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Abstract

Because of the strong dynamic behavior and computing power, zeroing neu-
ral networks (ZNNs) have been developed to handle different time-dependent
issues. However, due to the high nonlinearity and complexity, the research
on finding a feasible ZNN to address time-dependent nonlinear optimization
with multiple types of constraints still remains stagnant. To simultaneously
handle multiple types of constraints for the time-dependent nonlinear op-
timization, this paper proposes a novel neural-network based model in a
unified framework of ZNN. By using leveraging the Lagrange method, the
time-dependent nonlinear optimization problem with multiple types of con-
straints is converted to a time-dependent equality system. The proposed
multi-constrained ZNN (termed MZNN) inherently possesses the effective-
ness of exponential convergence property by utilizing the time-derivative
information. Theoretical analyses on the global stability and exponential
convergence property are rigorously provided. Then, three general numerical
examples in time-independent and time-dependent cases verify the compu-
tational performance of the proposed MZNN. An application based on the
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mobile robot for nonlinear optimization control sufficiently demonstrates the
physical effectiveness of the proposed MZNN for the control of mobile robot
with both performance-index optimization and multiple physical-limit con-
straints. Finally, comparisons with existing neural networks such as gradient
neural network (GNN), and performance tests with investigation on compu-
tational complexity substantiate the superiority of the MZNN for the time-
dependent nonlinear optimization subject to multiple types of constraints.

Keywords: Multi-constrained zeroing neural networks (MZNNs),
Time-dependent problem, Nonlinear optimization, Multiple constraints,
Robot control
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1. Introduction

For simplification and also for low requirement of real-time computation,
most researchers only focus on handling statical or termed time-independent
problems in the past decade [1, 2]. Due to the increasingly containing com-
plexity as well as the requirement of time-dependent calculation [3-5], the
investigation on time-dependent problem becomes increasing desirable and
significant. Being quite contrary to time-independent problems, it is more
tough to handle time-dependent problems because the related problems, coef-
ficients in addition to solutions are time-dependent [6-8]. Traditional statical
approaches for the time-independent solution may become invalid because of
unignorable time-delay (or termed lagging behind) errors [9, 10]. The con-
ventional statical approaches usually find a solution at present moment on
the basis of the present data and conditions. The veritable solution keep
variation whereas a local time solution will no longer be a feasible solution
[11]. Thus, to investigate effective methods for time-dependent issues is an
interesting but also challenging research topic [12-14].

Time-dependent nonlinear optimization becomes common issue in fields
of both academic and engineering such as robotic control [8, 14-19], signal
process [20], and numerical algorithm [10, 21-23]. Owing to the advantages
on the parallel processing and feasibility of hardware implementation, ap-
proaches by leveraging neural networks [24-33], especially recurrent neural
networks (RNNs), were viewed as powerful approaches for time-dependent
nonlinear optimization [34-36]. Particularly, on the basis of the scalar val-
ued energy function, neural-network based approaches by utilizing negative-



gradient have been developed and investigated [37, 38].

In contrast with gradient neural networks (GNNs) utilizing scalar-valued
energy functions, zeroing neural networks (ZNNs) define an indefinite er-
ror function with scalar value (also vector value or matrix valued). In the
meantime, the ZNNs fully explore the time-derivative data and conditions
for solving time-dependent issues [39-43]. Despite the undeniable success
research work in references [39-43] using different kinds neural network to
address the time-dependent nonlinear optimization, a tough issue is still rem-
nant in a unified framework of ZNN. Time-dependent nonlinear optimization
with multiple types of constraints is hard to be addressed availably because
of nonlinearity and complexity.

1.1. Related work

Researchers focus on solving the time-independent problems had a great
success many years ago [1, 2]. Hu and Zhang [1] proposed a novel RNN model
with the capacity of global convergence for addressing the time-independent
convex-quadratic programming problems. Qin et al. [2] developed a new and
effective one layer RNN to address the complex variable convex optimization
with different kinds of constraints.

Because of the significance of time-dependent nonlinear optimization, var-
ious studies were reported [44-49]. Miao et al. [10] developed ZNNs for solv-
ing time-dependent quadratic-optimization issues with applications to the
robot motion generation. The survey on the ZNNs is report in [50], which
covers state-of-the-art studies on time-dependent problems solving. In addi-
tion, Li et al. [49] investigated general square-pattern-discretization formulas
for the neural networks to handle the future optimization issue subject to lin-
ear equality constraint. Chen et al. [38] introduced neural network systems
on the basis of gradient-direction strategy to solve Lyapunov-matrix issue.
However, most GNNs produce the above mentioned time-delay errors, and
also exhibit a divergency phenomenon when time-dependent nonlinear opti-
mization is solved [51].

Within the framework of ZNN theory, extensive work on ZNNs has been
generalized in terms of dynamic behaviour [52, 53], convergence performance
[54], and robustness [55, 56]. Stanimirovi¢ et al. [52] introduced a so-called
hyper power ZNN method to calculate the time-dependent outer-inverse.
Guo et al. [53] developed a new time-dependent ZNN discrete algorithm
for optimization issue. Being deferent from the conventional ZNNs with a



Table 1: Different Solution Properties via Neural Networks for Time-Dependent Opti-
mizations

Neural Problem Equality Inequality Time Convergence
network related constraint constraint dependent performance
1] Quadratic optimization Yes Yes No Asymptotic convergence
[10] Quadratic optimization Yes No Yes Exponential convergence
[21] Nonlinear optimization Yes No Yes Exponential convergence
[37] Quadratic optimization Yes Yes No Asymptotic convergence
[49] Nonlinear optimization Yes No Yes Asymptotic convergence
[57] Linear optimization Yes Yes No Asymptotic convergence
[58] Quadratic optimization No No Yes Exponential convergence
[59] Quadratic optimization Yes No Yes Asymptotic convergence
[60] Quadratic optimization Yes No Yes Asymptotic convergence
Ours Nonlinear optimization Yes Yes Yes Exponential convergence

fixed predefined parameters, Li et al. [56] designed a variable gain finite time
convergent ZNN model to solve the convex quadratic optimization.

1.2. Contributions and organization

In this research, by following a unified framework of ZNNs, this paper
develops a neural network (called MZNN) to address time-dependent nonlin-
ear optimization. The proposed neural network is capable of simultaneously
handling multiple types of constraints. The optimization issue with multi-
ple types of constraints is skillfully converted to a time-dependent equali-
ty system by leveraging Lagrange method. The proposed MZNN becomes
effectiveness for exponential-convergence performance by utilizing the time-
derivative information. In addition, theoretical analyses are rigorously given.
Three illustrated examples in both the time-independent and time-dependent
cases verify the computational performance of the proposed model. A real-
world mobile robot application on nonlinear optimization and tracking con-
trol demonstrates the effectiveness of the proposed MZNN. Finally, compar-
isons with GNN as well as performance tests with investigation on computa-
tional complexity substantiate the advantages of MZNN for time-dependent
nonlinear optimization subject to multiple types of constraints. The main
contributions are highlighted.

e This research simultaneously handles multiple types of constraints for
time-dependent nonlinear optimization in a unified framework of ZNN
to propose a neural network. The MZNN makes progresses on ZNN op-
timization from single type constraint to multiple types of constraints
by taking advantages of fully exploitation of time-derivative informa-
tion.



e The design of the MZNN for nonlinear optimization subject to different
types of constraints is illustrated to fill the vacancy of the conventional
ZNN for time-dependent nonlinear optimization.

e Theoretical analyses, illustrative examples and robot application sub-
stantiate global stability, exponential-convergence performance and phys-
ical validity of MZNN for time-dependent solution of nonlinear opti-
mization.

For better illustration, comparisons on different solution properties the
proposed MZNN with other existing neural networks on literatures [1, 10, 21,
37, 49, 57-60] are shown in Table 1. The studies in [1, 49] and the proposed
MZNN involve the nonlinear optimization issue. However, both the neural-
network models in [1] and [49] did not consider inequality type constraint
being different from the proposed MZNN. In addition, the proposed MZNN
is able to address the optimization issue under different types of constraints
being superior to the existing ones in literatures [1, 10, 21, 37, 49, 57-60].
Unlike those in [10, 21, 37, 49, 57, 59, 60] with the solution properties of
asymptotic convergence, the proposed MZNN has outstanding convergent
performance, that is exponential-convergence performance. Such a conver-
gent performance makes the proposed MZNN address time-dependent non-
linear optimization possessing a fast solution. The above discussions and
comparisons are the significance and motivation of the proposed research on
this field

The organization of this paper is presented. Firstly, the problem formu-
lation with preliminaries of nonlinear optimization is presented in Section
2. Then, Section 3 illustrates the design process of the neural network in
unified framework of ZNN with theoretical analyses provided. In Section 4,
numerical examples, robot application, comparisons and tests are provided.
Section 5 concludes the paper with future work.

2. Problem formulation

A general mathematical description of nonlinear optimization containing
multiple types of constraints could be depicted in real time as

min. f(x(t),1t)
s. t. g(x(t)) = A(t)x(t) + b(t) = 0, (1)
h(x(t)) = C(t)x(t) + d(t) <0,
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of which f(-,-) : R" — R denotes an object function for optimization assumed
to be second order differentiable. In addition, f(-,-) is convex with respect to
the time-dependent state-vector x(¢) € R™ in time interval [0,t] C [0, +00).
Object function f(-,-) is termed time-dependent convex if, at each t., the
objective function f(x(t.),t.) being a common function as well as only relat-
ed to x, is convex [21]. In addition, g(x(¢)) € R™ and h(x(t)) € R? can be
multiple types of constraints such as equality or inequality constraint, respec-
tively, as two different types of constraints, with the rank of A(t) € R™*"
being always equal to m, and b(¢) € R™, matrix C(¢) € RP*™ and d(t) € RP.
To solve general nonlinear optimization issue is that a solution x(t) is found
which make problem (1) always hold true with time ¢ being greater than or
equal to zero.

From the perspective of real-world optimization, a mobile robot usual-
ly requires to minimize the velocity norm because of the energy reduction
in motion control. For better understanding physical nature of (1), it can
be specifically illustrated as a robot time-dependent nonlinear optimization
and tracking control with performance-index optimization and physical-limit
constraints [55]. Firstly, a performance-index optimization is constructed
related to an object function f(-,-) as

2

min. f(x(t),t) = %, (2)
where x(t) = O(t) is the vector-valued combined velocity of mobile robot,
and | - [|[g is Euclidean norm. From the perspective of real-world optimiza-
tion, a mobile robot usually requires to minimize the velocity norm because
the energy consumption is closely related to the robot control signals, i.e.,
the combined velocity ©(¢). The smaller value of ©(t), the lower energy
consumption of the mobile robot. Therefore, to reduce the energy consump-
tion in robot motion control, the optimization for performance-index (2) is

chosen. In addition, physical-limits of robot-signals are considered
0~ <) < 6, (3)

of whice ©~ is the lower bound and ©7 is the upper bound of physical-limits
of the vector-valued of combine-velocity, respectively. Hence, a relatively
complete description with physical essence for nonlinear optimization and
tracking control of mobile robots with performance-index optimization and



physical-limit constraints is given by
: 2

i, ||@(2t)||E

5.t RO, 0(6)O(E) = fmalt) — SA(Tm(t) — Tma(t)), (4)
0~ < O(t) < e,

of which matrix R(-,-) is a matrix-valued integration of the geometrical re-
lation information; 9(¢) is a heading angle of mobile base; 6(t) is the vector-
valued joint angle; 0 is the predefined parameter; A(-) is the active function
vector. The elements of active function are monotonically-increasing odd
functions; ry(¢) is the actual end-effector three dimensional Cartesian posi-
tion; and ry,(t) is the user predefined end-effector three dimensional position
vector in Cartesian space [55]. The above problem description (4) is the time-
dependent nonlinear optimization and tracking control of mobile robots with
physical nature for primal mathematical nonlinear optimization problem (1).

The solution x(t) of general optimization (1) can be found by defining a
Lagrange function [61] as

where variables A(t) = [Ai(2), Aa(t), -, An(D)]T € R™ as well as u(t) =
(1 (8), pa(t), - -+, up(t)]T € RP are Lagrange multipliers related to multiple
types of constraints such as equality or inequality. The superscript T is a
transpose operation. From Lagrange method [61], the solution x(¢) to general
optimization (1) is identical to the solution to the set of equations depicted

L) AD.ut)t) _

ox

9(x(t)) =0, (6)
h(x(t)) < 0, u(t) = 0, and " ()h(x(t)) = 0,

which is further rewritten

P00 1 AT(p)A1) + (252 p(r) =,
g(x(t)) =0, (7)
h(x(t)) < 0,u(t) >0, and p*(¢)h(x(t)) = 0.
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To ensure the existence of solution as well as to be optimal for optimization
(1) the following theoretical basis are provided.

Lemma 1. [62]: If and only if two vectors \*(t) € R™ and p*(t) € RP exist
such that the integrated vector y*(t) = [x*T(t), \*T(t),u*T(t)]T € RTmtP
satisfies a Karush-Kuhn-Tucker (KKT) condition as

DD |, o) +AT< WA (E) + CT(t) (t) = 0,
A (1) + b(t) =

Ctyx(t) +d(t) <

1T ()(C()x <t>+d< >>

vector x*(t) € is thus optimal solution for optimization (1).

pr(t) >0,
=0,

PROOF. Generalized from [62]. O

Lemma 2. [63]: Provided that object function f(x(t),t) is time-dependent
convex at each t, with the domain of x(t.) denoted as §2. being a convex set
for eacht, for x;(t.), and xs(t.) in domain and 0 < v <1 for object function
satisfying convexity inequality as

( (te) (1 y V)XQ(t ) te)
<vf(xalte),te) + (1 —v)f(xa(te), te),

for any two points x1(t.) and Xa(te) in domain Q., and the line segment
belonging to Qe, that is, wx;(t.) + (1 —w)xa(t.) € Qe for all 0 < w < 1, then
x*(t) is an optimal solution to optimization (1) if and only if x*(t) is a KKT
point.

(9)

PROOF. Generalized from [63]. O

The following lemma is the preliminary for the conversion of optimization
(1) to an equality system in a unified design framework of ZNN.

Lemma 3. Solving the set of equations (7) for optimization (1) is identical
to solving a set of equation as

T
AGOD ¢ ATEA(E) + (262) " u(t) = 0,

g(x(t)) =0, (10)
TH(=h(x(t)) — p(t)) = —h(x(t)),



where the ith element of function mapping YT () : RP — R? is given by

+ B 'Ui(t), Zf Ui(t) Z 0,
THut)) {0, s (1)

of which v(t) € R? is a vector.
PROOF. One can prove that solving
h(x(t)) < 0,pu(t) > 0, and ' ()h(x(t)) =0, (12)

is identical to solving

which is segmented into two parts.
Part I (Sufficiency): Denote vectors h(x(t)) and u(t) as

Zl(x(t)) (1)

QXt zt

et = || o iy = 2]
hp(X(t)) Mp(t)

with i« = 1,2,--- ,p. Assumed that h;(x(t)) < 0, p;(t) > 0 together with
P i(t)hi(x(t)) = 0, it is obtained

pi(t)hi(x(t)) <0,
which is further obtained
P
> m(th(x(1) <0
i=1
It can be found that Y Y, p;(¢)h;(x(t)) = 0 holds true, which thus yields
pi(t)hi(x(t)) = 0, otherwise Y %_, p1;(t)hi(x(t)) < 0. Hence, it obtains p;(t) =
0 or h;(x(t)) for all i. Situation i): If p;(t) = 0, then

T3 (=hi(x(t) = pi(t)) = T (=ha(x(2))) = —hai(x(t))



with —h;(x(t)) > 0. It makes that (13) could be derived from (12). Situation
ii): If hy(x(t)) = 0, then

T (=ha(x(8)) = pi(t)) = T (—pa(t)) = —ha(x(t)) = 0
with —u;(t) < 0. It also makes that (13) could be deduced from (12).

Part IT (Necessity): Assumed that YT (—h(x(t)) — u(t)) = —h(x(t)),
and the elements T; (—h;(x(t)) — ps(t)) = —h;(x(t)) always hold true, it has
—h;(x(t)) > 0. It obtains h;(x(t)) < 0. Situation i): If —h;(x(t)) — ui(t) > 0,
then

—hi(x(t)) = pi(t) = —hi(x(t))
with T (—=h;(x(t))—pi(t)) = —hi(x(t)). Hence, it obtains y;(t) = 0 as well as
hi(x(t)) <0 with —h;(x(t)) — pi(t) >. Situation : If —h;(x(t)) — pi(t) <0,
then

T (=hi(x(t) — pi(t)) = —hi(x(t)) =0,

that yields u;(t) > 0 with —h;(x(t)) — u;(t) < 0. By summing up both two
situations, it has

wi(t) =0, and h;(x(t)) <0,
and 11;(t)hi(x(t)) = 0, or

wi(t) >0, and h;(x(t)) =0,
and further obtains p;(¢)h;(x(t)) = 0. Hence, it has > 7 u;(t)hi(x(t)) =0
and pT(t)h(x(t)) = 0 with h(x(t)) < 0 and u(t) > 0. The proof is thus
completed. O

3. MZNN design in ZNNN unified framework

In this section, a novel neural network, termed MZNN, in ZNN design
framework is proposed. In addition, theoretical analyses on stability as well
as convergence performance are presented.

3.1. MZNN model design

Firstly, for time-dependent nonlinear optimization, in ZNN design frame-
work [42, 43], an indefinite error function in vector form can be defined on
the basis of Lemma 3 as

T
A0 1+ ATWAD) + (L) (o)
e(t) = —g(x(t

10



with e(t) € R*™™*P. Note system structure (1) is the problem to be solved.
The error function (14) is an intermediate function that is utilized to develop
the neural network and find the solution. According to the Leibniz formula
[64], it has a product rule of derivative as

d(u(t)o(t))  du(t)
. a Oy

with u(t) and v(t) being two time-involved variables. Afterwards, it has

d((Oh(x(1))/0x)Tu(t)) — (Oh(x(1))" . d* (Oh(x(t)) /o)
dt _( Ox ) ) + dt

().

It can be found that

d(o ( /ax Zp: |
8}(8){Z %i(t),

holds true. Hence, one obtains

UL of CalLTRANEY

dt n BX(?XZ»
Ph(x(t))
- ZXZ < 0x0x%; ) o)
Make a variable substitution

(%) ult) = oi(t),

\Ij(t) = [Qpl(t)v 902(t)ﬂ e 790i(t)’ U 7@”@)]'

with

Thus, it has

d (0h(>£§t))/3><) u(t) = in(t)so (t) =

which yields

d((c?h(x(t)c)it/fJ’X)TM(t)) W) + <3h(x(t>)> alt).




On the basis of the above substitution, time-derivative of (14) is obtained

6(t) = [en(1), &x(1), &s(1)] "
with €;(t) € R", éx(t) € R™ and é;3(t) € R? being defined by

é(t) = Wx(w + ATON) + AT (A (@)

o+ (o) i)

&(t) = —A()x(t) — A(t)x(t) — b(t),

6s(t) = ~(1)T" (—W"“”xw - u<t>)

ox
Oh(x(t)) .
- TX(W

of which ®(t) € RP*? is given by

®(t) = diag(d(—h(x(t)) — p(?))),

where diag(v) : R? — RP*P is to generate a p X p dimensional-square matrix.
Elements of vector v € RP are on the diagonal. In addition, elements of
o(+) : R — RP are denoted

0, if v(t) <0,

¢:(vilt)) = {1, if v;(t) > 0.

The ith element of function mapping Y~ (-) : R? — RP is given by

_vi(t)v lf Ui(t) S 07

Ti (wlt) = {0, it v(t) > 0.

In the unified ZNN design framework, it can be applied the ZNN design
formula [42, 43| as

é(t) = —CT'(e(t)),
with ¢ denoting a ZNN predefined parameter for practitioners to adjust the
convergence rate. In addition, I'(-) : R*™*P — R"™™*? is an active func-
tion and its elements are all monotonically-increasing odd functions. A novel

12



MZNN with dynamical expression for addressing the time-dependent nonlin-
ear optimization (1) under multiple types of constraints is proposed

Q) AT(t) CT(t)] [*(®)

—At) 0 0 A1)
My o e L) G
(S5} (t) I (t)
= —CP (D) (t) — |I'g (t) s
€3 (t) Irs (t)

where is rewritten in a compact matrix form

W(t)y(t) = —=CT(e(t)) —x(t), (16)

in which W(t) and y(t) are given by

[ () AT ) CH(t) x(t)
(t) 0 |, vy(t)= |\
M1 @ (1) )
with Q(t) = 92f(x(t),£)/0x% + (1), M(t) = B(H)C(t) — C(t), r1(t) =
AT(BA(E), rat) = —A(t )X(t)—b(t), r3(t) = 0 and r(t) = [r1(t), r2(t), ra()]".

Remark 1. The parameter ¢ is a pivotal parameter of MZNN (16). It can
be predefined by the users and developers. In theoretical, any values that
satisfy the condition ¢ > 0 € R could be viable. In the perspective of conver-
gence performance, the value of user-predefined parameter ¢ could be set as
appropriately large enough as the hardware that permits in engineering [65].

The proposed MZNN (16) is in compact matrix form containing implicit
output y(¢). Such compact matrix form (16) of the proposed MZNN can not
be readily implemented and realized by hardware units. To make MZNN
(16) more computable, it can be equivalently written as

W)y (t) = —(CI'(e(t)) +r(t)).

The above equation can be pre-multiplication both term using pseudo-inverse
matrix of W (t), i.e., WT(¢). Hence, the MZNN is reformulated as the follow-
ing explicit and computable expression

y(t) = =WH(B)(CT(e(t) +r(t), (17)

13
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Figure 1: Neural network structure with the neurons in the proposed MZNN (16) for
solution to optimization (1) subject to multiple types of constraints.

which the ith (i =1,2,--- ,n+ m+ p) neuron of neural network is given by

wi= [ 3 w(-ree) o) (13)

of which y; is the ith neuron of MZNN (16), and wj; is the ijth element of
matrix WT(t).

A neural network structure of the proposed MZNN (16) for handling op-
timization (1) subject to multiple types of constraints is presented in Fig.
1. The initial state y(0) of vector y(t¢) is the input of MZNN (16), and y; is
the ith neuron of MZNN (16) with its steady state being the output of the
MZNN for addressing time-dependent nonlinear optimization. In addition,
the ijth element of matrix WT(t), i.e., w;j, is the time-dependent weight of
MZNN (16). The neuron output y; contains the feedback information for
MZNN (16). Because there exist feedback connections among neurons, the
proposed MZNN (16) is a typical kind of RNNs taking full advantages of the
time-derivative information of parameters. Other operations including multi-
plications and integrator could be realized by utilizing logarithmic amplifiers

14



Algorithm 1 Design of MZNN (16) for Time-Dependent Nonlinear Optimization
1 Input: Predefined ZNN parameter, i.e., ;
2 Input: Activation-function vector mapping, i.e., A(-);
3 Initialize: Neural network state vector, i.e., y(0);
4  Formulate: Time-dependent object function, i.e., f(x(t),t);
5  Formulate: Time-dependent equality constraint, i.e., g(x(t));
6  Formulate: Time-dependent inequality constraint, i.e., h(x(t));
7
8
9
1
1

Set: Neural network evolution duration Ty, sampling period T;
if t < Ty then
Calculate: Time-dependent weight matrix W (t);
0 Calculate: Time-dependent coefficient vectors e(t) and r(t);
1 Calculate: Time-derivative of state vector y(t) via dynamical
equation (17);
12 Update: Neural network state vector y(t) in next iteration by equation
y(t+7)=y(t) +7y(t);
13 Output: Next iteration neural network state y (¢ + 7);
14 else if t > Ty then
15 Stop: Neural network evolution process, calculation finished;
16 end if

[66]. Provided that involved operations could be achieved by applying op-
erational amplifiers, a hardware version of the proposed MZNN (16) would
be readily obtained. Moreover, to clarify the processing steps of the pro-
posed MZNN (16) in a clear manner, an algorithm description is presented
in Algorithm 1.

3.2. Theoretical analyses

To show global stability and outstanding convergence performance of the
proposed MZNN (16), theoretical analyses are given. As theoretical basis,
literatures [16, 42, 43] might be used for better understanding the prelimi-
naries.

Theorem 1. (Global Stability and Convergence of MZNN): As for optimiza-
tion (1) is under multiple types of constraints. Assumed that a positive user-
predefined parameter ¢ > 0 and an odd as well as monotone increasing active
function T'(+) are applied, from an arbitrary neural-network state y(0), the
closed-loop MZNN (16) is globally stable with the first n elements of state
y(t) converging to an exact time-dependent solution x*(t) of (1) in the sense
of Lyapunov.
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PROOF. As for (1) subject to multiple types of constraints, a neurodynamical
equation of MZNN (16) can be given by

&(t) = —¢T'(e(t)), (19)
and the ith sub-element of (19) is obtained
é(t) = —CT(e(t)), (20)
of which user-predefined parameter { > 0, I'(+) is an odd as well as monotone
increasing active function and with index ¢ = 1,2, --- , p. Define a Lyapunov
function candidate )
°(t
g@)::%é)_ (21)

Because of L(t) > 0 for e;(t) # 0, and L(t) = 0 for e;(t) = 0 only, therefore,
L(t) becomes positive definite. After that, the time-derivative of £(t) can be
computed

£ = 0 et = —neor (e,

Because I'(+) is an odd as well as monotone increasing active function, it has

—T(ei(t)) = T(=et),

that it obtains
<0, if e;(t) #0,

—ne; () (ei(t)) {: 0, if e;(t) = 0.

Hence, it asserts the result that £(t) is negative definite when ¢ € [0, 400)
and user-predefined parameter ¢ > 0 both hold true. According to Lyapunov
stability theory [16], MZNN (16) is proven to be globally stable and its all
elements of error function e;(t) are globally convergent to 0. In other words,
the first n elements of y(t) is convergent to an time-dependent solution x* ()
of optimization (1). The proof is completed. O

Theorem 2. (Exponential Convergence Performance of MZNN): As for op-
timization (1) is under multiple types of constraints. Assumed that a posi-
tive user-predefined parameter ( > 0 and a linear-type active function, i.e.,
C(ei(t)) = ei(t), are utilized, from an arbitrary state y(0), the first n ele-
ments of y(t) of the proposed MZNN (16) is exponentially convergent to a
time-dependent solution x*(t) of (1).
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Figure 2: Region and theoretical solution to time-independent nonlinear optimization (22).

PROOF. Let us review the ith sub-system of (19):

é;(t) = —CT'(es(t)),

where a linear-type active function, i.e., I'(e;(t)) = e;(t) is utilized. It has

éi(t) = —Cei(?),

that an analytical solution is acquired

ei(t) = €:(0) exp(=Ct).

Equation (5) points out that all elements of e(¢) are exponentially convergent
to zero. In addition, the convergence rate is related the user-predefined
parameter ¢ for the proposed MZNN (16). The first n elements of y(t) of
MZNN (16) is exponentially convergent to a time-dependent solution x*(t)
of (1). The proof is completed. O.
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Figure 3: Transient states and solutions synthesized by the proposed MZNN (16) for
handling time-independent nonlinear optimization (22). (a) Neural network states x and
solutions x*. (b) Neural network states A and u. (c) Profiles of equality constraint
g(x) = z1 + 22 = 1.5. (d) Profile of residual error ||x — x*||3.

4. Verifications, comparisons and tests

Three illustrative examples and real-world mobile robot application by u-
tilizing the proposed MZNN (16) to address the time-independent nonlinear
optimization (1) subject to multiple types of constraints in both the time-
independent and time-dependent cases are provided. In addition, compar-
isons with other neural networks such as GNN model are conducted. Finally,
tests under different initial neural network states are provided.
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4.1. Example 1

Firstly, consider time-independent nonlinear optimization under multiple
types of constraints

min. a:f + 4:5% +4xy — 8xy — dx129 + 4
s. t. 11 +x9 = 15, (22)
T+ T2 > 1.

Problem (22) is rewritten in a matrix form of nonlinear optimization involving
time-independent coefficients

f(x) = 22 + 422 + 4x) — 8xy — 4179 + 4,
X = [xl,xg]T, A= [1,1], b= [—1.5},
C=[-1,-1],d= 1],

For the convenience of the presentation, the region of the time-independent
nonlinear optimization problem (22) is illustrated in Fig. 2. The object func-
tion f(x) in this example is a typical quadratic nonlinear function respective
to x; and x9. Problem (22) is a typical time-independent nonlinear optimiza-
tion problem. Therefore, the illustrative results of Fig. 2 is the case of time-
independent nonlinear optimization. The linear equations x1 — 2xzo +2 = 0
and xy + o = 1.5 in Fig. 2 is illustrated to find the region and theoretical
solution x*. Note that the time-independent nonlinear optimization (22) is
under multiple types of constraints as z; + x5 >= 1 (inequality constraint)
and x1 +x2 = 1.5 (equality constraint). As one can readily find in Fig. 2, the
unique optimal solution (or to say, theoretical solution) x* = [0.3333, 1.1667]"
for the nonlinear optimization problem (22) exist within the region formed
by constraints z1 + xo >= 1 (illustrated via yellow) and z1 + 9 = 1.5 (illus-
trated via blue). In other words, the constraints equations z; + xo = 1.5 and
T1+ x5 >= 1 contain intersection and are reasonable. The illustration can be
used to examine and compare solution generated by MZNN (16). The initial
states vector is set as [0,0,5, —10]T. The duration of the solving process is
set as Ty = 5 s. In addition, the parameter is set as ( = 2. A linear activation
function I'(+) is explored. The corresponding transient states and solutions
synthesized by the proposed MZNN (16) for (22) are illustrated in Fig. 3.
Firstly, Fig. 3(a) illustrates that neural states x of the proposed MZNN (16)
converge to the theoretical solution x* = [0.3333,1.1667]T with exponential
convergence rate. Other neural network states A and p are presented in Fig.
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Figure 4: Transient states and solutions synthesized by the proposed MZNN (16) for
(23). (a) Neural network states x(¢) with inequality constraint —1.3 < z1(¢), x2(t) < 1.3

(b) Neural network states A(t) and wu(t). (c) Profiles of equality constraint g(x(t)) =
sin(4t)x1(t) + cos(4t)z2(t) = cos(2t). (d) Profile of residual error ||x(t) — x*(t)||3.

3(b). Asshown in Fig. 3(c), it can be found that the profiles of g(x) complies
with the equality constraint x; + o = 1.5. The residual errors synthesized
by the proposed MZNN (16) during the solving processes shown in Fig. 3(d)
converge to zero within around 2.5 s illustrating the exponential convergence
property. The above numerical results imply that the steady-state solution x
illustrated in Fig. 3 is an optimal solution to (22) subject to multiple types
of constraints in the time-independent case.
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Figure 5: Transient states and solutions synthesized by the proposed MZNN (16) for
(24) with another inequality constraint. (a) Neural network states x(¢). (b) Neural net-
work states A(t) and u(t). (c) Profiles of equality constraint g(x(t)) = sin(4t)zq(t) +
cos(4t)xo(t) = cos(2t). (d) Profile of inequality constraint h(x(t)) = z1(t) + z2(t) < 3.

4.2. Example 2

Consider time-dependent nonlinear optimization under multiple types of
constraints

min. (sin(t)/8 + 1/2)23(t) + (cos(t)/8 + 1/2)z3(t)
+ cos(t)xy (t)xa(t) + sin(3t)xy (t) + cos(3t)x2(t)
s. t. sin(4t)z(t) + cos(4t)zo(t) = cos(2t),
— 1.3 < xy(t), z2(t) < 1.3.

(23)
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Problem (23) is reformulated as a matrix form of nonlinear optimization
involving time-dependent coefficients

Fx(t),t) = (sin(t)/8 + 1/2)x1(t) + (cos(t)/8 + 1/2)x5(t)
+ cos(t)xy (t)z2(t) + sin(3t)z1 (t) + cos(3t)za(t),
x(t) = [xl(t),xg(t)]T, A(t) = [sin(4t), cos(4t)]

b(t) = [~ cos(20)], C(t) = [ ! I] |
d(t) = [-1.3,-1.3,-1.3,-1.3]".

In this time-dependent case, the initial states is set as [1, 1,5, —10, —10,
—10, —10]T. In addition, the parameter is set as ( = 5. The correspond-
ing transient states and solutions synthesized by the proposed MZNN (16)
for (23) are illustrated in Fig. 4. First, Fig. 4(a) illustrates that neural s-
tates x(t) of the proposed MZNN (16) strictly complying with the inequality
constraint —1.3 < z1(t), x2(t) < 1.3 for (23). Other neural network states
A(t) and p(t) are presented in Fig. 4(b). As illustrated in Fig. 4(c), it can
be readily found that the time-dependent profiles of g(x(t)) complies with
equality-type constraint sin(4t)z(t) 4+ cos(4t)zy(t) = cos(2t). The residual
errors generated via MZNN (16) during the solving processes in Fig. 4(d)
exhibit the exponential convergent performance. It can be seen that the con-
vergent time is within about 1 s. The above numerical results imply that
solution x(t) illustrated in Fig. 4 are feasible solution to (23) under multiple
types of constraints in the time-dependent case.

4.3. Example 3

Furthermore, optimization (23) under another inequality constraint can
be considered
s. t. h(x(t),t) = x1(t) + x2(t) < 3, (24)

where is rewritten in a matrix form of nonlinear optimization under inequality
constraint with coefficients

C(t)=[1,1], d(t) = [-3].

The objective optimization function and equality constraint is the same as
(23). The initial states vector in this case is set to be [1,1,5,—10]T. The
corresponding transient states and solutions synthesized by the proposed
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Figure 6: Real-world application results for addressing (4) of mobile robot with
performance-index optimization and physical-limit constraints tracking a circle path using
MZNN (16). (a) Three-dimensional motion trajectories of mobile robot. (b) Top view of
motion trajectories of mobile robot.

Table 2: Time and Space Complexity Synthesized by the Proposed MZNN (16) for (22)

Run time (s) Time complexity Storage element Space complexity

0.9 x 105 O(Ty/7) 16 (n+m+p)?

MZNN (16) for (24) with another inequality constraint are illustrated in Fig.
5. Firstly, Fig. 5(a) as well as 5(b) illustrate all states x(¢), A(¢) and pu(t)
of the proposed MZNN (16) for solving (23). One could readily found in
Fig. 5(c) that profiles of g(x(t)) also complies with equality-type constraint
sin(4t)x1(t) + cos(4t)xa(t) = cos(2t). The profile of h(x(t)) strictly complies
with inequality-type constraint as z1(t) + z2(f) < 3. The results can be
readily found in Fig. 5(d). These results imply that solution x(¢) illustrated
in Fig. 5 is a feasible solution to (24) under another inequality constraint in
the time-dependent case.

4.4. Application to robot nonlinear optimization and tracking control

In this part, a real-world application, i.e., the mobile robot nonlinear op-
timization control, is conducted to demonstrate effectiveness of the proposed
proposed MZNN (16) for addressing the time-dependent nonlinear optimiza-
tion problem (1). The actuator of mobile robot is expected to finish the track-
ing task of circle path. Simultaneously, the mobile robot is expected to con-
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Figure 7: Robot variables for addressing (4) of mobile robot under performance-index
optimization and physical-limit constraints to track a circle path via MZNN (16). (a)
Profiles of manipulator joint control signals 6(¢). (b) Profiles of driving wheels control

signals G(t).

Table 3: Time and Space Complexity Synthesized by the Proposed MZNN (16) for (23)

Run time (s) Time complexity Storage element Space complexity

1.0 x 107 O(Ty/7) 49 (n+m + p)?

sider performance-index optimization and physical limits (4). The design cir-
cle path is mathematically expressed as rmg(t) = [Fmax (), Tmay (%), rmaz(t)]7,
and elements in X, Y, and Z axes is given by

rmax(t) = kcos(2msin?(0.57t/Ty)) — k + 0.6891,
Tmay (%) rcos(m/6)sin(27sin?(0.57t/Ty)) + 0.0069,
Tmaz(t) =  ksin(w/6)sin(27sin®(0.57t/Ty)) + 0.1778,

of which the parameter is set as kK = 0.1 m in the robot tracking application.
The upper bound of the physical limit for robot variables @(t) is set as OF =
[1.7,1.7,3.1,3.1,3.1,3.1,3.1,3.1] rad /s. The lower bound of the physical limit
of robot variables ©(t) is set as ©~ = —[1.7,1.7,3.1,3.1,3.1,3.1,3.1,3.1]
rad/s. The robot experimental results for addressing problem (4) with both
performance-index optimization and physical limits to track a circle path
via MZNN (16) are presented in Fig. 6 through Fig. 8. Firstly, it can
be found from Fig. 6(a) that the mobile robot successfully finishes desired
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Figure 8: Real-world application results on performance for (4) of mobile robot under
performance-index optimization and physical-limit constraints to track a circle path using
MZNN (16). (a) Profile of Euclidean norm of control signals ||O(t)||g. (b) Profile of
position error.

Table 4: Time and Space Complexity Synthesized by the Proposed MZNN (16) for Opti-
mization with Another Inequality Constraint (24)

Run time (s) Time complexity Storage element Space complexity

1.0 x 1075 O(Ty/7) 16 (n+m+p)?

tracking control task illustrated which can be found from trajectories in three-
dimensional space. Top view of mobile robot tracking process can be seen
from Fig. 6(b) showing the success of tracking task. Application results
demonstrate that expected mobile robot task has been successfully finished.
The corresponding motion control signals via MZNN (16) are illustrated in
Fig. 7. Fig. 7(a) shows that profiles of mobile robot variable 6(t) could
be strictly constrained by physical limits in velocity level that depicted as
an inequality constraints. Moreover, the profiles of driving wheels variables
é(t) are complied with the physical limits within the boundary (see Fig.
7(b)). As clearly shown in the figure, the variable 6(t) could be strictly
constrained by physical limits in velocity level that depicted as an inequality
constraints 0~ < 6(t) < 6. In addition, the profiles of driving wheels
variables ¢(t) are complied with the physical limits within the boundary
depicted as ¢~ < ¢(t) < ¢*. Note that the physical limits contain the
boundary. That is to say that the lower and upper limits for the robot
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Table 5: Time and Space Complexity Synthesized by the Proposed MZNN (16) for Mobile
Robot Nonlinear Optimization and Tracking Control (4)

Run time (s) Time complexity Storage element Space complexity

1.1 x 107° O(Ty/7) 169 (n+m+ p)?

control signal are also feasible. Therefore, the control signals that almost
overlap the bound constraints are feasible in the proposed approach, which
is also accord with theoretical analysis. The Euclidean norm of mobile robot
variables ||O(t)||g is illustrated in Fig. 8(a). Note that the value of [|©(t)||g
is related to the energy consumption and optimization. The relatively tiny
position error shown in Fig. 8(b) verifies high tracking control accuracy when
mobile robot considers performance-index optimization and physical limits.
Both the experiment results and theoretical results are complete in terms
of stability and convergence. Due to the complexity and nonlinearity, it is
almost impossible to guarantee a time-dependent optimal solution for every
time-independent nonlinear optimization.

Remark 2. [t is worth pointing out here that the proposed MZNN (16) can
be easily and potentially applied to other different scenes with conditional
constraints, for instances, robot-based transportation, robot-based water jet
cutting and unmanned system patrol in addition to the above mobile robot
tracking control.

Remark 3. The investigation on the computational complexity of the pro-
posed MZNN for addressing time-dependent nonlinear optimization under
multiple types of constraints is an important issue. Note that the investiga-
tion on computational complexity falls into two aspects, i.e., time complexity
and space complexity. The time and space complexity of the proposed MZNN
for handling the numerical studies and robot application are conducted and
summarized in Table 2 through Table 5. Note that run time is the MATLAB
run time for the proposed MZNN per iteration, and the storage element is the
total number of operator storage element in MATLAB for the proposed MZNN
per iteration [67]. As it can be found in the tables, the run time for all exam-
ples are about 107° s per iteration with the time complexity being of O(Ty/T)
manner, where symbol T is the sampling period. In addition, the number of
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the storage element is different according to the dimension of the involved
problem with the same space complezity being of (n +m + p)?> manner. An
algorithm for neural network model calculation with the computational time
being about 1 ms (or to say, 1000 iterations per second) is acceptable for
the existing robotic systems [68]. Hence, the proposed MZNN (16) with such
computational complexity has a potentially high enough computational speed
that can achieve the online time-dependent nonlinear optimization control in
practical robot applications.

Remark 4. To sufficiently demonstrated rigor of this work, on the one hand,
theoretical analyses on the global stability (i.e., Theorem 1 and its proof) and
exponential convergence property (i.e., Theorem 2 and its proof) are rigorous-
ly presented in this paper. On the other hand, numerical verifications (i.e.,
three different time-dependent nonlinear optimization examples), real-world
robot application, comparisons with other existing models and performance
tests fully verify the effectiveness in addition to superiority of MZNN for
time-dependent nonlinear optimization under multiple types of constraints.

4.5. Comparisons and tests

To show the advantage of the proposed MZNN (16) for (1) under multiple
types of constraints, comparisons and tests are conducted. Conventionally,
different GNNs were developed as an alternative for time-dependent han-
dling. As for handling (1) subject to multiple types of constraints, an energy
function in scalar form could be defined as £(t) = ||e(t)||%/2. The GNN is

thus developed
310 = —ppet = o (52 ) et (25)

of which p is a user-predefined parameter for GNN (25). In contrast with
GNN (25) utilizing scalar-valued energy functions in Euclidean norm depict-
ed in e(t) = ||e(t)||%/2, ZNN defines an indefinite error function with scalar
value depicted in e(t) (also could be the vector value or matrix valued). In
the meantime, the ZNN fully explores the time-derivative data and condi-
tions for solving time-dependent issues but GNN does not. The compared
result illustrated by the residual errors via the proposed MZNN (16) and the
GNN (25) for (23) is shown in Fig. 9(a). As shown in this figure, residual
error via the proposed MZNN (16) illustrates the exponential convergence
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property, and rapidly converges to zero. However, the residual error via the
GNN (25) exhibits deviations in the steady state with a non-ignorable value.
The large residual error via GNN (25) means that the solution always lags
behind the theoretical solution, which is unacceptable in some computational
applications. Hence, the proposed MZNN (16) is superior to the GNN (25)
in terms of the convergence property and accuracy.

In addition, the global convergence property of the proposed MZNN (16)
is investigated by conducting numerical studies with different values of initial
neural network states in Fig. 9(b). To intuitively and effectively observe the
transient state of convergence process, the initial values of neural network
states y(0) are set away from the initial theoretical values y(0) of neural
network states in the test. In other words, as the input information of system,
the initial values of neural network states are set as y(0) = y(0) + Ao, of
which vector Ao € R"™™*P ig an initial offset between the theoretical and user
defined neural network states. If the initial values of neural network states
y(0) are exactly set on the initial theoretical values y(0) of neural network
states, the transient neural network states of the convergence process would
not be easily observed from residual errors. In this situation, the dynamic
property of MZNN could not be analyzed easily. Hence, the initial values of
neural network states are set away from the initial theoretical values y;(0)
of neural network states in the test. As seen from the figure, starting from
different neural network states, the residual errors generated by MZNN (16)
show almost the same exponential convergence property being consistent
with the theoretical results. In other words, the MZNN (16) possesses the
global convergence property.

Finally, to verify the advantages of computational complexity of the pro-
posed MZNN (16), comprehensive comparisons with other kinds of neural
networks on time and space complexity are further investigated and present-
ed. As it can be found in Table 6, for the same optimization (24) in practice
under multiple types of constraints, different neural networks possess the
same manner of time complexity but different manners of space complexity.
As compared with other kinds of neural networks [8, 38, 51, 56, 57, 69-71],
the proposed MZNN (16) possesses the lowest time and space complexity
being of O(Ty/7) manner and (n + m + p)? manner, respectively.

5. Conclusion and Future Work

In a unified design framework of ZNN, this paper has developed a nov-
el MZNN, for time-dependent nonlinear optimization under multiple type-
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Figure 9: Comparisons the proposed MZNN (16) and via GNN (25) as well as test results
of residual errors with different values of initial neural network states. (a) Profiles of
residual errors via different neural network models. (b) Profiles of residual errors with
different initial states.

s of constraints. The optimization with multiple types of constraints has
been skillfully converted to a time-dependent equality system via Lagrange
method. The proposed MZNN has inherently shown the effectiveness of ex-
ponential convergence property by utilizing the time-derivative information.
Theoretically, the proposed MZNN has been proven to be globally stable
with the neural network state converging to a time-dependent solution of op-
timization problem. In addition, the neural network state has been further
proven to be exponential convergence to a time-dependent solution. Numer-
ical verifications with three general nonlinear optimization examples, real-
world robot application, comparisons with other existing neural networks
and performance tests have been conducted in this work. All results have
verified the stability and exponential convergence property for addressing
time-dependent nonlinear optimization under multiple types of constraints.
Practically, the proposed MZNN has been applied to the real-world robot
nonlinear optimization control. The related results have shown that the mo-
bile robot has successfully finished tracking control task with related control
signals constrained by physical limits that has verified the effectiveness as
well as superiority of MZNN.

The limitations and future directions of the work lie in the following
facts. i) The optimization object function is required to be second order dif-
ferentiable and convex with respect to the time-dependent state vector. An
in-depth investigation on other kinds of time-dependent nonlinear optimiza-
tion objective function could be an interesting and open research direction.
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Table 6: Comparisons on Time and Space Complexity Synthesized by Different Neural
Networks for (24) in Practice Subject to Multiple Types of Constraints

Neural network  Time complexity Storage element Space complexity

GNN [38, 51] O(Ty/7) 64 (n+m+p)?
RNN [56, 69] O(Ty/7) 16 (n+m+ p)?
VPCNN [70, 71] O(Ty/7) 16 (n+m + p)?
PDNN [8, 57] O(Ty/7) 64 (n+m+p)?
Proposed (16) O(Ty/T) 16 (n+m + p)?

Note: The GNN, RNN, VPCNN and PDNN are the abbreviations of
gradient neural network, recurrent neural network, varying-parameter
convergent-differential neural network and primal-dual neural network.

ii) The robustness of MZNN to handle time-dependent disturbances is not
considered in this pioneering work, which would also be another interesting
research direction. iii) An hardware implementation is needed. Implemen-
tation of MZNN on hardware by applying embedded systems to develop
progressive controllers for real-world applications would also be a further
work.
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