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1 Introduction and summary of results

Gauge theories in three spacetime dimensions are strongly coupled in the IR, determining
their low energy dynamics is therefore generically difficult. One arena in which one can
overcome this difficulty is the realm of 3d N = 4 gauge theories. Their relevance to string
theory was highlighted very early after the D-brane revolution in a landmark paper by
Hanany and Witten [1], which facilitated further explorations of the subject. A more
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recent development is to use 3d N = 4 theories as a probe to study higher dimensional
superconformal field theories (SCFTs) as well as gauge theories [2–14]. The idea is to
relate the Higgs branch of these higher dimensional theories to the Coulomb branch of
the 3d theory, the latter of which is dubbed magnetic quiver (MQ). In addition to their
significance to string theory or higher dimensional theories, 3d N = 4 theories possess rich
dynamics, making them interesting objects in their own right. Notable among their many
rich properties is mirror symmetry [1, 15, 16], a duality which relates pairs of 3d N = 4
gauge theories where the role of masses and Fayet-Illiopolous terms are exchanged. The
moduli space of vacua of a 3d N = 4 gauge theory is generically comprised of a Higgs branch
and a Coulomb branch,1 which are exchanged under mirror symmetry. In certain cases,
it can be shown that the magnetic quiver of a given theory, is the 3d mirror of the torus
compactification of that theory to 3d [7, 17–19]. Another interesting aspect of 3d N = 4
theories is the enhancement of their global symmetry in the infrared (IR) limit. Gauge
theories in 3d possess a topological (or magnetic) symmetry, which is valued in the centre
of the Langland dual of the gauge group G. Classically, this is an abelian symmetry, but
in the IR this is typically enhanced to a non-abelian global symmetry.

It will be convenient for us to make a distinction between quivers which are made en-
tirely of unitary gauge nodes, and those which can also have orthogonal and/or symplectic
gauge nodes in addition. We will refer to the former as unitary and the latter as orthosym-
plectic (OSp) quivers respectively. The primary focus of this paper is orthosymplectic
magnetic quivers.

A convenient tool to study the moduli space of 3d N = 4 theories is the Hilbert series,
which enumerates gauge invariant operators graded by their conformal dimension. The
Coulomb branch Hilbert series can be computed using the monopole formula [20], while
the Higgs branch Hilbert series can be evaluated using the Molien-Weyl formula [21]. The
Coulomb branch Hilbert series is sensitive to the pattern of symmetry enhancement dis-
cussed above, so long as one finds a way to refine the computation. This is a longstanding
challenge in the case of OSp quivers due to a current lack of understanding of such compu-
tations.2 One of the main results of this paper is the refined Hilbert series, and therefore
the enhanced magnetic symmetry of the OSp quivers under our study. Together with the
other tools of the Plethystic programme [23, 24], the Hilbert series can be used to give an
algebraic description of the moduli space as a variety. We will in particular make use of
the notion of highest weight generators (HWGs) developed in [25] in order to write down
closed form expressions for the Coulomb branch Hilbert series of the OSp magnetic quivers
under our consideration.

In this paper we uncover an interesting phenomenon which is common to all models
under our consideration; the moduli space of the OSp quivers that we study generically
factorizes into two decoupled sectors, each of which has an alternative description, in terms
of the moduli space of a single connected unitary quiver. An upshot of this result is that
we can write exact highest weight generating functions (HWGs) encoding the Coulomb

1One can also consider mixed branches, but we will not explore that in this work.
2This difficulty is related to the notion of hidden FI parameters in OSp quivers, see e.g. [22].
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branch Hilbert series of several families of orthosymplectic quivers using known results
for the individual factors. This result ultimately follows from fact that the OSp quivers
that we study serve as magnetic quivers to 5d N = 1 SCFTs which are the UV fixed
point of a 5d IR gauge theory whose gauge group is a product of SO(4) factors, and with
matter representations transforming as either spinors or conjugate spinors of each SO(4)
factor. Since SO(4) is locally isomorphic to SU(2)×SU(2), and a spinor and conjugate
spinor transform under different SU(2) factors, each such theory can be reformulated as
a product of two decoupled theories, each of which has a gauge group that is a product
of SU(2)s. The theories containing SO(4) factors can be engineered using a single type
IIB brane web with the inclusion of O5-planes, which can then be used to obtain an OSp
magnetic quiver [2, 5]. On the other hand the formulation in terms of the product of
theories with SU(2) factors is engineered by two independent brane webs, giving rise to
two magnetic quivers, which will be unitary by construction [11].

We note that an analogous factorization phenomenon happens for 4d N=2 theories of
class-S of D-type. In this context, it is well known that there are cases in which a single
three-punctured sphere describes the direct sum of 2 SCFTS, each of which also admits
a realization in A-type class-S [26–29]. Indeed, we identify some 4d N=2 theories of D-
type class-S which exhibit this factorization, and for which the orthosymplectic 3d mirror
theories correspond to the magnetic quiver derived from the 5-brane webs with O5-plane.
Likewise, the 3d mirror of the two A-type factors also corresponds to the unitary magnetic
quiver derived from the 5-brane web without O5-plane.

For ease of presentation, we tabulate a list of all the orthosymplectic quivers appearing
in this work, along with their Coulomb branch symmetry and the refined highest weight
generating functions of the Coulomb branch in table 1.

The organization of this paper is as follows. In section 2 we review the relevant tools
that we will need from the plethystic programme. We discuss the monopole formula for the
Coulomb branch and the Molien-Weyl formula for the Higgs branch and review the notion
of highest weight generating functions. Section 3, contains our main results. Here we will
present the product exceptional sequences of OSp quivers, their 5d origin from brane webs
with O5 planes and their unitary counterparts as well as their 5d origin from ordinary brane
webs. In this section we also state the Hilbert series results for all the quivers. Finally, in
section 4 we discuss potential applications of our results and state open problems which
we find deserve further investigation. Appendix A contains additional details for some of
the Higgs branch Hilbert series computations. We collect the results of HWGs for the
unitary quivers in the table 9 of appendix B. In appendix C, we give more details on
the computations of the Coulomb branch Hilbert series for the OSp quivers. Appendix D
contains a review of the class S technology that is used within the main sections.
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Table 1. Summary of the orthosymplectic quivers, their Coulomb branch symmetry and the
associated HWG. The corresponding fugacities are denoted by subscripts in the symmetry groups.
Note that for N = 1, there is an enhancement in the symmetry as detailed in the later sections. The
notations for the quivers are defined in the beginning of section 3.

Quiver Symmetry PL[HWG]

1
⋯

2N − 1 2N

4

SU(2N)µ ×
SU(2N)ν

N

∑
k=1

(µk µ2N−k + νk ν2N−k) t
2k

1
⋯

2N − 1 2N 1

1
SU(2N)µ ×
SU(2N)ν ×

U(1)q

N

∑
k=1

(µk µ2N−k + νk ν2N−k) t
2k + t2 +

(q + q−1) νN t
N+1 − ν2

N t
2N+2

1
⋯

2N − 1

2N − 2

1

2
SU(2N)µ ×
SU(2N)ν ×

U(1)q

N

∑
k=1

µk µ2N−k t
2k +

N−1
∑
k=1

νkν2N−k t
2k +

t2 + (νN+1q + νN−1q
−1) tN+1 −

νN+1 νN−1 t
2N+2

1
⋯

2N − 1 2N

2

1

SU(2N)µ ×
SU(2N)ν ×
U(1)q1 ×

U(1)q2

N

∑
k=1

(µk µ2N−k + νk ν2N−k) t
2k + 2t2 +

(q1 + q
−1
1 )µN t

N+1 − µ2
N t

2N+2 +

(q2 + q
−1
2 ) νN t

N+1 − ν2
N t

2N+2

1
⋯

2N − 2 2N − 2 2N − 2

21 SU(2N)µ ×
SU(2N)ν ×
U(1)q1 ×

U(1)q2

N−1
∑
k=1

(µk µ2N−k + νk ν2N−k) t
2k + 2t2 +

(µN+1q1 + µN−1q
−1
1 ) tN+1 −

µN+1 µN−1 t
2N+2 +

(νN+1q2 + νN−1q
−1
2 ) tN+1 −

νN+1 νN−1 t
2N+2

1
⋯

2N − 1 2N − 2

1

1
SU(2N)µ ×
SU(2N)ν ×
U(1)q1 ×

U(1)q2

N

∑
k=1

µk µ2N−k t
2k +

N−1
∑
k=1

νk ν2N−k t
2k +

2t2 + (q1 + q
−1
1 )µN t

N+1 − µ2
N t

2N+2 +

(νN+1q2 + νN−1q
−1
2 ) tN+1 −

νN+1 νN−1 t
2N+2

1
⋯

2N 2N

21

SU(2N + 1)µ ×
SU(2N + 1)ν

N

∑
k=1

(µkµ2N+1−k + νkν2N+1−k) t
2k
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1

⋮

2N − 2
2N − 2 2N − 2 2N − 2

1 2

SU(2N + 1)µ ×
SU(2N + 1)ν

N−1
∑
k=1

(µkµ2N+1−k + νkν2N+1−k) t
2k

1

⋮

2N − 2

2N − 1 2N − 1 2N − 2

1 1

SU(2N + 1)µ ×
SU(2N + 1)ν

N

∑
k=1

µkµ2N+1−kt
2k +

N−1
∑
j=1

νjν2N+1−jt
2j

1

⋮

2N

2N12

SU(2N + 1)µ ×
SU(2N + 1)ρ ×

SU(2)ν ×
U(1)q

N

∑
i=1

(µiµ2N+1−i + ρiρ2N+1−i)t
2i + (ν2 +

1)t2 + ν(µNq + µN+1q
−1)tN+1 −

ν2µNµN+1t
2N+2

1

⋮

2N − 1

2N − 1

2N − 2

122

SU(2N + 1)µ ×
SU(2N + 1)λ ×

SU(2)ν ×
SU(2)η ×
U(1)q

N

∑
i=1

(µiµ2N+1−i + λiλ2N+1−i)t
2i + (ν2 +

1)t2 + ν(µNq + µN+1q
−1)tN+1 −

ν2µNµN+1t
2N+2 + η2t2

2 2

2

1

2N

2N
⋯

1 SU(2N + 1)µ ×
SU(2N + 1)η ×

SU(2)ν ×
SU(2)λ ×

U(1)q × U(1)r

N

∑
i=1

(µiµ2N+1−i + ηiη2N+1−i)t
2i + (ν2 +

λ2 + 2)t2 + ν(µNq + µN+1q
−1)tN+1 +

λ(ηNr + ηN+1r
−1)tN+1 −

ν2µNµN+1t
2N+2 − λ2ηNηN+1t

2N+2

– 5 –



J
H
E
P
0
5
(
2
0
2
1
)
2
6
9

1

⋮

2N + 1

2N + 2

4 22 22

SU(2N + 2)µ ×
SU(2N + 2)λ ×

SU(2)ν1 ×

SU(2)ν2 ×

SU(2)ρ1 ×

SU(2)ρ2

N+1
∑
i=1

(µiµ2N+2−i + λiλ2N+2−i)t
2i + (ν2

1 +

ν2
2 + ρ

2
1 + ρ

2
2)t

2 + 2t4 + ν1ν2µN+1(t
N+1 +

tN+3) + ρ1ρ2λN+1(t
N+1 + tN+3) −

ν2
1ν

2
2µ

2
N+1t

2N+6 − ρ2
1ρ

2
2λ

2
N+1t

2N+6

1

2N

4N + 1
4N 4N + 1

4N

4N

⋮

2

2

1
2N

1

SO(4N + 6)µ ×
SO(4N + 6)ν

N

∑
k=1

(µ2k + ν2k) t
2k

2

2

⋮

4N + 2

4N + 2
4N + 2

2N

2N

1

SO(4N + 6)µ ×
SO(4N + 6)ν ×

U(1)q

N

∑
i=1

(µ2i + ν2i) t
2i + t2 +

(µ2N+2q + µ2N+3q
−1) tN+1

– 6 –
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2

2N + 2

4N + 4
4N + 2

4N + 2

⋮

2

2

2N + 2

1

SO(4N + 6)µ ×
SO(4N + 6)ν ×

U(1)q1 ×

U(1)q2

N

∑
i=1

(µ2i + ν2i)t
2i + 2t2 +

(µ2N+2q1 + µ2N+3q
−1
1 ) tN+1 +

(ν2N+2q2 + ν2N+3q
−1
2 ) tN+1

2

2

4

2N + 4

4N + 6
4N + 4

4N + 4

⋮

2

2

2N + 2

SO(4N + 8)µ ×
SO(4N + 8)λ ×

SU(2)ν ×
SU(2)ρ

N+1
∑
i=1

(µ2i + λ2i)t
2i + 2t4 + (ν2 + ρ2)t2 +

νµ2N+4(t
N+1 + tN+3) + ρλ2N+4(t

N+1 +

tN+3) + (µ2
2N+4 + λ

2
2N+4)t

2N+4 −

ν2µ2N+4t
2N+6 − ρ2λ2N+4t

2N+6

2 Preliminaries: tools from the plethystic programme

In this section we review the material we need for the computation of the Hilbert series. The
discussion will be minimal and will cover only those aspects necessary for the subsequent
section. For more details the reader can consult the original papers. The literature on this
material is vast, but we will mostly follow [6, 20, 21, 23, 25]. In the following subsections
we consider a 3d N = 4 theory with gauge group G of rank r and nH hypermultiplets
transforming under the representation Ri of G (i = 1,⋯, nH).

2.1 Coulomb branches

The bosonic fields in a 3d N = 4 vector multiplet consist of a gauge field and 3 real scalars.
Upon dualising the gauge field to a scalar we have 4 scalars at our disposal, which can be
pairwise complexified. These are the coordinates on the Coulomb branch at large vevs.
Each of these complex scalars forms the scalar component of an N = 2 chiral superfield.
For small vevs one needs to replace the complex scalar containing the dual photon by a
BPS monopole operator [16], which can again be thought of as the bottom component of
an N = 2 chiral multiplet. The quantum coordinates of the Coulomb branch are therefore
the BPS monopole Vm of magnetic charge m and the adjoint scalar φ. The Hilbert series
(HS) for the Coulomb branch of a good or ugly (in the sense of [16]) 3d N = 4 theory is

– 7 –
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then computed by the monopole formula [20]

HS(t, z) = ∑
m∈ΛG∨

m /WG∨

zJ(m)t2∆(m)PG(t,m) , (2.1)

where the sum is over the magnetic lattice of the gauge group G, we refer to [6] for a detailed
account. ∆(m) is the conformal dimension of the monopole operator with magnetic charge
m, and is given by

∆(m) = − ∑
α∈∆+

∣α(m)∣ +
1
2

nH

∑
i=1
∑
ρi∈Ri

∣ρi(m)∣ , (2.2)

where ∆+ is the set of positive roots and ρi are the weights of the representation Ri. The
classical dressing factor PG(t,m) counts invariants built out of the adjoint scalars φ

PG(t,m) =
r

∏
i=1

1
1 − t2d(i)

, (2.3)

where d(i) are the degrees of the Casimir invariants of the gauge symmetry H ⊂ G which is
the unbroken part of the original gauge symmetry in the presence of a monopole operator
Vm of chargem. Finally z denote the fugacities of the topological symmetry whose exponent
J(m) denotes the topological current.

2.2 Higgs branches

The Higgs branch of a 3d N = 4 theory is parametrised by vevs of the scalar components
of the hypermultiplets. When dealing with a gauge theory, each such operator will be in
an irrep of G. The Higgs branch operators are therefore those constructed by considering
all symmetrised tensor powers of these irreps. The symmetrisation is done in order to be
consistent with Pauli statistics. To avoid overcounting, the relations among these scalar
operators due to the superpotential need to be imposed. One will then need to project onto
the gauge singlet states in order for the resulting operators to be well defined gauge invariant
operators. The Higgs branch Hilbert series is therefore computed using the Molien-Weyl
formula [21]

HSH(t) = ∫
G
dµG

PE [∑
nH
i=1 χRi(x)t]

PE [χAdj(x)t2]
, (2.4)

where χRi(x) is the character of the representation Ri of G under which the scalars in the
i-th hypermultiplet transform, χAdj is the character of the adjoint representation of G, the
representation carried by the relations. The function PE [⋅] is the plethystic exponential,
defined via

PE [f (z1,⋯, zr)] = exp(
∞
∑
k=1

1
k
f (zk1 ,⋯, z

k
r )) , (2.5)

it is a symmetrising function that generates the characters of the symmetrised tensor powers
of χRi . Finally the projection onto gauge invariant operators is achieved by integrating
over the group manifold using the Haar measure. In a suitable basis, the Haar measure
can be taken to be

∫
G
dµG =

1
(2πi)r

r

∏
i=1
∮
∣xi∣=1

dxi
xi
∏
α∈∆+

(1 −
r

∏
k=1

xαk

k ) . (2.6)

– 8 –
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2.3 Highest weight generating functions

The refined Hilbert series for a given theory can be generically expanded as Taylor series in
t such that the coefficients are sum of the characters of representations of global symmetry
of the theory. In general, given a global symmetry of rank r, the refined Hilbert series can
be expanded as:

∞
∑
n1=0

∞
∑
n2=0

⋯
∞
∑
nr=0

χ[f1,f2,⋯,fr] t
η , (2.7)

where each of f1, . . . , fr and η can be some polynomial function in variables n1, . . . , nr.
The notation χ[f1,⋯,fr] is the character of the irrep of the global symmetry whose highest
weight is f1Λ1 + . . . + frΛr, where fi are the Dynkin labels of the irrep and Λi are the
fundamental weights of the global symmetry group. A convenient way to repackage the
same information is in terms of highest weight generating functions or HWGs [25]. One
introduces a set of fugacities {µ1, . . . , µr}, called highest weight fugacities, and one writes
the characters in terms of µi according to the map

χ[f1,...,fr] ↔ µf1
1 . . . µfr

r . (2.8)

With this map, the Hilbert series becomes a formal power series which can be resummed,
the corresponding generating function is termed as its HWG:

HWG =
∞
∑
n1=0

⋯
∞
∑
nr=0

µf1
1 . . . µfr

r tη . (2.9)

3 Product sequences

In this section we present sequences of orthosymplectic magnetic quivers whose moduli
space is the product of two decoupled sectors, each of which enjoys a description as the
moduli space of a unitary quiver. Each sequence is parameterised by an integer N which
is the sequence number, and labelled Em × En, in accordance with the Coulomb branch
isometry of the N = 1 case. For N = 1, some of the theories become particularly simple
such that we can prove the equivalence of the orthosymplectic quiver with the two unitary
quivers. The Em ×En orthosymplectic quiver with sequence number 1 corresponds to the
magnetic quiver for infinite coupling limit of 5d N = 1 SO(4) gauge theory with m − 1
hypermultiplets in the spinor representation denoted by s and n− 1 hypermultiplets in the
conjugate spinor representation of SO(4) denoted by c. Correspondingly the dual unitary
quivers with sequence number 1 correspond to magnetic quivers for infinite coupling limit
of 5d N = 1 SU(2)×SU(2) gauge theory with m − 1 hypermultiplets in the (F,1) and n − 1
hypermultiplets in the (1,F) representation of SU(2)×SU(2), where we denote by F the
fundamental representation of associated gauge group. One can engineer these theories
using 5-brane webs with O5-planes [30], as well as using ordinary brane webs [31]. This
pattern generalizes for higher sequence numbers, namely one can provide an intuition for
the reason that the orthosymplectic quivers factorise into two decoupled sectors by viewing
them as magnetic quivers of a 5d theory. We will therefore employ this perspective in
the following. We will use EQm,n to denote the 5d OSp electric quivers for the Em × En
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sequence, while we use the notation EQm to denote the 5d unitary electric quivers to which
the former factorise. Similarly, we will denote the OSp magnetic quivers of the Em × En
sequence by MQm,n, while we denote the unitary components to which they factorise by
MQm. Occasionally there will be more than one generalisation of a given sequence for
higher sequence numbers, in which case we will distinguish the different sequences by
a prime.

Our conventions for the magnetic quivers are identical to those appearing in [2] which
we briefly review in the following. We denote by a white, red and blue node, the groups
U(n), SO(n) and USp(2n) respectively. A circular node is to be understood as a gauge
group, while a square node denotes a flavour group. We use solid lines to denote bifunda-
mental hypermultiplets, in the case where the solid line connects an orthogonal to a sym-
plectic node there is a reality condition which renders the link to be a half hypermultiplet.
We use a dashed link between two unitary nodes to denote a fundamental-fundamental hy-
permultiplet and a jagged line between a unitary flavour and a gauge U(1) node to denote
a charge 2 hypermultiplet.

3.1 The E1 ×E1 sequence

Consider the 5-brane web constructed by collapsing 2N NS5 branes on top of an O5-plane
that is asymptotically O5+ as in figure 1. By resolving this web to go on the Coulomb
branch one can identify the following low energy quiver description,

EQ1,1 = SO(4) −USp(0) − SO(4) −⋯ −USp(0) − SO(4)

2N − 1
. (3.1)

One can recast this theory, by using the accidental Lie algebra isomorphism so(4) ≅ su(2)⊕
su(2) as a direct sum of two decoupled 5d quiver gauge theories. For each SU(2) gauge
node, we need to fix the discrete theta angles, θ = 0 or θ = π. It is known that the former
has a Higgs branch with dimension one while the latter does not have Higgs branch in the
infinite coupling limit. Since the SO(4) gauge theory constructed as in the left of figure 1
with N = 1 has Higgs branch with dimension two in the infinite coupling limit, it should
correspond to SU(2)0× SU(2)0 gauge theory. Further support for this claim is given in
appendix E by constructing the SU(2)θ1× SU(2)θ2 gauge theories with different discrete
theta angles by using 5-brane web diagram with O5-planes. Since each SO(4) gauge node
corresponds to SU(2)0× SU(2)0, the generalization to generic N should be3

EQ1,1 = (EQ1)
2
=

⎛
⎜
⎜
⎝

SU(2)0 − SU(2)0 − SU(2)0 −⋯ − SU(2)0

N ⎞
⎟
⎟
⎠

2

. (3.2)

Since this description involves only special unitary gauge groups, we should be able to
engineer it using (two copies of) ordinary brane webs, i.e. without using O5-planes. It is

3Analogous discussion on the discrete theta angle will apply to the later examples. In the following
subsections, we suppress the label “0” of SU(2)0 denoting its discrete theta angle.
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O5+ O5+

1

2

2N − 1

2N

⋮

(1,1)

(1,1)

(1,−1)

(1,−1)

⋰

⋰

1

2

N − 1

N

1

2

N − 1

N

Figure 1. Brane webs engineering EQ1,1 (left) and EQ1 (right). The numbers near each 5-brane
denote the number of coincident 5-branes in the stack in that segment. Black dots denote 7-branes
of charge (p, q).

constructed in such a way that it is decomposed into the copy of SU(2)0 gauge theories in
the region where the bi-fundamental masses are large enough [32]. The result is given in
the right of figure 1. This is also discussed in appendix E.

At this point we need to clarify which aspect of the two theories (3.1) and (3.2) are
expected to be the same. This is because we used an isomorphism at the level of Lie algebra,
ignoring any issues related to the global structure of the gauge group (with the exception of
the choice of discrete theta angle mentioned above). In particular, any information related
to local operators in the two theories is likely to agree, while questions about e.g. line and
surface operators in general will be sensitive to the global structure of the gauge group.
Our primary interest in these theories is in their Higgs branch, which is parameterised by
local operators, and thus should agree regardless of any subtle differences such as those
alluded to above.

Having constructed web diagrams for EQ1,1 and EQ1 in figure 1, we can now proceed
to derive their magnetic quivers, following the rules introduced in [2, 5, 11]. From the
orientifold web in figure 1 we obtain the OSp magnetic quiver4

MQ1,1 =

1
⋯

2N − 1 2N

4

, (3.3)

4The flavor SO(4) node appearing in the quiver MQ1,1 was argued [2] to arise from the intersection
between (0,1) 5-brane and O5+-plane. This is based on the intuition that an O5+ carries the same charge
as an O5− and two (immobile) D5 branes.
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while taking two copies of the unitary web in figure 1 leads us to conjecture

MQ1,1 = (MQ1)
2
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝ 1

⋯
N

⋯
1

1 ⎞
⎟
⎟
⎟
⎟
⎟
⎠

2

, (3.4)

where the first equality above is to be understood as an equality of moduli spaces. We
will use this notation throughout. Note that the set of balanced nodes in the unitary
quiver implies an SU(2N)×SU(2N) symmetry, with each factor coming from the balanced
nodes in one of the unitary quivers (3.4). This is consistent with the claim of Gaiotto and
Witten [16], that whenever a chain of balanced unitary nodes terminate on a balanced
symplectic node, the isometry of the Coulomb branch is doubled. A second consistency
check, is that for N = 1, the two theories are obviously identical, the OSp quiver in this
case is the so called T (SO(4)), while the unitary side is two copies of T (SU(2)). In other
words for N = 1 we recover the statement

T (SO(4))↔ T (SU(2) × SU(2))↔ T (SU(2)) × T (SU(2)) . (3.5)

One upshot is that the HWG for the unitary quiver is straightforward to extract, given that
its refined Hilbert series can be computed. Indeed the unitary quiver has already appeared
in previous studies, for instance in [3]. Therefore our conjecture implies that the HWG of
the OSp quiver (3.3) is simply given by doubling the known result for (3.4), namely:

HWG1,1 = PE [
N

∑
k=1

(µkµ2N−k + νkν2N−k) t
2k

] , (3.6)

where µ and ν are highest weight fugacities for SU(2N) × SU(2N). We can confirm this
proposal by computing the unrefined Hilbert Series for the OSp quiver (3.3) for small values
of N . Some of the results are given in table 10.

Even more remarkable, is that the agreement between the quivers (3.3) and (3.4) is
also valid on the Higgs branch. From the 5d perspective there is no a priori reason why this
should be so, but it can be confirmed by an explicit calculation of the unrefined Hilbert
series (see appendix A for a derivation of this formula)

2N
∏
q=2

(1 − t2q)∫ dµCN
PE [χ[0,1,0,⋯,0]CN

t2 + 4χ[1,0,⋯,0]CN
t] . (3.7)

Let us evaluate this integral for N = 2. The measure over the USp(4) group can be taken
to be

∫ dµC2 = ∮∣x1∣=1

dx1
2πix1

∮
∣x2∣=1

dx2
2πix2

(1 − x2
1) (1 − x2)(1 − x

2
1
x2

)(1 − x
2
2
x2

1
) , (3.8)
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while the characters for the fundamental and second rank antisymmetric representation of
USp(4) are given respectively by5

χ[1,0]C2
= x1 +

x2
x1

+
x1
x2

+
1
x1

,

χ[0,1]C2
= x2 +

x2
1
x2

+ 1 + x2
x2

1
+

1
x2

,

(3.9)

Thus the expression we need to evaluate is
4
∏
q=2

(1 − t2q)∮
∣x1∣=1

dx1
2πix1

∮
∣x2∣=1

dx2
2πix2

(1 − x2
1) (1 − x2)(1 − x

2
1
x2

)(1 − x
2
2
x2

1
)

×
1

(1 − x2t2) (1 − x2
1
x2
t2) (1 − t2) (1 − x2

x2
1
t2)(1 − t2

x2
) (1 − x1t)

4
(1 − x2

x1
t)

4
(1 − x1

x2
t)

4
(1 − t

x1
)

4 .

(3.10)
This integral can now be evaluated using residues to arrive at the following Hilbert series

HSH1,1∣N=2 =
(1 − t6)2(1 − t8)2

(1 − t4)6(1 − t2)6 . (3.11)

We recognise this as the Coulomb branch Hilbert series of two copies of U(2) with 4 fun-
damental hypermultiplets [20], which is the mirror of the N = 2 quiver of (3.4). Therefore
we see that the agreement between the OSp quiver (3.3) and unitary quiver (3.4) holds
also on the Higgs branch.

3.2 The E1 ×E3 sequence

In the previous subsection, we saw that the Higgs branch of the fixed point limit of 5d
SO(4) gauge theory, factorises to two copies of the Higgs branch of the 5d pure SU(2) gauge
theory. It is natural to ask whether this pattern holds if we include matter transforming
under SO(4). The two matter representations which are straightforward to obtain from the
brane web are the vector of SO(4) and the two spinor representations of opposite chirality.
Since the vector of SO(4) corresponds to bifundamental of SU(2)×SU(2), this will not lead
to the desired factorised theory. However, each of the two spinor representations, denoted
by s and c respectively, will only transform under one of the two SU(2) factors in SO(4).
In this and subsequent subsections, we will exploit this well-known fact.

Consider the orientifold web diagram presented in figure 2. The corresponding IR
quiver gauge theory description is given by the electric quiver

EQ1,3 =
[1 s] − SO(4) −USp(0) − SO(4) −⋯ −USp(0) − SO(4) − [1 s]

2N − 1
. (3.12)

By using the isomorphism so(4) ≅ su(2) × su(2), we can rewrite this theory as a product
5These characters are computed as follows. For a weight w = [w1, w2] ≡ w1Λ1 + w2Λ2 appearing in

the weight system of a representation R of C2, the corresponding monomial in the character will be
xw1

1 xw2
2 . For example, the weights appearing in the weight system of fundamental representation of C2

are {[1, 0], [−1, 1], [1,−1], [−1, 0]} where each weight is written in the fundamental weight basis. Thus the
character for fundamental representation will be simply x1

1x0
2 + x−1

1 x1
2 + x1

1x−1
2 + x−1

1 x0
2.
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1

2

2N − 1

2N (2,1)(2,-1)

⋮

(1,1)

(1,1)

⋰

⋰

1

2

N − 1

N

1

2

N − 1

N

Figure 2. Brane webs engineering EQ1,3 (left) and EQ3 (right). For the unitary brane web
engineering EQ1, see figure 1.

of the following electric quivers.

EQ1,3 = EQ1 ×EQ3 = SU(2) − SU(2) −⋯ − SU(2)

N

× SU(2)
∣

[1F]

− SU(2) −⋯ − SU(2)
∣

[1F]

N

(3.13)

The unitary brane web for EQ1 is given in figure 1, while the unitary brane web for EQ3
is presented in figure 2. The orientifold web in figure 2 admits two maximal subdivisions.
Accordingly the Higgs branch of this theory is the union of two cones, given by the two
OSp magnetic quivers in table 2. On the other hand, we expect these magnetic quivers to
be equivalent to the product MQ1 × (MQ(I)

3 ∪MQ(II)
3 ), with the latter factor obtained from

the unitary web for EQ3 in figure 2. As a further non-trivial check, we can compute the
Coulomb branch Hilbert series of the unitary and OSp quivers. The unitary quivers MQ1
along with MQ(I)

3 and MQ(II)
3 have known HWGs [3], which we have tabulated in table 9.

We are now in a position to write down the HWGs for the OSp magnetic quivers in
table 2. The final result for the first cone reads

HWG(I)
1,3 = PE [

N

∑
k=1

µkµ2N−kt
2k

]PE [t2 + (q + q−1) νN t
N+1

+
N

∑
k=1

νkν2N−kt
2k
− ν2

N t
2N+2

] ,

(3.14)
where µ and ν are the highest weight fugacities for SU(2N)×SU(2N) while q keeps track
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MS OSp Unitary

MQ(I)
1,3

1
⋯

2N − 1 2N 1

1

1

⋰
N

⋱

1

1

1

⋰
N

⋱

1

1 1

MQ(II)
1,3

1
⋯

2N − 1

2N − 2

1

2

1

⋰
N

⋱

1

1

1

⋮

N − 1
N − 1

N − 1

⋮

1

1 1

Table 2. OSp and unitary representation of the two cones on the Higgs branch of EQ1,3. The
unitary quivers appearing in the extreme right of the two rows of the table are respectively MQ(I)3
and MQ(II)

3 .

of the U(1) charge. The HWG for the second cone reads

HWG(II)
1,3 = PE [

N

∑
k=1

µkµ2N−kt
2k

]

×PE [t2 + (νN+1q + νN−1q
−1) tN+1

+
N−1
∑
k=1

νkν2N−kt
2k
− νN+1νN−1t

2N+2
] . (3.15)

This can be verified upon comparison with the result of an unrefined Hilbert series com-
putation on the OSp side. The results for low values of N are given in table 10.

We can also compute the Higgs branch HS for MQ(I)
1,3 for N = 2 exactly. The computa-

tion is very similar to that of the Higgs branch of MQ1,1 discussed around (A.2). We need
to evaluate the following integral

4
∏
q=1

(1 − t2q)∫ dµC2 ∫ dµU(1) PE [χC2
[0,1]t

2
+ 2χC2

[1,0](q + q
−1

)t + (q2
+ q−2

)t] (3.16)

Evaluating this integral by finding the residues one arrives at the following

HSH1,3,(I) =
(1 − t + t2)(1 + t4)(1 + t3 + t4 + t5 + t6 + t7 + t10)

(1 − t)8(1 + t)6(1 + t2)3(1 + t + t2 + t3 + t4)
. (3.17)

This is to be compared with the product of the Higgs branch HS of the two unitary quivers
appearing in the first row of table 2. We already know the result for one of these, which
is identical to MQ1 of (3.4). Its Higgs branch HS was discussed in the previous section
and is given by the square root of the expression in (3.11). The Higgs branch HS of the
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1

2
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⋮

1
2

11
2

1

Figure 3. Orientifold web for EQ3,3.

other quiver in the first row of table, 2, which we dub MQ(I)
3 is straightforward to compute.

Specialising to the case N = 2, we need to evaluate the following integral

∫ dµU(2)(x,qx)∫ dµU(1)(u)H
2
T [SU(2)](x)H

U(2)
glue (x,qx)

×H[2]−[1](x,qx)H[2]−[1](x,qx,u)H[1]−[1](u)H
U(1)
glue (u)

=∮
∣x∣=1

dx

2πix
(1−x2

)∮
∣qx∣=1

dqx
2πiqx ∮∣u∣=1

du

2πiu
(1−t2)2

(1−t4)2

×PE[(x2
+1+x−2

)t2+(x+x−1
)(qx+q

−1
x )(u+u−1

)t+(u+u−1
)t+(x+x−1

)(qx+q
−1
x )t] .

(3.18)

Evaluating this integral by computing its residues results in

HSH3,(I) =
(1 + t3 + t4 + t5 + t6 + t7 + t10)

(1 − t)4(1 + t)2(1 + t2)(1 + t + t2)(1 + t + t2 + t3 + t4)
. (3.19)

Together with the result for the HB of MQ1, this precisely reproduces the computation on
the OSp side (3.17).

3.3 The E3 ×E3 sequence

The E3 ×E3 sequence corresponds to the fixed point limit of the electric quiver

EQ3,3 = (EQ3)
2
= SO(4)

∣

[1s + 1c]

−USp(0) − SO(4) −⋯ −USp(0) − SO(4)
∣

[1s + 1c]

2N − 1

. (3.20)

The orientifold web which engineers this theory is given in figure 3. This brane web admits
three maximal subdivisions leading to the three OSp magnetic quivers in table 3. It can be
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MQ(I)
3,3 1

⋯
2N − 1 2N

2

1

⎛
⎜
⎜
⎜
⎝ 1

⋯
N

⋯
1

1 1 ⎞
⎟
⎟
⎟
⎠

2

MQ(II)
3,3

1
⋯

2N − 2 2N − 2 2N − 2

21 ⎛
⎜
⎜
⎜
⎜
⎜
⎝ 1

⋯
N − 1 N − 1 N − 1

⋯
1

1 1 ⎞
⎟
⎟
⎟
⎟
⎟
⎠

2

MQ(III)
3,3 1

⋯
2N − 1 2N − 2

1

1

1

⋰
N

⋱

1

1 1

1

⋮

N − 1
N − 1

N − 1

⋮

1

1 1

Table 3. Unitary and OSp magnetic quivers for the E3 ×E3 sequence.

understood as a limiting case of the Y 1,1
N theory in [2]. One can provide a purely unitary

description of this theory in terms of the following electric quiver:

EQ3,3 = EQ2
3 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

SU(2)
∣

[1F]

− SU(2) −⋯ − SU(2)
∣

[1F]

N ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

, (3.21)

which can be engineered by taking two copies of the unitary web shown in figure 2. This
brane web admits two maximal subdivisions whose magnetic quivers were discussed in the
previous subsection. Since we are taking two copies, a third cone arises when we take a
different maximal subdivision for each web diagram. This leads us to the unitary magnetic
quivers in table 3.

We can now infer the HWG for the OSp quivers in table 3 by taking those of the
corresponding unitary magnetic quivers as building blocks. This reasoning leads us to
conjecture the following HWG for the three cones in table 3

HWG(I)
3,3(t

2
) = PE [t2 + (µNq1 + µNq

−1
1 )tN+1

+
N

∑
k=1

(µkµ2N−kt
2k

) − µ2
N t

2N+2
]

×PE [t2 + (νNq2 + νNq
−1
2 )tN+1

+
N

∑
k=1

(νkν2N−kt
2k

) − ν2
N t

2N+2
]
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2N
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⋮
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2

2

(1,1)

(1,1)

1

⋰

⋰

1

2

N − 1

N

1

2

N

N + 1 12

Figure 4. Brane webs for EQ3′,3′ (left) and EQ3′ (right).

HWG(II)
3,3 (t2) = PE [t2 + (µN+1p + µN−1p

−1) tN+1
+
N−1
∑
k=1

µkµ2N−kt
2k
− µN+1µN−1t

2N+2
]

×PE [t2 + (νN+1q + νN−1q
−1) tN+1

+
N−1
∑
k=1

νkν2N−kt
2k
− νN+1νN−1t

2N+2
]

HWG(III)
3,3 (t2) = PE [t2 + (µN+1p + µN−1p

−1) tN+1
+
N−1
∑
k=1

µkµ2N−kt
2k
− µN+1µN−1t

2N+2
]

×PE [t2 + (q + q−1) νN t
N+1

+
N

∑
k=1

νkν2N−kt
2k
− ν2

N t
2N+2

] . (3.22)

Here µ and ν are the fuagicites for the two SU(2N) groups and p and q are the U(1)
charges. We have verified this result by an explicit unrefined Hilbert series computation
of the Coulomb branch of the OSp quivers which are presented in table 10 for low values
of N .

3.4 The E′3 ×E′3 sequence

There is another sequence whose first member has an E3 ×E3 symmetry. We will refer to
this as the E′

3 ×E
′
3 sequence. In figure 4 we present the orientifold web that engineers the

5d electric quivers in this sequence, the IR quiver description is given by

EQ3′,3′ =
SO(4) −USp(0) − SO(4) −⋯ −USp(0) − SO(4)

∣

[2s + 2c]

2N − 1

(3.23)
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2N − 2

2N − 2

2N − 2

2

1

2N − 2 3

⋮
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2

1
2

3
2

O5+ O5−

2N − 1

2N − 1

2N − 2

1

2N − 2 3

⋮
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1

1
2

3
2

Figure 5. Maximal subdivisions of the Higgs branch of EQ3′,3′ at the superconformal limit. The
subweb coloured in red is frozen and contributes only as flavour nodes to the magnetic quivers in
table 4.

It can also be given a unitary web description, once rewritten as a quiver theory with SU(2)
nodes:

EQ3′,3′ = EQ2
3′ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

SU(2) − SU(2) −⋯ − SU(2)
∣

[2F]

N ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

. (3.24)

We present the unitary web engineering each EQ′
3 factor in figure 4. Now we can use the

unitary and orientifold webs in figure 4 to obtain unitary and OSp magnetic quivers for the
E′

3 ×E
′
3 sequence, which appear in table 4. These MQs can be obtained by considering the

maximal subdivisions appearing in figure 5. The first subdivision was already discussed
in [2], while the second and third were overlooked. It was noticed in [9] that there should
be 2 additional OSp cones to match the analysis on the unitary side. We claim that the
missing cones in this case correspond to the two new maximal subdivisions appearing in
figure 5.

Notice that for N = 1, the relation between the unitary and OSp quivers in the first row
of table 4 was already suggested in [33], our result generalises this to higher N . The HWG
for the unitary quiver is known and appears in [3]. Given the correspondence between the
unitary and OSp magnetic quivers in table 4, we can use the results for the HWGs of the
unitary quivers to obtain the HWGs for the OSp quivers. In order to do this, let us point
out the following useful fact; one of the unitary quivers appearing in the second and third
row of table 5, is itself a product of two unitary quivers:

1
N − 1 N − 1

N − 1 N − 1

1

⋰

1

⋱

1

= 1
N − 1 N − 1

N − 1 N − 1

⋰

1

⋱

1

×

1

1

, (3.25)
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MS OSp Unitary

MQ(I)
3′,3′

1
⋯

2N 2N

21
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

N N

⋱⋰

1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

MQ(II)
3′,3′

1
⋯

2N − 2 2N − 2 2N − 2 2N − 2

1 2

2

2

4

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
N − 1 N − 1

N − 1 N − 1

1

⋰

1

⋱

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

MQ(III)
3′,3′

1
⋯

2N − 2 2N − 1 2N − 1 2N − 2

1 1

2

2

1

N N

⋮⋮

1 1

1
N − 1 N − 1

N − 1 N − 1

1

⋮

1

⋮

1

Table 4. Magnetic quivers for the E′3 ×E′3 sequence.

where the right hand side of the above is obtained after ungauging the overall decoupled
U(1) in the original quiver. The first quiver in the right hand side of the above is a height
2 nilpotent orbit, whose HWG is presented in [3], while the second quiver is just N = 4
QED with 2 electrons. Turning to the second and third row, we again see that for N = 1
the correspondence between the unitary and OSp quivers is obvious, which one may view
as a further robustness of our proposal.

Now we have all the necessary ingredients to write down HWGs for the OSp quivers

HWG(I)
3′,3′ = PE [

N

∑
k=1

(µkµ2N+1−k + νkν2N+1−k) t
2k

] ,

HWG(II)
3′,3′ = PE [

N−1
∑
k=1

(µkµ2N+1−k + νkν2N+1−k) t
2k
+ (ρ2

+ λ2) t2] ,

HWG(III)
3′,3′ = PE

⎡
⎢
⎢
⎢
⎢
⎣

N

∑
k=1

µkµ2N+1−kt
2k
+
N−1
∑
j=1

νjν2N+1−jt
2j
+ ρ2t2

⎤
⎥
⎥
⎥
⎥
⎦

.

(3.26)

This proposal can be checked by a direct computation of the unrefined Hilbert series of the
OSp quiver. For low values of N , results are given in table 10.
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O5− O5−

1

2

2N

2N + 1 (2,1)

⋮

1
2

1 3
2

2

Figure 6. Orientifold web for EQ3′,4.

3.5 The E′3 ×E4 sequence

The E′
3 ×E4 sequence is the magnetic quiver for the fixed point limit of the 5d IR electric

quiver

EQ3′,4 =
SO(4)

∣

[1s]

−USp(0) − SO(4) −⋯ −USp(0) − SO(4)
∣

[2s + 2c]

2N − 1

. (3.27)

It can be engineered by the orientifold web diagram presented in figure 6. Alternatively
we may reformulate the electric theory EQ3,4 as a product of two unitary electric quivers

EQ3′,4 = EQ3′ ×EQ4 =
SU(2) − SU(2) −⋯ − SU(2)

∣

[2F]

N

× SU(2)
∣

[1F]

− SU(2) −⋯ − SU(2)
∣

[2F]

N

,

(3.28)
where EQ3′ is engineered by the unitary web in figure 4, while the unitary web engineering
EQ4 is the one in figure 7. Given these webs, the magnetic quivers can be extracted using
the rules in [2]. The Higgs branch of EQ3′,4 at the fixed point is the union of two cones,
whose magnetic quivers are given in table 5. The HWG that we propose for the OSp
quivers are

HWG(I)
3′,4 = PE [

N

∑
i=1
µiµ2N+1−it

2i
+ (ν2

+ 1)t2 + ν(µNq + µN+1q
−1

)tN+1
− ν2µNµN+1t

2N+2
]

×PE [
N

∑
k=1

ρkρ2N+1−kt
2k

]
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MS OSp Unitary

MQ(I)
3′,4

1

⋮

2N

2N12

1

1 1

N N

⋮⋮

1 1

1

N N

⋱⋰

1 1

MQ(II)
3′,4

1

⋮

2N − 1

2N − 1

2N − 2

122

1

1 1

N N

⋮⋮

1 1

1
N − 1 N − 1

N − 1 N − 1

1

⋰

1

⋱

1

Table 5. Magnetic quivers for the two cones of the Higgs branch of EQ3′,4.

HWG(II)
3′,4 = PE [

N

∑
i=1
µiµ2N+1−it

2i
+ (ν2

+ 1)t2 + ν(µNq + µN+1q
−1

)tN+1
− ν2µNµN+1t

2N+2
]

×PE [
N

∑
k=1

λkλ2N+1−kt
2k

]PE [η2t2] (3.29)

As a check, we have also computed the unrefined Hilbert series for low values of N which
are given in table 10.

3.6 The E4 ×E4 sequence

The E4 ×E4 sequence are the magnetic quivers for the fixed point limit of the 5d electric
quiver

EQ4,4 =
[1s + 1c] − SO(4) −USp(0) − SO(4) −⋯ −USp(0) − SO(4) − [2s + 2c]

2N − 1
. (3.30)

We present the orientifold web that engineers this theory in figure 7. Alternatively we can
write EQ4,4 as the product of two unitary electric quivers

EQ4,4 = EQ2
4 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

SU(2)
∣

[1F]

− SU(2) −⋯ − SU(2)
∣

[2F]

N ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

, (3.31)
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O5− O5−

1

2

2N

2N + 1(1,-1)

⋮

1
2

13
2

21
2

1

(1,1)

(1,1)

⋰

⋰

1

2

N

N + 1

1

2

N − 1

N

1 2

1
1

Figure 7. Brane webs for EQ4,4 (left) and EQ4 (right).

where each copy of EQ4 can be engineered by the unitary web depicted in figure 7. Given
the brane webs in figure 7, one can derive an OSp and a pair of unitary magnetic quivers
whose Coulomb branches are expected to describe the same unique 5d Higgs branch, leading
us to conjecture that

MQ4,4 = 2 2

2

1

2N

2N
⋯

1

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

1 1

N N

⋯⋯
1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

(3.32)

The HWG for the unitary quiver appearing here was evaluated in [34]. We can use this
result to obtain an exact HWG for the OSp quiver by simply taking its square. Our claim is

HWG4,4 = PE [
N

∑
i=1
µiµ2N+1−it

2i
+ (ν2

+ 1)t2 + ν(µNq + µN+1q
−1

)tN+1
− ν2µNµN+1t

2N+2
]

×PE [
N

∑
i=1
ηiη2N+1−it

2i
+ (λ2

+ 1)t2 + λ(ηNr + ηN+1r
−1

)tN+1
− λ2ηNηN+1t

2N+2
] .

(3.33)
The explicit unrefined Hilbert series computation for N = 1 and N = 2 for the OSp quiver
is given in table 10.

3.7 The E5 ×E5 sequence

The E5 × E5 sequence is obtained by taking the fixed point limit of the electric quiver
given by

EQ5,5 =
[2s + 2c] − SO(4) −USp(0) − SO(4) −⋯ −USp(0) − SO(4) − [2s + 2c]

2N − 1
, (3.34)
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which can be engineered using the following orientifold web:

⋮

O5− O5−1
2

1 3
2

2 1
2

13
2

2

1

2

2N + 2

2N + 1 . (3.35)

Alternatively, we can rewrite EQ5,5 as the product of two unitary electric quivers

EQ5,5 = EQ2
5 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

SU(2)
∣

[2F]

− SU(2) −⋯ − SU(2)
∣

[2F]

N ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

, (3.36)

each of which is engineered by taking one copy of the following unitary brane web
(1,1)

(1,1)

⋰

⋰

1

2

N

N + 1

1

2

N

N + 1

1 2

2 1
. (3.37)

From the brane webs in (3.35) and (3.37), we obtain the two corresponding magnetic
quivers which then imply

MQ5,5 = MQ2
5 =

1

⋮

2N + 1

2N + 2

4 22 22

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝ 1

⋯
N + 1

⋯
1

2 11 ⎞
⎟
⎟
⎟
⎟
⎟
⎠

2

. (3.38)
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The unitary quiver appearing here has been studied previously, and its HWG was given
in [34]. We can now obtain the HWG for the OSp quiver by simply squaring that expression
to obtain

HWG5,5 =PE[
N+1
∑
i=1

µiµ2N+2−it
2i
+(ν2

1+ν
2
2)t

2
+t4+ν1ν2µN+1(t

N+1
+tN+3

)−ν2
1ν

2
2µ

2
N+1t

2N+6
]

×PE[
N+1
∑
i=1

λiλ2N+2−it
2i
+(ρ2

1+ρ
2
2)t

2
+t4+ρ1ρ2λN+1(t

N+1
+tN+3

)−ρ2
1ρ

2
2λ

2
N+1t

2N+6
] .

(3.39)

3.8 The E′5 ×E′5 sequence

The E5′ ×E5′ sequence is obtained by considering the fixed point limit of the following 5d
electric quiver:

EQ5′,5′ = SO(4) −USp(0) − SO(4) −⋯ −USp(0) − SO(4) − [4s + 4c]

2N − 1
, (3.40)

which can be engineered using the orientifold web:

⋯
2N 2N + 2 4N+3

2 2N + 1 1 1
2N

2N + 1

O5−O5+

. (3.41)

Alternatively we may rewrite EQ5′,5′ as two copies of a single electric quiver with SU(2)
gauge nodes, namely

EQ2
5′ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

SU(2) − SU(2) −⋯ − SU(2)
∣

[4F]

N ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

, (3.42)

each copy of which can now be engineered using an ordinary brane web:

⋰

1

2

2N

2N + 1 N + 12N + 2

1

N

2N

. (3.43)
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This leads us to conjecture the equivalence of the following 3d magnetic quivers

MQ5′,5′ =

1 2N 4N + 1 4N 4N + 1 4N 4N
⋯

2 2

1
2N

1

= MQ2
5′ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝ 1

⋯
2N2NN

N 1 ⎞
⎟
⎟
⎟
⎟
⎟
⎠

2

.

(3.44)

We now want to write down the HWG for the Coulomb branch Hilbert series of MQ5′,5′ ,
via the conjectured relation to the unitary quiver. The HWG for the unitary quiver MQ5′

can be found in [35] (also see table 18 of [36]), which we report in table 9. Consequently,
the HWG for MQ5′,5′ is obtained by squaring this result, namely

HWG5′,5′ = PE [
N

∑
k=1

(µ2k + ν2k) t
2k

] . (3.45)

3.9 The E5′ ×E6 sequence

The E5′ ×E6 sequence is obtained by taking the fixed point limit of the 5d electric quiver
given by

EQ5′,6 =
[1s] − SO(4) −USp(0) − SO(4) −⋯ −USp(0) − SO(4) − [4s + 4c]

2N − 1
, (3.46)

which can be engineered by the following orientifold web diagram

O5− O5−

1

2

2N

2N + 1(1,-1)

⋮

1
2

14N+3
2

2N + 22N+1
2

2N + 1

. (3.47)
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Alternatively we may reformulate EQ5′,6 as the product of two unitary electric quivers

EQ5′,6 = EQ5′ ×EQ6 =
SU(2) − SU(2) −⋯ − SU(2)

∣

[4F]

N

× SU(2)
∣

[1F]

− SU(2) −⋯ − SU(2)
∣

[4F]

N

,

(3.48)
where EQ5′ is engineered by the unitary web in (3.43), and EQ6 is the IR quiver description
of the web diagram given by

⋰

1

2

2N

2N + 1 N + 12N + 2

1

N + 1

1

2N + 1

. (3.49)

Reading off the OSp magnetic quiver from (3.47) and the unitary quivers from (3.43), (3.49),
we arrive at the conjecture

MQ5′,6 =

22
⋯

4N + 24N + 24N + 2

2N

2N

1

=

= MQ5′ ×MQ6 =

1
⋯

2N2NN

N 1

×

1
⋯

2N + 1N + 1

N + 1

1

1 (3.50)

Obtaining the HWG for the Coulomb branch of MQ5′,6 is now straightforward, given the
above relation. The HWG for MQ′

5 was worked out in [35, 36] and the HWG for MQ6
appears in [34]. For the OSp quiver MQ5′,6 in (3.50) we simply take the product of these
two results

HWG5′,6 = PE [
N

∑
i=1

(µ2i + ν2i) t
2i
+ t2 + (µ2N+2q + µ2N+3q

−1) tN+1
] . (3.51)

– 27 –



J
H
E
P
0
5
(
2
0
2
1
)
2
6
9

This can be verified by computing the unrefined Coulomb branch Hilbert series, the results
of which are given in table 10 for low values of N .

3.10 The E6 ×E6 sequence

The electric quiver for the IR limit of the E6 ×E6 sequence reads

EQ6,6 =
[1s + 1c] − SO(4) −USp(0) − SO(4) −⋯ −USp(0) − SO(4) − [4s + 4c]

2N − 1
. (3.52)

It can be engineered using the following orientifold web

⋯
2N + 2 2N + 2 4N+3

2 2N + 1 1 1
2

2N+3
211

2

2N + 2

1

O5−O5−

. (3.53)

Alternatively we may present the electric quiver as a product of two unitary quivers:

EQ6,6 = EQ2
6 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

SU(2)
∣

[1F]

− SU(2) −⋯ − SU(2)
∣

[4F]

N ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

, (3.54)

where each copy is engineered by the web diagram in (3.49). We can then obtain the
magnetic quivers from the brane webs in (3.53) and (3.49), that lead us to the conjecture
that

MQ6,6 = MQ2
6 =

2 2N + 2 4N + 4 4N + 2 4N + 2
⋯

2 2

2N + 2

1

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝ 1

⋯
2N + 1N + 1

N + 1

1

1 ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

.

(3.55)
This has an immediate corollary which allows us to extract the HWG for the OSp quiver
appearing above by squaring the known result [34] for the unitary quiver:

HWG6,6 = PE [
N

∑
i=1
µ2it

2i
+ t2 + (µ2N+2q1 + µ2N+3q

−1
1 ) tN+1

]

×PE [
N

∑
i=1
ν2it

2i
+ t2 + (ν2N+2q2 + ν2N+3q

−1
2 ) tN+1

] . (3.56)
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Nahm partition (δnh, δnv)

[18] (112,100)
[32,12] (72,69)
[32,12] (72,69)

Table 6. Table containing the data defining the punctures for the 4d E6 ×E6 theory.

Indeed the unrefined Hilbert series for the OSp quiver for N = 1 was computed in [6], and
is in agreement with our claim. For higher values of N we were not able to perform an
explicit computation due to the high rank of the OSp quiver. This is one instance in which
our conjecture proves powerful, as it gives an exact expression for the Hilbert series of a
quiver which would otherwise be very challenging to compute.

We further point out an interesting fact about this theory, namely the existence of
a 4d N = 2 theory with very similar properties. As noticed in [26], there is one class-S
theory of D4 type in which a single three-punctured sphere realizes a product SCFT, where
both factors are the E6 Minahan-Nemeschansky (MN) theory [37]. We recall that the E6
Minahan-Nemeschansky theory is a 4d N = 2 SCFT of rank 1, with flavor symmetry group
E6, and central charges

aE6 =
41
24
, cE6 =

13
6
, (3.57)

We report the partitions labeling the punctures in table 6, together with their contri-
bution to the effective number of hypermutiplets and vector multiplets.

From this data it is easy to compute the central charges a and c of this theory,6 finding

aE6×E6 =
41
12
, cE6×E6 =

13
3

(3.58)

as it should be for two copies of the E6 MN theory. By applying the procedure to write
the 3d mirror for this theory7 we find that the full puncture [18] is associated to the quiver
tail (3.59) while the puncture [32,12] is associated to the quiver tail (3.60),

2 2 4 4 6 6 8 (3.59)

2 4 8 . (3.60)

Gluing the three tails together results in the magnetic quiver for the 5d E6×E6 depicted
in (3.55). Therefore the magnetic quiver of the 5d E6 ×E6 theory is the 3d mirror theory
of the 4d E6 × E6 theory above described. It is then tempting to conjecture that the
5d E6 × E6 theory reduces to 4d to this D4 type class-S theory, giving two copies of E6
Minahan-Nemeschansky.

Having derived the magnetic quiver for the E6 ×E6 sequence from the brane web, for
any N ∈ N, we can use the same argument as the paragraphs above to conjecture that all

6For a small review see appendix D.1.
7For a small review see appendix D.2.
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class-S theories of D2N+2 type given by a three punctured sphere with regular punctures
given by [14N+4], [2N + 1,2N + 1,1,1], [2N + 1,2N + 1,1,1] will be a factorized SCFT. We
conjecture that it will decompose into two copies of three punctured A2N spheres, with
regular punctures given by [12N+1], [N2,1], [N2,1]. It will be interesting to further check
this proposal.

3.11 The E7 ×E7 sequence

The E7 ×E7 sequence corresponds to the fixed point limit of the following IR quiver

EQ7,7 =
[2s + 2c] − SO(4) −USp(0) − SO(4) −⋯ −USp(0) − SO(4) − [4s + 4c]

2N − 1
. (3.61)

It can be engineered using the orientifold web given by

⋯
2N + 3 2N + 3 4N+5

2 2N + 4 1 1
2

2N+5
223

211
2

2N + 2

O5−O5−

(3.62)
This web can be converted to a magnetic quiver following [2], which results in

MQ7,7 =

2 2 4 2N + 4 4N + 6 4N + 4 4N + 4
⋯

2 2

2N + 2

. (3.63)

Now we use the alternative description of the EQ7,7 as a product of a pair of linear quivers
with SU(2) nodes, namely

EQ7,7 = EQ2
7 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

SU(2)
∣

[2F]

− SU(2) −⋯ − SU(2)
∣

[4F]

N ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

. (3.64)
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Each individual factor can be engineered using the following unitary 5-brane web

⋰

1

2

2N + 1

2N + 2

N + 22N + 421

N + 1

2N + 2

. (3.65)

The magnetic quiver one obtains from this unitary web leads us to the following conjecture

MQ7,7 = MQ2
7 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝ 1 2 N + 2 2N + 2

N + 1

2N + 1
⋯

1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

2

. (3.66)

The HWG for the unitary quiver appearing above was conjectured in [34]. We will use this
result and square it to obtain the HWG for the OSp quiver MQ7,7 (3.63):

HWG7,7 =PE[
N+1
∑
i=1

µ2it
2i
+t4+ν2t2+νµ2N+4(t

N+1
+tN+3

)+µ2
2N+4t

2N+4
−ν2µ2N+4t

2N+6
]

×PE[
N+1
∑
i=1

λ2it
2i
+t4+ρ2t2+ρλ2N+4(t

N+1
+tN+3

)+λ2
2N+4t

2N+4
−ρ2λ2N+4t

2N+6
] .

(3.67)

We further point out an interesting fact about this theory, namely the existence of a 4d
N = 2 theory with very similar properties. As noticed in [26], there is one class-S theory
of D5 type in which a single three-punctured sphere realizes a product SCFT, where both
factors are the E7 Minahan-Nemeschansky theory [38]. We recall that the E7 Minahan-
Nemeschansky theory is a 4d N = 2 SCFT of rank 1, with flavor symmetry group E7, and
central charges

aE7 =
59
24
, cE7 =

19
6
. (3.68)

We report the partitions labeling the punctures in table 7, together with their contri-
bution to the effective number of hypermutiplets and vector multiplets.

From this data it is easy to compute the central charges a and c of this theory, finding

aE7×E7 =
59
12
, cE7×E7 =

19
3

(3.69)

as it should be for two copies of the E7 MN theory.
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Nahm partition (δnh, δnv)

[110] (240,220)
[52] (104,102)

[32,14] (184,177)

Table 7. Table containing the data defining the punctures for the 4d E7 ×E7 theory.

By applying the procedure to write the 3d mirror for this theory we find that the full
puncture [110] is associated to the quiver tail (3.70), the puncture [32,14] is associated to
the quiver tail (3.71), and the puncture [52] is associated to the quiver tail (3.72),

2 2 4 4 6 6 8 8 10 (3.70)

2 2 4 8 10 (3.71)

4 10 . (3.72)

Gluing the three tails together results in the magnetic quiver for the 5d E7×E7 depicted
in (3.63) for N = 1. Therefore the magnetic quiver of the 5d E7×E7 theory is the 3d mirror
theory of the 4d E7 × E7 theory above described. It is then tempting to conjecture that
the 5d E7 ×E7 theory reduces to 4d to this D5 type class-S theory, giving two copies of E7
Minahan-Nemeschansky.

Having derived the magnetic quiver for the E7 ×E7 sequence from the brane web, for
any N ∈ N, we can use the same argument as the paragraphs above to conjecture that all
class-S theories of D2N+3 type given by a three punctured sphere with regular punctures
given by [14N+6], [2N + 1,2N + 1,14], [2N + 3,2N + 3] will be a factorized SCFT. We
conjecture that it will decompose into two copies of three punctured A2N+1 spheres, with
regular punctures given by [12N+2], [N + 1,N + 1], [N,N, 1,1]. It will be interesting to
further check this proposal.

3.12 An outlier: the E8 ×E8 theory

While not explicitly written8 in [26], it is easy to use the methods of such paper to find
a choice of punctures in the D6 theory, such that we realize the product of two copies of
the E8 Minahan-Nemeschansky theory [38]. We recall that the E8 Minahan-Nemeschansky
theory is a 4d N = 2 SCFT of rank 1, with flavor symmetry group E8, and central charges

aE8 =
95
24
, cE8 =

31
6
. (3.73)

We report the partitions labeling the punctures which we believe engineer this product
SCFT in table 8, together with their contribution to the effective number of hypermutiplets
and vector multiplets.

8But surely noticed by the authors of such paper. See for example [27] and [28] for discussions about
product SCFTs in class-S.

– 32 –



J
H
E
P
0
5
(
2
0
2
1
)
2
6
9

Nahm partition (δnh, δnv)

[112] (440,410)
[3,19] (400,380)
[9,13] (120,118)

Table 8. Table containing the data defining the punctures for the 4d E8 ×E8 theory.

As a check that such 4d theory is really the product of two copies of the E8 Minahan-
Nemeschansky theory, we compute the central charges from the data defining the punctures.
We get

aE8×E8 =
95
12
, cE8×E8 =

31
3

(3.74)

as it should be for two copies of the E8 MN theory. We also check that there exist no other
choice of three punctures, in the D6 theory, that realizes these correct central charges.

By applying the procedure to write the 3d mirror for this theory we find that the full
puncture [112] is associated to the quiver tail (3.75), the puncture [3,19] is associated to
the quiver tail (3.76), and the puncture [9,13] is associated to the quiver tail (3.77),

2 2 4 4 6 6 8 8 10 10 12 (3.75)

2 2 4 4 6 6 8 8 12 (3.76)

2 2 12 . (3.77)

Gluing the three tails together results in the quiver depicted in (3.78). Given the
similarity of this case to the previous cases of E6 × E6 and E7 × E7 theory, discussed
respectively in sections 3.10 and 3.11, it is natural to pose the question whether there
exist a 5d E8 ×E8 theory, whose magnetic quiver coincides with the one of (3.78), which
we derived here from 3d mirror symmetry applied to the class-S construction of the 4d
E8 ×E8 theory,

2 2
⋯

10 10 12 8 8
⋯

2 2

2

2

. (3.78)

We would like to mention that we were not able to compute the Coulomb branch Hilbert
series of this quiver. It would be interesting to verify the matching of the Hilbert series
with that of the unitary quiver as in the other cases.
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4 Discussion

In this paper we studied 3d N = 4 OSp quivers whose moduli space of vacua is comprised of
two decoupled sectors. These OSp quivers were derived, using brane webs with O5-planes,
as the magnetic quivers for the infinite gauge coupling limit of 5d N = 1 gauge theories
whose gauge group is a product of SO(4) factors and contain matter hypermultiplets trans-
forming as spinors of opposite chirality under the gauge group factors. We argued for the
proposed factorisation, exploiting an accidental isomorphism between the Lie algebra of
SO(4) and SU(2)× SU(2), by rewriting the gauge theory in terms of the group SU(2) and
then taking the infinite coupling limit on both sides. The resulting theory in terms of
SU(2) gauge groups is generically comprised of two decoupled sectors, each of which we
also engineered using ordinary brane webs, without O5-planes. The ordinary brane webs
were subsequently used to derive unitary magnetic quivers, which we then used to propose
as the components to which the OSp quivers factorise. We further used this correspondence
to extract highest weight generating functions for the Coulomb branch Hilbert series of the
OSp quivers, relying on existing results for the unitary quivers. In some cases where the
unitary quivers had not previously appeared in the literature, we also computed the highest
weight generators. In order to test our proposal for the factorisation, and consequently the
conjectured highest weight generators for the OSp quivers, we also computed the unrefined
Coulomb branch Hilbert series of the OSp quivers directly in a perturbative manner and
found an agreement with the proposed HWGs. We further illustrated the matching of the
Higgs branch Hilbert series in two cases where we were able to perform the computation
exactly on the OSp side. These too were in agreement with the results of the Higgs branch
Hilbert series of the unitary side.

Although the higher dimensional intuition has led us to derive these results. It begs
the question, whether a truly three-dimensional logic can be used to argue for or provide
an explanation for the factorisation property of these OSp quivers. Moreover, all the
quantitative checks performed in this paper probe the moduli space of the quivers studied.
It would be interesting to ask whether the relationship between the OSp and unitary quivers
in this paper are full-fledged dualities, or just a formal relation between their moduli spaces
of vacua. One potential check that can be performed to illuminate this question would be to
compute other observables, such as the superconformal index, or the three-sphere partition
function for the theories in question.

Acknowledgments

We thank Antoine Bourget, Julius Eckhard, Sakura Schafer-Nameki and Zhenghao Zhong
for stimulating questions, discussion and correspondence. SSK thanks APCTP, KIAS
and POSTECH for his visit where part of this work is done. The work of HH is sup-
ported in part by JSPS KAKENHI Grant Number JP18K13543. FY is supported by the
NSFC grant No. 11950410490, by Fundamental Research Funds for the Central Univer-
sities A0920502051904-48, by Start-up research grant A1920502051907-2-046, in part by
NSFC grant No. 11501470 and No. 11671328, and by Recruiting Foreign Experts Pro-

– 34 –



J
H
E
P
0
5
(
2
0
2
1
)
2
6
9

gram No. T2018050 granted by SAFEA. F.C. is supported by STFC consolidated grant
ST/T000708/1. MA is supported by STFC grant ST/S505778/1. SD is supported by the
NSFC grants No. 12050410249 and No. 11975158.

A Higgs branch of E1 ×E1 sequence

In this appendix we give a derivation of the formula (3.7), for the Higgs branch Hilbert
series of MQ1,1 (3.3). The Higgs branch of the quiver (3.3) can be computed using the
gluing technique, following the discussion in appendix A of [39]. The first step is to break
down the OSp quiver in (3.3) into pieces as follows

1
⋯

2N − 2 2N − 1 2N − 1 2N 2N 4 . (A.1)

The Higgs Branch Hilbert series of the original quiver (3.3) is then obtained by taking
the product of the Hilbert series of the individual factors above, together with the gluing
factors associated with the U(2N − 1) and USp(2N) nodes which are to be gauged, all
integrated with the appropriate Haar measure for the aforementioned gauge groups

∫ dµU(2N−1)∫ dµCN
HT [SU(2N−1)]H

(2N−1)
glue H[2N−1]−[CN ]H

(CN )
glue H[CN ]−[D2] . (A.2)

The individual pieces in the above integrand are as follows

HT [SU(2N−1)] =
2N−1
∏
q=2

(1 − t2q)PE [χ
SU(2N−1)
[1,0,⋯,0,1]t

2
] , H[CN ]−[D2] = PE [4χCN

[1,0,⋯,0]t] ,

H[2N−1]−[CN ] = PE [(χ
SU(2N−1)
[1,0,⋯,0] q + χ

SU(2N−1)
[0,⋯,0,1] q−1

)χCN

[1,0,⋯,0]t] ,

H
(2N−1)
glue =

(1 − t2)
PE [χ

SU(2N−1)
[1,0,⋯,0,1]t

2]
, H

(CN )
glue =

1
PE [χCN

[2,0,⋯,0]t
2]
.

(A.3)

Plugging these into the integral (A.2) we arrive at

2N−1
∏
q=1

(1 − t2q)∫ dµU(2N−1)∫ dµCN
H[2N−1]−[CN ]H

(CN )
glue H[CN ]]−[D2] . (A.4)

Next we perform the integral over the U(2N − 1) group, by counting the gauge invariants
of the free theory [2N − 1] − [CN ], which is the only part of the integrand that sees this
integral (see appendix A of [39] for more details)

∫ dµU(2N−1)H[2N−1]−[CN ] = (1 − t4N)PE [(1 + χCN

[2,0,⋯,0] + χ
CN

[0,1,⋯,0]) t
2
] . (A.5)

Substituting this back into (A.4) one obtains the desired formula (3.7) for the Higgs branch
Hilbert series of MQ1,1 (3.3).
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B List of HWG of unitary quivers

In this appendix we tabulate the highest weight generating functions of all the unitary
quivers appearing in the previous sections.

Table 9. List of the HWG for the unitary quivers appearing in the earlier sections. The corre-
sponding fugacities are denoted by subscripts in the symmetry groups. Note that for N = 1, there
is a possible enhancement in the symmetry which can be read from the set of balanced nodes in
the quivers for N = 1.

Quiver Symmetry PL[HWG]

1
⋯

N

⋯
1

1

SU(2N)µ
N

∑
k=1

µk µ2N−k t
2k

1

⋰
N

⋱

1

1 1

SU(2N)µ ×
U(1)q

t2 + (q + q−1)µN t
N+1 +

N

∑
k=1

µk µ2N−k t
2k − µ2

N t
2N+2

1

⋮

N − 1
N − 1

N − 1

⋮

1

1 1

SU(2N)µ ×
U(1)q

t2 + (µN+1q + µN−1q
−1) tN+1 +

N−1
∑
k=1

µk µ2N−k t
2k − µN+1 µN−1 t

2N+2

1

N N

⋱⋰

1 1

SU(2N + 1)µ
N

∑
k=1

µk µ2N+1−k t
2k
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1

1 1

N N

⋮⋮

1 1

SU(2N + 1)µ ×
SU(2)ν ×
U(1)q

N

∑
k=1

µk µ2N+1−k t
2k + (ν2 + 1)t2 + ν(µNq +

µN+1q
−1)tN+1 − ν2µNµN+1t

2N+2

1
N − 1 N − 1

N − 1 N − 1

1

⋰

1

⋱

1

SU(2N + 1)µ ×
SU(2)ν

N−1
∑
k=1

µkµ2N+1−k t
2k + ν2t2

1
⋯

N + 1
⋯

1

2 11
SU(2N + 2)µ ×

SU(2)ν1 ×

SU(2)ν2

N+1
∑
k=1

µkµ2N+2−k t
2k + (ν2

1 + ν
2
2)t

2 + t4 +

ν1ν2µN+1(t
N+1+tN+3)−ν2

1ν
2
2µ

2
N+1t

2N+6

1
⋯

2N2NN

N 1

SO(4N + 6)µ
N

∑
k=1

µ2kt
2k

1
⋯

2N + 1N + 1

N + 1

1

1

SO(4N + 6)µ ×
U(1)q

N

∑
k=1

µ2kt
2k +

(µ2N+2 q + µ2N+3 q
−1) tN+1 + t2

1

2 N + 2 2N + 2

N + 1

⋯
1

SO(4N + 8)µ ×
SU(2)ν

N+1
∑
k=1

µ2kt
2k + t4 + νµ2N+4 (t

N+1 + tN+3)+

µ2
2N+4t

2N+4 + ν2t2 − ν2µ2N+4t
2N+6
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C Unrefined Coulomb branch Hilbert series for low rank OSp quivers

In this appendix, we quote the results for the unrefined Hilbert series computed for the
orthosymplectic quivers. These results match with the perturbative results obtained from
the HWG listed in the table 1.

Table 10. The computation of Coulomb branch Hilbert series of orthosymplectic quivers given in
main sections for small values of N . The full Hilbert series is given by summing over the integer
and half-integer sublattices of the magnetic weights.

Coulomb branch Hilbert seriesQuiver
m⃗ ∈ Z m⃗ ∈ Z + 1/2 HS

MQ1,1∣N=2

1+ 30t2 + 433t4 + 4070t6 +
28384t8 + 158174t10 +

O(t12)
not required 1 + 30t2 + 433t4 + 4070t6 +

28384t8 + 158174t10 +O(t12)

MQ1,1∣N=3

1 + 70t2 + 2413t4 +
54670t6 + 917244t8 +
12178110t10 +O(t12)

not required 1 + 70t2 + 2413t4 + 54670t6 +
917244t8 + 12178110t10 +O(t12)

MQ(I)
1,3∣N=2

1+ 31t2 + 464t4 + 4574t6 +
33908t8 + 203160t10 +

O(t12)

12t3 + 320t5 + 4188t7 +
36488t9 +O(t11)

1 + 31t2 + 12t3 + 464t4 + 320t5 +
4574t6 + 4188t7 + 33908t8 +

36488t9 + 203160t10 +O(t11)

MQ(I)
1,3∣N=3

1 + 71t2 + 2484t4 +
57154t6 + 974748t8 +
13173046t10 +O(t12)

40t4+2520t6+78584t8+
1619760t10 +O(t12)

1 + 71t2 + 2524t4 + 59674t6 +
1053332t8 + 14792806t10 +O(t12)

MQ(II)
1,3 ∣N=2

1+ 31t2 + 444t4 + 4059t6 +
27344t8 + 147137t10 +

O(t12)

8t3 + 200t5 + 2432t7 +
19560t9 +O(t11)

1 + 31t2 + 8t3 + 444t4 + 200t5 +
4059t6 + 2432t7 + 27344t8 +

19560t9 + 147137t10 +O(t11)

MQ(II)
1,3 ∣N=3

1 + 71t2 + 2484t4 +
56979t6 + 964339t8 +
12865508t10 +O(t12)

30t4+1848t6+56250t8+
1129770t10 +O(t12)

1 + 71t2 + 2514t4 + 58827t6 +
1020589t8 + 13995278t10 +O(t12)

MQ(I)
3,3∣N=1

1 + 8t2 + 62t4 + 280t6 +
1011t8 + 2944t10 +O(t12)

8t2 + 56t4 + 280t6 +
992t8+2944t10+O(t12)

1 + 16t2 + 118t4 + 560t6 + 2003t8 +
5888t10 +O(t12)

MQ(I)
3,3∣N=2

1+ 32t2 + 496t4 + 5254t6 +
43368t8 + 294996t10 +

O(t12)

24t3 + 664t5 + 9040t7 +
82976t9 +O(t11)

1 + 32t2 + 24t3 + 496t4 + 664t5 +
5254t6 + 9040t7 + 43368t8 +

82976t9 + 294996t10 +O(t11)

MQ(II)
3,3 ∣N=1

1 + 2t2 + 11t4 + 20t6 +
45t8 + 70t10 +O(t12)

4t2 + 8t4 + 24t6 + 40t8 +
76t10 +O(t12)

1 + 6t2 + 19t4 + 44t6 + 85t8 +
146t10 +O(t12)

MQ(II)
3,3 ∣N=2

1+ 32t2 + 456t4 + 4104t6 +
27490t8 + 148792t10 +

O(t12)

16t3 + 416t5 + 4960t7 +
38400t9 +O(t11)

1 + 32t2 + 16t3 + 456t4 + 416t5 +
4104t6 + 4960t7 + 27490t8 +

38400t9 + 148792t10 +O(t11)

MQ(III)
3,3 ∣N=1

1 + 5t2 + 30t4 + 94t6 +
263t8 + 587t10 +O(t12)

6t2 + 26t4 + 98t6 +
254t8 + 596t10 +O(t12)

1 + 11t2 + 56t4 + 192t6 + 517t8 +
1183t10 +O(t12)

MQ(III)
3,3 ∣N=2

1+ 32t2 + 476t4 + 4671t6 +
34989t8 + 214034t10 +

O(t12)

20t3 + 540t5 + 6920t7 +
58628t9 +O(t11)

1 + 32t2 + 20t3 + 476t4 + 540t5 +
4671t6 + 6920t7 + 34989t8 +

58628t9 + 214034t10 +O(t11)

MQ(I)
3′,3′ ∣N=1

1 + 16t2 + 118t4 + 560t6 +
2003t8 + 5888t10 +O(t12) not required 1 + 16t2 + 118t4 + 560t6 + 2003t8 +

5888t10 +O(t12)
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MQ(I)
3′,3′ ∣N=2

1 + 48t2 + 1126t4 +
17248t6 + 194729t8 +
1735152t10 +O(t12)

not required 1 + 48t2 + 1126t4 + 17248t6 +
194729t8 + 1735152t10 +O(t12)

MQ(II)
3′,3′ ∣N=1

1 + 6t2 + 19t4 + 44t6 +
85t8 + 146t10 +O(t12) not required 1 + 6t2 + 19t4 + 44t6 + 85t8 +

146t10 +O(t12)

MQ(II)
3′,3′ ∣N=2

1 + 54t2 + 1283t4 +
18412t6 + 185691t8 +
1438022t10 +O(t12)

not required 1 + 54t2 + 1283t4 + 18412t6 +
185691t8 + 1438022t10 +O(t12)

MQ(III)
3′,3′ ∣N=1

1 + 11t2 + 56t4 + 192t6 +
517t8 + 1183t10 +O(t12) not required 1 + 11t2 + 56t4 + 192t6 + 517t8 +

1183t10 +O(t12)

MQ(III)
3′,3′ ∣N=2

1 + 51t2 + 1200t4 +
17824t6 + 191099t8 +
1596553t10 +O(t12)

not required 1 + 51t2 + 1200t4 + 17824t6 +
191099t8 + 1596553t10 +O(t12)

MQ(I)
3′,4∣N=1

1+ 20t2 + 227t4 + 1720t6 +
9552t8+42168t10+O(t12)

12t2 + 192t4 + 1592t6 +
9184t8 + 41224t10 +

O(t12)

1 + 32t2 + 419t4 + 3312t6 +
18736t8 + 83392t10 +O(t12)

MQ(I)
3′,4∣N=2

1 + 52t2 + 1327t4 +
22500t6 + 286968t8 +
2939292t10 +O(t12)

40t3+1780t5+39140t7+
570120t9 +O(t11)

1 + 52t2 + 40t3 + 1327t4 + 1780t5 +
22500t6 + 39140t7 + 286968t8 +
570120t9 + 2939292t10 +O(t11)

MQ(II)
3′,4 ∣N=1

1 + 15t2 + 145t4 + 879t6 +
3964t8+14388t10+O(t12)

12t2 + 132t4 + 848t6 +
3888t8 + 14240t10 +

O(t12)

1+ 27t2 + 277t4 + 1727t6 + 7852t8 +
28628t10 +O(t12)

MQ(II)
3′,4 ∣N=2

1 + 55t2 + 1413t4 +
23399t6 + 287256t8 +
2808576t10 +O(t12)

40t3+1900t5+41680t7+
585260t9 +O(t11)

1 + 55t2 + 40t3 + 1413t4 + 1900t5 +
23399t6 + 41680t7 + 287256t8 +
585260t9 + 2808576t10 +O(t11)

MQ4,4∣N=1

1+ 24t2 + 496t4 + 5800t6 +
47734t8 + 299176t10 +

O(t12)

24t2 + 480t4 + 5800t6 +
47616t8 + 299176t10 +

O(t12)

1 + 48t2 + 976t4 + 11600t6 +
95350t8 + 598352t10 +O(t12)

MQ4,4∣N=2

1 + 56t2 + 1544t4 +
30192t6 + 468888t8 +
5964152t10 +O(t12)

80t3+3880t5+93240t7+
1510680t9 +O(t11)

1 + 56t2 + 80t3 + 1544t4 + 3880t5 +
30192t6 + 93240t7 + 468888t8 +

1510680t9 + 5964152t10 +O(t11)

MQ5,5∣N=1

1 + 42t2 + 1805t4 +
42204t6 + 693740t8 +
8548816t10 +O(t12)

48t2 + 1760t4 +
42384t6 + 692960t8 +
8551232t10 +O(t12)

1 + 90t2 + 3565t4 + 84588t6 +
1386700t8 + 17100048t10 +O(t12)

MQ5,5∣N=2 1 + 82t2 + 3329t4 +O(t6) 160t3 +O(t5) 1 + 82t2 + 160t3 + 3329t4 +O(t5)

MQ5′,5′ ∣N=1

1 + 90t2 + 3565t4 +
84588t6 + 1386700t8 +
17100048t10 +O(t12)

not required 1 + 90t2 + 3565t4 + 84588t6 +
1386700t8 + 17100048t10 +O(t12)

MQ5′,5′ ∣N=2
1 + 182t2 + 16443t4 +

977366t6 +O(t8) not required 1 + 182t2 + 16443t4 + 977366t6 +
O(t8)

MQ5′,6∣N=1

1 + 91t2 + 4118t4 +
122828t6 + 2660832t8 +
44299317t10 +O(t12)

32t2 + 2592t4 +
97984t6 + 2366496t8 +
41557344t10 +O(t12)

1 + 123t2 + 6710t4 + 220812t6 +
5027328t8 + 85856661t10 +O(t12)

MQ5′,6∣N=2
1 + 183t2 + 16626t4 +
1000427t6 +O(t8) 128t3+21632t5+O(t7) 1 + 183t2 + 128t3 + 16626t4 +

21632t5 + 1000427t6 +O(t8)
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MQ6,6∣N=1

1 + 92t2 + 5696t4 +
235812t6 + 6925608t8 +
153422070t10 +O(t12)

64t2 + 5248t4 +
230784t6 + 6881472t8 +
153102720t10 +O(t12)

1 + 156t2 + 10944t4 + 466596t6 +
13807080t8+306524790t10+O(t12)

MQ7,7∣N=1 1+138t2+16303t4+O(t6) 128t2+16128t4+O(t6) 1 + 266t2 + 32431t4 +O(t6)

D Central charges and 3d mirrors for D-type class-S theories

In this appendix we briefly review two properties of class-S theories of DN type. We restrict
ourself to the case in which the 6d (2,0) DN theory is compactified on the sphere, with
regular (untwisted) punctures only. We discuss three instances of theories of this type in
the main text, in sections 3.10, 3.11 and 3.12. There, we consider examples in which a
single three-punctured sphere describes the 4-dimensional version of the En × En theory
(n = 6,7,8), i.e. two copies of En Minahan-Nemeschansky.

The first property that we review in this appendix is the rule for the computation
of superconformal central charges a and c, giving the data labeling the punctures [26].
The second property is the prescription for finding the corresponding 3d N = 4 mirror
theories [18].

D.1 Central charges

The central charges a and c of a 4d N = 2 SCFT are defined via the trace anomaly in a
curved background,

T µ
µ =

c

16π2 (Weyl)2
−

a

16π2 (Euler)
2 . (D.1)

For Lagrangian theories, the central charges are related to the number of vector multiples
and hypermultiplets by

a =
5nv + nh

24
, c =

2nv + nh
12

. (D.2)

For non-Lagrangian theories, formula (D.2) still holds, but now nh and nv are interpreted
as an effective number of hypermultiplets and vectormultiplets. For the subset of theories
of our current interest, it holds that

nv = −
1
3
N(16N2

− 24N + 11) +∑
α

δn(α)
v ,

nh = −
8
3
N(N − 1)(2N − 1) +∑

α

δn
(α)
h ,

(D.3)

where g is the genus of the Riemann surface and α runs over the set of punctures. δn(α)
v

and δn(α)
h are local contributions coming from the α-th puncture. Both formulae (D.3) and

an algorithmic rule for the computation of δnh and δnv are derived in [26]. In the same
paper, the explicit values of δnh and δnv is listed for all the punctures up to N = 6. We
defer the reader to such paper for further details.
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Figure 8. 5-brane web diagrams for pure SU(2)0 (left) and pure SU(2)π (right) gauge theories.

D.2 3d mirrors

The procedure consists in associating an orthosymplectic linear quiver to each puncture of
the four dimensional theory. For 4d theories of DN type, each of those 3d N = 4 quiver
tails ends with a flavor symmetry node SO(2N). As a second step, one glues the flavour
nodes together, producing a star-shaped quiver.

The rule for associating the quiver tails to the punctures is the following. Consider a
regular puncture whose Nahm partition is given by [h1,⋯hJ]. The associated 3d quiver
tail is

[SO(2N)] −USp(r1) − SO(r2) − . . . −USp(rJ−1) , (D.4)

where the quantities ra are defined as

ra = [
J

∑
b=a+1

hb]
+,−

, + ∶ SO, − ∶ USp (D.5)

and [n]+(−) is the smallest (resp. largest) even integer ≥ n (resp. ≤ n). When rJ−1 = 0, we
remove the last group USp(0). We defer the reader to [18] for further details.

E 5-brane webs for SO(4) theory with different discrete theta angles

It is known that the pure SU(2) gauge theory has two choices, SU(2)0 and SU(2)π, de-
pending on their discrete theta angles. SU(2)0 and SU(2)π gauge theories are known to
have different UV fixed points with different global symmetry, E1 = SU(2) and Ẽ1 = U(1),
respectively. They also have distinct 5-brane configurations as depicted in figure 8. One
can readily see from the 5-brane webs given in figure 8 that SU(2)0 gauge theory has an
one-dimensional Higgs branch at infinite coupling, while SU(2)π gauge theory has no Higgs
branch at infinite coupling.

In this appendix, we discuss the 5-brane configurations for SO(4) = SU(2)×SU(2) gauge
theory with different discrete theta angles. As each SU(2) can have discrete theta angle, we
introduce the following shorthand notation to denote two discrete theta angles for SO(4),
SO(4)θ1,θ2 = SU(2)θ1× SU(2)θ2 . It follows that a conventional 5-brane web for SO(4) given
in figure 9 corresponds to a 5-brane web for SO(4)0,0. At the infinite coupling, this 5-brane
web for SO(4)0,0 is deformed to figure 1, from which one can read off the magnetic quiver
and the corresponding Hilbert series. In particular, we can check that the Higgs branch
dimension is two, as expected. We also find the SU(2) global symmetry from the parallel
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Figure 9. 5-brane web diagram for SO(4).

Figure 10. 5-brane web for SU(2)0−SU(2)0 quiver. To read off the theta angles we deform the
web on the left to that on the right.

Figure 11. Left: 5-brane web diagram for SU(2) +1F. Middle: decoupling the hypermultiplet by
giving it a positive mass. Taking the mass to infinity results in the web diagram for pure SU(2)0
theory. Right: decoupling the hypermultiplet by giving it a negative mass. Taking the mass to
negative infinity results in the web diagram for pure SU(2)π theory.

NS5-branes, which is part of the E1 × E1 symmetry. The SU(2)0 × SU(2)0 gauge theory
can also be constructed from the 5-brane web without an O5-plane as given in figure 10.
We find that if the bifundamental mass is large enough, this web can be decomposed into
two copies of SU(2)0 webs.

To construct 5-brane webs for SO(4)θ1,θ2 gauge theories with different discrete theta
angles, we first recall how 5-brane web for SU(2)0 and SU(2)π can be obtained from that
for SU(2) gauge theory with one flavor. Pure SU(2)0 theory is obtained by decoupling
the flavor with a positive infinity mass, while pure SU(2)π theory is obtained by giving a
negative infinity mass, as depicted in figure 11.

We then consider an analogous situation with 5-brane web with an O5-plane. For
instance, consider a 5-brane web with spinor matter as in figure 12. The left of figure 12
is the web for SO(4) gauge theory with one spinor and one conjugate spinor, which corre-
sponds to two copies of SU(2) gauge theories with one flavor. If we take all of their masses
to be positive infinity, which is to move the branes corresponding to the spinor matters to
the right, then the resulting 5-brane web trivially goes back to the pure SO(4)0,0 gauge
theory in figure 9. On the other hand, one may instead bring the spinor matter closer
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Figure 12. Left: the web diagram for SO(4) gauge theory with 1s + 1c. Right: the web after
flop transitions.

(1,2)

Figure 13. Left: the web diagram for SO(4) gauge theory with 1s + 1c with negative large masses.
Right: 5-brane web diagram for SO(4)π,π.

(1,2)(1,-2)

Figure 14. 5-brane web diagram for SO(4)2π,2π.

to the pure SO(4)0,0 followed by a sequence of flop transitions including the “generalized
flop transition” [40], which yields the right of figure 12. When we consider their masses to
be negatively large enough, further flop transition is induced to yield the left of figure 13.
Taking their masses to be identical and further tuning this mass to be negative infinity, we
find the SO(4)π,π gauge theory in the right of figure 13. We can check from this web that
there is no Higgs branch. Also, we find no non-Abelian global symmetry, as expected.

We can even construct a 5-brane web for SO(4)2π,2π gauge theory, by repeating the
procedure above. Given a 5-brane web for SO(4)π,π as in figure 13, we can introduce another
set of spinor and conjugate spinor on the left. By taking their masses to be negatively large,
we obtain the 5-brane web in figure 14. This is a 5-brane web for SO(4)2π,2π gauge theory,
whose Higgs branch should be identical to SO(4)0,0 gauge theory. From this 5-brane web
diagram, we can explicitly check using [2] that it has Higgs branch with dimension two at
the infinite coupling, as expected. We note that it is also interesting to observe that the
S-dual of this web diagram looks like SU(2) × SU(2) gauge theory as a special case of the
D-type Dynkin quiver gauge theory constructed with ON0-plane, where the gauge coupling
constants are tuned to be identical. The symmetric shape indicates that the corresponding
SU(2) theories have discrete theta angle 0 rather than π.
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All these web diagrams for SO(4)θ1,θ2 gauge theories with different discrete theta angles
and their consistency checks give further support for the correspondence between (3.1)
and (3.2).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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