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Abstract

Averaging principle for Caputo fractional stochastic differential equations attracted
much attention recently. In this paper, we investigate the averaging principle for a type
of Caputo fractional stochastic differential equations. Comparing with the existing lit-
erature, we shall use different estimate methods to investigate the averaging principle,
which will enrich the development of the theory for Caputo fractional stochastic dif-
ferential equations.
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1 Introduction

The averaging principle is an important method to study complex systems, which has a long
history. For ordinary differential equations, the research was originally given by authors
such as Bogoliubov [1], Gikhman [2], Volosov [3] and Besjes [4]. And then, Khasminskii
developed this method to deal with a class of second order parabolic partial differential
equations, see [5]. After that, lots of work concern about the averaging principle for partial
differential equations. The averaging principle for stochastic differential equations was firstly
considered by Khasminskii in [6]. Since then, many efforts have been devoted to developing
this theory for the stochastic system. Here we only highlight [7, 8, 9, 10, 11, 12, 13, 14] and
references therein.

On the other hand, because of the memory effect of the fractional derivatives in time,
stochastic fractional modeling has come to play an important role in many branches of sci-
ence and industry where more and more people are concerned about the research on the
Caputo stochastic differential equation. Until now, many efforts have been devoted to the
existence and uniqueness solution for Caputo stochastic differential equation, see [15, 16, 17]
and ect.. However, only a few results have been made by the dynamic approach. For ex-
ample, in [18], after study the existence and uniqueness of solutions for Caputo fractional
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differential equations under a weak continuity condition on nonlinear terms, the authors
considered the asymptotic behavior of the solution and the existence of attracting set. In
[19], under a different framework, when the existence and uniqueness of solutions are es-
tablished, the asymptotic distance between two distinct solutions is discussed. To the best
of our knowledge, the averaging principle for fractional differential equations still has a big
challenge, there are only a few papers [12, 20] to investigate the averaging principle for Ca-
puto fractional SDEs. It is worth noting that the averaging principle has been obtained in
these two papers by using similar methods but different assumptions.

In this paper, we shall develop a new method and investigate the averaging principle for
the following Caputo fractional SDE:

(1.1)

{
Dα
t u

ε(t) = f(uε(t), t
ε
)dt+ g(uε(t))dBt, 0 < t ≤ T,

u(0) = u0,

with 1
2
< α ≤ 1 under the averaging condition

sup
t≥0

1

T 2α−1

∫ t+T

t

‖f(u, s)− f(u)‖2ds ≤ κ(T )(1 + ‖u‖2),(1.2)

where f(·) is the averaging function of f(·) and κ(·) can be seen as a convergence rate
function between f(·) and f(·) which is a positive bounded function with limT→∞ κ(T ) = 0.

If we let α = 1 in equation (1.1) and (1.2), then the equation (1.1) to be a classic SDEs and
the condition (1.2) is consistent with the classic averaging condition for SDEs, the averaging
principle for such SDEs have been considered by many authors with similar methods, see [21,
22]. It is worth pointing out that the condition limT→∞ κ(T ) = 0 has been imposed in many
papers, but it has not been used in the proofs, for details see [7, 23, 24]. Recently, removing
the condition limT→∞ κ(T ) = 0, authors[25] established averaging principle for SDEs of
neutral type by similar methods as in [7, 23, 24]. However, the assumption of Lipschitz and
linear growth condition for f still imposed as the other papers, which we will show that this
is not necessary, see remark 2.1. In this paper, using a different approach, without assuming
that f satisfies Lipschitz and linear growth condition, we derive the averaging principle for
a type of Caputo fractional SDEs, the treatment and result in our article fully reflects the
importance of the condition limT→∞ κ(T ) = 0. For more detail, see section 2 and 3.

The paper is organized as follows. Some assumptions and basic results are first recalled
in Section 2. The solution of convergence in the mean square between (1.1) and the corre-
sponding averaged equation are discussed in Section 3. In Section 4, we will give an example
to illustrate our theory. The conclusion is given in Section 5.

Throughout this paper, the letter C is just denoted a positive constant. If the constants
are related to certain parameters, we will mark them specifically.

2 Framework and Preliminaries

In this paper, we denote the norm of Rd by ‖ · ‖. To obtain the averaging averaging in this
paper, we introduce the following hypotheses.

2



(H1) (Lipschitz condition). For

f : R+ ×Rd → Rd, g : Rd → Rd,

there exists a constant l1 > 0 such that, for every x, y ∈ Rd,

‖f(t, x)− f(t, y)‖2 + ‖g(x)− g(y)‖2 ≤ l1‖x− y‖2.

(H2) ( Linear growth condition). For

f : R+ ×Rd → Rd, g : Rd → Rd,

there exists a constant l2 > 0 such that, for every x ∈ Rd,

‖f(t, x)‖2 + ‖g(x)‖2 ≤ l2(1 + ‖x‖2).

(H3) (Averaging condition). For the nonlinear function f , there exists a corresponding av-
eraging function f and a convergence rate function κ such that the following averaging
condition holds

sup
t≥0

1

T 2α−1

∫ t+T

t

‖f(u, s)− f(u)‖2ds ≤ κ(T )(1 + ‖u‖2),(2.1)

where κ(·) is positive bounded function with limT→∞ κ(T ) = 0.

Remark 2.1. For every x, y ∈ Rd, and every T > 0, Using the relationship between f
and f in conditions (H1)− (H3), we can show that f also satisfies the Lipschitz condition
and the linear growth condition as f .

• Lipschitz condition for f :

‖f(x)− f(y)‖

≤
∥∥∥ 1

T

∫ T

0

[f(x, s)− f(x)]ds
∥∥∥+

∥∥∥ 1

T

∫ T

0

[f(y, s)− f(y)]ds
∥∥∥+

∥∥∥ 1

T

∫ T

0

[f(x, s)− f(y, s)]ds
∥∥∥

≤
√
κ(T )

T 1−α (
√

1 + ‖x‖2 +
√

1 + ‖y‖2) +
√
l1‖x− y‖,(2.2)

note that 1
2
< α ≤ 1 and limT→∞ κ(T ) = 0, which show that f satisfies the Lipschitz

condition as f .

• Linear growth condition for f :

‖f(x)‖ ≤
∥∥∥ 1

T

∫ T

0

[f(x, s)− f(x)]ds
∥∥∥+ ‖ 1

T

∫ T

0

f(x, s)ds‖

≤
√
κ(T )

T 1−α (
√

1 + ‖x‖2) +
√
l1
√

1 + ‖x‖2,(2.3)

note that 1
2
< α ≤ 1 and limT→∞ κ(T ) = 0, which show that f satisfies the growth

condition as f .
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By the discussion above, we can see that the Lipschitz and linear growth conditions on f
need not be assumed as some existing literature, which simplifies the assumption on f .

In this paper, we focus on the averaging principle of equation (1.1). The existence
and uniqueness of solutions to equation (1.1) have been considered by many authors under
conditions (H1) and (H2), details see the papers[26, 27] and ect..

In the following, we will prepare an inequality to be used in the next section, which can
be thought of as a generalization of Gronwall’s inequality for singular kernels, see [28].

Lemma 2.1. [28] Suppose b ≥ 0, β > 0 and a(t) is a nonnegative function locally
integrable on 0 ≤ t < T (some T ≤ +∞), and suppose u(t) is nonnegative and locally
integrable on 0 ≤ t < T with

u(t) ≤ a(t) + b

∫ t

0

(t− s)β−1u(s)ds.

Then

u(t) ≤ a(t) +

∫ t

0

[ ∞∑
n=1

(bΓ(β))n

Γ(nβ)
(t− s)nβ−1a(s)

]
ds, 0 ≤ t < T,

where Γ(·) is the Gamma function.

In the following, we cite two lemmas for future use.

Lemma 2.2. [26] Under conditions (H1) and (H2), for every x0 ∈ L2(Ω, H), equation
(1.1) has a unique solution Xt such that in Xt ∈ C([0, T ];L2(Ω, H)) and

sup
0≤t≤T

E‖Xt‖2 ≤ C(l1, x0, T, α).

Lemma 2.3. [26] Assume that the condition (H2) holds. If u(t) is the solution of
equation (1.1), then

E‖u(t)− u(s)‖2 ≤ C(l2, T, u0, α)(t− s)2α−1.(2.4)

3 An averaging principle

We now study an averaging principle for the following Caputo fractional stochastic integral
equations (SIEs) in Rd:

uε(t) = u0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(uε(s),
s

ε
)ds+

1

Γ(α)

∫ t

0

(t− s)α−1g(uε(s))dB(s),(3.1)

where u0 is a random vector, B(t) is a one dimensional Brownian motion and ε ∈ (0, ε0] is a
positive small parameter with ε0 a fixed number.
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By Remark 2.1 , f is also satisfy the Lipschitz and linear growth conditions. Thus, the
existence and uniqueness solution for the following Caputo fractional SIEs is still guaranteed.

u(t) = u0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(u(s))ds+
1

Γ(α)

∫ t

0

(t− s)α−1g(u(s))dB(s).(3.2)

Now, we turn to the main objectives of this paper, we will prove that the solution of equation
(3.1) will converge to the solution of (3.2) in the mean square sense as ε→ 0, which presents
as follows:

Theorem 3.1. Assume that the Lipschitz condition (H1) and the linear growth condi-
tion (H2) hold. Let uε(t) be the unique solution of equation (3.1) and u(t) be the unique
solution of equation (3.2). Together with the condition (H3), then

lim
ε→0

sup
0≤t≤T

E‖uε(t)− u(t)‖2 = 0.(3.3)

In order to prove the Theorem 3.1, we first consider the following lemma.

Lemma 3.1. Assume conditions (H1)-(H3) hold and E‖u0‖2 < +∞, for 1
2
< α ≤ 1,

one has

lim
ε→0

sup
0≤t≤T

E
∥∥∥∫ t

0

(t− s)α−1[f(uε(s),
s

ε
)− f(uε(s))]ds

∥∥∥2

= 0.(3.4)

Proof. Let

bi = i
√
ε, 0 ≤ i ≤ N − 1, 0 < T − bN−1 ≤

√
ε, bN = T,

be a partition of [0, T ]. It is easy to see that T ≤ N
√
ε < T +

√
ε.

Define

Xi =

∫ bi+1

bi

(t− s)α−1[f(uε(s),
s

ε
)− f(uε(s))]ds =

∫ bi+1

bi

(t− s)α−1I(uε(s),
s

ε
)ds,

it follows that, ∥∥∥∫ t

0

(t− s)α−1[f(uε(s),
s

ε
)− f(uε(s))]ds

∥∥∥2

≤ N
∥∥∥∫ t

[ t√
ε
]
√
ε

(t− s)α−1[f(uε(s),
s

ε
)− f(uε(s))]ds

∥∥∥2

+N

N−2∑
i=0

‖Xi‖2.

By the condition (H2) and Remark 2.1,

E
∥∥∥∫ t

[ t√
ε
]
√
ε

(t− s)α−1[f(uε(s),
s

ε
)− f(uε(s))]ds

∥∥∥2
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≤ C

∫ t

[ t√
ε
]
√
ε

(t− s)2α−2ds

∫ t

[ t√
ε
]
√
ε

(1 + E‖uε(s)‖2)ds

≤ C(α)|t− [
t√
ε
]
√
ε|2α(1 + sup

0≤t≤T
E‖uε(t)‖2)

≤ C(α)εα(1 + sup
0≤t≤T

E‖uε(t)‖2).(3.5)

Then, since E‖u0‖2 < +∞, by Lemmas 2.2 and (3.5), it follows that

E
∥∥∥∫ t

0

(t− s)α−1[f(uε(s),
s

ε
)− f(uε(s))]ds

∥∥∥2

≤ C(α)εαN +NE
N−2∑
i=0

‖Xi‖2

≤ C(α)εα−
1
2 (T +

√
ε) +NE

N−2∑
i=0

‖Xi‖2.(3.6)

Thanks to condition (H1), (H3) and Remark 2.1, we can verify that

‖Xi‖2 =
∥∥∥∫ bi+1

bi

(t− s)α−1[f(uε(s),
s

ε
)− f(uε(s))]ds

∥∥∥2

≤ 3
∥∥∥∫ bi+1

bi

(t− s)α−1[f(uε(bi),
s

ε
)− f(uε(bi)]ds

∥∥∥2

+3
∥∥∥∫ bi+1

bi

(t− s)α−1[f(uε(s),
s

ε
)− f(uε(bi),

s

ε
)]ds

∥∥∥2

+3
∥∥∥∫ bi+1

bi

(t− s)α−1[f(uε(s))− f(uε(bi)]ds
∥∥∥2

≤ 3
∣∣∣ ∫ bi+1

bi

(t− s)2α−2ds
∣∣∣ ∫ bi+1

bi

‖f(uε(bi),
s

ε
)− f(uε(bi)‖2ds

+3
∣∣∣ ∫ bi+1

bi

(t− s)2α−2ds
∣∣∣ ∫ bi+1

bi

‖f(uε(s),
s

ε
)− f(uε(bi),

s

ε
)‖2ds

+3
∣∣∣ ∫ bi+1

bi

(t− s)2α−2ds
∣∣∣ ∫ bi+1

bi

‖f(uε(s))− f(uε(bi)‖2ds

≤ C(α)
∣∣∣(t− bi)2α−1 − (t− bi+1)2α−1

∣∣∣ ε∫ bi+1
ε

bi
ε

‖f(uε(bi), s)− f(uε(bi)‖2ds

+C(α, l1)
∣∣∣(t− bi)2α−1 − (t− bi+1)2α−1

∣∣∣ ∫ bi+1

bi

‖uε(s)− uε(bi)‖2ds.(3.7)

Noting that for 0 < β < 1 and 0 < a ≤ b ≤ T ,∣∣∣bβ − aβ∣∣∣ ≤ (b− a)β.
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Then, if 1
2
< α ≤ 1, we can state that∣∣∣(t− bi)2α−1 − (t− bi+1)2α−1

∣∣∣ ≤ (bi+1 − bi)2α−1.

This, together with (3.7), yields that

‖Xi‖2 ≤ C(α, T )(
√
ε)2α−1ε

∫ bi+1
ε

bi
ε

‖f(uε(bi), s)− f(uε(bi)‖2ds

+C(α, l1, T )
√
ε

∫ bi+1

bi

‖uε(s)− uε(bi)‖2ds

≤ C(α, T )εκ(
1√
ε
)(1 + ‖uε(bi)‖2) + C(α, l1, T )

√
ε

∫ bi+1

bi

‖uε(s)− uε(bi)‖2ds.

On account of Lemma 2.3, we conclude that

N
N−2∑
i=0

E‖Xi‖2 ≤ C(α, T )εN
N−2∑
i=0

E[κ(
1√
ε
)(1 + ‖uε(bi)‖2)]

+C(α, l1, T )
√
εN

N−2∑
i=0

E

∫ bi+1

bi

‖uε(s)− uε(bi)‖2ds

≤ C(α, l1, T )εN2[κ(
1√
ε
) + εα−

1
2 ]

≤ C(α, l1, T )(T +
√
ε)2[κ(

1√
ε
) + εα−

1
2 ],(3.8)

we here used Lemma 2.3 in the second inequality.
Substituting (3.8) into (3.6), we obtain

sup
0≤t≤T

E
∥∥∥∫ t

0

(t− s)α−1[f(uε(s),
s

ε
)− f(uε(s))]ds

∥∥∥2

≤ C(α)εα−
1
2 (T +

√
ε) + C(α, l1, T )(T +

√
ε)2[κ(

1√
ε
) + εα−

1
2 ]

≤ C(α, l1, T )[κ(
1√
ε
) + εα−

1
2 ].(3.9)

The conclusion follows from (3.9) by letting ε tend to zero.

Now, we shall prove the main result of this paper.
Proof of Theorem 3.1 : Using the following elementary inequality

‖a+ b+ c‖2 ≤ 3‖a‖2 + 3‖b‖2 + 3‖c‖2,

we have

E‖uε(t)− u(t)‖2 ≤ 3

Γ(α)2E
∥∥∥∫ t

0

(t− s)α−1[f(uε(s),
s

ε
)− f(uε(s))]ds

∥∥∥2
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+
3

Γ(α)2E
∥∥∥∫ t

0

(t− s)α−1[f(uε(s))− f(u(s))]ds
∥∥∥2

+
3

Γ(α)2E
∥∥∥∫ t

0

(t− s)α−1[g(uε(s))− g(u(s))]dB(s)
∥∥∥2

.

Applying the Hölder inequality, the Itô isometry inequality and the condition (H1), one can
see that

E‖uε(t)− u(t)‖2

≤ 3

Γ(α)2E
∥∥∥∫ t

0

(t− s)α−1[f(uε(s),
s

ε
)− f(uε(s))]ds

∥∥∥2

+
3T l1

Γ(α)2

∫ t

0

(t− s)2α−2E‖uε(s)− u(s)‖2ds+
12l1

Γ(α)2

∫ t

0

(t− s)2α−2E‖uε(s)− u(s)‖2ds

=
3

Γ(α)2E
∥∥∥∫ t

0

(t− s)α−1[f(uε(s),
s

ε
)− f(uε(s))]ds

∥∥∥2

+
3T l1 + 12l1

Γ(α)2

∫ t

0

(t− s)2α−2E‖uε(s)− u(s)‖2ds

≤ C(α, l1, T )[κ(
1√
ε
) + εα−

1
2 ] +

3T l1 + 12l1

Γ(α)2

∫ t

0

(t− s)2α−2E‖uε(s)− u(s)‖2ds.

Thus, by Lemma 2.1 we obtain

E‖uε(t)− u(t)‖2

≤ C(α, l1, T )[κ(
1√
ε
) + εα−

1
2 ]
(

1 +

∫ t

0

∞∑
n=1

(3T l1+12l1
Γ(α)2

Γ(2α− 1))n

Γ(2nα− n)
(t− s)n(2α−1)−1ds

)
≤ C(α, l1, T )[κ(

1√
ε
) + εα−

1
2 ]
(

1 +
∞∑
n=1

(3T l1+12l1
Γ(α)2

Γ(2α− 1)T 2α−1)n

Γ(2nα− n+ 1)

)
= C(α, l1, T )[κ(

1√
ε
) + εα−

1
2 ]
(

1 + E2α−1,1(
3T l1 + 12l1

Γ(α)2 Γ(2α− 1)T 2α−1)
)
.

Finally, we get

sup
0≤t≤T

E‖uε(t)− u(t)‖2 ≤ C(α, l1, T )[κ(
1√
ε
) + εα−

1
2 ].(3.10)

This completes the proof.

Remark 3.1. By equation (3.10), we see that, the convergence rate relate to the conver-
gence rate function κ(·) which is different from others paper results by the similar methods
as [21, 22].

Remark 3.2. Using the Chebyshev inequality, we can also derive the converge result in
the sense of convergence in probability.
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4 Example

In this section, we will present one examples to illustrate our theory. Consider the following
Caputo fractional SDEs

(4.1)

{
D

3
4
t u

ε(t) = 4cos2( t
ε
)uε(t)dt+ uε(t)dBt, 0 < t ≤ T,

u(0) = u0.

Here α = 3
4
, E‖u0‖2 < +∞. and f(uε(t), t

ε
) = 4cos2( t

ε
)uε(t), g(uε(t)) = uε(t).

Let

f(u) =
1

π

∫ π

0

4cos2(t)udt = 2u,

considered the following averaged equation,

(4.2) D
3
4
t u(t) = 2u(t)dt+ u(t)dBt.

It is easy to check out that condition H3 is satisfied and k(T ) = 1

T
3
4

. By Theorem 3.1, we

known that, the solution of (4.1) can be approximated by the solution of equation (4.2) in
the sense of mean square and also probability. Moreover, the optimal convergence rate is 1

4
.

5 Conclusion

In this paper, an averaging principle for a type of Caputo fractional SDEs has been estab-
lished. Under a different averaging condition, we derive an averaging principle for a type
of Caputo fractional SDEs by a different estimate method. we prove that the solution of
averaged Caputo fractional SDEs converge to that of the standard one in the sense of mean
square and also in probability. Our results enriched the averaging principle for Caputo
fractional stochastic differential equations.
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