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Abstract

The analytical description of path-dependent elastic-plastic responses of a granular system

is highly complicated because of continuously evolving microstructures and strain localisation

within the system undergoing deformation. This study offers an alternative to the current an-

alytical paradigm by developing micromechanics-informed machine-learning based constitutive

modelling approaches for granular materials. A set of critical variables associated with the

constitutive behaviour of granular materials are identified through an incremental stress-strain

relationship analysis. Depending on the strategy to exploit the priori micromechanical knowl-

edge, three different training strategies are explored. The first model uses only the measurable

external variables to make stress predictions; the second model utilises a directed graph to

link all the external strain sequences and internal microstructural evolution variables into a

single prediction model comprised of a series of sub-mappings, and the third model explicitly

integrates the physically important non-temporal properties with external strain paths into

training through an enhanced Gated Recurrent Unit (GRU). These three models show satis-

factory agreement with unseen test specimens based on multi-directional loading cases. The

features and applications of each model are explained. Furthermore, the key factors for consti-

tutive training, potential applications and deficiencies of the current work are also discussed in

detail.
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1. Introduction

Constitutive behaviour of materials is one of the most intensely researched fields in engineer-

ing science owing to its complexity and importance in engineering practice. From a macroscopic

perspective, the elastic-plastic response of granular materials highly depends on the path of de-

formation. Its stress-strain behaviour exhibits anisotropy (Nemat-Nasser and Zhang, 2002; Zhu

et al., 2006; Yang et al., 2008; Anandarajah, 2008; Chang and Yin, 2010), distortional hardening

(Voyiadjis et al., 1995), viscoplasticity (Di Prisco et al., 2002), and strain localisation features

(Anand and Gu, 2000; Voyiadjis et al., 2005; Hashiguchi and Tsutsumi, 2007; Qu et al., 2019a).

From a microscopic perspective, discrete grains in granular materials transfer forces via inter-

particle contacts, and highly inhomogeneous and discontinuous force networks are developed

inside the material to balance the external loads. Kuhn and Daouadji (Kuhn and Daouadji,

2018a,b) pointed that many basic principles that we take for granted in conventional elasto-

plasticity are not consistent with meticulous particle-scale numerical observations. Although

much effort has been made to phenomenological constitutive models of granular materials (Zhu

et al., 2010; Lai et al., 2016; Sun et al., 2018; He et al., 2019; Yang et al., 2020; Zhang et al.,

2021), it is still a great challenge to develop a unified theoretical constitutive model due to

complex microstructural evolution within granular materials (Antony and Kuhn, 2004; Nguyen

et al., 2016; Qu et al., 2019b).

The constitutive behaviour is a time sequence problem, in essence. Modelling elastic-plastic

constitutive relations via a deep neural network (DNN) suitable for time series prediction is a

potential scheme to address the above challenge. As a data-driven method, DNN is a hypothesis

function representing the relationship between input and output data by sequentially using a

series of linear matrix multiplication and nonlinear mapping with activation functions.

The idea of using artificial neural networks (ANNs) to represent the constitutive behaviour

of granular materials (e.g. sand) has a long history (Ellis et al., 1995; Ghaboussi and Sidarta,

1998; Shin and Pande, 2000; Javadi et al., 2003; Hashash et al., 2003, 2004; Banimahd et al.,

2005; Jung and Ghaboussi, 2006; Hashash et al., 2006). Owing to the recent development of

computational science and a deeper understanding of the data-driven research paradigm, de-

veloping a more reliable DNN model with fewer data samples becomes possible. Again, the

application of deep learning in characterising material behaviour has been receiving increasing

attention (Jenab et al., 2016; Liu and Wu, 2019; Pandya et al., 2020). Specifically, fully con-

nected DNNs have been used to represent temperature- and rate-dependent plasticity models

(Li et al., 2019) and von Mises plasticity with isotropic hardening (Zhang and Mohr, 2020).
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The recurrent neural networks (RNNs) have been applied to train various constitutive laws (Ali

et al., 2019; Settgast et al., 2020; Gorji et al., 2020; Karapiperis et al., 2021), e.g. plasticity

of composite materials (Mozaffar et al., 2019; Wu et al., 2020), the stress-strain behaviour of

aluminium (Fernández et al., 2020), and polypropylene (Jordan et al., 2020). Abueidda et al.

(Abueidda et al., 2021) compared several popular sequence learning methods in application

to path-dependent plasticity and thermo-viscoplasticity and found that both GRU and TCN

(temporal convolutional network) are able to accurately predict the history-dependent mate-

rials but TCN has a greater computational efficiency on GPUs than GRU. In addition, Wang

et al. (Wang and Sun, 2019; Wang et al., 2019, 2020) pioneer the application of reinforcement

learning and adversarial learning for the traction-separation law of interfaces and constitutive

behaviour of granular materials.

Although the data science method has a unique strength in extracting rules from data,

as demonstrated for granular matters in (Wang and Sun, 2019), the learning pattern from

data tends to lack interpretability and can be spurious. On the other hand, the mechanical

theory has a clear interpretable and rigorous logic, but may have to introduce some idealised

approximations for complex problems. Thus the resulting constitutive model may suffer from

low accurate predictions for real problems.

In this study, we attempt to develop a new research paradigm which takes advantage of

the unique capability of data-driven methods in extracting patterns from empirical data, but

utilises some prior knowledge acquired from theoretical analysis as guidance to investigate the

constitutive behaviour of granular materials. The data representing the constitutive behaviour

of granular materials is generated by the discrete element modelling of triaxial testing. An an-

alytical stress-strain equation for granular materials serves as the prior knowledge to determine

the key variables involving in data training. The recurrent neural network (RNN) used for

time series prediction problems is adopted to model the path/history-dependent elastic-plastic

constitutive models of granular matters.

The paper is structured as follows: Section 2 provides an incremental stress-strain relation

for granular materials to guide deep learning. Section 3 introduces three different training

approaches according to different strategies to exploit the priori micromechanical knowledge.

One utilises only the measurable principal strain sequences as inputs (suitable for the exper-

imental condition). The second one predicts stress responses via a directed graph based con-

stitutive model constituted by some sub-networks, which link all the discovered internal and

external variables associated with the constitutive behaviour of granular materials. The third

approach adopts an enhanced GRU architecture incorporating non-temporal physical variables
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for stress predictions. Section 4 introduces the data preparation and implementation details

of deep learning models. The prediction results of several constitutive modelling approaches

are demonstrated based on conventional and true triaxial loading conditions. Section 5 dis-

cusses the critical factors for training a reliable prediction model, potential applications of such

a data-driven constitutive model and the deficiencies of the current study. Conclusions are

drawn in Section 6. Appendix A offers a brief introduction to the enhanced GRU architecture

incorporating physics-invariant quantities. Appendix B gives a detailed account of selecting

some key hyperparameters for the several training approaches used.

2. An analytical stress-strain relation for granular materials

In this session, an analytical stress-strain relation for granular materials is used to discover

the key factors behind the complex constitutive behaviour and these recognised factors will

be incorporated in the training of deep learning models to be described in the next section.

In this work, the constitutive analysis is investigated based on a cubic representative volume

element (RVE) subjected to strain-dominated triaxial testing conditions shown in Figure 1.

Other complex mechanical states will be explored in the future.

Normally, path-dependent elastic-plastic constitutive relations are formulated in an incre-

mental form. A total stress-strain expression needs to be calculated with path integrals of an

incremental constitutive relation. According to the principle of solid mechanics, the incremental

elastic-plastic relation can be expressed as:

∆σij = Cijmn∆εmn (i, j,m, n = 1, 2, 3) (1)

where ∆σij and ∆εmn are stress and strain increments, respectively; Cijmn is a stiffness tensor;

and 1, 2 and 3 denote x, y and z coordinates in the global space, respectively (see Figure 1).

Figure 1: Illustration of an RVE sample and the coordinate systems for interparticle contacts
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Assuming that the deformation of the granular assembly is statistically uniform in the

space (Voigt’s hypothesis), and following the principle of conservation of energy between the

granular system and the corresponding continuum, we have derived the formulation of Cijmn

in our previous work (Qu et al., 2019b). For a given granular assembly, by assuming that the

interactions between particles obey a linear contact model, Cijmn can be expressed as:

Cijmn =
(kn − ks)

V

Nc∑
k=1

(
Lk
)2
αki α

k
jα

k
mα

k
n +

ks
V

Nc∑
k=1

(
Lk
)2
δinα

k
jα

k
m (2)

where kn and ks are the particle-scale normal and shear contact stiffnesses, respectively; V is the

volume of the granular assembly; Nc is the number of mechanical contacts; Lk is the distance

of contact k (i.e. the distance of two contacting spherical centres); αki is the ith component of

the direction vector of contact k (the same to αkj , αkm and αkn); δin is Kronecker’s delta.

To characterise the axial stress and strain relationship of a representative volume element,

the axial stress increment can be expanded from Eq.(1):

∆σ33 = C3311∆ε11 + C3322∆ε22 + C3333∆ε33 (3)

where ∆ε11 and ∆ε22 are the two lateral strain increments while ∆ε33 is the loading strain

increment; and C3311 , C3322 and C3333 are the components of the equivalent stiffness tensor

and can be calculated from Eq. (2) as follows:
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The material properties of particles are non-temporal quantities for a certain granular sam-

ple while the microstructural features are temporal quantities, which evolve gradually over the

whole range of a deformation process. Cijmn is combined with the non-temporal particle prop-

erties (contact stiffnesses) and the temporal microstructural fabric tensor. Therefore the elastic

stiffness tensor Cijmn is not constant and will evolve dynamically during external loading.
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One microscopic origin responsible for complex constitutive laws of granular media is that

the external deformation history or path tends to make internal grains move around each other

permanently. This irreversible movement that arises in granular materials affects the subse-

quent deformation due to the changes in the inherent microstructures or local stiffness of gran-

ular assemblies. For general granular materials without considering grain breakage or material

degradation, the evolution of elastic-plastic constitutive relations stems from the irreversible

evolution of microstructures or fabric features of granular media. The above formulations are

derived from the small-strain assumption and thus cannot directly describe the microstruc-

tural evolution process, but they are useful to understand the critical variables associated with

stress-strain responses of granular materials. For a quasi-static loading condition, the ana-

lytical formulation holds true at every single moment while the stiffness tensor Cijmn evolves

dynamically during shearing.

3. Constructing data-driven stress-strain relations with machine learning

3.1. Model A and model B: representing stress-strain relations via a directed graph connected

with deep neural networks

The incremental stress-strain relations presented in Section 2 determine the primary vari-

ables for capturing the constitutive behaviour of granular materials. Particularly, Equation (3)

reveals that the lateral strains ∆ε11 and ∆ε22, loading strain ∆ε33 and several components of

the stiffness tensor, i.e. C3311, C3322 and C3333, are critical to characterising the stress-strain re-

sponses in the loading direction. Among all the related variables, the components of the elastic

stiffness tensor C3311, C3322 and C3333 are internal variables which cannot be observed directly

during experimental testing. In contrast, the lateral strains are external variables which can be

explicitly measured under experimental conditions.

In the triaxial mechanical condition, we use the deviatoric stress, which is the difference be-

tween the major and minor principal stresses, to reflect the evolution of loading stress. Depend-

ing on whether the internal variables are incorporated in constitutive modelling, two strategies

are available based on the micromechanical formulation given in Section 2. The first strategy

is to use all the measurable external variables only, i.e. both the loading strain and lateral

strain, but abandon the internal variables to approximate the deviatoric stress. All the train-

ing variables are measurable and thus this model can be developed based on the experimental

environments. The other strategy is somehow to introduce the micromechanical structural

information into training.
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A key conceptual step in developing the second training models in this study is utilising a

directed graph to represent the complex stress-strain relations. The introduction of a directed

graph enables to incorporate all the critical variables (both internal and external) and to con-

struct a complete information flow from strain to stress. In graph theory, a directed graph is a

graph that is made up of a set of vertices connected by edges. The vertices represent a series of

physical variables while the edges denote certain connections amid these variables. The directed

edges are drawn as arrows indicating the direction of information flow from source (or predeces-

sor) nodes to target vertices. Some applications of a directed graph in computational mechanics

can be found in (Sun et al., 2013; Sun, 2015; Wang and Sun, 2018). Following the rule of a

directed graph, Model A, as shown in Figure 2a, is the training model developed based on the

first strategy. Its corresponding input-output pair (NN-A) is: [ε11, ε22, ε33 → stress responses].

In contrast, Model B, based on the second strategy of training, is more complicated.

(a) Model A: with only external variables (b) Model B: incorporating both external and internal variables

Figure 2: The directed graph representations of stress-strain relations for granular materials under conventional

triaxial testing conditions

As shown in Figure 2b, model B starts with strain variables and ends with stress vari-

ables, with the internal variables C3311, C3322 and C3333 being intermediate vertices. Each edge

linking two vertices is represented by deep neural networks, which have proven to be capa-

ble of approximating any complex mappings (Cybenko, 1989; Hornik et al., 1989). All the

sub-networks constitute a single prediction model linking the strains (inputs) and the stress

(output) but involving microstructural variables. The basic idea behind such a directed graph

is to construct a constitutive model linking strain to stress directly but also make full use of

microstructural information at the same time. Besides, instead of analytically or statistically

tracing the yield surface in the phenomenological framework (Shaverdi et al., 2013), we leverage

the powerful prediction capability of deep neural networks to describe the complex evolution
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of microstructures in granular materials undergoing deformation.

The whole directed graph is unfolded as follows: 1) identify the predecessor nodes of the

terminal node (stress responses); 2) recognise all predecessor nodes of intermediate nodes by

recursively going towards the source nodes from the target nodes (upstream) in the whole

directed graph, until the final predecessor node is a start node (an input variable) only. Under

such principles, two information flow paths in Figure 2b can be found: one is [loading and lateral

strains → stress responses] and the other is [loading and lateral strains → C3311, C3322 and

C3333 → stress responses]. Both information flows jointly determine the final stress prediction.

To form a whole stress-strain pair incorporating internal microstructural evolution in deep

learning framework, these two information flows can be implemented by four sub-ANNs (input-

output pairs):

(1) NN-B1: [ε11, ε22, ε33 → C3311]

(2) NN-B2: [ε11, ε22, ε33 → C3322]

(3) NN-B3: [ε11, ε22, ε33 → C3333]

(4) NN-B4: [ε11, ε22, ε33, C3311, C3322 and C3333 → stress responses].

Note that the sub-ANN, [ε11, ε22, ε33 → stress responses], is not treated as a separate

sub-network for training in the current directed graph as it does not incorporate the evolution

of microstructures in prediction. This strain-to-stress mapping can be regarded as a special

type or part of the fourth sub-ANN above when C3311, C3322 and C3333 have no contribution

to the stress prediction. Instead of artificially determining the role of microstructural variables

in reproducing the constitutive behaviour, the weights of C3311, C3322 and C3333 in the current

directed graph are automatically discovered by deep learning.

In the training phase, the microstructural states (C3311, C3322 and C3333) are obtained via

discrete element modelling (DEM). All these sub-ANNs are trained by supervised learning

with ground truth data. In the prediction phase, i.e. after these sub-networks have been well

trained, one complete information flow can be constructed by enforcing the prediction outputs

of the first three sub-networks to be partial inputs of the fourth sub-network. At that time,

the microstructural states (C3311, C3322 and C3333) will no longer be required.

In consideration of the path-dependent features of constitutive behaviour, the recurrent

neural networks (RNNs), which are special ANN architectures suitable for time-series prediction

issues, are ideal candidates to train the sub-networks. Long Short Term Memory (LSTM)

(Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014) are

successful RNN architectures in processing long sequences, due to their satisfactory capability

of mitigating exploding gradient or vanishing gradient issues. Both of them introduce a gate
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mechanism to regulate what information from previous memory needs to be kept around and

what previous data can be forgotten. Although existing literature shows that both LSTM and

GRU have close prediction performance (Chung et al., 2014), GRU requires fewer trainable

parameters and has a relatively higher training efficiency. Thus the GRU architecture is used

to train all the sub-networks in this study.

3.2. Model C: integrating physics-invariant properties with external strain paths via an enhanced

GRU architecture

Apart from the scheme of exploiting the internal variables through a directed graph, another

strategy is to integrate only the physics-invariant properties associated with elastic-plastic be-

haviour into DNN training. Equation 2 has demonstrated that the elastic stiffness tensor Cijmn

is made of non-temporal contact stiffnesses and temporal microstructural tensor in the volume

of a specimen. The contact stiffnesses are certainly critical properties governing stress-strain

responses of granular materials. For non-cohesive granular materials, the frictional strength

between two grains is an important microscopic origin for macroscopic strength. Thus the

friction coefficient of particles and the confining pressure are also critical ingredients for the

constitutive behaviour. The contact stiffnesses and frictional coefficients of particles usually

keep non-temporal when subjected to external loadings, provided that the particle breakage

and material degradation do not happen. Under specific loading conditions, such as conven-

tional triaxial testing environment, the confining stress usually remains constant as well. A

major challenge for taking ANN models into more realistic problems (e.g. constitutive mod-

elling) is how to incorporate these non-temporal physical properties during training.

In this work, we adopt an enhanced GRU architecture reported in (Mozaffar et al., 2019) to

address this issue. A detailed introduction about the architecture and mathematics behind the

enhanced GRU can be found in Appendix A. The additional non-temporal features (particle

stiffnesses and frictional coefficient) will be used as extra input variables, together with the

temporal principal strain sequences to predict the final stress responses via the enhanced GRU

architecture. This model is named as "Model C" in the following text.

3.3. Accuracy evaluation of trained prediction models

The accuracy of the prediction models is evaluated by quantifying the overall discrepancy

between the actual values and the predicted values. In this work, we adopt two metrics to

evaluate the prediction accuracy. One is a score metric, which can give a straightforward but

not very rigorous understanding about prediction capability, and the other is the SMAE (scaled
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mean absolute error), which is commonly used as the cost function when training a DNN model.

Prior to formulating the score metric, the scaled squared error (SSE) for every single point i in

the jth stress-strain sample should be calculated:

SSEij = (ȳTrueij − ȳPredictionij )2 (7)

where ȳTrueij and ȳPredictionij are the scaled actual and prediction values of the ith point in the jth

stress-strain sample, respectively.

After obtaining all the SSE values on the jth stress-strain prediction curve, an empirical

cumulative distribution function (eCDF) Fj can be computed as follows:

Fj(SSErj) =
r

N j

(
r = 1, ..., N j

)
(8)

where N j is the number of data points on the jth stress-strain curve; and all SSEij are arranged

in ascending order. Following the scheme given in Wang and Sun (2019), the following accuracy

score is adopted based on the above eCDF:

Ascore = max

(
log [max(εP%, εcrit)]

log(εcrit)
, 0

)
(9)

where εP% is the SSE value corresponding to P% in the eCDF, and it is used as a represen-

tative to evaluate the score of predications; εcrit is the critical SSE which can be regarded

as "satisfactorily accurate" when εP% ≤ εcrit. Normally εcrit � 1. In this work we assume

P%=90% and εcrit=0.001.

The other metric, i.e. SMAE, is defined as follows:

SMAEj =
1

N j

Nj∑
i=1

∣∣ȳTrueij − ȳPredictionij

∣∣ (10)

where SMAEj is the scaled mean absolute error of the jth stress-strain curve.

Once a DNNmodel has been trained, one can give predictions over all the training/validation/test

data specimens. In this case, a more comprehensive metric is the average SMAE or the av-

erage score over the entire dataset. Here both the SMAE metric and the score metric are

used to evaluate the prediction performance of the proposed data-driven constitutive modelling

strategies.

4. Results and comparison of the three data-driven constitutive training approaches

4.1. Data preparation and the implementation of machine learning

In the current work, all the training data of triaxial testing is provided by discrete element

modelling wherein a total of 4037 spherical particles with their radii uniformly distributed
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between 2mm and 4mm are used to generate the specimens. These specimens are isotropically

consolidated to a confining pressure of 200 kPa. The normal and tangential contact stiffnesses

are 105 N/m and 5 × 104 N/m, respectively. The interparticle frictional coefficient is 0.5, the

particle density is 2600 kg/m3, the local damping coefficient is 0.5.

The GRU neural networks are built on Keras platform, which is an open-source model-

level library allowing convenient construction of machine learning models. The low-level tensor

operations behind Keras is performed by Tensorflow, a symbolic tensor manipulation library

developed by Google.

Before constructing the deep learning models, the data from DEM requires preprocessing.

One reason is that the raw input data with a large difference can increase the learning time and

impede the convergence of the networks. Particularly, the input variables in realistic problems

tend to be different in terms of units, scales, and distributions. In this study, standardisation

is used to reshape the raw input data to the scaled data with a zero mean and a standard

deviation of 1. The standardised data effectively reduces the risk of getting stuck in local

optima and makes the training process faster. The other motivation for preprocessing data is

that the data structure of input sequences must follow the prescribed format in a GRU model.

All the input data must be a specific 3D array where the first dimension denotes the samples,

the second dimension is the time steps and the last dimension represents the input features.

4.2. Case 1: conventional triaxial compression with multiple loading direction reversals

In the first case, conventional triaxial compression tests are used to generate stress-strain

sequence pairs for deep training. We restrict the maximum axial loading strain to 12% with com-

plex loading-unloading paths incorporating monotonic, one, two and three unloading-reloading

cycles. These unloading and reloading strain values are mutually different and randomly sam-

pled with a physical restriction that the reloading strain is always lower than its preceding

unloading strain. A total of 220 datasets are prepared. After shuffling the database with a

certain random seed (all the DNN training follows the same random seed to avoid potential

information leaking), 100 groups of specimens are preserved as test specimens (the monotonic

cases and the cases with 4, 5 and 6 unloading-reloading cycles, respectively, are artificially

selected to test the AI models); while the remaining 120 groups of simulations are used for

training and validation data with a partition ratio of 4:1. To provide an overview of the speci-

men distribution, the training, test and validation data specimens in this work are marked in

Figure 3, but it should be noted that the classification here is simply an example and these

groups can be shuffled and selected randomly. The other thing to be noted is that some loading
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paths incorporate multiple unloading-reloading cycles and thus one loading path may include

several unloading-reloading points in Figure 3.

Figure 3: Sampling points for conventional triaxial compressions

When the data has been preprocessed for training, the next step is to construct, train and

validate machine learning models. To discover suitable network architectures and hyperparam-

eter combinations for each model, a series of parametric studies are performed. The detailed

process can be found in Appendix B. In this study, the adopted architecture and hyperparam-

eters for Model A, Model B (NN-B1, NN-B2, NN-B3 and NN-B4) and Model C are shown in

Table 1. The learning curves for the selected ANNs can be found in Figure 4.

Table 1: Network architectures and some key hyperparameters

ANNs Architecture Timesteps Batch size Learning rate

Model A GRU:100 40 64 0.001

NN-B1 GRU:120-GRU:120 50 128 0.001

NN-B2 GRU:120-GRU:120-Dense:20 30 128 0.01

NN-B3 GRU:120-Dense:100 60 64 0.01

NN-B4 GRU:100-Dense:20 40 128 0.01

Model C GRU:40-GRU:40 55 128 0.01

For all the networks, the tanh activation function is used for the GRU layers and the linear

activation function is applied to the output layer. The adaptive moment estimation (Adam)

optimizer is used to update the weights iteratively with 1000 epochs. The scaled mean absolute

error (SMAE) is used as the loss function. After finishing the training, the performance of the
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GRU model is evaluated on 100 groups of test data that have not been seen to the model during

training.
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Figure 4: Learning curves of the selected ANNs in conventional triaxial loading conditions
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4.2.1. Prediction results of Model A

Model A predicts stress responses from only measurable principal strain sequences. The

average SMAE and prediction score on the 100 groups of unseen test specimen are 0.0189 and

0.967, respectively. 60% predictions obtain a prediction score of 1.0, which demonstrates that

the prediction accuracy of the trained model is acceptable. The best prediction has a SMAE of

0.007 with a score of 1, while the worst prediction has a SMAE of 0.054 with a score of 0.6458.

Some of the typical predictions predicted by model A are shown in Figure 5. Although the

worst prediction cannot achieve a high score, the overall tendency of stress responses has been

captured. The results also indicate that the DNN model is able to predict the complex cases

with more than two unloading-reloading cycles, even though these complex cases are never used

for training and validating datasets.

Although Model A only considers the external principal strain variables, the values of these

strain sequences are highly related to the internal evolution of microstructures and material

properties of particles, i.e. the principal strain sequences implicitly encode the microstructural

information inside specimens. This is also one of the reasons why Model A have an excellent

prediction accuracy.

4.2.2. Prediction results of Model B

Model B explicitly incorporates microstructural information into training by introducing

a directed graph to connect associated sub-networks. For model B, the average SMAE and

prediction score on the 100 groups of test specimens are 0.0197 and 0.979, respectively. 57%

predictions obtain a full score of 1.0. The best prediction SMAE is 0.007 with a score of 1 while

the worst prediction has a SMAE of 0.044 with a score of 0.678. Some of the typical predictions

via model B can be found in Figure 6.

Similar to Model A, Model B can also satisfactorily capture complex unloading-reloading

responses of constitutive behaviour. These two models are found to have similar prediction

accuracy. However, as Model B is made of 4 different sub-networks, it may take 4 times more

computational resources than model A to discover a suitable hyperparameter combination.

Thus the results may support that model A is a preferred strategy to train a DNN based

stress-strain model. This however arises a question: does the microstructural information not

contribute to the stress-strain predictions? According to Figure 4, Table B.1 and Table B.2

in Appendix B, the model which uses microstructural variables directly as inputs (i.e. the

sub-network: NN-B4) significantly outperforms Model A in terms of prediction accuracy. Thus

it is certain that the microstructural information benefits the stress prediction.
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(b) The worst prediction, score:0.646
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(c) Monotonic loading, score:1.0
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(d) Two unloading-reloading cycles, score:1.0
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(e) Three unloading-reloading cycles, score:1.0
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(f) Four unloading-reloading cycles, score:1.0
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(g) Five unloading-reloading cycles, score:1.0
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Figure 5: Representative prediction results of Model A
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(a) The best prediction, score:1.0
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(b) The worst prediction, score:0.678
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(c) Monotonic loading, score:1.0
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(d) Two unloading-reloading cycles, score:1.0
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(e) Three unloading-reloading cycles, score:1.0
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(f) Four unloading-reloading cycles, score:1.0
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(g) Five unloading-reloading cycles, score:1.0
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(h) Six unloading-reloading cycles, score:0.830

Figure 6: Representative prediction results of Model B
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The problem is that the use of microstructural information as known inputs fundamentally

violates the requirement of determining stress responses according to pure strain conditions

in a typical constitutive model. To utilise the microstructural information but follow the ba-

sic principle of constitutive models, some extra measures like we have done in Model B are

necessary.

The reasons that microstructural tensors in Model B do not significantly improve prediction

are mainly due to a relatively low prediction accuracy given by NN-B1, NN-B2 and NN-B3, as

shown in Figure 4 and Table B.2. In model B, the outputs of former networks (NN-B1, NN-B2

and NN-B3) are parts of the inputs for the latter sub-network (NN-B4). If the former sub-

networks do not have a satisfactory prediction accuracy, these inaccurate inputs will deteriorate

the prediction results of the latter sub-network because artificial neural networks are incapable

of recognising "fake" data. In the case that C3311, C3322 and C3333 are not easy to be predicted

by principal strain variables with a high prediction accuracy, it is understandable that the

prediction accuracy of Model B (assembled with NN-B1, NN-B2, NN-B3 and NN-B4) is not

necessarily high to improve the overall prediction performance compared to Model A.

4.2.3. Prediction results of Model C

Model C makes full use of non-temporal physical properties in DNN training. The average

SMAE and prediction score on the 100 groups of test specimens are 0.0170 and 0.984, respec-

tively. 60% predictions obtain a prediction score of 1.0. The best prediction has a SMAE of

0.007 and a score of 1 while the worst prediction has a SMAE of 0.050 with a score of 0.664.

Only two groups of prediction scores are lower than 0.8. Some representative predictions can be

found in Figure 7. The overall prediction performance of incorporating non-temporal physical

properties slightly outperforms those of models A and B.

4.3. Case 2: true triaxial compression incorporating contant-b and constant-p loading conditions

The proposed three DNN training models of granular materials are further examined by

considering true triaxial compression loading conditions with unloading-reloading cycles. Two

types of typical multi-directional loading cases, 1) the isobaric (constant-p) axisymmetric triax-

ial loading (p = −1
3

(σ11 + σ22 + σ33)) and 2) true triaxial compression with constant interme-

diate principal stress coefficient (constant-b) (b = σ22−σ11
σ33−σ11 , σ11 = σ22), are performed via DEM.

The numerical material parameters are the same as the one used in Case 1. For the constant-

p condition, the strain paths incorporating both monotonic loading and unloading-reloading

loops are prepared. The sampling points for describing loading paths can be found in Figure

8. For the constant-b case, the b value ranges from 0 to 1.0 with an interval of 0.05. In total,
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(b) The worst prediction, score:0.664
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(c) Monotonic loading, score:1.0
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(d) Two unloading-reloading cycles, score:1.0
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(e) Three unloading-reloading cycles, score:1.0
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(f) Four unloading-reloading cycles, score:1.0
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(g) Five unloading-reloading cycles, score:1.0
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(h) Six unloading-reloading cycles, score:0.899

Figure 7: Representative prediction results of Model C
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142 groups of specimens are generated (122 for constant-p and 20 for constant-b cases), with

67 groups for training, 39 groups for validation and 36 groups for testing, respectively.

It is found that the discovered optimal architectures in conventional triaxial compression

cases are still able to yield satisfactory predictions in the true triaxial loading conditions.

Therefore, most of the architectures and hyperparameters continue to use in Case 2 except for

several modifications. Specifically, the batch size and timesteps for sub-network NN-B3 are

changed to 128 and 40, respectively; the epoch numbers are reduced to 500 for all the models

on the true triaxial loading data, because the loss functions have come to a steady value and

more training may cause overfitting. The learning curves for the true triaxial loading cases are

shown in Figure 9.

Figure 8: Sampling points for constant-p loading

Figures 10 show some representative results on both the constant-b and the constant-p load-

ing cases. All predictions on the major, intermediate, and minor principal stress components

are given. It can be seen that the stress evolutions in the investigated multi-directional con-

ditions are excellently captured by the proposed AI models. In the 36 groups of unseen test

specimens, the average SMAE and prediction score are 0.012 and 0.982, respectively; 29 groups

of predictions (80% ) obtain a score of 1.0. The worst prediction has a SMAE of 0.021 with

a score of 0.868. Figures 10(a-c) shows even the worst three predictions have forecasted stress

responses satisfactorily.

Models B and C also have excellent prediction performance. Model B obtains an average

SMAE of 0.013 and an average score of 0.981 on the 36 groups of test specimens. 30 groups

of predictions achieve a full credit of 1.0. Model C gives an average SMAE of 0.0099 with
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Figure 9: Learning curves of the selected ANNs in true triaxial compression conditions
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(a) The worst prediction, score:0.868
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(b) The second worst prediction, score:0.869
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(c) The third worst prediction, score:0.873
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(d) The best prediction, score:1.0
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(e) The second best prediction, score:1.0
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(f) Monotonic constant-p loading, score:1.0
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(g) Constant-b, b=0.5, score:1.0
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(h) Constant-b, b=0.3, score:1.0

Figure 10: Representative predictions on true triaxial compression given by Model A
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an average score of 0.995. Nearly all the predictions given by Model C obtain a score of 1.0

except for two specimens, whose prediction scores are 0.847 and 0.958, respectively. In the true

triaxial loading cases, the results confirm that the previous finding in the conventional triaxial

compression cases, i.e., the prediction performance of Model B is similar to that of Model A,

while Model C slightly outperforms Models A and B. Considering that the results of Model A

in Figure 10 are sufficiently accurate, the representative prediction demonstrations for models

B and C are not given here.

4.4. A brief summary on the features and applications of the three DNN-based training ap-

proaches

One aim of developing a DEM based data-driven constitutive model is exploring the pos-

sibility of extending the data-driven paradigm into experimental environments, with a hope

that the deep learning model can replace traditional phenomenological constitutive models. In

laboratory experiments, the principle strain information can be directly measured in true tri-

axial testing apparatus. However, the microstructural evolution information inside a granular

specimen and the particle-scale properties are not readily available. Therefore, only Model A

can be directly applied to experimental conditions. The prediction results in Figures 5 and

10 demonstrate that the DNN model with only the measurable external variables can repro-

duce the complex unloading-reloading responses satisfactorily. It is thus possible to develop an

experiment-based constitutive prediction model, provided that a sufficient training dataset is

available.

Although model B does not significantly outperform model A, the contribution of each

microstructural component (i.e. C3311, C3322 and C3333) in determining the final stress responses

is discovered by the deep learning models. This unique design may provide a possibility of

developing an AI-guided scheme to discover some hidden physical rules. Further related research

will be explored.

Model C slightly outperforms model A and model B in terms of prediction performance

but its downside is that more particle-scale properties are required. Although natural granular

materials tend to be heterogeneous and the particle-scale properties are hard to be measured

in experiments, these properties are directly available in numerical computations. Thus this

training approach can be used as a reinforcement strategy for training a DEM-based constitutive

model. The application of such a DEM-based model will be discussed in Section 5.2.
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5. Discussion

5.1. Primary factors for training reliable data-driven constitutive models

In this work, our goal is to train deep learning models to reliably predict the constitutive

behaviour of granular materials. Three aspects have been explored: (1) the analytical equations

of granular materials are utilised to discover key ingredients for describing the constitutive

relations of granular materials; (2) the directed-graph based constitutive modelling strategy

enables the DNN model to explicitly introduce more microstructural evolution data to assist

the training; and (3) the enhanced GRU architecture is introduced to incorporate the non-

temporal but physically essential material or environment properties during training.

Among these three factors, the first factor is the key to achieve excellent prediction accu-

racy. The premise of training a reliable DNN is that a certain pattern or mapping exists among

the variables involved in training and the neural network is capable of capturing these inherent

mappings. In a conventional triaxial testing environment, the lateral strains are normally ig-

nored but the incremental analytical formulae in Section 2 reveal the critical role of the lateral

strains playing in determining the stress responses. Specifically, the mapping between loading

stresses and loading strains of granular materials is not an injective or "one-to-one" function.

Figure 11 shows the axial stress-strain curves of granular specimens undergoing monotonic

shearing. The axial loading rate and path are the same whereas the lateral intermediate prin-

cipal stress ratio b varies from 0.1 to 0.9. It is evident that the same loading strain causes

different stress responses, i.e. the pattern or mapping between the loading stress and strain is

not unique. This finding highlights not only the key contribution of micromechanical principles

in guiding machine learning but also the importance of introducing comprehensive principal

strain information in constitutive modelling.

5.2. Potential applications of DEM based data-driven constitutive modelling

Deep learning normally requires a large amount of data while laboratory tests are expensive

and time-consuming. In contrast, DEM provides cheap and flexible modelling data under

complex mechanical states. It is feasible to use DEM as virtual "surrogate models" to pave the

way for experiments-based constitutive modelling, e.g. to understand how to train a reliable

model with the least data specimens. Besides, under the conditions that more advanced particle-

scale contact rules are developed to reproduce the realistic granular interactions (Feng et al.,

2017; Feng, 2021a,b; Zhao and Feng, 2018) and that the DEM parameters are well-calibrated

for representing realistic granular behaviour (Qu et al., 2020a,b), experiments-based granular

testing is possible to be replaced with a large number of DEM modelling to reduce costs.
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Figure 11: Stress-strain relations of a granular specimen subjected to monotonic shearing under varied inter-

mediate principal stress

The other application is to advance hierarchical multiscale modelling techniques where the

constitutive laws are provided by the microscopic modelling (e.g. DEM), instead of assuming

a phenomenological constitutive model a priori. The foundation of this method is that the

microscopic DEM reasonably reflects the discrete nature of granular media and is capable of

capturing the salient macroscopic behaviour of granular materials, although DEM typically

simplifies the complexity of real granular media (O’Sullivan, 2011; Gong et al., 2019b,a). Un-

til now, applications of multiscale techniques to the simulation of engineering-scale granular

geomaterials are still uncommon due to the required great computational costs. The current

FEMxDEM hierarchical multiscale modelling approach interpolates the deformation from the

FEM solution to DEM as its boundary conditions. The DEM will deform following this pre-

scribed boundary condition and then return the corresponding stress to FEM (Guo and Zhao,

2014). The whole process is time-consuming as a large number of discrete element models

are required. Taking the DEM calculation of triaxial testing in this work as an example, a

complete calculation requires around 24 hours (Core(TM) i5-7400, 3GHz) but the DNN model

can predict the stress responses in just several seconds. In the case that a reliable DEM-based

data-driven model has been trained, the DNN model can replace the original DEM simulations

in hierarchical multiscale modelling. Then the efficiency of hierarchical multiscale modelling

will be greatly enhanced.

5.3. Sampling intervals in NN-based models

For a given strain path, conventional analytical models give stress predictions that are

irrespective of the size of strain increments but NN-based constitutive models are not. As

demonstrated by Jung and Ghaboussi (Jung and Ghaboussi, 2006), the NN-based models are

not recommended for the problems with the step sizes or sampling intervals which are signifi-
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cantly different from those used in the training stage. Otherwise, some forecast deviations will

inevitably occur when using these NN-based models for extrapolation. To develop a NN model

suitable for applications with different step sizes, the data with different sampling intervals

should be used for training.

5.4. The deficiency of current research and future work

The quality of data specimen is the key to obtaining high-accuracy machine learning models.

A qualified dataset should be capable of representing all possible situations that the model is

intended for. In the current work, the specimens are generated by random or grid sampling

in the entire data space. However, it is likely that the data demand can be reduced without

deteriorating prediction accuracy. One strategy is to introduce advanced statistical sampling

techniques. The other strategy is to develop active machine learning models wherein only the

most critical data informed by the model is required to provide. These techniques are expected

to use as small a dataset as possible to train a reliable constitutive model.

When data is prepared, the next step is to find suitable network architectures and neuron

weights via iterative feedforward and feedback. Many hyperparameters, eg. the number of lay-

ers, hidden units, training epochs, learning rate etc. affect the learning process and final results.

In this study, we determine these hyperparameters with a large number of parametric studies

within the whole search space of hyperparameters. A superior combination of hyperparameters

may exist. An adaptive hyperparameter adjusting algorithm can be helpful to further improve

the training in this aspect.

Although multiple loading-unloading cycles are considered in this work, there are many

other complex mechanical states in realistic engineering problems. In addition, the elastic-

plastic responses of granular materials are influenced by the initial fabric, void ratio, size and

shape distributions of grains, and mineralogical compositions. Developing a DNN model that

is capable of adapting to general strain paths and different granular materials is still highly

challenging. In the future, advanced phenomenological models may deserve more considerations

in data training to reduce data demands and improve the generalisation capability of the data-

driven models by making full advantage of a priori knowledge of available elastic-plastic theory.

6. Conclusions

This study attempts to develop data-driven constitutive modelling strategies for granu-

lar materials by integrating micromechanical theory with deep learning models. The derived

mechanical formulation identifies critical variables associated with the constitutive behaviour.
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Three different training approaches are explored. The first one (Model A) uses only external

variables recognised by the analytical formulae (i.e. the principal strain sequences) to approx-

imate stress responses; the second one (Model B) utilises the directed graph to link all the

internal and external variables into a single information flow constituted by a series of sub-

networks to make predictions, and the third one (Model C) integrates non-temporal physical

properties with Model A into training. The proposed three constitutive modelling strategies are

found to be capable of predicting stress-strain responses of granular materials with satisfactory

agreement on the unseen test specimens. The prediction capability of these three approaches

is close to each other with Model C slightly outperforming Model A and Model B. The key

findings are as follows:

It is practically feasible to develop a data-driven constitutive model with high accuracy.

The direct involvement of comprehensive principal strain information in constitutive training

greatly facilitates training reliable machine learning models.

The introduction of microstructural evolution information in a directed graph benefits con-

stitutive modelling but the prerequisite is that the microstructural evolution information is

sufficiently accurate. Incorrect microstructural information not only is unhelpful but also im-

pedes reliable predictions.

Provided that the particle-scale properties are known (e.g. DEM conditions) or can be

measured, these physically important non-temporal properties can be integrated with temporal

strain paths to reinforce DNN-based constitutive prediction.

The combination of a priori knowledge with the data-driven paradigm is promising to solve

complex scientific problems. With the aid of micromechanical principles, we avoid searching all

possible variables associated with constitutive modelling and prevents the AI-based constitutive

modelling to be a combinatorial optimisation problem. Besides, the micromechanical principle

also enhances the interpretability of a data-driven constitutive model.
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Appendix A. Introduction to the enhanced GRU architecture with incorporating

physics-invariant quantities

The original core structures of GRU are the hidden state and the two gates. The hidden

state enables to transfer past relevant information along with the sequences. The two gates,

reset and update, are designed to process the data within each GRU cell. The reset gate is

used to decide how much past information to forget while the update gate determines what

information to throw away and what new information to add.

In the enhanced GRU architecture (see Figure A.1), a secondary hidden state is designed

in the formulation to carry non-temporal information through each GRU cell, thus enabling

the ANN to develop a desired hypothesis function by fully utilising temporal and non-temporal

inputs, and history-dependent hidden states. Although the introduction of these invariant pa-

rameters increases the complexity and training costs, it is useful to guarantee the generalisation

ability of a trained ANN model. Furthermore, this architecture has better interpretability and

thus provides more possibilities for finding the underlying physical laws based on the data-driven

paradigm.

The mathematical expressions in the enhanced GRU architecture can be found as follows:

Reset gate (rt):

rt = sigm (Wr[ht−1, xt, hc] + br) (A.1)

Update gate (zt):

zt = sigm (Wz[ht−1, xt, hc] + bz) (A.2)

Candidate primary hidden state (h̃t):

h̃t = tanh(Wh[rt ⊗ ht−1, xt, hc] + bh) (A.3)

New primary hidden state:

ht = (1− zt)⊗ ht−1 ⊕ zt ⊗ h̃t (A.4)

In the above formulations, xt is the current input at the tth time step; ht−1 is the primary

hidden state at the (t− 1)th time step; hc is the secondary hidden state used for incorporating

physics-invariant variables; sigm(x) is the sigmoid activation function: sigm(x) = 1
1+exp(x)

;

tanh(x) is the hyperbolic tangent function: tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x) ; Wr, Wz, Wh are weights;

br, bz, bh are biases; the symbols ⊗ and ⊕ represent element-wise multiplication and addition,

respectively.
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(a) Unfold sequences for the enhanced RNN architecture

(b) mathematical operations within each enhanced GRU cell

Figure A.1: Schematic diagram for enhanced GRU cells

The actual operations involved in each enhanced GRU cell are shown in Figure A.1b. First,

the secondary hidden state is concatenated with the current inputs to form a new vector.

Second, this new vector is further concatenated with the previous primary hidden state to

form the second new vector. To introduce non-linearity into the model, the sigmoid function

acting as a nonlinear active transformation function is applied to obtain the reset gate rt

(Eq. (A.1)). Third, the gate zt is updated by applying the sigmoid function on the second

new vector (Eq. (A.2)). Fourth, element-wise multiplication is conducted between the previous

primary hidden state and the reset gate rt, and the multiplication with the first new vector

is concatenated to form the third new vector. The candidate primary hidden state h̃t can be

calculated by applying the tanh function on the third new vector (Eq. (A.3)). Finally, the new

primary hidden state ht can be determined based on Eq.(A.4).
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Appendix B. Parametric investigations for determining the hyperparameters of

each training model

Appendix B.1. Model A: only loading and lateral strain information are involved

A preliminary network architecture investigation starts from one or two GRU layers, followed

by one or zero dense layer, before connecting the output layer. The neuron number in each

hidden layer varies from 0 to 120 with a gap of 20. The final architecture will be determined

by considering: (1) the amount of SMAE and (2) the complexity of architectures. Specifically,

if the difference of two SMAEs is within 10−5, the simplest architecture (the least parameters

to be trained) will be selected because a simpler model has less risk of overfitting. The SMAEs

of different network architectures can be found in Figure B.1 and the architecture [GRU:100-

dense:0] is finally selected. This model requires a total of 31,301 weights and biases to be

learned with 31,200 parameters for the GRU layer and 101 parameters for the output layer.

Figure B.1: SMAEs of model A with different network architectures

On the basis of the selected architecture, we further consider the influence of other important

hyperparameters, such as timesteps (i.e. the number of lag observations into each GRU unit),

batch size and learning rate. The influences of timesteps are shown in Figure B.2. The influences

of batch size and learning rate can be found in Table B.1. The final hyperparameters of Model

A are: timesteps: 40, batch size: 128, learning rate: 0.01. The inputs are temporal strain

variables: ε11, ε22, ε33. The output is the corresponding deviatoric stress sequence. A total of

87 groups of distinct training configurations are considered to determine the architecture and

hyperparameters of the final training model.
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Figure B.2: SMAEs of the selected ANNs (models A, B and C) against various timesteps

Note that the hyperparameter selection for a deep neural network is essentially a very

high dimensional combinatorial optimisation problem, it is thus not easy to search all the

possible combinations considering available computational resources. Although the parametric

study does not cover many other combinations, it gives a relatively reliable architecture and

parameters for the model in the searched parameter space.

Appendix B.2. Model B: incorporating microstructural variables

As stated in Section 3.1, model B is made of 4 sub-ANNs by incorporating microstruc-

tural information during triaxial testing. The optimal representation of model B requires its

constituent sub-networks to reach their optimal prediction accuracy. Therefore, the hyperpa-

rameter investigation for these associated sub-ANNs should be carefully conducted as well.

Similar to Model A, we explore a rational network architecture first. The performance of each

sub-ANN is demonstrated by Figures B.3, B.4, B.5 and B.6.
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Table B.1: SMAEs of the selected ANN architectures for model A with different batch sizes and learning rates

Timesteps Batch size Learning rate SMAE

40 16 0.001 0.021023878

40 16 0.01 0.018084617

40 32 0.001 0.019470268

40 32 0.01 0.019951961

40 64 0.001 0.01112244

40 64 0.01 0.01153904

40 64 0.1 0.860573057

40 128 0.001 0.011273821

40 128 0.01 0.011982925

40 128 0.1 0.827519575

40 256 0.001 0.014308579

40 256 0.01 0.013342785

40 256 0.1 0.664513549

Figure B.3: SMAEs of NN-B1 with different network architectures
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Figure B.4: SMAEs of NN-B2 with different network architectures

Figure B.5: SMAEs of NN-B3 with different network architectures

Figure B.6: SMAEs of NN-B4 with different network architectures

Through comparison, the final architectures to be selected and the corresponding trainable

parameters for these four sub-ANNs are: (1) NN-B1: [GRU:120-GRU:120-dense:0], a total of
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131,521 parameters are trained with 44,640 for the first GRU layer, 86,760 for the second GRU

layer, and 121 for the output layer; (2) NN-B2: [GRU:120-GRU:120-dense:20], a total of 133,841

parameters are trained with 44,640 for the first GRU layer, 86,760 for the second GRU layer,

2420 for the dense layer and 21 for the output layer; (3) NN-B3:[GRU:120-dense:100], a total

of 56,841 parameters to be learned, with 44,640 for the first GRU layer, 12,100 for the second

GRU layer, and 101 for the output layer; (4) NN-B4:[GRU:100-dense:20], a total of 34,141

trainable parameters are required with 32,100 parameters for the GRU layer, 2020 parameters

for the dense layer and 21 parameters for the output layer.

The influences of timesteps on the performance of each selected architecture is shown in

Figure B.2. Furthermore, the effects of batch size and learning rate are also explored and the

results can be found in Table B.2. The discovered optimal network architecture and hyperpa-

rameter combinations for each sub-ANN are summarised in Table 1 in Section 4.2. A total of

273 groups of training configurations are considered to determine a suitable hyperparameter

combination for Model B.

Appendix B.3. Model C: incorporating non-temporal physical variables

With the incorporation of four physics-invariant variables, the inputs include temporal strain

variables: ε11, ε22, ε33 and non-temporal physical parameters: the normal and tangential contact

stiffnesses of particles, the sliding friction coefficient, and the boundary conditions: confining

stress. The output is the corresponding deviatoric stress sequence. Following the same hy-

perparameter investigation scheme as Model A and Model B, the SMAEs of different network

architectures are shown in Figure B.7, wherein the [GRU:40-GRU:40] architecture is selected.

This model requires a total of 15,521 weights and biases to be trained, with 5760 parameters

for the first GRU, 9720 parameters for the second GRU and 41 parameters for the output layer.

Then starting from this architecture, the effect of timesteps on the SMAE of predictions can

be found in Figure B.2 and a timestep of 55 is found to achieve the minimum SMAE among

the investigated cases. A total of 84 groups of training cases are performed to obtain the final

hyperparameter combination for Model C.
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Table B.2: SMAEs of the selected ANN architectures with different batch sizes and learning rates

ANNs Timesteps Batch size Learning rate SMAE

NN-B1

50 16 0.01 0.034787547

50 32 0.01 0.036005609

50 64 0.01 0.032427967

50 128 0.01 0.032401011

50 16 0.001 0.041222154

50 32 0.001 0.038220792

50 64 0.001 0.032896032

50 128 0.001 0.032357865

NN-B2

30 16 0.01 0.039313793

30 32 0.01 0.037995158

30 64 0.01 0.033419531

30 128 0.01 0.032173722

30 16 0.001 0.039949795

30 32 0.001 0.039084379

30 64 0.001 0.034799603

30 128 0.001 0.032594303

NN-B3

60 16 0.01 0.037514748

60 32 0.01 0.041043216

60 64 0.01 0.026101194

60 128 0.01 0.026550017

60 16 0.001 0.042455486

60 32 0.001 0.033086145

60 64 0.001 0.026667772

60 128 0.001 0.027839419

NN-B4

40 16 0.01 0.015798611

40 32 0.01 0.011401684

40 64 0.01 0.00879857

40 128 0.01 0.00801181

40 16 0.001 0.018063032

40 32 0.001 0.015245538

40 64 0.001 0.008079771

40 128 0.001 0.008377201
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Figure B.7: SMAEs of model C for different network architectures

Table B.3: SMAEs of Model C for varied batch sizes and learning rates

Timesteps Batch size Learning rate SMAE

55 16 0.01 0.022875528

55 32 0.01 0.016673629

55 64 0.01 0.017787122

55 128 0.01 0.008974653

55 256 0.01 0.020686934

55 16 0.001 0.017309264

55 32 0.001 0.018381896

55 64 0.001 0.016616734

55 128 0.001 0.021031122

55 256 0.001 0.021815552
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