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Abstract 
 

Heterogeneous materials such as rocks and composites are comprised of multiple material 

phases of different sizes and shapes that are randomly distributed through the medium. The 

random microstructure is typically described by using various statistical descriptors, which 

include volume fraction, two-point correlation function, and tortuosity, to name a few. 

Capturing different morphological features, a large number of statistical descriptors are 

proposed in different research fields, such as material science, geoscience and computational 

engineering. It is well known that these statistical descriptors are not independent from each 

other, but until recently it remains unclear what descriptors are more similar or more different. 

In particular, it is extremely difficult to look for quantified relations between various 

descriptors, since they are often defined in very different formats. The lack of quantified 

understanding of descriptors’ relations can cause uncertainties or even systematic errors in 

heterogeneous materials studies. To address this issue, we propose a novel and generic 

correlation analysis strategy and establish, for the first time, the quantified relations between 

various statistical descriptors for heterogeneous materials. Based on data science techniques, 

our approach consists of three operational steps: data regularization, dimension reduction and 

correlation analysis. A total of 41 statistical descriptors are collected and analyzed in this study, 

which is readily extensible to include other new descriptors. The generic and quantified 

correlation results are compared with other established descriptor relations that are obtained 

from analytical analysis or physical intuition, and good agreements are observed in all cases. 

The quantified relations between various descriptors are summarized in a single correlation 

graph, which provides useful guiding information for the characterization, reconstruction and 

property prediction of heterogeneous materials.  
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1. Introduction 

Multiphase heterogeneous materials (or random media) such as concrete, rocks, porous media, 

biological/artificial membranes, and composite materials are ubiquitous in both natural 

environment and engineering applications. A heterogeneous material is composed of two or 

more material phases (or voids) that are randomly distributed in the material medium. As a 

result, the microstructure of heterogeneous material is random in nature, and heterogeneous 

material samples are all different, even if they are of the same material type and sampled from 

the same source. The morphological features of heterogeneous materials are typically 

characterized by various statistical descriptors, including the volume fraction, the pore-size 

distribution function and the two-point correlation function, to name a few. These statistical 

descriptors capture the random morphological features from different aspects, e.g. 

connectedness, clustering, periodicity, and fractal etc. In recent years, the rapid development 

of various microscopy imaging techniques, such as X-ray micro-computed tomography 

(Micro-CT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM), 

focused ion beam and scanning electron microscopy (FIB-SEM), transmission electron 

microscopy (TEM), atomic force microscopy (AFM) and small-angle X-ray scattering (SAXC), 

has made the acquisition of high quality digital microstructures of heterogeneous materials 

increasingly more affordable and accessible, while the demand for digitalized heterogeneous 

material models is continuously growing at an even faster pace. As a result, quantitative 

morphological characterization is becoming more and more important for the research and 

application of heterogeneous materials in broad engineering fields, especially for energy, 

environmental, material, and chemical sectors.  

The morphological descriptors not only help the characterization of heterogeneous 

materials, but they also support high-fidelity digital reconstruction (Zhang, et al., 2019) (Li, et 

al., 2019) (Feng, et al., 2014 & 2016) (Rahman, 2008) (Jiao, et al., 2008) (Fullwood, et al., 

2008). Digital microstructures obtained through microscopy imaging are typically of small size, 

due to the hardware limitation from imaging equipment, and sometimes are only available in 

2D form. In practice, the costs associated with sample collection, preparation and imaging also 

add a constraint on the quantity of digital microstructures that can be directly obtained from 

scanning of real-world samples. On the other hand, using scanned 2D/3D microstructures as 

the reference and guided by appropriate morphological descriptors, statistical reconstruction 

techniques can mass produce digital microstructures that share the same morphological features 

as the original real-world samples, without the limitation in the size, dimension and quantity 

of microstructures. This is particularly important for heterogeneous materials whose material 

properties can only be rigorously evaluated as an ensemble in the statistical context.  

Another important use of morphological descriptors is for property prediction and 

material design. It has long been recognized that the complex microstructural morphology of 

heterogeneous materials has a profound impact on their macroscopic properties (Brown, 1955) 

(Rubinstein & Torquato, 1988) (Rubinstein & Torquato, 1989) (Torquato, 2000). With the 

increasingly more accessible microscopy imaging techniques, it is desirable to predict the 

physical properties of heterogeneous materials from their microstructural information. Such 

prediction is often much cheaper and quicker than performing complicated physical tests in 
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labs or fields. In addition, for manmade heterogeneous materials such as composites and foams, 

once the linkage between the microstructural morphology and the specific physical property is 

established, it becomes much easier to design and optimize the material structure for targeted 

properties. The relations between micromorphological characterization and macroscopic 

material properties have been extensively researched for various heterogeneous materials. For 

example, it is found that the particle nearest-neighbor density function is strongly correlated 

with the fluid permeability of porous media (Keller, et al., 1967) (Rubinstein & Torquato, 1988) 

(Rubinstein & Torquato, 1989) and some other examples are listed in Table 1.  

Table 1. The relations between morphological descriptors and material properties 

Morphological Descriptor The related material property Reference 

N-point probability 

functions 

Conductivity (Brown, 1955) 

Elastic moduli 
(Beran, 1968) (Torquato & 

Lado, 1985) 

Trapping constant (Torquato & Rubinstein, 1989) 

Fluid permeability 

(Prager, 1961) (Berryman & 

Milton, 1985) (Rubinstein & 

Torquato, 1989) 

Surface correlation 

functions 

Trapping constant 
(Doi, 1976) (Rubinstein & 

Torquato, 1988) 

Fluid permeability 
(Doi, 1976) (Rubinstein & 

Torquato, 1989) 

Lineal path function & 

Chord-length density 

function 

Knudsen diffusion and Radiative 

transport 

(Ho & Strieder, 1979) 

(Tokunaga, 1985) (Tassopoulos 

& Rosner, 1992) 

Fluid motions in sedimentary rock (Underwood, 1970) 

Surface-particle correlation 

function 

Fluid permeability (Torquato & Beasley, 1987) 

Pyroconductivity (Torquato & Rintoul, 1995) 

 

Over the past several decades and in different research fields, many statistical 

descriptors have been proposed to characterize the random morphology of various 

heterogeneous materials. Some descriptors focus more on the lower-order statistical features, 

e.g. the mean and the grain-size distribution, while others emphasize more on the higher-order 

characteristics, e.g. the connectivity and the cluster correlation. Based on intuition, it has been 

long recognized that various statistical descriptors are not independent from each other, and 

some are more akin (or different) than others. However, it remains unclear to academic and 

industrial communities which morphological descriptors are more (or less) correlated to each 

other and to what extent they are correlated. These descriptors are expressed in different 

formats, i.e. numbers, vectors, matrices or functionals. Furthermore, some of them have a clear 

mathematical definition, while others do not. These facts make it very difficult to study the 

correlations of various morphological descriptors in a mathematically rigorous manner. On the 

other hand, without accurate knowledge on the relations between various descriptors, it is hard, 

if not impossible, to reliably quantify morphological features of heterogeneous materials or to 

interpret the physical properties in relation to the underpinning random microstructure.  
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By conducting a mathematically rigorous correlation analysis for various morphological 

descriptors collected from different research fields, this study aims to improve the 

understanding of the relations between different descriptors. A major challenge for the 

correlation analysis of morphological descriptors is caused by the intrinsic data heterogeneity: 

various descriptors are defined in different formats, making it very difficult to conduct 

quantified cross comparisons. To overcome this problem, we propose a novel correlation 

analysis methodology based on image processing and machine learning to study morphological 

descriptors that are heterogeneous in their own representations. The results of correlation 

analysis provide quantified evidence to guide the use of different descriptors in the 

characterization, reconstruction, and property prediction of heterogeneous materials. The rest 

of the paper is organized as follows. Section 2 provides a brief overview of various 

morphological descriptors, and the proposed new methodology for correlation analysis is 

explained in Section 3. The results and discussions are presented in Section 4, followed by the 

concluding remarks in Section 5.  

2. Overview of Morphological Descriptors 

Owing to the diversity and the random nature of heterogeneous materials, a wide range of 

statistical descriptors have been proposed to characterize their morphological features in 

different research fields, such as petroleum, material, and environmental engineering. Different 

statistical descriptors capture different morphological characteristics. For example, the volume 

fraction merely represents the volume percentage of individual material phases present in the 

random medium, while the grain-size distribution function captures the percentage of each 

material phase in different sizes. It is true that no single descriptor can capture fully the 

morphological features for all arbitrary heterogeneous materials. It is also true that different 

descriptors are not independent from each other. Instead, they are correlated, and some are 

more similar between each other than with others. Unfortunately, due to the data heterogeneity 

involved, quantified relations between various morphological descriptors have not been 

established, which hampers the research progress in characterization, reconstruction, property 

prediction and optimization of heterogeneous materials.  

To draw unbiased and generic conclusions, a target of this study is to include in the 

analysis as many descriptors as possible from diverse literatures. Table 2 summarizes the 

morphological descriptors collected and analyzed in this study. The list is not exhaustive, but 

it has included all morphological descriptors we were able to identify and implement during 

this study. Due to the space limit, we cannot present detailed definitions for all these descriptors, 

and readers are referred to the corresponding references listed in Table 2.  

Table 2. Morphological descriptors analyzed in this study 

ID Descriptor Reference ID Descriptor Reference 

1 Volume Fraction 

(Yeong & Torquato, 

1998a,b) (Wang, et 

al., 1999) 

2 
Specific Internal 

Surface Density 

(Yeong & Torquato, 

1998a) (Kikkinides & 

Politis, 2014) 
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3 

Grain-size 

Distribution 

Function 

(Fullwood, 2010) 4 

Pore-size 

Distribution 

Function 

(Torquato & 

Avellaneda, 1991) 

(Torquato & Lu, 

1993) 

5 
Core Distribution 

Probability 

(Wang & Chen, 

2007) 
6 

Directional Growth 

Probability 
(Wang & Chen, 2007) 

7 

Orientation 

Distribution 

Function 

(Bunge, 1982) 8 

Two-point 

Correlation 

Function 

(Debye, 1949) 

(Torquato, 2002) 

9 

Two-point Cluster 

Correlation 

Function 

(Cule & Torquato, 

1999) (Torquato, 

2002) 

10 
Lineal-path 

Function 

(Lu & Torquato, 

1992a,b) (Yeong & 

Torquato, 1998a) 

(Strebelle, 2002) 

11 
Chord-length 

Density Function 

(Torquato & Lu, 

1993) (Roberts & 

Torquato, 1999) 

12 

Aspect Ratio 

Distribution 

Function 

(Jennings & Parslow, 

1988) 

13 
Radial Distribution 

Function 

(Schiemann, 1997) 

(Jiao, et al., 2010) 
14 

Integral Correlation 

Function 

(Pyrz & Bochenek, 

2003) 

15 
Topological 

Entropic Descriptor 

(Bochenek, et al., 

2004) 
16 

Microcanonical 

Entropic Descriptor 

(Piasecki, 2000) 

(Piasecki, 2009) 

17 
Local Percolation 

Probability 

(Hilfer, 1991) 

(Manwart, et al., 

2000) 

18 

Local Porosity 

Distribution 

Function 

(Hilfer, 1991) (Hilfer, 

et al., 1997) 

19 Tortuosity 

(Carman, 1937) 

(Watanabe & 

Nakashima, 2001) 

20 
Voronoi Polygon 

Area 
(Melro, et al., 2008) 

21 

Nearest-neighbor 

Distribution 

Function (1)_ep 

(Hertz, 1909) 

(Reiss, et al., 1959) 
22 

Nearest-neighbor 

Distribution 

Function (2)_ev 

(Hertz, 1909) (Reiss, 

et al., 1959) 

23 

Nearest-neighbor 

Distribution 

Function (3)_hp 

(Hertz, 1909) 

(Reiss, et al., 1959) 
24 

Nearest-neighbor 

Distribution 

Function (4)_hv 

(Hertz, 1909) (Reiss, 

et al., 1959) 

25 

Nearest-neighbour 

Orientation 

Distribution 

Function 

(Sundararaghavan, 

et al., 2015) 
26 Ripley’s K Function (Ripley, 1976&1977) 

27 Coarseness 
(Lu & Torquato, 

1990) 
28 Contiguity 

(Gurland, 1958) (Han 

& Dawson, 2005) 

29 

Point/q-particle 

Correlation 

Function 

(Torquato, 1986) 

(Torquato, 2000) 
30 

Surface-particle 

Correlation 

Function 

(Torquato & Beasley, 

1987) (Torquato & 

Rintoul, 1995) 

31 
Surface Correlation 

Function (1)_SSC 
(Torquato, 2002) 32 

Surface Correlation 

Function (2)_SVC 
(Torquato, 2002) 

33 
Maximum Grain 

Radius 

(Wang, et al., 1999) 

(Rollett, et al., 

2007) 

34 
Minimum Grain 

Radius 

(Wang, et al., 1999) 

(Rollett, et al., 2007) 
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35 Mean  36 Variance (Cowan, 2002) 

37 Standard Deviation 
(Bland & Altman, 

1996) 
38 Autocovariance (Hoel, 1984) 

39 
Autocorrelation 

Function 
(Priestley, 1982) 40 

Power Spectral 

Density Functions 
(Wiener, 1964) 

41 
Margin Distribution 

Function 
    

Among these statistical descriptors, some carry the lower-order morphological 

information, while others carry the higher-order morphological information. Some descriptors 

are sensitive to topological connectivity, while others are strongly related to the spatial 

correlation of particles, et al. Based on the intuition of morphological features captured by 

individual statistical descriptors, several feature groups can be approximately formed and are 

summarized in Table 3.  

Table 3. Intuitive grouping of morphological descriptors 

Descriptors 

capturing the 

interrelation 

between 

clusters/pores 

Nearest-neighbor Distribution 

Function 
Radial Distribution Function 

Ripley’s K Function Integral Correlation Function 

Point/q-particle Correlation Function Voronoi Polygon Area 

Surface-particle Correlation Function  

Descriptors 

capturing the 

correlation 

between points 

Two-point Correlation Function Power Spectral Density Function 

Two-point Cluster Correlation 

Function 
Pore-size Distribution Function 

Lineal-path Function 
Nearest-neighbour Distribution 

Functions 

Chord-length Density Function Point/q-particle Correlation Function 

Autocovariance Autocorrelation Function 

Specific Internal Surface Density Chord-length Density Function 

Descriptors 

capturing the 

geometries of the 

clusters/pores 

Grain-size Distribution Function Contiguity 

Pore-size Distribution Function 
Surface-particle Correlation 

Function 

Directional Growth Probability Surface Correlation Function 

Two-point Cluster Correlation 

Function 
Maximum Grain Radius 

Lineal-path function Minimum Grain Radius 

Topological Entropic Descriptor Microcanonical Entropic Descriptor 

Descriptors 

capturing the 

disorder degree of 

clusters/pores 

Coarseness  

Directional Growth Probability Orientation Distribution Function 
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Descriptors 

capturing the 

orientation of 

inclusions 

Nearest-neighbor Distribution 

Function 
Lineal-path Function 

Two-point Cluster Correlation 

Function 
 

Descriptors 

capturing the 

connectivity of 

the clusters 

Chord-length Density Function Tortuosity 

Local Percolation Probability  

3. Correlation Analysis 

3.1. Analysis strategy for heterogeneous descriptors 

Among the various morphological descriptors listed in Table 2, some have clear mathematical 

expressions, while others are only defined as computer algorithms that operate on 2D/3D 

microstructural images. These descriptors are represented in different data formats, as scalars, 

vectors, matrices and functionals. Various statistical descriptors are different, but they are not 

independent from each other (Torquato, 2000). Hence, a mathematically rigorous 

understanding for the relations between different descriptors is desirable, but till now this is 

only possible in very limited cases where explicit mathematical formulations exist and are 

defined in compatible forms. A quantified understanding for the relations between various 

morphological descriptors remains missing. The lack of compatible mathematical formulations 

and data formats present a major challenge to studying the relations of morphological 

descriptors. To overcome the problem posed by intrinsic data heterogeneity, we propose a novel 

correlation analysis strategy based on image processing and machine learning. As shown in 

Figure 1, the new analysis strategy comprises three operational steps:  

• Step 1: Data regularization to transform the raw data of various morphological 

descriptors into a unified format  

• Step 2: Dimension reduction to extract characteristic features and reduce the dimension 

of regularized data 

• Step 3: Correlation analysis via classification and ranking  

The details of these operational steps are explained in the following subsections.  

 

Figure 1. Analysis strategy for heterogeneous descriptors 

3.2. Data regularization through heterogeneous material modelling 

To regularize the heterogeneous morphological descriptors, we transform the morphological 

information captured by individual statistical descriptors that are of different expressions and 

formats into heterogeneous material images of the same size and resolution. Thus, instead of 

Data 
Rregularization 

Dimension 
Reduction 

Correlation 
Analysis 
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directly dealing with various statistical descriptors that are heterogeneous in nature, this 

transformation allows the correlation analysis to be performed on unified data sets, i.e. the 

microstructural images of identical size and resolution. A schematic illustration of the data 

regularization workflow is given in Figure 2. First, a reference sample from measurement (e.g. 

Micro-CT scan) is selected as the representative microstructure, which should contain as many 

as possible morphological features captured by the involved descriptors. For instance, to study 

the grain-size distribution function or the orientation distribution function, the representative 

microstructure must contain enough clearly separated particles. By doing so, the morphological 

information carried by each involved descriptor can be potentially measured through the 

representative microstructure. Next, all involved descriptors 𝐷𝑖 are individually extracted from 

the representative microstructure, where the subscript 𝑖 ∈ {1,2, ⋯ ,41}  denotes the 𝑖 -th 

descriptor as defined in Table 2. It should be noted that descriptors 𝐷𝑖  are of different data 

formats depending on their definitions. Finally, using the representative microstructure as 

reference and guided separately by each descriptor 𝐷𝑖, 𝑖 ∈ {1,2, ⋯ ,41}, we reconstruct a series 

of heterogeneous material sample sets 𝑆𝑖 = {𝑅𝑖
𝑗
|𝑗 = 1,2, ⋯ , 𝑁𝑆} , each comprising 𝑁𝑆 

reconstructed samples. The size 𝑁𝑆 of reconstructed sample sets should be chosen sufficiently 

large to avoid bias, and we found 𝑁𝑆 = 20 is sufficient to ensure statistical convergence in our 

analysis. These reconstructed sample sets {𝑆𝑖|𝑖 = 1,2,3, ⋯ ,41} form a database that transforms 

the statistical information of individual descriptors with different formats into a unified format, 

i.e. the microstructural images of identical size and resolution.  

 
Figure 2. Data regularization through heterogeneous material modelling 

Heterogeneous material modelling has been extensively researched in the past several 

decades (Zhang, et al., 2019) (Li, et al., 2019) (Yang, et al., 2018) (Quey & Renversade, 2018) 

(Cui, et al., 2016 & 2017) (Li, et al., 2015) (Kikkinides & Politis, 2014) (Chen, Jiao & Torquato, 

2014) (Guo, et al., 2014) (Tahmasebi & Sahimi, 2013), and a range of modelling techniques 

have been developed to reconstruct digital samples that share the same statistical features as 

Reconstructed Samples 

Representative Microstructure 

𝐷3 𝐷2 𝐷1 𝐷41    ······ 

𝑆3 𝑆2 𝑆1 𝑆41    ······ 

Extraction of Individual Descriptors 

Reconstruction Based on Each Descriptor 

Reference Sample 
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the given reference (Cui, et al., 2015). Among the various heterogeneous material modelling 

techniques, the stochastic optimization method (Yeong & Torquato, 1998) (Manwart, Torquato, 

& Hilfer, 2000) (Ryu & Li, 2012) (Li, 2014) is arguably the most flexible and robust approach. 

This method is not particularly fast in terms of computational efficiency but with abundant 

computing power, it can achieve very high reconstruction accuracy for almost any type of 

heterogeneous materials. For these reasons, the stochastic optimization method is adopted in 

this study for the sample reconstruction task. The basic idea is simple, as shown in Figure 3. 

Given a reference sample and an initial guess, a second-order objective function is defined to 

measure the difference/error between guess and reference samples in terms of specific 

descriptors. Then, the current guess is randomly mutated to create a new guess, and the 

objective function is recomputed to accept (if it reduces the objective function) or reject (if it 

increases the objective function) the new guess. This process of guess, judge and re-guess 

continues until the error measured by the objective function drops below a user-specified 

tolerance, and the last guess is taken as the reconstruction result.  

 

Figure 3. Stochastic optimization method 

The objective function 𝐸 of the stochastic optimization method is typically defined as 

the sum of squared errors between reference and reconstructed samples measured by a set of 

user-selected descriptors:  

𝐸 = ∑ [𝐷𝑖(Ω) − 𝐷𝑖(Ω̂)]
2

𝑖                                                           (1) 
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where 𝐷𝑖(∙) denotes the 𝑖-th descriptor incorporated in the objective function, Ω denotes the 

reference sample, and Ω̂  denotes the trial reconstruction. Thus, the reconstruction process 

shown in Figure 3 practically transforms the statistical information captured by the descriptors 

𝐷𝑖(∙) into reconstructed digital images of the same size and resolution. However, it is worth to 

note that some basic descriptors (e.g. the mean 𝐷35(∙) and the variance 𝐷36(∙)) may contain 

too little morphological information and are not sufficient to support the reconstruction alone. 

On the other hand, the two-point statistics (i.e. two-point correlation function and 

autocorrelation functions) carries the most fundamental and essential morphological 

information for the statistical reconstruction (Torquato, 2002) and in almost all literatures of 

heterogeneous material modelling, it is always adopted either to reconstruct samples or to 

verify the quality of reconstruction.  

Indeed, for heterogeneous material reconstruction using the stochastic optimization 

method, the two-point correlation function 𝐷8(∙) is typically included as part of the objective 

function (Eschricht, et al., 2005) (Li, et al., 2012) (Alexander, et al., 2009) (Capek, et al., 2009) 

(Capek, et al., 2011). Therefore, in this study, a combination of the two-point correlation 

function and each involved descriptor is employed to reconstruct the samples, such that the 

objective function 𝐸𝑖 corresponding to the 𝑖-th descriptor 𝐷𝑖(∙) is defined as follows:   

𝐸𝑖 = 𝜔1[𝐷𝑖(Ω) − 𝐷𝑖(Ω̂)]
2

+ 𝜔2[𝐷8(Ω) − 𝐷8(Ω̂)]
2
                    (2) 

where 𝐷8(∙) denotes the two-point correlation function, Ω denotes the reference sample, and Ω̂ 

denotes the trial reconstruction. The first and second terms in Eq. (2) represent the squared 

errors of the involved descriptor and the two-point correlation function, respectively. All 

descriptors 𝐷𝑖, 𝑖 = 1,2, ⋯ ,41, are regularized such that their values are at the same order of 

magnitude. The weight parameters are set as 𝜔1 = 0.5  and 𝜔2 = 0.5  in our study, which 

practically results in both terms getting minimized (or nearly minimized) during the 

reconstruction iterations. Note that the two-point correlation function is a special case of a more 

general descriptor series including the 𝑁-point correlation function (Torquato & Stell, 1982) 

(Adams et al., 1989) (Quintanilla, 2006) (Baniassadi, et al., 2012), the multiple-point statistics 

function (Caers, 2001) (Strebelle, et al., 2003), the pair correlation function (Schiemann, 1997) 

(Jiao, et al., 2010), the cross-correlation function (Tahmasebi & Sahimi, 2013) and the field-

field correlation function (Teubner & Strey, 1987) (Roberts, 1997a, b). Therefore, we do not 

explicitly consider these descriptors in the correlation analysis, as their relations with other 

descriptors are represented by the two-point correlation function that is already included as part 

of the objective function for all descriptors.  

Corresponding to each selected reference sample and each morphological descriptor in 

Table 2, a set of 20 2D digital microstructures at the resolution 100-by-100 are constructed to 

avoid errors caused by singular realization. Four reference samples of different morphological 

features are used in this study for the correlation analysis of descriptors, which provide the 

same correlation analysis results. As an illustration of the reconstruction database, Table 4 

shows the reconstruction results from one reference sample. Visually, all realizations look 

similar. This is because the essential information captured by the two-point correlation function 
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is fully preserved in all realizations. The other descriptors only provide additional information 

of microstructure. The differences between the reconstruction and the reference can be 

examined by using various descriptors, as shown in Figure 4. It can be observed that not only 

the two-point correlation but also the other descriptors are accurately preserved by the 

reconstructed samples. It is noted that all involved descriptors have been tested for all 

corresponding samples but due to the limitation in space, only a small portion of the validations 

are shown in Figure 4. Hence, the information carried by each descriptor is successfully 

transformed into the reconstructed microstructures with uniform size and resolution.  

Table 4. Reconstructed samples  

No. Involved Descriptors R1 R2 … R20 

1 

Volume Fraction + 

Two-point Correlation 

Function 
  

…  

 

2 

Specific Internal 

Surface Density 

Function + Two-point 

Correlation Function 
  

…  

 

3 

Grain-size 

Distribution Function 

+ Two-point 

Correlation Function 
  

…  

 

…  … … … …  … 

39 

Autocorrelation 

function + Two-point 

Correlation Function 
 

 

… 

 

40 

Power spectral density 

functions (SDF) + 

Two-point Correlation 

Function 
  

… 

 

41 

Margin Distribution 

Function + Two-point 

Correlation Function 
  

… 
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(a1) (b1) 

  

(a2) (b2) 

  

(a3) (b3) 

  

(a4) (b4) 
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(a5) (b5) 

Figure 4. Accuracy validation for the reconstruction database in Table 4. (a1) The effective 

two-point correlation function of dataset 6. (b1) The effective directional growth probability of 

dataset 6. (a2) The effective two-point correlation function of dataset 9. (b2) The effective two-

point cluster correlation function of dataset 9. (a3) The effective two-point correlation function 

of dataset 12. (b3) The effective aspect ratio distribution function of dataset 12. (a4) The 

effective two-point correlation function of dataset 14. (b4) The effective integral correlation 

function of dataset 14. (a5) The effective two-point correlation function of dataset 16. (b5) The 

effective microcanonical entropic descriptor of dataset 16. 

3.3. Dimension reduction using texture spectrum 

To ensure the analysis is generic and unbiased, different types of heterogeneous materials are 

chosen as reference samples for the descriptor transformation described in Section 3.2 and the 

digital microstructures are all reconstructed with sufficient size and resolution to fully cover 

all morphological features that can potentially be captured by a descriptor. As a result, the data 

sets obtained from descriptor transformation are uniform and representative, but they are too 

large to be analyzed directly. Therefore, we introduce the texture spectrum approach to reduce 

the dimensionality of image data in a neutral manner, without boosting or suppressing the 

morphological information embedded in the microstructural images. Texture is an important 

spatial feature that is frequently used for image recognition and classification. The texture 

spectrum approach is a statistical method for texture analysis, which was first proposed by (He 

& Wang, 1990, &1991) (Wang & He, 1990). This approach is built on two concepts: texture 

unit and texture spectrum. The local texture information of an image can be captured by the 

texture unit, while the texture spectrum reveals the global feature of the image.  

 

Figure 5. Texture unit 
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As shown in Figure 5, each pixel in a digital image has eight nearest neighbouring 

pixels surrounding it, and these pixels together compose the smallest complete unit. A set 

containing nine elements 𝑉 = {𝑉0 𝑉1 𝑉2 𝑉3 𝑉4 𝑉5 𝑉6 𝑉7 𝑉8} is used to denote the unit, where 𝑉0 

denotes the value of central pixel and 𝑉𝑖 (𝑖 = 1,2, ⋯ ,8) denotes the values of the neighbouring 

pixels. The set contains eight elements corresponding to the eight neighbouring pixels is 

defined as the texture unit 𝑇𝑈 = {𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 𝐸6 𝐸7 𝐸8} , where the value of  𝐸𝑖  is 

determined by the following rules: 

𝐸𝑖 = {

0, 𝑖𝑓 𝑉𝑖 < 𝑉0

1, 𝑖𝑓 𝑉𝑖 = 𝑉0

  2, 𝑖𝑓 𝑉𝑖 > 𝑉0  
                                                        (3) 

As the digital reference samples in this study are binary images, the possible intensity values 

of the pixels 𝑉𝑖 are 0 and 1. In this case, the value of  𝐸𝑖 is determined by simpler rules as 

follows: 

𝐹𝑜𝑟 𝑉0 = 1,     𝐸𝑖 = {
0   𝑖𝑓 𝑉𝑖 < 𝑉0

1   𝑖𝑓 𝑉𝑖 = 𝑉0
,     𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐸𝑖 = 𝑉𝑖 

𝐹𝑜𝑟 𝑉0 = 0,     𝐸𝑖 = {
1   𝑖𝑓 𝑉𝑖 = 𝑉0

2   𝑖𝑓 𝑉𝑖 > 𝑉0
,     𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐸𝑖 = 𝑉𝑖 + 1

                       (4) 

Therefore, each element 𝐸𝑖  of 𝑇𝑈  has one of two possible values, which means the 

combination of all eight elements generates 28 = 256 possible texture units. 

The texture spectrum is defined as the occurrence frequency distribution of all texture 

units over the whole image. For binary images, the 256 texture units can be ordered and labelled 

as follows: 

𝑁𝑇𝑈 = ∑ 𝐸𝑖 ∙ 2𝑖−18
𝑖=1                                                       (5) 

The eight elements are ordered clockwise as shown in Figure 5. In this way, all 256 texture 

units can be labelled by consecutive integers in the interval of [0, 255], and it is a one-to-one 

correspondence between the patterns of 𝑇𝑈 and the corresponding 𝑁𝑇𝑈 values. The 256 texture 

units represent local features of texture and capture the intensity-value difference between 

central pixels and their neighbouring pixels. The occurrence frequency of texture units over the 

whole image can be calculated to reveal the global information of the reference microstructure. 

For images with different textures, the corresponding texture spectrums distinguish them in a 

statistical sense and therefore can be used for image classification. As there are two possible 

values for each pixel (i.e. 0 and 1) of a binary image, the texture spectrum used in this study is 

the combination of two texture spectrums, where the texture spectrum for the central pixels of 

‘0’ is followed by the texture spectrum for the central pixels of ‘1’. Therefore, the final texture 

spectrum is defined as the interval [0, 511]. 

The texture spectrum 𝑇𝑖  is extracted from each set 𝑆𝑖  (or row) of the reconstructed 

samples in Table 4, and for illustration purpose some examples are shown in Table 5. 

Specifically, the texture spectrum is first calculated for each sample, and then the overall texture 

spectrum 𝑇𝑖  for the whole sample set 𝑆𝑖  (containing 20 samples) is obtained by taking the 
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average. The texture spectrum is essentially a histogram of the texture unit label, of which each 

label index corresponds to a unique texture pattern. Therefore, the overall texture spectrum for 

the whole sample set can also be obtained by counting the occurrences of texture patterns 

directly on all 20 reconstructed samples. These two ways of calculating 𝑇𝑖 are equivalent and 

give the same result. Therefore, instead of dealing with a large number of binary images (Table 

4) that capture the statistical information of heterogeneous morphological descriptors (Table 

2), the correlation analysis can now be carried out on the texture spectrums (Table 5) whose 

data sets are of much smaller dimensionality.  

Table 5. Texture spectrums of the reconstructed samples in Table 4 

No. 
Involved 

Descriptors 
Effective texture spectrum No. 

Involved 

Descriptors 
Effective texture spectrum 

1 

Volume 

Fraction + 

Two-point 

Correlation 

Function  

𝑇1 

4 

Pore-size 

Distribution 

Function + 

Two-point 

Correlation 

Function 
 

𝑇4 

2 

Specific 

Internal 

Surface 

Density 

Function + 

Two-point 

Correlation 

Function 

 

𝑇2 

5 

Core 

Distribution 

Function + 

Two-point 

Correlation 

Function 
 

𝑇5 

3 

Grain-size 

Distribution 

Function + 

Two-point 

Correlation 

Function 
 

𝑇3 

6 … … … … 

3.4. Correlation analysis with K-means clustering 

After the data regularization step described in Section 3.2 and the dimension reduction step 

described in Section 3.3, the 41 morphological descriptors 𝐷𝑖  listed in Table 2 are now 

converted into 41 texture spectrums 𝑇𝑖, as illustrated in Table 5. That is, the task of correlation 

analysis of morphological descriptors can now be performed on a set of 41 texture spectrums 
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𝑇𝑖 , which corresponds to the morphological descriptor 𝐷𝑖  and is obtained from the 

corresponding sample set 𝑆𝑖 with 20 reconstructed samples to avoid bias.   

Noting that each texture spectrum is expressed as a vector of 512 entries or a point in a 

512-dimensional space, we use 𝐾 -means clustering in this study to perform the correlation 

analysis for the texture spectrums. Widely used in signal processing and data mining, 𝐾-means 

clustering (Lloyd, 1982) is a standard method of vector quantization, and in the wider context 

of machine learning it can be viewed as an unsupervised method. Given a set of observations 

(𝒙1, 𝒙2, … , 𝒙𝑛), where each observation is a d-dimensional real vector, i.e. a point in the d-

dimensional space, the goal of the algorithm is to partition these 𝑛 observations into 𝑘 (≤ 𝑛) 

clusters in which each observation belongs to the cluster with the nearest mean. In other words, 

the data space formed by 𝑛  observations is portioned into 𝑘  Voronoi cells such that an 

observation is always closer to the centre of the cell it falls in than the centres of other cells.  

 Specifically, starting with an initial estimation for 𝑘 means 𝒎1
(1)

, 𝒎2
(1)

, … , 𝒎𝑘
(1)

 with a 

partition {𝑃1
(1)

, 𝑃2
(1)

, … , 𝑃𝑘
(1)

} , these 𝑛  observations are partitioned into 𝑘  ( ≤ 𝑛 ) sets 

{𝑃1, 𝑃2, … , 𝑃𝑘} through an iterative procedure:  

• Assignment step: Assign each observation to the cluster whose mean has the least 

squared Euclidean distance, i.e.  

𝑃𝑖
(𝑡)

= {𝒙𝑝|‖𝒙𝑝 − 𝒎𝑖
(𝑡)

‖
2

≤ ‖𝒙𝑝 − 𝒎𝑗
(𝑡)

‖
2

∀𝑗, 1 ≤ 𝑗 ≤ 𝑘}                  (6) 

where the superscript 𝑡 denotes the current iteration step. The assignment step allocates 

each observation 𝒙𝑝 to the cluster with the closest centroid (i.e. mean). If there are more 

than one closest centroid (mean) for some observations, these observations can be 

randomly assigned to one of the corresponding clusters. An example of a 2D cluster 

assignment is shown in Figure 6.  

• Update step. Update the 𝑘  means sets 𝑃𝑖  by calculating the new means to be the 

centroids of the observations in the new clusters, i.e. 

𝒎𝑖
(𝑡+1)

= ∑ 𝒙𝑗𝒙𝑗∈𝑆
𝑖
(𝑡) |𝑃𝑖

(𝑡)
|⁄                                                 (7) 

where |𝑃𝑖
(𝑡)

| denotes the number of points in the set 𝑃𝑖
(𝑡)

.  

• Repeat the above two steps until the stopping criterion is met (i.e. the cluster 

assignments do not change, or the maximum number of iterations is reached). 

It should be noted that the clustering result from the above algorithm depends on the initial 

choice of 𝑘 means 𝒎1
(1)

, 𝒎2
(1)

, … , 𝒎𝑘
(1)

, and it may not reach the global optimum. However, by 

having enough runs of the algorithm with randomized initial sets of 𝑘 means, the optimum 

clustering can be effectively achieved.   
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Figure 6. Example of a 2D cluster assignment 

By utilizing the 𝐾 -means clustering technique, the ‘descriptor points’ can be 

categorized into groups of any fixed number. The descriptors categorized in the same group are 

more similar (or more correlated) with each other, while descriptors categorized in different 

groups are more different (or less correlated) with each other. In this study, the number of 

groups is set from 2 to 15 such that the categorization is performed at different levels from 

coarse to fine. The grouping results from 2 to 15 are summarized in Tables 6, where the letters 

A, B, …, O denote the cluster, the ID numbers 1, 2, …, 41 represent the corresponding 

descriptors as defined in Table 2, and the descriptors that change categories as the grouping 

refines are highlighted. To save space, Table 6 only lists the results of 2-group, 3-group, 4-

group, and 15-group clustering.  

Table 6 𝐾-means clustering of morphological descriptors 

(6.1) Two-groups categorization 

A 

1 3 5 7 8 9 11 

12 13 14 15 16 18 19 

20 21 22 23 24 25 26 

27 28 29 30 31 32 33 

34 35 36 37 38 39 40 

  41             

B 2 4 6 10 17     

(6.2) Three-groups categorization 

A 

1 8 9 13 14 16 18 

19 20 21 27 28 29 31 

33 34 35 36 37 38 39 

40 41           

B 2 4 6 10 17     

C 
3 5 7 11 12 15 22 

23 24 25 26 30 32   
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(6.3) Four-groups categorization 

A 

1 8 9 13 14 16 18 

19 20 21 27 28 29 31 

33 34 35 36 37 38 39 

40 41           

B 2 4 6         

C 
3 5 7 11 12 15 22 

23 24 25 26 30 32   

D 10 17           

…… 

(6.14) Fifteen-groups categorization 

A 
8 18 27 31 33 34 35 

36 37 38 39 40 41   

B 4 6           

C 5 25           

D 10             

E 12 22 24 26 30     

F 9             

G 11             

H 13 15 20 21 23     

I 32             

J 28             

K 7             

L 3             

M 2             

N 1 14 16 19 29     

O 17             

The full clustering results are summarized in Table 7, where the individual descriptors 

are represented by the columns and their classification into different numbers of categories are 

represented the rows. Closely correlated descriptors are placed in nearby columns and 

represented by a color code. From the top row to the bottom row, the descriptor classification 

changes from 2 groups to 15 groups, and the color code clearly demonstrates the clustering 

evolution, which indicates the relationship between descriptors. 
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Table 7. Correlation graph of all 41 descriptors in Table 2 

 8 18 27 31 33 34 35 36 37 38 39 40 41 1 16 28 14 19 29 13 20 21 15 23 12 22 24 26 30 32 9 11 7 3 5 25 4 6 2 10 17 

2-Groups A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B 

3-Groups A A A A A A A A A A A A A A A A A A A A A A C C C C C C C C A C C C C C B B B B B 

4-Groups A A A A A A A A A A A A A A A A A A A A A A C C C C C C C C A C C C C C B B B D D 

5-Groups A A A A A A A A A A A A A A A A A A A E E E E E E E E E E E E C C C C C B B B D D 

6-Groups A A A A A A A A A A A A A A A A A A A E E E E E E E E E E F F C C C C C B B B D D 

7-Groups A A A A A A A A A A A A A A A A A A A E E E E E E E E E E F F G C C C C B B B D D 

8-Groups A A A A A A A A A A A A A A A A H H H H H H H H E E E E E E F G C C C C B B B D D 

9-Groups A A A A A A A A A A A A A A A A H H H H H H H H E E E E E I F G C C C C B B B D D 

10-
Groups A A A A A A A A A A A A A A A J H H H H H H H H E E E E E I F G C C C C B B B D D 

11-
Groups A A A A A A A A A A A A A A A J H H H H H H H H E E E E E I F G K C C C B B B D D 

12-
Groups A A A A A A A A A A A A A A A J H H H H H H H H E E E E E I F G K L C C B B B D D 

13-
Groups A A A A A A A A A A A A A A A J H H H H H H H H E E E E E I F G K L C C B B M D D 

14-
Groups A A A A A A A A A A A A A N N J N N N H H H H H E E E E E I F G K L C C B B M D D 

15-
Groups A A A A A A A A A A A A A N N J N N N H H H H H E E E E E I F G K L C C B B M D O 

 

Legend 
1 Volume Fraction 2 Specific Internal Surface Density 3 Grain-size Distribution Function 4 Pore-size Distribution Function 5 Core Distribution Probability 

6 Directional Growth Probability 7 Orientation Distribution Function 8 Two-point Correlation Function 9 Two-point Cluster Correlation Function 10 Lineal-path Function 

11 Chord-length Density Function 12 Aspect Ratio Distribution Function 13 Radial Distribution Function 14 Integral Correlation Function 15 Topological Entropic Descriptor 

16 Microcanonical Entropic Descriptor 17 Local Percolation Probability 18 Local Porosity Distribution Function 19 Tortuosity 20 Voronoi Polygon Area 

21 Nearest-neighbor Distribution Function (1)_ep 22 Nearest-neighbor Distribution Function (2)_ev 23 Nearest-neighbor Distribution Function (3)_hp 24 Nearest-neighbor Distribution Function (4)_hv 25 Nearest-neighbour Orientation Distribution Function 

26 Ripley’s K Function 27 Coarseness 28 Contiguity 29 Point/q-particle Correlation Function 30 Surface-particle Correlation Function 

31 Surface Correlation Function (1)_SSC 32 Surface Correlation Function (2)_SVC 33 Maximum Grain Radius 34 Minimum Grain Radius 35 Mean 

36 Variance 37 Standard Deviation 38 Autocovariance 39 Autocorrelation Function 40 Power Spectral Density Functions 

41 Margin Distribution Function         
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4. Result Discussions 

4.1. Accuracy validation 

Some descriptors have explicit mathematical expressions, while others do not. This 

inconsistency makes it impossible to conduct analytical correlation analysis uniformly for all 

descriptors. However, for some specific descriptors, existing analytical studies have revealed 

strong correlations between them. For example, the information of volume fraction is fully 

contained in the two-point correlation function, and as a result the combination of the volume 

fraction and the two-point correlation function should represent identical statistical information 

as the sole two-point correlation function. Table 8 provides a summary of various analytical 

relations between specific descriptors and their associated references. Moreover, based on 

physical insights, some descriptors are also known to have strong links with each other, and 

these physics-based correlation results are summarized in Table 9. To validate the accuracy of 

the proposed correlation analysis, we compare our generic results with the special cases shown 

in Table 8 and Table 9. The comparison results are shown in Table 10, from which it can be 

observed all known correlations are accurately identified by our machine-learning based 

correlation analysis. This comparison is not a comprehensive validation, but to an extend it 

does confirm the effectiveness of the proposed generic correlation analysis strategy and the 

accuracy of its results.  

Table 8. The analytically derived relations 

The descriptors with validated strong links References 

Volume Fraction 𝐷1 – Two-point Correlation Function 𝐷8 (Torquato, 1999) 

Coarseness 𝐷27 – Local Porosity Distribution Function 𝐷18 (Lu & Torquato, 1990) 

Autocorrelation Function 𝐷39 – Two-point Correlation Function 𝐷8 (Jiao, et al.,2008) 

Autocorrelation Function 𝐷39 – Power Spectrum Density Function 𝐷40 (Wiener, 1964) 

Autocorrelation Function 𝐷39 – Autocovariance 𝐷38 (Hoel, 1984) 

Integral Correlation Function 𝐷14 – Radial Distribution Function 𝐷13 (Bochenek & Pyrz, 2004) 

Table 9. The relations between morphological descriptors based on their physical insights 

The descriptors with strong links The related physical insight 

Nearest-neighbour Orientation Distribution Function 𝐷25 - 

Orientation Distribution Function 𝐷7 

The orientations of the 

clusters 

Volume Fraction 𝐷1 - Local Porosity Distribution Function 𝐷18 The component ratio 

Nearest-Neighbour Distribution Function(1)_ep 𝐷21 - Nearest-

Neighbour Distribution Function(3)_hp 𝐷23 
Opposite to each other 
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Nearest-Neighbour Distribution Function(2)_ev 𝐷22 - Nearest-

Neighbour Distribution Function(4)_hv 𝐷24 
Opposite to each other 

Table 10. Comparison between the proposed generic correlation analysis and the special case 

correlation results in Table 8 and Table 9 

Correlated descriptors 
Our correlation analysis 

grouping 

Volume Fraction 𝐷1 – Two-point Correlation Function 𝐷8 
From 2-groups categorization 

to 8-groups categorization 

Integral Correlation Function 𝐷14 – Radial Distribution Function 

𝐷13 

From 2-groups categorization 

to 13-groups categorization 

Coarseness 𝐷27 – Local Porosity Distribution Function 𝐷18 
From 2-groups categorization 

to 15-groups categorization 

Autocorrelation Function 𝐷39 – Two-point Correlation Function 

𝐷8 

From 2-groups categorization 

to 15-groups categorization 

Autocorrelation Function 𝐷39 – Power Spectrum Density Function 

𝐷40 

From 2-groups categorization 

to 15-groups categorization 

Autocorrelation Function 𝐷39 – Autocovariance 𝐷38 
From 2-groups categorization 

to 15-groups categorization 

Nearest-neighbour Orientation Distribution Function 𝐷25 - 

Orientation Distribution Function 𝐷7 

From 2-groups categorization 

to 10-groups categorization 

Volume Fraction 𝐷1 - Local Porosity Distribution Function 𝐷18 
From 2-groups categorization 

to 13-groups categorization  

Nearest-Neighbour Distribution Function(1)_ep 𝐷21 - Nearest-

Neighbour Distribution Function(3)_hp 𝐷23 

From 2-groups categorization 

to 15-groups categorization 

Nearest-Neighbour Distribution Function(2)_ev 𝐷22 - Nearest-

Neighbour Distribution Function(4)_hv 𝐷24 

From 2-groups categorization 

to 15-groups categorization 

4.2. Correlation between morphological descriptors 

Table 6 and Tables 7 summarize the correlation grouping for all descriptors listed in Table 2. 

Some descriptors are more correlated with each other and others are less correlated, and all 

these correlations are relative. At different precision levels, these descriptors are categorized 

into different numbers of groups, ranging from 2 to 15. The correlation between descriptors 

can be examined by making lateral and longitudinal comparisons in Tables 6.1-6.14. The lateral 

comparison focuses on the classification at a fixed precision level. The descriptors categorized 

into the same group are more correlated than the descriptors in different groups, and such 

correlation can be examined at different precision levels. The longitudinal comparison focuses 

on the changing trend when the precision of classification increases or decreases. As the 

precision increases, the descriptors that are removed from the current groups have less 

correlation than the descriptors that remain in the current groups. For instance, the surface-
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particle correlation function 𝐷30, the surface-surface correlation function 𝐷31, and the surface-

void correlation function 𝐷32 are all classified into Group A in Table 6.1. However, at the next 

level of precision, the surface-surface correlation function 𝐷31 is moved to another group. This 

implies that the surface-particle correlation function 𝐷30 is more correlated to the surface-void 

correlation function 𝐷32 than to the surface-surface correlation function 𝐷31.  

A graphical illustration for the correlation of all 41 descriptors is given in Table 7, where 

the columns represent individual descriptors 𝐷𝑖 , 𝑖 = 1,2, ⋯ ,41 , the rows represent their 

classifications, and the letters A, B, C, …, O represent the same clustering as summarized in 

Table 6. Closely correlated descriptors are placed in nearby columns and represented by a color 

code. From the top row to the bottom row, the descriptor classification changes from 2 groups 

to 15 groups, and the color code clearly demonstrates the clustering evolution, which indicates 

the relationship between descriptors.   

5. Conclusion  

This study proposes a flexible and robust method for uniform correlation analysis of various 

statistical descriptors that characterize the morphology of heterogeneous materials. Based on 

image processing and machine learning, the new correlation analysis strategy comprises three 

operational steps: data regularization, dimension reduction and correlation analysis. 

Specifically, the data regularization is achieved by heterogeneous material modelling that 

transforms the statistical information represented by individual morphological descriptors of 

different formats into reconstructed microstructure images of uniform size and resolution. The 

dimension reduction is achieved by using the texture spectrum approach that converts the large 

data set of microstructural images into a texture spectrum vector of moderate dimension. The 

correlation analysis is achieved via 𝐾-means clustering that categorizes the descriptor points 

into different numbers of groups. The new method overcomes the fundamental challenge 

caused by the intrinsic data heterogeneity associated with various morphological descriptors. 

For the first time, the quantitative relations between various morphological descriptors are 

uniformly established. The improved understanding of interrelation of morphological 

descriptors can benefit widely the characterization, reconstruction, and property 

prediction/optimization of heterogenous materials. A total of 41 morphological descriptors are 

analysed in this study, but the method is generic and can be readily extended to include other 

descriptors. In addition, the idea of the proposed unified correlation analysis strategy could be 

beneficial to other engineering problems with the presence of data heterogeneity.  

This study is not without limitation. First, this study uses texture spectrum for dimension 

reduction and 𝐾-means clustering for correlation analysis, but there are other ways to perform 

dimension reduction on image data sets and to carry out correlation analysis on feature vectors. 

Different methods for dimension reduction and correlation analysis may result in slightly 

different results, which is worth for future studies. Secondly, this study relies on 2D reference 

samples and 2D microstructure reconstruction to transform heterogeneous statistical 

descriptors into unified data sets (i.e. binary images of the same size and resolution) but at a 
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much higher computational cost, using 3D reference samples and 3D microstructure 

reconstruction is arguably more representative and more accurate for the correlation analysis. 

This will also be pursued in our future work. 
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