̄b . (2.126)

The T-duality thus maps q̇θa → −p̄θ̄a. Similarly we can find that the momentum on the world-
sheet on the initial space is mapped to pθa → − ˙̄qθ̄a.

We can therefore think of the T-duality as a canonical transformation that acts on the
phase space variables (the worldsheet position qθa and momentum pθa along the θ-direction), that
preserves the symplectic structure of the phase space, and maps them to a different position
qθ̄a and momentum pθ̄a that describe the fluctuations of the worldsheet along the θ̄-direction of
the dual space [83]. (

q̇θa, pθa

)
→

(
−p̄θa, − ˙̄qθa

)
(2.127)

2.9 Non-Abelian T-duality

Non-Abelian T-duality is a generalisation of the (Abelian) T-duality we introduced in the pre-
vious sections, where we now consider a target spacetime with a subspace that is equivalent
to a non-Abelian Lie group G. This work started with [32], where the T-duality transforma-
tions for the NS-sector of string theory were generalised to the case of non-Abelian isometries.
Later in [190], these transformations were extended by incorporating the transformation of the
RR-fields, providing a method to generate new solutions in type II supergravity, starting from
backgrounds with non-Abelian isometries.

As we did for the Abelian case in eq.(2.109), we start by decomposing the metric and B-field
into a part on the non-Abelian symmetry group G, and write

Gµν dx
µdxν = Gρσ dx

ρdxσ + 2Gρidx
ρ J i + gij J

iJ j (2.128)

Bµν dx
µ ∧ dxν = Bρσ dx

ρ ∧ dxσ +Bρi dx
ρ ∧ J i +

1

2
bij J

i ∧ J j (2.129)

where JAa = eAµ ∂aX
µ = g−1dg (as in section 2.2) is the Maurer-Cartan form on the non-

Abelian symmetry group G. The procedure for the non-Abelian T-duality now carries through
analoguous to the Abelian case in section 2.8.1:

• We start again by writing the action for the sigma model on the above target space
(following eq.(2.111) ), and promote the isometry group on which we want to perform the
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T-duality to a local gauge symmetry by replacing the derivatives with gauge covariant
derivatives J ia = ∂aθ

i → Daθ
i = ∂aθ

i + Aia. Note this now requires the introdution of a
non-Abelian gauge field Aa = Aiaτi, with τi the generators of G.

• Following eq.(2.112) we add a Lagrange multiplier term to the action, that forces AAa to
be pure gauge and have vanishing field strength. Since Aia is non-Abelian the Lagrange
multiplier now has to be of the form Tr[θ̄iF jab] where the Lagrange multipier field θ̄i also
has an index on the algebra of G. The equation of motion for θ̄i will then be F iµν = 0,

or equivalently DaJ
i
b = ∂aJ

i
b − [J ja , Jkb ] = 0. After partial integration we can rewrite the

Lagrange multiplier term to read

Tr[θ̄iF jab] = Tr
[
θ̄i∂aA

j
b − θ̄

j∂bA
i
a− θ̄k[Aia, A

j
b]
]

= Tr
[
∂bθ̄

jAia− ∂aθ̄iA
j
b −A

j
afA

k
b

]
, (2.130)

where f = f k
ij θ̄k.

We can now write the partition function as

Z =

∫
DXρDAiaDθ̄i e−iS[Xρ,Va,θ̄], with

S =
1

2πα′

∫
Σ
d2z Tr Aia (ηij + f)Ajb + 2

(
γabGθρ∂aX

ρ + εabBθρ∂aX
ρ − εabij θ̃i∂a

)
Ajb+

+ γabGρσ∂aX
ρ∂bX

σ +Bρσ∂aX
ρ∂bX

σ + α′ΦR (2.131)

Where we fixed the gauge Aia = J ia, and ηij and f k
ij are respectively the Killing form and

structure constants on G. If we define the matrix

Mij = ηij + f k
ij θk (2.132)

and integrate out Aia, we obtain a new sigma model on a target space Ḡµν , B̄µν , Φ̄. This then
gives us a generalisation of the Buscher rules for the non-Abelian case.

D̄µν =

(
Dµν −DµiM

−1
ij Djν −DµiM

−1
ij

M−1
ij Djν M−1

ij

)
(2.133)

Φ̄ = Φ− 1

2
ln(detM)

where as before Dµν = Gµν + Bµν and we absorbed the factor (detM)−
1
2 that appears when

integrating out Aia into a change of the dilaton.
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2.9.1 Example: NATD on SU(2)

As an example we will here illustrate the NATD procedure on a superspace that is described
by a bosonic metric for S3 ∼= SU(2), together with a dilaton Φ0 and RR-flux F3 = f volΩ3.

The metric and vielbeins will in that case be those described in section 2.2. The matrix Mij

can be constructed from the Killing form ηij and the structure constants fkijθk on the group.
In the case of SU(2) these are given by

ηij = δij , and f k
ij θk = ε k

ij θk. (2.134)

Note the θi here indicate the different (bosonic) Lagrange multiplier fields (and should not be
confused with fermionic variables). The above expressions then give us

Mij = δij + f k
ij θk =

 1 θ3 −θ2

−θ3 1 θ1

θ2 −θ1 1

 (2.135)

from where we find the inverse matrix

M−1
ij =


(θ1)2+1
ρ2+1

θ1θ2−θ3
ρ2+1

θ1θ3+θ2
ρ2+1

θ1θ2+θ3
ρ2+1

(θ2)2+1
ρ2+1

θ2θ3−θ1
ρ2+1

θ1θ3−θ2
ρ2+1

θ2θ3+θ1
ρ2+1

(θ3)2+1
ρ2+1

 (2.136)

where ρ2 = (θ1)2 + (θ2)2 + (θ3)2. By separating the symmetric and anti-symmetric components
in the above matrix we find the metric and B2-field on the dual target space, which are

ds2 =
θiθj + δij

1 + ρ2
dθidθj (2.137)

B2 =
εijkθi
1 + ρ2

dθj ∧ dθk (2.138)

It is more convenient to choose a different set of coordinates to describe this dual space. We
choose θ1 = ρ sinχ cos ξ, θ2 = ρ sinχ sin ξ, θ3 = ρ cosχ, with ρ > 0. In terms of which the dual
metric and B-field read

ds2 = dρ2 +
ρ2

1 + ρ2
dΩ2

2 (2.139)

B2 =
ρ3

1 + ρ2
dΩ2 (2.140)

The dilaton on the new space is given by

eΦ =
eΦ0√
1 + ρ2

(2.141)
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As an example of how the RR-fluxes transform under NATD, we will show this here in detail.
As an example we consider an F3 flux on the original space, of the form

F3 = f volΩ3 = F3 = f e1 ∧ e2 ∧ e3, (2.142)

To form the fermion bispinor we first replace the wedged frame fields ea ∧ eb . . . by the corre-
sponding anti-symmetrised gamma matrices Γab....

/F = f Γ123 (2.143)

The Ω-matrix for the NATD on SU(2) is given by [84]

Ω =
Γ11√
1 + ρ2

(
Γ123 + θiΓi

)
(2.144)

Under the NATD the RR-flux then transforms - as we explained in section 2.8.2 - as

eΦ/F = eΦ0/F0Ω−1 (2.145)

=
eΦ0 f√
1 + ρ2

(
1 + εijkθiΓjk

)
Using that eΦ = eΦ0(1 + ρ2)−

1
2 , this then gives us for the fermion bispinor on the dual space

/̄F = f
(

1 + εijkθiΓjk
)
. (2.146)

To find the final expressions for the RR-fluxes on the dual targetspace we use that in the
coordinates (ρ, χ, ξ) that we defined earlier θ1 e2 ∧ e3 + θ2 e3 ∧ e1 + θ3 e1 ∧ e2 = ρ eχ ∧ eξ.
Together with the fact that eχ∧ eξ = ρ2

1+ρ2 dΩ2 this then gives us for the RR-fluxes on the dual
space

F0 = f, F2 = f
ρ3

1 + ρ2
vol Ω2 (2.147)

2.10 T-duality at the Quantum Level

The Abelian T-duality between the full partition functions in eqs.(2.113) and (2.115) holds at
the quantum level. To see this in more detail, we will here examine that the partition function
following from the action with the Lagrange multiplier in eq.(2.112) is indeed equivalent, after
integrating out the gauge field Aa, to the partition function for the original action in eq.(2.111).

As we have seen in section 2.8.1, the equations of motion for θ̄ imply that Aa is a flat
connection. Integrating out Aa therefore causes the Lagrange multiplier term to vanish

SLM =
1

2πα′

∫
Σ
dz2 θ̄εab∂aAb (2.148)
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However, there can be non-trivial windings (or holonomies) of the gauge field around dif-
ferent directions on the worldsheet. For a worldsheet of genus g there are 2g such non-trivial
holonomies. When we integrate out Aa we also have to integrate over all of these configurations
with non-trivial holonomies.

In order to do this, we first decompose the field Aa as Aa = A0
a + Ãa, where A

(0)
a contains

fluctuations of A0 with trivial holonomies, and Ãa containing the configurations with different
non-trivial windings. Using this decomposition the Lagrange multiplier term can be written as

SLM =
1

2π

∫
Σ
dz2 θ̄(∂aA

0
b − ∂bA0

a) +
1

2π

g∑
i=1

(
nai

∮
bi

Ãb − nbi
∮
ai

Ãa

)
(2.149)

where the nai =
∮
ai
dθ̄ are the winding numbers around the different cycles on the worldsheet.

Integrating out A0
a can be done as before, but when we integrate out Ãa, the winding sector

will give a contribution to the partition function of the form

g∑
i

e
1

2π

(
nai

∮
bi
Ãa−nbi

∮
ai
Ãb

)
=

g∑
m,n=1

δ

(
m− nai

2π

∮
bi

Ãb

)
δ

(
n− nbi

2π

∮
ai

Ãb

)
. (2.150)

If θ̄ has a periodicity of 2π the winding numbers nai and nbi will be 2π times an integer number,
and the above summation simply becomes a sum over identity elements of U(1). We then find
that adding the Lagrange multiplier does not change the partition function, and the Abelian
T-duality holds even at the quantum level for the worldsheet theory.

For the non-Abelian T-duality this equivalence no longer holds at the quantum level. This
can be seen by going over the above arguments, and considering a Lagrange multiplier term
for a non-Abelian gauge field Aia as we have in eq.(2.130).

SLM =
1

2πα′

∫
Σ
dz2 θ̄εab∂aAbTr[θ̄iF jab].

We can again split Aia = A
(0)i
a + Ãia and integrate out A

(0)i
a . The contributions of the non-

trivial holonomies of Ãia around the different cycles of the string worldsheet will now involve
(path-ordered) holonomies of the non-Abelan gauge field. These cannot be integrated out as
nicely as in the Abelian case. It is therefore believed that the non-Abelian T-duality is not a
‘true’ equivalence between the different partition functions for the string on the backgrounds
obtained before and after a NATD [51, 53].

It is however a classical equivalence between the different sigma models. It maps us from one
(conformal) sigma model to another, and as a result the target space obtained after a NATD
will still be a supergravity solution. Since Non-Abelian T-duality breaks the symmetries on
which on performs the duality, it can be used as a ‘solution generating technique’. Starting from
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II. INTEGRABILITY AND SUPERSTRING THEORY

a very symmetric solution one can perform a NATD, break various symmetries, and obtain less
symmetric supergravity solutions. Because (non-)Abelian T-dualities preserve integrability,
this has the additional benefit that if we start from a background on which the superstring is
integrable, this will still be the case on the resulting less symmetric dual background. We will
illustrate the power of NATD as a solution generating technique in more detail in chapter 7
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III. ADS/CFT AND INTEGRABILITY FOR HALF-SUPERSYMMETRIC SCFTS

Chapter 3

AdS/CFT and Integrability for
Half-Supersymmetric SCFTs

3.1 Introduction

In this chapter we will first introduce branes in string theory and supergravity, in section 3.2.
We will then explain how they are related to the AdS/CFT correspondence in section 3.3.
The AdS/CFT corresondence relates the states of a conformal field theory (CFT) to strings
propagating on an Anti-de Sitter (AdS) spacetime. In the original (and now most famous
and well studied) example [3] this concernes the relation between strings on AdS5×S5 - a
supergravity solution that arises as the near horizon geometry of a stack of N D3-branes -
and a four-dimensional superconformal field theory (SCFT) known as N = 4 supersymmetric
Yang-Mills (SYM) theory. We will briefly sketch how the ideas of integrability apply to the
AdS/CFT correspondence in section 3.4.

In section 3.5 we will then introduce more complicated Dp-Dp+2-NS5 brane set-ups. The
near-horizon geometries of these brane configurations are thought to be half-supersymmetric
AdSp+1 supergravity solutions, that we will here introduce for different dimensions p = 6, 5, 4, 3
in section 3.6. Following the AdS/CFT correspondence, these spaces will then be dual to
half-supersymmetric p-dimensional SCFTs with bifundamental hypermultiplets, and a quiver
structure for the colour and flavour groups. We give a review of this for different dimensions, and
explain what is known regarding the integrability of strings on these supergravity backgrounds.

In the following chapters of this thesis we will focus in more detail on the D6-D8-NS5 set-ups
that allow us to study 6d N = (1, 0) SCFTs.
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3.2 D-Branes in String Theory

In the previous chapter we have only concerned ourselves with the dynamics of closed strings. In
addition one can consider open strings, the endpoints of which are located on higher dimensional
planes called Dp-branes (that have a p + 1 dimensional worldvolume, consisting of p spatial
directions and one time direction) [64]. These Dp-branes turn out to be sources of the RR-fluxes
[63] that we introduced earlier in the context of superspaces in section 2.5.

These Dp-branes are allowed to fluctuate, but their fluctuations have to be such that the
worldsheet of the open string ending on them remains conformal. One can show that this
condition implies the fluctuations of these branes then have to be described by the Dirac-Born-
Infeld action [66, 67]

Sbrane = SDBI + SWZ + Sfermions. (3.1)

where

SDBI = −Tp
∫
Mp+1

dp+1σ e−Φ
√
−det(gab −Fab) (3.2)

SWZ = Tp

∫
Mp+1

C ∧ e−F (3.3)

Here Fab = Bab − α′

2πFab, with Fab the field strength of an additional Born-Infeld U(1) gauge
field that lives on the worldvolume of the brane, while Φ, gab and Bab are the pullbacks of these
fields to the worldvolume of the brane. This DBI part of the action describes the ‘kinetic’ part
of the brane, and how it couples to these fields in the NS-NS sector. Its dynamics are such that
the brane (just like the string) wants to minimise its surface area, while taking into account
the background fields that it couples to.

Analogous to the strings, the Dp-branes have a tension of their own that is related to the
string tension Ts = (2πα′)−1. We can combine the factors of Tp and e−Φ = g−1

s into a D-brane
tension (mass per unit surface or volume area) that we now see is inversely proprtional to the
string coupling gs [52]

Tp =
Tp
eΦ

= (2π)
1
2

(1−p)T
1
2

(p+1)
s

gs
∼ g−1

s . (3.4)

Since the tension of the Dp-branes is inversely proportional to the string coupling gs, in the
semi-classical limit of the string where both gs → 0 and α′ → 0, the D-branes are very heavy
non-perturbative objects with only small fluctuations. As we turn on the string coupling gs,
the tension of the Dp-branes goes down and their fluctuations become increasingly wilder.

The SWZ term in the action of eq.(3.1) describes the coupling of the brane to the R-R fields.
Here C =

∑p
r=0Cr is a sum over all R-R gauge potentials Fp+1 = dCp. The wedge product

with the exponential of F can be expanded as series of wedge products, so that this term (in
the absence of a Born-Infeld field) is of the form

C ∧ e−F = Cp − Cp−2 ∧B2 +
1

2
Cp−4 ∧B2 ∧B2 −

1

6
Cp−6 ∧B2 ∧B2 ∧B2 + . . . .
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III. ADS/CFT AND INTEGRABILITY FOR HALF-SUPERSYMMETRIC SCFTS

3.2.1 Worldvolume Theories of D-Branes

We will now examine what the fluctuations of a D-brane look like in the α′ → 0 limit. We
do this by expanding the DBI action for the D-brane on a flat background (setting all of the
sources, except the U(1) field Fab on the worldsheet to zero) in powers of α′ and find an effective
action of the form

Seff =
1

g2
YM

∫
dp+1x

1

4
FabF

ab + ∂aX
µ∂aXµ + fermions. (3.5)

This action is equivalent to a p+ 1-dimensional supersymmetric Yang-Mills theory, where the
Yang-Mills coupling is now given by

g2
YM =

(2π)p−2gs

α′
1
2

(3−p)
. (3.6)

In this worldvolume theory, one can interpret the scalar fields Xµ as describing the transverse
fluctuations of the brane. The points where strings end on the brane look like particles that
are charged under the Born-Infeld field Fab on the brane’s worldvolume.

We can now generalise this to a stack of N parallel coincident Dp-branes. Strings can now
have one of their endpoints on one of these N different branes in the stack, and their other
endpoint on another brane, giving N2 possibilities. Since the endpoints of the string are as-
sociated with particles in the worldvolume theory, we now have N2 different particles. We
can organise these different scalars (Xµ)ij and fermions into an N ×N matrix that now both
transform under in the adjoint representation of U(N). Similarly the Fab gauge field becomes
a non-Abelian U(N) gauge field [65].

This gauge group U(N) = SU(N) × U(1) splits into a U(1) that decouples and describes
the degrees of freedom for the center of mass of the brane stack (and is often ignored in the
literature). The remaining SU(N) gauge group describes the fluctuations of the different branes
around the center of mass.1 Since the scalar fields Xµ are now non-Abelian, the DBI action for
a stack of coincident Dp-branes will also contain additional terms involving their commutators.

As before we can expand in α′, which will now give an effective action that is a non-Abelian
supersymmetric Yang-Mills theory

Seff =
1

g2
YM

∫
dp+1x Tr

[
1

4
FabF

ab +DaXµDaXµ +O([X,X]) + fermions

]
(3.7)

where DaXµ = ∂aX
µ − [Aa, X

µ].

1For this reason we will often be talking about a D3-brane with an SU(N) gauge group.

45



3.2.2 P-Branes in Supergravity

The D-branes we have discussed so far also show up as solutions of the supergravity equations
that we introduced in section 3.5.2. Since the branes are incredibly heavy in the gs → 0 limit,
they will look like p-dimensional generalisations of black hole like solutions that are also called
(black) p-branes. Just like a black hole can be electromagnetically charged, these p-branes can
be charged under the antisymmetric (Ramond-Ramond) form Fp+1 = dCp that we introduced
earlier in section 2.5.

In the string frame the metric, dilaton and RR-flux for these extremal p-brane solutions is
given by

ds2
p = H

− 1
2

p (r)ηµνdx
µ
‖dx

ν
‖ +H

1
2
p (r)

(
dr2 + r2dΩ2

8−p
)
,

eΦ = H
− 1

4
(p−3)

p , (3.8)

Fp+1 = dCp + ?dCp, Cp = −1

2

(
H−1
p (r)− 1

)
e0 ∧ e1 ∧ . . . ∧ ep,

where Hp(r) is a harmonic form

Hp(r) =

(
1 +

2cpQp
r7−p

)
. (3.9)

with cp a constant and Qp the charge of the brane.

It was in a seminal paper that Polchinski [63] showed the D-branes on which open strings
can end are indeed identical to these p-brane solutions in supergravity.

Similar to normal black hole solutions, near-extremal p-brane supergravity solutions have an
horizon and emit Hawking radiation. In terms of string theory, this Hawking radiation can now
be understood as open strings ending on the brane, that can split off to form a closed string
that can move away from the brane.

3.3 The AdS/CFT Correspondence

The AdS/CFT correspondence follows from examining the process of open strings that can
split off from the D-brane in more detail. This relation was originally proposed by Maldacena
in [3], subsequently developed in [69, 70], and reviewed in [71], where the authors illustrated
this in detail for a stack N coinciding D3-branes.

The worldvolume theory for a stack of N coinciding D3-branes is given by a DBI action
and WZ-term as we explained in section 3.2. In order to understand the process by which
open strings can split off from the brane, we have to consider the full DBI and WZ actions
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Sbrane = SDBI + SWZ for the stack of D3-branes, the action Sbulk for the closed strings that
move on and backreact with the spacetime surrounding the D3-branes, together with additional
interactions between these two systems.

S = Sbrane + Sbulk + Sinteractions. (3.10)

We will now consider this in the α′ → 0 limit. The worldvolume theory on the stack of D3-
branes reduces in this case to 4d supersymetric Yang-Mills theory, with N = 4 supersymmetry
and an SU(N) gauge group (see section 3.2.1). The action for the open strings far away from
the braens reduces in the α′ → 0 limit to the supergravity equations of motion (see section 2.7)
on the flat bulk-spacetime. The interaction term between the open and closed strings consists
in this limit of the leading order terms from the DBI action that couple the fluctuations of the
brane to the background fields. It turns out that this interaction term vanishes in the α′ → 0
limit so that the action for the resulting system reduces to two decoupled systems [65]

S = SSYM + Sfree open strings. (3.11)

3.3.1 Open Strings on AdS5×S5

Let us now consider the same system from the supergravity point of view. In section 3.2.2 we
have seen that the spacetime around a brane is curved, and is given by the p-brane supergravity
solutions of eq.(3.8). Around a stack of D3-branes this geometry is of the form

ds2 =

(
1 +

L4

r4

)− 1
2

ηµνdx
µdxν +

(
1 +

L4

r4

) 1
2 (
dr2 + r2dΩ2

5

)
, (3.12)

with L4 = 4πgsNα
′2. The dilaton (or string coupling) is a constant eΦ = gs for this geometry

surrounding the D3-brane. In addition there will be an F5 RR-flux that we will omit for the
moment.

We see that in the α′ → 0 limit, the action describing the worldvolume of the brane
backreating on the surrounding spacetime, splits into a part that describes the low energy
fluctuations of the brane, and a part that describes open strings far away from the branes
that no longer interact with it. We can now consider these two different regimes also in terms
of open strings moving on this supergravity background. Far away from the D3-branes, for
r � L we see that (1 + L4

r4 ) ∼ 1 and the geometry looks like flat spacetime. The open strings
propagating here have enough energy to climb out of the gravitational well surrounding the
D3-branes, and will no longer interact with it. This is identical to the system described by
Sfree open string in eq.(3.11).

The low energy strings will not be able to get out of this gravitational well, and will remain
trapped at r � L. Here the geometry is curved and (1 + L4

r4 ) ∼ L4

r4 . This limit is also known
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as the near-horizon limit or the throat of the geometry. Since the open strings inside the near-
horizon will not be able to leave we find again two decoupled systems from the supergravity
point of view:

S = Snear−horizon + Sfree open strings. (3.13)

Open strings that move in the near-horizon limit of the spacetime and open strings far away
from the brane that only see a flat target space.

If we now compare this with eq.(3.11) we can identify both of the low energy systems
in these two different points of view. The low energy fluctuations of the brane described
by the supersymmetric Yang-Mills action SSYM should somehow also describe open strings
moving on the near-horizon geometry of the branes. This is the essence behind the AdS/CFT
correspondence; that the SYM theory describing the fluctuations of the D3-branes has to
be equivalent to closed strings moving on the near-horizon geometry of p-brane supergravity
solution

SSYM = Snear−horizon. (3.14)

To study the near horizon geometry in more detail we first define a new radial coordinate
u = L2/r

ds2 =

(
1 +

L4

u4

)− 1
2 L2

u2
ηµνdx

µdxν +

(
1 +

L4

u4

) 1
2

L2

(
du2

u2
+ r2dΩ2

5

)
. (3.15)

The r → 0 limit now corresponds to u→∞. In this limit the geometry looks like

ds2 =
L2

u2
(du2 + ηµνdx

µdxν) + L2dΩ2
5, (3.16)

which is the Poincaré patch of AdS5×S5, where L2 is the radius of both the AdS5 and S5

spaces. If we consider the Polyakov action of eq.(2.14) on this geometry, the string tension now
combines with the radius L to an overall prefactor of

TsL
2 =

L2

4πα′
=

√
gsN

4π
=

√
λ

4π
, (3.17)

where we introduced λ = gsN . When we now take the α′ → 0 limit, the ratio L2/α′ = λ stays
fixed. We can trust this supergravity description for the open strings as long as α′ � L.

The near horizon AdS5×S5 geometry of a stack of D3-branes thus correspond to the vacuum
of N = 4 worldvolume theory on the branes, while supergravity excitations of this geometry
corresponding to excitations of the SYM theory.
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3.3.2 N = 4 Super Yang-Mills

Let us now examine in more detail SSYM for the open strings that end on the stack of D3-
branes. We have seen in section 3.2.1 that the fluctuations of the branes are described in the
α′ → 0 limit by a supersymmetric Yang Mills theory.

For a stack of D3-branes this worldvolume theory will be N = 4 super-Yang-Mills (SYM).
The fields of this theory are six scalars Φi, a gauge field Aµ with a corresponding field strength
Fµν , and fermions Ψa

α, Ψ̄α̇a that fill the N = 4 supersymmetry multiplet. The bosonic part of
the Lagrangian for this theory is of the form

SSYM =
1

2g2
YM

∫
d4xTr

−1

2
FµνF

µν +DµΦiDµΦi −
∑
i<j

[Φi,Φj ]
2.

 (3.18)

This theory theory is maximally supersymmetric, and has an SU(2, 2|4) superconformal sym-
metry group, with conformal subgroup SU(2, 2) ∼= SO(2, 4) and an R-symmetry subgroup
SU(4) ∼= SO(6). Note that the SU(2, 2|4) symmetry group is exactly equal to the isometry
group of the AdS5×S5 supergravity background with the F5 RR-flux. The AdS5 geometry
captures the conformal symmetries of N = 4 SYM, while the internal space S5 captures its
R-symmetry.

Furthermore, N = 4 SYM is conformal at the classical leverl, but is also believed to be
conformal to all loop-orders, and therefore does not have any massive particle-like excitations.
N = 4 SYM is therefore completely characterised by the rank of its SU(N) gauge group N ,
and its Yang-Mills coupling gYM . We see from eq.(3.6) that this Yang-Mills coupling on the
worldvolume action of the D3-branes is related to the string coupling by

g2
YM = 4πgs. (3.19)

In the previous section we saw that the near-horizon limit of the p-brane geometry was
obtained by taking for α→ 0, keeping λ = gsN fixed. For N = 4 SYM this limit corresponds
to the large N limit, where we take N →∞, keeping the ’t Hooft coupling λ = g2

YMN fixed.

In this limit the theory simplifies considerably, as only the planar diagrams will survive.
The non-planar diagrams will be suppressed with a power Nχ, where χ is the genus of the
diagram seen as a surface [68]. The large N limit is in this sense reminiscent of a string theory,
with a string coupling proportional to N−1.

3.3.3 The AdS/CFT Correspondence

Maldacena made the relation between the large-N limit of gauge theories and string theory
more precise, by showing that the large-N limit of N = 4 SYM indeed corresponds exactly to
Type IIB superstring theory on AdS5×S5. The two parameters of N = 4 SYM (gYM and N)
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Figure 3.1: The diagram on the left is planar and has the topology of a sphere, while the
diagram on the right is non-planar and has the topology of a torus. Image adapted from [149].

are now related to the parameters of the string theory (α′ and gs) as

g2
YM = 4πgs, λ = L4/α′2 (3.20)

where λ is the ’t Hooft coupling we introduced earlier, gs is the string coupling, and L2/α′ =
L2/`2 is the radius of the AdS5 and S5 geometries in units of string length.

The limit where we can solve the string theory is when gs is small, and the radius L of the
AdS5× S5 spacetime is large compared to the string length α′/L2 → 0. We now see that this
solvable limit of strings on AdS5×S5 corresponds exactly to the large N limit of N = 4 SYM
at large ’t Hooft coupling λ→∞.

This is a very powerfull statement, as even though the large N limit simplifies the gauge
theory, it is still very difficult to perform calculations when the ’t Hooft coupling deviates from
zero. We now see that when the ’t Hooft coupling goes all the way to infinity we can do these
calculations in terms of supergravity excitations of the AdS5×S5 geometry.

3.4 Integrability and AdS/CFT

In sections 2.1 and 2.1.1 we briefly introduced the concept of integrability for (two-dimensional)
field theories. Here we will briefly explain how integrable structures show up in the large-N
limit of N = 4 SYM.
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In N = 4 SYM we can compose gauge invariant single trace operators by taking the trace
of gauge covariant fields, all evaluated at the same point in spacetime

O(x) = Tr
[
Φi(x) Φj(x) Fµν(x) Φa

α(x) . . .
]
. (3.21)

When we consider the correlator of such a single trace operator with its adjoint 〈OŌ〉, we find
again that only the planar diagrams will contribute in the large N limit. Note that though the
theory simplifies tremendously in the large N limit, we still have to include loop corrections to
the different correlators once we turn on the ’t Hooft coupling λ 6= 0.

Figure 3.2: Different diagrams contributing to the correlators of single trace operators. The
horizontal lines represent the single trace operators, and the vertical lines contractions of the
different operators. The examples (a) and (b) are planar diagrams while (c) is not, and thus
does not contribute in the large-N limit. The diagrams (d) and (e) are examples of planar
diagrams that contribute at one-loop order. Images adapted from [5].

In a CFT all of the two and three-point correlators we can construct from these single trace
operators are further constrained by the conformal symmetries of the theory.

〈O∆1(x1)O∆2(x2)〉 = C12

x
∆1+∆2
12

,

〈O∆1(x1)O∆2(x2)O∆3(x3)〉 = C123

x
∆1+∆2−∆3
12 x

∆2+∆3−∆1
23 x

∆1+∆3−∆2
13

, (3.22)

where xij = |xi − xj |, and the ∆i = ∆
(0)
i + γ is the scaling dimension (the eigenvalue of

the operator O∆ under the dilaton operator), with ∆(0) the classical scaling dimension of the
operator, and γ the quantum corrections (also called the anomalous dimension). The Cij...n
are constants that depend on the gauge coupling gYM , rank of the gauge group N , and the
scaling dimension of the different operators, and could be set to one by choosing a convenient
normalisation for the O. All higher order correlation functions of a CFT can be expressed in
terms of these two- and three-point correlators using the operator product expansion.

For very small values of the ’t Hooft coupling λ ≈ 0 we simply have that ∆ = ∆0, but
we would like to find exact expressions for the anomalous dimensions γ of the different oper-
ators as a function of the ’t Hooft coupling. It turns out that these anomalous dimensions of
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single trace operators can be obtained exactly, by identifying the single trace operators with
spin chains [5]. At the n-th loop order this involves a spin chain where the sites interact with
their n-th nearest neighbour. All of these spin chains turn out to be integrable, providing
strong evidence for the integrability of the large-N limit of N = 4 SYM to all orders in pertur-
bation theory for all values of the ’t Hooft coupling. See also [9, 6] and [10] for extensive reviews.

The integrable structure in the large N limit of N = 4 SYM in terms of spin chains (for
arbitrary values of λ) translates on the string theory side to the integrable dynamics of free
strings (for gs = 0) on AdS5×S5 for arbitrary values of the AdS radius L. The integrability
of the string worldsheet allows us to solve the dynamics of the string exactly. The energy
spectrum of these free strings can be matched exactly to the spectrum of scaling dimensions of
N = 4 SYM for all values of the ’t Hooft coupling.

This has allowed for great progress in studying the lagre N behaviour of various SCFTs,
and their dual AdS geometries. See for example the case of AdS4×CP3, dual to a 3d N = 6
supersymmetric Chern-Simons theory known as the ABJM model [11, 12].

In this thesis we are primarily interested in finding examples of new supergravity back-
grounds on which strings are integrable, as this would imply the integrability of their dual
SCFTs. Finding backgrounds on which the superstring is integrable becomes increasingly
more difficult when these spaces (and their dual SCFTs) have fewer (super)symmetries. In the
next sections we will introduce classes of half-supersymmetric AdS backgrounds and their dual
SCFTs in various dimensions and their relation with integrability.

3.5 Half-Supersymmetric Worldvolume Theories

The example of AdS/CFT that we considered in the previous sections focussed on a maximally
supersymmetric CFT in four dimensions. A lot of progress has been made over recent years
in the study of half-supersymmetric D-dimensional quiver field theories, by studying the low
energy fluctuations of Hanany-Witten brane set-ups [113] containing NS5-branes with stacks
containing various numbers of Dp-branes suspended between them. The literature on this
topic is vast, and it is difficult to do it justice in this short introduction. We will present these
constructions for various values of p in more detail in section 3.6, with references [74]-[105].
The different stacks of Dp-branes result in an overall gauge group

G = SU(N1)× SU(N2)× . . .× SU(Nn−1)× SU(Nn). (3.23)

Each of the n Dp-branes gives rise to a vector multiplet, transforming under the adjoint rep-
resentation of the corresponding SU(Ni) gauge group, describing the fluctuations of the Dp-
brane stacks. In addition, there will be n hyper multiplets, that transform as singlets under
the SU(Ni), and encode the fluctuations in the distance between the different NS5-branes.
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Figure 3.3: Example of a Hanany-Witten D6-D8-NS5 set-up, (a) brane set-up with strings going
between the branes, cindicated by red arrows, giving rise to hypermultiplets. (b) The different
number of gauge and flavour groups with their bifundamental fields can be summarised in a
quiver diagram. (c) The corresponding rank function.

The quiver structure in these set-ups comes from strings going between the different D-
branes, and give rise to n − 1 bifundamental hypermultiplets Ψ that transform under the
fundamental representation of one of the SU(Ni) gauge groups, while their adjoint Ψ̄ transforms
under the anti-fundamental representation of a consecutive gauge group SU(Ni±1).

Flavours can be introduced by adding additional Dp+2-branes that do not extend between
the NS5-branes, but extend on three additional directions perpendicular to the NS5-branes. As
these Dp+2-branes are larger and heavier, their dynamics will freeze out. At low energies strings
extending from one of the Dp-branes to these heavier Dp+2-branes will introduce additional
flavour indices on the hypermultiplets. To keep track of all these different hypermultiplets one
can summarise the colour and flavour groups in a quiver diagram, as is shown for an example
in figure 3.3b.
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3.5.1 Consistency Condition at the Conformal Fixed Point

At the conformal fixed point the worldvolume theories are expected to be holographically dual
to an AdSp+1 supergravity solution [3]. In the remainder of this section we will first focus in
particular on the cases where p = 4, 6.2

For these 4d and 6d SCFTs the ranks of the different gauge and flavour groups (Nn and Fn
respectively) cannot be arbitrary at the conformal fixed point,3 but have to be related to each
other such that

Fn = 2Nn −Nn+1 −Nn−1 (3.24)

= (Nn −Nn−1)− (Nn+1 −Nn).

This means the flavour groups act as the second derivative of the colour groups along the
quiver. As a result, the colour groups and flavour groups of the quiver are fixed in terms of
one another at the conformal fixed point.

It is expected that these AdSp+1 backgrounds arise as the near horizon limit of the brane set-
up when the distances between the different NS5-branes go to zero. The AdS geometry carries
the information of the NS5 and Dp-branes in the fluxes on the background. One can include
the Dp+2 flavour branes in the AdS geometry by letting them backreact on the near-horizon
‘colour’ geometry [34]. The backreaction of these flavour branes will deform the supergravity
geometry, which will now satisfy the equations of motion following from the action

SType II +

∫
dz δ9−(p+2)(~x− ~xDp+2)SBIWZ (3.25)

where SType II is the normal Type II supergravity action of eqs.(2.105) and (2.106), and SBIWZ

is the Born-Infeld action for the Dp+2-flavour branes, amended with the appropriate Wess-
Zumino term, as we introduced in section 3.2. Since these flavour branes are localised, the
Born-Infeld action has to be multiplied by a delta function. The BIWZ action is of the form

SBIWZ = −Tp
∫
dp+3σe−Φ

√
−det(gab −Fab) + Tp

∫
C ∧ e−F (3.26)

with Fab, Φ, gab and Bab the pullbacks of the supergravity fields induced by the background
of the colour branes. The coupling to the RR-fields of the colour background is given by the
WZ-part of the action.

2For p = 3, 5 the consistency condition of eq.(3.24) at the conformally fixed point is different. Because of
this, care has to be taken for these cases as some of the results mentioned here and used throughout this thesis
are no longer valid. We will comment on this in more detail in later sections.

3For p = 4 the condition of eq.(3.24) will be equivalent to the vanishing of the beta-function. For p = 6 this
condition (3.24) ensures the vanishing of gauge anomalies in the 6d SCFT.
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The additional BIWZ term in the action (3.25) modifies the equations of motion. In par-
ticular, the Bianchi identities for the RR-fluxes that couple to the flavour brane will now be of
the form

dF8−(p+2) = Nf δ
9−(p+2)(~x− ~xDp+2). (3.27)

Since the Dp+2-flavour branes will act as sources for the F8−(p+2)-flux, everywhere in the ge-
ometry the Bianchi identities dF8−(p+2) = 0 will be satisfied, except at the points where these
flavour-branes are located.

If we demand that the consistency condition (3.24) is satisfied, we only need the ranks of
the gauge groups to define a particular quiver (for p = 4, 6), the required flavour groups then
follow from the consistency condition. Since the colour ranks contain all the information of
the brane set-up, we expect the dual AdS geometry, including the backreaction of the flavour
branes, to be completely determined by this rank function.

Ri = (N1, N2, . . . , Nn−1, Nn) (3.28)

This is indeed the case for the AdS7 backgrounds that we will introduce in more detail in
section 3.6.1, and the AdS5 backgrounds in section 3.6.2. Given a particular rank function -
that should now be thought of as a piece-wise continuous linear function R(z) ∈ C(0) (see figure
3.3c) - the dual geometries are completely determined.

We will see that in all these half-BPS backgrounds the coefficients in the metric, NS- and
RR-fluxes are given in terms of the derivatives of one or multiple functions Fi(Σ2), that have
to satisfy a particular differential equation for the geometry to satisfy the BPS equations.
The rank function of the quiver is then related to the boundary condition for this differential
equation. We discuss these classes of half-BPS AdSp+1 backgrouds in more detail in section
3.6.

3.5.2 Supergravity Limit

One way of obtaining a SCFTs for which the supergravity description is valid, is by considering
very long quivers with large numbers for the colour and flavour groups. Here we will describe
the conventional approach of obtaining long quivers, by ‘scaling’ an initial shorter quiver to
one for which the supergravity description is valid.

Scaling a Finite Quiver

For the supergravity description to be a valid approximation of the dual SCFT the string cou-
pling everywhere needs to be weak so we do not have to lift the ten-dimensional background
to M-theory, furthermore the curvature needs to be small so we do not have to include stringy
corrections of higher curvature terms in the effective supergravity action.
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In both the AdS5 backgrounds of eq.(3.35) and AdS7 backgrounds of eq.(4.6), we can scale
the rank functions R(z) → NR(z) and obtain a different supergravity solution. This scaling
cancels out in the metric, but multiplies the RR-fluxes with the same prefactor N , while the
string coupling scales as N−1. This scaling thus increases the number of Dp colour and Dp+2-
flavour branes, while simultaneously decreasing the string coupling g2

s , keeping the number of
NS5-branes fixed. By starting with a finite quiver this way and taking N → ∞ we can take
g2
s → 0, while keeping g2

sN , as well as the overall shape of the quiver diagram fixed, see figure
3.4.

e2φ → 1

N
e2φ, Fp → NFp, Fp+2 → NFp+2. (3.29)

This limit decreases the closed string loop corrections (as we send g2
s → 0). Note that since

the flavours and colours are related to one another by the consistency condition (3.24) this
particular scaling multiplies the ranks of both the colour and flavour groups by N , while
keeping their ratio fixed.4

1N

2N

1 2 3 4 5
z

R(z)

(a)

N 2N

N

2N 2N

2N

(b)

Figure 3.4: The quiver and rank function of figure 3.3, now rescaled with R(z)→ NR(z).

We can alternatively scale the z-direction in the AdS5 and AdS7 solutions of eqs.(3.35) and
(4.6). If we combine this with the R(z)→ NR(z) scaling, we can increases the number of NS5-
and Dp-colour branes in the corresponding set-up, while keeping the number of flavours-branes
fixed, see figure 3.5. In addition to the string coupling getting suppressed, the internal direction
on the space now grows, which reduces the curvature.

By combining these two scalings one can start from a finite quiver - like the one in figure
3.3 - and repeatedly scale it to large N and large number of NS5-branes, to obtain a very long
quiver for which the supergravity description is valid. The resulting final quiver has only a
few localised flavour groups Fn, for which we are in the Veneziano limit where Fn → ∞ and
Nn →∞, with Fn/Nn kept fixed.

4This in combination with λ = g2
YMN → ∞ corresponds to taking the Veneziano limit, where the flavours

Fn → ∞ and Fn/Nn is kept fixed (here Nn and Fn indicate the rank of the n-th colour and flavour group
respectively).
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Figure 3.5: The quiver and rank function of figure 3.3, now with the combined scaling R(z)→
NR(z) and z → ωz. Note the flavour groups are the same as those in figure 3.4.

3.6 Half-BPS AdSp+1 Geometries

We will list the different dimensional half-BPS Dp-Dp+2-NS5-brane systems and their holo-
graphic duals that have been extensively studied in the literature. In all of the resulting
AdSp+1 geometries, there is one direction z on the internal space. All of the warp factors in
these AdS geometries are completely determined by one or more functions F(z, . . .) that always
depends on z (and possibly on an additional direction of the internal space), and geometrically
encode the quiver structure of the corresponding brane set-up. In order to satisfy the BPS
equations, these functions F have to satisfy a differential equation, where the rank function
R(z) is related to the boundary conditions of F . For general p, the resulting geometries are of
the form shown in table 3.1.

p AdSp+1

6
(
AdS7 × S2

)
×w Σ

5
(
AdS6 × S2

)
×w Σ2

4
(
AdS5 × S2 × S1

)
×w Σ2

3
(
AdS4 × S2 × S2

)
×w Σ2

Table 3.1: Near horizon AdSp+1 geometries for the different 1
2BPSDp-Dp+2-NS5-brane systems.

The situation we have described so far in previous sections applies directly to the cases p = 6
and p = 4. For these AdS7 and AdS5 geometries, R(z) is directly related to (the boundary
values of) the derivatives of the functions F . We show explicitly in both cases how one can
define the supergravity solutions corresponding to continuous rank functions.
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The cases p = 3 and p = 5 are a bit different. The quiver structure of the dual field the-
ories for these AdS4 and AdS6 geometries is encoded in the poles of the functions F at the
boundary of Σ2. This makes it not directly obvious how we could define the analogue of a
continuous rank function for those cases. In addition, the consistency condition of eq.(3.24)
that related the ranks of the flavour groups to the second derivative of colour rank function is
no longer valid in these cases.

3.6.1 Half-BPS AdS7 Geometries

D6-D8-NS5 brane set-ups give rise to 6d N = (1, 0) supersymmetric QFTs [113]. For conformal
field theories the symmetry group of the worldvolume theory is enhanced to OSp(2, 6|2). These
SCFTs are expected to have a Massive Type IIA dual description [75, 74, 76] in terms of a
geometry of the form (

AdS7 × S2
)
×w Rz, (3.30)

where the metric and field content are given by

ds2 =
√

2π
(
− α

α′′

)1/2
[
8 ds2

AdS7
+
α′′α

∆
dΩ2

2 +
α′′

α
dz2

]
,

B2 = π

(
αα′

∆
− z
)
dΩ2, eφ = 34

(
(2π2)5 (−α/α′′)3

∆2

)1/4

, (3.31)

F2 =

(
α′′

162π2
+
πF0αα

′

∆

)
dΩ2, F0 = F0(z).

Here ∆ = α′2− 2αα′′, and we defined dΩ2
2 = dχ+ sinχ2dξ and dΩ2 = sinχ dχ∧ dξ. The entire

geometry is determined by the function α(z), which has to vanish at the end of the z-interval,
and satisfy the differential equation

α′′′(z) = −162π3F0. (3.32)

This function α(z) only depends on the z-direction, and is directly related to the rank function
of the corresponding brane set-up as

R(z) =
−1

81π2
α′′(z). (3.33)

When there is a finite number of flavour branes, F0 is constant and discontinuous, and the
corresponding function α(z) ∈ C(2) is a piece-wise continuous third order polynomial in z. We
will review these AdS7 solutions and their dual SCFTs in more detail in the next sections as
well as the following chapters.
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3.6.2 Half-BPS AdS5 Geometries

D4-D6-NS5 brane set-ups give rise to 4d N = 2 supersymmetric QFTs, like e.g. Seiberg-Witten
theory [77] and Gaiotto theories [78], that can also be obtained from the reduction of a single
M5-brane wrapping a punctured Riemann surface. At the conformal fixed point, the symmetry
group is enhanced to SU(2, 2|2) and these set-ups are thought to have a near-horizon geometry
[79] of the form (

AdS5 × S2 × S1
)
×w Σ2, (3.34)

with Σ2(z, σ) a two-dimensional Riemann surface. The NS-NS and RR-RR sectors are given
by

ds2 =

(
2V̇ − V̈
V ′′

)1/2 [
4 ds2

AdS5
+

2V ′′V̇

∆
dΩ2

2 +
2V ′′

V̇
(dσ2 + dz2) +

4V ′′σ2

2V̇ − V̈
dβ2

]
,

B2 = 2

(
V̇ V̇ ′

∆
− z

)
dΩ2, eφ =

(
4

(2V̇ − V̈ )3

V ′′V̇ 2∆2

)1/4

. (3.35)

A1 = 2
2V̇ V̇ ′

2V̇ − V̈
dβ, C3 = −4

V̇ 2V ′′

∆
dβ ∧ dΩ2.

Note the entire geometry here is determined by the function V (z, σ) and its derivatives. Here
∆ = (2V̇ − V̈ )V ′′ + (V̇ ′)2, and the dots and primes indicate the derivatives V̇ = σ∂σV , and
V ′ = ∂zV . The potential V (z, σ) has to satisfy the Laplace equation

V̈ + σ2V ′′ = 0, (3.36)

supplemented by the boundary conditions

σ∂σV
∣∣∣
σ=0

= λ(z), V
∣∣∣
σ→∞

= 0. (3.37)

These boundary conditions are now directly related to the rank function of the quiver structure
in the corresponding brane set-up as

λ(z) = R(z), (3.38)

and has to vanish at the beginning and end of the z-interval. See [80, 81, 135] for reviews.
For a piece-wise continuous rank function, the solution for V (z, σ) can be constructed as a
superposition of Maldacena-Núñez solutions.

VMN =
1

2

√
σ2 + (N + z)2 − 1

2
(N + z) sinh−1

(
N + z

σ

)
(3.39)

−1

2

√
σ2 + (N − z)2 +

1

2
(N − z) sinh−1

(
N − z
σ

)
.

59



for which

V̇MN =
1

2

√
σ2 + (N + z)2 − 1

2

√
σ2 + (N − z)2. (3.40)

so that they correspond to the a rank function

λMN (z) =
1

2
|N + z| − 1

2
|N − z| =

{
z if 0 ≤ z ≤ 1

N if z ≥ 1
(3.41)

One can thus construct the function V (z, σ) for a piece-wise linear rank function R(z) ∈ C(2)

as a sum of these Maldacena-Núñez solutions.

3.6.3 Notes on a class of Quarter-BPS AdS3 Geometries

Let us briefly point out that the same logic also applies to the recently constructed class of
quarter-BPS AdS3 geometries [104, 105]. These backgrounds are thought to be the near horizon
limit of D2-D4-D6-D8-NS5 brane set-ups [103], which give rise to two-dimensional N = (0, 4)
QFTs. These theories have two sets of linear quivers, with colour groups Nn, Ñn and flavour
groups Fn, F̃n, coupled by matter fields. The colours and flavours of these two quivers cannot
be independent of each other, but have to be chosen so that the gauge anomalies cancel. The
condition for this is

F̃n = 2Nn −Nn+1 −Nn−1, Fn = 2Ñn − Ñn+1 − Ñn−1. (3.42)

Note this is analogous to the consistency condition in eq.(3.24), and our methods of defining
infinite quivers in section 6.5.1 therefore apply to this case as well.

The supergravity solution is of the form

(AdS3 × S2 × CY2)×w R. (3.43)

Here we will just give the expression for the metric. In addition this background contain a
dilaton, B2-field and RR F0, F2, and F4-flux.

ds2 =
u√
ĥ4h8

(
ds2
AdS3

+
ĥ4h8

4ĥ4h8 + (u′)2
dΩ2

2

)
+

√
ĥ4

h8
ds2
CY2

+

√
ĥ4h8

u
dz2

As in the other cases, the background is completely determined in terms of the functions u(z),
ĥ4(z) and h8(z), that have to be at most linear in z,

u′′ = 0, h′′8 = 0, ĥ′′4 = 0. (3.44)

The functions ĥ4(z) and h8(z) are directly related to the rank functions of these two quivers
as

ĥ4(z) = R(z), h8(z) = R̃(z). (3.45)
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3.6.4 Half-BPS AdS4 Geometries

For the AdSp+1 duals of the Dp-Dp+2-NS5 brane set-ups the situation for p = 3 and p = 5
is different from p = 4 and p = 6 that we have discussed in this chapter so far. The quiver
structure of the dual field theories is for these AdS4 and AdS6 geometries encoded in the poles
of the functions F at the boundary of Σ2. In addition, the consistency condition of eq.(3.24)
that related the ranks of the flavour groups to the second derivative of colour rank function is
no longer valid in these cases.

D3-D5-NS5 brane set-ups give rise to 3d N = 4 supersymmetric, mirror symmetric gauge
theories known as T ρρ̂ (SU(N))-theories, introduced in [85]. These theories are characterised by
two partitions ρ and ρ̂ of an integer N , that one can relate to a corresponding linear quiver
diagram as,

ρ = {`(1), . . . `(1)︸ ︷︷ ︸
N

(1)
D5

, . . . , `(n), . . . `(n)︸ ︷︷ ︸
N

(n)
D5

, . . . , `(p), . . . `(p)︸ ︷︷ ︸
N

(p)
D5

}, (3.46)

ρ̂ = {ˆ̀(1), . . . ˆ̀(1)︸ ︷︷ ︸
N

(1)
NS5

, . . . , ˆ̀(n), . . . ˆ̀(n)︸ ︷︷ ︸
N

(n)
NS5

, . . . , ˆ̀(p), . . . ˆ̀(p)︸ ︷︷ ︸
N

(p)
NS5

}. (3.47)

These theories have an IR conformal fixed point when

Fn > 2Nn −Nn+1 −Nn−1. (3.48)

This now implies the values of the flavour groups have to be larger than the second derivative
of the rank function.

At the conformal fixed point the symmetry group is enhanced to OSp(2, 2|4), and the sys-
tem is thought to have a Type IIB dual description in terms of(

AdS4 × S2 × S2
)
×w Σ2, (3.49)

where Σ2 has the topology of a disk. When we parametrise Σ2 in terms of a complex coordinate
z, the geometry is given by [86, 87]

ds2 = 2

(
N1N2

W 2

)1/4 [
ds2
AdS4

+
h2

1W

N1
ds2

Ω2
1

+
h2

2W

N2
ds2

Ω2
2

+
2W

h1h1
dzdz̄

]
(3.50)

Here we omitted the expressions for the dilaton, B2-field, and F3 and F5 flux as we will not
perform any calculations on this geometry. See also [88, 89] for extensive reviews.

The geometry is completely specified in terms of two harmonic functions h1(z, z̄) and
h2(z, z̄), and their derivatives, with W = ∂∂̄(h1h2), N1 = 2h1h2|∂h1|2 − h2

1W and N2 =
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2h1h2|∂h2|2−h2
2W . These functions only depend on Σ2, that in these coordinates corresponds

to a strip of the upper-half complex plane

Σ = {z ∈ C | 0 ≤ Im z ≤ π

2
},

with the two sphere vanishing at Im z = 0, π2 . The solutions for h1 and h2 can be written as a
sum over harmonic functions of the form

h1 =

[
−iα1 sinh(z − β1)− γ1 ln tanh

(
iπ

4
− z − δ1

2

)]
+ c.c.

h2 =

[
α2 cosh(z − β2)− γ2 ln tanh

(
z − δ2

2

)]
+ c.c.

with the (αi, βi, γi, δi) real parameters. The quiver structure of the field theory is now encoded
in the poles on the upper and lower boundary of Σ2 of these functions, with the residues of the
poles of h1 and h2 giving respectively the NS5 and D5 fluxes.

3.6.5 Half-BPS AdS6 Geometries

The discussion we will present here for the AdS6 geometries follows the lines of the previous
section on AdS4 geometries. The D5-D7-NS5 brane set-ups are a bit more complicated. Charge
conservation does not allow D5-brane’s to end on an NS5-brane, and at the intersection point,
the branes will instead attract each other and merge to form a (p,q) 5-brane, which allows the
formation of so-called (p,q)-5-brane webs [95, 94].

We can still consider a particular brane-web that arises from a linear quiver diagram, but
the condition for these theories to have a conformal fixed point will now be [96, 97]

Fn ≤ 2Nn + 4. (3.51)

This implies the values of the flavour groups are no longer related to the second derivative of
the rank function.

These set-ups give rise to 5d N = 1 supersymmetric QFTs. At the conformal fixed point
the symmetry group is enhanced to F (4) (the unique superconformal group in 5 dimensions).
It is thought these SCFTs have a dual description in terms of a Type IIB geometry of the form(

AdS6 × S2
)
×w Σ2 (3.52)

Where Σ2 has the topology of a disk. We can again choose coordinates where Σ2 is parame-
terised by a complex coordinate z. These Type IIB backgrounds with an F (4) isometry group
were given in [98, 99, 100].

ds2 = f2
6 ds

2
AdS6

+ f2
2 dΩ2

2 + ds2
Σ (3.53)
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Here we largely omit the details of these backgrounds as their expressions are rather complex.
See [102] for a short review. These AdS6 backgrounds have an NS-NS sector with dilaton and
B2-flux, the RR-RR sector consists of an F3 and F5-flux.

As before, all functions of the geometry are completely determined in terms of two locally
holomorphic functions A± that only depend on the complex coordinate z. Analogous to the
earlier discussed AdS4 backgrounds, the quiver structure will be encoded in terms of the poles
of these functions A± on Σ2. The charges of the (p, q) 5-branes will correspond to the residues
of these poles, while the D7-branes are related to punctures of Σ2.

3.7 Integrability in 1
2 BPS Supergravity Solutions

Of these different classes of half-BPS supergravity solutions the first that was realised was the
Gaiotto-Maldacena classification of AdS5 solution [79]. In [190] it was shown that the non-
Abelian T-dual of the AdS5×S5 solution (where a NATD is performed on one of the SU(2)
isometries inside the SO(6) isometry group) is a specific solution in this class of AdS5 geome-
tries, known as the Sfetsos-Thompson solution. We briefly consider this Sfetsos-Thompson
background in more detail in section 7.0.2.

The superstring on AdS5×S5 ∼= SU(2, 2|4)/(SO(1, 4)×SO(5)) is well known to be integrable
[6, 9] (as is the dual N = 4 SYM theory in the large-N limit [7]). Since we have seen in section
2.8.3 that (non-)Abelian T-duality preserves the integrable structure of the string worldsheet,
we know the dynamics of the superstring on the Sfetsos-Thompson background (as well as its
dual 4d N = 2 SCFT in the large-N limit) has to be integrable as well.

The field theory that is dual to the Sfetsos-Thompson background was further studied in
[197], where it was shown how the Sfetsos-Thompson background has a potential V (z, σ) (see
eq.(3.35)) that corresponds to an infinitely long linear quiver

VNATD(z, σ) = z

(
log σ − σ2

2

)
+
z3

3
, λ(z) = z. (3.54)

This means the ranks of the gauge groups increase linearly, and are of the form U(1)×SU(2)×
SU(3)×SU(4)×SU(5)× . . .. Since this quiver does not end, the central charge of the dual field
theory would be infinite, and hence it is not clear whether the Sfetsos-Thompson background
is dual to a well defined quantum field theory. In [197] this is examined further by ‘completing’
the quiver with the addition of a flavour group, so that its length becomes finite and quiver
terminates with the flavour group.

Similarly the Abelian T-dual of AdS5×S5 corresponds to a flat quiver where the end points
have to be identified (making it circular).

VATD(z, σ) = log σ − σ2

2
+ z2, λ(z) = 1. (3.55)
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(a) (b)

Figure 3.6: The quivers of the AdS5 Gaiotto-Maldacena geometries that correspond to the
non-Abelian T-dual (left, infnitely long linear quiver) and (Abelian) T-dual (flat quiver where
the beginning and end can be identified), of AdS5×S5.

Similar to the non-Abelian T-dual we then find that the warp factor in eq.(3.35) vanishes for
this background, as the potential satisfies 4V̇ − V̈ = V ′′. The dynamics of the string on the
AdS5 space thus decouples from its motion on the internal space and it can be shown that
the dynamics of classical strings on this background looks integrable. This is to be expected
as this background is the Abelian T-dual of AdS5×S5. Unlike the infinite linear quiver, the
corresponding SCFT now does have a finite central charge [197]. A more extensive study into
the integrability of all the other AdS5 backgrounds in the Gaiotto-Maldacena classification was
later undertaken in [140], and [147], where the authors concluded from various analytical and
numerical methods that indeed the Sfetsos-Thompson background and the circular quiver are
is integrable, whereas all other backgrounds that contain flavour groups show signs of non-
integrable dynamics for the string worldsheet.

We will conclude this chapter by summarising the known results for integrability in the other
classes of half-BPS supergravity backgrounds with an AdSp+1 factor. Our results are sum-
marised in figure 3.7.

Similarly in the AdS4 case, the infinite linear quiver background can be obtained from a
non-Abelian T-duality on a Type IIA background that is a reduction of the AdS4×S7 M-theory
background [198]. By writing S7 = Rθ ×w S3

1 ×w S3
2 as two three-spheres fibred over a angle θ,

and reducing along the Hopf direction on one of these three-spheres S3
2 we obtain

ds2
10 = cos

θ

2

[
ds2
AdS4

+

(
dθ2 + 4 sin2 θ

2
ds2
S3

1
+ cos2 θ

2
ds2
S2

)]
. (3.56)

This particular reduction breaks 16 of the 32 supersymmetries of the original AdS4×S7 back-
ground and leaves us with an OSp(2, 2|4) isometry group.5 To our knowledge it is not known
whether the string worldsheet is still integrable on the remaining background, though the warp
factors seem to suggest it might not be possible to use a coset construction to obtain this target
space it would be very interesting to study this in further detail.

By performing a NATD on the S3
1 we do not break any further supersymmetries, as the

5Note this is a different reduction of AdS7×S4 than the AdS4 × CP3 ∼= OSp(2, 2|6)/(SO(1, 3)× U(3)) back-
ground that preserves 24 supersymmetries and is known to be integrable [cite]
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Killing spinors of this background are independent of S3
1. The resulting background fits in the

ABEG classification of half-BPS AdS4 backgrounds, and is dual to an infinitely long linear
quiver (not identical but) in a sense similar to the Sfetsos-Thompson background [198].

Similarly, the Abelian T-dual along the Hopf direction on the S3 results in a solution with
a circular quiver, which has been extensively studied in [191]. It would be very interesting to
study the integrability of the string worldsheet on these backgrounds in further detail.

Similarly, one can start from the the warped AdS6×wS4 Brandhuber-Oz solution [193] that
arises as the near-horizon solution of D4-branes at an O8-plane with D8-flavour branes.

ds2
10 =

1

4
cos−

1
3 θ
(
9ds2

AdS6
+ 4ds2

S4

)
, (3.57)

where ds2
S4 = dθ2 + sin2 θ ds2

S3 , and θ ∈ [0, π2 ], with an additional dilaton Φ, Romans mass F0

and F4-flux. This background has an F (4) isometry group, but again the warpfactor makes
it doubtful whether the entire background could be realised as a coset construction and if the
string worldsheet could be integrable on this background.

By performing an Abelian T-duality along the Hopf direction of the S3 a solution is obtained
that arises as the near horizon geometry of smeared D5, NS5’s and D7/O7 branes [194, 195].
This background has an F (4) isometry group and fits in the DGU classification of half-BPS
AdS6 solutions. Since we would expect the original background to be non-integrable, we would
then expect this background to also be non-integrable.

By performing a NATD on an SU(2) subgroup of the SO(4) isometry group of this back-
ground,6 another supergravity background is obtained that is suggestive of a linear quiver with
gauge groups of increasing rank [194, 195]. Again we would not expect strings on the resulting
target space to be integrable as we would also not expect them to be on the original geometry
before we performed the non-Abelian T-duality.

We have summarise these results in figure 3.7. Because the half-BPS classes of AdS4 and
AdS6 geoemtries are written in more complicated terms than the AdS5 geometries (where the
entire background is determined by a single function V (z̄, σ)) there has not yet been a study
for the (non)-integrable dynamics of classical strings on all of the AdS solutions in these clas-
sifications. It would still be very interesting to do so. Perhaps, as one learns more about these
classes of half-BPS supergravity backgrouns, it might be possible perform such a study on the
string worldsheet in a more convenient set of variables for these backgrounds. In chapter 5
we will perform such a detailed study for the dynamics of the string worldsheet on all of the
half-BPS geometries with an AdS7 factor in the Tomasiello-Cremonesi classification.

6there is no SO(5) isometry group as the AdS6 space is warped along one of the angles on the S4.
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Figure 3.7: The different classes of half-BPS AdSp+1 solutions with corresponding quiver struc-
ture that can be obtained by performing a (non)-Abelian T-duality on other known solutions.
The solutions are written in different colours depending on whether they are known to be
integrable (green), thought to be non-integrable (yellow), and strongly suspected to be non-
integrable (red).
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Chapter 4

AdS7 duals of 6d N = (1, 0) SCFTs

In this chapter we will give a detailed introduction to the 6d N = (1, 0) SCFT’s and their
holographic AdS7 description [75, 74, 76] that we briefly introduced earlier in section 3.6.1. We
will give a detailed overview of the field content for these theories, and their relation to the
D6-D8-NS5 systems briefly discussed earlier in section 3.6.

Our contributions in this chapter are of a reviewing nature and based on the first part
of [136], where we showed how one can easily read off the quiver structure of the dual field
theory from the internal space of the geometry, using the coordinates introduced in [160]. We
illustrate this here with a wide range of examples.

We will use these AdS7 backgrounds in the following chapter to study the (non)-integrability
of strings on these backgrounds, allowing us to make statements on the (non)-integrability of
the dual 6d N = (1, 0) SCFTs.

4.1 6d N = (1, 0) SCFTs

Let us first point out that in dimension higher than four, most terms we can write in action
become strongly coupled and non-renormalisable at higher energies (similar to QED in 4 di-
mensions). The Wilsonian logic, according to which we start from a conformal (not necessarily
weakly coupled) field theory in the UV and deform it by inserting relevant operators into the
Lagrangian, flowing to interesting field theories at low energies, does not apply here.

As an example, let us first consider a simple interacting field theory in six dimensions with
action,

S =

∫
d6x

[
−1

2
(∂µφ)2 − V (φ)

]
.

Here φ is a real scalar field with mass dimension [φ] = m2. The potential can be a mass term

V = m2

2 φ
2 (or more interestingly a classically marginal interaction term, like V = gφ3, but this

would lead to a system without ground state). A potential like V = λφ4 has a well-defined
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vacuum, but the interaction is irrelevant, hence the theory is not well defined without a UV
completion. The same reasoning applies to all of the higher interaction terms we could write
down, suggesting that the only renormalisable theory for a scalar field in six dimensions can
be at most a non-interacting massive scalar field.

Nevertheless, different string theoretic constructions have suggested that supersymmetric
field theories of scalars coupled to gauge fields have an interacting UV fixed point. In terms of
a Lagrangian description such theories would be of the form

L ∼ −1

2
(∂µφ)2 − c φF 2

µν + fermions. (4.1)

Since the scalar φ takes the role of the inverse coupling of the gauge theory, we are dealing
with the strong coupling limit of a gauge field theory when 〈φ〉 → 0. The presence of fermions
in the supersymmetric theory implies the possible existence of gauge anomalies that need to
be cancelled. This cancellation is possible if the scalar φ belongs to a tensor multiplet [154],
[164] (see below for a description of the relevant multiplets) and a certain tuning between the
amount of adjoint and fundamental matter must be imposed.

This picture was realised in brane constructions. The relevant Hanany-Witten set-ups [155]
were presented in [113]. The associated field theories preserve eight Poincare supercharges, have
SO(1, 5) Lorentz and SU(2) R-symmetries. In more detail, the field theories with N = (1, 0)
SUSY are constructed in terms of the following multiplets:

• Tensor multiplets with field content (Bµν , λ1, λ2, φ). A two form with self-dual curvature
H3 = dB2, two fermions and a real scalar.

• Vector multiplets with field content (Aµ, λ̂1, λ̂2), a six-dimensional vector and two fermions.

• Hypermultiplets with field content (ϕ1, ϕ2, ψ1, ψ2), two scalars and two fermions.

• Linear multiplets with field content (~π, c, ξ̃) an SU(2) triplet and a singlet, together with
a fermion.

To reproduce the Lorentz and R-symmetry mentioned above, the authors of [113] distributed
D6, NS5, and D8 branes according to Table 4.1. The resulting field theories have a ‘tensor
branch’ when the scalar φ gets a non-zero VEV. In this case, the SU(2)R symmetry is preserved.
When the scalars inside the hyper or the linear multiplet get VEVs, we are instead in the Higgs
branch, where the R-symmetry is broken. In what follows we will be concerned with the tensor
branch only:

When the NS5-branes are separated, the system is in the tensor branch (where the difference
between the scalars in the different tensor multiplets 〈φi−φi−1〉 is non-zero). The bosonic part
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of the action for the resulting 6d QFTs will be of the form [131]

Sbosvec+ten =

∫ [
1

2
dφ ∧ ?dφ+

1

2
H ∧ ?H

]
+
√
c

∫
[−φTr(F ∧ ?F ) +B ∧ Tr(F ∧ F )] + SSC (4.2)

where SCS is a Chern-Simons term, and

H = dB +
√
cTr

(
A ∧ dA− 2

3
A ∧A ∧A

)
(4.3)

The group under which the 3-form field strength H transforms will (when the NS5-branes are
seperated) be broken to an Abelian gauge group U(1)n when we have n NS5-branes. We have
to impose the self duality of the H3 field strength by hand. The equation of motion for the H3

field will then be of the form

dH = d ? H =
√
cTr(F ∧ F ) (4.4)

which implies the field configurations with non-zero Tr(F ∧F ) - the instanton strings - will be
the sources for the H3 field.

t x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 • • • • • • · · · ·
D6 • • • • • • • · · ·
D8 • • • • • • · • • •

Table 4.1: The generic brane set-ups. All the branes are extended on the Minkowski R1,5

directions. The D6-branes also extend over x6 where they have finite size extension between
NS5-branes. The D8-branes also extend along the x7, x8 and x9 directions, preserving the
SO(3)R symmetry.
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There are some key differences with the Dp-Dp+1-NS5 Hanany-Witten set-ups in lower
dimensions.

• The dimension of the field theory on the NS5-branes is the same as that on the D6-
branes that are confined between the NS5-branes. The non-decoupling of the five-branes
dynamics adds the dynamical tensor multiplets to the field theories. These are absent in
lower dimensional set-ups.

• The bending of the NS5-branes due to other p-branes ending on them leads to a Laplace
equation in 6 − p dimensions. In this case, where p = 6, there is no-bending. The field
content is always such that anomalies are cancelled, namely

ND6,R +ND6,L +ND8 = 2ND6,c, (4.5)

being ND6,R/L the number of sixbranes to the right/left of a given stack with ND6,c

branes.

• The worldvolume theory of the NS5-branes contains charged defects that can be identified
with the instantonic strings charged under the self-dual H3 in eq.(4.4).

• When the system is in the tensor branch the instantonic strings are massive and the field
theory can be described by an anomaly-free quiver.

4.1.1 Non-Lagrangian Conformal Fixed Point

The action in eq.(4.3) is for the tensor branch - when the NS5-branes are separated - and
does not describe a conformal field theory. The theory is proposed [154] to flow to a strongly
coupled six dimensional SCFT with (1, 0) SUSY when we go to the origin of the tensor branch
〈φi − φi−1〉 → 0. These are the theories that we will study the remainder of this thesis. There
are several peculiarities that make it not possible to write a conventional Lagrangian description
for these theories:

• Note that in the second term of eq.(4.3) φ shows up as the inverse Yang-Mills coupling
constant for the vector field Aµ in the vector multiplet. When 〈φi〉 → 0 the Yang-
Mills field becomes infinitely strongly coupled, and the corresponding terms in the action
become singular. This makes it seemingly impossible to treat the conformal fixed point
perturbatively.

• As the distances between the NS5-branes, corresponding to 〈φi − φi−1〉, go to zero, the
gauge group of the tensor field Bµν is enhanced from U(1)n to SU(N). It is at present
unclear how to write a field strength for a 2-form gauge field with a non-Abelian gauge
group. This problem can be seen intuitively by considering, analoguous to the non-
Abelian field strength for a 1-form gauge field, an ansatz like Hµνρ = ∂[µBνρ]+[Bµν , Bρσ].
The number of Lorentz indices now does not match among the different terms.
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• It is unclear how to obtain the self-dual Hµνρ field strength from a Lagrangian. This
self-duality would have to be imposed by hand, as we did for the action in the tensor
branch.

• The instanton strings become tensionless at the conformal fixed point. This will then
cause the vacuum of the theory to consist of wild fluctuations of strongly coupled ten-
sionless instanton strings. This is in line with the first observation, that we would not
expect there to be a vacuum around which we can perform an expansion.

These points seem to suggest that these theories cannot be approximated in terms of quantum
fluctuations on top of a classical Lagrangian description. The theory at the conformal fixed
point is inherently strongly coupled, causing all quantum fluctuations to be equally relevant.

In this sense these 6d N = (1, 0) theories thus differ from e.g. N = 4 SYM, as the latter is
conformal for any value of the coupling constant. The former however always have a coupling
constant for the vector multiplet that is infinite at the conformal fixed point.

4.2 Holographic AdS7 Description

We will now discuss in more detail the the holographic description of the 6d SCFTs (earlier
mentioned in section 3.6) that appear when we move to the origin of the tensor branch. This
description was developed in a set of papers, most notably [75]-[74]. We adopt the notation of
[74].

The six dimensional SCFTs have an OSp(2, 6|2) symmetry group, with SO(2, 6)×SU(2)R
bosonic symmetries, see for example [130]. These symmetries are realised as the isometries of
a Massive Type IIA background of the form,

ds2 = f1(z)ds2
AdS7

+ f2(z)dz2 + f3(z) dΩ2
2(χ, ξ),

B2 = f4(z)VolΩ2 , F2 = f5(z)VolΩ2 , eφ = f6(z), F0 = F0(z), (4.6)

where we have defined dΩ2
2(χ, ξ) = dχ2 + sin2 χ dξ2 and VolΩ2 = sinχ dχ ∧ dξ.

If we impose that N = (1, 0) SUSY is preserved by the background, we need the functions
fi(z) to satisfy some first order nonlinear BPS equations. These BPS equations are solved if
the functions fi(z) in eq.(4.6) are all defined in terms of a function α(z) and its derivatives—see
[124]-[74] for the details,

f1(z) = 8
√

2π

√
− α

α′′
, f2(z) =

√
2π

√
−α
′′

α
, f3(z) =

√
2π

√
−α
′′

α

(
α2

α′2 − 2αα′′

)
,

f4(z) = π

(
−z +

αα′

α′2 − 2αα′′

)
, f5(z) =

(
α′′

162π2
+

πF0αα
′

α′2 − 2αα′′

)
, (4.7)

f6(z) = 2
5
4π

5
2 34 (−α/α′′)

3
4√

α′2 − 2αα′′
.
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Where α(z) has to satisfy the differential equation

α′′′ = −162π3F0. (4.8)

The function α(z) must be piece-wise continuous, this implies that F0 can be piece-wise constant
and discontinuous. The points where F0 is discontinuous are the points where the flavour branes
are located. These flavour branes backreact on the geometry as we explained earlier near the
end of section 3.5.

The internal space M3 = (z,Ω2) is a two-sphere fibered over the z-interval. The warp
factor f3(z) must vanish at the beginning and at the end of the z-interval (z = 0 and z = zf
by convention), in such a way that the two-sphere shrinks smoothly at those points.

For a piece-wise constant and possibly discontinuous F0(z), the general solution to eq.(4.8)
in each interval of constant F0 is,

α(z) = a0 + a1z +
a2

2
z2 − 162π3F0

6
z3.

As we observed above, the function α(z) is in general piece-wise continuous and generically a
polynomial solution like the one above should be proposed for each interval [zi, zi+1].

Imposing that the two-sphere shrinks smoothly at z = 0 and z = zf implies that α(0) =
α(zf ) = 0. We shall discuss various explicit solution in detail further in the text. Before that,
let us first find general expressions for the brane-charges associated with the backgrounds in
eq.(4.6).

4.2.1 Page charges

We define the conserved Page charges,

QDp =
1

(2π)7−pgs(α′)
(7−p)

2

∫
F8−p −B2 ∧ F6−p, (4.9)

QNS5 =
1

4π2g2
sα
′

∫
H3. (4.10)

In what follows we set gs = α′ = 1. Calculating explicitly for the NS5-brane charge. Using
that α(0) = α(zf ) = 0 we find,

QNS5 =
1

4π2

∫
z,Ω2

dz ∂zf4 =
1

π

∫ z=zf

z=0
dz ∂zf4 =

f4(zf )− f4(0)

π
= −zf . (4.11)

Up to an orientation-related sign, the size of the z-interval equals the number of fivebranes.
Hence we choose zf to be a positive integer. We shall take QNS5 = zf = N5 in what follows.
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Calculating the charge of D6-branes, we find

QD6 =
1

2π

∫
(χ,ξ)

F2 − F0B2 =

[
α′′ + 162π3F0z

81π2

]
=
α′′ − zα′′′

81π2
. (4.12)

The charge in eq.(4.12) computes the charge of D6-branes but also includes the charge of D6-
brane induced on the D8-branes. To avoid this ‘overcounting’, note that we can perform a large
gauge transformation in any interval [k, k + 1] such that,

B̂2 → B2 + kπ dΩ2. (4.13)

We then find that in the interval [k, k + 1] the Page charge reads,

QD6 =
1

2π

∫
S2

F2 − F0B̂2 =
1

2π
× α′′ − α′′′(z − k)

162π2
× 4π. (4.14)

Using that on the [k, k+ 1] interval the function α′′(z) = −81π2 [Nk + (Nk+1 −Nk)(z − k)], we
find that

ND6 =
1

2π
× α′′ − α′′′(z − k)

162π2
× 4π = −Nk. (4.15)

The sign can be attributed to a choice of orientation for the two-sphere. The expression above
indicates that in the [k, k + 1] interval, there are Nk D6-branes. Notice that the expression
in eq.(4.12) also counts the charge of D6’s induced on the D8’s. We are subtracting these, by
performing the large gauge transformation above.

We thus find that the number of only the D6-branes in the associated Hanany-Witten set-up
is given by,

ND6 = − 1

81π2

∫ zf

0
α′′(z)dz. (4.16)

This can be verified by explicitly performing this integral for a generic function α′′(z), observing
that it counts the sum of the ranks of the gauge groups. On each interval [k, k+ 1] this gives,

− 1

81π2

∫ k+1

k
α′′dz = −

∫ k+1

k
[Nk + (Nk+1 −Nk)(z − k)] dz =

Nk +Nk+1

2
. (4.17)

Summing over all the intervals (using that N0 = NP+1 = 0), gives the total quantity,

ND6 =
P∑
k=0

Nk +Nk+1

2
= N1 +N2 + ....+NP . (4.18)

We also present an expression that calculates the number of D8-branes in any given Hanany-
Witten set-up. Our proposed expression reads,

ND8 =
1

81π2

[
α′′′(0)− α′′′(zf )

]
. (4.19)
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In other words, the jumps in α′′′(z) across any interval counts D8-branes according to eq.(4.8).
Adding these jumps leads to eq.(4.19).

These expressions are analogous to those derived in [135], for the case of Hanany-Witten set-
ups associated with four dimensional N = 2 SCFTs. In Section 4.3 we test the new expressions
in eqs.(4.16),(4.19) on some examples.

4.2.2 Linking numbers

An interesting quantity characterising of Hanany-Witten set-ups are the linking numbers. For
the case at hand, with D6, D8 and NS5-branes these topological invariants (unchanged under
Hanany-Witten moves) are defined for the j-th D8-brane (Lj is the linking number) and the
i-th Neveu-Schwarz fivebrane (Ki being the corresponding linking number) by counting the
number of the other branes to the left and right. More precisely, we have

Lj = N right
D6 −N left

D6 +N left
NS ,

Ki = N right
D6 −N left

D6 −N
right
D8 . (4.20)

They must satisfy a consistency relation

N8∑
j=1

Lj +
N5∑
i=1

Ki = 0. (4.21)

In the Hanany-Witten set-ups that are relevant for the SCFTs we study in this paper, all the
linking numbers for the different Neveu-Schwarz fivebranes are equal. We have found that they
can be holographically calculated by very simple expressions. Our proposal is that for these
CFTs we calculate the linking numbers as,

K1 = K2 = .... = KN5 =
1

81π2
α′′′(zf )→

N5∑
i=1

Ki =
1

81π2
α′′′(zf )zf . (4.22)

Li = zi →
N8∑
j=1

Lj = − 1

81π2
α′′′(zf )zf . (4.23)

These expressions satisfy eq.(4.21) and are analogous to those presented in the case of four di-
mensional CFTs with eight supercharges [135]. In Section 4.3 we test these expressions in a cou-
ple of examples. The reader is invited to apply the expressions of eqs.(4.16),(4.19),(4.22),(4.23)
to the examples of the paper [136].

74



IV. ADS7 DUALS OF 6D N = (1, 0) SCFTS

4.3 Connecting the holographic background with the CFT

We briefly introduced the connection between the quiver SCFT and the AdS geometries (4.6)
earlier in section 3.5. We will now illustrate this in more detail for the 6d case and provide
various examples.

The problem can be organised as follows: first, we consider a non-anomalous quiver with
bifundamental matter, gauge and flavour groups satisfying the relation in eq.(4.5). Then, we
define the rank function R(z), a piecewise continuous linear function such that at z = j (with
j being a positive integer number) the value R(j) = Nj is the rank of the j-th gauge group. It
was shown in [74] that this rank-function must be convex to satisfy the anomaly cancellation
condition in eq.(4.5). The link with the holographic description for the AdS7 case is given by
the identification,

R(z) = − 1

81π2
α′′(z). (4.24)

Finally, after this identification, we need to determine the function α(z) by imposing boundary
conditions and continuity of α and α′.

Working out examples is possibly the clearest way to explain the procedure to the reader
not acquainted with this formalism. We first present full details for a simple example and then
we consider a more generic situation. The interested reader can consult the examples in Section
2.1.1 of the paper [136]. 1

4.3.1 Example 1

Consider the Hanany-Witten set-up, quiver and rank function R(z) in Figures 4.1-4.2b.

In this example, the rank function and the function α′′(z) are given by,

R(z) = − 1

81π2
α′′(z) = N



z 0 ≤ z ≤ 1

(z − 1) + 1 1 ≤ z ≤ 2

(z − 2) + 2 2 ≤ z ≤ 3

3 3 ≤ z ≤ 4

3− 3(z − 4) 4 ≤ z ≤ 5.

1In order for the background to capture faithfully the CFT dynamics one should work with long linear quivers
and with large ranks. In this sense the examples of eqs.(2.6) and (2.8) of [136] are rigorously trustable. Our
examples in this section should be taken as illustrative of the procedure.
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Figure 4.1: The Hanany-Witten set-up for the field theory. The vertical lines denote individual
Neveu-Schwarz branes extended on the (x4, x5) space. The horizontal ones D6-branes, that
extend on x6, in between fivebranes. The crossed-circles represent D8-branes, that extend on
the (x7, x8, x9) directions. All the branes share the Minkowski directions. This realises the
isometries SO(1, 5)× SO(3).

This implies that the generic function α(z) for this example is,

α(z) = −81π2N



a0 + a1z + z3

6 0 ≤ z ≤ 1

b0 + b1(z − 1) + 1
2(z − 1)2 + 1

6(z − 1)3 1 ≤ z ≤ 2

c0 + c1(z − 2) + 2 (z−2)2

2 + 1
6(z − 2)3 2 ≤ z ≤ 3

d0 + d1(z − 3) + 3 (z−3)2

2 3 ≤ z ≤ 4

p0 + p1(z − 4) + 3 (z−4)2

2 − 3 (z−4)3

6 4 ≤ z ≤ 5.

To determine the ten integration constants, we need to impose:

• That α(0) = α(5) = 0. This is to have an internal space that shrinks smoothly at the
beginning and end of the z-interval. These conditions imply

a0 = 0, p0 + p1 +
3

2
− 3

6
= 0

• That the function α(z) is continuous, this implies the equations,

a1 + 1
6 = b0, b0 + b1 +

1

2
+

1

6
= c0,

c0 + c1 + 1 + 1
6 = d0, d0 + d1 +

3

2
= p0.

• That the function α′(z) is continuous. This implies,

a1 +
1

2
= b1, b1 + 1 +

1

2
= c1, c1 + 2 +

1

2
= d1, d1 + 3 = p1.
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Figure 4.2: (a) The quiver corresponding to the Hanany-Witten set-up above. (b) The rank
function R(z) corresponding to the field theory. (c) Illustration of the S2 fibered along the
z-direction with the locations of the flavour branes shown in black. (d) The corresponding
function α(z) and its derivatives. (e) Ricci scalar and dilaton for the corresponding geometry.

Solving these equations we find,

a0 = 0, −5a1 = 19, −30b0 = 109, −10b1 = 33, −15c0 = 94, −5c1 = 9,

−10d0 = 69, 10d1 = 7, −10p0 = 47, 10p1 = 37.

In this way, we have a well defined function α(z).
We can apply our expressions for the number of NS, D6 and D8-branes and linking numbers.

Using eqs.(4.11), (4.16) and (4.19) we find,

NNS5 = zf = 5, ND8 =
1

81π2

[
α′′′(0)− α′′′(zf )

]
= 4N,

ND6 = − 1

81π2

∫ zf

0
α′′(z)dz = 9N. (4.25)

Notice that this coincides with the numbers we count from the Hanany-Witten set-up in Figure
4.1.
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We can also calculate the linking numbers using eqs.(4.22), (4.23). We find,

K1 = K2 = .... = K5 =
1

81π2
α′′′(zf ) = −3N

→
N5∑
i=1

Ki = −15N.

L1 = L2 = .... = LN = 3, L̂1 = .... = L̂3N = 4

→
N8∑
i=1

Li + L̂i = 3N + 4× 3N = 15N.

We have denoted by Li, L̂i the linking numbers of the D8-branes in the first and second stacks.
These numbers are also obtained by simple inspection of the Hanany-Witten diagram. The
relation in eq.(4.21) is satisfied. The entanglement entropy can be calculated straightforwardly
using eq.(6.60).

4.3.2 Example 2

Let us consider the quiver depicted in Figure 4.3, with three gauge groups SU(N)×SU(2N)×
SU(3N) ending with a flavour group SU(4N). Notice that each node satisfies the anomaly
cancellation condition of eq.(4.5).

The function R(z) describing the ranks of this quiver is

R1(z) = N

{
z 0 ≤ z ≤ 3
12− 3z 3 ≤ z ≤ 4,

indicating the presence of gauge groups SU(N) at z = 1, SU(2N) at z = 2 and SU(3N) at
z = 3. In this sense, the z-direction of the supergravity background ‘encodes’ the field theory
information. The slope of the first three nodes is s = N , which translates to a3 = b3 = c3 = N .
Similarly p3 = −3N . The change in slope ∆s = −4N indicates the presence of the SU(4N)
flavour group. On the other hand, in the first interval 0 ≤ z ≤ 1, there is no gauge group,
hence a2 = 0, while the gauge group in the second interval is SU(N), indicating that b2 = 1.
Similarly c2 = 2 and p2 = 3, reflecting the presence of the SU(2N) and SU(3N) gauge groups.
With this, we can write,

α(z) = −81π2N


a1z + 1

6z
3 0 ≤ z ≤ 1

b0 + b1(z − 1) + 1
2(z − 1)2 + 1

6(z − 1)3 1 ≤ z ≤ 2
c0 + c1(z − 2) + 2

2(z − 2)2 + 1
6(z − 2)3 2 ≤ z ≤ 3

p0 + p1(z − 3) + 3
2(z − 3)2 − 1

2(z − 3)3 3 ≤ z ≤ 4.
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Figure 4.3: (a) The quiver encoding the dynamics of our example CFT. (b) The rank function
R(z) corresponding to the field theory. (c) Illustration of the S2 fibered along the z-direction
with the locations of the flavour branes shown in black. (d) The corresponding function α(z)
and its derivatives. (e) Ricci scalar and dilaton for the corresponding geometry.

where the remaining constants are determined by imposing continuity of α, α′ and that α(z =
4) = 0. This gives,

a1 = −5

2
, b1 = −2, c1 = −1

2
, p1 = 2; b0 = −7

3
, c0 = −11

3
, p0 = −3. (4.26)

The function α(z) describing the background in eq.(4.6), dual to the quiver CFT in Figure 4.3
reads

α1(z) = −81π2N


−5

2z + 1
6z

3 0 ≤ z ≤ 1
−7

3 − 2(z − 1) + 1
2(z − 1)2 + 1

6(z − 1)3 1 ≤ z ≤ 2
−11

3 −
1
2(z − 2) + 2

2(z − 2)2 + 1
6(z − 2)3 2 ≤ z ≤ 3

−3 + 2(z − 3) + 3
2(z − 3)2 − 1

2(z − 3)3 3 ≤ z ≤ 4.

We have worked with a quiver with three colour nodes and one flavour node. Strictly speaking,
the supergravity description is valid if the number of colour nodes is taken to be large [74]. Our
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example in eq.(4.27) illustrates the procedure. In order to have a better holographic description
of the CFT, we should work with a quiver with SU(N)×SU(2N)×SU(3N)×SU(4N)× ....×
SU(PN) closed by an SU(PN + N)-flavour group (and taking P to be large). In that case,
we write the function,

− α1(z)

81π2N
=

a1z + 1
6z

3 0 ≤ z ≤ 1

(ka1 + k3

6 )+(a1+ k2

2 )(z − k)+ k
2(z − k)2+ 1

6(z − k)3 k≤z ≤(k + 1),

(Pa1 + P 3

6 ) + (a1 + P 2

2 )(z − P ) + P
2 (z − P )2 − P

6 (z − P )3 P ≤ z ≤ P + 1,

where

k = 1, ....,P −1, −6a1 = P 2 + 2P. (4.27)

The case of a quiver with increasing ranks, not closed by the flavour group, is described
holographically by the function α1(z) = −81π2N(a1z + z3

6 ), being a1 a free parameter.

It is instructive to plot the function −α1(z)
81π2 and its derivatives for the background defined by

eq.(4.27), see Figure 4.3d. We also plot the fields defining the background and the Ricci scalar.
None of these functions are divergent for the α(z) in eq.(4.27). We shall use this background
in a later chapter as an example to study the dynamics of a string configuration that rotates
and winds on it.

4.3.3 Example 3

As a second example, we can work out the function α(z) for the quiver in Figure 4.4a. This
quiver starts with an SU(N)-flavour node followed by three nodes SU(N)-colour, and it is
closed by a final SU(N)-flavour node. The function describing the ranks is,

R2(z) = N


z 0 ≤ z ≤ 1
1 1 ≤ z ≤ 3
4− z 3 ≤ z ≤ 4,

and the function that determines the holographic description α2(z) is,

α2(z) = −81π2N


−3

2z + 1
6z

3 0 ≤ z ≤ 1
−4

3 − (z − 1) + 1
2(z − 1)2 1 ≤ z ≤ 2

−11
6 + 1

2(z − 2)2 2 ≤ z ≤ 3
−4

3 + (z − 3) + 1
2(z − 3)2 − 1

6(z − 3)3 3 ≤ z ≤ 4.

The holographic description of this CFT is valid when the number of nodes is large. We take
the above quiver to be long enough for the illustrative purposes we aim at.
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Figure 4.4: (a) The quiver encoding the dynamics of our this example. (b) The rank function
R(z) corresponding to the field theory. (c) Illustration of the S2 fibered along the z-direction
with the locations of the flavour branes shown in black. (d) The corresponding function α(z)
and its derivatives. (e) Ricci scalar and dilaton for the corresponding geometry.

An Endless Quiver

Finally, we shall consider an endless quiver. The quiver starts with an SU(N)-flavour group and
is continued by an infinite tail of SU(N)-colour groups. As a consequence, the z-coordinate
is unbounded. There is one integration constant that remains undetermined. The function
describing the ranks is

R3(z) = N

{
z 0 ≤ z ≤ 1
1 1 ≤ z ≤ ∞,
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The function α3(z) reads,

− α1(z)

81π2N
=

a1z + 1
6z

3 0 ≤ z ≤ 1
(a1 + 1

6) + (a1 + 1
2)(z − 1) + 1

2(z − 1)2 1 ≤ z ≤ 2
(2a1 + 7

6) + (a1 + 3
2)(z − 2) + 1

2(z − 2)2 2 ≤ z ≤ 3
(3a1 + 19

6 ) + (a1 + 5
2)(z − 3) + 1

2(z − 3)2 3 ≤ z ≤ 4
(4a1 + 37

6 ) + (a1 + 7
2)(z − 4) + 1

2(z − 4)2 4 ≤ z ≤ 5
....

(Pa1 + 3P 2−3P+1
6 ) + (a1 + 2P−1

2 )(z − P ) + 1
2(z − P )2 P ≤ z ≤ P + 1

.....

(4.28)

Ending the quiver with a flavour SU(P + 1) node, reflects in a cap-off of the geometry at
z = P + 1. This is achieved by adding a term −1

6(z − P )3 to the last line and choosing
a1 = −P

2 . This would correspond to the quiver in Figure 4.5.

SU(N) SU(N) SU(N) k SU(N) SU(N) SU(N)

Figure 4.5: The quiver encoding the dynamics of the third example CFT. The long tail of
colour SU(N) ends with a flavour group.

4.3.4 Most generic example

Following the same logic, let us consider the most general quiver field theory. The gauge group
is

SU(N1)× SU(N2)× ....× SU(NP ).

The flavour group, with each element associated with a colour node, is

SU(F1)× SU(F2)× ....× SU(FP ).

The consistency condition for the CFTs is,

2Nk −Nk+1 −Nk−1 = Fk. (4.29)
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We are using that N−1 = NP+1 = 0. The rank function is,

R(z) =


N1z 0 ≤ z ≤ 1

N1 + (N2 −N1)(z − 1) 1 ≤ z ≤ 2
N2 + (N3 −N2)(z − 2) 2 ≤ z ≤ 3
Nk + (Nk+1 −Nk)(z − k) k ≤ z ≤ k + 1, k := 3, ...., P

NP −NP (z − P ) P ≤ z ≤ P + 1.

(4.30)

We can write from here the function α(z). Imposing that α(z = 0) = 0, we find after some
algebra

−α(z)

81π2
= (4.31)

b0z +N1
z3

6 0 ≤ z ≤ 1

ak + bk(z − k) + Nk
2 (z − k)2 +

(Nk+1−Nk)
6 (z − k)3 k ≤ z ≤ (k + 1),

ap + bp(z − P ) + NP
2 (z − P )2 − NP

6 (z − P )3 P ≤ z ≤ P + 1.

To satisfy the conditions of continuity for α(z) and of α′(z) and also imposing α(z = P +1) = 0
leads to the coefficients,

b0 = − 1

(P + 1)

P∑
i=1

(P + 1− i)Ni, (4.32)

ak = kb0 +
Nk

6
+

k∑
i=1

(k − i)Ni, k : 1, ....P,

bk = b0 +
Nk

2
+
k−1∑
i=1

Ni, k := 1, ...., P.

From here we find the number of branes in the associated Hanany-Witten set-up. Using the
expressions proposed earlier, we find

ND6 = − 1

81π2

∫ P+1

0
α′′(z)dz = N1 +N2 + ....+NP , NNS5 = P + 1,

ND8 =
1

81π2

(
α′′′(0)− α′′′(P + 1)

)
= N1 +NP = F1 + F2 + ....+ FP . (4.33)

More interestingly, we can derive a general expression for the central charge of the quiver, using
the expression derived in [136]. In fact, in general we have,

c = − 28

38 × 16×GN

∫ P+1

0
α′′(z)α(z)dz, GN = 8π6. (4.34)
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Evaluating this expression in general gives us

−π
2

2
c =

[
b0N1

3
+
N2

1

30

]
+

[
aPNP

2
+
bPNP

6
+
N2
P

30

]
+ (4.35)

+
1

30

P−1∑
k=1

[
N2
k + 3NkNk+1 +N2

k+1 + 15ak(Nk +Nk+1) + 5bk(Nk + 2Nk+1)
]
.

Two Cases

We can test the expression in eq.(4.35) in two particularly simple cases:
First, in the case in which all the ranks are equal Ni = N . This needs of only two flavour

groups, of rank N at the beginning and at the end of the quiver. In this case, calculating the
expressions in eqs.(4.32), (4.35), we find

b0 = −NP
2
, ak =

N

2
(−kP + k2 − k +

1

3
),

bk =
N

2
(2k − P − 1), k : 1, ...., P. (4.36)

c =
N2P 3

6π2
(1 +

3

P
− 1

P 2
+

1

5P 3
) ∼ N2P 3

6π2
.

This last result makes sense, because the supergravity approximation is good when P → ∞,
that is in the limit of long-linear quivers. In this case, the central charge calculated above
precisely with that derived in [136] (see eq.(2.16) of that paper).

1N

1 2 3 4 5 6 7 8 9 10
z

R(z)

(a)

N

N

N N N N N N N N

N

(b)

Figure 4.6: An example of the rank function (a) and quiver (b) for the first case with all the
ranks equal Ni = N , and two flavour groups, of rank N at the beginning and end of the quiver.
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A second test is to consider the quiver in which the ranks increase as Nk = kN . This only
needs of a flavour group, or rank (P+1) attached to the last node of rank PN . The expressions
in eqs.(4.32), (4.35), read in this case

b0 = −NP
6

(P + 2), ak =
kN

6
(−2P + k2 − P 2),

bk =
N

6
(3k2 − P 2 − 2P ), k : 1, ...., P.

c =
2N2P 5

45π2
(1 +

5

P
+

5

P 2
+

1

P 3
) ∼ 2N2P 5

45π2
. (4.37)

In the limit of long-linear quivers the central charge calculated above precisely with that de-
rived in [136], see eq.(2.15) in that paper.
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N 2N 3N 4N 5N 6N 7N 8N 9N

10N

(b)

Figure 4.7: An example of the rank function (a) and quiver (b) for the second case with all the
ranks linearly increasing as Nk = kN , and a flavour group of rank (P + 1) at the end of the
quiver.

We have then good reasons to believe that the expression in eq.(4.35) is correct.
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Chapter 5

(Non)-Integrabile 6d N = (1, 0)
SCFTs

5.1 Introduction

In chapter 2 we introduced the ideas of classical integrability on the string worldsheet. In
general it is difficult to find a Lax connection and prove the string is integrable on a general
background. Easier is however to show by means of a counterexample that the string cannot
be integrable on a particular target space. This can be done by showing that a subsector of the
string worldsheet is non-integrable. Since the integrability of the string worldsheet guarantees
the integrability of all possible subsectors this then proves, by finding a counterexample, the
total string worldsheet cannot be integrable.

In section 5.2 we obtain the equations of motion for classical string embeddings that wrap
and move around certain directions on the AdS7 geometries we introduced in the previous
chapter.

In section 5.3 we apply Kovacic’s algorithm to these equations of motion, and try to prove
the non-existence of Liouvillian solutions for these equations of motion. As we will explain
in the introduction of this chapter, this would prove the non-integrability of the entire string
worldsheet. Unfortunately this method is rather inconclusive when applied to the equations of
motion we obtain in section 5.2.

To further supplement our analysis, we use numerical indicators of chaos in order to show
the equations of motion on the various AdS7 backgrounds are indeed non-integrable. To this
end we introduce our numerical methods in section 5.4.

In section 5.5 we apply these numerical methods to the various backgrounds we earlier
examined using Kovacic’s algorithm. Our conclusions are as follows:

• We find that the dynamics of strings on all AdS7 backgrounds corresponding to (finite)
quivers with (a finite number of) flavour branes are non-integrable.
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• We suggest that strings on the AdS7 background corresponding to an infinite linear
quiver with rank function R(z) ∼ z might be integrable. When we consider a finite linear
quiver - by adding a single flavour group to the end - we again find clear evidence of
non-integrability.

• For the massless solutions where α(z) = R2−µz, we find the strings can only be integrable
in the limit R→∞, corresponding to an infinite constant quiver. When we consider finite
values for R the geometry has singular points at the end of the z-interval that now cause
the string dynamics to again become non-integrable.

• At last, we consider a somewhat unusual solution, where α(z) = A sinωz. We find that
this particular function α(z) corresponds to an integrable background! This background
corresponds to one that has an infinite number of flavour branes. The details of this
peculiar background, together with the corresponding quiver structure of this background
will be the subject of further extensive study in chapter 6.

5.2 Classical Equations of Motion for String Embeddings

We start our analysis by studying the dynamics of a classical bosonic string soliton, derived
from the Polyakov action

SP =
1

4πα′

∫
Σ
d2σ

(
ηabGµν + εabBµν

)
∂aX

µ∂bX
ν , (5.1)

supplemented by the Virasoro constraint Tab = 0, where

Tab = ∂aX
µ∂bX

νGµν −
1

2
ηabη

cd∂cX
µ∂dX

νGµν . (5.2)

We will now focus our attention on a string soliton that moves on - and wraps itself around the
angles of - both the AdS7(t, ρ, ϕ, θi)-space and the internal M3(z, χ, ξ)-manifold. This string
soliton is parametrised by an embedding on this space that is as follows:

t = t(τ), ρ = ρ(τ), ϕ = ϕ(τ), θ = λσ, (5.3)

z = z(τ), χ = χ(τ), ξ = κσ. (5.4)

Here κ and λ indicate how many times the string wraps itself around the θ- and ξ-directions
respectively. We write the AdS7-metric in global coordinates as

ds2
AdS7

= − cosh2 ρ dt2 + dρ2 + sinh2 ρ
(
dϕ2 + sin2 ϕ dθ2 + cos2 ϕ dΩ2

S3

)
, (5.5)
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where ϕ ∈ [0, π/2] and θ ∈ [0, 2π]. For the above string embedding we can write down an
effective Lagrangian that will be of the form

L = f1(z)
(
cosh2 ρ ṫ2 − ρ̇2 − sinh2 ρ

(
ϕ̇2 − λ2 sin2 ϕ

))
− . . .

. . .− f2(z)ż2 − f3(z)
(
χ̇2 − κ2 sin2 χ

)
+ 2f4(z)κχ̇ sinχ (5.6)

varying this Lagrangian gives for the equations of motion

2f1(z)ṫ =
2E

cosh2 ρ

2f1(z)ρ̈ = −2
E2

f1(z)2

sinh ρ

cosh3 ρ
+ 2f1(z) sinh ρ cosh ρ

(
ϕ̇2 − λ2 sin2 ϕ

)
− 2f ′1(z)ρ̇ż

2f1(z)ϕ̈ = −2f1(z)

(
cosh ρ

sinh ρ
ϕ̇ρ̇+ λ2 cosϕ sinϕ

)
− f ′1(z)żϕ̇ (5.7)

2f3(z)χ̈ = 2κf ′4(z)ż sinχ− 2f ′3(z)żχ̇ sinχ cosχ

2f2(z)z̈ = f ′1(z)

(
− E2

f1(z)2
cosh−2 ρ+ ρ̇2 + sinh2 ρ

(
ϕ̇2 − λ2 sin2 ϕ

))
− f ′2(z)ż2 + . . .

. . .+ f ′3(z)
(
χ̇2 − κ2 sin2 χ

)
− 2κχ̇ sinχf ′4(z).

Here the dots indicate derivatives with respect to τ and the primes indicate derivatives with
respect to z. Notice that when we set ρ = ϕ = λ = 0 this system of equations reduces to the
system that was studied in [136],where the string only moves on and wraps around the internal
space.

The Virasoro constraint for the string is for this embedding of the form

2Tττ = 2Tσσ = f1(z)
(
− cosh2 ρ ṫ2 + ρ̇2 + sinh2 ρ

(
ϕ̇2 + λ2 sin2 ϕ

))
+ . . .

. . .+ f2(z)ż2 + f3(z)
(
χ̇2 + κ2 sin2 χ

)
(5.8)

Tστ = 0

The equations of motion imply that ∂σTσσ = ∂τTττ = 0, the string soliton will thus satisfy the
Virasoro constraint Tσσ = Tττ by making an appropriate choice for the integration constant E.

5.3 Analytical (non)-Integrability

We will now study if the equations of motion for this string embedding eq.(5.7) are non-
integable. To this end we will follow [163], and apply Kovacic’s algorithm to these equations
of motion, to prove the equation of motion have no Liouvillian solutions. The results of this
method are unfortunately rather inconclusive. We therefore suggest a reader not specifically
interested in this particular analysis to move on to sections 5.4 and 5.5 where we study the

89



same equations of motion using numerical methods, and obtain more conclusive results and
nicer pictures.

If the full string worldsheet theory is integrable on a particular background, it will be possible
for every subsector to move to action-angle variables (φk, Ik), where the resulting (sub)system
has the same number of conserved quantities as coordinates in phase space. The system will
exhibit regular orbits in phase space (in contrast to chaotic trajectories) in these coordinates,
an one can solve φk = Ikt. Since there is a canonical transformation (xk, pk) → (φk, Ik) the
functions Xk(t) should be given by Liouvillian functions1 in any other frame that is not action-
angle variables.

Here we will study the ‘normal’ variational equations (NVEs) for the equations of motion
in eq.(5.7), that are obtained by solving them first for a particular variable (setting the other
variables to zero), and then expanding around this solution in terms of the other ’orthogonal’
variables. If these variational equations do not admit a Liouvillian solution, the full equations
of motion will not admit a Liouvillian solution either.

To obtain these variational equations we first solve the equations of motion for z̈(τ) by first
choosing the solutions

ϕ̈(τ) = ϕ̇(τ) = ϕ(τ) = 0

χ̈(τ) = χ̇(τ) = χ(τ) = 0 (5.9)

ρ̈(τ) = ρ̇(τ) = ρ(τ) = 0

for the other variables. When we insert these solutions in the above system of equations, the
equation of motion for z̈ reduces to

2f2(z)z̈ = − f ′1(z)

f1(z)2
E2 − ż2f ′2(z) (5.10)

After inserting the expressions for the functions fi(z) in terms of α(z), the above equation for
z̈ is of the form

z̈ − 1

2

(
αα′′′ − α′α′′

2α2

)
α

α′′

(
E2

16π2
− ż2

)
= 0 (5.11)

which has the solution

zsol(τ) =
E

4π
τ (5.12)

1The ‘elementary’ functions are polynomials, rational functions, exponential functions, and their inverse (the
trigonometric function can be written as complex exponentials). This set of elementary functions is closed under
composition, arithmetic operations and differentiation, but not under integration. The Liouvillian functions are
all possible functions that can be recursively defined in terms of the elementary functions or integrals thereof. The
set of Liouvillian functions is therefore closed under composition, arithmetic operations, and both differentiation
and integration.
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V. (NON)-INTEGRABILE 6D N = (1, 0) SCFTS

for all α(z). We can then obtain the NVE by inserting this solution for z(τ) and expanding
around the solutions (5.9), taking either of the following expansions

ρ(τ) = 0 + ε r(τ)

ϕ(τ) = 0 + ε f(τ) (5.13)

χ(τ) = 0 + ε x(τ)

We introduce the idea behind Kovacic’s algorithm in the next section and show in the following
sections how this can be applied to the different NVE equations thus obtained.

5.3.1 Kovacic’s Algorithm

Here we briefly describe Kovacic’s algorithm [182] for the non-existence of closed form Li-
ouvillian solutions (solutions that can be expressed in terms of algebraic, exponentials, or
trigonometric functions, and integrals of thereof) for differential equations of the form,

f ′′(τ) + B(τ)f ′(τ) +A(τ)f(τ) = 0, (5.14)

where A(τ),B(τ) are complex rational functions. The algorithm of [182] provides a Liouvillian
solution or shows there is none (in which case we refer to the differential equation (5.14) as
non-integrable).

We will not describe the algorithm itself here, but limit ourselves to explain the logic behind
Kovacic’s algorithm and the resulting necessary but not-sufficient conditions that a combination
the functions A,B,B′ must satisfy, for the eq.(5.14) to be Liouville-integrable.

We start by redefining the function f(τ) and rewriting the differential equation as,

f(τ) = e
1
2

∫
B(τ)w,

w′′(τ) = V (τ)w(τ), V (τ) =
1

4
(2B′ + B2 − 4A). (5.15)

The Liouvillian (non-)integrability of the function w(τ) can then be translated to a statement
about the poles of the ‘potential’ V (τ).

This results comes from differential Galois theory, where one studies the Galois group of
invariances that act on the solutions of the differential equation. Suppose that ζ(τ) and η(τ)
are two solutions of the differential equation, another solution can be obtained as(

η′

ζ ′

)
=

(
a b
c d

)(
η
ζ

)
(5.16)

for some a, b, c, d ∈ C.
Kovacic showed that for the differential equation (5.15) the solutions can be invariant under

four possible finite subgroups of SL(2, C):

91



• Case 1: when the subgroup is generated by a triangular matrix of the form

G =

[
a 0
b 1

a

]
,

with a, b complex numbers. In this case w(τ) is a rational function of degree 1.

• Case 2: when the subgroup of SL(2, C) is generated by (off)-diagonal matrices of the
form,

G =

[
c 0
0 1

c

]
, G =

[
0 c
−1
c 0

]
,

with c a complex number. In this case the functions w(τ) is rational of degree 2

• Case 3: the subgroup G is another finite subgroup, not included in the two above cases,
the degree of w(x) is either 4,6 or 12.

• Case 4: the subgroup is the whole group SL(2, C), the solutions for w(τ), if they exist
are non-Liouvillian.

In the first three cases a Liouvillian solution might exist, and can be found (if it exists) using
Kovacic’s algorithm. Kovacic proceeded to translate these cases to a set of necessary but
not sufficient conditions that the potential V (τ) in eq.(5.15) must satisfy for the differential
equation to fit in the first three above cases [182]. For each of the cases as ordered above, the
corresponding conditions on V (τ) are:

• Case 1: every pole of V (τ) has order 1 or has even order. The order of the function
V (τ) at infinity must be either even or greater than 2.

• Case 2: V (τ) has at least a single pole of order 2, or of odd-order greater than 2.

• Case 3: the order of the poles of V (τ) does not exceed 2, and the order of V (τ) at
infinity is at least 2.

Here the order of V (τ) at infinity means the order of infinity as a zero of V (τ), which is thus
equal to the degree of the denominator minus the degree of the numerator.

If none of the above is satisfied, we are dealing with case 4, where the solutions are not
invariant under a subgrop of SL(2, C), and the solution (if it exists), is non-Liouvillian.

5.3.2 Kovacic Analysis

To apply Kovacic’s criteria to the NVE equations for the string, we insert the solution for z(τ)
from eq.(5.11), and expand the solution for the other variables as in eq.(5.13). The result will
be a second order differential equation in τ , of the form that Kovacic’s algorithm applies to.
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By rewriting the NVE equations into the form of eq.(5.15) we can then see if the corre-
sponding potential V (τ) fails to satisfy all three of Kovacic’s criteria, in which case we know the
solutions of the NVE equation are non-Liouvillian and the string worldsheet on this background
is non-integrable.

NVE for ρ

If we now allow for small fluctuations in ρ(τ) = 0 + εr(τ) and insert the solution for zsol(τ) in
(5.12) into the equation of motion for r̈(τ), we find for the NVE

r̈(τ) + Br(τ)ṙ(τ) +Ar(τ)r(τ) = 0

Br(τ) =
f ′1(z)

f1(z)

E

4π

∣∣∣∣
zsol

=
E

8π

(
α′

α
− α′′′

α′′

)∣∣∣∣
zsol

(5.17)

Ar(τ) =
E2

f1(z)2

∣∣∣∣
zsol

=
−E

128π2

α′′

α

∣∣∣∣
zsol

When only considering a string that moves along the z and ρ-directions, it is now easy to see
that if the warp factor f1(z) as defined in eq.(4.7) is equal to a constant, Br = 0, and the
above differential equation admits a Liouvillian solution of the form r(τ) = exp(iEτ). We will
examine this particular case in more detail in the next chapter.

When we allow for a warp factor between the AdS7 and M3 spaces, such that f1(z) is no
longer equal to a constant, we can use Kovacic’s algorithm [151] to try to determine if the
resulting differential equation (5.17) might admit any Liouvillian solutions. This can be done
by combining the coefficients A(τ) and B(τ) of the second order differential equation into the
new function V (τ). For the differential equation (5.17) to possibly admit a Liouvillian solution,
the function V (τ) has to satisfy at least one of the necessary but not sufficient conditions listed
in the previous section. In this case of the NVE for ρ in eq.(5.17), the function Vr(τ) is of the
form

Vr =
1

4

(
2B′r + B2

r − 4Ar
)

(5.18)

=
E2

256π2α2(α′′)2

(
− 3

(
α′
)2 (

α′′
)2 − 2αα′α′′α′′′ + α

(
6
(
α′′
)3

+ 5α(α′′′)2 − 4αα′′α′′′′
))

Remember that α(z) is the function that specifies the quiver structure corresponding to the
AdS7 geometry, as defined in eq.(4.8). We obtained the NVE by expanding around a solution
for z which is of the form zsol = E

4π τ , so that V (α(z(τ))) is in the end a function of τ only.
If we construct a function α(z) from a quiver diagram, α(z) will be a piece-wise continuous

polynomial of at most order 3 at every point.

α(z) = a3z
3 + a2z

2 + a1z + a0 (5.19)
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Inserting this solution for α(z) into the potential in eq. (5.18) will allow us to analyse the pole
structure of Vr(τ) corresponding to a general quiver diagram,

Vr(τ) =
3E2

2

3a4
3E

6τ6 + 24a2a
3
3E

5πτ5 + . . .

(4a2π + 3a3Eτ)2 (64a0π3 + 16a1Eπ2τ + 4a2E2πτ2 + a3E3τ3)2 . (5.20)

The dots in the numerator are quartic terms in τ , the order of V (τ) at infinity is thus equal
to two. Note that Vr(τ) has one pole of order two at τ = r0 = −4a2π/3a3E. The other poles
come from the cubic polynomial that is the second term in the denominator, one of the real
roots of this cubic polynomial can coincide with the earlier pole τ = r0.

Let us first examine the possible roots coming from this cubic polynomial: A cubic polyno-
mial of the form aτ3 + bτ2 + cτ + d = 0 has three complex roots, the multiplicity of which can
be obtained from the determinant

∆ = a2b2 − 4b3 − 4a3c− 27c2 + 18abc (5.21)

= −4096
(
−a2

1a
2
2 + 4a3

1a3 − 18a0a1a2a3 + a0

(
4a3

2 + 27a0a
2
3

))
E6π6.

If ∆ > 0 the polynomial has three distinct real roots, for ∆ < 0 there is one real root and two
complex conjugate roots. When ∆ = 0 there are roots with multiplicity larger than one, this
can be either a single real root of multiplicity 3, or one real root of multiplicity 2 and another
additional root. If we list all possible options we arrive at the following table where the orders
of the poles of Vr(τ) are listed in both the case when first pole r0 does coincide with one of the
real poles from the cubic term (r0 = r1), and when this does not happen. We see that in all

cubic poles r0 6= r1 r0 = r1

∆ > 0 (τ − r1)(τ − r2)(τ − r3) 2, 2, 2, 2 4, 2, 2
∆ = 0 (z − r1)3 2, 6 8
∆ = 0 (z − r1)2(z − r2) 2, 4, 2 6, 2
∆ = 0 (z − r1)(z − r2)2 2, 2, 4 4, 4
∆ < 0 (τ − r1)(τ − c2)(τ − c3) 2, 2, 2, 2 4, 2, 2

cases all poles will be of even order, and that the resulting Vr(τ) thus might pass the first and
second of Kovacic’s criteria. These conditions are necessary but not sufficient to guarantee the
existence of Liouvillian solutions. Let us next turn to the string soliton moving along the ϕ
direction.

NVE for ϕ

We now examine the equation of motion for ϕ̈. If we allow for small fluctuations in ϕ(τ) =
0 + εf(τ), and we insert the solution for z(τ) from eq.(5.12) while we now freeze the string and
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let it not move along the other directions such that ρ = ρ̇ = ρ̈ we find for the NVE

f̈(τ) + B(τ)ḟ(τ) +A(τ)f(τ) = 0

Bf (τ) =
f ′1(z)

f1(z)

E

4π

∣∣∣∣
zsol

=
E

8π

(
α′

α
− α′′′

α′′

)∣∣∣∣
zsol

(5.22)

Af (τ) = λ2

Again, we see that when f1(z) is equal to a constant, the above NVE will reduce to the harmonic
oscillator with solution a(τ) = exp(iλτ).

When we allow for a more general warp factor where f1(z) is no longer constant, we can
again use Kovacic’s algorithm to determine if we above differential equation might still admit
Liouvillian solutions. Inserting again for α(z) a general third order polynomial as given in
eq.(5.19) gives us for the potential

Vf (τ) =
−36a4

3E
8λ2τ8 − 384a2a

3
3E

7πλ2τ7 + . . .

4(4a2π + 3a3Eτ)2 (64a0π3 + 16a1Eπ2τ + 4a2E2πτ2 + a3E3τ3)2 (5.23)

Notice that though the order of the numerator is different from Vr(τ), the pole structure in the
denominator is identical to that in eq.(5.20). Since the numerator does now contains terms τ8,
the order of V (τ) at infinity is zero, as Vf (τ) ∼ λ2 when τ → ∞. We thus see immediately
that Vf (τ) fails to meet the third of Kovacic’s criteria. However, as before, since all the poles
are always of even order, the first and second of Kovacic’s criteria will always be satisfied.

Conditions to violate the Second Criterion

As we have seen the NVE’s for ρ and ϕ always violate the third of Kovacic’s criteria, and always
satisfy the first. Satisfying any of the criteria is however not a sufficient condition to guarantee
the existence of a Liouvillian solution. By applying Kovacic’s algorithm for the corresponding
cases one can either find the Liouvillian solution, or show it does not exist. It would be
interesting to carry out the algorithm for case 1 explicitly, to see for which combinations of the
constants ai it would fail to provide a Liouvillian solution. With this in mind we here present
conditions that will guarantee the second of Kovacic’s criteria cannot be met, in which case the
algorithm for case 1 would be sufficient to either find the Liouvillian solutions or show they do
not exist.

Since all the poles for the resulting potentials V (τ) are always even, the second criteria is
only not satisfied in two cases

• When the roots of the cubic polynomial in the denominator are all equal to τ = 4πa2
3Ea3

so
there is only a single pole of order 8. This happens when

(4a2π + 3a3Eτ)3 = 64a0π
3 + 16a1Eπ

2τ + 4a2E
2πτ2 + a3E

3τ3

= 64π3a3
2 + 144a2

2a3π
2Eτ + 108a2a

2
3πE

2τ2 + 27a3
3E

3τ3
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which happens when the functions ai satisfy the conditions

a0 = a3
2, a3 = 0 (5.24)

• When only one of the roots of the cubic polynomial in the denominator is equal to
τ = 4πa2

3Ea3
, there are only two poles of order 4. This means we should be able to factorise

the cubic polynomial as

(4a2π + 3a3Eτ)(Aτ2 +Bτ + C) = 64a0π
3 + 16a1Eπ

2τ + 4a2E
2πτ2 + a3E

3τ3

This factorisation is only possible when the coefficients ai are related to one another so
that

a1 = 5a0a3 +
4a2

2

27a3
(5.25)

Demanding that τ = 4πa2
3Ea3

is not a root of the remaining quadratic polynomial, so there
are two poles of order 4, implies(

27a0a
2
3 − a2

2

48π2a4
2

)
E2τ2 +

(
a2

2 − 27a0a
2
3

27πa3
2a3

)
Eτ +

a0

a2
2

∣∣∣
τ=

4πa2
3Ea3

6= 0 (5.26)

which we can then translate to another condition on the coefficients ai,

a2
3 6=
−a2

2

54a0
(5.27)

It would be interesting to carry out Kovacic’s algorithm using the above conditions where
both the second and third of Kovacic’s criteria are not satisfied. We could then find conditions
on the coefficients ai that guarantee Kovacic’s algorithm fails to give an Liouvillian solution on
the interval [zi, zi+1], analoguous to how this is done in [132].

NVE for χ

If we allow for small fluctuations in χ(τ) = 0 + εx(τ) and insert the solution in the equation of
motion for χ̈(τ) eq.(5.12), we find for the NVE for ẍ(τ)

ẍ(τ) + Bx(τ)ẋ(τ) +Ax(τ)x(τ) = 0 (5.28)

Bx(τ) =
Ef ′3(z)

4πf3(z)

∣∣∣∣
zsol

=
E

8π

(
3
α′

α
+

(α′2 + 2αα′′)α′′′

(α′2 − 2αα′′)α′′

)∣∣∣∣
zsol

(5.29)

Ax(τ) =

(
κ2 − κ Ef

′
4(z)

4πf3(z)

)∣∣∣∣
zsol

(5.30)

=

(
κ2 − Eκ

4π

1√
−2αα′′

6αα′′2 − 2αα′α′′′ − 3α′2α′′

2αα′′ − α′2

)∣∣∣∣
zsol
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We now only consider fluctuations of the string along the z and χ-direction, which is the same
situation that was considered in [136]. Because the function Vx(τ) now involves f3(z) and f4(z)
and their derivatives, it is far less obvious to see from this result that the string soliton will
directly fail to be integrable when f1(z) is not equal to a constant (as we obtained from the
NVE’s for ρ and ϕ). If we would again insert a general function α(z) of the form given in
eq.(5.19), the resulting Vx(τ) will be a complicated sum of large fractions. We will omit the
result here.

It is quite difficult to extract general expressions for these cases, as could be done more nicely
for the NVE’s for ρ and ϕ, where we easily saw that when f1(z) is constant, the corresponding
string embedding is integrable.

5.3.3 Results for Various AdS7 Backgrounds

We will now apply the results of the previous section to various specific AdS7 backgrounds:

Linear Quiver

We will continue by illustrating Kovacic’s method for a linear rank function with α(z) =
−81π2N

(
1
6z

3 − 5
2z
)

for z ∈ [0, zn] at the beginning of the z-interval. We thus have a0 =
0, a1 = 5

2 , a2 = 0, and a3 = 1
6 . In eq.(5.23) and (5.18) the denominator then simplifies to

4(3a3Eτ)2
(
16a1Eπ

2τ + a3E
3τ3
)2

(5.31)

Giving us one pole of order 4, and two poles of order 2 for the potential corresponding to the
NVE’s for ρ and ϕ. The second of Kovacic’s criteria will therefore still be satisfied by both
potentials, and a Liouvillian solution might exist. The potential Vf (τ) also satisfies the second
criterion.

The coefficients in the NVE for χ in this case are

A = 1−
√

3
(z4 + 20a1z

2 − 60a2
1)√

−6a1 − z2(z4 + 12a1z2 − 12a2
1)
,

B =
2

z
+

3z

(6a1 + z2)
− 4

6a1z + z3

(z4 + 12a1z2 − 12a2
1)
. (5.32)

Note that when we rescale z → nz and take the limit n → ∞ the above equation becomes a
simple oscillator. This is reminiscent of the integrability of strings on the linear quiver back-
grounds that show up in the 1

2 BPS solutions as non-Abelian T-dualities of more symmetric
backgrounds (a well known example is the Sfetsos-Thompson background).
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Next we will perform a more detailed analysis for finite n. To avoid cluttering the expres-
sions, we have chosen the coefficients E = 4π (such that z = τ) and ν = 1. The coefficients of
this NVE are not rational functions. To amend this, we change from z to a new variable v,

z =
√
−6a1 − v2 (5.33)

denoting x′ = dx
dv , the NVE reads

x′′(v) + Cx′(v) +Dx(v) = 0, C =

(
B(v) + d

dv
dv
dz

)
dv
dz

, D =
A(v)

(dvdz )2
. (5.34)

According to what was explained around eq.(5.15), we now need to analyse the principal part
of the potential 4V = 2dCdv + C2 − 4D. We find,

C =
v6 − 12a1v

4 − 240a2
1v

2 − 576a3
1

v(v2 + 6a1)(v4 − 48a2
1)

,

D = −1 +
6a1 + 5

√
3v

v2 + 6a1
− 4
√

3v(v2 − 4a1)

v4 − 48a2
1

, (5.35)

4V = 4 +
γ0

v2
+

γ1

(v2 + 6a1)2
+

γ2 + γ3v

(v2 + 6a1)
+

γ4v
2

(v4 − 48a2
1)2

+
γ5 + γ6v + γ7v

2 + γ8v
3

(v4 − 48a2
1)

.

The coefficients γi are numerical constants, not very relevant for our analysis below. Notice
the leading orders of the poles are all even and the order of the potential (leading power of the
degrees of the denominator minus numerator) is zero. Hence, V (x) does satisfy the conditions
for the first and second of Kovacic’s criteria, and a Liouvillian solution might exist. Further
numerical studies show this is not the case for linear quivers that end with a flavour group.

Massless Solution

We now apply Kovacic’s criteria to the NVE equations for the massless solution in section 5.5.3.
When the Romans mass F0 ∼ α′′′ = 0, the corresponding function α(z) is

α(z) = −81π2k

(
1

2
z2 − 2R2

0

81π2k2

)
= R2 − µz2. (5.36)

For this solution a0 = R2, a1 = 0, a2 = −µ, and a3 = 0. In the potentials Vx and Vf , eq.(5.23)
and (5.18), the denominator then simplifies to

4(4a2π)2
(
64a0π

3 + 4a2E
2πτ2

)2
(5.37)

Giving us three poles of order 2. The second of Kovacic’s criteria will therefore still be satisfied
by both potentials, and a Liouvillian solution might exist.
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We find that the NVE equation for χ in eq.(5.28) reads in this case,

ẍ(τ)− 243E2k2π2τ

16π2
(
4R2

0 − 81k2π2(Eτ4π )2
) ẋ(τ) + ν

ν +
27kEπ

4π
√

4R2
0 − 81k2π2(Eτ4π )2

x(τ) = 0. (5.38)

This equation is hard to solve exactly, let us distinguish two cases: We observe that for very
large values of the parameter R0 (or for very short times), the eq.(5.38) reduces to an oscillator
equation.

Let us now perform a more refined analysis for finite R0 following Kovacic’s algorithm. The
first step is to write the NVE as a second order differential equation with rational coefficients.
We choose 64R2

0 = 81k2E2 = 1 to ease the algebra (not loosing generality). The NVE equation
reads,

ẍ− 3τ

1− τ2
ẋ+

(
1 +

3√
1− τ2

)
x = 0.

We change variables to τ =
√

1− v2. The NVE differential equation in this new variable reads,

x′′(v) + C(v)x′(v) +D(v)x(v) = 0, C =
1
dv
dτ

(
B(v) +

d

dv
(
dv

dτ
)

)
, D =

A(v)

( dvdτ )2
. (5.39)

Where, in this particular case we have

v =
√

1− τ2,
dv

dτ
= −
√

1− v2

v
,

d

dv
(
dv

dτ
) =

1

v2
√

1− v2
,

C =
3v2 − 4

v − v3
, D =

v2 + 3v

1− v2
. (5.40)

Following the analysis detailed in section 5.3.1, we construct a function 4V (v) = 4D−C2−2C′,

4V = −4 +
3

4(v − 1)2
− 17

4(v − 1)
− 24

v2
+

3

4(v + 1)2
− 31

4(v + 1)
. (5.41)

The existence of poles of order two and the fact that the function V is of order zero at infinity,
implies the first two of Kovacic’s criterea are satisfied. Therefore, the equation might admit a
Liouvillian solution. Further inspection numerical however shows this is not the case.

Vanishing Warp Factor

Let us conclude this section by examining the NVE for χ in the case the warp factor f1(z) is
constant. In this case α(z) = A sinωz, and the geometry is given in eq.(6.3-6.5), and f3(z) and
f4(z) are given by

f3(z) =

√
2π

ω

(
sin2 ωz

1 + sin2 ωz

)
, f4(z) = π

(
−z +

sinωz cosωz

ω(1 + sin2 ωz)

)
(5.42)
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The NVE for χ (5.28) is then given by

ẍ(τ) +

(
4π cot τ

3π − cos 2τ

)
ẋ(τ) +

(
κ2 − κ (−11 + cos 2τ)√

2(−3 + cos 2τ)

)
x(τ) = 0 (5.43)

where we set E = 4π/ω. To obtain a differential equation with rational coefficients we make
the change of coordinates τ = arcsin t, and obtain

ẍ(τ) +

(
2(t4 + 2t2 − 1)

t(t4 − 1)

)
ẋ(τ) +

−κ
2(t4 − 1)

(√
2(t2 + 5) + 2(t2 + 1)κ

)
x(τ) = 0 (5.44)

giving us for the potential

Vx(t) =
1

4
(2B′x + B2

x − 4Ax) (5.45)

=
1

2(t4 − 1)

(
2(t2 − 1)(t2 + 1)2κ2 +

√
2(t6 + 5t4 − t2 − 5)− 4(t4 − 2t2 + 3)

)
Note the potential has four poles of order 1, and at infinity is of order 4, and thus satisfies the
first of Kovacic’s criteria. A Liouvillian solution might indeed exist. We will show in chapter 6
this is indeed the case, and the entire (bosonic) sigma model of the string is integrable on the
target space for α(z) = A sinωz.

5.4 Numerical Indicators of Chaos

In this section, we introduce the numerical tools that we will use in the next section to show the
equations of motion for the strings (5.7) on various backgrounds are chaotic, and non-integrable.
These numerical tools are power spectra, Poincaré sections, and Lyapunov exponents [161].

5.4.1 Power Spectra

The time evolution of a chaotic system will look disorganised and non-periodic. By simply
taking the Fourier transform of the time evolution of a system, one can make a first crude
distinction whether the time evolutions is periodic, quasi-periodic or chaotic. When a signal
is perfectly periodic with a frequency ω, its Fourier spectrum will show a vertical line at the
characteristic frequency of the system. For a quasi-periodic evolution these peaks broaden,
when the dynamics is uncontrollably chaotic the Fourier spectrum becomes flat.

5.4.2 Poincaré Sections and KAM Tori

An N -dimensional integrable system possesses N independent integrals of motion that are in
involution, namely, the Poisson bracket of any two of these conserved quantities vanishes. As
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a consequence of this, the corresponding phase space trajectories are confined to the surface of
an N -dimensional KAM torus [161]. When we change our variables to action-angle variables
(qi, pi)→ (φi, Ji), such that our Hamiltonian only depends on Ji, the corresponding trajectories
on this KAM torus are completely specified in terms of N frequencies (ωi) that specify the
velocities along the different angles on this torus. When there is no set of integers ni such that
ωin

i = 0, these trajectories are said to be quasi-periodic, they do not close on themselves but
fill the surface of a KAM torus.

As a consequence of this, we can see whether a system is integrable or not, by taking cross-
sections of its phase-space trajectories. When we plot for example (φ1, J1) every time φ2 = 0
we will see a large number of foliated circular KAM curves associated with the 2-dimensional
cross-sections of these foliated KAM tori. Such a cross-section is known as a Poincaré section
[161]. The KAM theorem tells us how these KAM curves will change when we perturb an
integrable Hamiltonian with a small deformation εH ′, where ε � 1. The resonant tori - for
which these trajectories close on themselves, will be destroyed by this perturbation. However,
a large number of these non-resonant KAM tori will survive. As we continue to increase the
strength of this perturbation, more and more of these tori are destroyed until the motion be-
comes seemingly random and we loose all of the KAM curves in our Poincaré section.

As an example we will briefly illustrate this for the Henon-Heiles system, which is obtained
from the Hamiltonian

H =
1

2

(
x2 + y2 + 2x2y − 2

3
y3

)
+

1

2

(
p2
x + p2

y

)
. (5.46)

This system looks like two coupled oscillators x and y, when both x, y and their conjugate
momenta (px and py) are small. In addition there is a coupling term 2x2y, and an interaction
term for y of the form −2

3y
3, that will become increasingly more important as we explore the

system at larger energies.
In figure 5.1 we plot the phase space trajectories for (x(t), px(t)) in red, and (y(t), py(t)) in

blue. We start with initial conditions x(0) = y(0) = p
(0)
x = p

(0)
y = 0.01 and slowly increase the

value of x(0) in order to explore larger energies. We see that for larger energies the coupling
between the two oscillators becomes increasingly more relevant, causing the dynamics to become
non-integrable. This is reflected in the Poincaré sections, where all orbits for the low energy
system are located on KAM tori, but this structure breaks apart as we go to larger energies.

When the energies are small, the orbits are periodic and the system is integrable. As we
increase the energies, the orbits first become quasi-periodic, and we see in the Poincaré sections
that almost all orbits are still located on the KAM tori in phase space. These two-dimensional
Poincaré sections are cross sections of the orbits in phase space. Since the orbits are located
on KAM tori, the two-dimensional cross sections of the orbits look like circles. To draw the
Poincaré sections, we consider a trajectory with fixed energy. Every time one of the phase
space variables (here x) reaches a particular value (here x = 0), we keep track of the values of
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Figure 5.1: (top) trajectories in phase space for the Henon-Heiles system with initial condti-
tions x0 = y0 respectively equal to 1

10 , 1
6 , 1

4 , 1
3 . (bottom) Poincaré section of the (y, py)-plane

everytime x(t) = 0 for 150 different trajectories with energies equal to those of the initial
conditions in the top figures.

the other phase-space variables (here y and py) and add the point in phase space to our figure.
If the trajectory in phase space is indeed located on a KAM torus we expect all the points
(y, py) (when x(t) = 0) to form a circle that is the cross section of this torus.

As we increase the energies even further we see the trajectories become chaotic. We see this
onset of chaos reflected in the large number of KAM tori in phase space that are now destroyed
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(there can still be some KAM tori left, corresponding to particular orbits that are still periodic,
but these diminish in number as we keep increasing the energy).

5.4.3 Lyapunov Exponents

The evolution of a dynamical system is given by a set of deterministic differential equations that
allows us to calculate the state of a system at a time t, knowing an earlier state of the system at
some initial time t0. A dynamical system is said to be ‘chaotic’ when it is exponentially sensitive
to its initial conditions, making it practically impossible to accurately predict the long term
dynamical behaviour, as it would require measuring the initial condition of the system with
infinite precision. When we have two adjacent initial conditions x1(t0) and x2(t0) = x1(t0) + ε,
we say the system exhibits chaotic dynamics when

|x1(t)− x2(t)| ∼ eλxt, (5.47)

provided that the trajectory of our system in phase-space remains bounded. This boundedness
of the trajectories is to rule out the trivial case where the trajectories move exponentially to
infinity and only diverge exponentially because they are moving apart [161].

Here λx is known as the Lyapunov exponent corresponding to the phase-space variable x,
and forms a measure of the sensitivity of the system to the initial conditions for this variable.
When we have multiple phase space variables (like x, y, px and py for the Henon-Heiles system)
there is a corresponding Lyapunov exponent for each of them. Since the equations of motion
for our string solitons are a Hamiltonian system, the initial volume in phase space will be
conserved (as a consequence of Liouville’s theorem). This implies the sum of the different
Lyapunov exponents will equal zero. The largest Lyapunov exponent (LLE) is then typically
used as an indicator to tell us how chaotic the dynamics of the system is.

Note the trajectories of string embedding on a geometry with an ‘internal space’ will auto-
matically be bounded if the internal space is compact and bounded (in our case the z-coordinate
is bounded, and the internal space topologically looks like a three-sphere). In this case, the
Lyapunov exponent (that measures the exponential divergence of initial conditions) provides a
good observable to determine whether the dynamics of this classical string embedding is chaotic
or not.

A numerical algorithm to calculate Lyapunov exponents has been included in Appendix
5.6.

5.5 Analysis for Various AdS7 Backgrounds

In this section we will investigate various of the AdS7 geometries for signs of chaos using the
tools outlined in the previous section. We numerically solve their equations of motion. Using
power spectra, Poincaré sections, and Lyapunov exponents, we list on which of these geometries
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the string embeddings are indicative of chaotic dynamics. The conclusions of this section are
as follows:

• In section 5.5.1 we outline the evidence of non-integrable dyanamics that we find for all (fi-
nite) quivers with flavour branes, and present Poincaré sections and Lyapunov exponents
for an example.

• In section 5.5.2 we discuss linear quivers. For an infinite linear quiver we with rank
function R(z) ∼ z. We find no evidence of non-integrable behaviour, and suggest this
solution might be integrable. When we consider a finite linear quiver - by adding a
flavour group to the end - we again find clear evidence of non-integrable behaviour for
this background and present Poincaré sections and Lyapunov exponents.

• In section 5.5.3 we discuss two limit of the massless solution where α(z) = R2 − µz. In
the limit R→∞ we find no evidence of non-integrable behaviour, and suggest this case
might be integrable. When we consider finite values for R the geometry has singular
points at the end of the z-interval that now cause the string dynamics to become non-
integrable. In the later part of this section we discuss the uplift of the massless solution
to 11-dimensions, where the singular points are removed. We show the string embedding
moving along z and χ, wrapping the ξ direction, turns into a toroidal M2-brane that also
wraps the eleventh direction. These toroidal M2-brane configurations then turn out to
be integrable.

• At last, in section 5.5.4 we consider a somewhat unusual solution, where α(z) = A sinωz.
Since α(z) is not a piece-wise continuous third order polynomial it is not immediately
clear what the corresponding rank function for a quiver would be (we will discuss this
in a detail in the next chapter). We directly see from the numerical analysis that this
particular function α(z) corresponds to an integrable background!

To simplify our analysis we will only focus on the equations of motion (5.7) for string embed-
dings that sit at the center of the AdS7 spacetime and move on and wrap the internal space;
wrapping the ξ direction and moving along z and χ. Note that the ‘energy’ of the classical string
soliton - the integration constant E, that has to be tuned to satisfy the Virasoro constraint
(5.8) - is given by

E2 = f1(z)2
(
ρ̇2 + sinh2 ρ

(
ϕ̇2 + µ2 sin2 ϕ

))
+ f2(z)ż2 + f3(z)

(
χ̇2 + κ2 sin2 χ

)
. (5.48)

This energy minimises for the point ρ = ϕ = χ = 0. Here we will numerically study the
dynamics of the string when we increase χ away from the stable point χ = 0 and increase its
energy. Note the coordinates z, χ are bounded, as are the respective momenta along the pz and
pχ-directions, due to the conserved Hamiltonian that follows from eq.(5.8).
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Since χ̈ = χ̇ = χ = 0 (or χ = π) is a solution to the equations of motion, low energy strings
will stay fixed at the north or the south pole of the 2-sphere. For this solution for χ(τ), the
remaining equation for the motion along z reduces to

2f2(z)z̈ + ż2f ′2(z) +
f ′1(z)

f1(z)2
E2 = 0. (5.49)

And has the solution zsol(τ) = E
4π τ . As we consider strings with increasing energies E, they

can move further away from the poles of the two-sphere and will osculate around it, while their
dynamics in both χ and z becomes increasingly complex. This behaviour is generic for all of
the AdS7 solutions.

5.5.1 Analysis for Generic Quivers

We will first demonstrate our methods for the background in Example 3 ( in eq.(4.28)) of the
previous chapter.

In Figure 5.2a-5.2c we see that for very low energies, the string stays at the poles of the
two-sphere, it moves along the z-direction until it hits the end of the z-domain. Then, it turns
almost instantaneously from the north pole to the south pole, and stays at its new position as
it moves back along the z-direction (see, Figure 5.2b-). We see this periodic behaviour clearly
reflected in the corresponding Fourier spectrum in see Figure 5.4a. In fact, we clearly see a
fundamental frequency of 0.02 (together with higher harmonics that form the jigsaw and box
shaped waveforms) corresponding to the oscillations of the string along the z-direction with a
period of roughly 55t. The finite width of these peaks is due to numerical inaccuracies.

As we increase the energy, the string moves further away from the poles and explores more
of the two-sphere. When we consider an initial χ(0) = 0.1 - corresponding to E ≈ 6.75 - we
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Figure 5.2: Universal behaviour of strings at very low energies. Numerical evolution with initial

conditions χ(0) = 0.001, p
(0)
χ = 0, z(0) = 2 and p

(0)
z = 1, corresponding E ≈ 3.83. (a) z(t) and

pz(t) in blue and yellow respectively. (b) cos χ(t) and pχ(t) in blue and yellow respectively.
(c) Parametric plot of (z(t), cos χ(t) ) with tmax = 400.
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Figure 5.3: Trajectories in the (z, χ)-plane on the background in Example 3 (in eq.(4.28)). We
run the evolution till t = tmax and only change the initial χ(0). (top row) parametric plots
of the trajectories in the (z, cos χ )-plane, with from left to right χ(0) = 0.10, χ(0) = 0.25,
and χ(0) = 0.9 (respectively E ≈ 6.75, E ≈ 14.31, E ≈ 43.82 and tmax = 400, tmax = 400,
and tmax = 100). (bottom row) 3D representation of the same trajectories. The orange
surface representing the the two-sphere fibered with warp-factor f3(z) along the z-direction.
The dashed line indicates the poles of the two-sphere, χ = 0, π. Points on opposite sides of the
dashed line should be identified as χ ∈ [0, π]. The position of the D8-branes is indicated by
black lines.

see that the square shaped trajectory that the string traces out in the (z, χ)-plane gets more
complicated. As we increase the energy further and allow the string to move further from the
poles the trajectories start to look increasingly more disordered.

This is reflected by the corresponding power spectrum, loosing its higher harmonics as shown in
Figure 6.2b. Increasing χ(0) even further, we see that a broad band of noise around a frequency
0.35 starts to overpower the spectrum, see Figures 6.2b-5.4c. At even higher values of χ(0), we
even loose the initial peak at frequency 0.02. The spectrum becomes primarily dominated by
noise.

As we will see throughout this section, this chaotic behaviour at higher energies comes to
characterise all of the AdS7 backgrounds we investigate.

In order to generate Poincaré sections we choose a set of different initial conditions, all having
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Figure 5.4: Power spectra corresponding to the trajectories in figures 5.2c-5.3c. Here the spectra
for both z(t) and χ(t) are shown in yellow and blue respectively. To calculate these spectra we
ran a numerical evolution up to t = 5000 (roughly 100 oscillations along the z-direction), with
a resolution of 10 data-points per time-unit. (a) χ0 = 0.01, (b) χ0 = 0.1, (c) χ0 = 0.25, (d)
χ0 = 0.9.

the same energy E. We do this by setting, z(0) = 2, pχ(0) = 0, and varying pz(0) ∈ [0, 10]
and χ(0) in such a way that the Virasoro constraint in eq. (5.8) is always satisfied for a given
energy. We then run the numerical evolution for these initial points, and plot the points (z, pz)
every time χ(t) = 0.

If the string motion were integrable, the corresponding trajectories would have been con-
strained to a 2-dimensional torus in phase-space. The (Poincaré) cross-sections of the phase-
space would then show the different resonant tori as embedded lines. The absence of such
embedded KAM curves–in Figures 5.5 and 5.9— indicates we are dealing with a non-integrable
system.
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Figure 5.5: Poincaré sections for the (z, pz)-plane at χ(t) = 0 at different energies, for the
quiver in Example 3.

Note that at low energies we do see the presence of horizontal lines in the Poincaré section.
This is because the low energy trajectories of the string fluctuate regularly around the poles
of the two-sphere. We are however interested in the possible integrability of all classical string
configurations with all possible energies. At higher energies, when the motion of the string
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Figure 5.6: Lyapunov spectrum for the quiver in Example 3, for initial conditions t = 0, z =
0.09, χ = 0.09, pt = 9, pz = 0.821405, pχ = 0.22. Integration: τ = 0.5,K = 200, T = 0.02

becomes increasingly disorganised, these horizontal lines start to disappear and the Poincaré
section looses all of its structure, indicating the system is non-integrable.

At last we obtain the Lyapunov exponents in figure 5.6. We find a non-zero Lyapunov
exponent, as we would expect for a chaotic system.

We find the kind of chaotic behaviour ilustrated here to be universal for all (finite) quivers
with flavour branes.2

One way of thinking about this is that since the D8 flavour branes introduce ‘kinks’ in
the rank function, and therefore introduce ‘kinks’, or discontinuities in the derivative of α(z).
It seems that for a general quiver solution, these kinks distort the trajectories of the string
in ways that cause the non-integrable behaviour. As we will come to see the only ‘normal’
quiver backgrounds on which the string seems to integrable are an infinite linear quiver, and
an infinitely long massless solution. Both of these geometries are characterised by the absence
of flavour branes (or singular points).

5.5.2 Analysis for a Linear Quiver

Let us next consider the linear rank function R(z) = z, with corresponding

α(z) = −81π2N

(
1

6
z3 − 5

2
z

)
. (5.50)

Note that α(z) starts out like this for z ∈ [0, 1] for every rank function, as the first part of the
rank function will always be linear.

2We will discuss infinite quivers that give rise to continuous rank functions in the next section
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Infinite Linear Quiver

From the Kovacic analysis we saw the NVE for χ has a Liouvillian solution for an infinite linear
rank function. To obtain the corresponding warp factors fi(z) we expand α(z) around z → 0

f1(z) = 8π
√

5, f2(z) =
2π√

5
, f3(z) =

2πz2

√
5
, f4(z) = −2πz3

3
. (5.51)

Figure 5.7: Trajectories in the (z, χ)-plane for the infinite linear quiver geometry in eq.(5.51),

with initial conditions p
(0)
χ = 0, z(0) = 1, and p

(0)
z = 1. From left to right we change the initial

value of χ(0) to 0.25, 0.90, and 1.25 respecitvely, corresponding to energies E ≈ 8.95, E ≈ 24.94
and E ≈ 30.08.

Though the existence of an integrable string embedding is not sufficient to prove integrabil-
ity, we do not see any signs of chaotic behaviour in the numerical evolution. The strings moves
off along the infinite z-direction and never returns, resulting in seemingly orderly trajectories.

As these trajectories are non-periodic we can no longer study a Poincaré section of the
phase space and hope to expect to see trajectories confined to the surfaces of KAM tori.

This is reminiscent of the linear quivers that have been known be integrable in other 1
2 and

1
4 BPS geometries [132, 140], see also section 3.7. These infinite linear quiver solutions are in
those cases obtained as the non-Abelian T-dual of a more symmetric solutions on which the
string is known to be integrable. As the NATD preserves the integrability of the background
these infinite linear quivers are therefore known to be integrable. We will comment more about
the relation between this infinite linear quiver background and NATD in the next chapter.

Finite Linear Quiver

To end a finite linear quiver one has to add a flavour group at the end, as is done for the quiver
in Example 2 (4.27) in the previous chapter.

We will now show the numerical evolution, Poincaré sections and Lyapunov exponents that
indicate this single flavour brane now spoils the ordered trajectory the infinite linear quiver
was endowed with.
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Figure 5.8: Trajectories on the background of Example 2 in (4.27), with all numerical param-
eters equal to those in figure 5.3. The position of the D8-branes is indicated by the black
line.
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Figure 5.9: Poincaré sections for the (z, pz)-plane at χ(t) = 0 at different energie, for the
background in Example 2 (5.12), corresponding to the trajectories in figure 5.12.
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Figure 5.10: Numerical approximations for the largest Lyapunov exponents corresponding to
the initial conditions in figue 5.12 in respectively blue, yellow, and red. Using the algorithm in
section 5.6. Note that for higher energies the value of the Lyapunov exponent rapidly increases.

5.5.3 Analysis for the Massless Solution

The F0-flux in the AdS7 supergravity solutions of eq.(4.6) is also known as the Romans mass.
In this section we will consider the (non)-integrability of string embeddings that wrap the ξ-
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direction and move along χ and z on the massless AdS7 solution, when F0 = 0. We find the
trajectories of string on this space to be non-integrable and occasionally flow to a singular point
at the end of the geometry, where the dilaton blows up. Since the dilaton is proportional to the
string coupling the classical string embeddings we study in the previous section no longer give a
good approximation when the strings get close to these points. In the later part of this section
we ‘complete’ this massless AdS7 solution to one of eleven dimensional supergravity, where the
10d dilaton is interpreted as the size of the compactified 11-th dimension. The strings then turn
into M2-branes wrapping also the eleventh direction. We will study classical toroidal M2-brane
configurations on the eleven dimensional completion in the second part of this section. We find
this particular sector of classical toroidal M2-branes to be integrable.

We numerically solve the equations of motion for the classical string moving in the z and
χ-directions, and wrapping ξ. When the Romans mass F0 ∼ α′′′ = 0, the corresponding
function α(z) is

α(z) = −81π2k

(
1

2
z2 − 2R2

0

81π2k2

)
= R2 − µz2. (5.52)

Unlike for the piece-wise continuous functions α(z) we considered in the previous section, the
rank function in this case is a continuous function as there are no D8-branes on this background.
This background only has k D6-branes. Notice that the coordinate range is |z| ≤ 2R0

9πk . The
background is singular at the ends of the space that the dilaton blows up.

Infinite Massless Solution

From the Kovacic analysis we saw the NVE for χ has a Liouvillian solution for very large R0

(or for very short times). To obtain the corresponding warp factors for the infinite massless
solution we expand the fi(z) around z = 0 and obtain.

f1(z) = 8π

√
R2

µ
, f2(z) = 2π

√
µ

R2
, f3(z) =

π

2

√
R2

µ
, f4(z) = −3πz

2
. (5.53)

Again the existence of an integrable string embedding is not sufficient to prove integrability,
but we confirm there are not signs of chaotic behaviour in the numerical evolution. As for the
infinite linear quiver, the strings move off along the z-direction and never return, resulting in
orderly trajectories. This indicates that in such a regime of parameters, the string soliton is
might be integrable. and possibly the full CFT is integrable in that limit too.

Finite Massless Solution

Kovacic’s analysis (see section 5.3.3) proved inconclusive for a more general value of R0. Here
we show numerical indicators of chaos, demonstrating the string is in general non-integrable
on this massless solution.
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Figure 5.11: Trajectories in the (z, χ)-plane for the infinite massless geometry in eq.(5.53), with

initial conditions p
(0)
χ = 0, z(0) = 0, and p

(0)
z = 1. From left to right we change the initial value

of χ(0) to 0.25, 0.90, and 1.25 respecitvely, corresponding to energies E ≈ 3.70, E ≈ 10.04 and
E ≈ 12.09.

Figure 5.12: Trajectories in the (z, χ)-plane for a string-embedding on the massless backgound
with R = µ = 1, we only change the initial condition χ(0), and keep the other initial conditions
fixed pχ(0) = 0.1, z(0) = 0, pz(0) = 1. The orange surface represents the the two-sphere
fibered with warp-factor f3(z) along the z-direction. The dashed line indicated points where
χ = 0, π. Points on opposite sides of this dashed line should be identified since χ ∈ [0, π]. The
singularities at the end of the space are indicated by red dots.

To perform the corresponding (numerical) computation on the Lyapunov spectrum, we
choose the parameters k = 1, R0 = 500, ν = 1, taking as initial conditions for the phase space
variables: t = 0, z = 0.05, χ = 0.05, pt = 100, pz = 0.159689, pχ = 0.01 that satisfy the
vanishing of the Hamiltonian. From the plot in Figure 5.13.

This equation is hard to solve exactly, let us distinguish two cases: We observe that for
very large values of the parameter R0 (or for very short times), the eq. (5.38) reduces to an
oscillator equation. This indicates that in such a regime of parameters, the string soliton is
might be integrable and possibly the full CFT is integrable in that limit too.
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Figure 5.13: LCEs for the massless solution with large R.

Uplift to M-theory

We can uplift the massless solution, using that the 11-dimensional geometry and three-form
will be given by

ds2
11 =e−

2
3
φgµνdx

µ dxν + e
4
3
φ (dβ +Aµ dx

µ)2 (5.54)

Cµνρ =Aµνρ +Bµν ∧ dβ

where gµν is the 10-dimensional metric, Aµ the one-form potential, Aµνρ the three-form poten-
tial and β is the additional eleventh direction. This gives us for the AdS7 geometries in eq.(4.6)
the following result

ds2
11 = f

−2/3
6

[
f1 ds

2
AdS7

+ f2 dz
2 + f3 dΩ2(χ, ξ)

]
+ f

4/3
6 (dy − f5 cosχ dξ)2,

6C3 = f4 sinχ dχ ∧ dξ ∧ dy. (5.55)

We use the action and constraints for a membrane (see for example [187]),

S =

∫
dτdσdρ

(
γττ + L2 det(γαβ) + 2LεijkCµνδ∂iX

µ∂jX
ν∂kX

δ
)
.

γτα = 0, γττ + L2 det γαβ = 0. (α, β = σ, ρ) (5.56)

We propose a membrane configuration that is the natural lift of the string soliton we proposed
in the main part of the paper,

t = t(τ), z = z(τ), χ = χ(τ), ξ = kσ, y = λρ. (5.57)

We find an effective Lagrangian and constraint that can be written as,

L = f
−2s/3
6

[
f1ṫ

2 − f2ż
2 − f3χ̇

2 + L2k2λ2f3f
4s/3
6 sin2 χ+ Lkλf4f

2s/3
6 χ̇ sinχ

]
,

0 = −f1ṫ
2 + f2ż

2 + f3χ̇
2 + L2k2λ2f3f

4s/3
6 sin2 χ. (5.58)
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One can see that choosing s = 0 (and identifying Lλk = ν), this reduces to the effective
Lagrangian for the string in eq.(5.6). For s = 1, we have the full Lagrangian and constraint for
the membrane. We now study the equations of motion derived from eq.(5.58) and find,

ṫ =
E

f1
f

2s/3
6 , (5.59)

2f3χ̈ = −2L2k2λ2f3 cosχ sinχf
4s/3
6 − 2żχ̇f ′3 + 2Lkλ sinχżf ′4f

2s/3
6 +

4s

3

f3f
′
6

f6
żχ̇.

z̈ + E2 f
4s/3
6

2f1f2

(f ′1
f1
− 2s

3

f ′6
f6

)
+ ż2

( f ′2
2f2
− s

3

f ′6
f6

)
+ χ̇2 f3

2f2

(
− f ′3
f3

+
2s

3

f ′6
f6

)
+

+Lkλ sinχ χ̇
f ′4
f2
f

2s/3
6 + L2k2λ2 f3f

4s/3
6 sin2 χ

2f2

(f ′3
f3

+
2s

3

f ′6
f6

)
= 0.

The reader can check that for s = 0 the equation of motion of the string are recovered.
We now apply the same algorithmic procedure as before in section 5.3.2. The configuration

with χ(τ) = χ̇(τ) = χ̈(τ) = 0 solves the χ−equation of motion and leaves the z−equation as,

z̈ + E2 f
4s/3
6

2f1f2

(f ′1
f1
− 2s

3

f ′6
f6

)
+ ż2

( f ′2
2f2
− s

3

f ′6
f6

)
= 0. (5.60)

Calculating explicitly for the function α(z) = µ(1−z2) (after choosing constants appropriately),
using the explicit expression for fi(z), we find that z−equation is solved by

zs(τ) = cosh τ. (5.61)

Fluctuating the χ−equation as χ(τ) = 0 + εf(τ), we find the NVE,

f̈ + Bḟ +Af = 0, (5.62)

B = ż(τ)

(
f ′3
f3
− 2s

3

f ′6
f6

)
|zs = 2 coth τ,

A = L2k2λ2f
4s/3
6 − Lλkf2s/3

6

f ′4
f3
ż(τ)|z=zs = n1 sinh τ + n2 sinh2 τ.

With n1, n2 two numbers. In what follows we take s = 1 to discuss the case of the membrane
only. It is convenient to change the variable v = e−τ , to have an NVE that reads,

f ′′ +
3v2 + 1

v(v2 − 1)
f ′ +

( n1

2v3
(1− v2) +

n2

4v4
(1− v2)2

)
f = 0. (5.63)

We denoted f ′ = df
dv . We can construct the effective potential of the associated Schrödinger

problem, as indicated in eq.(5.15),

V (v) =
2B′ + B2 − 4A

4
=

3

4v2
− n1

2v3
+
n1

2v
− n2

4v4
− n2

4
+

n2

2v2
. (5.64)
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We observe that the first of the necessary conditions discussed in section 5.3.1 is satisfied. The
Kovacic algorithm could produce a Liouvillian solution for the membrane, which could imply
the classical membrane configuration in eq.(5.57) is integrable.

We see that the problem with the string is that it ‘misses’ the effects of the dilaton, repre-

sented above by the various powers of f
2/3
6 . It is the presence of the dilaton (that the ‘classical

limit’ of the Polyakov action misses), which changes the equation to introduce integrability.
Note that the dilaton becomes very large at the ends of the interval z = ±1 (in these units),
hence it cannot be neglected.

Integrability of the M2-branes

We will now demonstrate the brane configuration in eq.(5.57) is indeed integrable. To see
this more easily, we perform a coordinate transformation on the background. Using that
α(z) = R2 − µz2 we insert this in the expressions for the functions fi(z) and find

f4
6 (z) =

(
81π5/2

√
2

)4
1

R4µ5

(
R2 − µz2

)3
= e4φ0

1

R4µ5

(
R2 − µz2

)3
(5.65)

Inserting these functions explicitly in the metric gives us

ds2 = 2πe−
2
3
φ0µ1/3R2/3

[
4ds2

AdS7
+ µ

(
R2 − µz2

)−1
dz2 +

µ3

4R2

(
R2 − µz2

)
dΩ2

2(χ, ξ)

]
+ . . .

. . .+ e
4
3
φ0µ−5/3R−4/3

(
R2 − µz2

) [
dβ − µ

81π2
cosχ dξ

]2
(5.66)

We now make a coordinate transformation z = R√
µ sin ν, dz2

R2−µz2 = dν2

µ and obtain for the

metric

ds2 = 2πe−
2
3
φ0µ1/3R2/3

[
4ds2

AdS7
+ dν2 +

1

4
cos2 ν

(
µ3dΩ2

2(χ, ξ) + . . .

. . .+
2

π
e2φµ−2

[
dβ − µ

81π2
cosχ dξ

]2 )]
(5.67)

We now rescale dβ = µ
81π2dx and explicitly insert e2φ0 = 1

2812π5

ds2 = 2πe−
2
3
φ0µ1/3R2/3

[
4ds2

AdS7
+ dν2 +

1

4
cos2 ν

(
µ3dΩ2

2(χ, ξ) + [dx− cosχ dξ]2
)]

(5.68)

We can remove the prefactor by rescaling all the coordinates by a factor
√

2πe−
3
4
φ0µ1/6R1/3.

At last we have one prefactor µ3 left, that can be absorbed in the Ω2
2(χ, ξ)-term, giving us

ds2 = 4ds2
AdS7

+ dν2 +
1

4
cos2 ν

(
dΩ2

2

(
χ′

K
, ξ′
)

+

[
dx′ − cos

χ′

K
dξ′
]2
)

(5.69)
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We see that the last terms form the four-sphere, with the angle χ everywhere divided by K.
The resulting metric is thus AdS7×S4/ZK , where χ ∈ [0, πK ].

Inserting the explicit expressions for f4(z) and f5(z) in the three-form and performing the
same coordinate transformations, we obtain

F4 = vol Ω4

(
ν,
χ′

K
, ξ′, x′

)
. (5.70)

The classical toroidal M2-brane embedding we consider has two of its worldsheet coordinates
fixed, as it wraps both the β = µ

81π2x and ξ-directions, and does not move along these directions.
In the remaining target space directions it will therefore only see two legs of the F4, on the

nu = arcsin
√
µ
R z and χ-directions.

If we leave out the dependence of the target space on v, it will look like a three-sphere with
a constant antisymmetric F3-flux proportional to the volume of the three-sphere. This is the
target space of the classical WZW-model on SU(2), which is known to be integrable. Since
the membrane also wraps around the ξ-direction, the remaining worldsheet coordinate of the
membrane will not depend on it, and will describe a subsector of the WZW-model on SU(2).

It would be very interesting to see if this approach can be generalised to more general M2-
brane configurations, and if this could somehow be used to show the full membrane worldvolume
theory on particular backgrounds likeAdS7×S4 is integrable.

5.5.4 Vanishing Warp Factor

In this section, we will study our analytical study of the integrability of the string worldsheet
on the background with α(z) = A sinωz. We hinted briefly at this possibility in section 5.3.2,
where we showed the NVE equations for the string moving along the ρ-direction (5.17), and the
ϕ-direction (5.22), become simple harmonic oscillators when the warp factor f1(z) is equal to
a constant. In addition the NVE for the string moving along the χ-direction passed Kovacic’s
criteria, hinting this particular embedding might also have an analytic solution.

Our numerical analysis indeed confirms the integrability of the string dynamics in the (z, χ)-
plane for this background.3 In order to distinguish the integrable solution from a non-integrable
one we will study the background with α(z) given by

α(z) = −81π2
[
A sin

(πz
4

)
+B sin

(πz
2

)]
, (5.71)

where we let B range from 0 (for which the dynamics of the string is integrable) to 1. We will
show that the dynamics becomes chaotic as soon as B deviates from 0.

3In the next chapter we will prove analytically the strings on this background are indeed integrable. This
underlines the reliability of the numerical methods used in this chapter, where we used these same numerical
methods to show that the dynamics of strings on backgrounds with piece-wise continuous rank functions were
non-integrable.
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In figure 5.14a we start again with an initial value that is very close to the poles of the
2-sphere (χ = 0 and χ = π) for the integrable background with B = 0, the string oscillates as
we have seen before for the other backgrounds. As we increase the energy and allow the string
to move further away from the poles, it starts to moving freely around the entire 2-sphere, see
figure 5.14b. Note that even at high energies, the motion of the string remains ‘ordered’ and
quasi-periodic.

(a) χ(0) = 0.1, E ≈ 6.58,

tmax = 400, B = 0

(b) χ(0) = 0.9, E ≈ 43.33,

tmax = 400, B = 0

(c) χ(0) = 0.1, E ≈ 7.19,

tmax = 150, B = 0.2

(d) χ(0) = 0.9, E ≈ 48.95,

tmax = 250, B = 0.2

Figure 5.14: Trajectories of the string on the internal spaceM3 for low and high energies (from
left to right). The two images at the top correspond to the integrable background with B = 0
in eq.(5.71), for those on the bottom B = 0.2. For the integrable background (in the top two
images) the trajectories of the string soliton remain regular, even at high energies. We choose

initial conditions p
(0)
χ = 0, z(0) = 2, p

(0)
z = 1. For the figures on the left X(0) = 0.1, for those on

th right χ(0) = 0.9.

As we go away from B = 0 we are no longer considering the integrable background. The
asymmetry along the z-direction of this background makes it harder for the string to probe the
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right side of the space. In figure 5.14c we see that again for low energies the string oscillates
around the poles. Though its motion still looks quite regular and quasiperiodic, it already ap-
pears more disorderly than the integrable background. We see in figure 5.14d that as we now
increase the energy for the string on the non-integrable background, its motion becomes chaotic.

To verify this we obtain the Lyapunov exponents corresponding to our initial conditions. We
numerically estimate these largest Lyapunov exponents for the same low and high energy (left
to right) initial conditions that we considered in figure 5.14. The result is shown in figure 5.15.
We see in figure 5.15a that at low energies the LLE on both backgrounds is comparably small.
We expect the LLE for the integrable background (B = 0, in red) to asymptote to zero (with
some numerical noise). The LLE for the non-integrable background (B = 0.2, in blue) is a
little larger at low energies. This agrees with what we see in figure 5.14a and 5.14c.

We see in figure 5.15b that the dynamics for the high energy string still has an LLE of
almost zero on the integrable background (B = 0, in red), thus numerically confirming the
absence of chaos for this case. On the non-integrable background (B = 0.2, in blue) the value
clearly asymptotes to a non-zero value λ ≈ 0.01, confirming its dynamics is chaotic. This agrees
with what we see in figure 5.14b and 5.14d.
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(a) LLE for χ(0) = 0.1.
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(b) LLE for χ(0) = 0.9.

Figure 5.15: Lyapunov exponents for low- (left) and high-energy (right) string configurations,
using the same initial conditions as in figure ??. We consider both the integrable background
(B = 0, in red) and on a non-integrable background (B = 0.2, in blue). We find that the
integrable background has an LLE that asymptotes to zero (indicating the absence of chaotic
behaviour), while for the non-integrable background it asymptotes to a finite value, indicating
increasingly chaotic dynamics for higher energies. This agrees with what we see in figure 5.14.

To generate the Poincaré sections we choose different initial conditions in the (χ, pz)-plane,
all corresponding to the same energy (5.48). We run the numerical evolution for these initial
points and monitor the (z, pz)-plane every time the trajectories pass through the point χ(t) = 0.

In figure 5.16a we see that for the integrable background (B = 0) the trajectories of the
system are confined to the surfaces of embedded KAM tori in the (z, pz, χ, pχ) phase-space.
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As we increase the value of B we lose the integrability of the dynamical system. This onset of
chaos can clearly be seen in figure 5.16b-5.16d, as more and more KAM tori break apart when
we increase B until there is no structure left and we have a purely chaotic system for all initial
conditions.
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(a) B = 0
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(b) B = 0.025
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(d) B = 0.065

Figure 5.16: Poincaré sections for (z, pz)-plane at χ(t) = 0, for high energy string configurations
(E = 45) on backgrounds with values of B. As we increase B, we clearly see the onset of chaos
as more and more KAM tori break apart until there is no structure left and we have a purely
chaotic system.
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5.6 Appendix: Numerical Computation of the Lyapunov Spec-
trum

In this section we briefly discuss the algorithm used to compute the Lyapunov characteristic
exponents (LCEs) for a generic system, following [189, 183]. Let us consider a generic n-
dimensional dynamical system

q̇ = V (q), (5.72)

where q(τ) is the n-dimensional state vector q =
(
~X(τ), ~P (τ)

)
at time τ , q̇ = dq

dτ and V is a

vector field on the phase space, which generates a flow f :

ḟ τ (q) = V (f τ (q)) (5.73)

where f τ (q) = f(q, τ). Consider the evolution under the flow of two nearby points in the phase
space, q0 and q0 + δ0, being δ0 a small perturbation of the initial point q0. After a time τ , the
perturbation δτ will become:

δτ ≡ f τ (q0 + δ0)− f τ (q0) ≈ Dq0f
τ (q0) · δ0 (5.74)

The average exponential rate of divergence (or convergence) of two trajectories is then defined
by:

λ(q0, δ0) = lim
τ→∞

1

τ
log
||δτ ||
||δ0||

= lim
τ→∞

1

τ
log ||Dq0f

τ (q0) · δ0|| (5.75)

with ||δ|| the length of the vector δ. If λ(x, u) > 0, we have exponential divergence of nearby
orbits.

The Lyapunov characteristic exponents (LCEs) of order p, 1 ≤ p ≤ n, are introduced to
describe the mean rate of growth of a p-dimensional volume in the tangent space. Considering
a parallelepiped U0 in the tangent space whose edges are the p vectors δ1, ..., δp, the LCEs of
order p are defined by:

λp(q0, U0) = lim
τ→∞

1

τ
log[Volp(Dq0f

τ (U0))] (5.76)

being Volp the p-dimensional volume defined in the tangent space. It can be seen [188] that
there exist p linearly independent vectors u1, ..., up satisfying:

λp(q0, U0) = λ1 + ...+ λp (5.77)

The tangent vector δτ defined in eq.(5.74) evolves in time satisfying:

Φ̇τ (q0) = DqV (f τ (q0)) · Φτ (q0), Φ0(q0) = I (5.78)
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where Φτ (q0) = Dq0f
τ (q0). To calculate the trajectory, we have to integrate the system:{
q̇

Φ̇

}
=

{
V (q)

DqV (q) · Φ

}
,

{
q(τ0)
Φ(τ0)

}
=

{
q0

I

}
(5.79)

To compute the spectrum of LCEs, we will use the algorithm discussed in [189], based on
the calculation of the order-p LCEs defined in eq.(5.77) and on a repeated application of a
Gram-Schmidt orthonormalization procedure (which avoids technical difficulties that arise in
the implementation of the recipe described in [188]) that we briefly summarize here.

Recall that if we compute an orthonormal set of vectors {δ̂i} out of the original set of vectors
{δi}, by using the Gram-Schmidt orthogonalisation procedure, the volume of the parallelepiped
spanned by δ1, ..., δp is

Vol{δ1, ..., δp} = ||δ̂1||...||δ̂p|| (5.80)

The algorithm starts by choosing an initial condition q0 and a n×n matrix ∆0 = [δ0
1 , ..., δ

0
n].

Using the Gram-Schmidt procedure, we calculate the corresponding matrix of orthonormal
vectors ∆̂0 = [δ̂0

1 , ..., δ̂
0
n] and integrate eq.(5.79) from {q0,∆0} for a short interval T , to obtain

q1 = fT (q0) and
∆1 ≡ [δ1

1 , ..., δ
1
n] = Dq0f

T (∆0) = ΦT (q0) · [δ0
1 , ..., δ

0
n] (5.81)

The algorithm proceeds by repeating this integration-orthonormalization procedure K times.
During the k-th step, the p-dimensional volume Volp defined in eq.(5.76) increases by a factor
of ||wk1 ||...||wkp ||, where {wk1 , ..., wkp} is the set of orthogonal vectors calculated from Uk using
the Gram-Schmidt technique. Then:

λp(q0,∆0) = lim
k→∞

1

kT

k∑
i=1

log(||δ̂i1||...||δ̂ip||) (5.82)

From which we can derive

λp = lim
k→∞

1

kT

k∑
i=1

log ||δ̂ip|| (5.83)

To obtain the Lyapunov spectrum, we continue calculating the quantities:

1

KT

K∑
i=1

log ||δ̂i1|| ≈ λ1, ...,
1

KT

K∑
i=1

log ||δ̂n1 || ≈ λn (5.84)

for a suitable value of T , until they show convergence.
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VI. INTEGRABLE STRINGS ON ADS7 × (S3)λ

Chapter 6

Integrable strings on AdS7 × (S3)λ

In the previous chapter we studied the non-integrability of string embeddings on the various
AdS7 backgrounds corresponding to general N = (1, 0) SCFTs. Using both analytical and
numerical methods we showed that strings on AdS7 backgrounds with a finite number of flavour
branes are non-integrable.

In this section we will focus on one particular quiver background where the rank function
is continuous (instead of piece-wise continuous), and corresponds to an AdS7 background with
an infinite number of flavour branes that are smeared in a particular way. The rank function
for this background is of the form R(z) = A sinωz. We briefly hinted at this case in the
previous chapter (in section 5.3.2), where we showed the NVE equations for the string moving
along the ρ-direction (5.17), and the ϕ-direction (5.22), become simple harmonic oscillators
when the warp factor f1(z) is constant. We showed in section 5.5.4 that the numerics of string
embeddings in this space suggests the bosonic sector of the string might be integrable.

Since the warp factor f1(z) in eq.(4.7) is of the form

f1(z) = 8
√

2π

√
− α

α′′
(6.1)

we see that f1(z) = constant, together with the condition that α(z) has to vanish at the
beginning and end of the z-interval implies

α(z) = A sinωz. (6.2)

We will study this particular background in more detail in this chapter:

• In section 6.1 we give the full Massive Type IIA geometry for α(z) = A sinωz.

• In section 6.2 we show explicitly that the equations of motion of the bosonic sector of the
string worldsheet on this space are integrable and can be derived from a Lax pair.
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• In section 6.3 we discuss the relation of this background with the lambda deformation of
AdS7 × S3.

• In section 6.5 we address the peculiar fact that the rank function for this background is
smooth and continuous. We show this implies an infinite quiver with all colour nodes
proportional to the flavour nodes in the dual SCFT. We show in addition that one can
generalise the class of half-BPS AdS7 solutions to include all possible continuous concave
rank functions (the same idea can also be applied to the other half-BPS AdSp+1 geometries
we introduced in section 3.6).

• Another way of thinking about these continuous rank functions is that the flavour branes
on the AdS geometry are ‘smeared’. In section 6.6 we approach the idea of continuous
rank functions from this angle, and show this leads to the same conclusions as in the
previous section.

• In section 6.7 we discuss the field theory interpretation of the dual 6d N = (1, 0) SCFT in
more detail. We suggest the dual 6d theory is in the large-N limit with the Chern-Simons
level k →∞. We continue by calculating various observables for the theory.

6.1 AdS7 Geometry for α(z) = A sinωz

Let us first write the complete Massive IIA solution for α(z) = A sinωz. The z-coordinate
varies in the interval 0 ≤ z ≤ π

ω . We choose ω = π
N5

, being N5 a large integer number. The full
background of eqs.(4.6), (4.7) then reads,

ds2 =

√
2π

ω

(
8AdS7 + ω2 dz2 +

(
sin2 ωz

1 + sin2 ωz

)
dΩ2

)
, (6.3)

e−2φ = e−2φ0(1 + sin2 ωz), B2 = π

(
−z +

sinωz cosωz

ω(1 + sin2 ωz)

)
dΩ2, (6.4)

F0 =
Aω3 cosωz

162π3
, F2 = −Aω

2

81π2

(
sin3 ωz

1 + sin2 ωz

)
dΩ2. (6.5)

The continuous expression for F0 now suggests that we have a continuous distribution of D8-
branes. Indeed, in contrast with the examples discussed in the previous chapters, F0 in eq.(6.5)
is a continuous function, instead of a piece-wise constant and discontinuous one that is char-
acteristic of localised D8-branes. We postpone the discussion of this to section 6.5. The Ricci
scalar on this geometry reads

R =
ω sin4 ωz

4
√

2π

(
12 + 100 cot2 ωz + 75 cot4 ωz

1 + sin2 ωz

)
(6.6)

Notice the background is non-singular.
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6.2 Integrability of the Bosonic String

We will now present a Lax connection for the Polyakov action of the bosonic string on this
background, with an Neveu-Schwarz sector given by eqs.(6.3)-(6.4).

As discussed above, the warp-factor f1(z) as defined in eq.(4.6) is constant for this back-
ground, making the geometry in eq.(6.3) a direct product of the AdS7 and internalM3 spaces.
This simplifies defining a Lax connection for the string on this background considerably as
the oscillations of the string on these different spaces decouple. We can write the Polyakov
action in eq.(5.1), for the string on this background as the sum of the action for a string on
a seven-dimensional AdS7 geometry, and the action for the string on the three-dimensional
internal space M3, with a B2-field.

SPolyakov = SAdS7
Polyakov + SM

3

Polyakov

= − 1

4πα′

∫
Σ
d2σ ηabGAdS7

αβ ∂aX
α∂bX

β (6.7)

− 1

4πα′

∫
Σ
d2σ

(
ηabGM

3

µν + εabBM
3

µν

)
∂aX

µ∂bX
ν ,

where the Latin indices range over the worldsheet coordinates, and the Greek indices range
over the target space. In particular, α, β range over the AdS7 directions, and µ, ν range over
the coordinates z, χ and ξ of the internal space M3.

Since first part of this action can be written as a principal chiral model (PCM) on the
Z2 graded symmetric coset AdS7

∼= SO(2, 6)/SO(1, 6) we can simply obtain a Lax connection
using the coset constructions defined in chapter 2

Next we will turn our attention to a Lax connection whose flatness condition gives the
equations of motion for the strong on the internap spaceM3, as can be derived from the action
SM

3

P in eq.(6.7). We will elaborate more on the derivation of this Lax connection in Section
6.3. The Lax connection is of the form

L± = 2
(

1 +
√

2
) A±

1∓ Z
, where A± =

A1
±

A2
±

A3
±

 (6.8)
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and

A1
± = ± sinχ sin ξz± ±

sin 2z

2
(
1 + sin2 z

) (cosχ sin ξ χ± + sinχ cos ξ ξ±)

− sin2 z√
2
(
1 + sin2 z

) (2 cos ξ χ± − sin 2χ sin ξ ξ±)

A2
± = ∓ sinχ cos ξz± ±

sin 2z

2
(
1 + sin2 z

) (cosχ cos ξ χ± − sinχ sin ξ ξ±)

− sin2 z√
2
(
1 + sin2 z

) (2 sin ξ χ± + sin 2χ cos ξ ξ±)

A3
± = ∓ cosχ z± +

sinχ

2
(
1 + sin2 z

) (± sin 2z χ± + 2
√

2 sin2 z sinχ ξ±

)
We denoted by Z the spectral parameter, and use the notation f+ = ∂+f , f− = ∂−f and
f+− = f−+ = ∂+∂−f . One can check that the flatness condition for this connection is equivalent
to the equations of motion for the Polyakov action on the internal space M3 with B2-field
included. These equations of motion take the form,

z+− =
1

2
√

2
(
sin2 z + 1

)2 (√2 sin 2z
(
χ+χ− + sin2 χ ξ+ξ−

)
−
(
5 + sin2 z

)
sin2 z sinχ (χ+ξ− − χ−ξ+)

)
,

χ+− =
1

2
sin 2χ ξ+ξ− +

1

2
√

2

(
1 +

4

1 + sin2 z

)
sinχ (z+ξ− − z−ξ+)

− cot z

1 + sin2 z
(z+χ− + z−χ+) ,

ξ+− = − 1

2
√

2

(
1 +

4

1 + sin2 z

)
sin−1 χ (z+χ− − z−χ+)

− cot z

1 + sin2 z
(z+ξ− + z−ξ+)− cosχ

sinχ
(χ+ξ− + χ−ξ+) .

It is illuminating to discuss the deeper reason behind the integrability of this background. We
will do so in the next section.

6.3 Relation with λ-deformation

In this section we will give a further explanation for the integrability of the string worldsheet
on the background (6.3)-(6.5), and derive the Lax pair that we stated in the previous section.

It turns out that the Neveu-Schwarz sector part of the internal spaceM3 for this background—
eqs.(6.3)-(6.4) is exactly equal to that of the λ-deformed Wess Zumino Witten (WZW) model

126



VI. INTEGRABLE STRINGS ON ADS7 × (S3)λ

on SU(2). We start from the WZW model, which is given by an action of the form,

SWZW,k =
k

2π

∫
∂B
d2σ Tr [JaJ

a] +
k

6π

∫
B
d3σ εabcTr

[
JaJbJc

]
. (6.9)

The λ-deformation is an integrable deformation of the WZW model [141]. Namely, a deforma-
tion term is added to the action in eq.(6.9) that preserves the integrability. The action of the
λ-deformed WZW model is given by

Sλ = SWZW,k +
k

π

∫
∂B
d2σ J̃A+

(
λ−1 −DT

)−1

AB
jB− (6.10)

where Ja as before in eq.(6.9) is the left invariant current, and J̃a = ∂agg
−1 is the right invariant

current as we defined earlier above eq.(2.20). Notice these currents are algebra valued and the
indices A and B range over the components of the algebra of the group on which we study
this action. The matrix DAB = Tr

[
TAgTBg

−1
]

relates the left and right invariant currents as

JAa = DA
BJ̃

B
a . Here the TA are the generators of the group.

If we analyse the λ-deformed WZW model on the Lie group SU(2) [142], the action (6.10)
is equivalent to the Polyakov action of the string on a target space of the form,

ds2
λ = 2k

(
1 + λ

1− λ
dz2 +

1− λ2

∆
sin2 zdΩ2

2

)
,

Bλ
2 = −2k

(
z − (1− λ)2

∆
cos z sin z

)
volΩ2, (6.11)

e−2Φλ = e−2Φ0∆,

where ∆ = 1 + λ2 − 2λ cos 2z and λ ∈ [0, 1]. For λ = 0 we obtain the original WZW model.
The action we obtain for λ → 1 is related to the non-Abelian T-dual of the WZW model in
eq.(6.9). See [142] for a detailed explanation.

The λ-deformation for λ = 3− 2
√

2

The connection between the λ-deformation of the WZW model on SU(2) in eq.(6.11) and the
background solution in eqs.(6.3)-(6.5) is made by noting that for λ = 3 − 2

√
2, which implies

∆ = 4λ
(
1 + sin2 z

)
, the geometry of eq.(6.11) reads,

ds2
λ = 2

√
2k
(
dz2 + sin2 z

1+sin2 z
dΩ2

2

)
,

Bλ
2 = −2k

(
z − sin z cos z

1+sin2 z

)
volΩ2, (6.12)

e−2Φλ = e−2Φλ0
(
12− 8

√
2
) (

1 + sin2 z
)
.
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This is identical to the Neveu-Schwarz sector of the internal space M3 in eqs.(6.3), (6.4) if we

identify ω = π
2k and choose conveniently e−2Φλ0 . The holographic limit ω → 0 associated to

long quivers, corresponds to k →∞, the semi-classical limit of the WZW model. We write the
metric, dilaton and B2-field for this solution as,

ds2
10 = 8

√
2πds2

AdS7
+
π

2
ds2
λ, e−2Φ = e−2Φλ , B2 = πBλ

2 . (6.13)

In summary, for the function α(z) = A sin(ωz), the geometry becomes a direct product
of AdS7 ×M3. The sigma model for the string factorises into a sigma model on AdS7 times
a sigma model on M3 coupled to a B2-field. The first is integrable, and a Lax pair can be
written as explained in detail in section 2.2.1. The sigma model on M3 is the λ-deformation
of the WZW model on S3—see [142]— for a particular value of the parameter λ = 3 − 2

√
2.

This implies the existence of a Lax pair, given in eq.(6.8), for this part of the space. As a
consequence, the Neveu-Schwarz sector of the string sigma model on the whole solution of
eqs.(6.3),(6.5) is integrable.

6.3.1 Relation with the NATD of AdS7×S3

When we expand the Massive IIA solution of eqs.(6.3)- (6.4) near z → 0 we find,

ds2 ∼ 8π

√
2

ω
AdS7 +

√
2πω

(
dz2 + z2dΩ2

)
,

e−2φ ∼ e−2φ0(1 + ω2z2), B2 ∼ −
5πω2

3
z3dΩ2, (6.14)

F2 ∼ −
Aω5

81π2
z3dΩ2, F0 ∼ −

Aω3

162π2
. (6.15)

which would be a background for an the infinite linear quiver as we studied in section 5.5.2.

It has been shown that in the other half-BPS AdSp+1 backgrounds, the only solution on which
the string is integrable is typically this infinite linear quiver, which can in those cases be ob-
tained as a NATD of a more symmetric solution. For the AdS7 case the NATD of AdS7×S3 is
however not equal to this infinite linear quiver background, but is instead of the form

ds2 = L2
AdSAdS7 + L2

(
dr2 +

r2

r2 + 1
dΩ2

)
, (6.16)

e−2φ = e−2φ0(1 + r2), B2 = µ0
r3

1 + r2
dΩ2, F2 = ν0

r3

1 + r2
z3dΩ2, F0 = f0.

Where µ0, ν0, LAdS , L, f0, φ0 are constants.
It would be interesting to see if we can think about this infinite linear quiver background

as obtained by non-Abelian T-duality applied on some other ‘seed-solution’. This will however
not be AdS7×S3 but could perhaps be a more complicated background.
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6.4 The Type IIA Superstring on AdS7 × (S3)λ

This analysis has been postponed to a forthcoming publication.

6.5 Continuous Rank Functions and Infinite Quivers

As we pointed out in section 6.1, the integrable string background has a continuous function
F0(z). In this the solution is different from the ones with piece-wise continuous rank functions,
that we considered in the previous chapter. In this section we will show such continuous rank
functions can be thought of as corresponding to infinite linear quivers.

The supergravity description is only valid for SCFTs with very long quivers. This makes
it difficult to perform calculations on both the SCFT side and compare them with supergravity
calculations. In section 3.5.2 we defined the conventional approach of obtaining long quivers,
by ‘scaling’ a short quiver to one for which the supergravity description is valid. He we will
show how by instead first defining an arbitrary number of flavour groups Fi, and using the
consistency condition to then fix the ranks of all the gauge groups, one can define a quiver of
arbitrary length. In the limit N/F →∞ this gives rise to continuous rank functions. We will
illustrate this in detail for two particular cases, a parabolic rank function (section 6.5.2), and
a sinusoidal rank function (section 6.5.3).

6.5.1 Defining Quivers from their Flavour Groups

We do this by defining first all of the flavour groups Fk ≥ 0, where k is an arbitrary number
giving the length of this quiver.

Once all the flavour groups have been defined, the ranks of the gauge groups are fixed by
the consistency condition of eq.(3.24),

2Nk −Nk+1 −Nk−1 = Fk. (6.17)

The quiver starts with N0 = 0, and N1 = n, where n is some arbitrary number for the first
gauge group in the quiver. Inserting this in the above condition then dictates the rank of the
next gauge group

N1 = 2N0 − F0 −N−1 = 2N − F0. (6.18)

Having obtained the rank of the next gauge group this way, one can repeat this process to
recursively obtain the values for the consequitive gauge groups.

N2 = 2N1 − F1 −N0 = 3n− 2F0 − F1

N3 = 2N2 − F2 −N1 = 4n− 4F0 − 2F1 − F2 (6.19)

. . .
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A quiver defined in this way will automatically terminate itself by giving Nlast = 0, for the last
value of the rank function. This can be seen from the consistency condition, which dictates that
the values of the flavour groups are proportional to the second derivative of the rank function

Fk = (Nk −Nk−1)− (Nk+1 −Nk) (6.20)

∆Nk −∆Nk+1 = ∆2Nk

As the values of the flavour groups have to be greater than or equal to zero everywhere, the
rank function has to be concave, and will go back to zero eventually.

By choosing N an arbitrarily large number and using an arbitrarily large number k of
flavours this method automatically defines a quiver of arbitrary length and arbitrary large
gauge and flavour groups for which the supergravity limit is valid.

6.5.2 Parabolic Quiver

As an example we will start here with a quiver where all the flavour groups are equal to some
arbitrary integer number

Fk = f. (6.21)

And choose the rank for the first gauge group on the quiver to be equal to some other arbitrary
number N1 = n. The ranks of the gauge groups will be

Nk = nk −
k∑
j=1

(j − 1)f (6.22)

If we set N1 = n we find from the consistency condition eq.(6.17) that this will result in a rank
function R(z) = (2, 2), and the quiver will terminate after 2 colour nodes as can be seen in
figure 6.1. For a generic quiver of this form, with n and f arbitrary numbers, the rank function
will return to zero for Nk when k = 2n/f+1. We will first calculate the total number of branes
and central charges associated with brane set-ups involving this quiver. We then show that in
the limit n/f → ∞ the rank function asymptotes to that of continuous parabola (show with
the dotted grey line in figure 6.1).

The total number of Dd and Dd+2 branes corresponding to this discrete quiver will be given by

NDd =

2n/f∑
k=1

kn− k∑
j=1

(j − 1)f

 = n

(
2n2

3f2
+
n

f
+

1

3

)
(6.23)

NDd+2
= 2n (6.24)
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(a)

1N

1 2 3

R(z)

(b)

Figure 6.1: (left) the quiver, and (right) the rank function (in red) for n = 1 and f = 1.

Using this rank function in eq.(6.22) and the result from eq.(4.35) we can calculate the central
charges of the corresponding d = 4 and d = 6 dimensional field theories as (with P = 2n/f)

cd=4 =
P∑
k=1

N2
k = n2

(
2n2

3f2
+
n

f
+

1

3

)2

(6.25)

For the 6d case we find

b0 =
−1

2n
f + 1

2n∑
i=1

(
2n

f
+ 1− i

)
Ni =

−n
6f2

(f + n)(f + 2n) (6.26)

ak = kb0 +
Nk

6
+

k∑
i=1

(k − i)Ni = kb0 +
k2

24

(
4kn− f(k − 1)2

)
(6.27)

bk = b0 +
Nk

2
+

k−1∑
i=1

Ni = b0 +
k

12
(6kn− f(k − 1)(2k − 1)) (6.28)

giving us for the central charge

cd=6 = −n2

(
34n5

315f5
+

17n4

45f4
+

47n3

90f3
+

13n2

36f2
+

23n

180f
+

f

2520n
+

7

360

)
(6.29)

The larger we make the ratio n/f , the closer the rank function of this quiver will approximate
the function

R(z) =

(
n+

f

2
(1− z)

)
z (6.30)
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Figure 6.2: (a) the quiver, and (b) the rank function (in red) for n = 5 and f = 1.

See figure 6.2, where we illustrate this with an example for n = 5 and f = 1.

The simplest way to think about this intuitively is that the flavour groups give the second
derivative of the rank function (see section 6.5.1). When the flavour groups are constant
everywhere, the rank function thus needs to have a constant second derivative and will be
parabolic. As we choose the value of n/f larger we will approximate a parabola with more
points, which becomes continuous in the limit where we take n/f →∞.

We will now calculate the number of branes and central charges from the continuous rank
function and show they indeed match as we take the limit n/f → ∞. The number of branes
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can simply be calculated as

NDp =

∫
dz R(z) = n

(
2n2

3f2
+
n

f

)
(6.31)

NDp+2 = −
∫
dz R′′(z) = 2n (6.32)

Note this indeed agrees with the large n/f limit of eq.(6.23) and (6.24).
The central charge for the 4d -Maldacena case can be calculated as

c =
2

π4

∫ P+1

0
λ2(z) dz = n2

(
2n2

3f2
+
n

f

)2

(6.33)

using that λ(z) = R(z). Note this indeed corresponds with the large n/f limit of eq.(6.25).
To calculate the central charge for the 6d Cremonesi-Tomasiello case we need the function

α(z) that is proportional to the second integral of the rank function. Demanding that α′(z) = 0
for z = 1

2(2n
f + 1), and α(z) = 0 for z = (2n

f + 1) we find

α′(z) =
1

12
(6n+ f(3− 2z)) z2 − (f + 2n)3

24f2
(6.34)

α(z) =
z3

24
(2f + 4n− fz)− (f + 2n)3

24f2
z (6.35)

which gives us for the central charge

cd=6 = −n2

(
34n5

315f5
+

17n4

45f4
+

17n4

30f3
+

17n2

36f2
+

17n

72f
+

17fn

1440
+

17f2

20160n2
+

17

240

)
(6.36)

Note this result again corresponds with the large n/f limit of eq.(6.26).

We thus find that in the limit that n/f → ∞ the continuous rank function from eq.(6.30)
indeed captures the correct number of D-branes and central charges.

6.5.3 Sinusoidal Quiver

We will now discuss a continuous rank function of the form

R(z) = A sinωz. (6.37)

This particular example is especially interesting as it was recently shown in [106] that the
bosonic sector of the string is integrable on the AdS7 Cremonesi-Tomasiello geometry corre-
sponding to this rank function.
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The Gaiotto-Maldacena AdS5 solution corresponding to this rank function was discussed
in detail in [81] (section 4), its analytic continuation has been discussed in [40] (see eq.(2.44)
of that paper).

For this sinusoidal quiver the rank function has the property R(z) = −ω−2R′′(z). This means
all the flavour groups are proportional to the colour groups, as the number of flavour branes
everywhere has to be proportional to the second derivative of the rank function. We can, there-
fore, approximate this continuous rank function by a discrete one, using as a defining condition
that the number of flavours is everywhere proportional to the colour groups.1

Nk = ε Fk (6.38)

If we take this to be the defining condition for the quiver and set N0 = F0 = 0 at the beginning
of the interval, we can use the consistency condition in eq.(6.17) to recursively define the values
of Nk for a quiver or arbitrary length from the consistency condition

Nk = 2Nk−1 − Fk−1 −Nk−2

=

(
2− 1

ε

)
Nk−1 −Nk−2 (6.39)

This example proves to be a little more complicated than the parabolic quiver, and it is more
difficult to give a closed expression for the different ranks Nk

Nk = nk −
k−1∑
i=1

fk where Fk−1 =
1

ε

(
n(k − 1)−

k−2∑
i=1

fk

)
(6.40)

As the rank Nk is given in terms of the previous ranks and flavours, and the number of flavours
is now proportional to the rank - which in turn is given in terms of all the previous ranks and
flavours - we find that Nk is given as a recursive summation.

If we work this out and set N1 = n we find first the terms look like

N2 = 2n− n

ε

N3 = 3n− 4n

ε
+
n

ε2

N4 = 4n− 10n

ε
+

6n

ε2
− n

ε3
(6.41)

N5 = 5n− 20n

ε
+

21n

ε2
− 8n

ε3
+
n

ε4

N6 = 6n− 35n

ε
+

56n

ε2
− 36n

ε3
+

10n

ε4
− n

ε5
. . .

1Note that the shortest possible quiver of this type is the NF = 2NC quiver, when we set ε = 1
2
.
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As an example let us now obtain a quiver with only three colour groups that approximates a
sinusoidal quiver. This means we want N5 = 0, so we can solve for ε

5nε4 − 20nε3 + 21nε2 − 8nε+ n = 0, (6.42)

which has the roots

ε1± =
1

2
(3±

√
5) and ε2± =

1

10
(5±

√
5). (6.43)

The different roots will now all correspond to quivers with rank functions that are piece-wise
continuous approximations of sine functions (see figure 6.3), all vanishing at z = N5. We can

1N1N1N1N

1 2 3 4 5
z

R(z)

(a)

1 2 3 4 5

-2

-1

1

2

(b)

(c)

Figure 6.3: (a) Piece-wise continuous rank functions for the different values of ε: ε1+ (red),
ε1− (green), ε2+ (black) and ε2− (blue). (b) Corresponding continuous rank functions that are
approximated by these discrete ones. (c) Quiver diagram for ε1+. Note that the values of all
flavour groups are proportional to 2/(3 +

√
5) times the corresponding colour groups.

generalise this example to generate piecewise continuous approximations to the sinusoidal rank
function of any length, by requiring that the appropriate Nk = 0. Eq.(6.40) will then give
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a (k − 1)-th order polynomial in ε, the different roots of which will correspond to piecewise
continuous approximations to sinusoidal functions of different wavelengths all vanishing at
z = k. The largest of these roots will always correspond to an approximation of a sine with
period 2k.

As we take in eq.(6.38) the limit ε = N
F →∞, the length of the largest sine wave becomes

infinite. In this limit, the piecewise continuous rank functions will have the same numbers of
colour and flavour branes associated with it as one would obtain from the continuous rank
function, the way we illustrated earlier for the parabolic quiver.

6.6 Smeared Branes

In the previous section, we started by defining infinitely long quivers and argued they are de-
scribed by continuous rank functions in their gravitational dual. We will now reason the other
way around: we start by considering a supergravity solution with a continuous rank function,
and we show this implies the flavour branes that backreact on the geometry are smeared. We
then show the correct way to interpret the corresponding brane set-up is as an infinitely long
quiver described in the previous section.

When we consider the supergravity solutions in eqs.(3.35) and (4.6) with a rank function R(z),
the second derivative R′′(z) indicates the positions of the flavour branes backreacting on the
geometry.

When we consider a piecewise linear rank function R(z) ∈ C(0) (as in section 3.5.2), the
positions of the flavour branes are given by delta functions R′′(z) =

∑
i δ(zi). When we consider

a continuous rank function R(z) ∈ C(∞), the second derivative will no longer be a series of delta
functions, but will instead be continuous R′′(z) = ρ(z). This implies the flavour branes are no
longer located at fixed points, but are instead smeared along the z-direction of the geometry.
The geometry is now a solution of the equations of motion for the action

S10d Type II +

∫
dz ρ(z) SBIWZ , (6.44)

which differs from the action in eq.(3.25) in that the Dp+2-flavour branes are not located at
fixed points given by delta functions, but instead are smeared with a certain density ρ(z). The
backreaction of smeared flavour branes was first introduced in [133], and further studied in a
10d context in [134, 150]

Since the Dp+2 flavour-branes act as sources for the F8−(p+2) RR-flux, the Bianchi identities
are violated at the points where these flavour branes are located. In addition, the curvature
will typically diverge at the points where these flavour branes are located.

When we consider a continuous rank function, the delta functions are ‘smeared’ and the
resulting geometries no longer has singular points (as can be verified by inspecting the dilaton
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Figure 6.4: The positions of the flavour branes for (a) the discrete and (b) the continuous
parabolic rank function of figure 6.2. The continuous rank function implies a continuously
smeared distribution of flavour branes.

and curvature). This smearing then causes the Bianchi identities to be violated everywhere
along the z-direction2

dF8−(p+2) = ρ(z). (6.45)

Unlike the examples studied in [150], we cannot just add a smeared number of flavour branes to
the half-BPS backgrounds we consider in this paper. Since the numbers of colour and flavour
branes are not independent of each other, but are both related to the rank function R(z) though
the consistency condition, eq.(3.24), smearing the flavour branes then implies the number of
colour branes has to become infinite as well. This can also be seen from the Page charges for
the total number of flavour and colour branes in eq.(4.33), which are both related to the rank
function as

NDp+1 =

∫ P+1

0
dz R′′(z), (6.46)

NDp =

∫ P+1

0
dz R(z). (6.47)

Since the colour branes have to end on NS5-branes in the corresponding Hanany-Witten set-up,
we cannot have let the number of colour branes go to infinity without simultaneously letting the
number of NS5-branes go to infinity. This ensures that all the colour branes end on NS5-branes.

When we consider a finite continuous rank function R(z) for z ∈ [0, 1], increasing the
number of NS5-branes is done by the scaling z → ωz we discussed earlier in section 3.5.2. This
means we have to rescale the continuous rank function to become infinitely long. We thus find
that we can interpret any (concave) continuous rank function after ‘stretching’ it as accurately

2See Appendix A of [150] for an interesting relation between the violation of the Bianchi identities, super-
symmetry, and calibrated geometry.
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approximated by a piecewise continuous quiver of infinitely many points (for which there is a
well-defined brane set-up), as we showed in the previous section.

We can think of these continuous rank functions with smeared branes as ‘macroscopic’
descriptions of the infinite quivers defined in the previous section, where the infinite numbers
of branes become continuous distributions.

6.6.1 Orthogonal Bases of Quivers

Since the rank functions can be decomposed into various orthogonal bases of functions, this
naturally brings about the question if such bases have some interpretation in the dual SCFTs.

The differential equations for the functions that specify the half-BPS AdS geometries are
linear (see eqs. (4.8) and (3.36) for the AdS5 and AdS7 cases respectively). We can therefore
obtain any solution as a superposition of modes. Since we have shown in the previous sections
how to interpret continuous rank functions as corresponding to infinite quivers, we now try to
find a field theory interpretation for this basis of functions

αAdS7(z) = −
∞∑
n=1

An sin(ωnz), VAdS5(σ, z) = −
∞∑
n=1

cnK0(ωnσ) sin(ωnz). (6.48)

The rank functions corresponding to these solutions will be sinusoidal quiver with the ranks
of its colour groups proportional to its flavour groups Nn = εFn that we introduced in section
6.5.3. It would be very interesting to better understand if this linearity of the differential equa-
tions (4.8) and (3.36) reflects some deeper property of the SCFTs.

As an example, we cite the result that the central charge in eq.(4.34) of an arbitrary 6d quiver
SCFT, is directly given as a superposition of the central charges of these modes [136, 135].3

c6d =
−28

38 × 16×GN

∫ P+1

0
dz α′′(z)α(z), c4d =

2

π4

∫ P+1

0
dz λ2(z). (6.49)

Note that since the different modes are orthogonal, and α′′(z) ∼ α(z), the above computation
becomes the sum over the contributions to the central charge from each mode. It would be
very interesting to better understand this relation from the SCFT point of view.

In general, we expect other observables of the SCFTs to not linearly depend on the modes
in eq.(6.48). This can be seen as the AdS5 and AdS7 geometries in eqs.(3.35, 4.6) depend on
various combinations of the functions α(z) and V (z, σ) and their derivatives. Even though the
differential equations for α(z) and V (z, σ) are linear, this linearity will not be reflected in the
geometry, or the string dynamics on these spaces. As a result, observables like Wilson lines
(that depend on the string dynamics) or the entanglement entropy of certain regions (which
depends on the embedding of minimal surfaces) will not be linear in these modes.

3See section 2.3 of [136], section 5 of [106], see also [135].
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Polynomial Bases

It would be interesting to see if more quantities could be calculated directly from the rank
function, and if other bases of functions - orthogonal under different inner products - might
lend themselves to particular calculations.

Let us briefly remark that when constructing a basis of functions, we do not have to require
the rank functions for these basis functions to satisfy the consistency condition. It is sufficient
that the final superposition of modes satisfy this relation.

Fn = 2Nn −Nn+1 −Nn−1. (6.50)

One could use the tools of section 6.5.2 to construct in an analogous fashion a basis of orthogonal
polynomial rank functions.

6.7 Field Theory Interpretation of the AdS7×(S3)λ Background

We have shown how to make sense of continuous rank functions, as describing infinitely long
quivers for which the supergravity description is valid. These infinite quivers with continuous
rank functions R(z) can be defined by fixing their flavour groups and fixing the colours by
requiring that consistency conditions are satisfied.

These continuous rank functions generalise the solutions one normally considers for the
supergravity solutions that describe the near-horizon limit of these brane set-ups. Since the
supergravity requires quivers to be very large it might in fact be more convenient to think of all
(concave) rank functions as describing valid supergravity solutions that can be interpreted as
infinitely long quivers where the number of NS5, Dp and Dp+2-branes have all become infinite.
As we have seen in the examples for the parabolic and sinusoidal quivers (in sections 6.5.2 and
6.5.3 respectively), we have to take the limit N/F →∞, keeping F fixed, for the rank function
to become continuous. This corresponds to the large N or ’t Hooft limit in the dual SCFT.

Performing calculations for a generic long quiver of the kind obtained after the scaling pro-
cedure in section 3.5.2 can be quite difficult. But to study the SCFT corresponding to the
sinusoidal quiver we can set all of the Nn = εFn and take the ’t Hooft limit. Similarly one
could use other defining conditions for the flavour groups to study different continuous rank
functions. It would be interesting to see if certain calculations for quiver CFTs in question
become more accessible in these cases.

For the 6d SCFT corresponding to the AdS7 background in eqs.(6.3)-(6.5) we however do
not have a Lagrangian description, as we explained in more detail in section 4.1.1. Instead,
we will define the CFT in terms of its AdS7 dual, discuss some of its properties, and calculate
some of its observables.
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6.7.1 Large Chern-Simons Level

For the supergravity approximation to be valid, we need the string tension T to be small
compared to the curvature R of the space. In the case of AdS5× S5 it is well known how both
these parameters are related to the Yang-Mills coupling gYM and large N expansion in the
dual N = 4 SYM theory and the ’t Hooft coupling.

g2
YMN = λ = 2π

R2

T
(6.51)

A natural question to ask is what parameter in the 6d (1, 0) SCFT plays a similar role to gYM ,
and could be related to the string tension. As we have seen in eq.(4.2) the coupling for the
Yang-Mills field Aµ is fixed at infinity at the conformal fixed point, and can therefore not play
this role. We should thus be able to identify some other parameter in the 6d SCFT that scales
with the radius of our background in the holographic description.

A hint here comes from the parameter k in the integrable background in eq.(6.12). On the
string worldsheet this parameter comes from the Chern-Simons level of the WZW-model on
SU(2), and has to take on integer values.

Since these 6d SCFTs come with a Chern-Simons term with integer level, it then seems natural
to identify this parameter k with the level of the Chern-Simons term in the 6d N = (1, 0)
SCFT. This would then be analogous to the case of the ABJM model [8], where the integrable
limit also corresponds to the Chern-Simons level k →∞.

6.7.2 Central Charge

We consider the solution derived from α(z) = A sin(ωz) and choose ω = nπ
N5

which makes the

coordinate range in 0 ≤ z ≤ N5
n . We can calculate the number of D6 and D8-branes in this

background. Using eqs.(4.16),(4.19) we find,

ND6 = − 1

81π2

∫ N5

0
α′′(z)dz =

2A

81πN5
, (6.52)

ND8 =
1

81π2

[
α′′′(0)− α′′′(N5)

]
= − 2Aπ

81N3
5

. (6.53)

In absolute value, these expressions imply relations among the quantities,

A =
81π

2
N5ND6, A =

81

2π
N3

5ND8, π2ND6 = ND8N
2
5 . (6.54)
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We can use the expressions for the linking numbers—eqs.(4.22),(4.23) and the expression for
A in terms of the number of flavour D8-branes,

N5∑
i=1

Ki =
1

81π2
α′′′(N5)N5 =

Aπ

81N2
5

= −N5ND8

2
. (6.55)

In the paper [136], the authors found an expression for the central charge of the conformal
quiver—see eq.(2.14) in [136]. This coincides with the holographic central charge a found in
[74], derived by field theoretical means. Let us apply this expression for the case at hand. For
α(z) = A sin(ωz), we find

c = − 28

38 × 16×GN

∫ zf

0
α(z)α′′(z)dz =

8

38 ×GN
A2ω2N5 =

N2
D6N5

4π2
. (6.56)

We have used the expression for A in terms of the number of colour D6-branes and that in our
conventions GN = 8π6.

6.7.3 Entanglement Entropy

We calculate the entanglement entropy between two different regions A and B for the ground
state |0〉 of the 6d SCFT.

A = R5 × IL, B = Rg × (R− IL). (6.57)

where IL is an interval of length L. The entanglement entropy is defined as the entropy seen
by an observer in region A, who has to trace out the degrees of freedom in region B from the
total density matrix ρ0 = |0〉〈0|

SEE = −TrAρA ln ρA, where ρa = TrBρ0. (6.58)

In terms of the holographic description as an AdS7 supergravity solution, the entanglement
entropy can then be calculated directly from the Ryu-Takayanagi [59, 60, 166] minimal surface
that on the AdS boundary coincides with the boundary of the region A. In this case the
boundary of the region A looks like two copies of R5 separated by a distance L. The area
of this surface is proportional to the entangelment entropy between the regions A and B. A
regularisation is needed analogously to what happens when computing Wilson loops, see [137]
for the details. Since we separate the SCFT into two regions along one direction (and we ignore
time) the resulting minimal surface is eight dimensional. The entanglement entropy is then
given by

SEE =
1

4GN

∫
d8σ e−2φ

√
det g8,ind, (6.59)
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where GN = 8π6g2
sα
′4 = 8π6 and g8,ind is the induced metric on the eight dimensional surface.

In our treatment here we follow the notation presented in [137]
In particular for the backgrounds of the form in eq.(4.6). The eight surface is parametrised

by the coordinates
Σ8 = [x1, x2, x3, x4, x5, z, χ, ξ], R = R(x1).

Using Poincaré coordinates for the AdS7 space, the induced metric of the eight-surface is

ds2
8,ind = f1

[
R2d~x2

4 + dx2
1

(
R2 +

R′2

R2

)]
+ f2dz

2 + f3(dχ2 + sin2 χdξ2).

The entanglement entropy is then given by

SEE =
128V4

6561GN

(∫ zf

0
α′′(z)α(z)dz

)∫
dx1R

5

√
1 +

R′2

R4
,

V4 =

∫
dx2dx3dx4dx5.

We are interested in the L dependence of the entanglement entropy. When the gravitational
background is dual to a confining gauge theory, we typically find there are two kinds of minimal
surfaces possible: For large values of L there are typically two disconnected surfaces, so that
SEE does not depends on L. As we go to smaller values of L < Lcrit a smaller minimal
surface becomes possible where the two separate surfaces are now connected by a strip whose
width depends on L. One can think of this as signalling a phase transition that is similar to a
confinement-deconfinement one.

Following the formalism of the works [137], we find the regularised version of the entangle-
ment entropy, SregEE and the separation between the regions L to be,

SregEE =
V4

2GN

[∫ ∞
1

dy

(
y8√
y10 − 1

− y3

)]
NR4

0 = µ1NR4
0,

L =

[
2

∫ ∞
1

dy√
y4(y10 − 1)

]
1

R0
=
µ2

R0
.

Giving us

SregEE = N
(
µ1µ

4
2

L4

)
, N = − 512

6561

∫ zf

0
α(z)α′′(z)dz. (6.60)

The factors µ1µ
4
2 are common to all six-dimensional conformal field theories. The power L−4

is the only possible one given conformality and the dimension of the CFT. All the information
about the particular CFT in consideration is in the factor N ∼

∫
αα′′. Notice that this factor

also appears when computing the central charge of the CFT, see [136]. This is not a surprise
as both quantities measure the number of degrees of freedom.

142



VI. INTEGRABLE STRINGS ON ADS7 × (S3)λ

Using the expression in eq.(6.60), we find that for the SCFT corresponding to α(z) =
A sin(ωz)

SregEE =

(
µ1µ

4
2

L4

)
× 64π4N2

D6N5, (6.61)

Notice that L(R0) is a monotonically decreasing function that diverges at the origin and goes
to zero at the boundary. For SEE(L) we find two possible phases: the first (connected phase)
grows monotonically with L, while the second (the disconnected phase) is constant. The second
disconnected phase thus always has a larger entanglement entropy than the connected phase,
and is never favoured. Therefore there is no phase transition, as is indeed appropriate for a
conformal field theory.

An interesting observation is that these expressions for the linking numbers, central charge
and entanglement entropy in eqs.(6.55),(6.56),(6.61) have the same scaling with ND6 and N5 as
a four-dimensional N = 2 quiver that starts with a flavour group of rank ND6, continues with
N5 − 1 colour groups of rank ND6 and closes with a flavour group of rank ND6. See around
eq.(3.16) of [135].

6.7.4 Wilson Loops

Another interesting observable in a CFT is the Wilson loop [199]. These are operators of the
form

W (C) =
1

N
Tr P exp

[
i

∮
C
ds Aµẋ

µ

]
(6.62)

Here C is a contour with parametrisation xµ(s), and P denotes the path ordering of the fields
in terms of s.

By construction the Wilson loop W (C) is a gauge invariant non-local operator, and is equiv-
alent to the phase acquired by a quark that transforms under the fundamental representation
of the gauge group and moves along the contour C. From a thin rectangular Wilson loop with
sides R and T , and T � R, we can find the potential energy of a static quark-antiquark pair

V (R) = − lim
T→∞

1

T
ln〈W (C(R, T ))〉 (6.63)

In order to obtain massive (static) quark for N = 4 SYM, Maldacena [200] considered starting
from SU(N + 1) N = 4 SYM and breaking this to SU(N)× U(1), so the W-bosons acquire a
mass and now transform under the fundamental representation of SU(N). The scalars fields
of the original SU(N + 1) N = 4 SYM then break into the massless scalars of the remaining
SU(N) theory, and additional fields that obtain a mass and transform in the (anti-)fundamental
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representation of SU(N). The Wilson loop operator for the massive W-bosons is then of the
from

W (C) =
1

N
Tr P exp

[
i

∮
C
ds Aµẋ

µ + |ẋ|Φini

]
(6.64)

In terms of the holographic AdS description, Maldacena then proposed [200] that the expec-
tation value of the Wilson loop is equal to the partition function of a string that ends on C at
the AdS boundary

W (C)〉 = Zstring, (6.65)

where the leading term will be given by the classical string configuration.

Here we will follow this approach and study similar Wilson loops in the six-dimensional
N = (1, 0) theory by considering static fundamental string on a generic AdS7 background
of the form in eq.(4.6), parametrised by

t = τ, x = σ, R = R(σ), z = z(σ). (6.66)

We use Poincaré coordinates for the AdS7 space, parametrised by (t, ~x,R). The Nambu-Goto
action of the fundamental string on a generic background is,

SNG =
1

2π

∫
dτdσ

√
f2

1R
4 + f2

1R
′2 + f1f2R2z′2 =

T

2π

∫
dσ
√
f2

1R
4 + f2

1R
′2 + f1f2R2z′2.

(6.67)
This action does not depend explicitly on the ‘time variable’ σ and this implies the conserved
‘Hamiltonian’,

f2
1R

4√
f2

1R
4 + f2

1R
′2 + f1f2R2z′2

= C. (6.68)

At this point, it is interesting to analyse three situations:

• The situation for which the coordinate z(σ) is constant. In this case, we are back to the

usual Wilson loop calculation in strongly coupled CFTs [200], that gives EQQ ∼
√
λ

LQQ

• The situation in which R(σ) = R0 is constant. In this case we find the Nambu-Goto
action,

SNG =
T

2π

∫
dσ
√
f2

1 (z)R4
0 + f1(z)f2(z)R2

0z
′2. (6.69)

That leads to more a conventional minimisation problem, equivalent to the calculation of
the ‘usual’ rectangular Wilson loop in a background of the form ds2 ∼ R2

0f1(z)
[
dx2

1,p

]
+

f2(z)dz2. Using eq.(4.7) we find that f1(z)f2(z) = 16π2. The main difference with the
situations calculated previously in the bibliography is that the z-coordinate is bounded.
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• More interesting than the general study presented above is to consider the action in

eq.(6.67) for the case of our special background in eq.(6.3), for which f1(z) = 8
√

2π
ω and

f2(z) =
√

2πω. Using these values, the action in eq.(6.67) reads,

SNG =

√
32T

ω

∫
dσ

√
R4(σ) +R′2(σ) +

ω2

8
R2(σ)z′(σ)2. (6.70)

We can redefine the variable z̃ = ωz√
8

and from the action in eq.(6.70) we find two conserved
quantities,

R4

√
R4 +R′2 +R2z̃′2

= E,
R2z̃′√

R4 +R′2 +R2z̃′2
= J, R4 J

2

E2
= z̃′2. (6.71)

Following the usual procedure to write the separation of the external quarks in the x-direction
LQQ,x and in the z̃-direction LQQ,z̃,

LQQ,x =
E

R3
0

∫ ∞
1

dy
1

y2
√
y4 − J2

R2
0
y2 − E2

R4
0

,

LQQ,z̃ =
J

R0

∫ ∞
1

dy
1√

y4 − J2

R2
0
y2 − E2

R4
0

. (6.72)

The energy of the quark-antiquark pair EQQ is after regularisation,

EQQ =

√
32R0

ω

∫ ∞
1

dy

 y2√
y4 − J2

R2
0
y2 − E2

R4
0

− 1

− 1

 . (6.73)

After redefining J̃R0 = J and ẼR2
0 = E, we observe that these expressions in eqs.(6.72)-(6.73)

are the same as those obtained by Maldacena in [200] when considering quarks that are charged
under the R-symmetry. In our background the z-coordinate is not isometric, but the funda-
mental string in the configuration of eq.(6.66) does see it as part of the R-symmetry.

We conclude this chapter hoping to have given the reader a flavour of the many things that
can be holographically computed with the AdS7 × (S3)λ background.

145



146



VII. T-DUALITY AS A SOLUTION GENERATING TECHNIQUE

Chapter 7

T-Duality as a Solution Generating
Technique

In this chapter we will focus on the power of integrable deformations as tools to obtain new
supergravity solutions.

In the previous chapter we saw that the AdS7 × (S3)λ background (on which we showed
bosonic sector of the string is integrable) can be thought us as a lambda-deformation of
AdS7×S3 (which is not a supergravity background). In this chapter we will focuss on (non-
Abelian) T-duality as it maps one supergravity background to another and preserves integra-
bility. To illustrate the power of non-Abelian T-duality as solution generating technique we
will construct a new solution of type IIB supergravity with eight supercharges by applying
a non-Abelian T-duality to the AdS5 × S5 solution, along both the SU(2) isometries in the
internal and Lorentz symmetries.

The study of quantised charges and D-brane embeddings on the resulting background sug-
gests a configuration of D1 and D3-branes that polarise into concentric, spherical, D3 and
D5-branes due to the Myers dielectric effect. The low energy fluctuations are described by a
IIB matrix model with fuzzy sphere vacua characterised by partitions of the number of D1 and
D3-branes. The content of this chapter is largely based on the work published in [82].

Finding solutions to the supergravity equations can in general be quite complicated. Well
known solutions as AdS5 × S5 can often be found relatively easy as they have a very large
number of (super)isometries. The fewer isometries a solution has, the more difficult it is to find
solutions.

Since non-Abelian T-duality (NATD) maps us from one supergravity solution to another,
and breaks the symmetries of the original space on which one performs the duality, it can be
used as a ‘solution generating technique’ that allows us to obtain supergravity solutions with
fewer isometries. Because NATD preserves integrability, this has the additional benefit that if
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we start from a background on which the superstring is integrable, this will still be the case on
the resulting less symmetric dual background.

In this chapter we will show several examples of NATD as a solution generating technique
applied to AdS5×S5, where we apply a NATD on either an S3 ∼= SU(2) subspace in the AdS5

or S5 subspace, and on both of them. We give an overview of the supergravity solutions we
will discuss here in figure 7.1.

Figure 7.1: Schematic overview of the AdS5×S5 solution and the geometries that are obtained
by acting with a NATD on either of the SU(2)’s in the AdS5 or S5 subspaces, or both. Below
each background we write the largest superisometry group this background still possesses.
In blue we write the types of branes that source the Ramond-Ramond and H3 fluxes that are
present on the resulting backgrounds. The low energy fluctuations of these branes are described
by quantum field theories that are written here in orange.

7.0.1 AdS5 × S5 Solution

In this section we start by giving a brief overview of the supergravity solutions that we will refer
back to throughout the rest of this chapter. We refer the reader to [197, 37] for a more detailed
explanation of their properties. All of the solutions that we will discuss here are obtained by
applying T-duaities to the well-known type IIB AdS5×S5 solution. The metric of this solution
is

ds2 = L2
(
ds2
AdS5

+ dΩ2
5

)
, (7.1)
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where, in global coordinates, the line elements are

ds2
AdS5

= − cosh2 rdt2 + dr2 +
sinh2 r

4

(
ω2

1 + ω2
2 + ω2

3

)
, (7.2)

dΩ2
5 = dα2 + sin2 αdβ2 +

cos2 α

4
(σ2

1 + σ2
2 + σ2

3). (7.3)

Here ωi and σi are two sets of left invariant Maurer-Cartan forms parametrising the SU(2)
isometries inside the AdS5 and S5 subspaces respectively. They are explicitly given by

ω1 = cosψ sin θ1dφ1 − sinψ1dθ1, σ1 = cosψ sin θdφ− sinψdθ,

ω2 = sinψ1 sin θ1dφ1 − cosψ1dθ1, σ2 = sinψ sin θdφ− cosψdθ,

ω3 =dψ1 + cos θ1dφ1, σ3 = dψ + cos θdφ,

(7.4)

where α ∈ [0, π2 ], β ∈ [0, 2π], φ, φ1 ∈ [0, 2π], θ, θ1 ∈ [0, π] and ψ,ψ1 ∈ [0, 4π]. This solution is
supported by a self-dual RR five-form field strength,

F5 =
4

L
(Vol(AdS5)−Vol(Ω5)), (7.5)

with ND3 units of flux1

ND3 =
1

2κ2
10TD3

∫
S5

F5, L4 =
π

4
g2
sND3α

′2. (7.6)

This space has an SU(2, 2|4) superisometry group with 32 fermionic generators. The bosonic
subgroup of the isometry group is SU(2, 2)× SU(4) ∼= SO(4, 2)× SO(6).

7.0.2 NATD inside S5 (The Sfetsos-Thompson Solution)

In [190] a NATD was first applied along one of the SU(2) ⊂ SO(6) isometries of the AdS5×S5

solution. This will be the background we will introduce in this section.

To obtain the resulting supergravity solution, one can start from the AdS5×S5 metric as
written in eqs.(7.1) and (7.2) and apply a NATD to one of the one of the SU(2) ⊂ SO(6)
symmetry groups that are parametrised by the σi’s in eq. (7.4). In order to do this one can
follow the detailed example in section 2.9.1, where we performed a NATD on S3 ∼= SU(2). That
the metric on the S3 ∼= SU(2) given in terms of the Maurer-Cartan forms σi is now multiplied
by a warp factor cos2 α. These warp factors will now have to be included in the matrix M−1

ij

in eq.(2.136) when we perform the NATD.

1Throughout this paper we will be using 2κ2
10TDp = (2π)7−pα′(7−p)/2 and gs = 1.
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The resulting type IIA solution then reads 2

ds2 = L2ds2
AdS5

+ L2(dα2 + sin2 α dβ2) +
4α′2

L2 cos2 α
dρ2 +

4L2α′2ρ2 cos2 α

∆
dΩ2

2(χ, ξ)

B2 = −16α′3ρ3

∆
dΩ2(χ, ξ), e−2φ =

L2 cos2 α

64α′3
∆, (7.7)

F2 =
L4

2α′3/2
cos3 α sinα dα ∧ dβ, F4 = B2 ∧ F2,

where
∆ = 16α′2ρ2 + L4 cos4 α. (7.8)

Note that the AdS5 space remains unchanged, as do the α and β directions. The NATD of
the three-sphere is analogous to the one we obtained in our example in section 2.9.1, where
the only change now comes from the warp factor of 1

4 cos2 α that was in front of the SU(2) ⊂
SO(6) ⊂ SU(2, 2|4) of the original space. The B2-field, dilaton, and RR-fluxes all change as
explained in sections 2.8.1-2.9.

This solution is also known as the Sfetsos-Thompson solution, as it was first obtained in
[190]. The solution is singular at α = π/2 due to the presence of NS5-branes. and fits inside the
Gaiotto-Maldacena class of half-supersymmetric AdS5 geometries [190, 197] that we introduced
in section 3.6.2. We commented in section 3.7 that the Sfetsos-Thompson background is a
solution of this Gaiotto-Maldacena class with

VNATD(z, σ) = z

(
log σ − σ2

2

)
+
z3

3
, λ(z) = z, (7.9)

and is dual to a 4d N = 2 SCFT with an infinitely long linear quiver.
Since the NATD preserves integrability by construction the superstring will be integrable

on the resulting background, see also [140].

7.0.3 NATD inside AdS5

When we apply a NATD on the non-compact subspace of the AdS5 × S5 solution (7.1) along
the SU(2) parametrised by the ωi’s in eq. (7.4) we find a solution of type IIA given by [37]

ds2 = L2(− cosh2 rdt2 + dr2) +
4α′2

L2sinh2r
dρ2

1 +
4L2α′2ρ2

1 sinh2 r

∆̃
dΩ2

2(χ1, ξ1) + L2dΩ2
5,

B2 = −16α′3ρ3
1

∆̃
dΩ2(χ1, ξ1), e−2φ =

L2 sinh2 r

64α′3
∆̃, (7.10)

F2 =
L4

2α′3/2
cosh r sinh3 r dr ∧ dt, F4 = B2 ∧ F2, (7.11)

2Notice that we are using a different normalisation to the one originally presented in [190].
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VII. T-DUALITY AS A SOLUTION GENERATING TECHNIQUE

where

∆̃ = 16α′
2
ρ2

1 + L4 sinh4 r. (7.12)

The singularity of this solution at r = 0 is, as in the case of the previous Sfetsos-Thompson
solution (7.7), due to the presence of NS5-branes. This solution has Rt × SO(3) × SO(6)
isometries and fits into the Lin-Maldacena classification of half-BPS solutions of type IIA
supergravity [40].

If we note in eq.(7.2) that the metric on the sphere maps to the metric on AdS when we send
sinα→ cosh r, cosα→ sinh r and β → it, we see that this resulting background is in the same
way related to the Sfetsos-Thompson background on the previous section. However, it is worth
noticing that this relation should be taken too literally since both solutions are rather different.
The solution in eq.(7.7) can be associated with the near horizon setup of a D4-D5-NS5 system
and is dual to a 4D SCFT with linear quiver structure [197]. In the solution of eq.(7.10) we
break the conformal symmetries of the AdS5 subspace, and this solution will therefore not be
dual to an SCFT. It is instead dual to a particular vacuum of the BMN matrix model [37].

7.1 The Double NATD of AdS5×S5

Given the description of the above geometries that are obtained after applying one NATD in
terms of half-BPS geometries that fit into different classifications, it is interesting to consider
the application of two NATD’s in both SU(2) isometries of the AdS5 and the S5 subspaces.

We can either start with the solution in eq.(7.10) and perform a second NATD along the
S3 ∼= SU(2) inside the remaining S5, parameterised by the Maurer-Cartan forms σi defined
in eq.(7.4). Alternatively we could start from the solution in eq.(7.7) and perform a second
NATD on the S3 inside the remaining AdS5 space. In both cases we obtain the same solution,
as the application of multiple NATD’s on a space is ‘commutative’. See also figure 7.1.

The resulting background is a solution of type IIB supergravity and has an NS-sector given
by

ds2 = L2

(
− cosh2 rdt2 + dr2 +

4α′2

L4sinh2r
dρ2

1 +
4α′2ρ2

1 sinh2 r

∆̃
dΩ2

2(χ1, ξ1)

+dα2 + sin2 αdβ2 +
4α′2

L4 cos2 α
dρ2 +

4α′2ρ2 cos2 α

∆
dΩ2

2(χ, ξ)

)
, (7.13)

B2 = −16α′3ρ3

∆
dΩ2(χ, ξ)− 16α′3ρ3

1

∆̃
dΩ2(χ1, ξ1), e−2φ =

L4 cos2 α sinh2 r

(64α′3)2
∆∆̃,

where the functions ∆ and ∆̃ are the same as those defined in eqs. (7.8) and (7.12) respectively.
This solution has two singular points at r = 0 and α = π

2 that correspond to two sets of NS
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fivebranes (we will indicate them by NS and NS’) equally separated along the ρ and ρ1 axes,
respectively. This fact will be verified later by studying the quantised charges of the solution.

Note the NS sector in eq.(7.13) is a linear combination of the NS-sectors in eqs.(7.7) and
(7.10). This is because AdS5×S5 is a direct product of AdS5 and S5, and the NS-sectors in
each of these subspaces is unaffected when we perform a NATD in the other subspace.

The RR sector of the resulting background in eq.(7.13) however mixes the RR sectors of
eqs.(7.7) and (7.10) in a non-trivial way, and is of the form

F3 = − L
4

2α′
(
ρ cosh r sinh3 r dr ∧ dt ∧ dρ+ ρ1 sinα cos3 α dα ∧ dρ1 ∧ dβ

)
,

F5 =
L8ρ2 cos4 α sinh3 r cosh r

2∆
dt ∧ dr ∧ dρ ∧ dΩ2(χ, ξ) +

8α′2L4ρρ3
1 sinh3 r cosh r

∆̃
dr ∧ dt ∧ dρ ∧ dΩ2(χ1, ξ1) +

8α′2L4ρ3ρ1 sinα cos3 α

∆
dα ∧ dρ1 ∧ dβ ∧ dΩ2(χ, ξ) − (7.14)

L8ρ2
1 sinα cos3 α sinh4 r

2∆̃
dα ∧ dρ1 ∧ dβ ∧ dΩ2(χ1, ξ1),

F7 = −8L8α′3ρ2ρ3
1 cos4 α cosh r sinh3 r

∆∆̃
dt ∧ dr ∧ dρ ∧ dΩ2(χ, ξ) ∧ dΩ2(χ1, ξ1) +

8L8α′3ρ3ρ2
1 cos3 α sinα sinh4 r

∆∆̃
dβ ∧ dα ∧ dρ1 ∧ dΩ2(χ, ξ) ∧ dΩ2(χ1, ξ1).

For future reference we write the RR potentials associated with this solution satisfying Fp+1 =
dCp −H3 ∧ Cp−2. They are

C2 =
L4

8α′
(
−ρ sinh4 rdt ∧ dρ+ ρ1 cos4 αdρ1 ∧ dβ

)
, (7.15)

C4 =
L4

8
α′2ρ ρ1

(
ρ2

1

∆̃
sinh4 r dt ∧ dρ ∧ dΩ2(χ1, ξ1) +

ρ2

∆
cos4 α dβ ∧ dρ1 ∧ dΩ2(χ, ξ)

)
−L

8

8
cos4 α sinh4 r

(
ρ2

∆
dt ∧ dρ ∧ dΩ2(χ, ξ) +

ρ2
1

∆̃
dβ ∧ dρ1 ∧ dΩ2(χ1, ξ1)

)
, (7.16)

C6 =2L6α′2ρρ1

(ρ2
1

∆̃
sinh3 r cosh r cotα dt ∧ dr ∧ dρ ∧ dα ∧ dΩ2(χ1, ξ1)

+
ρ2

∆
cos3 α sinα tanh r dβ ∧ dα ∧ dρ1 ∧ dr ∧ dΩ2(χ, ξ)

)
(7.17)

+
2L8α′3

∆∆̃
ρ2ρ2

1 cos4 α sinh4 r
(
ρ dβ ∧ dρ1 ∧ dΩ2(χ, ξ) ∧ dΩ2(χ1, ξ1)

+ ρ1 dt ∧ dρ ∧ dΩ2(χ, ξ) ∧ dΩ2(χ1, ξ1)
)
.

152



VII. T-DUALITY AS A SOLUTION GENERATING TECHNIQUE

7.1.1 Supersymmetry of the solution

Unlike the Abelian T-duality, the action of the NATD is non-reversable, by which we mean it
breaks the isometry group on which we act with it.3 As an example we will consider how the
NATD acts on AdS5×S5, which can be constructed a the coset superspace

AdS5 × S5 ∼=
SU(2, 2|4)

SO(1, 4)× SO(5)
. (7.18)

If we act on either an SU(2) isometry that is a subgroup of the SO(2, 4) group of Lorentz
symmetries (as we did in section 7.0.3), or on one that is a subgroup of the SO(6) internal
symmetry group (as we did in section 7.0.2), part of this isometry group will be broken to
either SU(2|4) or SU(2, 2|2).

SU(2, 2|4) =

(
SU(2, 2) F

F SU(4)

)
(7.19)

SU(2|4) =

 0 0 0
0 SU(2) f

0 f SU(4)

 , SU(2, 2|2) =

 SU(2, 2) f 0

f SU(2) 0
0 0 0


Notice that in both cases, the NATD breaks half of the fermionic elements of the isometry
group. This means the number of Killing spinors of the resulting backgrounds are reduced by
half, from 32 to 16.

If we were to perform the NATD on both the internal and Lorentz isometries the number of
Killing spinors will be reduced by half, and we see from the structure of the supergroup there
will only be and SU(2|2) subgroup remaining

SU(2|2) =


0 0 0 0
0 SU(2) f 0

0 f SU(2) 0
0 0 0 0


Explicit Calculation

The above argument can be shown more explicitly by demonstrating that the AdS5×S5 Killing
spinors breaks supersymmetry when they are constrained to be independent of the SU(2) angles
inside the AdS5 and S5 subspaces. A procedure along these lines was already performed in
[137] for the case where the spinor is independent of the SU(2) angles inside S5. Here we

3For an Abelian T-duality this is not the case, and we can recover the original space by T-dualising the dual
geometry.
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will generalise that argument by imposing also the independence on the SU(2) angles inside
AdS5. Following the results of [42], the number of supersymmetries preserved by this spinor will
correspond to the ones after applying two NATD along the SU(2) isometries of the AdS5×S5

solution.
We first introduce a convenient set of frame fields for the solution in eq. (7.1) which

explicitly exhibit the SU(2) isometries of the background. They are

et =L cosh r dt, er = L dr, ea =
1

2
L sinh r ωa, a = 3, 4, 5,

eα =L dα, eβ = L sinα dβ, ei =
1

2
L cosασi, i = 6, 7, 8.

(7.20)

where ωi and σi were defined in eq.(7.4). In this basis the RR five form in eq.(7.5) reads

F5 =
4

L

(
et ∧ er ∧ eθ1 ∧ eφ1 ∧ eψ1 − eθ ∧ eφ ∧ eψ ∧ eα ∧ eβ

)
. (7.21)

Supersymmetric solutions impose the conditions4(
∇µ +

i

2L
Γtrθ1φ1ψ1Γµ

)
ε = 0, µ = t, r, θ1, φ1, ψ1, (7.22)(

∇ν −
i

2L
ΓθφψαβΓν

)
ε = 0, ν = θ, φ, ψ, α, β, (7.23)

where the Majorana-Weyl spinor ε satisfies

Γtrθ1φ1ψ1θφψαβε = −ε. (7.24)

We are interested in solutions to eqs. (7.22) and (7.23) which are consistent with the indepen-
dence of the spinor on the SU(2) angles in both AdS5 and S5. By imposing these conditions
we find the equations

(Γφ1ψ1 − cosh rΓr,θ1 − i sinh rΓtrφ1ψ1)ε = 0, (Γφψ − sinαΓθ,ψ − i cosαΓφψαβ)ε = 0,

(Γθ1ψ1 + cosh rΓr,φ1 − i sinh rΓtrθ1ψ1)ε = 0, (Γθψ + sinαΓφ,α − i cosαΓθψαβ)ε = 0,

(Γθ1φ1 − cosh rΓr,ψ1 − i sinh rΓtrθ1φ1)ε = 0, (Γθφ − sinαΓψ,α − i cosαΓθφαβ)ε = 0,

(2∂t + sinh rΓtr − i cosh rΓrθ1φ1ψ1)ε = 0, (2∂β − cosαΓαβ − i sinαΓθφαβ)ε = 0,

(2∂r + iΓtθ1φ1ψ1)ε = 0, (2∂α + iΓtθφψβ)ε = 0,

(7.25)

These equations can be massaged giving rise to the following set of equations

2∂βε+ iε = 0, 2∂tε− iε = 0, (7.26)

2∂αε+ iΓθφψβε = 0, 2∂rε− iΓtθ1φ1ψ1ε = 0, (7.27)

4We have written the spinor in complex notation as ε = ε1 + iε2
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VII. T-DUALITY AS A SOLUTION GENERATING TECHNIQUE

and the projector conditions

Γαβε = (−i cosα+ sinαΓθφψβ)ε = ieiαΓθφψβε, (7.28)

Γrθ1φ1ψ1ε = (− cosh r + i sinh rΓtθ1φ1ψ1)ε = −eitΓθφψβε. (7.29)

The Killing spinor is easily found and reads

ε = e
i
2

(t−β)e
i
2

(rΓtθ1φ1ψ1−αΓθφψβ)ε0, (7.30)

where ε0 is a spinor satisfying the projections

Γαβε0 = −iε0, Γrθ1φ1ψ1ε0 = −ε0. (7.31)

Since these projectors commute with each other, we have a total of eight supercharges preserved
by the solution. Had we started by imposing independence of the spinor on the Hopf-fibre
angles of the S3 inside AdS5 and S5, ∂ψ1ε = 0, ∂ψε = 0, we would have obtained the same
set of projections, ensuring that the solution after two Abelian T-dualities along the Hopf-fibre
angles preserves also eight supercharges [43].

7.1.2 Quantised Charges

In this section we shall study the information obtained from the Page charges of the solution
in eqs.(7.13) and (7.14).

We start by noticing that a common feature of many SU(2) NATD solutions is the presence
of singular points in the geometry. Such singularities correspond to the points where the S3

along which we are dualising the background shrinks to zero size and are originates from the
presence of NS5-branes. For the solution in eq.(7.13) we see that there are two such singular
points, at r = 0 and at α = π

2 . The leading order behaviour of the metric and dilaton close to
these points are

ds2 =L2

(
−dt2 + dβ2 +

1

4ν

(
dρ̃1

2 + dν2 + ν2dΩ2
2(χ1, ξ1)

)
+

1

4µ

(
dρ̃2 + dµ2 + µ2dΩ2

2(χ, ξ)
))

,

eΦ ∼ 4α′

L2√µν
1

ρρ1
, (7.32)

where ν = r2, µ = (α− π
2 )2, ρ̃ = 16α′2/L4ρ and the same for ρ̃1. The metric in eq. (7.32) can be

thought of as a continuous distribution of NS and NS’ fivebranes along the ρ̃1 and ρ̃ directions.
This can also be verified by measuring the units of H3 flux through the relevant cycles. Close
to r = 0, α = π/2 the leading order behaviour of the B2 field is B2 ∼ α′ρ1 dΩ2(χ1, ξ1) +
α′ρ dΩ2(χ, ξ). In [45, 44] an argument was proposed to bound the non-compact coordinate
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appearing in the NATD solutions, in the case at hand ρ1 and ρ, such that the number of
fivebranes is finite. The argument relies on the boundedness of the quantity

b0 =
1

4π2α′

∫
Σ
B2 ∈ [0, 1]. (7.33)

In the present case we have two non-trivial two-cycles given by S2
(χ1,ξ1) and S2

(χ,ξ) close to r = 0

and α = π
2 respectively. Hence, according to [45, 44], in order to achieve b0 ∈ [0, 1] over the

above two cycles we have to impose simultaneously that ρ1 ∈ [0, π] and ρ ∈ [0, π], which makes
the (ρ1, ρ)-plane a grid of size π, the boundary of which is delimited by NS5-branes, denoted
by NS5 and NS5’. We then see that in order to fully cover the non-compact range of ρ, ρ1 ∈ R+

and keep b0 ∈ [0, 1] , a large gauge transformation of the form

B2 → B̂2 = B2 − n1πdΩ2(χ1, ξ1)− nπdΩ2(χ, ξ), (7.34)

is required whenever we pass through the intervals [n1π, (n1+1)π] and [nπ, (n+1)π]. Therefore,
the H3 flux through the cycles (ρ1, S

2
(χ1,ξ1))|r=0 and (ρ, S2

(χ,ξ))|α=π
2

is, respectively,

NNS5 =
1

4π2α′

∫
S2

(χ1,ξ1)

∫ n1π

0
H3 = n1, N

NS5′ =
1

4π2α′

∫
S2

(χ,ξ)

∫ nπ

0
H3 = n. (7.35)

We then have NS5-branes located at positions ρ1 = π, 2π . . . n1π with their worldvolume along
(t, α, β, ρ, χ, ξ) and NS5’ branes at ρ = π, 2π . . . nπ extended along (t, β, r, ρ1, χ1, ξ1). These
two sets of NS5-branes divide the entire (ρ1, ρ)-plane into a grid. Notice that, the above dis-
cussed configuration of NS5-branes in (ρ1, ρ) is a consequence that the B2 field in (7.13) is a
superposition of the B2 fields in (7.7) and (7.10).

In addition we have non-zero F3, F5 and F7 RR field strengths, so that we can measure the
flux of these fields through non-trivial cycles present in the geometry. We have four piecewise
compact cycles defined by

Σ3 = (ρ1, S
2
(α,β)), Σ′5 = Σ3 ⊗ S2

(ξ1,χ1), (7.36)

Σ5 = Σ3 ⊗ S2
(ξ,χ), Σ7 = Σ3 ⊗ S2

(ξ1,χ1) ⊗ S
2
(ξ,χ).

The D5 Page charge computed in the interval ρ1 ∈ [n1π, (n1 + 1)π] is

ND5 =
1

4π2α′

∫
Σ3

F3 =
L4π

32α′2
(1 + 2n1), (7.37)

where the D5-branes are extended along (t, ρ, χ1, ξ1, χ, ξ). Moreover, Page charge for D1 and
D3-branes is induced due to large gauge transformations on the B2-field. In the interval ρ1 ∈
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[n1π, (n1 + 1)π] and ρ ∈ [nπ, (n+ 1)π], these Page charges are

ND3′ =
1

(2π)4α′2

∫
Σ′5

F5 − F3 ∧ B̂2 =
L4π

48α′2
(
3n2

1 + 3n1 + 1
)

+ n1ND5, (7.38)

ND3 =
1

(2π)4α′2

∫
Σ5

F5 − F3 ∧ B̂2 = n
L4π

32α′2
(1 + 2n1) = nND5, (7.39)

ND1 =
1

(2π)6α′3

∫
Σ7

F7 − F5 ∧ B̂2 +
1

2
F3 ∧ B̂2 ∧ B̂2 = n1ND3 + n

L4π

48α′2
(1− 3n2

1). (7.40)

We find there are two sets of D3-branes, one with worldvolume coordinates (t, ρ, χ, ξ) (denoted
by D3’), and one along (t, ρ, χ1, ξ1) (denoted by D3). From eqs.(7.39) and (7.40) we see there
is a contribution of the D1-branes to the D3 charge coming from the term,

N
(d)
D1 =

nn1

26π4α′3

∫
Σ5

F3(ρ1,α,β)dΩ2(χ, ξ)

∫
S2

(ξ1,χ1)

dΩ2(χ1, ξ1) = n1ND3. (7.41)

Therefore we see that this fraction of the D1 charge is dissolved into the D3-branes. This
suggest that we have D1-branes expanded onto spherical D3-branes due to the presence of the
B2(χ1,ξ1) field, as a consequence of the Myers dielectric effect [46]. The rest of the charge is
usual D1-brane charge. Notice that, from eq. (7.39), one might think that the D3-branes will,
in addition, blow up into D5-branes. This, however, is not possible as the D3 would then blow
up onto an Ω2(χ, ξ) 2-sphere of radius ρ, which is not possible, as the ρ-coordinate is part
of the worldvolume of the D3-branes. This effect is similar to the one found in [37] in which
D0-branes expanded onto fuzzy two-spheres to form spherical D2-branes. In analogy to this
case, we will identify below ρ1 as the radius of the expanded D1-branes into S2

(χ1,ξ1).
Moreover, the number ND3′ of D3’ branes increases every time we go through the interval

ρ1 ∈ [n1π, (n1 + 1)π]. From eq. (7.38) we see that a fraction,

N
(d)
D3′ =

1

(2π)4α′2

∫
Σ′5

F3(ρ1,α,β)

∫
S2

(ξ1,χ1)

dΩ2(χ1, ξ1) = n1ND5, (7.42)

of this D3’ charge is dissolved in the D5-branes. Again, the remaining charge is usual D3’
charge. From eqs. (7.41) and (7.42), the total, dissolved, charge carried by k concentric D3
and D5-branes is

N
(d)
D1 =

k∑
n1=1

n1ND3 , N
(d)
D3′ =

k∑
n1=1

n1ND5 . (7.43)

The above relations indicate that the vacua of the theory correspond to reducible SU(2) rep-
resentations where n1, associated to the radius of the spherical branes, corresponds to the
dimension of the representation whilst ND3 and ND5 are their multiplicities. This is similar to
the vacua of the N = 1∗ theory studied by Polchinsky and Strassler [47].
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t r ρ1 χ1 ξ1 α β ρ χ ξ

NS5’ • • • • • · • · · ·
NS5 • · · · · • • • • •
D5 • · · • • · · • • •
D3’ • · · · · · · • • •
D3 • · · • • · · • · ·
D1 • · · · · · · • · ·

Table 7.1: Overview of the brane content of the Type IIB supergravity solution in eqs. (7.13)-
(7.14), with the directions along which the branes are suspended.

We summarise the brane content of our solution in Table 7.1. From this table we see that
all D-branes in our solution intersect each other only along the t and ρ-directions. We therefore
expect that the resulting worldvolume theory of the intersecting branes is a (1+1)-dimensional
quantum field theory. However, since the D-branes have finite length along the ρ-direction, at
low enough energies this theory is described by a (0+1)-dimensional theory, a matrix model.

In conclusion, we have two arrays of NS5-branes forming a grid in the (ρ, ρ1)-plane. The
first set, denoted by NS5, is located at ρ1 = π, 2π, . . . , n1π and is extended along (t, α, β, ρ, χ, ξ)
whilst the second set, denoted by NS5’, located at ρ = π, 2π, . . . , nπ is extended along (t, r, β, ρ1, χ1, ξ1).
In addition, as a consequence of large gauge transformations, the D1 and D3’-branes expand
onto fuzzy two-spheres with equilibrium radius of ρ1 = n1π giving rise to D3 and D5-branes.
Moreover at any value of ρ1 = n1π we have usual D1 and D3’ charge. We will see in the next
section that these branes are indeed BPS.

To close this section, some comments about IIB matrix models are now in order. Matrix
models constructed upon the plane wave background in IIB supergravity have been studied in
the literature following different approaches [48, 49, 50, 54, 55]. For instance, the author in
[49] considered the quantisation of the 3-brane action whereas the starting point in [50] was to
consider the action for coincident gravitons [56] for the maximally supersymmetric IIB pp-wave
background. In the former case, the model contains eight transverse non-Abelian scalars which
explicitly realise the SO(4)× SO(4) symmetry of the pp-wave background whilst in the latter
the fuzzy 3-sphere vacua were constructed as S1 fibrations over fuzzy 2-spheres which break
the isometries of the model down to (SO(3) × U(1))2. The main difference of these models
with the matrix model studied here is that in the present case there is only one set of three
non-Abelian scalars which correspond to the (fuzzy) Ω2(χ1, ξ1) where the D1 and D3 expand
into D3’ and D5-branes respectively. It would be interesting to understand if the matrix model
studied here is embedded as a particular case of the above described matrix models.
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7.1.3 Dielectric branes

In this section we will study D3 and D5 probe branes in the background of the NATD solution of
eqs.(7.13)-(7.14). We will show that such probe branes correspond to spherical branes carrying
D1 and D3’ charge respectively, and have radii n1π, proportional to their charge. This supports
the explanation of the brane set-up characterising the NATD solution studied in the preceding
section.

Dielectric D3 brane

Consider a D3-brane with worldvolume along (t, ρ, χ1, ξ1). Its induced metric is of the form

ds2
D3 = L2

(
− cosh2 r dt2 +

4α′2

L4 cos2 α
dρ2 +

4α′2ρ2
1 sinh2 r

∆̃
dΩ2

2(χ1, ξ1)
)
. (7.44)

Large gauge transformations induce D1 charge proportional to n1π to this D3-brane, as can be
seen from the WZ action for the D3-brane,

SWZ
D3 =TD3

∫
(
t,ρ,S2

(χ1,ξ1)

)C4 − C2 ∧B2

=TD3α
′n1π

∫
(
t,ρ,S2

(χ1,ξ1)

)C2(t,ρ)dt dρ dΩ2(χ1, ξ1), (7.45)

=TD3

L4n1π
2 sinh4 r

2

∫
Rt

∫ (n+1)π

nπ
dρ ρ,

where C2(t,ρ) is the (t, ρ) component of the C2 potential in eq. (7.15). For the DBI action we
find

SDBID3 = TD3

∫
t,ρ,S2

(χ1,ξ1)

d4x e−Φ
√
−det(g −F),

= TD3

L2π sinh3 r cosh r

8α′

∫
Rt

∫ (n+1)π

nπ
dρ
√

16α′2ρ2 + L4 cos4 α (7.46)

×
√

16α′2(ρ1 − n1π)2ρ2
1 + (n1π)2L4 sinh4 r.

We easily see that the D3-brane finds its equilibrium position by sitting at the points α = π/2,
ρ1 = n1π where the DBI action reduces to

SDBID3 = TD3

L4n1π
2 sinh r cosh r

2

∫
Rt

∫ (n+1)π

nπ
dρ ρ. (7.47)
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We find that close to r ∼ ∞ the D3-brane becomes BPS as the leading order terms in the DBI
and WZ actions exactly cancel. In this limit the D3 extending on S2

(χ1,ξ1) sits at the singularity

at α = π/2 and has a radius

R ∼ 2n1π

L sinh r
. (7.48)

We can repeat the above computation for a probe D3’-brane along (t, ρ, χ, ξ). However, this
does not correspond to a dielectric brane as the minimum of the potential felt by this D3’-brane
sets its equilibrium radius, ρ1, to zero. This is to be expected since the radius of the S2

(χ,ξ)
is ρ, which is part of the worldvolume coordinates of the D3’-brane. We will see in the next
subsection however that D3’-branes can polarise into spherical D5-branes.

Figure 7.2: Expanded D3-branes on 2-spheres with radii ρ1 = n1π.

Dielectric D5 brane

Next we consider a probe D5-brane with worldvolume coordinates along (t, ρ, χ, ξ, χ1, ξ1), wrap-
ping the S2 along (χ1, ξ1). The induced metric on this D5-brane is

ds2
D5 = L2

(
− cosh2 rdt2 +

4α′2

L4 cos2 α
dρ2 +

4α′2ρ2 cos2 α

∆
dΩ2

2(χ, ξ) +
4α′2ρ2

1 sinh2 r

∆̃
dΩ2

2(χ1, ξ1)
)

(7.49)
The DBI and WZ actions for this probe brane, in the presence of large gauge transformations,
are respectively

SDBID5 = −TD5L
2π2

2

∫
Rt

∫ (n+1)π

nπ
dt dρ cosh r sinh r

√
16α′2(ρ1 − n1π)2ρ2

1 + L4(n1π)2 sinh4 r

×
√

16α′2(ρ− nπ)2ρ2 + L4(nπ)2 cos4 α, (7.50)

SWZ
D5 = TD5

∫
(
t,ρ,S2

(χ,ξ)
,S2

(χ1,ξ1)

)
(
C4 − C2 ∧B2 +

1

2
C2 ∧∆B2

)
∧∆B2, (7.51)
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where ∆B2 = n1πdΩ2(χ1, ξ1) + nπdΩ2(χ, ξ). From the form of the WZ action we see that the
D5-brane carries both D1 and D3’-brane charges. Their separate contributions using the RR
potentials (7.15)-(7.17) are

TD5

∫
(C4 − C2 ∧B2) ∧∆B2 = −2(n1π)TD5L

4π2α′ sinh4 r

∫
Rt

∫ (n+1)π

nπ
dρ ρ2, (7.52)

TD5

∫
C2 ∧∆B2 ∧∆B2 = 2(n1π)TD5L

4π2α′ sinh4 r

∫
Rt

∫ (n+1)π

nπ
nπ dρ ρ. (7.53)

We see that the charge of both terms is proportional to n1π. The D5-brane is in equilibrium
at ρ1 = n1π, α = π

2 and r ∼ ∞ when both the WZ and DBI actions are of the same form and
cancel each other. However, notice that at α = π/2 the Ω2(χ, ξ) shrinks to zero size and the
D5-brane becomes effectively the D3-brane studied in section 7.1.3. Moreover, if we instead
take n = 0 together with ρ1 = n1π and r ∼ ∞ the D5-brane is indeed stable because of its
D3’ charge. The D5-brane therefore wraps an S2

(χ1,ξ1) of radius (7.48) carrying D3’ charge
proportional to its radius.
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[42] Ö. Kelekci, Y. Lozano, N. T. Macpherson and E. Ó. Colgáin, Supersymmetry and non-
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