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Abstract

This work develops a continuum-based combined �nite-discrete element method (FDEM) in the framework of
the explicit �nite element method in conjunction with fracture algorithms. To account for complex fracturing
processes, both shear failure and tensile failure criteria are implemented. Furthermore, to investigate the e�ect
of di�erent fracture algorithms on the accuracy and computational e�ciency of simulations, both the inter-
element and intra-element fracture algorithms are developed in the continuum-based framework. Then, they
are compared by two benchmark tests, of rock: the Brazilian tests and uniaxial tension tests. Besides, uniaxial
compression tests under di�erent loading rates are carried out to demonstrate the shear failure criterion and
the corresponding fracture algorithm. The simulation results converge with the decrease of element sizes in
the inter-element fracture algorithm. The intra-element fracture algorithm is proven to be more e�cient and
accurate in the simulation of fracturing processes compared to the inter-element fracture algorithm.

Keywords: �nite element method, discrete element method, smeared fracture model, intra-element fracture,
strain softening

1. Introduction

It has been nearly thirty years since the combined �nite-discrete element method (FDEM) was �rst pro-
posed by Munjiza (1992). The original aim of FDEM was to bridge the gap between the continuum simula-
tions by the �nite element method (FEM) and the discontinuous/discrete simulations by the discrete element
method (DEM). Its most striking feature is to simulate the transition process from a continuous to discon-
tinuous/discrete state in a practical manner, especially for cases under blasting and missile impact situations
(Munjiza et al., 1995; Yu, 1999; Owen and Feng, 2001). To date, the FDEM has been extensively applied
to various scienti�c and engineering problems. A recent review of its development and applications can be
found in the literature (Knight et al., 2020; Rougier et al., 2020). Because of its distinct merit in modeling
the fracture process of solid materials, it has been coupled with the �uid �ow solver to simulate hydraulic
fracture phenomenon in petroleum engineering (Fu et al., 2013; Lei et al., 2016; Wang et al., 2019; Munjiza
et al., 2020), the heat transfer solver to investigate the fracture process triggered by thermal stress (Yan and
Jiao, 2019; Joulin et al., 2020), and mass transfer solver to simulate the proppant migration process within
fractures (Pro�t et al., 2016).

From the viewpoint of computational framework, the FDEM can be divided into two categories: the DEM-
based FDEM and continuum-based FDEM. In the former, the update of nodal motion is element-based, and a
cohesive element between meshes sharing a common edge is embedded to simulate the fracture/damage process
at the very beginning of the simulation. Take a two dimensional case shown in Figure 1 for instance, the edge
OP in the continuum method, e.g. FEM, will be decomposed into two edges, OP and O′P ′, with the two pairs
of end points sharing the same positions in the DEM-based FDEM. The edge OP belongs to element 2, and
O′P ′ belongs to element 1. The four-node element OPP ′O′ is the cohesive element enclosed by dashed lines
in Figure 1(b). After deformation, the nodes O and O′ may depart from each other even without failure at
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this place. It is di�erent from the continuum methods where there is only one point O and its displacement is
exclusively determined from nodal forces. Therefore, the update of nodal motion in the DEM-based framework
can be regarded as element based. Another distinct feature is the introduced cohesive element, which is the
key for fracture initiation and insertion. The stress state of cohesive elements will be directly computed from
the relative displacement of edges OP and O′P ′. If the failure criteria are satis�ed at the cohesive element,
then a fracture can be directly inserted and represented by the cohesive element, and the linked nodes, e.g. O
and O′, through the cohesive elements will become independent. This fracturing algorithm is straightforward
to implement for complex fracturing simulations, especially for three dimensional cases. However, fractures
may only initiate and propagate along element edges/surfaces, and thus can be termed as an inter-element
fracture algorithm. Normally, to secure a more accurate simulation of fracturing process, �ner meshes are
required, especially around fracture tips.
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(a) line OP in the continuum mesh
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(b) insertion of a cohesive element

Figure 1: Illustration of the cohesive element

The continuum-based FDEM is often based on the explicit �nite element method, and no pre-embedded
cohesive element is required. In this framework, the deformation of continuum is simulated by the explicit
FEM. The solid is spatially discretized into meshes, and the motion of nodes, including shared nodes by
neighbouring elements, is determined from Newton's second law which governs the nodal movement in the
DEM-based FDEM. The calculation of element strain and stress at Gauss points also follows the �nite element
method. Then, based on the element stress state, fracture mechanics can be employed to handle the fracture
initiation and propagation in each element. This framework has been embedded into the multi�eld and
multiphase FEM commercial software, called ELFEN, of Rock�eld Software UK. One of the earliest references
of this continuum-based FDEM is Dr Yu's PhD thesis (Yu, 1999). Since then, more research work has been
conducted based on this framework in (Han et al., 2000; Owen and Feng, 2001; Klerck et al., 2004; Fu et al.,
2013; Pro�t et al., 2016), and also in (Hamdi et al., 2014; Ju et al., 2018; Wang et al., 2019). In Yu (1999), a
nodal fracture algorithm was proposed to insert fractures through elements. Fractures can propagate between
or through elements depending on the nodal failure direction, which is termed as the intra-element fracture
algorithm. However, only tensile failure was considered in these work.

Several fracture procedures have been proposed for the FDEM and they can be roughly divided into the
inter-element fracture algorithm and the intra-element fracture algorithm, according to the way that fracture
is implemented. The DEM-based FDEM with cohesive elements falls into the former. In the continuum-based
framework, both inter- and intra-element fracture algorithms can be realized. The fracture algorithm in FDEM
is an important aspect directly associated with the e�ciency of fracture simulations. The inter-element fracture
is simple to implement, but requires relatively �ne element meshes to ensure accuracy. Detailed discussion
on the sensitivity of mesh size can be found in (Munjiza et al., 1999; Munjiza and John, 2002; Guo et al.,
2016). In contrast, the intra-element fracture allows fractures to initiate and propagate orthogonal to the
failure direction, and may pass through the elements. Compared to the inter-element fracture algorithm, the
intra-element fracture algorithm is a more e�cient way to obtain an accurate fracture simulation. However,
the fracture insertion process is not straightforward, especially in three-dimensional cases. The combination of
the intra-element fracture and local remeshing technique around the fracture tip is more powerful in practical
engineering and scienti�c simulations (Han et al., 2000; Owen and Feng, 2001; Klerck et al., 2004; Fu et al.,
2013; Pro�t et al., 2016).

It should be mentioned that the FDEM research group at Lawrence Livermore National Laboratory ini-
tially followed the DEM-based FDEM in the 1990s (Morris et al., 2006), then adopted the continuum-based
framework with an improved inter-element fracture algorithm (Settgast et al., 2017). Strictly speaking, the
continuum-based FDEM has a solid foundation of continuum mechanics, therefore is theoretically more rig-
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orous. Its combination with the intra-element fracture algorithm and adaptive remeshing is more e�cient in
both computational cost and numerical accuracy. However, in addition to the di�culty in the implementation
of the intra-element fracture algorithm, the adaptive remeshing technique is more challenging. Hence, most
of the fracture simulations based on the continuum framework are mainly performed using the commercial
software, ELFEN (Rock�eld, 2004).

The primary aim of this work is to improve the existing continuum-based FDEM, where currently only
tensile failure/fracture is considered, by incorporating the shear-dominated failure criterion. Furthermore, to
investigate the e�ect of di�erent fracture algorithms on the accuracy and e�ciency of fracture simulations,
both the inter-element and intra-element fracture algorithms are developed. Particularly, an adaptive intra-
element fracture algorithm accounting for shear failure fractures is proposed. A detailed introduction to the
primary aspects of the continuum-based FDEM used in this work is given in Section 2. Then, two numerical
examples, Brazilian tests and uniaxial tension tests of rock, are carried out to explore the in�uence of fracture
algorithms on the simulations of fracturing process. Uniaxial compression tests under di�erent loading rates
are also carried out to demonstrate the shear failure criterion and corresponding fracture algorithm in Section
3. Discussions on the new �ndings of this work are conducted in Section 4 before a conclusion is drawn in the
last section.

2. Continuum-based FDEM

The continuum-based FDEM takes fully advantage of the explicit FEM. It discretizes the computational
domain into �ne meshes/elements, so-called spatial discretization. Evolution of the deformation process of the
continuum under consideration is discretized into many time increments, so-called time discretization. A small
time step is selected such that within each time increment, the acceleration and velocity can be regarded as
constant. Since the state evolution (dynamic equilibrium equation) of the model is advanced explicitly using
Newton's second law, iterations and tolerances used in implicit FEMs are not required.

In the continuum-based FDEM, the solution of dynamic equilibrium equation is node-based. In each time
step, the motion of nodes can be determined by Newton's second law, which is followed by the calculation of
strain of the element and subsequent stress calculation of Gauss points using constitutive models. Then, the
fracture mechanics can be used to insert fractures in places where the selected failure criteria are satis�ed.
Based on the computed element stresses, the nodal internal force can be computed and assembled. Meanwhile,
the external force applied to each node can be obtained from boundary loading conditions and/or the contact
forces from other discrete/discontinuous bodies in contact. In the rest of this section, main key aspects of the
continuum-based FDEM will be introduced in detail. As to the discrete contact interaction, it is the same as
the one in the DEM-based FDEM (Munjiza et al., 1995; Munjiza, 2004), and its latest progress can be found
in (Feng and Tan, 2020; Feng, 2021).

2.1. Motion of nodes

The deformation of the system is accomplished by updating the motion of all mesh nodes using Newton's
second law

Mü(t) +Cu̇(t) = P ext + P int, (1)

whereM is the mass matrix, C is the damping matrix, P ext and P int are the external force and the internal
force, respectively, applied to the node. The internal force P int applied to a node is calculated from the stress
σ obtained from constitutive models and shape function N of elements sharing the node. ü and u̇ are the
acceleration and velocity, respectively. In the explicit algorithm, the acceleration üi(t) of node i is determined
by equation (1), and its velocity u̇i(t+ ∆t

2 ) is updated using the central di�erence scheme as follows:

u̇(t+
∆t

2
) = u̇(t− ∆t

2
) + ü(t)

∆t(t) + ∆t(t+ ∆t)

2
. (2)

Then, the displacement ui(t+ ∆t) of node i can be calculated by

u(t+ ∆t) = u(t) + u̇(t+
∆t

2
)∆t(t+ ∆t). (3)
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2.2. Constitutive models

Based on the nodal displacement, the next step is to calculate the element strain and then calculate stress
of each element based on the constitutive model used. In the framework of elasto-plastic constitutive models,
the incremental total strain ∆ε can be decomposed into an elastic component ∆εe and a plastic component
∆εp by

∆ε = ∆εe + ∆εp. (4)

For the strain-controlled loading conditions, the incremental stress ∆σ can be computed by

∆σ = D∆εe, (5)

whereD is the elastic modulus matrix. During each time step, the incremental plastic strain can be calculated
from the �ow rule, and its general form is given by

∆εp = dλ
∂Φ

∂σ
, (6)

where dλ is the plastic multiplier, and Φ is the plastic potential function.
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Figure 2: Elasto-plastic mechanical behavior of a material

In the whole mechanical response of materials, the plastic deformation can have two phases (see Figure 2),
the hardening stage and/or the softening stage. In the hardening stage, the plastic multiplier can be obtained
by

dλ =
∂f

∂σ

∆σ

Hp
, (7)

where f is the yield function. In this work, a non-associated �ow rule and a deviatoric hardening law
(Pietruszczak, 2010; Pande et al., 2020) are adopted. The yield function and the plastic potential function are
respectively de�ned as

f =
√

3σ − η(εpq)σmg(θ), (8)

Φ =
√

3σ + ηcσmg(θ) ln(
σm
σ0
m

), (9)

where σ, σm and θ are stress invariants (Pietruszczak, 2010). The hardening parameter η(εpq) = ηf
εpq

A+εpq
is

a function of the deviatoric plastic strain (εpq). ηf and ηc are the failure slope and the zero-dilantancy slope
respectively. A is a material constant related to hardening. The convex function g(θ) associated with the angle
of internal friction (φ) is given by

g(θ) =
3− sinφ

2
√

3 cos θ − 2 sin θ sinφ
. (10)
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Hp in equation (7) is the plastic hardening modulus given by

Hp = − ∂f
∂εpq

∂Φ

∂σ
. (11)

In the softening stage, the plastic multiplier becomes

dλ =
∂F

∂σ

∆σ

Hp
. (12)

where F is the failure function. For materials with brittle failure, a linear softening law associated with the
fracture energy is commonly used (Baºant and Oh, 1983; De Borst, 1986; Klerck et al., 2004; Pro�t et al.,
2016). Therefore, in the strain-softening stage equation (6) can be simpli�ed as

∆εp = −H∆σ, (13)

where H is the softening slope determined from the material strength (σm), the element characteristic length
(lc) and the fracture energy release rate (Gf ) by

H =
σm

2lc
2Gf

. (14)

2.3. Fracture criteria and fracture algorithm

The failure behavior of solid materials is rather di�erent. For most brittle materials, such as rock, concrete
and glass, tensile failure/fracture is most common. Under con�ning conditions, they may exhibit shear or
compressive failure/fracture from the macroscopic viewpoint. In this work, both shear and tensile fractures
are considered.

In geomechanics, the Mohr-Coulomb failure criterion is the most commonly used shear failure criterion. It
postulates a linear relationship between the shear stress (τ ) and the normal stress (σn),

τ = c− σn tanφ, (15)

where c is the cohesion. Its speci�c form in terms of stress invariants is given by

F =
σ

g(θ)
− 2
√

3 sinφ

3− sinφ
σm −

2
√

3c cosφ

3− sinφ
= 0. (16)

It is noted that the Mohr-Coulomb criterion employs two material constants c and φ. Both of them can be
obtained from basic laboratory tests.
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Figure 3: Linear softening law

For tensile and compressive failures, a smeared fracture model with a linear softening law is commonly used
to simulate the fracture process. The idea of the smeared fracture model is to replace the physical process of
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discrete cracks in a control volume, e.g. a �nite element, by inserting a continuous fracture after the strain
softening stage. It rationalizes the relationship between the softening slope and the fracture energy release rate
using equation (14) such that the energy dissipated in the discrete and smeared failure process is equivalent.
In the softening stage, the failure strain εf (εf = 0, when σ = σm) will be accumulated. The failure criterion
is satis�ed when the maximum failure strain εm is reached (see Figure 3). The maximum failure strain is
calculated by

εm =
σm
H
. (17)
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Figure 4: Intra-element fracture algorithm

When the above failure criteria are satis�ed, a virtual smeared fracture will be inserted into the physical
element using a speci�c fracture algorithm. In the DEM-based FDEM, nodal failure is �rst examined by the
cohesive elements. Then, fracture insertion will be performed by the removal of cohesive elements at the failure
places shown in Figure 1. In contrast, the process of fracturing in the continuum-based FDEM is approached
by fracture mechanics. The failure criteria are examined at each node, and two fracture algorithms can be
used. One is the inter-element fracture algorithm (Munjiza et al., 1995) used in the DEM-based FDEM.
To better simulate the fracture propagation, an improved inter-element fracture algorithm by the inclusion
of middle points of element edges was developed to improve fracture simulations (Fu et al., 2013; Settgast
et al., 2017). The other is the intra-element fracture algorithm, in which the fracture propagates orthogonal
to the direction of the nodal maximum tensile strain (Yu, 1999; Klerck et al., 2004). Next, we will propose an
improved intra-element fracture algorithm, in which the shear failure induced fracture is also considered, and
its primary steps are as follows:

1) Since the strain and stress state of each element has been determined using constitutive models, we need
to �rst map the strain and stress of each node from Gauss points of surrounding elements;

2) According to the nodal stress state, we will �rst identify shear failure nodes using the Mohr-Coulomb
criterion described by equation (16);

3) Then, we need to check whether tensile or compressive failure occurs at other undamaged nodes using
the element size dependent maximum failure strain εm;

4) Once all failure nodes are determined, the failure direction nf at each failure node is de�ned as the
direction of tensile/compressive strain. The fracture propagation direction, i.e. fracture plane, is orthogonal
to the failure direction. Figure 4 shows a local case of the intra-element fracture algorithm with node O being
the failure node. In most cases, the fracture plane will penetrate through the surrounding elements. Then a
continuous fracture connecting two intersections, e.g. E and F , along the fracture plane can be inserted;

5) To avoid abnormal elements, such as needle-shaped element, created by the intra-element fracture
algorithm, we need to separately examine the intersection angle between the fracture plane and the adjacent
edge sharing the same failure node, O. Take Figure 4 for an example, if the intersection angle between edges
OA and OE is less than 6◦, the fracture will be forced to propagate along edge OA instead of OE.

6) The �nal step is to update the element mesh based on the inserted fractures, and to initialize the
associated data at the failure nodes.

In some cases, the above intra-element fracture algorithm could result in the creation of very slender
elements which will lead to an extremely small time step and subsequent expensive computational costs.
Step 5 above provides a way to overcome such issues, which is simpler to implement for 2-d cases for most
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researchers. Particularly, a more stringent but challenging method, local or global remeshing technique, can
be employed to avoid very small time step (Yu, 1999; Klerck et al., 2004). In this work, we will focus on the
key role of the intra-element fracture algorithm in accurate fracture simulations and computational e�ciency
over the inter-element fracture algorithm in the framework of continuum-based FDEM.

3. Numerical experiments

In this section, we will �rst investigate the e�ect of the fracture algorithms mentioned above on the
simulation accuracy and computational e�ciency in the framework of continuum-based FDEM using two
benchmark tests, the Brazilian test and the uniaxial tension test of rock. Then, to further demonstrate the
shear failure criterion and the corresponding fracture algorithm, uniaxial compression tests under di�erent
loading rates are carried out. The numerical examples are conducted by our in-house code developed based
on the explicit element method in this work.

3.1. Brazilian tests

In the �rst benchmark, a circular disk of rock will undergo compression by upper and lower jaws which
move toward each other (see Figure 5). The diameter (D) of the rock disk is 100 mm; the Young's modulus
and Poisson's ratio of the rock under consideration are 12.0 GPa and 0.26 respectively; the bulk density is
2.6 g/cm3; the uniaxial tensile and compressive strengths are 4 MPa and 100 MPa, respectively; the angle
of internal friction is 40◦, and the hardening parameter A used in the deviatoric hardening plastic model is
0.002. The fracture energy release rate (Gf ) is 3 N/m. For the jaws, only elastic behavior is considered in this
work. Their Young's modulus and Poisson's ratio are selected as 200 GPa and 0.29 respectively; the density
is 8.0 g/cm3. To deal with the contact interaction between rock blocks caused by fracturing, a linear normal
contact model with the normal penalty (normal sti�ness) equal to 1.2 GPa ·m is applied. A Coulomb friction
model is adopted to solve the tangential interaction with the tangential penalty and the friction coe�cient
being 0.12 GPa ·m and 0.5. While for the contact between the jaws and the rock, the normal penalty and the
tangential penalty are 20 GPa ·m and 2.0 GPa ·m. The friction coe�cient is 0.5.

 

   

 

t = 0.0 s t = 0.005 s t = 0.01 s 

   
t = 0.0155 s t = 0.0158 s t = 0.0158 s 

 
Figure 5: Snapshots of stress (σxy) contour and fractures of Brazilian tests with intra-element fractures
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The displacement-controlled loadings with a constant speed 7.5 mm/s for the upper and lower jaws are
applied at the same time. To investigate the e�ect of the fracture algorithms on the fracturing simulation,
two groups of Brazilian tests using the inter-element and intra-element fracture algorithms are carried out,
respectively. In each group, various mesh sizes with characteristic length (lc) being 5, 4, 2 and 1 mm are
adopted. Snapshots of the stress contours of the rock sample with the intra-element fracture algorithm and
the characteristic length of mesh being 4 mm at di�erent time instants are shown in Figure 5. With the
progress of loading, the magnitude of stress within the rock sample is increasing gradually. The initiation of
fracture occurs after 0.0155 s. From the snapshot at 0.0158 s, intra-element fractures can be clearly observed.

The variation of the contact force (P ) during the compression process between the upper jaw and the rock
sample is given in Figure 6(a) in the simulation with the intra-element fracture algorithm and the characteristic
length of mesh equal to 4 mm. The relationship between the compressive force and the tensile stress (σt) is
described by (Li and Wong, 2013)

σt =
2P

πDh
. (18)
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Figure 6: Mechanical response of the sample

In the above equation, the unit of the diameter (D) of the rock sample and its thickness (h) is mm. The
units of compressive force (P ) and tensile stress (σt) are N and MPa, respectively. The converted stress is
shown in Figure 6(b), where a brittle failure mode can be observed.

Next, we investigate the e�ect of mesh size on the continuum-based FDEM with the inter-element fracture
algorithm. The fracture distribution within the rock sample at the end of four simulations using the inter-
element fracture algorithm with di�erent mesh sizes is given in Figure 7, where the mesh topology is clearly
shown. For the models with larger mesh sizes, obvious fracture propagation along element edges can be seen.
To distinguish the mesh and the fracture distribution, the obvious fracture patterns are highlighted in red
in Figure 7 using the mode of feature edges. It is found that the distribution of primary fractures in the
simulations with mesh sizes of 2 mm and 1 mm is similar. While in the simulations with larger mesh sizes
the fracture is signi�cantly di�erent from those in the simulations with smaller mesh sizes. In addition to
the fracture distribution, we further compare the stress-strain response of simulation with di�erent mesh sizes
in Figure 8. The corresponding numerical errors of tensile strength are calculated with the value obtained
from the smallest element size being the reference strength, and are shown in Figure 9. We can also �nd the
similar phenomenon as observed in fracture distribution that the tensile strength converges with the decrease
of element size.
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Figure 7: Fracture distribution in models using inter-element fracture
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Figure 8: Comparison of stress-strain behavior under di�erent element sizes
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Figure 9: E�ect of element size on numerical error of tensile strength

To compare the inter-element and intra-element fracture algorithms on the numerical Brazilian tests and
evaluate the e�ciency of the latter, we compare the fracture distribution in the simulations using the intra-
element fracture algorithm with di�erent element sizes in Figure 10, where fracture distributions are highlighted
in red again. We can see in the simulations with the characteristic size of 5 mm and 4 mm, smaller elements
are created due to the intra-element fracture algorithm. However, with the decrease of element size no obvious
intra-element fractures can be found in the simulation with the characteristic size being 2 mm. For the
simulations with the characteristic size of 2 mm but di�erent fracture algorithms, their fracture patterns
are almost the same as shown in Figure 11, where the di�erences are marked using white circles. For the
simulations with larger element sizes, the introduction of the intra-element fracture algorithm renders the
fracture distribution closer to that in the �ne-element simulation. Although there are still some di�erences, it
is much better than the one obtained by the inter-element fracture algorithm.

 

   
lc = 5 mm lc = 4 mm lc = 2 mm 

 
Figure 10: Comparison of failure of models using the intra-element fracture

The e�ect of element size on the tensile strength is shown in Figure 12, where both inter- and intra-element
fracture algorithms are accounted for. Compared to the inter-element fracture algorithm, the intra-element
fracture algorithm can improve the accuracy of tensile strength to a certain degree when the element size is
relatively large.
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a) Inter-fracture b) Intra-fracture 

 
Figure 11: Comparison of fracture distribution simulated by di�erent fracture algorithms (lc = 2 mm)
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Figure 12: E�ect of element size on tensile strength

3.2. Uniaxial tension tests

We further evaluate the intra-element fracture algorithm using uniaxial tension tests of rock. The size of
the rock sample is 100 mm × 200 mm. All material parameters of rock and contact models are the same as
those used in the above Brazilian tests. The displacement-controlled loadings with constant speed 7.5 mm/s
are applied to the nodes at the top and bottom boundaries of the rock sample. As neither platens nor jaws are
used in this tension test, the stress-strain curve is not available, and we will focus on the fracturing process in
this benchmark.

We compare the fracture distribution in the simulations with the inter-element fracture algorithm and three
element characteristic sizes in Figure 13, where the vertical displacement contour of rock samples before and
after fracturing process are shown. In this benchmark the e�ect of element size on fracture distribution is more
remarkable for the simulations using the inter-element fracture algorithm. Then, we further investigate the
element size e�ect on the simulations using the intra-element fracture algorithm. The fracture distribution at
the end of the simulations of di�erent element sizes is shown in Figure 14. Again, it is evident that fractures
propagate through elements in the simulations with characteristic length being 10 mm and 6.5 mm. It is clear
that the fracture distribution in the simulations with the element characteristic length being 10 mm and 6.5
mm is similar to the one in the simulation with the �ne element size when the intra-element fracture algorithm
is utilized to simulate the fracturing process, which indicates that the intra-element fracture algorithm has
obvious in�uence on the simulations of fracturing process with relatively large element sizes.
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Figure 13: Size e�ect on failure process for the inter-element fracture models
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Figure 14: Fracture distribution of models with intra-element fracture

3.3. Uniaxial compression tests

The above Brazilian tests and uniaxial tension tests of rock clearly demonstrate the importance and e�-
ciency of the intra-element fracture algorithm. Next, the proposed FDEM will be further used to investigate
the initiation and propagation of shear failure induced fractures using uniaxial compression tests of rock under
di�erent loading rates.

As shown in Figure 16, the rock sample with size 100 mm × 200 mm will be compressed by two parallel
platens moving towards each other. The mechanical parameters of the platens and the rock sample are almost
the same as those in the Brazilian tests, except that the Young's modulus of the rock sample is 25.0 GPa.
The contact parameters of platen-rock and rock-rock also follow the Brazilian tests. Three loading rates,
vy=2 mm/s, 5 mm/s and 10 mm/s, are respectively applied to the upper and lower platens. The mechanical
responses of rock samples under di�erent loading rates are given in Figure 15. It is obvious that all rock
samples show brittle failure, and the lowest uniaxial compressive strength can be observed from the test with
the smallest loading rate.
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Figure 15: Stress-time curves under di�erent loading rates
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Figure 16: Fracture distributions under di�erent loading rates

Figure 16 shows the snapshots of fracturing, colored by red, of rock samples with the initial mesh size being
4 mm under di�erent compressive loading rates. We can see that the initiation of fractures and subsequent
propagation are of great di�erences in the rock samples under di�erent loading rates. However, it is evident
that these fractures are all shear failure induced, because they propagate mainly along the shear zone formed
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in the compression process.

4. Discussions

In this work, it has been demonstrated that the simulation performed using the continuum-based FDEM
in conjunction with the inter-element fracture algorithm converges with the decrease of element sizes. For
an accurate simulation of fracturing process a very �ne mesh is required, especially in the area around the
fracture tip. However, it is unknown where the fracture initiates within the continuum in most cases. In such a
situation, the whole simulation domain needs to be discretized using �ne meshes, which may be computationally
expensive. To improve the computational e�ciency of the continuum-based FDEM, an intra-element fracture
algorithm was proposed by Prof. Owen's group at Swansea University, UK. We adapt the intra-element fracture
algorithm in this work, and examine its e�ciency in the Brazilian tests, uniaxial tension and compression tests
of rock. It is found that the intra-element fracture algorithm can improve the numerical accuracy of the
fracturing process in the simulations with a relatively large mesh size compared to the inter-element fracture
algorithm in the framework of continuum-based FDEM. In the inter-element fracture algorithm, the fracture
can only propagate along the edges of elements. For a simulation with a relatively large element size, the failure
plane could pass through the element. If the fracture is only allowed to propagate along element edges, there
will be numerical errors caused unless a very �ne mesh is adopted. In contrast, the intra-element fracture
algorithm can secure the accurate simulation of fracturing process. This has been evaluated in the above
benchmark tests. In the Brazilian tests, the indirect tensile strength obtained from simulations with large
element sizes and the intra-element fracture algorithm is only improved to a certain degree compared to the
one obtained by the inter-element fracture algorithm.

One potential concern is that if very small-sized elements are created by the intra-element fracture algo-
rithm, it may result in an extremely small time step and subsequently leads to very expensive computational
costs. To quantify this concern, the computational e�ciency of the continuum-based FDEM using di�erent
fracture algorithms and di�erent element sizes is examined. The total CPU costs of all the numerical simula-
tions of the Brazilian tests are compared in Figure 17, where the simulations are carried out in a laptop with
Intel Core i5-6200U CPU @ 2.30GHz-2.40GHz and 8 GB memory (RAM).

It is shown that with the decrease of element sizes, the computational cost increases dramatically in both
the inter-element and intra-element fracture algorithm groups. For the simulations with element sizes of 1
mm and 2 mm, there is no distinct di�erence in computational costs between the two algorithms, simply
because fractures only propagate along element edges when element sizes are su�ciently small. While for the
simulations with element sizes ranging from 4 mm to 5 mm, the computational cost of the simulations using
the intra-element fracture algorithm is more expensive than the simulations using the inter-element fracture
algorithm. However, compared to the accurate simulations using smaller element sizes, the increased time cost
caused by the intra-element fracture in the simulations with relative larger elements can be ignored, which
indicates that the intra-element fracture algorithm is more e�cient. It is worth mentioning that to further
improve the computational e�ciency of the intra-element fracture algorithm, both global and local remeshing
techniques can be employed to avoid elements with smaller characteristic sizes. Related work can be found in
(Yu, 1999; Klerck et al., 2004).
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Figure 17: Computational costs used in the Brazilian tests

5. Conclusions

This work presents an improved continuum-based FDEM by the incorporation of shear failure induced
fractures. Both the inter-element and intra-element fracture algorithms are developed. In particular, we also
propose an improved intra-element fracture algorithm for fractures induced by both tensile and shear failure
criteria. Then, benchmark tests, the Brazilian test, the uniaxial tension and compression tests of rock, are
carried out to demonstrate our improved continuum-based FDEM. Conclusions can be drawn as follows:

1) Compared to the DEM-based FDEM, the continuum-based FDEM is more solid in theory, but its
implementation is di�cult and very challenging for three-dimensional simulations.

2) The simulated mechanical behavior of rock by the continuum-based FDEM with the inter-element
fracture algorithm converges when element size decreases.

3) Benchmark tests prove that the intra-element fracture algorithm is more e�cient in both computational
cost and numerical accuracy compared to the inter-element fracture algorithm in the framework of continuum-
based FDEM.

Obviously, more work, including detailed investigations of the model and related algorithms, is needed to
further evaluate and improve the current two-dimensional FDEM. As we mentioned in the previous sections,
some of the algorithms, such as the one to remove abnormal and slender elements, are only for 2-d problems, and
their extension to 3-d models is not straightforward. Besides, to further improve the computational e�ciency
of the intra-element fracture algorithm, adaptive remeshing techniques are required for the simulations of
engineering problems, which will be our future work.
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