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e Multiple interface modes exist in a beam array system with inerters

¢ Inasimple mass-spring-inerter chain interface modes are shifted to lower frequencies
¢ Inteface modes are not affected by the existence of defect mass in the system

o Inerters can be used to tune multiple interface states in a beam array system
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Abstract

Topological phononic crystals in the mechanical setup became a topic of great interest owing to their ap-
plicability in various engineering systems such as waveguides or vibration isolation devices. If such systems are
composed of elastic structures, they are usually characterized by a bulk—edge correspondence where the geomet-
rical and material properties can play important role in the existence of stable surface and boundary modes.
This work investigates the band transition and topological interface modes in a beam array system, where two
sub-lattices of vertically aligned, parallel, and elastically coupled beams are connected at the chain center. To
illustrate the existence of interface modes and understand their behavior, the corresponding eigenvalue problem
is solved and frequency response function is sought for the system with a finite number of unit cells. Localization
of the interface modes is demonstrated based on the steady-state responses of the beam array system to harmonic
excitation. The effects of introduced defect masses and inerters on interface states are studied separately. It is
revealed that the introduction of a small defect mass in the form of concentrated mass attached to some beam in
the system does not affect the interface modes within the observed frequency range. On the other side, inerters
produce frequency shifts towards lower values, which even in the case of small values of the inerter parameter
causes the interface modes to vanish or even to appear inside another frequency band gap. The obtained results
give an insight into the influence of inerter devices and their mass amplification effect on the interface states in
complex periodic elastic systems. It also investigates the possibility to tune interface modes without significantly
affecting the main band structure properties of the system.

(© 2021 Published by Elsevier Ltd.
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1. Introduction

Very common components of the engineering systems are periodic structures, whose
dynamic behaviour or wave propagation properties are often the most important com-
ponent of their functionality. Such systems can be designed to achieve unique elastic
wave characteristics [1], where many ideas come from condensed matter physics and in-
vestigations in the field of photonic and phononic crystals or acoustic metamaterials [2].

*Corresponding author
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Probably the most intriguing is an application of quantum spin Hall effects and other
topological concepts [3-5] in acoustics and elasticity. Many studies paid attention to
topologically protected interface modes in 1D phononic crystals [6] and patterned elastic
structures [7] that are immune to defects and exhibit scattering-free wave propagation.
Based on their geometric properties, periodic structures can be classified as one-, two- or
three-dimensional ones, whose topological properties of wave modes can be determined
through topological invariants such as Berry phase [8| or its special case called Zak phase
[9, 10]. As given in [11, 12], the Berry phase is a geometric phase defined as the integration
of Berry connection along a closed-loop inside the Brillouin zone (BZ). Therefore, the key
thing in the emergence of interface modes in phononic crystals is the geometric phases
and wave mode polarization defined by the type of symmetry of edge-mode state, which
is the property that can be proved based on experiments and fundamental 1D or more
complex 2D and 3D models of acoustic [13-15] and elastic systems [16-18]. Some authors
[19] made a connection between the surface impedance of a one-dimensional PC and its
Zak phases of the bulk bands to determine the existence of interface states in particular
band gaps. This methodology was later applied to determine topological interface states
in multiple bands photonic crystals [20], one-dimensional labyrinthine acoustic metama-
terials [21] and translational metamaterials [22]." Another but similar approach relies on
the determination of topological invariants named winding numbers |23, 24| representing
eigenvectors around the origin of the complex plane. Marques et al. [25] proposed the
generalization of the Zak phase for lattice models with a non-centered inversion symmetry
axis by adding the appropriate correction term. Based on the Wilson-loop approach, Wang
et al. [26] demonstrated that the nontrivial winding of the Berry phases can be destroyed
by adding trivial bulk bands due to fragile topology in certain topological classical-wave
systems. However, as revealed in [8] for one-dimensional elastic superlattices composed of
several masses and spring stiffnesses, a Berry (Zak) phase of individual bands can differ
from usual values of 0 or m when the summation of the Berry phases overall bands is an
integer multiple of 2. According to [27], in such cases, the winding number represented
by this integer is not an important value in standard discussions of Zak phases which is
only meaningful in mod 27. In our study, this property will be exploited when analysing
the topological interface states in an array of coupled beam structures.

One can distinguish two main approaches that are used in mechanical systems to gen-
erate interface modes and named upon analog effects in solid physics. The first approach
is based on the quantum Hall effect (QHE) that breaks the time-reversal symmetry and
belongs to active techniques since it includes components active in time [28]. On the
other side, the second approach is passive and it is based on the quantum valley Hall
effect (QVHE) or quantum spin Hall effect (QSHE). As given in [29], the coupling of two
degenerate wave modes and creation of double Dirac cone along the irreducible Brillouin
zone boundary [30] is an important sign of the existence of interface states in mechanical
systems. Many studies reported how by breaking the time-reversal symmetry one can
generate interface modes [31, 32|, while Pal et al. [33] investigated the elastic analogs of
the quantum valley Hall effect through discrete one and two-dimensional lattices. The
aforementioned studies are mostly concerned with linear analysis where interface modes
are topologically protected and robust to defects and uncertainties. Recently, Pal et
al. [34] investigated the effect of spring nonlinearity on interface modes in discrete one-
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dimensional spring-mass and two-dimensional lattice systems.

In this study, the main interest is devoted to topological interface modes in one-
dimensional elastic phononic crystals. One such system was studied by Yin et al. [35],
where topological transition point was confirmed for both longitudinal waves and bend-
ing waves. It is worth noting that topological interface states for elastic waves in one-
dimensional systems are mostly induced by Bragg scattering. However, Fan et al. [36]
demonstrated that it is possible to excite interface state by local resonances in the sub-
wavelength range. Similarly, Huang et al. [37] realized topological edge modes in the
one-dimensional composite structure as a result of both Bragg scattering and local reso-
nances. Some authors have studied the topologically protected interface modes for both
in-plane and out-of-plane [38] bulk elastic waves. Existence of topologically protected
interface modes in PCs is a unique property that can be applied to solve many engineer-
ing problems in wave localization and isolation [13], controlof vibrations, waveguiding
[39], acoustic focusing and cloaking [40], energy harvesting [41] etc. In our study, the
particular interest is paid to an array of elastic structures that are coupled through elastic
medium [42]. For example, Rosa et al. [43] studied the topological pumping in the array
of semi-infinite continuous elastic beams coupled through a distributed stiffness showing
that adiabatic stiffness modulations along the beams’ length causes the transition of lo-
calized states from one to the opposite boundary of an array. Moreover, some authors
raise the question of using the active elastic metamaterials to achieve controllable elastic
cloaking [|44] or tunable topological states [45].

The majority of studies are limited to the wave propagation analysis of simple sandwich
beams with softcore [46] or rigidly connected through periodically distributed ribs [47].
When more complex multiple coupled structures systems are considered, the analyses are
mostly limited to dynamic studies of systems with multiple coupled beams [48] or plates
[49] through discrete elastic or viscoelastic medium. Recently, Karli¢i¢ et al. [50] studied
the wave Bloch wave propagation in an array of elastically coupled Rayleigh beams of
finite length and corresponding boundary conditions. Similar configurations of arrays
of parallelly connected rods and beams were investigated and exploited in waveguiding
applications [39, 51, 52]. This study is focused on the investigation of topological interface
states in such systems and the effect of different parameters on that topology.

Recently, the inerter devices are often used to reduce the vibration responses of var-
ious engineering systems [53-55|. As given in [53, 56|, inerter can be considered as a
two-terminal mass element whose terminals can move freely to provide a resisting force
proportional to their relative acceleration, where a small actual mass can be magnified
into a large apparent mass. Among the first applications of the inerter system are re-
lated to the amplification of viscous-damping force [57], while different realizations of
these mechanisms are proposed in the literature [58-61]. To model the inerter system,
usually the inerter, spring, and damping elements are proposed in the literature based
on energy methods [62] or moment of equilibrium equations [63]. Inerters are then used
to represent the restoring force in discrete coupled mass-spring systems [64, 65|, beam
structures [66] or nonlinear coupled plates [62, 67]. Some recent findings [68] revealed
how inertial amplification affects wave dispersion in acoustic metamaterials and demon-
strated the possibility to wider the band gaps via inertial amplification. It is well known
that active elastic metamaterials have advantages over passive ones since their wave prop-
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agation and topological properties can be controlled in real-time without changing their
material or geometrical features. On the other side, inerters embedded into the metama-
terial or phononic type system are behaving as passive components. However, in [69, 70|
the authors demonstrated that inerters with easily changeable inertance properties can
be constructed and therefore used for tuning of the overall properties of the system.

Inspired by the above studies, we intend to investigate topological interface modes in
a multiple beam array system consisting of elastically connected beams of finite length
with inerters located in the elastic layers at the interface. In some earlier research papers,
the main focus was put on the initial Bloch bands when analysing the interface modes
generated in an elastic medium with longitudinal and bending elastic waves [35], with
less attention to localization at higher wave modes. Recent investigations included the
analysis of multiple interface modes induced by band transitions and exchange in wave
mode polarization at both lower and higher wave modes [29]. However, the aforemen-
tioned studies are mostly limited to the analysis of one-dimensional phononic type elastic
structures observed as beams with periodically varying geometry in the form of changing
stepwise circular cross-sections. We aim to show the existence of multiple interface modes
in the proposed beam array system at both lower and higher frequency wave modes that
are generated by bending vibrations of beams. The corresponding eigenvalue problem will
be established and solved to analyse the band structure of the proposed system configu-
ration based on the Kuler-Bernoulli beam and Winkler’s type elastic foundation models.
Band inversion effect with transition points will be demonstrated based on dispersion
analysis at the edges of the first Brillouin zone. The existence of interface modes will be
illustrated through eigenvalues and frequency response function analysis of a beam array
system with a finite number of unit cells. Moreover, the steady-state responses of beams
within the beam array system will be studied for different harmonic excitation frequencies
to confirm the interface mode localization at the interface. The effect of the so-called de-
fect mass, i.e. the case with some beam in the system having attached concentrated mass,
is investigated to demonstrate the robustness of the interface modes to applied changes.
The previously mentioned analyses will be repeated for the beam array configuration with
inerters at the interface. The influence of the inerter parameter on eigenvalues, frequency
response function; and steady-state responses in space will be studied to show its effects
on interface modes. This theoretical study will contribute to the understanding of topo-
logical mechanics of connected elastic structures and lead to the possible application of
passive coniponents such as inerters in the tuning of topologically protected edge modes.

This work is organized as follows: the general mechanical model of the periodic beam
array system with elastically coupled beams and inerters, Galerkin approximation pro-
cedure, Floquet-Bloch theorem, the definition of the eigenvalue problem, and derivation
of the frequency response function is presented in Section 2. Numerical results for the
frequency response function, band inversion, steady-state response in space and particular
interface modes of a simple mass-spring-inerter system and chosen configuration of the
multiple Euler-Bernoulli beams array systems with and without inerters or defect mass,
are performed in Section 3. Finally, Section 4 is the conclusion underlying the main
contributions and the future work.
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(a) Ideal inerter

(b) Beam array without (left) and with (right) inerters

Fig. 1: Illustration of the mechanical inerter and beam array system with two sub-lattices of
unit cells which are inverted copies of each other and connected at the interface beam through
springs or springs and inerters.
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2. Problem formulation

2.1. Beam array system with inerters

According to the definition given in [56], the ideal inerter is a mechanical one-port
with the property that the equal and opposite forces at the terminals are proportional to
the relative acceleration between them. If we consider the two terminals as connection
points to other elements (see Fig. 1a for details) and we have displacements y; and ys, we
can express the force at the terminal as

F(t) = d((t) — 41(t))

where d > 0 is the inertance with units of kilograms. The terminals are also the ap-
plication points for the forces, which are colinear with the line joining the terminals.
Therefore, the main property of the ideal inerter is proportionality between force and
relative acceleration.

In this section, an example of a phononic beam array system is given based on the
periodically repeating unit cell containing two identical beam elements with the same
boundary conditions and coupled through elastic layers of different stiffness properties. It
is considered that the beam array system is constructed from two sub-lattices of unit cells
that are inverted copies of each other and connected at the interface, where each sub-
lattice has n unit cells with two alternating stiffnesses of connecting layers (see Fig. 1b).
Unit cells are periodically distributed in z- direction. Ideal inerters are introduced in the
coupling layers below and above the interface beam, while other coupling layers remain
the same. By introducing the assumptions from the Euler-Bernoulli beam theory and
elastic layers with inerters, the governing equation of motion for the interface beam is
given as

pA’L.L'Jayo + EI’LU;% + Qdﬂ'}a’o <\ d(’ll'}b’o + l'l.}b7,1) + 2k1wa70 — lﬁ (wbp + wb7,1) = fa,o(l‘, t), (1)
where ()" = 9*/02*, ()= 92/0t2. In general, w,, and f, ,(z,t) are the displacement and
applied periodic force of the u-th beam in the p-th unit cell for v = a, b, while p, A, E
and I denotes beam’s density, cross-sectional area, Young’s modulus and cross-sectional
moment of inertia, respectively. The beams within the unit cell and with neighboring
cells are connected through coupling layers of different stiffnesses k; and ke except at
the interface beam, which is from both sides connected with adjacent beams through the
coupling layers of the same stiffness k; and inertia amplification d properties.

The governing equations for the beams in the unit cells bellow the interface coupled
with elastic layers without inerters are given as

pAwa,p + ijg,/;l) + ko (wa,p - wb,p) + Ky (wa,p - wb,p—l) = fa,p(xv t)a (2)
pAwb,p + EIQUII)CII/) + ko (wb,p - wa,p) + Ky (wb,p - wa,p-ﬁ-l) = fb,p($7 t)a (3)

and for the beams in the unit cells above the interface as

pAwa,p + EI’U)Z:]/) + ky (wa,p - wb,p) + ko (wa,p - wb,p—l) = fa,p(xa t)a (4)
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p Ay + E[wl’,’f; + ki(wyp — Wap) + ka(Whp — Wapr1) = fop(,t). (5)

For the beam array system with finite number of unit cells, the first and the last equations
in the system are different from others if the chain edges are not connected to the fixed
base. Moreover, due to the presence of inerters, the equations for the beams bellow and
above the interface beam, respectively are given as

pAy, 1 + ETwy” | + d(wy, 1 — Wayp) + ka(wp—1 — Wa,—1) + k1 (wp—1 — Wap) = fo—1(z,1),
(6)

pAiiyo + ETwyy + d(ty — Wap) + k1(wso — Wap) + ko (g — Wan) = foolz,t).  (7)

For the beam array configuration presented in Fig. 1b, one can adopt identical bound-
ary conditions on all beams, which for the pinned-pinned (PP) beams are w,,(0,t) =
wy (0,1) = wyy,(L,t) = wy (L,t) =0, u = a,b. Similar to this, one can easily adopt
other types of boundary conditions such as clamped-clamped (CC) beam configuration,
which would require only changes in the adopted mode shape functions in the Galerkin
approximation to calculate frequency responses and band structure of the system.

In the case when one of the beams is having = attached concentrated masses, the
overall mass of that beam is changed and it can be considered as a defect mass in the
chain. This yields a different governing equation, which for some beam in the p-th unit
cell below the interface is given as

(pA + Z med(x — 0¢))tap + EIW,), + ka(Wap — whp) + k1(wap — wop1) = fap(2, 1),

¢=1
(8)

or

(pA+ Z Med (2 — 0¢) iy + ETwyy + ka(whp — Wap) + k1(Whp — Waps1) = fop(@,t),
e=1
(9)
where o¢ is the position of {-th mass on the beam and ¢ is the Dirac function.

2.2. The eigenvalue problem and frequency response function
The first step is to discretize the motion equations of the unit cell by using the Galerkin
approximation. The solution is assumed in the following form

N
wu,p(zv t) = Z Q(u,p)r(t)(rb(u,p)r(x)v u=a,b, (10)

r=1

where gy p)r and ¢, ), are the generalized time functions and assumed trial (mode shape)
functions of the bare beam, respectively. N is the number of adopted terms in the Galerkin
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approximation series. In structural dynamic problems, the mode shape functions satis-
fying the boundary conditions are often used in the method of separation of variables to
solve the PDEs. If the beam array configuration without concentrated masses is observed,
applied mode shape functions of the bare beam also satisfy the boundary conditions and
the obtained solution can be considered as the exact one for the finite number of adopted
modes. The application of the Galerkin approximation comes into the effect when the
case with concentrated masses is observed, where the adopted mode shape functions of
the bare beam are not the exact functions satisfying the boundary conditions. In that
case, the accuracy of the obtained approximated solution can be increased by adopting
the higher number of terms in the Galerkin approximation.

Inserting Eq. (10) into the governing equations (1)-(9), multiplying them with the
corresponding trial functions, integrating over the beam’s domain and taking into account
corresponding orthogonality conditions (see Appendix A) gives matrix equations of the
form

Mg+ Kq = f, (11)

where M is the mass matrix and K is the stiffness matrix of the system, while f is the
force vector. By introducing the harmonic solution of the form q = qe’*!, j = v/—1, and
taking that f = 0, yields the following eigenvalue problem

(K =w’M)q=0. (12)

The elements of the stiffness K and mass matrix M are given in the Appendix A. By
solving the above eigenvalue problem for a finite number of unit cells and adopted terms in
the Galerkin approximation, one can detect interface modes which are located within the
band gaps. To confirm the existence of localized modes, we will determine the frequency
response function of the system by assuming the harmonic force Fye’*? acting on the last
beam w, _,) bellow the interface such that f(b,—n)k = F,el? fOL §(z = Q)Pp,—nyk(x)dr =

Foe? %,y ().

2.8. Band inversion

Let us assume that the infinite beam array system is composed of unit cells with two
identical beams coupled mutually and with adjacent unit cells through springs of different
stiffnesses ki = k(1 + ) and ky = k(1 — ). If we chose some p-th unit cell described
via equation of the form as Egs.(4) and (5) when f(,, = 0 and fg, ) = 0. The unit cells
can be identified by considering the following notation p + v, with v = —1,0, 1 denoting
the previous, present, and subsequent unit cell, respectively. Then, by taking the above
Galerkin approximation and the Floquet-Bloch theorem for the plane wave solution of
the form

(u,pt+v)yr = Q(u)r (u)ej(wt+ua(p+v))’ u=a, bv (13)

one can obtain the matrix equation of the form

~ KG,P Ka’p (M) Maap 0 qa’P
2 — 11 12 2 1 1 —
wo-t)a= ([ s ] <o ae]) [a] =0 00
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where q is the vector of wave amplitudes while elements of matrices K, and M, of
dimension 2N x 2N are given in Appendix B. By solving this inverse eigenvalue problem
in Eq.(14) one can obtain m eigenvalues w,, and eigenvectors q,, as functions of the wave
propagation constant p, which will yield corresponding dispersion relations. Moreover,
by investigating the eigenvectors of the beam array system one can additionally examine
topological features of eigensolutions when stiffness parameter ~ is varied as a positive and
negative value. This kind of analysis can provide us with information on the existence of
band inversion in the beam array system. As explained in [34], in a one-dimensional mass-
spring lattice system one can observe a change of eigenvectors for varying wavenumber p
over the first Brillouin zone. According to this, the transformation of stiffness parameter ~y
from positive to negative values can change the eigenvectors but not eigenvalues. The same
transformation can be achieved by reversing the direction of the lattice basis vector or
through the translation of the unit cell by one mass in the chain. These transformations
are attributed to changes in the gauge, which then changes the eigenvectors and the
topology of the vector bundle related to the solution of the corresponding eigenvalue
problem. The topology of this vector bundle can be evaluated by using the Zak phase
for the bands, which is a special case of the Berry phase used to characterize the band
topology and band inversion in 1D periodic media. For some m-th band, the Zak phase
can be calculated as .

2= [ 15ay ()" 9un0] d (15)
where (q,,(¢))" is the Hermitian of eigenvector q,,(1). A more simplified discretized form
of Eq.(15) can be used in numerical calculation of the Zak phase as

07" = ~Im IS In [~H (£7r> - <c+ 1%)} (16)
- ‘. qm P qm P

The Zak phase need to be calculated for each band and it usually take values ©%% = 0
and ©%% = 7. Since the Zak phase is not gauge invariant, the choice of coordinate
reference and a unit cell must remain the same during computation. Therefore, the
Zak phase can give us important information about the geometric phases of the bulk
band and the existence of interface modes in different PC configurations [29]. However,
despite the fact that from Eq.(14) one can easily determine the resulting eigenvalues and
eigenvectors, above Eqgs.(15) and (16) seem to be inapplicable to the present problem
since aforementioned values of the Zak phase ©%%* = (0 or ©%% = 1 cannot be obtained
for individual bands. This will be elaborated additionally in the following section.

One can also predict the generation of interface modes when there is a mode transition
frequency (band transition point) between the band gaps of topologically distinct PCs.
More precisely, interface modes can be induced by varying the symmetry of the band-edge
states at both the upper and lower edges of the band gap. It should be noted that for
the beam array system with inerters at the interface, the dispersion relations cannot be
constructed via the classical Floquet-Bloch approach since it requires that all unit cells
in the system are identical. Either way, in the following numerical analysis the bulk band
of a beam array system with inerters will be computed to reveal the effect of inerters on
band inversion. This requires only minor changes in the mass matrix from Eq.(14) to
account for the effect of inerters in the representative unit cell.
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3. Numerical results

In this section, the results for the frequency response function (FRF) and band struc-
ture will be given first to demonstrate the existence of interface modes in the coupled
multiple beam array system without inerters. Further, the influence of inerters in discrete
mass-spring and multiple beam array systems will be investigated to reveal their effect on
interface modes. The following values of parameters are adopted in numerical simulations
if not given differently: Young’s modulus £ = 3.2-10°[Pa, cross-sectional moment of area
I =45-10""[m?, beams length L = 0.8m], cross-sectional area A = 6 - 1075, density
p = 1190[kg/m?], and mean stiffness k& = 200[N/m?] related to stiffnesses k; = k(1 + )
and ky = k(1 — 7), with v denoting the dimensionless stiffness parameter. All given nu-
merical examples of a beam array system without defect mass are calculated for adopted
N =5 terms in the Galerkin approximation, which enables us to study all the important
interface modes in the lower and higher frequency range. For the reasons mentioned previ-
ously, the number of adopted terms in the Galerkin approximation is increased to N = 10
for the configuration where the so-called defect mass is introduced. When calculating the
FRF, a beam array system with a finite number of n. = 10 units cells on each side of
the interface is considered, where beams at the two opposite ends of the chain are free
(not connected to the fixed base) and denoted as wy 19 and wy19. The whole system is
having an odd number of beams such that the beam denoted as wy g is in the center. Here,
we will consider as symmetric those modes where displacement of the interface beam is
equal to zero while adjacent beams are oscillating with the same amplitude but opposite
phase. This is not the case with the anti-symmetric modes, where beams adjacent to the
interface are in phase and the interface displacement is different from zero. Therefore,
we measure the frequency response of the beam wy o presuming that displacement of the
interface beam displacement w,  in symmetric modes is equal to zero. It should be noted
that in the FRF analysis, the harmonic force is acting on the last beam wj, 1o at the point
¢ = 0.45L[m], to move it away from the central node (point with zero displacements in
certain mode shapes of the pinned-pinned beam). Steady-state responses are calculated
based on a methodology similar to those found in [71], where convolution integral solution
is applied to determine the steady-state amplitudes. All the responses are measured at
the point @ = 0.55L.

3.1. Beam array system without inerters

First, we will show the example of a finite beam array system without inerters. This
includes both, showing the eigenvalue analysis and frequency response function that are
plotted for frequencies normalized with the first natural frequency of the simply supported
bare beam. Figure 2 shows eigenvalues (left) and FRF (right) of the beam array system
with an interface for adopted five modes in the Galerkin approximation. It illustrates
several narrow passbands and band gaps as well as interface modes at both lower and
higher frequency ranges for the value of stiffness parameter v = 0.5 (k; > ky), where
interface modes are localized within the narrow band gaps, see Fig. 2a. Figure 2b shows
eigenvalues and FRF of the beam array system when v = —0.5 is a negative value, i.e.
in the case where the stiffness of layers below and above the interface beam is weak
(k1 < ko). Here, the majority of interface modes migrate into the bulk indicating their
trivial nature but certain interface modes remain inside the band gaps. A similar effect
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Fig. 2: Natural frequencies and frequency response function of the elastically coupled beam array
system given in two different configurations k1 < ke and ky > ko.

can be viewed in 1D phononic mass-spring chains [33], when the unit cell configuration
includes two identical masses and two springs of different stiffness properties. In our case,
one can notice the existence of multiple bands and higher frequency interface modes since
instead of discrete mass-springs, continuous beam structures are used. It is well known
that continuous structures are having an infinite number of degrees of freedom and mode
shapes. However, we depicted only the lower modes which can be encompassed by the
five-term Galerkin approximation. It is interesting to note that in all four sub-figures
one can identify a band gap that starts from a zero frequency, with no interface modes
detected inside it. Such obtained band gap is a specific feature of the proposed beam
array system that was found earlier in [50] and explained with more details.

Normalized steady-state displacement amplitudes (red asterisks) are given in figure 3
to demonstrate the existence of interface modes in space. Normalization in this case
is performed by dividing all amplitudes with the maximal steady-state amplitude for
the current beam array configuration. Here, the beam array system with n = 15 unit
cell on each side of the interface and sixty one beams in the system is considered, where
harmonic excitation is applied to the first beam below the interface denoted as wy, _15. The
beam array configuration with adjacent high stiffness springs v = 0.5 at the interface is
considered as an example. Four different interface modes are presented for the cases when
the harmonic excitation is near the resonant (interface) frequency. Modes are counted as
they appear in figure 2a starting from the lowest frequency interface mode. It should be
noted that frequencies given in figures are truncated to four decimal places for convenience
but the exact values should be calculated for the repetition of the results. It can be
noticed that all given interface modes except one can be characterized as symmetric since
the interface beam is at rest while the neighboring beams are oscillating with the same
amplitude (but opposite phase). The third given interface mode (upper right sub-figure)
can be considered as the anti-symmetric one since the amplitudes of the interface and
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adjacent beams are different from zero (they are oscillating in phase).

Figure 4 shows dispersion curves and band inversion in the beam array system at
the limits u = 7 of the first Brillouin zone, which is obtained by solving the eigenvalue
problem from Eq. (14). Figure 4a and Figure 4c shows several branches and band gaps
at lower and higher frequency ranges for the value of stiffness parameter v = 0.5 and
v = —0.5, respectively. It can be noticed that the band structure does not change
under transformation v — —<, which means that eigenvalues are not changing, which
is not the case with eigenvectors. Narrow band gaps existing between some branches are
vanishing for v = 0 (the case with all identical springs), where band gaps are closing at the
edges of the first Brillouin zone. As revealed in 72| for diatomic lattices, the transition
between acoustic and optical frequencies from approaching to veering, a phenomenon
called eigenvalue loci veering (avoided-crossing), occurs when the band gap is closing
i.e. it requires non-trivial topology. In other words, veering is a consequence of rapid
variation in the eigenvectors, which can then cause band inversion or band localization.
Similar behavior can be noticed in our case but for several bands at lower as well as
higher frequency ranges. Whether certain edge (interface) modes are trivial or not can be
illustrated by calculating the invariants associated with separate bands i.e. the topology
of their vector bundles, which is usually characterized through the Zak phase. However,
as stated earlier in the text, calculating the Zak phase of individual bands in a multi-band
system can be a difficult task. In our case, when using the Eq. (16) to calculate the Zak
phase for ten bands obtained from the eigenvalue problem in Eq. (14) yields values of
Zak phases which are different from the usual 0 or m but whose summation yields the
integer multiple of 2. As given by [27], such obtained value is not important from the
perspective of standard discussion of the Zak phase and will not be elaborated further in
this study. Figure 4d demonstrates the existence of band inversion when + is varied from
minus to plus values. Moreover, one can easily notice multiple band inversions at both,
lower and higher frequencies, thus indicating the existence of localized modes.

3.2. The effect of defect mass

As given by Egs. (8) and (9), the concentrated mass attached to the random beam
in the system changes the mass matrix of the system. The beam with changed mass
compared to other beams in the system can be considered as a defect mass in the chain.
Here, we investigate whether this defect may cause changes in the interface modes of
the adopted beam array configuration. It is well known that the main property of the
topologically protected interface modes is their robustness to defects and disorders. Defect
mass is represented by the single concentrated mass m; = mpAL attached at the mid-
span o1 = 0.5L of the beam denoted as w, _19. For this purpose, a case with n = 20
unit cells on each side of the interface is adopted as well as N = 10 terms in the Galerkin
approximation.

In figure 5 we depicted four different cases of the value of concentrated mass attached
at the beam denoted as w,_190. One can observe that all of the interface modes (red
dashed lines) that exist in the system without defect mass remain the same in the system
with the defect mass. However, some new defect modes emerge inside the frequency band
gaps by gradually increasing the value of the attached mass (see black dash-dotted lines
in figure 5). More precisely, only two additional defect modes emerge in higher frequency



Journal Pre-proof

Caji¢ et. al. / International Journal of Mechanical Sciences 00 (2021) 1-30 13

Q—53513

Normalized displacement
(e} [} o
-l> O\ OO

()
[\.)

]

Normalized displacement
o o o
L )} [ele]

e
o

% 20 0 o0 10 20
Beam number
(a) The first interface frequency

30 =30 -20  -10 0 10 20 30
Beam number
(b) The third interface frequency

(=)
OO

=)
O’\

(=)
.[;

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
I
I
[
I
Il
I

Normalized displacement

[}
[\)

Q—96271
1/\&
0

%

Q2 = 16.3609

e
o

e
)

o
~

Normalized displacement

o
o

"

30 -20 -10 0 10 20
Beam number
(c) The fifth interface frequency

0 L+ - ‘
30 -30 20 -10 0 10 20 30

Beam number
(d) The seventh interface frequency

Fig. 3: Normalized steady-state displacement amplitudes of the beam array system with n = 15
unit cells on each side of the interface and the first beam wy 15 excited near the interface

frequency



Journal Pre-proof

Cajié et. al. / International Journal of Mechanical Sciences 00 (2021) 1-30 14
»sE . : : . . »sE . : : . .
20 20
= =
Q Q
g =
Q Q
& &
L‘g 15 L‘g 15}
kS kS
O (5]
N N
= =
Y R R —— 00— 3
R e e B
Z Z
0 |
0= - - - - - 0 - : - - -
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
n/a n/a
(a) Dispersion curves for v = 0.5 (b) Dispersion curves for v = 0.0
»sE . . : : . e e —— —
20 20F 4
9 g
Q O P~ e~ — A
5 5
SISt g5k ]
B=) B=)
g g
Rl e N — EI0F oo L
S S
Z Z
I N N e [
ok 0 .
-3 -2 -1 0 1 2 3 -1 -0.5 0 0.5 1
n/a gl
(c) Dispersion curves for v = —0.5 (d) Multiple band inversions for pu =

Fig. 4: Dispersion curves and band inversion of the elastically coupled beam array system without
inerters



Journal Pre-proof

Caji¢ et. al. / International Journal of Mechanical Sciences 00 (2021) 1-30 15
m = 0.00 m = 0.01 m = 0.10 m = 0.50
25 L E - T ~ 25 _:—:—:—: :—:—:—I: :—:—:—:_;E—I'__ 25 : 777777 Lf*f*_;-fﬂl'_
520t 20t 1 20} 1 20t
5
5 77777777 e [ I -_— T -_— - -_—
o e T B e I B e T —
157 15} 1 15} 1 151
o)
Q
N
Tém;:::::_:/?:::::::- V)
c - {4 b ]
z 5::;/::::::::::' 5'::;/::::::::::
/ /
0 : J 0 : : : : : :
0 200 400 0 200 400 0 200 400 0 200 400
Mode number Mode number Mode number Mode number

Fig. 5: Interface (red dashed lines) and defect (black dash-dotted lines) modes of the beam array
system with and without defect mass for n = 20 unit cells on each side of the interface and
N =10 terms in the Galerkin approximation

band gaps for the lower values of mass (second sub-figure from the left side) while four and
five additional defect modes are present in both lower and higher frequency band gaps for
the higher values of attached mass (third and fourth sub-figure from the left side). The
obtained frequencies of the defect modes mismatch with the frequencies of the interface
modes and are localized in the chain at the place of the defect mass i.e. in the beam with
attached concentrated mass denoted as w, _19. Interface modes of the beam array system
without and with the defect mass remain the same in all four configurations and are not
affected by changes and different mass distribution in the system. Therefore, interface
modes are immune to the presence of defect mass in the system. Moreover, an increase in
the number of terms in the Galerkin approximation also does not affect interface modes
due to previously mentioned reasons. It should be noted that the numbers of unit cells and
terms in the Galerkin approximation are increased mostly to contribute to more precise
determination of newly emerged defect modes. Since these modes are affected by changes
of the mass, the case with N = 10 terms in the Galerkin approximation is used to achieve
higher accuracy.

3.3. Mass-spring-inerter system

For the sake of simplicity and more clear insight into the effect of inerters on interface
modes, we first show the frequency response function of the discrete mass-spring-inerter
chain system with the interface, which is composed of unit cells with two identical masses
having displacements denoted as y, ) and y ), with p denoting the unit cell number. The
corresponding equations are derived in Appendix C. Masses and unit cells are mutually
connected through springs with stiffness properties kf = x(1 + v), k5 = k(1 — ) with &
being the mean stiffness and v denoting the dimensionless stiffness parameter. Parameters
are nondimensionalized (see Appendix C) such that stiffness related parameters become
=1+~ and %5’ = 1 — v while inertance is characterized by the dimensionless inertia
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parameter denoted as d (see Appendix C for details). The case of the mass-spring-inerter
chain with n = 30 unit cells on each side of the interface is adopted, with the interface mass
denoted as y(4,0) and end masses given as 3, —30) and y(,30). The value of dimensionless
stiffness parameter v = 0.4 is adopted in both cases. We assume that the left end of
the chain is fixed and the other is free, and we compute the frequency response function
assuming that ye, _30) = Fe’ [y = 1 for the mass at the left boundary. Figure 6
shows the case when d =0, i.e. when the pure mass-spring chain is considered, while
the second case belongs to the mass-spring-inerter chain system with the value of inerter
parameter d = 0.1. FRF is measured for the central mass Y0y in the chain (not the
interface mass ,0)). In the pure mass-spring chain one can observe interface modes at
the frequency Q= /2 for symmetric and > 2 for the anti-symmetric mode as revealed
in [34], Fig. 6a. By introducing the inerter, one can notice an obvious shifting of interface
mode frequencies towards lower values for both symmetric and anti-symmetric modes.
However, this shifting is more pronounced at the higher frequency interface mode than
for the lower one located inside the band gap.

The effect of inerters on interface modes in the mass-spring-inerter system can be seen
more clearly in Fig. 7. The eigenvalues are calculated for the mass-spring and mass-spring-
inerter system with n = 30 unit cells on each side of the interface. Corresponding interface
mode frequencies from Fig. 6 are detected and plotted for varying stiffness parameters
~. The first, lower frequency interface mode, is given in Fig. 7a for the pure mass-spring
and two different cases of the mass-spring-inerter system. The second, higher frequency
interface mode, is given in Fig. 7b for the same values of parameters. In the case of the
pure mass-spring system (J = 0) and the first interface mode one can notice that the
frequency is changing for v < 0 while it is constant for v > 0. As explained in [34], this
behavior is attributed to the property of symmetric modes that changing the stiffness



Journal Pre-proof

Caji¢ et. al. / International Journal of Mechanical Sciences 00 (2021) 1-30 17
s Interface mode frequency 55 Interface mode frequency
PRI
24r
2.3
2 2
s 1r S22
(5} (5}
= =
& &
& 21
= =
Q Q
N N2
Té Tét P st
50.5 51.9¢ #
Z Z «
i 1.8 Fo. A 1
—=-d = 0.00 ‘\<>\ Q/Q —=-d = 0.00
—+-d =0.01 1.7¢ 00— —+-d = 0.01f
-o-d =0.10 -o-d =0.10
0 : : 1.6 : :
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Y Y
(a) The first interface mode (b) The second interface mode

Fig. 7: Interface mode frequencies of the mass-spring and mass-spring-inerter system for varying
~ and and different values of dimensionless inerter parameter d.

of springs on both sides of the interface does not change the dynamics of the interface
mass. Also, this interface mode is considered to be symmetric only for v > 0 and it is
independent of . In the case of the second interface mode (Fig. 7b), which is considered
to be anti-symmetric and trivial defect mode (it vanish for v < 0), it emerges from the
bulk, and its frequency increases for positive and increasing value of stiffness parameter .
The main effect of the inerter parameter that can be observed from this analysis reflects
in a decrease of the frequency of interface modes in both, varying and the constant part of
the line. Therefore, in the mass-spring-inerter system, the interface mode frequency can
be shifted towards lower frequencies by varying the inerter parameter while preserving
the main properties and nature of these modes.

3.4. Beam array systems with inerters

Figure 8 displays band inversion of the beam array system for the representative unit
cell with inerters. The results are given for the limits of the band gap (1 = 7) and
variations of the parameter v. By computing the bulk band of a beam array system with
inerters, we can additionally investigate the effect of inerters on band inversion. If we
compare band inversion plots of the beam array system in two different cases, with lower
d = 0.0001 and higher d = 0.001 values of the inerter parameter, one can notice an obvious
shifting of band inversion points towards positive values of v and lower frequencies. The
shift of the degeneracy point is more clear at higher frequencies. More precisely, band
inversion points in a beam array without inerters are all located at v = 0 (Fig. 4d)
while by introducing the inerters one can notice that the bulk band degeneracies shift
towards positive values of v with decreasing frequency, even for small values of the inerter
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parameter d. The obtained results indicate that the system is very sensitive to changes
of the inerter parameter, and therefore interface states will be significantly distinct from
those of the system without them, especially for higher frequency interface modes.

Similar to the discrete mass-spring-inerter chain, we can now study the interface modes
in the beam array system with inerters at the interface (see Fig. 1b). To investigate this, we
show the eigenvalues and FRF of the proposed configuration for the value of dimensionless
stiffness parameter v = 0.5 and two different values of inerter parameter d = 0.001 and
d = 0.01, Fig. 9. It demonstrates the existence of interface modes in both lower and
higher frequency band gaps. By introducing and increasing the inertia parameter, one
can notice a slight shifting of existing interface modes towards lower frequencies. However,
when speaking about lower frequency interface modes, one can notice that they remain
within the same band gaps while those at higher frequencies migrate into the bulk or
towards lower frequency band gaps. More precisely, in the configuration without inerters
(Fig. 2) the higher frequency interface modes are located within the narrow band gaps
while in the inerter case they appear in the wide band gaps below them.

Here, similar to the trivial case in Fig. 2b, we intend to investigate the behavior of
interface modes of the beam array with inerters in the configuration v = —0.5 i.e. when
k1 < ko. Figure 10 shows FRF of the beam array system for two different values of
the inerter parameter d = 0.001 and d = 0.01. One can notice only fewer interface
modes in the configuration without inerters (Fig. 2b) or even fewer number of them in
the configuration with inerters but with a low value of inerter parameter d = 0.001, see
Fig. 10a. This means that the remaining modes migrate into the bulk due to the decreased
frequencies caused by the presence of inerters at the interface. By increasing the inerter
parameter in Fig. 10b, one can observe the emergence of several interface modes localized
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in the higher frequency band gaps. This agrees well with the previous findings for the bulk
band that the presence of inerters mostly aftects higher frequency bands. Even though the
nature of the effect of the inerter on higher frequency interface modes cannot be clearly
explained, it is obvious that it only slightly changes the lower frequency interface modes.

To demonstrate the interface modes in space for the beam array system with inerters,
normalized steady-state displacements are plotted in figures 11 and 12 for two different
values of inerter parameter. In both cases, only the first and the third interface frequen-
cies (see figure 9 for details) is given when the harmonic excitation is near the resonant
frequency. It can be noticed that the first interface mode is the symmetric one since the
interface beam is at rest while the adjacent ones oscillate with the same amplitude (but
opposite phase). On the other side, the third interface mode is the anti-symmetric one
since the amplitudes of the interface and adjacent beams are different from zero (they are
oscillating in phase). It should be noted that the discrepancy between the second and
third modes in figure 9a is very small and can be viewed only by zooming that particular
frequency range. However, based on presented results one can notice that the first inter-
face mode given in figure 12a appears at a lower frequency for an increase of the value of
the inerter parameter. On the other side, the third interface mode (see figure 9b) given
in figure 12b occurs at a higher frequency. This interface mode is newly emerged and it
does not correspond to the third mode from figures 9a and 11b, since that mode now
becomes the second one and it almost migrates into the bulk (see figure 9b for details).
This can be checked by gradually increasing the value of the inerter parameter.

Finally, to show the tuning potential of the inerter on interface modes in the beam
array system, we investigate the behavior of particular interface modes for varying stiffness
parameter v and for three different values of the inerter parameter. In that regard,
we chose two interface modes from Fig. 2a, the first at the lowest frequency (the first
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red dashed line) and the next one at the higher frequency (the fifth red dashed line).
Figure 13a shows the lower frequency interface mode for varying stiffness parameter
and three different values of the inerter parameter d. One can notice that for the case
without inerter d = 0, the interface mode frequency is increasing while  is negative, which
then becomes constant for positive values of v. Similar behavior can be noticed in Fig. 13b
for the higher frequency interface mode when d = 0. This behavior at certain interface
modes is similar to the behavior of symmetric interface modes in the simple mass-spring
model given in Fig. 7a. By introducing the inerters, this behavior is affected and the
frequency starts to decrease for v > 0. This effect is even more pronounced in the higher
frequency interface mode in Fig. 13b. However, this is different from the results obtained
for the mass-spring-inerter system, where the frequency of the interface mode decreases
for both v > 0 and 7 < 0 while the symmetry properties are preserved. In the case of
a beam array system with inerters, the frequencies of interface modes decrease due to
the mass amplification effect of inerters. However, one can notice that observed interface
modes are independent of the inerter parameter when v < 0, which can be attributed to
the fact that inerters are introduced only at the interface and the weak interface coupling
(k1 < k2) localized modes are not affected by the changes of the inertance.

4. Conclusion

This work demonstrates how localized modes can be induced at the interface of a
one-dimensional beam array system with heams mutually connected through elastic lay-
ers with two alternating stiffnesses. Governing equations are discretized and matrices for
the corresponding eigenvalue problem obtained to calculate the eigenvalues, frequency
response function, and steady-state response amplitudes in space. Suitable numerical ex-
amples are given to illustrate the band inversion effect and the existence of interface modes
in the proposed system. In this paper, we have made the following main contributions:

e In the beam array system without inerters we demonstrated the existence of multiple
bands and interface modes mostly located within the narrow band gaps and localized
at the interface between two sub-lattices.

e We examined the effect of defect mass introduced into the beam array system and
showed that existing interface mode frequencies are not affected by such changes.
However, new defect modes localized at the place of defect mass emerge within the
higher frequency band gaps for lower values of the defect mass and at both lower
and higher frequency band gaps for the higher values of that mass.

e For the simple mass-spring-inerter chain we illustrated that the existing localized
interface modes in the mass-spring chain can be shifted toward lower frequencies
when introducing the inerters, while their symmetric properties are preserved.

o We revealed that multiple interface states in a beam array system with inerters at
the interface can be tuned at both lower and higher frequency ranges by changing
the inertance. More precisely, an increase of inertance leads to a decrease of lower
interface frequencies while higher interface frequencies can migrate into bulk or even
emerge at lower frequency band gaps.
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This work shows how exploiting the inerters and their mass amplification effect can lead
to tunable periodic mechanical structures exhibiting localized modes at interfaces and
showing high potential for application in future tunable engineering systems and devices.
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Appendix A. Mode shape functions and matrix coefficients

In the Galerkin weighted residual method, the trial functions are considered as the
weighting functions that need to satisfy the according to boundary and orthogonality
conditions. These requirements can be met by several types of functions, and in our case,
the mode shape functions of a simply supported bare beam will be employed. Using this
approximation method is especially important for the beams with attached concentrated
masses since the exact mode shape function satisfying boundary conditions cannot be
derived straightforwardly. If beams in the proposed beam array system are identical and
have the same edge conditions, they can be approximated by the same trial functions.
The mode shape functions of a bare simply supported beam can be expressed as

[ 2 rm
Plup)yr = Or = DAL sin Bz, B, = T

Above given function depends on a number of mode r while the relation between the

bare bear natural frequency w, and dimensionless eigenvalue 3, is given as w? = f%.
The constant | /—2- is chosen such that it makes the trial functions mutually orthogonal

pAL
and mass normalized, while the eigenvalue 3, is obtained as a solution of the well-known
frequency equation of the simply supported beam.
To make the trial functions orthonormal with respect to the beam mass, the following
orthogonality conditions are used

L
/0 pA¢T($)¢S($)d$ = 57”3’

L
[ Bro@on@ae = b rs=12,...N
0

where 6,, is the Kronecker delta.
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Mass M and stiffness K of dimension (4n + 1)N x (4n + 1)N are given as follows

M 0 .0 0 0 0 0 o0 0
o Myttt o0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 Myl M{y 0 0 0 o0 0
N 0 o0 Mj' M5 Mgy 0 0 0 o |
0 0 0 0 My M3y, 0 0 0 0
0 0 0 o0 0 0 Ms;., 0 0 0
0 0 0 o0 0 0 0
0 0 0 o0 0 0 0 M50
) 0 0 o 0 0 0 0o My
KK 0 0 0 0 0 0 0
K Kyt 0 0 0 0 0 0 0
K)o 0 0 0 0 0 0
0 0 Kj, K K, 0 0 0 0 0
0 0 o K»! K K 0 0 0 0
K = (kl) azg b(lgl) a,l ?
0 0 0 0 K Ky, K, 0 0 0
0 0 0 0 0 Ki K, Kj, 0 0
0 0 0 0 0 0o Kj, - .
0 0 0 0 0 0 0 S G G
0 0 0 0 0 0 0 - KGOKG
while vector q is given as
a=lay" @y Lah A abl diln oo all dhna]

By taking into account adopted mode shapes and orthogonality conditions, one can de-
termine the coeflicients of the above global mass matrix by defining the N x N diagonal
submatrices calculated as

1, forr =s,

L
MEP = A/ rOsdr = 1=1,2,...,4n+ 1.
(s = P 0 99 {0, for r # s,

If we consider that concentrated masses are attaches to beam denoted with b in the p-th
unit cell, then the corresponding diagonal submatrix is given as

L+ Ye meg(og), forr=s,

L =
MP = A o(x — rsdr =
(i)rs /0 (pA + me (2 = 0¢))drpud {0’ for r # s.

e=1
Further, diagonal submatrices related to the interface beam connected with adjacent
beams through inerters and springs are given as

L 1+ -4, forr=
MU= MO = (pA+ d)/ PN L U S SO S
TS TS 0 0, for r # s,
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L 2d
1+=%, forr=s
0 .
M(ai)rs = (pA +2d) / Grpsdr = A7 ©i=2n,
0 0, for r # s,

and super and sub diagonal submatricies given as

L -4 forr=s
MY = MPO = Ml = —d/ psdr = PN "
(d)rs (d)rs (d)rs 0 ¢ ¢ 0’ for r # s,

Similarly, diagonal submatricies of the global stiffness matrix can be calculated as

L L
K, = EI /0 HoupyrPlup)sdr + (ky + k) /0 D) Pup)sd

~2 | kitk _
{wr+#, for r = s,

0, for r #£ s,

i=1,2.....4n+ 1.

and super and sub diagonal submatricies as

L —EL o forr=s
Kuyp — _k. / wor @l sdx - pA’ .
(k1)rs A Pup)rPlup) {0’ for r # s,

L —k o forr =5
Ku,P — _k / wn)r Pt de — pA’ .
(k?z)T‘S 2 0 d)( ?p) (z)( 719) {O7 fOr r 7é s.

Appendix B. Matrix coefficients for the band structure

Dimension of mass M, and stiffness K, matrices in Eq. (13) is 2N x 2N, which
depends on the number of adopted terms in the Galerkin approximation. Following the
same procedure as above, and adopting the corresponding mode shapes and orthogonality
conditions, the elements of the mass and stiffness matrix are determined as

L
1, forr =s.
ap bp _ = ’
M(l)rs - M(Q)ks - pA/O ¢(“7P)T¢(“7P)Sdl‘ - {0’ for r ?é s. ’

L L
Kzlizl])rs = Kég)rs = EI/O ¢I(/1/L,,p)r¢(u’p)3dx + (kl + kQ) A ¢(u,p)r¢(u,p)sd$

~2 k1+ko _
B {wr—kp—A, for r = s.

0, for r # s.
, L ke M for = g
S — +k€_]’m/ wprbuppede =4 A '
(12yrs = — (k1 + kae™7%) i Plup)r Plup) 0, for 1 # 5.
. L —hickae o = g
Kifle =~ 4 2 [ G = '
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Fig. C.14: Illustration of the mass-spring-inerter chain system

Appendix C. Mass-spring-inerter chain

Let us consider the mass-spring-inerter system with a unit cell composed of identical
masses connected through springs with stiffnesses k§ = k(1 +~) and k{ = k(1 — ) and
inerters with the same inertia amplification property d;. If this mass-spring-inerter chain
contains two sub-lattices of unit cells that are inverted copies of each other (see Fig.C.14),
the governing equation for the free vibration of the inferface mass y, is given as

Moo + 2d18ao + 25700 — KTYb0 — KYs—1 — driiso — drijp,—1 = 0,

In the similar manner, one can obtain the equations for a unit cell p of the sub-lattice I
on the left side of the interface as

MYq,p + dl(?ja,p - yb,p) +d; (?ja,p - ijb,p—l) + k3 (ya,p - yb,p) + ki(ya,p - yb,p—l) =0,

My + dr(Yop — Yap) +41Yop — Yap+1) + K3 (Usp — Yap) + KL (Yop — Yap+1) = 0,
and for the sub-lattice Il.on the right side of the interface as

MYq,p + dl(ya,p N yb,p) +d; (?ja,p - yb,p—l) + Ky (ya,p - yb,p) + kg(yaw - yb,p—l) =0,

My, + dl(yb,p - ya,p) + dl(yb,p - ya,erl) + ki (yb,p - ya,p) + k3 (yb,p - ya,erl) =0.

If we introduce the non-dimensional time scale 7 = (y/k/m)t, then the dimensionless
parameters related to the inertance and stiffness are given as d = d; /m and iﬁf =1+,
l;; = 1 —1, respectively. For the chain with finite number of unit cells and forced response
of the mass-spring-inerter system one can write the above equations in matrix form as
M3 (1) +K*y(7) = f(7), where f(7) = /¥, with Q is denoting the frequency normalized
with the reference frequency /x/m. By imposing the solution of the form y(7) = ye’*¥",
the governing equation reduces to

(K'—’M)y=*.

By taking that f = 0, one obtains the eigenvalue problem whose solution gives natural
frequencies € of the proposed mass-spring-inerter chain system. For the finite number of
n unit cells on each side of the interface and fixed-free chain, where the first mass on the
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left side y,,_,, is fixed to the base, the elements of the mass matrix M! and stiffness K*
matrix of dimension (4n + 1) x (4n + 1) are given as

[1+2d —-d .. 0 0 0 0 0 0 0
—d 1+2d .. 0 0 0 0 0 0 0
. —d 0 0 0 0 0 0
0 0 —d 1+2d —d 0 0 0 0 0
Mi—| O 0 0 —d 1+2d —-d_ 0 0 0 0
0 0 0 0 —d 1+2d —-d 0 0 o |’
0 0 0 0 0 —d 1+2d —d 0 0
0 0 0 0 0 0 —d ..
0 0 0 0 0 0 0 . 1+2d —d
L0 0 0 0 0 0 O .. —d 1+4d
(ks + ks kS 0 0 0 0 0 0 07
—k k4 0 0 0 0 0 0 0
—k5 0 0 0 0 0 0
0 0 —k§ ki+ks ki 0 0 0 0 0
k| 0 0 0 —kj 26 -k 0 0 0 0
0 0 0 0 —k k+k -~k 0 0 0|’
0 0 0 0 0 —k§ K4k -k 0 0
0 0 0 0 0 0 —k$ :
0 0 0 0 0 0 0 ki + ks —ks
L0 0 0 0 0 0 0 kK




Journal Pre-proof

Authors statement

Milan Caji¢: Conceptualization, Methodology, Software, Writing - Original Draft; Johan Christensen:
Writing - Review & Editing; Sondipon Adhikari: Project administration, Writing - Review & Editing.



Journal Pre-proof

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

XThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

Date: 24.03.2021.

Name: Milan Caji¢

MQJ/L Ca&mc/

Name: Sondipon Adhikari

75.,@;;;0“ /Qj;u Lo

Name: Johan Christensen



