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1. General Introduction 

 

This thesis aims to investigate the effect of environmental drivers on seagrasses by studying 

shoot-scale and meadow-scale responses, focussing on Zostera marina, Zostera noltii and 

Halodule wrightii.  Seagrasses are plants that have evolved from being terrestrial to living in 

an entirely marine environment which means they have become highly adapted.  The 

conditions that effect seagrass growth can also be described as drivers as they have the ability 

to modify seagrass meadows in a variety of ways.  These drivers can either be natural 

environmental factors or anthropogenic processes directly or indirectly affecting the marine 

environment in which seagrasses are found.  These responses environmental conditions allow 

seagrasses to be used as indicators of the health of our coastal waters with poor water quality 

causing substantial impacts on seagrasses.   Better knowledge of seagrass responses to local 

environmental conditions will help the identification of stressors which can then be managed.  

It will also help to comprehend the degree of risk to be expected from the threat of climate 

change including increased storm events, rises in sea level and sea temperature, and ocean 

acidification.  Mitigating existing or potential impacts that lead to a reduction in water quality 

will improve the overall health and resilience of the seagrass to future threats from climate 

change.   

1.1 Seagrasses and their ecosystem role 

Seagrasses are marine angiosperms, the only truly marine flowering plants that have adapted 

to total submergence in the marine environment.  They can be found in shallow coastal 

habitats around the World, typically growing in sandy or muddy substratum down to a depth 

determined by light availability.  Seagrasses are known as ecosystem engineers as they are 

able to modify their abiotic environment (van der Heide et al., 2007). They can form dense 

meadows in subtidal and intertidal zones, with complex root and rhizome systems, which bind 

and stabilise substrata (Fig. 1.1).  Their leaves absorb nutrients from the water column 

(Moore, 2004) and act as baffles to wave action, slowing water flow and increasing 

sedimentation from the water column (Gacia and Duarte, 2001) and are thus also responsible 

for reducing turbidity.  Seagrass meadows provide many important ecosystem services.  The 

below-ground structure of seagrass meadows can help to protect shorelines from erosion as 
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well as provide a stable and oxygenated substratum for benthic fauna to dwell in (Jackson et 

al., 2013; Short and Wyllie-Echeverria, 1996).  The seagrass canopy filters nutrients from the 

seawater and provides food and shelter for many organisms, supporting a high biodiversity 

within the substratum as well as within the meadow (Gell and Whittington, 2002; Orth et al., 

1984; Short et al., 2007).  The complex habitat created by seagrasses is home to juvenile and 

larval stages of larger organisms including commercially important bivalve and fish species 

(Beck et al., 2001; Bertelli and Unsworth, 2013; Heck et al., 2003; Jackson et al., 2001; 

Unsworth et al., 2008) and intrinsically valuable species such as seahorses (Curtis and Vincent, 

2005; Díaz-Ruiz et al., 2000; Jackson et al., 2013; Vincent et al., 2011).  Seagrass is also a direct 

food source for a range of herbivores including fish and invertebrates, but also for a number 

threatened species including waterfowl such as Brent geese (Brant bernicla), wigeon (Anas 

Penelope) (Fox, 1996; Ganter, 2000; Nacken and Reise, 2000), turtles, dugongs and manatees 

(Short and Wyllie-Echeverria, 1996). 

Seagrasses are arguably one of the biggest sinks of carbon on Earth, storing organic carbon 

from the atmosphere (Fourqurean et al., 2012; Macreadie et al., 2015; Mcleod et al., 2011) 

whereby carbon is absorbed from the water column and stored as plant tissue as seagrasses 

grow.  Over time, as seagrasses grow and die, meadows can form dense reef-like structures, 

laying down dead material in the sediments creating a carbon sink (Fourqurean et al., 2012).  

For these reasons seagrasses are of high conservation and ecological importance and 

considered to be a foundation species (Davison and Hughes, 1998; Jackson et al., 2013; Orth 

et al., 2006).  Despite this importance, seagrass habitats are being threatened the world over 

by variety of natural and anthropogenic induced impacts (Björk et al., 2008; Jackson et al., 

2013; Jiang et al., 2013; Milazzo et al., 2004; Neckles et al., 2005; Orth et al., 2006; Short and 

Wyllie-Echeverria, 1996).  In a review of the global status of seagrass, Waycott et al., (2009) 

calculated it to be declining at a rate of 110 km2yr-1 since 1980.   
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Figure 1.1.  (Left) Zostera noltii, a small intertidal species of seagrass with leaves between 6-22 cm 
long (photo from WoRMS, taken in Swale, Kent, 2004) and the larger species eelgrass (right), Zostera 
marina, which generally has leaves 20-50 cm long but can grow up 2 m in places such as the Isles of 
Scilly, where this photo was taken (2018). 

1.2 Threats to seagrasses 

Seagrasses are protected at global, regional and local scales. Under the United Nations 

Environmental Programme (UNEP), seagrasses are described as important marine ecosystems 

in need of protection (Jackson et al., 2013), however they are considered to be afforded the 

least protection of all marine ecosystems (UNEP, 2020; Unsworth et al., 2019).  Reasons for 

this are multifaceted but include the lack of awareness of the issues faced by seagrasses 

amongst stakeholders (Unsworth et al., 2019) alongside the lack of effective integrated 

coastal management needed to identify the multiple pressures threatening these ecosystems 

(Griffiths et al., 2020). 

Physical destruction of seagrass meadows can be caused by many factors such as coastal 

developments, boat moorings, anchor damage, fishing and storm events which can lead to 

the removal or fragmentation of seagrass meadows. The environmental conditions 

favourable to seagrass meadows often overlap with areas that are most suitable for harbours 

which means they are often subjected to boating pressures.  Damage to seagrass rhizomes 

from anchoring and propellers within meadows can be significant where it is not managed.  

Rhizomes are easily broken and plants ripped up by anchors or scarred from rope or chain 

drag (Fig.1.2) (Collins et al., 2010; Francour et al., 1999; Milazzo et al., 2004; Montefalcone et 

al., 2008).  Moorings within seagrass meadows will scour the seabed limiting growth and 

causing characteristic circular scars which can be seen from aerial photos, within which plants 

are sparse or more than likely absent (Collins et al., 2010; Egerton, 2011; Kelly et al., 2019; 
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Stamp and Morris, 2013).  Physical damage in seagrass meadows opens up space that is at 

risk of colonisation by opportunists including fast growing algae or non-native species.  

Disturbance increases the vulnerability to invasive species, which is an increasing problem, 

with over 56 non-native species having been introduced within seagrass meadows (Williams, 

2007).  Fragmentation and damage from physical disturbance significantly impacts the 

stability of this habitat and its ecological value in its capacity to support marine life and protect 

coastlines.  The conflict between boat users and seagrass conservation has been remedied in 

some places with the use of permanent visitor moorings to minimise anchoring as well as 

designating seagrass meadows as no anchor zones.  More recently, the development of 

seagrass friendly moorings that reduce the scouring effects of mooring lines are becoming 

increasingly popular (Egerton, 2011; Jackson et al., 2013).  Raising awareness about seagrass 

meadows to stakeholders including the damage that can be caused by boats and clearly 

marking the extent of the beds to aid avoidance will help to reduce these risks, but only if 

supported and enforced by local government agencies and managers (Jackson et al., 2013; 

Kelly et al., 2019).   

 

 

Figure 1.2. Mooring scar caused by chain scour over a seagrass meadow in Porthdinllaen, UK, 2016. 
 

Light is the most important factor to affect the growth, distribution and productivity of any 

primary producer, and as such, seagrasses are particularly sensitive to chronic and temporary 

light reduction. Reduced water quality either directly or indirectly compromising light 
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attenuation in the water column is thought to be the most significant threat to seagrass 

meadows worldwide (Biber et al., 2009; Hemminga, 1998; Jiang et al., 2013).  Light can be 

attenuated by increased turbidity caused from boating activity, terrestrial run-off or 

resuspension of particulate matter in the water column from fishing and dredging activities 

(Biber et al., 2009; Jiang et al., 2013).  Nutrient loading from agricultural and urban run-off 

can lead to eutrophication, particularly in sheltered areas, causing algal blooms and increasing 

epiphytic growth which reduce light availability (Jackson et al., 2013; McClelland and Valiela, 

1998).  Nutrient over-enrichment has been attributed to one of the major reasons for seagrass 

die-off worldwide (Burkholder et al., 2007; Ralph et al., 2007; Short and Wyllie-Echeverria, 

1996). Not only does nutrient loading decrease light levels but it can also lead to the 

overgrowth of macroalgae that can outcompete seagrasses if not managed.  As a marine 

angiosperm, seagrass has a relatively high minimum light requirement (MLR) in comparison 

to other marine primary producers in the marine environment (Kenworthy and Fonseca, 

1996).  This is due in part to the large proportion of non-photosynthetic tissue that make up 

the roots and rhizomes, often rooted in anoxic sediments due to the high microbial activity 

within (Hemminga, 1998).  Oxygen is transported to the roots from the leaves via internal 

aeration canals called lacunae (Beer et al., 2014; Carruthers et al., 2001; Waycott et al., 2007).  

The root and rhizome system of seagrasses is extensive, they are more closely related to 

ginger or lilies than true grasses (Jackson et al., 2013) and carbohydrates are stored in the 

rhizomes as a reserve for periods when respiration may outweigh photosynthesis (Burke et 

al., 1996).  The root system enables seagrasses to absorb nutrients from within the substrate 

as well as across the leaves from the water column which gives them an advantage in nutrient 

poor waters (Hemminga, 1998).  However, this turns to a disadvantage in deteriorating light 

conditions with the non-photosynthetic below-ground tissue increasing the respiratory 

demand on the above ground photosynthetic tissue (Collier et al., 2012; Hemminga, 1998). In 

these circumstances, the balance between carbon demand (for growth, respiration and 

reproduction) and carbon gain (via photosynthesis) becomes close to or even below zero 

(Duarte and Kirkman, 2001; Leoni et al., 2008).  The MLR of seagrass can also be seasonal, 

particularly in temperate zones where the fluctuations in daily light period and temperature 

are great.  Increased summer temperatures will increase the metabolic activity of the plants 

resulting in increased rates of photosynthesis and respiration and therefore an increase in 
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MLR (Marsh et al., 1986).  When temperatures drop, metabolic activity slows and plant 

growth is reduced lowering the minimum light requirement, but allowing survival aided by 

carbohydrate stores within the rhizomes (Olesen and Sand-jensen, 1993).   

The effects from climate change will have considerable implications for seagrasses especially 

where they are growing at edges of geographical ranges.  An increase in sea level will modify 

seagrass distribution, with potential expansion of shallow edges where conditions are 

suitable, but shrinkage from deeper edges where light attenuation will increase.  Rises in sea 

temperature are predicted to lead to the ‘Tropicalization’ of temperate seagrass meadows, 

especially in the southern hemisphere, due to a poleward shift in warmer waters (Hyndes et 

al., 2016).  Rises in temperature will increase the MLR of seagrasses due to increased 

respiration rates.  Also, increased storm events will lead to increased run-off, affecting 

turbidity as well as causing physical damage.  The effects of ocean acidification (OA) are more 

complex, with indirect effects from the impacts on calcifying organisms such as calcareous 

algae, corals, molluscs, and crustaceans. These organisms make up some of the epiphytes, 

grazers and predators found within seagrass meadows around the world.  A reduction in 

epiphytic grazers for example, could have huge consequences for seagrasses.  However, 

seagrass could help to reduce the effects of ocean acidification, as they have the capacity to 

modify the pH within their canopy (Hendriks et al., 2014). Their ability to uptake dissolved 

inorganic carbon (DIN) in the form of CO2 or HCO3
-  means they have the potential to modify 

local carbonate chemistry and buffer the effects of ocean acidification (Koweek et al., 2018; 

Unsworth et al., 2012).  However, existing pressures on seagrasses means that this capacity 

and their resilience to adapt to climate change has already been undermined (Ehlers et al., 

2008). 

One of the most well documented losses of seagrasses was the dramatic die-off of Z. marina 

in the 1930s across the whole of Europe and North America, which coincided with intensive 

use of artificially produced fertilisers and herbicides in agriculture (Hughes et al., 2018).  This 

significant loss has been attributed to an infection called ‘wasting disease’, a type of slime-

mould Labyrinthula zosterae which causes blackened lesions in leaves which inhibit 

photosynthetic capacity (Ralph and Short, 2002).  This led to vast swathes of seagrass 

meadows being decimated with losses of around 90% (Muehlstein, 1989).  Wasting disease is 
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still prevalent in eelgrass meadows today and is thought to be ubiquitous in the marine 

environment (Vergeer and den Hartog, 1994).  The lack of such die-back events in recent years 

has led scientists to believe other stressors, such as poor water quality, causes seagrasses to 

become less resilient and therefore more susceptible to the disease (Ralph and Short, 2002). 

The sensitivity of seagrasses to declines in water quality defines seagrasses as sentinels of 

coastal degradation (McMahon et al., 2013; Orth et al., 2006) and in many cases seagrasses 

are integrated into management plans to assess the ecological status of coastal waters 

(Dennison et al., 1993; Foden and Brazier, 2007; Krause-jensen et al., 2005).  However poor 

water quality is still causing a steady decline in seagrass meadows worldwide and we are at 

risk of losing the very sentinels of coastal health on which we depend (Dennison et al., 1993; 

McMahon et al., 2013; Orth et al., 2006; Short and Wyllie-Echeverria, 1996).  Effective 

integrated coastal management or ecosystem-based management is needed to identify and 

manage the threats to seagrasses which includes consistent and frequent monitoring 

(Griffiths et al., 2020; Ruiz-Frau et al., 2017). 

1.3 Adaptations of seagrasses to environmental drivers related to water quality 

The main environmental driver related to water quality problems is a reduction in light 

availability.  Light attenuation from the water column means that seagrasses need 

morphological and physiological adaptations to living in lower light conditions than their 

ancestral land-based relatives.  Seagrasses have also been classified as shade-adapted marine 

plants due to their overall ability to survive at low levels of irradiance, for example Posidonia 

oceanica can grow up to depths of up to 45 m in the Mediterranean (Pergent et al., 2010).  

Yet other seagrasses, such as Zostera species found in turbid estuarine habitats, can have a 

depth limit of less than 2 m (Collier et al., 2007; Dennison et al., 1993; Duarte, 1991).  The 

band of light spectrum that is utilized by seagrass and other plants, known as 

photosynthetically active radiation (PAR), is comprised of wavelengths between 400-700 nm 

(measured in µmol photons m-2s-1) (Beer et al., 2014; Carruthers et al., 2001).  In the marine 

environment, a substantial amount of light from the surface is either reflected, refracted or 

absorbed by the water which means levels of PAR drop quite significantly with depth.  

Seagrass light acclimation varies greatly on spatial and temporal scales.  Some species of 

seagrasses tolerate and adapt to high levels of irradiance, especially in tropical regions with 
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increased water clarity and high levels of sunshine.  Halophila stipulacea was shown to adapt 

to high light irradiance with changes in chlorophyll content, maximal photosynthesis rates 

and maximal quantum yield demonstrating an ability to acclimate to high and low light 

conditions within weeks (Sharon et al., 2009).  In high irradiances, H. stipulacea also 

demonstrated chloroplast clumping, making the plant appear more transparent, and then 

when the light intensity lowers the chloroplasts disperse again.  This is thought to protect the 

chloroplasts against high irradiance and UV radiation damage (Beer et al., 2014). 

Seagrasses exhibit various changes in morphology and physiology to light limitation.  Some 

shading experiments have shown that as leaf length decreases, leaves become narrower and 

thinner, with fewer leaves per shoot (McMahon et al., 2013).  Above ground biomass is 

reduced in this way in order to reduce the respiratory and energetic costs that come from the 

production and maintenance of new leaves (Collier et al., 2012; Fourqurean and Zieman, 

1991).  Chlorophyll content increases under low light, with the chlorophyll a:b ratio lowering 

to increase photosynthetic efficiency (Silva et al., 2013).  However, photosynthetic 

performance measured using chlorophyll fluorescence, decreases within a relatively short 

time-frame (Bité et al., 2007; Ralph and Gademann, 2005).  In general leaf size and number 

of leaves per shoot decreases rather than increases which reduces the respiratory demand of 

the shoot, but also results in a decrease in photosynthetic capacity (Campbell and Miller, 

2002; Collier et al., 2012; Ralph et al., 2007).  A reduction in PAR means growth is affected 

resulting in a reduction in shoot production, leaf growth, root extension and rhizome 

extension.  These changes indicate that seagrasses are able to acclimate to a changing light 

environment, but the ability to maintain a positive carbon balance will depend upon stores 

within the rhizomes which will have been built up in higher light conditions (Dennison and 

Alberte, 1985; Yaakub et al., 2013). This is exhibited by a reduction in rhizome sugars and 

reduced carbon uptake indicated by the carbon nitrogen ratio (C:N) in the shoots (McMahon 

et al., 2013).  When reserves have been depleted, the resilience of seagrasses to further light 

reduction or stresses will be weakened.  The responses of seagrasses to short and long-term 

light reductions have been well studied, and understanding the MLR threshold of survival has 

been highlighted as an important component which needs to be integrated into management 

and monitoring plans (Dennison et al., 1993; Erftemeijer and Lewis, 2006; McMahon et al., 

2013; Yaakub et al., 2013).  Local light history will affect the MLR threshold of seagrasses.  For 
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example, Halophila ovalis subjected to a chronic low light or turbid environment was found 

to have diminished resilience to further light reductions in comparison to H. ovalis from a 

clear site (Yaakub et al., 2013).  The maximum depth limit of a seagrass meadow will give an 

indication of the MLR of seagrass and some idea of the mean annual light regimes of the 

location (Carruthers et al., 2001).  An overview of the maximum depth limits of seagrass 

meadows was compiled by Duarte (1991) and the average minimum surface irradiance 

needed for seagrasses found to be 11% of surface irradiance (Duarte, 1991).  However, 

estimates of the MLR of seagrasses can vary greatly between species and within species 

(Longstaff and Dennison, 1999).  There is, therefore, the scope and the need to understand 

seagrass resilience and ability to adapt to environmental stresses such as low light, in different 

species and within different locations (Procaccini et al., 2012).   

Seagrasses absorb nutrients from the water column via their leaves as well as through the 

sediments via their roots.  Although nutrients are necessary for productivity, as with all 

primary producers, nutrient availability will effect tissue content, particularly the content of 

nitrogen as well as the ratios of carbon, nitrogen and phosphorus, C:N:P or C:N (Burkholder 

et al., 2007; Touchette and Burkholder, 2000). However, C:N is also used as an indicator of 

light availability. Nutrients are depleted under high light conditions whereby photosynthesis 

rates are increased resulting in higher C:N of plant tissue (Burkholder et al., 2007).  The 

concentration of stable isotopes within leaf tissue can also help determine the source of 

available nutrients, with δ15N often indicative of anthropogenic sources (Fourqurean et al., 

1997; Udy and Dennison, 1997).   Morphological responses of seagrasses to nutrient loading 

can be inconsistent and are influenced by other environmental conditions such as light and 

local hydrodynamics, although leaf biomass has been found to decrease with increased leaf 

nitrogen content (Lee et al., 2004).  Seagrass meadows growing in oligotrophic waters will 

respond differently to nutrient loading to seagrasses where nutrients are not limited.  In the 

former, nutrient inputs can stimulate production leading to longer, wider, denser seagrass, 

but where nutrients are excessive, also causing algal growth and shading, seagrass meadows 

will reduce in biomass and density (Short et al., 1995). 
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1.4 Aims 

The aim of this study is to investigate the effects of water quality related environmental 

drivers on the morphological and physiological adaptations of seagrasses by studying 

responses under controlled conditions as well as in situ using existing environmental 

gradients. The aims were as follows:  

1) To test a range of bioindicators of light stress on the seagrass Zostera marina under 

controlled laboratory conditions by consistently measuring changes over time under 

different light regimes at a shoot level (Chapter 2). 

2) Investigate the status of Zostera noltii, a small pioneering seagrass species, within a 

heavily industrialised waterway looking at meadow scale changes in abundance and 

extent over time using long-term monitoring data (Chapter 3). 

3) Investigate morphological and physiological bioindicator responses of a small 

pioneering seagrass species, Halodule wrightii, growing under a range of 

environmental stressors and anthropogenic impacts in Brazil (Chapter 4). 

4) Compare the plasticity of Z. marina meadows growing in a range of environmental 

conditions, including a potentially impacted site within an industrialised waterway, 

using shoot and meadow scale bioindicators, and analyse any available long-term 

monitoring data to determine the stability and status of these seagrass meadows 

(Chapter 5).  
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Chapter 2: Light Stress Responses by the eelgrass Zostera marina (L)  
This work was published as: 

Bertelli, C.M. and Unsworth, R.K., (2018). Light Stress Responses by the Eelgrass, Zostera 

marina (L). Frontiers in Environmental Science. 

 

Abstract 

Zostera marina is the dominant seagrass species in the Northern Hemisphere where it grows 

in sheltered bays and estuaries. As a consequence of its distribution its conservation is 

commonly threatened by poor coastal water quality.  The high minimum light requirements 

of seagrasses results in water quality degradation (high turbidity and eutrophication) being a 

significant risk.  Bioindicators of light stress can be used to interpret seagrass responses to 

light limitation and therefore act as sentinels for conservation management.  However, there 

exists limited experimental inter-comparison of the effectiveness of multiple individual 

bioindicator responses.  Meta-analysis suggests that rhizome sugars, shoot C:N, shoot growth 

and number of leaves per shoot provide the most consistent response variables to increasing 

light limitation in seagrass, but this premise remains largely untested at the plant level as a 

direct comparison of multiple bioindicators.  The present study aimed to test the 

morphological, physiological and photo-physiological bioindicator responses of Z. marina to 

light stress applied within controlled laboratory conditions. These bioindicators were used to 

assign minimum light thresholds.  Growth rate and photophysiological parameters (alpha, Ek 

and ETRmax) were rapidly (1st week) and drastically affected by low light shade treatments (20 

µmol photons m-2s-1 and lower).  After three weeks at low light, significant reductions in 

maximum leaf length and leaf width were observed.  Principal Component Analysis identified 

leaf length, shoot growth, shoot surface area, ETRmax, Ek and alpha as having the strongest 

responses to reduced light.  Shoot growth, ETRmax, Ek and alpha were found to provide the 

best early warning of light limitation after 5-8 days.  These results provide evidence for 

bioindicators of light stress in Z. marina and highlights the importance of understanding these 

responses for the successful management and conservation of this species. 
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2.1. Introduction 

Chronic and temporary light reductions caused by reduced water quality are the biggest 

threat to seagrasses globally (Biber et al., 2009; Hemminga, 1998; Jiang et al., 2013).  The 

sensitivity to light reduction and high nutrient levels defines seagrasses as sentinels of coastal 

degradation (McMahon et al., 2013; Orth et al., 2006) and in many cases seagrasses are 

integrated into management plans to assess the ecological status of coastal waters (Dennison 

et al., 1993; Foden and Brazier, 2007; Krause-jensen et al., 2005).  However, poor water 

quality has resulted in a steady decline in seagrass meadows for decades worldwide and we 

are at risk of losing the very sentinels of coastal health we have defined (Dennison et al., 1993; 

McMahon et al., 2013; Orth et al., 2006; Short and Wyllie-Echeverria, 1996).   

Seagrasses have been found to exhibit various changes in morphology and physiology in 

response to light limitation.  These responses can be used as bioindicators of reduced light 

levels attributed to anthropogenic disturbance or other causes for decline in water quality.   

Light limitation generally causes a decrease in above ground biomass, enabling plants to 

reduce the respiratory demand of the shoots, but resulting in a decrease in photosynthetic 

capacity (Campbell and Miller, 2002; Collier et al., 2012b; Ralph et al., 2007).  This is shown in 

morphological responses exhibited during shading experiments such as decreases in leaf 

length, leaf width, shoot growth and fewer leaves per shoot reducing overall plant surface 

area (Biber et al., 2009; Collier et al., 2012b; Ochieng et al., 2010; Olesen and Sand-jensen, 

1993; Yaakub et al., 2013).  The photosynthetic performance of seagrasses, measured using 

chlorophyll fluorescence, has been found to be affected by light stress within a relatively short 

time-frame from within days to just seconds (Bité et al., 2007; Ralph and Gademann, 2005).  

The reduction in light availability results in an increase in the light capture efficiency of the 

photosystems, but an overall decrease in electron transport rates and carbon fixation (Bité et 

al., 2007; Ralph and Gademann, 2005).  Light reduction can also result in an increase in 

chlorophyll content, with the chlorophyll a:b ratio lowering to increase photosynthetic 

efficiency (Collier et al., 2009; Collier et al., 2012b; Sharon et al., 2009; Silva et al., 2013).  

However some studies have found the opposite effect under very low light conditions (Biber 

et al., 2009; Collier et al., 2012b).  These responses in morphology and physiology indicate 

that seagrasses are able to acclimate to a changing light environment.  However the ability to 

adapt and maintain a positive carbon balance will depend upon the stores within the rhizomes 
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which will have been built up in higher light conditions, as well as the strength and length of 

light attenuating events (Dennison and Alberte, 1985; Yaakub et al., 2013).  This can be shown 

by a reduction in rhizome sugars and reduced carbon uptake indicated by the carbon nitrogen 

ratio (C:N) in the shoots (Alcoverro et al., 1999; McMahon et al., 2013).  If light levels drop 

below the minimum light requirement (MLR) threshold, plants are unable to maintain this 

carbon balance and plant mortality follows.   

The range of responses and adaptations of seagrasses to changing light environments could 

be a reason for the variety of methods used in monitoring.  In Europe, 49 seagrass indicators 

and a total of 51 metrics have been identified in a review of monitoring strategies (Marbà et 

al., 2013).  A more consistent approach would prove useful for managers in determining the 

status of seagrass meadows aided by identifying the best metrics to measure.  A detailed 

meta-analysis by McMahon et al., (2013) revealed a number of consistent and robust 

bioindicators to light stress from an array of tropical and temperate seagrass species across a 

geographical range.  In particular, rhizome sugars, shoot C:N, shoot growth and number of 

leaves per shoot were found to exhibit early responses, with shoot density and above-ground 

biomass as meadow-scale, long-term responses.  However, it should be taken into 

consideration that response thresholds to light reduction are species-specific and dependent 

on morphological plasticity, storage products and growth rates (Collier et al., 2012b; Olesen 

et al., 2002; Ralph et al., 2007).  Although there exists a number of reviews and meta-analyses 

of bioindicators (Biber et al., 2005; Lee et al., 2007; McMahon et al., 2013; Ralph et al., 2007), 

there are limited case study examples that simultaneously compare a plethora of 

morphological, photophysiological and biochemical indicators of seagrass response to light 

availability. 

Zostera marina (eelgrass) is a prolific temperate seagrass found growing from the intertidal 

to depths of around 10m depending on water clarity (Dennison and Alberte, 1982; Jackson et 

al., 2013).   Its distribution in temperate and subpolar regions makes Z. marina particularly 

vulnerable to light limitation, with significant reductions in light during winter months 

(Alcoverro et al., 1999; Backman and Barilotti, 1976; Moore et al., 1997; Zimmerman et al., 

1995).  The MLR of seagrass is relatively high in comparison to other marine primary 

producers (Kenworthy and Fonseca, 1996), due in part to the large proportion of non-
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photosynthetic tissue that makes up the roots and rhizomes.  By using maximal depth limits, 

the MLR for Z. marina is estimated to be 17.6 ± 5.3% SI (Dennison et al., 1993; Erftemeijer and 

Lewis, 2006; Lee et al., 2007).  Surface irradiance (SI) levels vary spatially and temporally with 

photo-acclimation to local light regimes thought to be responsible for the large within-species 

variation (Lee et al., 2007).  Other studies suggest that eelgrass requires 5-6 hours of 

irradiance-saturated photosynthesis per day to maintain a positive carbon balance (Alcoverro 

et al., 1999; Zimmerman et al., 1996, 1995).  Nonetheless, the understanding of the MLR 

threshold of survival has been highlighted as an important component which needs to be 

integrated into management and monitoring plans (Collier et al., 2016; Dennison et al., 1993; 

Erftemeijer and Lewis, 2006; McMahon et al., 2013; Yaakub et al., 2013).  

The aim of the present study was to test a range of light stress bioindicators simultaneously 

by systematically monitoring the morphological and physiological responses of Z. marina to 

varying degrees of light stress treatment under experimental conditions.  Plants under low 

and extremely low light treatments were expected to show a rapid change in photosynthetic 

performance and shoot growth followed by morphological responses as plants become 

constrained by low light, leading to mortality.  Plants under medium light (close to minimum 

light requirements) were expected to show less extreme responses and better adaptation to 

lower light conditions to allow survival.  By monitoring the rate of numerous responses to 

light stress over time, this study aimed to identify the most robust bioindicators of light stress 

specific to Z. marina and provide a quantitative estimate for the MLR threshold for this 

seagrass species. 

 

2.2. Materials and methods 

2.2.1 Experimental design 

 

Thirty independent Z. marina cores (10 cm x 10 cm, 15-20 cm deep) were collected on a low 

spring tide from across a shallow subtidal seagrass meadow at Durgan, Helford River, UK 

(50o06’27.19”N; 5o06’54.70”W).  Care was taken to ensure the plants were extracted with as 

little damage as possible and that the shoots had substantial rhizome sections and sediment 

for re-planting.  The cores of seagrass were put into separate large plastic bags and then 
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transferred to pots and placed in a cool box for transportation to Swansea University, with ice 

packs and fresh seawater.  Extra samples of rhizomes and shoots were taken as site control 

samples for carbohydrate analysis (n=4), chlorophyll content (n=4) and C:N ratios (n=5) to 

compare with plants at the end of the experiment.  These samples were stored in a freezer at 

-20°C.  The individual cores were replanted into tubs (n=5 per treatment).  Extra sediment 

collected from the field site was used to ensure natural presence of benthic fauna.   

In the laboratory, the plants were left to acclimatize for 10 days before the experiment started 

in a flow-through system providing fresh filtered seawater.  At the start of the experiment, 

the plants were placed under 4 different light treatments in a flow-through seawater 

microcosm providing continuous fresh seawater.  Pumps and air stones were provided to 

ensure circulation and the shade treatments were created using shade cloths.  The flow-

through system was connected to a cooling unit to ensure maintenance of a temperature of 

14 ± 1oC, simulating the sea temperature at time of collection.  The temperature was 

monitored in each tank with a Tiny Tag (Aquatic 2, Gemini data loggers, Chester, UK) 

temperature logger.  Frames with LED aquatic lights (AquaBeam 2000HD) were fitted and 

shades of varying weave put in place above and between the tubs to create independent 

shade treatments (and high light with no shade).  A light meter (ULM-500, with spherical 

micro quantum Sensor US-SQS/L, Waltz GmbH, Effeltrich, Germany) was used to set up the 

light treatments by measuring the average PAR (Photosynthetic Active Radiation) in each tank 

section at the top of the seagrass leaf canopy.  The HL treatment was set up to have a level 

that corresponds to HL treatments in other studies of around 100 ± 10 µmol photons m-2s-1 

(Biber et al., 2005; Olesen and Sand-jensen, 1993; Shafer and Kaldy, 2013) also comparable 

to highest growth rates found previously (between 100-150 µmol photons m-2s-1, Olesen and 

Sand-jensen (1993)).  The medium light treatment (ML) was set up using 40% shade cloth 

which gave an average of 27 ± 5 µmol photons m-2s-1 at plant height, to create light levels that 

correspond to levels of light compensated growth (between 19-47 µmol photons m-2s-1 , 

Olesen and Sand-jensen, 1993).  The low light treatment (LL) was created using a 90% shade 

cloth, reducing the light to around 7 ± 3 µmol photons m-2s-1. The extreme low light treatment 

(EL) was placed under a 98% shade cloth found to have a PAR of around 1.8 ± 0.5 µmol 

photons m-2s-1.  Lights were fitted on a timer to give a photoperiod of 10 hours of light and 14 

hours of dark reflecting the natural daylight hours at time of collection.  An Odyssey PAR light 
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logger (Dataflow Systems Ltd), calibrated against a Li-Cor quantum light sensor (LI 192), was 

deployed at mid-depth of plant canopy under each treatment for 1-2 days logging every 10 

mins, to provide an average PAR per day (Table 2.1).  The experiment was set up to run for 6 

weeks after acclimation time. 

Table 2.1. Total amount of light recorded by Odyssey PAR logger placed within tanks (calibrated with 
a LI-COR, Li-250A light meter) and temperature range logged for each treatment tank. 

 

Treatment Amount of light per 

day 

(mol photons m-2day-1) 

Average PAR per 

treatment (µmol 

photons m-2s-1 ±SD) 

Temperature 

range (°C) 

 

High 

5.61 

155.76 ± 11.42 

(100%) 

13.2 – 14.0 

Medium 0.73 20.15 ±0.36 (12.9%) 13.2 – 14.0 

Low 0.35 9.78 ± 0.57 (6.3%) 13.4 - 13.9 

Extreme low 0.14 3.76 ± 0.41 (2.4%) 13.4 - 13.9 

 

2.2.2. Morphometric measurements 

 

Morphometric measurements for each shoot (n=5 per treatment) were taken weekly, these 

included; sheath length, leaf length (taken from top of sheath to tip of leaf), leaf width and 

shoot growth.  Leaves were wiped clean of epiphytes throughout the experiment although 

older ends of leaves were difficult to clean without causing damage so were left, but these 

tended to be chlorotic and often dead (Drake et al., 2003).  Lengths measurements were taken 

with a measuring tape to the nearest mm, and the maximum leaf length for each shoot was 

analysed as a measure that can be attributed to canopy height in seagrass meadows 

(Longstaff and Dennison, 1999).  Leaf width was measured using callipers to the nearest 

0.05mm at 5 cm above sheath or in the middle of each leaf <5 cm long.  Average leaf width 

was calculated for each shoot.  Shoot surface area was calculated from the length and width 

measurements of all leaves of all shoots to provide potential surface area for photosynthesis.  

For shoot growth, each plant was marked at the top of its sheath with a needle so the growth 

of each leaf could be measured using the method outlined by Short and Duarte (2001).  If new 
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leaves were found, they were marked at the same location on the sheath.  The new growth 

could then be measured against the mark on the sheath, the outer part of which is usually 

dead and does not alter.  If the outer leaf became detached then the top of the sheath would 

remain so growth could still be measured from this position.  Raw values for maximum leaf 

length, shoot surface area, shoot growth and average leaf width per shoot were used for 

statistical analysis. 

 

2.2.3. Photosynthetic measurements 

 

Pulse Amplitude Modulated (PAM) fluorometry using a Diving-PAM (Waltz), was used to 

measure chlorophyll fluorescence weekly, as a non-invasive technique for assessing 

photosynthetic activity.  Photosynthetic parameters were obtained by performing rapid light 

curves (RLC) using the internal stepwise function of the PAM fluorometer.  All RLCs were 

carried out between 11am and 2pm. These were conducted on the mid-section of the 

youngest mature leaf using a leaf clip, enabling the measurement of a proxy for quantum 

yield (Fv/Fm), using the first data point obtained from the rapid light curve which provides 

maximum quantum efficiency, where Fv is the variable fluorescence yield and Fm is maximal 

fluorescence yield  (Collier et al., 2009; Ralph and Gademann, 2005).  The change of the 

fluorescence (ΔF/Fm’) is measured at each irradiance step of the light curve. Steps ranged from 

7-1652 µmol photons m-2s-1 lasting 10 s, with initial saturating pulse >>2,000 µmol photons 

m-2s-1 (Beer et al., 2001) for 0.8 s.  Electron Transport Rate (ETR) was worked out using the 

equation; ETR = ΔF/Fm’*Ii*AF*0.5, where AF is the absorption factor, calculated to be 0.78 (± 

0.02 S.D., n=5) (Beer et al., 2001; Saroussi and Beer, 2007) and Ii is the incident irradiance 

(from the light stages of the light curve programmed into the Dive-PAM).  The stepwise RLCs 

were fitted to the non-linear least-squares regression model by Eilers and Peeters (Eilers and 

Peeters, 1988) to estimate the ETRmax (maximum rate of photosynthesis), α (the initial slope 

of the rapid light curve, a measure of the light harvesting efficiency) and Ek (the minimum 

saturating irradiance worked out from the intercept of α and the maximum photosynthetic 

rate).  As the Ek is worked out from the value of ETRmax /α on the RLC, it will show correlation 

which needs to be taken into account when interpreting results. 
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2.2.4. Physiological measurements 

2.2.4.1. C:N content of seagrass 

At the end of the experiment, leaf material from each shoot was taken to be compared with 

site control samples taken from the field site at Durgan.  Avoiding the older chlorotic leaves, 

leaf material was scraped free of epiphytes, blotted dry and weighed before being dried at 

60°C for 48 hours.  The dried seagrass was ground up with a pestle and mortar to a fine 

homogenous powder before being weighed (Ohaus balance, max 100g d=0.1 mg, 

Switzerland).  Samples were sent to IBERS (Aberystwyth University) for analysis of the % 

composition of C and N by weight using a continuous flow isotope ratio mass spectrometer 

(Anca SL 20-20, Europa Scientific, Crewe, UK). 

2.2.4.2. Rhizome sugars 

At the end of the experiment the rhizomes from each plant were separated, weighed and also 

stored at -20°C to be compared with samples taken from the field site at Durgan.  The 

rhizomes were dried in an oven at 60°C for 4-5 days.  The dried rhizome sections were ground 

up with a pestle and mortar to a fine homogenous powder to enable analysis by HPLC.  

Samples were sent to IBERS at Aberystwyth University for analysis.  Soluble rhizome sugars 

were extracted based on the method outlined in Cairns & Pollock (1988).   

2.2.4.3. Chlorophyll pigments 

Samples of Zostera marina from Durgan were collected from the study site and compared 

with samples from all of the plants at the end of the experiment.  Chlorophyll was extracted 

in 90% acetone and quantified using a spectrophotometer (Schimadzu UV-2550 UV VIS Series) 

based on the methods outlined by Dennison (1990) and Granger and Izumi (2001). 

2.2.5. Statistics 

Two-way repeated measures ANOVA was used to analyse time series collected data, with light 

treatment (between-subject effects) over time (within-subject effects) using SigmaPlot 

Version 11 (Systat Software, San Jose, CA).  Data did not completely fulfil the assumptions of 

ANOVA therefore in order to minimize the risk of Type I error, significance was only accepted 

based on p-values of <0.01 (Collier et al., 2012b; McDonald, 2014; Underwood, 1997).  ANOVA 

was still performed due to the robust nature of the test and the relative insensitivity of the F 

test to departures from normality (Glass et al., 1972; Lix et al., 1996; McDonald, 2014).  
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Results from the repeated measures ANOVA were interpreted with the Holm-Šídák pairwise 

comparisons test in SigmaPlot.  

C:N ratio, rhizome total water soluble carbohydrate (WSC) content and chlorophyll content 

were analysed using one-way ANOVA in RStudio (R version 3.2.2) to compare plants after 

treatment with site control plants that were taken directly from Durgan (untreated).  The 

Bartlett test for homogeneity was used to test for equal variance (Bartlett, 1937).  Tukey’s 

test was used to look at multiple comparisons of means. 

Principal Component Analysis (PCA) using Primer6 was used to identify patterns of which 

morphological and photophysiological factors contributed to the biggest responses of plants 

to shade treatment over time.  Principal components with eigenvalues greater than 1.0 were 

considered, and eigenfactors or variable coefficients ≤ -0.3, or ≥ 0.3 were selected.  

 

2.3. Results 

 

At the end of the experiment none of the HL shoots had died but all plants subjected to shade 

treatment (ML, LL and EL) showed signs of mortality at the basal meristem (all leaves coming 

free from within the sheath) by day 43, with one LL shoot dying after just 4 weeks.  

2.3.1 Morphological characteristics 

2.3.1.1. Maximum leaf length 

At the start of the experiment all plants exhibited a maximum leaf length within the range of 

455 mm to 727 mm with an average of 564.00 ± 18.53 mm.  The average max leaf length 

decreased in all plants throughout the experiment although reduction was lowest in HL 

plants.  All plants under shade treatments showed a significant reduction in average max leaf 

length in comparison to those under HL from day 15 for ML (p=0.009) and LL plants (p=0.01) 

and day 22 for EL plants (p=0.013, Fig. 2.1).  ML plants decreased steadily in length from day 

15 resulting in a significant reduction in max leaf length to 391.60 ± 51.61 mm by day 43 

(p<0.001).  LL plants also decreased steadily from day 15 although the differences in max leaf 

length were not significant.  EL plants decreased in max leaf length from day 22 with a 

significant reduction shown between day 15 and day 37 (p=0.002).  HL plants remained with 
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a max leaf length above 610 mm until day 43 when average max leaf length had decreased to 

489.80 ± 38.47 mm.   

2.3.1.2. Leaf width 

The leaf width of all plants at the start of the experiment ranged between 4.6 mm to 6.85 

mm.  All plants decreased in average width throughout the experiment and this reduction 

was lowest in HL plants.  All plants under shade treatments showed significant reductions in 

width by day 29 with no significant change in leaf width for HL plants throughout the 

experiment (Fig. 2.1).  ML plants decreased steadily from day 0 and showed a significant 

reduction in width from 5.35 ± 0.11 mm to 5.02 ± 0.12 mm on day 22 (p=0.002).  LL plants 

decreased significantly in width from 5.93 ± 0.35 mm on day 0 to 5.14 ± 0.30 mm on day 43 

(p<0.001) with the first significant reduction by day 29 (5.33 ± 0.33 mm, p<0.001).  For EL 

plants leaf width decreased significantly from 5.92 ± 1.25 mm on day 0 to 5.40 ± 0.26 mm on 

day 43 (p<0.001) with the first observed significant decrease in width observed on day 29 

(5.48 ± 0.22 mm, p<0.001).  Results showed there was a significant interaction between light 

treatment and time on average leaf width (p=<0.001) (Table 2.2). 

 

2.3.1.3. Shoot growth 

All plants decreased in average growth rate throughout the experiment, although this 

reduction was lowest in HL plants.  HL plants had significantly higher growth of 28.29 ±1.63 

mm day⁻¹ on day 9 in comparison to 16.55 ± 2.36 mm day⁻¹ for ML plants (p=0.001), 13.10 ± 

1.66 mm day⁻¹ for LL plants (p=<0.001) and 13.80 ± 3.03 mm day⁻¹ for EL plants (p<0.001) (Fig. 

2.1).  Shoot growth of HL plants remained significantly higher than shade treated plants until 

day 37 and continued to remain higher than shaded plants until day 43. ML plants showed a 

significant decline in growth from day 9 to day 37 (p=0.002).  The growth of LL and EL plants 

was significantly lower than HL plants from day 9, but not significantly different to ML plants 

or to each other suggesting growth was already affected by light reduction for shade treated 

plants between before day 9.  Results showed there was a significant interaction between 

light treatment and time for shoot growth (p=0.001) (Table 2.2).   
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2.3.1.4. Shoot surface area 

At the start of the experiment shoot surface area ranged from 4563.3 mm2 to 10580.0 mm2 

and averaged 8218.6 ± 326.6 mm2.  All plants decreased in average shoot surface area 

throughout the experiment with the lowest reduction in HL plants.  All plants subjected to 

shade treatments showed a significant decline in surface area by day 29 (fig. 2.1).  HL plants 

remained significantly larger in surface area than all shade treated plants from day 29 until 

day 43 (p=<0.001-0.002).  ML plants reduced in surface area by 41.5% (a reduction from 

7831.89 ± 245.9 mm2 to 4584.1 ± 464.5 mm2, p=<0.001) and LL plants were reduced by 44% 

by day 29 (from 7883.3 ± 756.6 mm2 to 4413.8 ± 1345.7 mm2, p=<0.001).  EL plants displayed 

a reduction of 30.5% on day 29 (p=0.002) and had reduced by 44.3% by day 43 (p=<0.001).  

For plant surface area there was a significant interaction between light and day (p=<0.001) 

(Table 2.2).   
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Table 2.2-2.3. Results of two-way repeated measures ANOVA testing for the within-subjects effects of 
time and treatment on the morphological parameters maximum leaf length, width shoot surface area 
and shoot growth rate, and on the photosynthetic parameters Alpha (α), ETRmax and Maximal yield 
((Fm’-F)/Fm’).  No transformations were applied to the data for statistical analysis. Also shown is the p-
value that was considered significant (adjusted if variances were not homogenous) 

 
  

  

Max leaf length (mm) Leaf width (mm) Shoot surface area (mm2) Shoot growth rate 

(mm day-1) 

 
DF MS F P MS F P MS F p MS F p 

% Light 3 1.41E+05 4.532 0.018 3.735 2.856 0.070 5.11E+07 3.897 0.029 1791.182 22.496 <0.001 

Day 6 5.90E+04 17.305 <0.001 0.97 37.633 <0.001 5.11E+07 29.086 <0.001 367.994 12.472 <0.001 

% Light x Day 18 3660.635 1.073 0.391 0.091 3.519 <0.001 5.15E+06 2.809 <0.001 84.04 2.848 0.001 

Significance 

level 

 
  

0.05   0.05   0.05   0.05 

 

 Alpha (α) 

          

ETRmax Ek Fv/Fm 

 DF MS F p MS F p MS F p MS F p 

% Light 3 1.108 21.632 <0.001 3314.746 21.908 <0.001 1.92E+04 8.71 0.001 1.108 21.632 <0.001 

Day 6 0.158 7.425 <0.001 2256.437 43.597 <0.001 6373.13 16.44 <0.001 0.158 7.425 <0.001 

% Light x 

Day 

18 0.040 1.878 0.027 184.494 3.565 <0.001 1057.88 2.73 0.001 0.040 1.878 0.027 

Significance 

level 

 
 

 0.01  
 

0.01 
  

0.01 
  

0.01 
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Figure 2.1. Effect of light shading on the morphological characteristics of Zostera marina over time. 
Plants were kept in a flow through aquaria using natural filtered seawater under artificial light. (A) 
Maximum leaf length (B) leaf width, (C) shoot growth and (D) total shoot surface area.  Values are 
means ±SE, n=5 (except low light plants on days 37 and 45 where n=4).  
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2.3.2. Photosynthetic characteristics 

2.3.2.1. Alpha 

At the start of the experiment the light harvesting efficiency or alpha (α) ranged from 0.53 to 

1.27 with an overall average of 0.87 ± 0.05.  Alpha responded rapidly (by day 5) to shading 

treatments relative to the HL plants (fig. 2.2A).  There was no significant change in α for HL 

plants throughout the experiment.  ML plants, displayed a significant increase in α from 0.91 

± 0.07 on day 0 to 1.19 ± 0.02 on day 19 (p=0.003).  EL plants showed a significant increase in 

α from day 5 from 0.69 ± 0.08 to 1.25 ± 0.08 (p=<0.001).  LL plants showed no significant 

change in α over time, although levels remained significantly higher than HL plants 

throughout the experiment.  Results showed there was a significant interaction between light 

treatment and time for alpha (p=0.001) (Table 2.2).   

2.3.2.2. ETRmax 

The maximum Electron Transport Rate (ETRmax) ranged from 26.82 µmol electrons m-2s-1 to 

97.60 µmol electrons m-2 s-1 with an average of 57.98 ± 4.75 µmol electrons m-2 s-1 at the 

beginning of the experiment. The ETRmax was significantly affected in all shading treatments 

by day 5 (Fig. 2.2B).  Not all plants gave a reliable ETRmax value as some curves did not saturate 

and these results were omitted.  HL plants remained with significantly higher ETRmax than all 

shade treated plants (p<0.001-0.012) with EL plants showing the biggest drop of 76 % from 

day 0 to day 5 (79.39 ± 9.11 to 18.96 ± 0.50 µmol photons m-2s-1; p<0.001).  ML plants showed 

a reduction in ETRmax of 42 % on day 5 (55.03 ±6.58 to 31.94 ± 2.34 µmol electrons m-2 s-1; 

p<0.001).  LL plants showed a reduction of 57 % (43.66 ± 5.89 µmol electrons m-2 s-1 to 18.85 

± 0.24 µmol electrons m-2s-1; p<0.001) on day 5.  On the contrary, HL plants showed a slight 

increase on day 5 from 60.04 ± 4.18 µmol electrons m-2 s-1 to 69.10 ± 0.36 µmol electrons m-2 

s-1. 

1.3.2.3. Ek 

The Ek of plants at the start of the experiment averaged 75.52 ± 11.32 µmol photons m-2s-1 

with a broad range from 24.64 to 183.57 µmol photons m-2s-1.  Not all plants gave a reliable 

Ek value as some curves did not saturate and these results were omitted. The Ek of all shaded 

plants was significantly affected on day 5 (Fig. 2.2C).  HL had a significantly higher Ek than 
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shaded plants, 72.42 ± 20.38 compared to 33.07 ± 4.80 for ML (p=0.002), 16.17 ± 0.19 for LL 

(p=<0.001) and 15.27 ± 0.56 µmol photons m-2s-1 for EL plants (p=<0.001).  All plants showed 

a decrease in Ek throughout the experiment with EL plants showing the biggest reduction of 

80.1% by day 43 (p=<0.001).  

1.3.2.4. Maximum quantum efficiency (Fv/Fm) 

A proxy for yield using the maximum quantum efficiency at the first data point of the light 

curve (Fv/Fm) was significantly affected by shading by day 12 where HL plants had significantly 

(p<0.001 and p=0.001 respectively) lower yield (0.74 ± 0.01) than EL plants (0.79 ± 0.003) and 

LL plants (0.79 ± 0.01).  EL light levels resulted in plants having a significantly higher yield than 

HL until day 43 (Fig. 2.2D). 
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Figure 2.2. Effect of light shading on the photosynthetic properties of Zostera marina over time 
measured by PAM fluorometry.  Plants were kept in a flow through aquaria using natural filtered 
seawater under artificial light. (A) Alpha α, (B) Maximum electron transport rate (ETRmax, µmol 
electrons m-2 s-1), (C) Minimum saturation irradiance (Ek, µmol photons m-2s-1) and (D) Yield (Fv/Fm). 
Values are mean ±SE, n=4-5 (except HL and EL plants on day 0 where n=2 and n=3 respectively). 
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2.3.3. Physiological results 

2.3.3.1. C:N 

Results of the one-way ANOVA with Tukey’s post-hoc comparison showed ML plants had a 

significantly higher C:N (17.56 ±0.57) than EL plants (15.04 ±0.37), p=<0.006.   There were no 

significant differences in C:N between site control plants (16.48 ± 0.55) and any of the plants 

after treatment (Table 1.3, Fig. 2.3). 

2.3.3.2. Rhizome sugars - WSC (Water Soluble Carbohydrates) 

Results of the one-way ANOVA with Tukey’s post-hoc comparison showed site control plants 

had significantly higher total WSC content (52.76 ± 2.36 mg/ml) than all treatments 

(p=<0.001).  There was no significant difference between treatments at the end of the 

experiment (Table 1.3, Fig. 2.3). 

2.3.3.3. Chlorophyll content 

Results of the one-way ANOVA with Tukey’s post-hoc comparison showed site control 

samples had significantly higher chlorophyll content (4.13 ± 0.16 µg Chl cm⁻²) than ML (2.45 

± 0.28 µg Chl cm⁻²), p=<0.001, and LL plants (3.14 ± 0.09 µg Chl cm⁻²), p=0.014.  ML plants 

were also significantly lower in chlorophyll content than HL plants, p=0.002, and EL plants, 

p=0.009 (Table 2.3, Fig. 2.3).   
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Figure 2.3. Effect of light shading on physiological properties of Z. marina with time. Plants were kept 
in a flow through aquaria using natural filtered seawater under artificial light. Boxplots show results 
from control site plants compared with plants at the end of the experiment. (A) C:N (B) Total water 
soluble carbohydrates(WSC), (C) Total chlorophyll content. Central line is the median, ο point is the 
mean, n=5. 

 

Table 2.4. Results of one-way ANOVA testing effects of light manipulation on the physiological 
parameters C:N, water soluble carbohydrate content of rhizomes (WSC), and leave chlorophyll 
content. All passed Bartlett’s test for homogeneity except chlorophyll. 

 

 
DF MS F P 

C:N 4 872.8 34.27 <0.001 

WSC 4 4.191 4.175 <0.05 

Chlorophyll 4 5.029 9.179 <0.001 

Significance 

level 

 
  

0.05 
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2.3.4. Bioindicator analysis 

Principal component analysis was used to show which bioindicators contributed to the most 

variability between treatments and within treatments over time. The first two principal 

components (PC1 and PC2) had eigenvalues over 1 making up over 70% of the variability. PC1 

approximately corresponds with the change from high light to low light, whereas the 

treatments are more evenly spread across PC2.  PC1 had an eigenvalue of 3.85 making up 

48.1% of the variability and showed a correlation (above 0.3) between the variables leaf 

length, shoot surface area, shoot growth, ETRmax, alpha and Ek.  The first component increases 

with decreasing leaf length, shoot surface area, shoot growth, ETRmax, Ek and an increase in 

alpha.   PC2 has a strong correlation with leaf width and shoot surface area (both above -0.5) 

and also a correlation with yield (Fv/Fm) (-0.482).  PC2 increases with a decrease with these 

correlating factors.  HL plants remain in cluster away from shade treated plants, only moving 

closer in similarity to shaded plants in week 5 and 6 Fig. 2.4). 

 

 
Figure 2.4. Results from Principal Component Analysis of morphological (leaf length, width, shoot 
surface area and shoot growth) and photophysiological (Alpha, maximum electron transfer rate, 
minimum saturation irradiance and effective quantum yield) responses with treatment and week 
(starting from week 1) as factors.  
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Figure 2.5. Schematic diagram showing effects of light limitation on Zostera marina plants over time 
under experimental conditions. High light treatment (HL) = 5.61 mol photons m-2day-1, light limiting 
treatment < 0.73 mol photons m-2day-1 (ML= medium light 0.73, LL= low light 0.35, EL = extreme low 
light treatments 0.14 mol photons m-2day-1). Within the first week photosynthetic efficiency was 
affected in shaded plants shown by the increase in α, a decrease in ETRmax and Ek, along with 
significantly reduced shoot growth.  By week 3 leaf length was reduced in all shaded plants and leaf 
width reduced in ML plants. By week 4 leaf width and shoot surface area were significantly reduced 
in all shaded plants with the death of a LL plant. By week six, HL plants also showed decreases in leaf 
length, shoot growth and shoot surface area. Water soluble carbohydrate content of rhizomes was 
reduced in all plants at the end of the experiment. A decrease in chlorophyll content was exhibited in 
LL and ML plants. There was no significant change in C:N of leaf tissue recorded for any of the plants 
in comparison to samples taken from site location, although EL plants had the lowest ratio. Evidence 
of shoot mortality was found in all shade treated plants at the end of the experiment.  

 

 

2.4. Discussion 

The present study provides an experimental test of the response of multiple 

photophysiological and morphological bioindicators to light limitation on Zostera marina.  The 

study provides an experimental insight into timescales and levels of response to light 

limitation specific to Z. marina relative to models of light stress developed through meta-

analysis (McMahon et al., 2013).  Leaf length, shoot growth rate, shoot surface area, alpha 

ETRmax and Ek  (which are correlated) showed the strongest responses to light limitation across 

time suggesting that they act as robust bioindicators of light stress in Z. marina.  Leaf width 
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and yield were also found to respond consistently to light limitation.  Physiological parameters 

proposed by the meta-analysis (McMahon et al., 2013) to make good bioindicators were not 

found to be as robust when considered directly against these other variables such as leaf 

length, alpha and ETRmax.  

Under light limiting conditions, plants exhibited significant reductions in length, width, 

surface area and growth rate within three to four weeks, resulting in a reduction of above 

ground tissue.  This reduction potentially poses a respiratory burden to the plant (Collier et 

al., 2012a; Fourqurean and Zieman, 1991).  Growth rate was significantly reduced in shaded 

plants by day 8, suggesting that the response could have been detected even earlier.  At a 

meadow scale, we propose that the plant response to low light would result in a reduction in 

overall seagrass density with corresponding impacts upon ecosystem resilience (Maxwell et 

al., 2016; Unsworth et al., 2015).  A reduction in canopy density may actually be considered 

an adaptive mechanism to maximise available light as this allows more ambient light through 

to reduce self-shading (Collier et al., 2012a).   

The present study shows that a reduction in light to 20 µmol photons m-2s-1 (10:14 hour 

light:dark photoperiod) is enough to cause a significant decrease in leaf length and width 

resulting in a decrease in plant surface area by 41% after 29 days, with further light stress in 

the LL and EL treatments causing similar albeit slightly bigger reductions.  Light reductions of 

this scale would result in significant effects at a meadow scale within weeks, indicating that 

impacts causing light reductions over a similar time scale would have a substantially damaging 

effect.  These results are comparable to in situ shading experiments conducted on Z. marina 

(Backman and Barilotti, 1976; Dennison and Alberte, 1985).  A decline in shoot surface area 

results in significant implications on a meadow-scale.  A reduced amount of photosynthetic 

tissue and a decrease in canopy density may affect the ability of the meadow to attenuate 

the effects of waves and currents.  This results in an increase in levels of suspended sediments 

causing an increase in turbidity, and a reduction in sediment stabilization for the roots and 

rhizomes (van der Heide et al., 2007).  A scenario like this can cause a shift to an alternate 

state within the meadow system, making it difficult for recovery unless conditions and light 

levels are restored (Unsworth et al., 2015; van der Heide et al., 2011).  Frequent and 

prolonged periods of reductions in light levels to 20 µmol photons m-2s-1 or below should be 

cause enough to alert managers to take action to improve water quality. 
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The meta-analysis by McMahon et al., (2013) did not recommend the morphological 

characteristics of leaf length, leaf width or shoot surface area as robust bioindicators of light 

stress for seagrasses overall.  However, there is evidence for differences between different 

genera or species in response to light limitation.  For instance, Z. muelleri was found to have 

the most rapid and ‘plastic’ responses in morphology and growth to shading when compared 

to three other species of differing genus (Collier et al., 2012).  The importance of these 

differences is also highlighted by contrasting interspecific morphological responses, for 

example, Posidonia oceanica has been found to increase leaf width whilst Zostera nigricaulis, 

Halophila ovalis and Halodule wrightii exhibit an increase in leaf length as a way of increasing 

light capture (Bulthuis, 1983; Collier et al., 2007; Dalla Via et al., 1998; Shafer, 1999). 

Photophysiological responses to shading were exhibited within the first week and results 

showed trends consistent with other studies (Beer et al., 2014; Belshe et al., 2008).  All plants 

showed high variability in alpha, ETRmax/Ek on day 0, however by day 5, all shaded plants 

exhibited significant reductions in Ek/ETRmax, and significant increases in alpha. HL plants did 

not show such significant changes in alpha or ETRmax as would be expected of plants adapted 

to higher light conditions.  In contrast to the meta-analysis the present study identified alpha 

as a robust indicator of light stress, along with ETRmax/Ek.  The use of PAM fluorometry is useful 

as a non-invasive monitoring tool as it can detect physiological responses of seagrasses to 

light stress before morphological changes take place (Belshe et al., 2007).  However, 

photosynthesis measurements using PAM display high levels of seasonal, diurnal and shoot-

scale variation which need to be fully understood (Durako and Kunzelman, 2002).  Also, 

chlorophyll fluorescence has been found to be good for assessing recovery in Z. marina, but 

not for detecting the onset of mortality (Biber et al., 2009).  Even so, if the use of PAM 

fluorometry is feasible, consistent monitoring would give valuable information about the 

environmental conditions of a Z. marina meadow, especially if used alongside morphological 

bioindicators. 

Physiological responses measured in this study showed no significant changes between 

shaded and HL plants.  There were no significant changes in C:N at the end of the experiment 

when compared to control site samples. This could have been affected by the time of year 

the samples were taken.  The C:N of Z. marina is usually at its highest in summer months and 
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lowest in winter months (Fourqurean et al., 1997) and sampling for the present study took 

place in late October (autumn in UK).  It should also be noted that C:N has been identified as 

a robust bioindicator for Z. marina in a study that used an intensive field sampling strategy 

providing reliable evidence to this effect (B. L. Jones and Unsworth, 2016).  

The water soluble carbohydrate (WSC) content of rhizomes did not vary significantly between 

treatments at the end of the experiment and therefore the present study did not conclusively 

find WSC to be a robust bioindicator of light stress.  The significant seasonal variation in 

carbohydrate stores of Z. marina (Burke et al., 1996; Dawes and Guiry, 1992; Soissons et al., 

2016) suggests sampling time could also have effected this result.  

Leaf chlorophyll content did not provide a strong predictor of light limitation.  LL and ML 

plants had the lowest chlorophyll levels, although shaded plants were expected to have 

higher chlorophyll content than control plants.  However, if light stress is too high, plants are 

unable to respond by producing more chlorophyll.  Collier et al., (2012b) also found that 

chlorophyll levels in very low light treated plants did not increase compared to the HL treated 

plants.  This was thought to be due to the higher level of stress counteracting the energetic 

benefits of producing more chloroplasts.  

Findings from this study indicate that MLR thresholds of Z. marina are between the levels of 

HL and ML treatments: between 156 – 20 µmol photons m-2s-1 or 5.61 and 0.73 mol photons 

m-2day-1 under experimental conditions.  Maximum growth rates of Z. marina have previously 

been found to be at irradiances between 100-150 µmol photons µm-2s-1 (Dennison and 

Alberte, 1985; Olesen and Sand-jensen, 1993), or 5 mol photons m-2day-1 (Thom et al., 2008) 

and the photosynthesis saturating irradiance required for plant growth in situ found to be to 

be 30-40 µmol photons m-2s-1 (Alcoverro et al., 1999).  As such, HL treatment at 155.8 µmol 

photons m-2day-1 could be considered to be the equivalent of a maximal surface irradiance 

level and it could therefore be suggested that ML treatment is equivalent to approximately 

12.9% of SI.  This is similar to the minimum light requirements that have been determined for 

Z. marina in other studies (Koch and Beer, 1996; Olesen and Sand-jensen, 1993; Short et al., 

1995).  Despite being close to the MLR, the ML treatment in this study is still considerably 

higher than the light compensation point determined for Z. marina in other studies at 

comparable temperatures;  8.3 µmol photons m-2s-1  at 15oC (Abe et al., 2003), 10 µmol 
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photons m-2s-1 at 20oC (Dennison and Alberte, 1982) and 18.5 µmol photons m-2s-1 at 15oC  

(Olesen and Sand-jensen, 1993).  Consequently, one would expect seagrasses under the ML 

treatment to be still surviving, although maybe not thriving.  However, ML plants showed 

similar responses to LL and EL plants with the bioindicators not changing in a proportional 

manner relative to light treatment.  This suggests that below a certain light threshold, 

responses will be consistent.  The significant impacts to photosynthetic properties and growth 

rate within the first week, and significant reductions in leaf length, width and surface area 

after four weeks of shade treatment indicates 12.9% SI or 20 µmol photons m-2s-1 for 10 hours 

per day is insufficient for Z. marina survival. 

 

2.5. Conclusions 

This study experimentally tests a wide range of bioindicators of light stress on Z. marina plants 

within controlled laboratory conditions (Fig. 5).  The minimum light threshold for Z. marina 

was found to be above 20 µmol photons m-2s-1 with photophysiological responses and shoot 

growth being the first bioindicators to be adversely affected by light stress to this level within 

the first week.  Morphological factors took longer to be affected by light stress; this response 

was observed between 29 and 39 days.  EL plants experienced lowest light levels, but 

responses were not always as quickly exhibited as in LL or ML plants.  This lag in response 

shows that previous condition, such as larger shoot surface area and rhizomal stores, will slow 

the effect of light limitation on morphological responses.  However, shoot growth, alpha, Ek 

and ETRmax are rapidly effected by light limitation.  Environmental monitoring of light levels 

within Z. marina meadows could allow managers to foresee potential risks if light is being 

attenuated to this level for prolonged periods of time.  Using the robust bioindicators 

identified in this study specifically relevant to Z. marina can make it possible to assess whether 

light limitation has or is occurring.  This study shows that light reduction to 20 µmol photons 

m-2s-1 or below for 10 hour daily light period causes significant reductions in above ground 

tissues and photosynthetic performance leading to shoot mortality within 4 to 6 weeks, under 

experimental conditions.  These results show what the impacts of a light stress event to this 

level over the time-frame of a few weeks can have on Z. marina and its implications at a 

meadow scale.   
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Chapter 3: Finding some seagrass optimism in Wales, the case of 

Zostera noltii 
This work was published as: 

Bertelli, C.M., Robinson, M.T., Mendzil, A.F., Pratt, L.R. and Unsworth, R.K., 2018. Finding 

some seagrass optimism in Wales, the case of Zostera noltii. Marine Pollution Bulletin, 134, 

pp.216-222. 

 

Abstract 

There exists limited understanding of the long-term dynamics of the seagrass Zostera noltii 

and how this is influenced by anthropogenic pressures. Milford Haven is a heavily 

industrialised estuary and also one of the important sites for Zostera sp. in the UK.  In this 

study we examine all available long-term spatial variability and abundance data of Zostera 

noltii within Milford Haven using historic datasets. Results show that Z. noltii in all sites have 

shown meadow expansion when compared to the first obtainable records.  Little change in 

abundance over the past 10-15 years for the two sites confirms certain seagrass populations 

to be robust and thriving.  We hypothesise that these populations are showing a level of 

resilience to the high nutrient levels, disturbance and high turbidity present within the water 

column of the Haven. 

3.1. Introduction 

The functional value of seagrasses by way of stabilizing sediments, providing food and shelter, 

and carbon sequestration, for example, is well understood (Fourqurean et al., 2012; Guidetti 

and Bussotti, 2000; E Mcleod et al., 2011; van der Heide et al., 2011).  The extent of the decline 

of seagrasses worldwide is also well documented (Short and Wyllie-Echeverria, 1996; Waycott 

et al., 2009), with poor water quality thought to be one of the biggest risks (Dennison et al., 

1993; Hemminga, 1998).  As a consequence, there exists a propensity for studies on long-term 

dynamics of seagrass to be mostly those that present a negative story, showing a declining 

meadow caused by a major impact.  However, far fewer studies have been published which 

document the recovery of seagrass meadows (Campbell and McKenzie, 2004; Greening et al., 

2014; Walker et al., 2006) or showing long-term stability (Lyons et al., 2012; Yakuub et al., 

2014).  This could possibly be due to the need for researchers to highlight concerns over sites 
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that appear to be more threatened, so that better management practises can then be 

advocated.   

The dwarf eelgrass, Zostera noltii1, is an intertidal species found growing on muddy or sandy 

substrates (Den Hartog, 1970), providing stabilization of sediments (Costanza et al., 1997) and 

an important food source for migrating waterfowl, especially brent geese (Branta bernicla) 

and wigeon (Anas Penelope) (Fox, 1996; Nacken and Reise, 2000; Widdows et al., 2008).  Z. 

noltii is commonly found in estuaries and sheltered bays, often at risk of conflict with coastal 

development, and anthropogenic impacts from industrial, agricultural and domestic sources 

(Bernard et al., 2007; Giesen et al., 1990). For example, in the Berre lagoon, and Bassin d’ 

Arcachon, France, huge losses in Z. noltii extent have been recorded where areas have been 

hugely effected by urban and industrial pollution (Bernard et al., 2007; Plus et al., 2010). 

Management of coastal waters and waterways is necessary to ensure that habitats such as 

seagrass beds, are maintained in favourable conservation status whilst also trying to 

accommodate commercial and recreational uses (CCW, 2005).  Successful management of 

water quality has resulted in recovery of Z. noltii in some locations. The Wadden Sea has seen 

areas of the seagrass double between the early 1970s to the end of the 1980s (Philippart, 

1995), and steady expansion of meadows has been observed in Bourgneuf Bay France (Barillé 

et al., 2010). 

In the UK, Milford Haven (west Wales) has been identified as one of the important sites for 

Zostera sp. (Brazier et al., 2007) and is home to subtidal Z. marina meadows and several well 

established Z. noltii beds.  The Haven is also renowned for its shipping and petrochemical 

industry.  Improvements in water quality in UK waters are also assumed to be contravening 

historical losses of seagrass (Jackson et al., 2013), but long-term data are spatially limited 

(Jones and Unsworth, 2016) with some sites recording significant reductions in shoot density 

(Bull and Kenyon, 2015; Burton et al., 2015).  In Milford Haven, monitoring of seagrass 

meadows has been relatively consistent especially with the contamination risk from oil spills 

and port operations. Unfortunately, Milford Haven has been subjected to a number of oil 

spills since 1960 (Petpiroon and Dicks, 1982), the biggest being the Sea Empress in 1996 (Carey 

 

1 Zostera noltii is now regarded as Z. noltei (WoRMS., 2017). For purposes of continuity with previous scientific research, it 

will remain as Z. noltii for this study. 
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et al., 2015; Hodges and Howe, 2007; Moore, 2006).  This has resulted in the area being 

relatively well monitored in comparison to other locations (Hiscock and Kimmance, 2003).  In 

recent years, concern over the potential decline of Zostera and changes in the populations of 

birds that utilize seagrass in the Haven has led to the demand for assessing long-term changes 

and understanding more about the health and potential resilience of these seagrass 

meadows.  For this study we aim to review all the long-term monitoring data available 

regarding Z. noltii meadows in Milford Haven including additional data collected for a study 

by Pratt et al. in 2016, and where possible assess any changes over time. Compiling and 

summarizing all existing data will contribute to the understanding of the current status of Z. 

noltii in Milford Haven. 

 

3.2. Methods 

3.2.1 Study site  

Milford Haven waterway is found in the county of Pembrokeshire in west Wales, UK.  It is 

Wales’ largest estuary and one of the deepest natural harbours in the World making it a 

historically significant location for maritime commerce, shipping and more recently, the 

petrochemical industry (Carey et al., 2015). The large tidal range within the Haven, of over 8 

m (Nikitik and Robinson, 2003), results in the presence of large tidal flats providing suitable 

substrate for Z. noltii growth. The Haven is also a part of the Pembrokeshire marine Special 

Area of Conservation (SAC) containing a number of designated conservation features 

including seagrass beds (Burton, 2008; Langston et al., 2012). Several sites have been 

identified as having consistently present populations of Z. noltii within Milford Haven (fig. 

3.1), all of which have been monitored to varying degrees since 1996.  
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Figure 3.1. Zostera noltii mapped locations within Milford Haven, UK, taken from GIS layers provided 
by NRW. 

 

3.2.2. Monitoring data 

A comprehensive review of available data regarding Z. noltii in the Milford haven area was 

conducted in 2016 using sources from monitoring reports undertaken by CCW (Countryside 

Council for Wales), NRW (Natural Resources Wales, formed in April 2013, largely taking over 

the functions of the Countryside Council for Wales, Forestry Commission Wales and the 

Environment Agency in Wales) and consultancy reports where monitoring of Z. noltii had been 

conducted on behalf of industry as a requisite by CCW/NRW.  The sites with continued 

presence of Z. noltii in Milford Haven were found to be Angle Bay, Pembroke river, Carew, 

Cosheston, Garron Pill, Hobbs Point, Pwllcrochan Flats, Sprinkle Pill and Sandy Haven Pill (fig. 

1).  The Sea Empress disaster in 1996, lead to the more frequent and detailed monitoring of 

sites where Z. noltii beds had previously been recorded, for the 5 years after the spill.  

However, surveying was limited to Angle Bay, Pembroke River and Sandy Haven Pill, and only 

the Angle Bay population was monitored for abundance and associated species.  The first 

record of Z. noltii extent in Angle Point was estimated as 5.22 ha in 1996 (Table 1) but was 
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more accurately mapped using field survey and GPS from 2007 onwards along with Pembroke 

River.  Other Z. noltii meadows within the Haven have been mapped using field survey and 

aerial imagery from 2008 onwards, although some sites have been missed out on separate 

survey years (Table. 1).  Sandy Haven Pill was only recorded to have two small patches of 1 x 

0.5 m, in the report by Hodges & Howe (2007), with no other data available for this study.  

Monitoring was intensified again from 2008, with more sites being mapped and Z. noltii 

recorded at Garron Pill and Pwllcrochan Flats, locations which were previously found to be 

absent of the seagrass (Hodges and Howe, 2007).  The extent of the Z. noltii bed in Pembroke 

River has been monitored since 2007, with abundance and infaunal surveys conducted from 

2009-2015 (Nikitik, 2015, 2014, 2012).  Data also includes more recent field surveys 

conducted by Pratt et al. (2016), which involved a detailed assessment of Z. noltii distribution 

throughout south and west Wales, using GPS field survey and UAV (Unmanned Aerial Vehicle) 

assessments where sites were inaccessible (e.g. Garron Pill).  In 2016, most sites in Milford 

Haven were mapped with the exception of Pembroke River, Sandy Haven Pill and Cosheston.   

In order to determine changes in the extent of Z. noltii in Milford Haven, all data containing 

sites with areas of the seagrass mapped using GPS field survey techniques were compiled for 

comparison.  To assess the changes in abundance of Z. noltii in Milford Haven, all abundance 

data (most commonly recorded as percentage coverage) were collated for comparison.  These 

values were taken from raw quadrat data so that changes in abundance could be statistically 

analysed. The main sites that had long-term abundance records were Angle Bay and 

Pembroke River, although there were differences in survey effort.  Abundance data for Angle 

Bay was based on a systematic grid system using 0.25 m2 quadrats throughout the meadow.  

Therefore, at Angle Bay the sample size varied from n=38-72 depending on the extent of the 

meadow in the year it was sampled.  Pembroke River abundance data was collected using 

n=18-20, 1 m2 quadrats at randomly selected.  However, in 2014, a 0.25 m2 quadrat was used 

instead.  In 2016, abundance data was collected using a 0.25 m2 quadrat at randomly 

generated waypoints from within the meadow boundaries (Pratt et al., 2016). All sites were 

surveyed for percentage cover except Pembroke River and Cosheston. 
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3.2.3. Statistical Analysis 

A simple linear regression was performed on the sum of Z. noltii extent in Milford Haven and 

year. Only data for years from 2008 to 2014, when the majority of sites including the main 

large meadows had been mapped, were used for the regression, giving the best estimates for 

total meadow area for the model and standardising effort per year.  

For Z. noltii abundance at Angle Bay and Pembroke River, data was collected as percentage 

coverage.  Due to the non-normal distribution, non-homogeneity of variance and large 

dispersion parameters of the data, a quasi-binomial GLM was used for analysis (Crawley, 

2005).  The GLM model compared all years with percentage cover data available to the 

earliest year recorded for each site.  ANOVA was performed on the GLM using F-test, to see 

the effect of year on abundance.   

For all of the Z. noltii sites that were surveyed for abundance in 2016, the same statistical 

analysis was applied for the percentage cover data (quasi-binomial GLM followed by ANOVA 

using F-test), but with location as the independent variable instead of year. All statistical 

analysis was performed in R version 3.2.5 (Crawley, 2005; RStudio Team, 2015).  All mean 

values are presented ± Standard Deviation. 

Table 3.1. Summary of Z. noltii meadow extent data (ha) over time at different sites within Milford 
Haven. Also shown is overall change from earliest to most recent record, the mean percentage change 
per year and mean change in area per year (ha yr-1), - indicates no data available. 

 

 

Site 1996 2007 2008 2009 

Year  
 

2010 2011 2012 2013 2014 2016 

Overall 
Change 

(ha) 

Mean 
% 

change 
per 
year 

Mean 
aerial 

change per 
year  

(ha yr-1) 

Angle 5.22 16.22 27.53 26.03 29.67 32.53 22.92 32.77 37.80 40.68 35.46 84.91 3.55 

Carew - - 3.18 3.68 - 1.04 6.23 7.69 8.07 6.92 3.74 14.69 0.47 

Cosheston - - 0.24 0.21 - 0.37 1.77 0.86 0.69 - 0.45 23.44 0.08 

Garron Pill - - 4.52 4.83 3.90 4.30 5.59 5.27 5.37 4.65 0.13 0.36 0.02 

Hobbs Point - - 2.09 2.05 - 0.79 1.61 3.20 1.99 3.49 1.40 8.36 0.17 
Pembroke 
River - 54.99 93.74 93.73 95.26 97.86 97.35 99.36 97.41 - 42.42 9.64 5.30 
Pwllcrochan 
Flats - - 0.17 - - 0.46 0.13 1.79 2.15 3.85 3.68 270.71 0.53 

Sprinkle Pill - - 0.16 0.66 - 0.11  0.87 0.71 0.32 0.16 12.73 0.02 

Totals   131.62   137.46  151.80 154.18  87.44  10.93 
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3.3. Results 

3.3.1. Z. noltii extent in Milford Haven 

Overall, all Z. noltii meadows in Milford Haven have shown an increase in area (ha) when 

comparing most recent records with earliest available data (see Table 3.1).  All locations show 

a positive mean percentage change and change in aerial extent per year. The only years where 

a complete set of extent data are available for all of the main Z. noltii beds were 2008, 2011, 

2013 and 2014, all showing successive expansion in area (Table 3.1).  Results from a simple 

linear regression model show a significant increase in Z. noltii area over time from 2008 to 

2014 (F=17.26, p=0.01, Adj. R2=0.76) (Fig. 3.2). 

Angle Bay and Pembroke River hold the largest populations of Z. noltii in Milford Haven.  In 

2016, the extent of the Z. noltii in Angle Bay was found to be 40.68 ha, an increase of 35.46 

ha from the estimated value in 1996, and a mean annual increase of 3.55 ha yr-1.  Pembroke 

River was found to have an area of 97.41 ha in 2014 (most recent record available), an 

increase of 42.42 ha from 54.99 ha in 2007, and a mean annual increase of 5.30 ha yr-1 (Table 

3.1, Fig. 3.3).   

Other smaller Z. noltii meadows within Milford Haven also show increases in extent overall 

from 2008 to 2016, albeit with more variation (Table 3.1, Fig. 3.4).  The Z. noltii meadow at 

Garron Pill, for example, shows some interannual variation (range 3.90-5.59 ha), but with a 

mean annual change of 0.02 ha yr-1.  Pwllcrochan Flats shows the biggest percentage increase, 

from 0.17 ha in 2007 to 3.85 ha in 2016 (Table 3.1). 
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Figure 3.2. Change in extent (ha) for Z. noltii in Milford Haven with positive linear regression.  Data is 
total of all available data per year where the majority of meadows (including the two largest sites) had 
been mapped, excluding Pwllcrochan flats and Sprinkle Pill which were not consistently measured. In 
2010 only 3 meadows were mapped and in 2016, Pembroke River was not mapped so these years 
were omitted from the graph and the regression. 
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Figure 3.3. Change in Z. noltii extent (ha) from 2007 to 2014 in Angle Bay (left) and Pembroke River 
(right), in Milford Haven. Data for Angle Bay was unavailable for 2012. All data provided by NRW as 

GIS layers.  
 

 

 

Figure 3.4. Change in meadow extent (ha) from 2008 to 2016, for other major Z. noltii sites in Milford 
Haven.  All data provided by NRW as GIS layers except 2016 data from Pratt et al. (2016). 
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3.3.2. Zostera noltii abundance 

Long-term abundance data, recorded as percentage coverage, was only available for 

Pembroke River and Angle Bay.  Mean percentage coverage ranged from 20.85 ± 31.52 to 

48.68 ± 30.37 over time for Angle Bay, and 61.39 ± 12.93 to 82.50 ± 15.80 for Pembroke River.  

Other meadows in the Haven were measured for abundance in 2016, by way of percentage 

coverage and shoot density. Percentage coverage ranged from 24.3 ± 18.8 for Sprinkle Pill, to 

71.9 ± 23.0 for Carew (Table 3.2). 

 

Table 3.2. Results of abundance data collected at six Z. noltii meadows in April and June of 2016, within 
Milford Haven. Cover was recorded as percentage cover per 0.25 m2 quadrat, and shoot density taken 
from 0.2 m2 cores, all ± S.D., n= 30. Data provided by Pratt et al., (2016). 
 

Site Z. noltii cover (% per 
0.25 m2) 

Z. noltii Shoot density 
(per/0.2m2) 

Angle 30.5±24.5 64.0±41.4 

Pwllcrochan 57.815±30.7 116.5±76.6 

Hobbs Point 66.1±30.0 116.8±66.6 

Carew 71.9±23.0 125.1±61.7 

Garron Pill 44.8± 23.5 75.5± 31.0 

Sprinkle Pill 24.3±18.8 41.2±43.9 

Average 33.3±31.4 62.3±61.2 

 

For Angle Bay, results from the ANOVA of the quasi-binomial GLM show percentage coverage 

of Z. noltii is significantly affected by year (F=5.88, p<0.001 d.f.=402). Pembroke River also 

shows percentage coverage of Z. noltii is significantly affected by year (F=4.42, p<0.001, 

d.f.=123).  

In Angle Bay, the mean percentage cover of Z. noltii was significantly higher in years 1998, 

1999 and 2000 (p=<0.05) in comparison to the earliest record in 1996.  However, in 2008 

cover was found to be significantly lower than 1996.  This could be due to a change in the 
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method of data collection this year, whereby the area covered in the systematic grid sampling 

was greatly increased (Fig. 3.5).  This led to a higher number of quadrats (n=72 in 2008 c.f. 

n=43 in 2000) recording 0 % cover than in all other years.  In 2016, percentage cover is not 

significantly different to records from 1996, 30.47 ± 24.49 % c.f. 32.03 ± 28.48 %, although 

data collection methods were different (a shift from systematic grid sampling to random 

sampling in 2016 with n=30).   

In Pembroke River, the mean percentage cover of Z. noltii was significantly lower in 2013 

compared to the earliest record in 2009 (p=0.04), all other years were not significantly 

different (Fig. 3.5). 

For all the Z. noltii meadow sites surveyed for abundance in 2016, results show high variability 

between meadows with location having a significant effect on percentage cover (F=16.353, 

p<0.001, d.f.=174) (Fig. 3.6). Sprinkle Pill had the lowest abundance followed by Angle Bay 

with no significant difference from each other.  Carew shows significantly higher abundance 

(p=<0.001) than Sprinkle Pill and Angle, followed by Hobbs Point, Pwllcrochan (both 

p=<0.001) and Garron Pill (p=0.034) (Table 3.2, Fig. 3.6).  All meadows showed consistent 

patterns for both percentage coverage and shoot density (Table 3.2). 
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Figure 3.5. Change in Z. noltii percentage cover for Angle Bay (top) from 1996 to 2016 (n=30-91) and 
Pembroke River (bottom) from 2009 to 2015 (n=18-20). Note that no abundance data was available 
for either site for 2001-2007. Boxes represent interquartile range and whiskers 1.5 times the 
interquartile range. Thick black horizontal lines in the box depict the median with mean indicated as 
open circle within plot. External black points indicate outliers.  

 

 

Figure 3.6.  Mean Z. noltii abundance as percentage coverage (error bars show ± S.D, n=30), for the 
meadows in Milford Haven that were surveyed in April and June 2016, data from Pratt et al. (2016). 
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3.4. Discussion 

Seagrass meadows are globally recognised as being at risk with major implications for the 

ecosystem services they deliver to coastal communities (Orth et al., 2006; Short et al., 2011; 

Short and Wyllie-Echeverria, 1996; Waycott et al., 2009). Here we present long-term data that 

provides an example of an extensive intertidal population of seagrass remaining stable and 

possibly resilient, in a location of intense industrial development and high water pollution 

concerns (Nikitik and Robinson, 2003; Petpiroon and Dicks, 1982). Despite contamination 

from a major oil spill in 1996 (Hodges and Howe, 2007), the populations of Z. noltii in 

Pembroke River and Angle Point were not found to be adversely effected in the years that 

followed the spill (Hodges and Howe, 2007; Moore, 2006), and this study finds that this 

continues to be the case. 

3.4.1. Extent 

The present study indicates populations of Z. noltii in Milford Haven are expanding in extent, 

with some small meadows, once thought to be extinct, such as Garron Pill and Pwllcrochan 

Flats (Foden and Brazier, 2007; Hodges and Howe, 2007), found to be present and thriving 

over the last decade (Pratt et al., 2016).  Prior to 2007, data is lacking for the extent of Z. noltii 

beds in Milford Haven, but data collected after this date strongly indicate an overall trend of 

meadow expansion. The additional historic data made available for this study supports and 

reinforces findings made by Pratt et al. (2016), whereby Z. noltii beds were found to be 

increasing in extent where historic records of Z. noltii were compared with the author’s 

findings.  For smaller populations of Z. noltii (for example, Sprinkle Pill, fig. 1 & 4), the trend 

does not appear to be as consistent, with higher variability in area from year to year.  This is 

not unexpected, with small sparser meadows being less stable and thought of as more 

transient than larger more established populations (Hodges and Howe, 2007).  As one of the 

smaller fast growing and short-lived seagrass species, Z. noltii has high production rates in 

comparison to other seagrasses, enabling it to quickly colonize areas when conditions are 

favourable and to sustain itself in the presence of considerable disturbance (Borum et al., 

2004; Marbà et al., 2013) and remain resilient to changing environmental conditions 

(Unsworth et al., 2015).  This dynamic nature appears more evident for some of the smaller 

meadows in Milford Haven, such as Cosheston, Hobbs Point and Sprinkle Pill (Fig. 3).  For the 

larger meadows at Angle Bay and Pembroke River, although the extent increased rapidly from 
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2007, the populations appear to have stabilized in more recent years.  Larger meadows are 

more likely to remain more resilient, as above a minimum size the chances of seagrass patch 

mortality decreases (Bernard et al., 2007; Duarte and Sand-Jensen, 1990).  The expansion of 

Z. noltii meadows is mainly reliant on clonal growth and rhizome extension, as with all 

seagrass species (C. M. Duarte, 1991).  New shoot recruitment is primarily dependent upon 

propagules from adjacent, well-established meadows (Peralta et al., 2002), with less than 5% 

of plants thought to originate from seeds (Borum et al., 2004).  This is also most likely the case 

for the Z. noltii meadows in Milford haven, with very few seeds found in sediment cores taken 

from the surveys conducted in 2016 (Pratt et al., 2016).  

3.4.2. Abundance 

Abundance data was the next most consistent measurement that could be assessed from the 

historic data to give a better understanding of the status of the Z. noltii meadows within 

Milford Haven.  Pembroke River displays a relatively stable pattern of abundance over time. 

In comparison, Angle Bay shows greater variability in Z. noltii coverage between years, which 

is likely to be explained by the difference in sampling methods (fig. 4) making it difficult for a 

fair comparison.  Percentage cover data for Angle bay was gathered over a longer time period 

(1996-2016), which will introduce more variability in abundance in comparison to data for 

Pembroke River.  The large increase in extent for Angle Bay in 2008 coincides with a decrease 

in percentage cover.  In this year, what was previously classed as two sub-populations within 

Angle Bay merged into one bed, resulting in an overall decrease in mean percentage cover 

caused by the high number of quadrats containing 0% seagrass.   The lack of long-term 

abundance data for other Z. noltii sites within Milford Haven means we are limited with our 

understanding of changes in these meadows in comparison to present status.  However, data 

collected in 2016 shows average percentage cover and shoot density for the majority of sites 

within the Haven (Table 2).  Both parameters exhibit similar patterns across the different 

meadows showing that both percentage cover and shoot density appear to be effective in 

determining Z. noltii abundance.  Although the Angle Bay population is much larger than many 

of the other sites, it has lower percentage cover and shoot density than many of the other 

meadows. This is most likely explained by the sampling method, and the amalgamation of 

sub-populations as previously explained.  There is also evidence of bait digging in Angle Bay 

which was described as localised and fairly minor in impact from 1996-2000 (Hodges and 
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Howe, 2007), but found to be more extensive in 2008 and 2013 (Duggan-Edwards and Brazier, 

2015).  This physical impact could be negatively affecting seagrass cover, a concern that is 

shared in other Z. noltii meadows such as in Bourgneuf Bay, France, where increased 

recreational clam harvesting has been observed (Barillé et al., 2010) and Ria Formosa, 

Portugal, where clam farming is causing seagrass removal (Guimarães et al., 2012).  The high 

levels of nutrients in Milford Haven Waterway could also be affecting seagrass abundance in 

certain areas and nutrient loading has been found to negatively effect seagrasses (Burkholder 

et al., 2007) and cause decreases in Z. noltii density elsewhere (Cabaco et al., 2007; Cabaço 

et al., 2008a).  The Waterway is considered to be at a moderate status and hypernutrified 

compared to Water Framework Directive (WFD) nutrient standards (NRW, 2016) which needs 

to be taken into consideration.   

3.4.3. Status of Zostera noltii elsewhere 

Although this present study shows that the status of Z. noltii in Milford Haven is good, it is 

difficult to find recent evidence of this trend occurring in other locations. Long-term studies 

on Z. noltii are limited, and show variable trends.  In Arcachon Bay, France, long-term spatial 

studies found severe declines in Z. noltii and Z. marina between 1988 and 2008, with 

accelerated declines for Z. noltii since 2005 (Plus et al., 2010).  In contrast, the spatial 

distribution of Z. noltii meadows in Bourgneuf Bay, France, have been found to have steadily 

increased within the same time frame, between 1991 and 2005 (Barillé et al., 2010). In the 

Wadden Sea, similar findings have been observed from aerial surveys which have recorded a 

three to fourfold increase in Z. noltii area from 1994 to 2006 (Reise and Kohlus, 2008).  On the 

contrary, subtidal populations of the common eelgrass Zostera marina in Milford Haven are 

not showing the same pattern as the Z. noltii.  In Littlewick Bay (near Milford Haven, fig. 1), 

monitoring surveys have shown small increases in extent in the Z. marina meadow, but 

significant decreases in shoot density and leaf length (Nagle, 2012).  The deeper water 

environments Z. marina is subjected to makes it more susceptible to poor water quality, 

particularly excess nutrients and industrial impacts such as hot water outlets potentially 

elevating respiratory demands. 
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3.5. Conclusion 

In conclusion we provide evidence of the potential for intertidal seagrass in a well flushed but 

highly nutrient enriched industrial waterway which has in the past been subjected to a serious 

oil spill, to resiliently remain in a favourable state over long time periods.  We present 

evidence that Z. noltii in Milford Haven is thriving.  Extent of the Z. noltii in Milford Haven has 

been expanding over the past decade.  Abundance data for the two largest meadows 

reinforces this although long-term abundance data is unavailable for the other sites within 

the Haven.   Long-term monitoring data provides vital evidence for the status of important 

habitats like seagrass meadows that exist under the shadow of heavy industry.  By including 

other metrics, such as abundance and possibly leaf length data in monitoring strategies, 

evidence of the status of the seagrass meadows would be more conclusive.  The positive 

message for Z. noltii demonstrates that management of Milford Haven’s waterway appears 

to be proving successful for this dynamic and robust species. The trend is mirrored in other Z. 

noltii meadows in Europe where improvements in water quality were also thought to be 

responsible for the increase in meadows.  However, the moderate status of the water quality 

Milford Haven Waterway may not be adequate enough to see the same stable trend in its 

subtidal relative, Z. marina. 
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Abstract 

Seagrasses are subjected to intense levels of anthropogenic disturbance as a result of the 

shallow nearshore waters they inhabit.  Some seagrasses are known to have dynamic growth 

patterns, enabling them to colonize unstable shallow environments and adapt to a range of 

disturbances.  This can result in high levels of variability in morphological and physiological 

attributes.  The seagrass Halodule wrightii is known to be a fast-growing pioneering species 

with a large geographic range.  The present study examines Halodule wrightii in a region 

under intense anthropogenic stress in order to determine what are the main environmental 

drivers affecting the morphology, physiology and status of these habitats.  Parameters of 

plant morphology, physiology and status were measured either at the meadow scale (e.g. 

biochemistry) or at a higher frequency shoot scale (e.g. shoot width).  We assigned an impact 

assessment index to a series of seagrass sites over a gradient of anthropogenic disturbance 

and found this to be explanatory of a number of the seagrass parameters measured including 

epiphyte cover, stable isotope δ15N and ETRmax however, it did not clearly explain shoot 

density, a commonly used bioindicator of environmental stress.  At the shoot scale, Principal 

Component Analysis identified epiphyte and leaf width to have the strongest association. At 

the meadow scale this was  shoot density, dry weight and Ek , albeit with the most impacted 

sites showing highest shoot density.  Stable isotope (δ15N) and leaf length were most 

significant in explaining the variation between sites and impact category, providing a direct 

link between anthropogenic sources of nutrients to seagrass meadow density. 
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4.1. Introduction 

The coastal and estuarine waters where seagrasses grow are some of the most heavily 

impacted regions of the marine environment (Cabaço et al., 2008a; Short and Wyllie-

Echeverria, 1996).  The anthropogenic pressures from urban and industrial developments 

occurring in proximity to these areas has resulted in Worldwide declines of seagrass meadows 

(Short and Wyllie-Echeverria, 1996; Waycott et al., 2009).  The biggest threat to seagrasses 

from coastal development is attributed to poor water quality resulting in the direct or indirect 

reduction of light availability (Biber et al., 2009; Burkholder et al., 2007; Duarte, 2002; 

Hemminga, 1998; Jiang et al., 2013).  However, in some locations the direct physical damage 

and removal of seagrass from port/harbour developments and boat anchoring could arguably 

pose the most critical risk (Grech et al., 2012, 2011).   

Seagrasses will exhibit various changes in morphology and physiology in order to adapt to 

changes in light environment and numerous shading studies have shown decreases in leaf 

length, leaf width, leaves per shoot and shoot growth (Bertelli and Unsworth, 2018; Biber et 

al., 2009; Collier et al., 2012b; Olesen and Sand-jensen, 1993; Yaakub et al., 2013).  The 

reduction in above-ground biomass reduces respiratory demand of the plant but decreases 

its photosynthetic capacity and carbon uptake (Campbell and Miller, 2002; Collier et al., 

2012b; Ralph et al., 2007).  Light reduction is rapidly reflected in the photosynthetic 

performance of seagrasses resulting in a decrease in electron transport rates and carbon 

capture which can be measured in situ using chlorophyll fluorescence (Bité et al., 2007; Ralph 

and Gademann, 2005).   Events which frequently reduce light to levels below the minimum 

light requirement (MLR) can lead to plant mortality and meadow die-off.  Responses have 

been found to be species-specific in some cases (Bité et al., 2007; Collier et al., 2016; Silva et 

al., 2013) with factors such as seagrass plant size (Roca et al., 2016), life  history, habitat and 

meadow form found to be significant in response time and sensitivity to environmental 

stressors (Kilminster et al., 2015).  The morphological and physiological changes exhibited by 

seagrasses in response to changes in light availability make seagrasses good ecological 

indicators of water quality (Grice et al., 1996; McMahon et al., 2013). However, our 

knowledge of these seagrass responses to water quality is limited to certain species and 

localities (McMahon et al., 2013).  Nutrient availability is exhibited by the long-term uptake 

within seagrass tissue, and the ratio of leaf nutrients (C:N:P) has been successfully shown to 
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be an indicator of nutrient enrichment in some seagrass species (Burkholder et al., 2007; 

Carruthers et al., 2005; Fourqurean et al., 1997; Orth et al., 2006).  Nutrient inputs can lead 

to increases in productivity where waters are oligotrophic, but continued nutrient loading has 

also been found to reduce shoot density (Carruthers et al., 2005; Fourqurean et al., 2003, 

1995; Tomasko et al., 1996).  The evidence of reduction in shoot density and biomass from 

nutrient loading highlights the importance of recognising sources of nutrient inputs in 

seagrass meadows to allow for the management of these habitats for health and resilience.  

The use of stable isotopes of nitrogen (δ15N) and carbon (δ13C) are being increasingly used as 

environmental tracers within marine ecosystems (Jennings et al., 1997; Lepoint et al., 2004), 

and have been used to provide insight into the sources of nutrients in seagrass meadows 

(Carruthers et al., 2005; Fourqurean et al., 1997; Jones et al., 2018; Lepoint et al., 2004).  

Halodule wrightii (Ascherson) is a common shallow and intertidal seagrass in the Tropical 

Atlantic Bioregion with its southern limit occurring in Brazil.  Populations near the southern 

limit have rarely been recorded reproducing sexually, making them somewhat borderline and 

spatially discrete (Creed, 1997).  H. wrightii beds have been found to show large amounts of 

inter-population variation in morphology as well as shoot density and biomass (Creed, 1997).  

This suggests environmental factors are affecting the morphology and the development or 

expansion of these seagrasses.  Factors such as high sediment instability, low temperatures, 

strong wave action at low tides or exposure to air have been described as some of the 

potential factors that limit the existence of H. wrightii (Barros et al., 2013), although such 

drivers remain poorly explored (Creed, 1997; Creed and Amado Filho, 1999; Pitanga et al., 

2012).  Direct observations of environmental effects on Brazilian seagrasses are limited 

(Barros et al., 2013), with data such as leaf nutrient content and photophysiological attributes 

lacking in the literature.  Decline and die-off of H. wrightii meadows have also been attributed 

to anchor damage and overgrowth of epiphytic algae (Creed and Amado Filho, 1999; Papini 

et al., 2011; Sordo et al., 2011) likely caused by excess nutrients (Balata et al., 2010; 

Burkholder et al., 2007).  Although H. wrightii has been found to tolerate eutrophic waters 

more so than other competing species (Fourqurean et al., 1995; Lapointe et al., 1994; Powell 

et al., 1989), nutrient enrichment will greatly increase epiphytic biomass which effects 

seagrass productivity (Wear et al., 1999).  
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The aims of the present study were to examine the anthropogenic and natural environmental 

drivers that modify H. wrightii at a shoot and a meadow scale in order to describe and define 

what are the major factors affecting the development of these seagrasses.  By better 

understanding these drivers, it is possible to compare the shoot and meadow scale responses 

of this tropical species to other seagrasses and ascertain whether these meadows could be 

under threat from these impacts.  

4.2. Method 

4.2.1 Study sites  

Anecdotal evidence indicates seagrass meadows in Brazil are extensive, yet knowledge of 

seagrasses in the southwest Atlantic still remains poor (Barros et al., 2013).  Recent evidence 

suggests that although these tropical coastal meadows are of key importance to fisheries 

(Nordlund et al., 2016) they are under threat, requiring concerted conservation action 

(Copertino et al., 2016).  The coast of Brazil is subjected to intense environmental threats due 

to the high levels of urbanisation and frequent periods of prolonged intense rainfall 

(Copertino et al., 2016; Marques et al., 2004).  Many areas along the coast are affected by 

high levels of nutrients from untreated sewage and industrial discharges as well as waters 

laden with suspended solids diverted from surrounding basins suffering from soil erosion 

(Marques et al., 2004).  This can cause areas of eutrophication where flushing from fresh 

seawater is reduced and residence time is high such as in coastal lagoons and inevitably have 

a direct impact any seagrass meadows present.  The ecological and environmental 

characteristics of ten seagrass meadows along the coast of Rio de Janeiro state and São Paulo 

were quantified within the month of April, in 2017.  The study sites were, in Rio de Janeiro: 

Praia de Manguinhos and Praia dos Ossos (Armação dos Búzios); Saco do Céu and Praia do 

Abraãozinho (Ilha Grande); Praia Grande and Praia do Catita (Ilha de Itacuruçá); Ilha do 

Japonês and Praia dos Anjos (Cabo Frio); and in São Paulo: Siriúba and Praia do Sino (Ilhabela) 

(Fig. 4.1). 
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Figure 4.1. Left side shows distribution of seagrass sites along the coast in relation to Rio de Janeiro 
on the map of Brazil on the right.  The sites range from from São Paulo; Siriúba (1) and Praia do Sino 
(2) to Rio de Janeiro; Saco do Céu (3), Praia do Abraãozinho (4), Praia do Catita (5), Praia Grande (6), 
Praia dos Anjos (7), Ilha do Japonês (8), Praia de Manguinhos (9) and Praia dos Ossos (10). The green 
star represents the southernmost extent of H. wrightii on the South American coast (Copertino et al., 
2016). 

4.2.2 Environmental Impacts 

Each of the seagrass meadow sites were categorized in terms of environmental impacts.  This 

used a scoring system developed by the authors based on methods and evidence identified 

from previous studies to provide an index (Creed and Oliveira, 2007; Jones and Unsworth, 

2016; Oigman-Pszczol and Creed, 2011; Pitanga et al., 2012) including information collected 

based on site observations.  The anthropogenic impacts that were included in the calculation 

of this index were as follows; vicinity to highly urbanized area, population, industry, 

agriculture, boat activity, tourism, freshwater input/sewage outfall, turbidity and enclosed 

water body/proximity to open sea.  Grazing pressure was also included as an environmental 

stressor. This is because turtle grazing has been found to significantly modify seagrass 

meadows (Lal et al., 2010), with H.wrightii  found to be the most important food source for 

juvenile green turtles found in southern Brazil (Guebert-Bartholo et al., 2011).  Each impact 

was scored from 0 (no impact) to 3 (high impact) and added up to give an overall value. An 

impact assessment index was calculated by dividing the total score for each site by the 

maximum possible score giving a value between 0-1 (Table A.1, Fig. 4.2).  Impact index scores 

were then divided up into levels - low-medium (<0.4, SS01-SS03), medium-high (0.4-0.5, SS04-

SS07) and high (>0.51, SS08-SS10) categories for statistical analysis.  
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Figure 4.2. Environmental impact index calculated from perceived impacts scored for each seagrass 
site creating a gradient of increasing impact.  Sites are ordered from lowest to highest perceived 
impact index and labelled SS01-SS10.  The perceived impacts included vicinity to industry, tourism, 
vicinity to highly urbanized area, population, agriculture, boat activity, freshwater input/sewage 
outfall, turbidity, enclosed water body/proximity to open sea and evidence of grazing. 
 

4.2.3 Environmental data 

At each site Hobo light loggers (Onset Hobo UA-002-64) were used to measure light 

availability and temperature in the middle of the seagrass bed and at the deepest edge to 

provide light levels at maximum depth threshold.  Another light logger was placed in a 

location on land to record irradiance at or near the sea surface so that the percentage of 

surface irradiance (%SI) reaching the deep edge could be calculated to represent minimum 

light requirements.  At each site a Secchi disk was used horizontally to estimate turbidity and 

salinity was recorded using a calibrated refractometer. 

4.2.4 Meadow characteristics 

The position of mid-meadow and meadow edges were identified by snorkelling along 

transects throughout each site.  Percentage coverage was measured using a 50 cm x 50 cm 

quadrat.  Twelve quadrats were randomly placed along a single transect line (50 -10 m 

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Im
p

ac
t 

as
se

ss
m

en
t 

in
d

ex

Site



59 

 

depending on size of meadow) running parallel to the shore through the middle of the 

seagrass meadow.  This was repeated along the outer edge of the meadow.  Cores of seagrass 

were collected using a PVC corer (78.5 cm2 to a depth of 15 cm) within six of the twelve 

quadrats (every other quadrat) to obtain other seagrass parameters (Howard et al., 2014; 

Mills and Berkenbusch, 2009).  Within each core sample, the number of shoots were counted, 

and the length and width of each leaf was measured using a ruler and calipers. An epiphyte 

cover score was recorded for each leaf based on the index developed for wasting disease 

(Burdick et al., 1993) and adapted for use for long-term monitoring of epiphyte cover on 

seagrass (Bull and Kenyon, 2015; Cook, 2011; Cook and Paver, 2007) (Table A.2).  Where shoot 

density was very high, a maximum number of 16 shoots were measured per core and the total 

number of shoots was recorded.  The core samples were washed, dried and then weighed to 

provide a total dry weight measurement (Table A.2).   

4.2.5 Photo-physiological parameters 

Pulse Amplitude Modulated (PAM) fluorometry using a Diving-PAM (Waltz), was used to 

measure chlorophyll fluorescence for assessing photosynthetic activity.  Photosynthetic 

parameters were obtained by performing rapid light curves using the internal stepwise 

function of the PAM fluorometer once attached to the mid part of H. wrightii leaves using a 

leaf clip.  Rapid light curves (RLCs) were started immediately after attachment of the clip to 

enable the measurement of the proxy for quantum yield (ɸpsII = (Fv)/Fm), where F is 

fluorescence yield and Fm is maximal fluorescence yield of the light adapted leaf at each 

irradiance step (Collier et al., 2009b; Ralph and Gademann, 2005).  Steps ranged from 0-2300 

µmol photons m-2s-1 and were carried out close to midday, between 11am and 1pm.  The 

stepwise RLCs were fitted to the non-linear least-squares regression model by Eilers and 

Peeters (Eilers & Peeters 1988) using the WinControl software (Waltz) to give photosynthetic 

parameters for the ETRmax (maximum rate of photosynthesis, calculated from ETR at Ek), α 

(light harvesting efficiency) and Ek (minimum saturating irradiance). 

4.2.6 Leaf nutrient analysis 

Samples of seagrass were taken randomly from within each of the sites. Leaves were 

separated, scraped free of epiphytes, and dried.  Of the dried plant material collected and 

transported back to the UK for analysis, unfortunately there was only enough material to 
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provide one sample per meadow once ground up due to the small leaf size of the plants.  The 

dried seagrass was ground up with a pestle and mortar to a fine homogenous powder.  

Samples were sent to OEA laboratories Limited for analysis of the % composition of Carbon, 

Nitrogen and Phosphorus by weight using a continuous flow isotope ratio mass spectrometer 

(Sercon 20-20 IRMS coupled to Thermo EA1110 elemental analyser). The ratios of stable 

isotope 13C to 12C (δ13C) indicates the deviation of the isotopic composition relative to the 

Vienna PeeDee Belemnite (VPDB) standard. The ratios of stable isotope 15N to 14N (δ15N) 

indicates the deviation of the isotopic composition relative to the international standard of 

air. The elemental ratio of C:N was calculated on a mole:mole basis using atomic weights 

(C=12.011, N=14.007) (McKenzie et al., 2011). These factors were determined to give values 

which indicate nutrient availability, anthropogenic sources of nutrients (Jennings et al., 1997; 

Lepoint et al., 2004) and light availability (Cabaço et al., 2008b; Collier et al., 2009; Grice et 

al., 1996; McMahon et al., 2013).  

4.2.7 Statistical analysis 

All the data was divided into measurements collected on a shoot scale and measurements 

taken at a meadow scale from quadrat data to perceive the environmental effects at these 

two levels.  Parameters measured at shoot scale include average leaf length, leaf width and 

epiphyte cover.  Meadow scale variables included shoot density, dry weight and the 

photosynthetic parameters Alpha, ETRmax and Ek.   

All measurement data was analysed using two-way ANOVA tests with impact category and 

site as a random factor (Brown et al., 1974; McDonald, 2014).  In cases where data residuals 

did not follow a normal distribution, ANOVA was used but with significant p-values set to 0.01 

to minimize risk of Type I error (Collier et al., 2012b; McDonald, 2014; Underwood, 1997).  

Tukey HSD post-hoc multi comparison test was used for comparing ANOVA data.   

Principal Component Analysis (PCA) (Clarke and Warwick, 2001) was performed on all quadrat 

level measurements at both shoot and meadow scale to illustrate the correlations between 

various shoot response parameters and effects of the perceived impacts upon them.  Principal 

components with eigenvalues greater than 1 and eigenfactors or variable coefficients ≤ -0.3, 

or ≥ 0.3 were selected.  
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General Additive Models (GAMs) (Zuur et al., 2009) were carried out in order to identify any 

non-linear patterns with other possible explanatory factors including abiotic measurements, 

leaf nutrient content and stable isotopes to determine if these are affecting the abundance 

of seagrass at sites.  Variance inflation factor analysis (VIF) was used to identify collinearity 

between explanatory variables and those with the highest collinearity were removed from 

the model.  These included %C, %N, Ek, Secchi distance and leaf width.  A base GAM model 

was then created using shoot density as the response variable as it most commonly used 

factor for monitoring changes in meadows (Burton et al., 2015; Krause-jensen et al., 2005; 

Mckenzie et al., 2016; Short et al., 2006; Taylor et al., 2003).  Alpha, dry weight, leaf length, 

C:N, δ13C, δ15N, and impact index as explanatory factors and site as a random variable.  All 

covariates were analysed as smooth variables (f) apart from impact index which was treated 

as a factor variable (F) and nutrient data owing to small sample sizes. 

(1) E[shoot density] = f(Alpha) + f(dry weight) + f(leaf length) + f(C:N) + f(δ13C) + 

f(δ15N) + f(impact index) + F(site) 

The best explanatory models were chosen using manual stepwise selection based on the 

adjusted R2 and deviance explained values (Table A.7). 

All statistics were carried out using RStudio (R version 3.5.1) using R packages stats, devtools, 

gamm4, lme4, mgvc, ggplot2, car and carData (R Core Team, 2018) except for PCA analysis 

using Primer-e V.6 (Clarke and Gorley, 2006). 

4.3. Results 

4.3.1 Shoot scale responses 

Shoot data showed large variation between sites with average leaf length across sites found 

to be 25.5 mm (± 14.16), average leaf width 0.43 mm (± 0.22) and average epiphyte score 

1.41 (± 0.92).  

The results of the two-way ANOVA shows significant interactions between leaf width 

(F=91.42, p=<0.001), leaf length (F=14.74, p=<0.001) and epiphytes (F=3.52, p=0.03) with 

impact category and site as a random factor (Table A.4).  For leaf width and length, the post-

hoc pairwise comparison shows significant variation between plants in med-high vs high, and 

med-high vs low-medium impact categories (Fig. 4.3, Table A.5), although length was found 
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to increase with increasing impact and widest leaves found in med-high impacted meadows. 

The mean widths of H. wrightii ranged from 0.24mm (±0.07) at SS03, to 0.76mm (±0.13) at 

SS07.  Average leaf length also varied greatly between meadows (Fig. 4.3), from 17.33mm 

(±9.26) at SS09, to 40.84mm (±24.01) at SS04.  Epiphyte cover also varied with the lowest 

mean score found at SS01 (0.63 ± 0.83) which was significantly lower than all other sites, and 

the highest score at SS08 (1.86 ± 1.43). Epiphyte cover was found to increase with increasing 

impact however it was not found to vary significantly between impact categories.   
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Figure 4.3. Boxplots to show comparison of shoot-scale responses of average leaf length, leaf width 
and epiphyte cover between seagrass sites (n= 55-96 per site).  Median is indicated by the solid line, 
outliers indicated by dots. Site order from lowest impact index score (SS01) on left to highest (SS10) 
on the right. 
 

4.3.2 Meadow scale responses 

Meadow scale variables also showed high variation across sites, with average shoot density 

ranging from 764.33 (±575.36) to 16645.44.7 (±3668.85) shoots/m2 and dry weight from 3.74 

(±1.27) to 104.46 (±20.4) g/m2.   

Impact index 



64 

 

The statistical tests showed significant interactions between dry weight (F=50.08, p=<0.001) 

and shoot density (F=66.51, p= <0.001) with impact category and site as a random factor 

(Table A.4).  The post-hoc pairwise comparison shows that shoot density varies significantly 

between each of the impact categories (p adj=<0.001) with shoot density actually increasing 

with impact.  For total dry weight, low-medium vs high and low-medium vs med-high showed 

significant differences (both p adj=<0.001, Table A.5), again increasing with impact, not as 

expected. 

Dry weight was highest in SS04 and SS09 with an average of 104.46 (±20.4) and 91.78 (± 19.78) 

g/m2 respectively and significantly higher than all other meadows.   SS01 had the lowest dry 

weight at 3.74 (±1.27) g/m2.  SS09 had the highest shoot density, with an average of 16645.44 

(± 3668.85) shoots/m2 (Fig. 3.4).   The meadows with the lowest shoot density were SS10 

(764.33 ± 575.37 shoots/m2) and SS03 (1273.89 ± 369.21 shoots/m2). 

4.3.3 Photo-physiological responses  

Photosynthetic parameters also showed high levels of variation between sites, with light 

harvesting efficiency (Alpha) ranging from 0.26 (±0.04) to 0.39 (±0.06), the maximum rate of 

photosynthesis (ETRmax) from 203.01 (±18.65) to 365 (±47.1) and minimum saturating 

irradiance (Ek) ranging from 588.83 (±91.09) to 1083.62 (±131.42). 

Not all photo-physiological parameters showed significant interactions with impact category 

only ETRmax (F=8.62, p=<0.001), however they all showed significant variation between sites 

(Table A.4). The post-hoc pairwise comparison shows only significant variation in ETRmax 

between low-medium vs high (p adj = <0.001) and low-medium vs med-high (p adj=0.007) 

impact categories (Table A.5) with ETRmax decreasing with increasing impact as would be 

expected. 

The Alpha value recorded for seagrasses at SS04 was significantly higher than several of the 

other sites (0.39 ± 0.06), followed by SS10 (0.35 ± 0.05) suggesting light limitation at these 

sites.  The sites with the lowest Alpha value were SS08 (0.26 ± 0.04) and SS05 (0.25 ± 0.03) 

(Fig. 4.4).  For ETRmax, SS07 and SS03 seagrass showed the highest rates, 365.99 (± 47.43) and 

340.3 (± 29.28) respectively. These sites were significantly higher than all other sites.  SS10 

and SS05 had the lowest values overall (203.01 ± 18.65 and 203.86 ± 33.08 respectively).  For 
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the Ek values, the sites that significantly varied from one another included SS08, SS07 and 

SS03 which had the highest levels (1128.77 ± 122.78, 1183.61 ± 131.42 and 1067.25 ± 131.42 

respectively), and SS10 and SS04 which had the lowest levels (588.83 ± 91.09 and 644.71 ± 

91.29 respectively, Fig. 4.4). 
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Figure 4.4. Boxplots to show comparison of the meadow and photo-physiological parameters, dry 
weight, shoot density, Alpha, ETRmax and Ek between seagrass sites (n=6).  Shoot density and dry weight 
are shown as per m2. Median is indicated by the solid line, outliers indicated by dots. Site order from 
lowest impact index score on left to highest on the right. 
 

Impact index 
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4.3.4 Principal Component Analysis 

For shoot scale responses (PCA A, Fig. 4.5), PC1 accounted for 48.3% of the variance with an 

eigenvalue of 1.45. Leaf width and epiphyte cover showed the strongest responses with 

eigenfactors of -0.668 and -0.613 respectively, showing a negative relationship compared to 

leaf length (0.422).  PC2 accounted for 30.7% of the variance with and eigenvalue of 0.922.  

Leaf length showed the strongest level of response with an eigenfactor of 0.876, followed by 

epiphyte cover with 0.464 (Table A.5).  

For meadow scale responses (PCA B, Fig. 4.5), PC1 accounted for 48.8% of the variance with 

an eigenvalue of 2.44. All the seagrass variables included showed strong responses 

(eigenfactors over 0.3, less than -0.3), although the highest variables were Ek (-0.534), dry 

weight (-0.504) and shoot density (-0.434) all showing negative association.  PC2 explained 

28.2% of the variance (eigenvalue 1.41) with all variables showing strong responses except 

Alpha at 0.246, just below the level of selection (Fig. 4.5, Table A.5).                       

 
Figure 4.5. Principal Component Analysis of (A) shoot data (leaf width, leaf length and epiphyte cover) 
variation with impact score as a factor and (B) Principal Component Analysis of meadow-scale data 
(shoot density, dry weight and photosynthetic characteristics Alpha, ETRmax and Ek). Legend separates 
sites by relative levels of impacts determined by scores and divided into low-medium (<0.4), medium-
high (0.4-0.5) and high (>0.5).                                       

(A) (B) 
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4.3.5 Leaf nutrient analysis 

Results from the tissue nutrient analysis of H. wrightii shoots show that the highest 

percentage of nitrogen was found in SS10 (3.39%) and SS03 (3.38%), with the average of all 

sites found to be 3.04 ±0.23 %.  The highest percentage of phosphorus was found in the 

seagrass from SS03 (0.41%) and SS08 (0.40%), with the site average of 0.36 ± 0.04 %.  Of the 

sites, SS03 displayed the lowest C:N ratio (10.44).  The highest C:N ratios were found at SS07 

and SS05 (12.35 and 12.37 respectively) with the study average found to be 11.63 ± 0.58 

(Table 4.2), suggesting these sites are subjected to higher light levels than others.   

The values for δ15N were highest in seagrass tissue from SS10 (7.56‰) and SS04 (7.13‰), 

followed by SS09 (5.74‰) and SS07 (4.99‰) all relatively higher than the study average (4.15 

± 2.3‰). Sites SS03, SS08 and SS01 had the lowest δ15N ratios (1.0, 1.68 and 1.72 ‰ 

respectively) indicating substantially lower anthropogenic nutrient input at these sites than 

average (Table 4.2).  

The ratio of δ13C in H. wrightii shoots averaged -10.11 ± 1.13‰ with little variation between 

all sites.  The lowest δ13C was found in SS06 (-11.16‰) and SS05 (-11.09) and the highest δ13C 

found in the seagrass at SS08 (-7.59) (Table 4.2).   

 

 

 

 

 

 

 

 

 



69 

 

Table 4.2. Results from the elemental analysis of H. wrightii leaf tissue taken from the study sites. The 
stable isotope values for δ15N (‰), δ13C (‰). 

Site δ15N δ13C %N %P C:N 

SS01 (low-med) 1.72 -10.95 3.04 0.38 12.85 

SS02 (low-med) 4.14 -10.95 3.07 0.38 13.81 

SS03 (low-med) 1.00 -10.22 3.38 0.41 12.17 

SS04 (med-high) 7.13 -9.04 2.70 0.27 13.65 

SS05 (med-high) 4.70 -11.09 2.84 0.38 14.43 

SS06 (med-high) 2.87 -11.16 3.10 0.36 13.48 

SS07 (med-high) 4.99 -10.43 2.72 0.34 14.40 

SS08 (high) 1.68 -7.59 3.12 0.40 13.20 

SS09 (high) 5.74 -9.40 3.07 0.37 13.32 

SS10 (high) 7.56 -10.30 3.34 0.31 13.67 

Study averages  4.15 -10.11 3.04 0.36 13.50 

S.D. 2.30 1.13 0.23 0.04 0.68 

Range 1.0-7.56 -11.16--

7.59 

2.7-3.38 0.27-0.41 12.17-

14.43 

 

4.3.6 Generalized Additive Models to describe shoot density 

After removal of collinear variables and those that were non-significant or would not 

converge within the GAM models owing to unbalanced sample size, the final model consisted 

of δ15N, leaf length and impact index: 

(2) E[shoot densityi]=f(impact)+f(δ15N)+ f(leaf length)+F(site) 

 

Basic models were compared for best fit.  All variables that were deemed insignificant, having 

little effect were removed. Site as a random factor and Impact level were also removed to 

test effect on model fit with results of the final comparisons in Table A.7.  

The first GAM model provides evidence that the impact level (low), alpha, leaf length and 

shoot δ15N are highly significant in explaining shoot density between impact categories, with 

highest deviance explained (96.5%, R-sq adj. 0.978) and lowest GVC of all models tested (Table 
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A.4.7).  The tissue δ15N increases with impact level as expected, however shoot density and 

leaf length also increase with increasing impact levels.  Model 5 which takes out impact level 

shows leaf length is highly significant as well as site at explaining shoot density, however δ15N 

could not be included at this level owing to small sample size.  

4.4. Discussion 

The plasticity of seagrass meadows to environmental stressors enables them to be 

bioindicators of ecological change in coastal waters.  The present study demonstrates that 

although such responses occur and do indicate the majority of seagrasses in a region of Brazil 

to be under anthropogenic stress, their responses are multifaceted and often difficult to 

interpret with respect to assessing the environmental status of seagrass meadows.  One of 

the major attributes considered for assessing seagrass health and resistance is abundance 

(Unsworth et al., 2015), with increasing abundance potentially leading to increased resilience 

(Mckenzie et al., 2016).  The present study indicates that this assumption may not always be 

correct as reduced shoot density and biomass did not always reflect increasing anthropogenic 

impact.  Other indicators were found to be more robust to identifying environmental risks.  

Epiphyte score, and leaf nutrient content (δ15N, %N, %P and C:N) data supported what were 

assessed to be the low-medium impacted sites (SS01 and SS03), and leaf nutrients were found 

to be highest in plants from the site predicted to be of high impact (SS10), indicating nutrient 

enrichment.  Other meadow scale responses also supported the case that SS10 is likely to be 

the most impacted site displaying the lowest shoot density, ETRmax and Ek of all sites, and 

second highest Alpha.  However, other meadow-scale responses specifically the low shoot 

density and biomass at SS01, do not support the low-medium impact assessment index 

attributed. The input of naturally occurring nutrients from adjacent mangroves or potential 

for higher levels of exposure to wave action and recent storm events could have resulted in a 

decrease in shoot density at this site.   

The shoots with the longest leaves were found at SS04 (med-high) and SS10 (high), although 

leaf widths at these sites were relatively narrow.  The seagrass within medium-high impact 

sites (SS06 and SS07) were found to have the widest leaves, but also amongst the shortest 

leaves measured.  It is expected that nutrient enrichment within the water-column results in 

increased turbidity and light attenuation, caused by an increase in epiphytic algae growth and 
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eutrophication.  Light limitation often results in a reduction of above-ground biomass 

exhibited by shorter, narrower leaves, with fewer leaves per shoot and becoming less dense 

at a meadow scale (Bertelli and Unsworth, 2018; Biber et al., 2005; Collier et al., 2012b; 

Ochieng et al., 2010; Olesen and Sand-jensen, 1993; Yaakub et al., 2013).  However, reduction 

in leaf length and elongation which is exhibited in many seagrass species as a response to light 

limitation does not always hold true for H. wrightii.  This study has found the sites with the 

longest leaves were also found to have highest levels of shoot δ15N, Alpha, turbidity and 

lowest shoot density and Ek indicating poor water quality and low light conditions.  Creed 

(1999) also found that shoot density to be highest in meadows with shorter leaves.  Previous 

studies have found that H. wrightii can show little change in leaf elongation from shading 

experiments (Czerny and Dunton, 1995), and in situ, H. wrightii growing in shade can have 

longer leaf lengths than neighbouring plants growing under higher light conditions (Shafer, 

1999).  Leaf length could also have been affected by the presence of turtles observed by the 

authors, the effect of which has been observed to cause H. wrightii in this area to grow wider 

leaves (Creed, pers. Comm., 2017).  There was found to be a relationship between wider 

leaves of H. wrightii and evidence of grazing (turtle presence and cropped leaves, see A.4.1).  

However this response also appears to be species specific and the converse of findings from 

other studies that found grazing to have the opposite effect (Fourqurean et al., 2010; Lacey 

et al., 2014; Lal et al., 2010).   

There is a wide body of evidence which shows that light limitation and shading results in a 

reduction in shoot production and shoot density overall for H. wrightii (Biber et al., 2009; 

Shafer, 1999) and other seagrass species (Lee and Dunton, 1997; Longstaff et al., 1999; Olesen 

et al., 2002), highlighting this response as a major indication of light stress at a meadow-scale.  

According to the meadow-scale attributes measured (density, biomass, and photosynthetic 

stress), SS10 (high) is likely to be the most light-stressed, followed by SS04 (med-high).  These 

sites are located within the semi-enclosed, shallow Sepetiba Bay, with lower flushing, into 

which flow several rivers draining the catchment of the highly urbanised and industrial city of 

Rio de Janeiro.  This is also supported by the high turbidity and temperatures recorded in situ.  

SS06 also showed similar meadow-scale indicators of stress to SS04 and SS10 which could also 

be explained by the high level of turbidity found at the site and the low % SI reaching the 

seagrass (Table A.4.3).  This site is within protected and enclosed São Sebastião Channel, also 
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with lower flushing.  Shoot density and dry weight show similar patterns for the sites as 

expected, which are also reflected in the values for alpha which are highest in those meadows 

which appear to be the most impacted. 

The H. wrightii at SS10 was found to have the second highest level of nitrogen and the highest 

δ15N indicating nutrient enrichment affecting the site is likely to include anthropogenic 

sources.  Seagrass from SS03 was also found to have a high proportion of nitrogen, however 

its low δ15N isotopic ratio indicates that there are lower anthropogenic inputs at this site.  This 

site is also within an enclosed embayment, part of the Ilha Grande State Park, where nutrient 

inputs likely come from leaf litter from the adjacent preserved Atlantic rainforest and 

mangrove systems rather than from the sparse human habitations.  The carbon to nitrogen 

ratio found within seagrass leaves has been found to be a robust indicator of light stress which 

responds over a longer time-scale than photosynthetic characteristics (McMahon et al., 

2013).  The results from this study suggest that SS07 and SS05 (med-high) are subjected to a 

higher light environment overall, and the site subjected to the lowest light levels over time is 

likely to be SS03 (low-medium).  However, it should be considered that the overall C:N ratios 

between sites showed little variation suggesting all the sites are subjected to relatively low 

light conditions and high nutrient status.  With global averages for other seagrass species 

found to be considerably higher at around 20 (Atkinson and Smith, 1983; Duarte, 1990; Grice 

et al., 1996; B. L. Jones and Unsworth, 2016), the low site averages found in this study support 

such a premise although more samples should be taken in the future to support this.  

Increasing irradiance has also been found to lower isotopic discrimination of carbon uptake 

during photosynthesis in seagrasses and therefore lower δ13C depletion within the plants. This 

suggests that the seagrass meadow at SS08 (high) is subjected to the highest light levels of all 

sites measured in this study which is supported with it being the shallowest meadow and 

highest % surface irradiance levels recorded (Tables 2, A.3).  To the author’s knowledge this 

is the first study that has analysed the C:N and stable isotopes of H. wrightii using modern 

methods of mass spectrophotometry, and despite low sample number, does provide 

important evidence for this seagrass species.  A previous study by Powell et al. (1989) 

quantified the nitrogen and phosphorus content of H. wrightii plants before and after nutrient 

enrichment with results showing concentrations lower than those found at all ten sites 

measured for this study.  Monitoring reports describe seagrasses with tissue nutrient ratios 
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(C:N) below 15 as very poor (Mckenzie et al., 2016; McKenzie et al., 2011) which suggests that 

all sites in this study are nutrient enriched.  The opportunistic and pioneering nature of H. 

wrightii allows it to grow in relatively unstable conditions compared to other seagrass species 

(Creed and Amado Filho, 1999; Lapointe et al., 1994; Tomasko and Lapointe, 1991; Wear et 

al., 1999).  These unstable conditions can result in sedimentation and burial, a factor not 

measured in the present study, but has been found to be one of the most important causes 

of localised loss (Cabaço et al., 2008b; Ceccherelli et al., 2018).  H. wrightii has a higher 

nutrient demand than other seagrasses (Powell et al., 1989; Wear et al., 1999) and so can 

better tolerate eutrophication (Lapointe et al., 1994) and has been known to displace 

Thalassia testudinum under conditions of prolonged nutrient enrichment (Fourqurean et al., 

1995).  Yet, enrichment has been found to significantly decrease blade turnover and rhizome 

growth in other species (Wear et al., 1999), and coupled with sedimentation from 

anthropogenic caused run-off or natural storm events can cause considerable decline 

(Ceccherelli et al., 2018).  Nevertheless it is expected that the variation in morphology, density 

and physiology of H. wrightii meadows is caused by differences in localised environmental 

conditions which have been found to be greater at its southern distributional limit (Creed, 

1997; Sordo et al., 2011).   

4.5. Conclusion 

This study assessed seagrass indicators at shoot and meadow-scales across a range of 

seagrass meadows, and the environmental parameters which are modifying them. The results 

demonstrate substantial morphological and physiological variation to occur. 

The results of this study have shown that although perceived impacts and undesirable 

environmental conditions are the cause of variation between these relatively isolated 

populations, it is not straight forward to identify which sites are most impacted in the case of 

Halodule wrightii.  The impact assessment index developed in this study identified SS10 as the 

most impacted site which is reflected in the meadow scale responses; lowest shoot density, 

ETRmax and Ek of all sites, and second highest alpha.  The shoot nutrient analysis also confirms 

that SS10 is probably one of the most eutrophic sites owing to the highest %N content of the 

leaves.  However, the impact index perceives SS01 as the least impacted site but the low shoot 

density, biomass and leaf widths at this site go some way to contradict this.  Other processes 
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that have not been recorded could be responsible for the condition of the seagrass here, its 

location on the northern side of Ilha Grande is more exposed and potentially subjected to 

more storm events which could cause burial. It has also previously been rated as the most 

heavily impacted site within the Baía da Ilha Grande (Creed and Oliveira, 2007).  The impact 

index has been shown to work for assessing the most impacted sites but has not been so 

useful at determining the least impacted, most likely due to naturally occurring drivers that 

were not measured. 

Of the variables measures, the stable isotope of Nitrogen and leaf length were most 

significant in explaining the differences in shoot density between sites.  Taking more samples 

for shoot C:N and stable isotope analysis is highly recommended to substantiate this trend.  

All the seagrass sites used in this study are relatively impacted, with some more than others 

although H. wrightii may also naturally better tolerate more borderline environmental 

conditions that other seagrasses do not.  This highlights the importance of identifying the 

most species appropriate factors to measure when attempting to assess the health status of 

seagrass meadows, which could result in the development of monitoring protocols that 

incorporate species specific responses to site specific threats.  
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4.7. Appendix 

Table A.4.1. Table of impact assessment scores attributed to each seagrass site for each perceived 
impact from 0-3. The impact assessment index is calculated by divided the total score per site by the 
maximum possible score.  

 

 
 
 
Table A.4.2. Description of epiphyte cover scores used for assessing coverage based on methods 
developed by Burdick et al. (1993) and described by Cooke & Paver (2007) for use for determining 
epiphyte scores in long-term seagrass monitoring programmes.  
 

Score Description Percentage cover 

0 Uninfected leaf 0 

1 Minimal cover apparent 0-2 

2 Up to a quarter of leaf covered 3-25 

3 Up to half the leaf covered 26-50 

4 Over half of all leaf covered 51-75 

5 Almost all of leaf covered 76-100 
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index 

Abraaaozinho 1 1 2 1 1 0 0 0 1 0 7 0.23333 

Praia do sino 1 0 2 1 1 0 2 1 1 1 9 0.33333 

Saco du Ceu 1 1 1 2 1 0 1 2 3 0 12 0.4 

Catita 1 3 0 1 3 1 0 2 2 0 13 0.43333 

Praia dos 

Anjos 2 1 2 3 2 0 0 1 1 2 14 0.46667 

Siriuba 1 0 2 2 1 0 2 3 1 2 14 0.46667 

Manghuinhos 2 0 2 2 2 0 1 2 1 3 15 0.5 

Ilha do 

Japones 3 1 2 0 3 0 0 2 3 2 16 0.53333 

Ossos 2 0 3 2 2 0 2 1 1 3 16 0.53333 

Praia Grande 1 3 1 2 3 1 1 3 2 0 17 0.56667 
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Table A.4.3. Abiotic factors measured at each seagrass site in April 2017.  Average light intensity for 
each site is taken from light recorded within the meadow (middle), % SI is taken as percentage of 
surface irradiance reaching meadow edge, measured using Hobo light loggers (in lux).  
 

Site Average 

light 

intensity 

mid-

meadow 

(lux) 

SD light 

intensity 

Max light 

intensity 

during day 

(lux) 

% SI 

at 

deep 

edge 

Max 

temp 

(oC) 

Min 

temp 

(oC) 

Secchi 

distance 

(m) 

Salinity 

(‰) 

Abraãozinho 3835 6129 34445 15.3 27.17 21.09 5.5 38 

Praia do sino 3524 5562 35823 13.6 26.98 25.71 3.5 34 

Saco du Céu 6692 14608 220446 23.7 29.65 23.87 2.5 36 

Catita 5280 13379 198401 11.9 33.43 26.68 2.5 32 

Praia dos 

Anjos 

3651 5046 24800 13.2 24.84 22.24 5 37 

Siriuba 1409 2231 12400 6.7 26.59 25.61 0.75 35 

Manghuinhos 3815 6550 126756 13.8 26.88 23.77 2.5 39 

Ilha do 

Japonês 

6555 10472 170846 36.2 32.09 21.19 3 39 

Ossos 5522 8202 52356 11.7 26 23.97 3.75 39 

Praia Grande 2204 7541 187379 14.0 33.43 26.10 0.5 35 

 

Table A.4.4.  Results from Analysis of variance with shoot, meadow and photo-physiological responses 
to impact index and site included as random factor.   
 

  
Df F-value Pr(>F) 

Width Impact score 2 91.42 <0.001 
 

as.factor (Site) 7 209.28 <0.001 

Ave.leaf.length Impact score 2 14.74 <0.001 
 

as.factor (Site) 7 48.56 <0.001 

Epiphyte Impact score 2 3.52 0.03 
 

as.factor (Site) 7 13.42 <0.001 

Shoot density Impact score 2 66.51 <0.001 
 

as.factor (Site) 7 43.62 <0.001 

Dry weight Impact score 2 50.08 <0.001 
 

as.factor (Site) 7 36.99 <0.001 

Alpha Impact score 2 1.32 0.278 
 

as.factor (Site) 7 9.83 <0.001 
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ETRmax Impact score 2 8.62 <0.001 
 

as.factor (Site) 7 14.14 <0.001 

Ek Impact score 2 2.77 0.072 
 

as.factor (Site) 7 17.27 <0.001 

 

Table A.4.5. Results from the post-hoc Tukey HSD pairwise comparison test for each variable 
measured.  

Width diff lwr upr p adj 

low-med-high -0.01120476 -0.03842546 0.016016 0.598286 

med-high-high 0.11367441 0.08931648 0.138032 0 

med-high-low-med 0.12487917 0.09965718 0.150101 0 

Ave leaf length 
    

low-med-high -1.347614 -3.918443 1.223215 0.435291 

med-high-high 3.770645 1.470187 6.071104 0.000377 

med-high-low-med 5.118259 2.736196 7.500322 1.7E-06 

Epiphyte 
    

low-med-high -0.21339175 -0.40533217 -0.02145 0.024946 

med-high-high -0.13007459 -0.30162185 0.041473 0.176817 

med-high-low-med 0.08331716 -0.09456508 0.261199 0.514472 

Shoot density 
    

low-med-high -51.38889 -62.348165 -40.4296 0 

med-high-high -33.5 -43.751464 -23.2485 0 

med-high-low-med 17.88889 7.637425 28.14035 0.000303 

Dry weight 
    

low-med-high -0.311016667 -0.39909479 -0.22294 0 

med-high-high -0.004573611 -0.08696315 0.077816 0.990139 

med-high-low-med 0.306443056 0.22405352 0.388833 0 

Alpha 
    

low-med-high 0.018111111 -0.01028242 0.046505 0.280933 

med-high-high 0.013763889 -0.01279583 0.040324 0.428903 

med-high-low-med -0.004347222 -0.03090694 0.022213 0.917598 

ETRmax 
    

low-med-high 49.65061 19.47277 79.82845 0.000655 

med-high-high 12.95864 -15.27015 41.18743 0.513189 

med-high-low-med -36.69197 -64.92076 -8.46319 0.007855 

Ek 
    

low-med-high 76.99044 -29.48394 183.4648 0.198266 

med-high-high -16.52768 -116.12534 83.06998 0.915404 

med-high-low-med -93.51813 -193.11579 6.079538 0.069808 
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Table A.4.6. Results of Principal Component Analysis of shoot scale data (PCA1) and meadow-scale 
data (PCA2). 

PCA1 PC1 PC2 

Summary Values 
  

Eigenvalues 1.45 0.922 

Percent variation 48.3 30.7 

Cumulative percent variation  48.3 79.0 

Seagrass variables 
  

Leaf length 0.422 0.876 

Leaf width -0.668 0.127 

Epiphyte -0.613 0.464 
   

PCA2 
  

Summary Values PC1 PC2 

Eigenvalues 2.44 1.41 

Percent variation 48.8 28.2 

Cumulative percent variation  48.8 77.0 

Seagrass variables 
  

Shoot density -0.434 -0.513 

Dry weight -0.504 -0.319 

Alpha 0.348 0.246 

ETRmax -0.390 0.632 

Ek -0.534 0.418 

 

Table A.4.7. Results from the generalised additive models used to describe shoot density.  Models 1-
4 showed the best fit by way of deviance explained and R2 value. 
 

Model 1 = gam(shoot_density ~ as.factor(Impact_cat) + Alpha + leaf length + N15) 

    data1$leaf_length + data1$N15 

 
Estimate Std. Error t-value p-value 

(Intercept) 12.065 1.142 10.563 0.0005*** 

Impact med-high -0.226 0.366 -0.619 0.570 

Impact high -0.338 0.427 -0.790 0.474 

Alpha -11.925 3.934 -3.031 0.039* 

Leaf length -0.093 0.015 -6.234 0.003** 

δN15 0.659 0.114 5.765 0.004** 

R-sq. (adj) = 0.978, deviance explained = 96.5%, GVC=1054.1 

Model 2 = gam(shoot_density ~ as.factor(Impact_cat) +  leaf length + N15) 

    data1$leaf_length + data1$N15 
(Intercept) 8.914 0.626 14.238 3.08e-05*** 

Impact med-high 0.166 0.547 0.304 0.773 

Impact high 0.285 0.618 0.462 0.664 
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Leaf length -0.104 0.022 -4.654 0.006** 

δN15 0.445 

. 

0.137 3.255 0.023* 

R-sq. (adj) = 0.918, deviance explained = 89.1%, GVC=2104.6 

Model 3 = gam(shoot_density ~ as.factor(Impact_cat) +  s(Alpha) + s(leaf length)+ 

F(Site) 

    data1$leaf_length + data1$N15 

(Intercept) 7.001 0.211 33.169 <2e-16*** 

Impact med-high 0.243 0.235 

230.255 

5.296 3.02e-06*** 

Impact high 1.953 0.255 7.660 7.85e-10*** 

Significance of smooth terms Ref.df F-value p-value 

s(Leaf length) edf 8.957 7.756 1.56e-07*** 

s(Alpha) 1.00 1.00 0.581 0.450 

s(Site) 8.64 1.00 0.000 0.539 

R-sq. (adj) = 0.794, deviance explained = 79.5%, GVC=1410.3 

Model 4 = gam(shoot_density ~ as.factor(Impact_cat) + s(leaf length)+F(Site) 

    data1$leaf_length + data1$N15 
(Intercept) 7.056 0.198 35.737 <2e-16*** 

Impact med-high 1.180 0.219 5.385 2.11e-06*** 

Impact high 1.857 0.221 8.393 5.33e-11*** 

Significance of smooth 

terms 

edf Ref.df F-value p-value 

s(Leaf length) 8.64 8.957 7.756 8.01e-08*** 

s(Site) 6.256e-06 1.00 0.000 0.822 

R-sq. (adj) = 0.794, deviance explained = 79.2%, GVC=1374.6 

Model 5 = gam(shoot_density ~ s(Alpha) + s(leaf length)+F(Site) 

    data1$leaf_length + data1$N15 
(Intercept) 7.046 0.220 31.98 <2e-16*** 

Significance of smooth 

terms 

edf Ref.df F-value p-value 

S(Alpha) 1.000 1.000 0.327 0.57 

s(Leaf length) 1.000 1.000 32.687 3.12e-07*** 

s(Site) 0.976 1.000 46.213 2.06e-09*** 

R-sq. (adj) = 0.634, deviance explained = 61.9%, GVC=1874.8  
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Chapter 5 – Unravelling the spatial and temporal plasticity of eelgrass 

meadows  
Bertelli, C.M., Bull, J.C., Cullen-Unsworth, L.C., Unsworth, R.K.F. 

Abstract 

The phenotypic plasticity of seagrasses enables them to adapt to changes in environmental 

conditions and withstand or recover from levels of disturbance.  This plasticity was 

demonstrated in the large variation found between a range of bioindicators measured within 

Zostera marina meadows around Wales and the Isles of Scilly.  Short-term spatial data were 

analysed alongside long-term monitoring data to determine which bioindicators best 

described the status of eelgrass meadows subjected to a range of environmental and 

anthropogenic drivers.  Shoot density, leaf length, leaf nutrients (C:N ratio, %N, %P) including 

stable isotope of δ13C and δ15N presented good insight into the longer-term status of the 

meadows studied and good indication of the causes of long-term decline. The Isles of Scilly 

had a seagrass meadow with little evidence of impacts when compared to other sites.  By 

contrast, Littlewick had the highest levels of impacts of all sites, with bioindicators showing 

clear warning signs of nutrient loading reflected in the long-term decline in shoot density, and 

prevalence of wasting disease.  This study highlights the need for continuous consistent 

monitoring and the benefits of using extra tools in the form of shoot nutrient analysis to 

determine causes of decline.  

5.1. Introduction 

Seagrass is protected under International, European and UK legislation and monitoring of 

meadows has been integrated into management and Water Framework Directives (WFD) as 

an indicator of good ecological status of coastal waters (de los Santos et al., 2019; Foden and 

Brazier, 2007; Krause-jensen et al., 2005; Marbà et al., 2013).  This has led to an increase in 

monitoring of seagrass meadows around Europe in recent decades (de los Santos et al., 2019).  

However, the diverse range of seagrass indicators used (Marbà et al., 2013) and the difference 

in frequency of monitoring surveys make it difficult to make assumptions on the true status 

of these habitats.  Baselines for monitoring have implications for how the interpretation of 

the status of seagrass meadows is or has altered over time.  Monitoring enables the 

management and protection of seagrass meadows from direct existing or potential impacts, 

such as reductions in water quality.  This ultimately improves the overall health and resilience 
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of the seagrass to increasing threats from climate change.  As an important carbon store in 

the marine environment, it is even more pertinent that seagrass meadows are protected and 

where viable restored so that they can continue to absorb CO2 from the atmosphere (Röhr et 

al., 2018).  

Zostera marina meadows around the British Isles are degraded in status, with estimations of 

25-49% decline in the last 35 years (Hiscock et al., 2005; Jackson et al., 2013), although recent 

evidence has this loss at 92% loss over longer time scales (Green et at., 2021).  To be able to 

set criteria for monitoring and mitigation strategies within management plans, it is important 

to understand environmental drivers of seagrass meadows.  Environmental conditions such 

as light, temperature and depth will affect many physiological, morphological and structural 

parameters of seagrass meadows (Martínez-Crego et al., 2008).  The plasticity of seagrasses 

enables them to adapt to changes in environmental conditions and in turn to withstand 

certain levels of disturbances (Short and Wyllie-Echeverria, 1996).  These changes can be used 

as bioindicators of reduced light levels, nutrient input and other impacts that can be 

attributed to anthropogenic disturbance or other causes for decline in water quality.  Detailed 

studies of seagrass responses to light reduction have revealed a number of consistent and 

robust bioindicators such as reductions in shoot density, biomass, growth and production, 

and shorter narrower leaves (McMahon et al., 2013).  Above ground biomass is reduced in 

this way in order to reduce the respiratory and energetic costs that come from the production 

and maintenance of new leaves (Collier et al., 2012; Fourqurean and Zieman, 1991).  

Chlorophyll content of leaves can increase under low light, with the chlorophyll a:b ratio 

lowering to increase photosynthetic efficiency (Silva et al., 2013). However, if light stress is 

prolonged, the production of more chloroplasts may prove too costly and resulting in the 

rapid decline in photosynthetic performance within a relatively short time-frame (Bité et al., 

2007; Ralph and Gademann, 2005).  Based on such evidence it can be assumed that the 

morphology and physiology of Z. marina can provide an insight into the overall light 

environments in situ and hence the status of coastal waters.  

Leaf biochemistry of seagrass can also be used to signify changes in ecological health of 

coastal waters from eutrophication (Fourqurean et al., 1997; Jones and Unsworth, 2016).  

Such studies in the UK found most seagrass to be in a poor condition, with nutrient values in 
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excess of global averages (Jones and Unsworth, 2016).  Additionally, shoot C:N ratio and the 

stable isotope of carbon, δ13C have both been identified as a robust and early indicator of 

light stress (McMahon et al., 2013), with C:N shown to have a positive relationship with 

seagrass cover (McKenzie et al., 2011).  Also, the stable isotope of nitrogen δ15N in seagrass 

can be used to identify anthropogenic sources of nutrient inputs from agricultural or urban 

effluents (Jones et al., 2018; Lepoint et al., 2004), providing indications of the source of 

eutrophication threat to the ecosystem (Lee et al., 2004; Short et al., 1995). 

In order to understand the status of seagrass, monitoring of abiotic factors such as 

temperature, turbidity and light are also important (Burton et al., 2015; Jackson et al., 2013; 

McDonald et al., 2016) as natural environmental processes also effect seagrass growth.  

Temperature affects the morphology of Z. marina with wider leaved plants being found in 

areas where the annual temperature fluctuation is small such as the Isles of Scilly (Den Hartog, 

1970).  Also, Z. marina growing in higher wave exposure will have significant morphological 

differences to plants growing where relative wave exposure is lower (Krause-Jensen et al., 

2003).  Changes in depth limits of seagrass growth is one of the bioindicators used to inform 

the WFD of changes to water quality as deeper maximum depth limits suggest clearer waters 

(Dennison, 1987; Dennison and Alberte, 1985; Krause-jensen et al., 2005).  Density will also 

be lower at increased depths as a response to lower light in order to reduce self-shading and 

reduce respiratory demand (Collier et al., 2007).  This supports the need for monitoring a 

number of robust bioindicators alongside abiotic parameters within seagrass meadows when 

assessing status.  When bioindicators at the meadow or plant-scale change, hypothesising the 

potential drivers is compromised by gaps in explanatory environmental and seagrass data.  

Specifically, it is important to determine if changes are natural processes such as yearly 

fluctuations in sunlight hours and sea surface temperature, or are being caused by 

anthropogenic sources such as light limitation caused by nutrient loading (Rasheed and 

Unsworth, 2011).  The need to measure factors that can evidence environmental conditions 

alongside seagrass monitoring data are needed for such changes to be properly assessed 

(Krause-jensen et al., 2005).   

The aims of this study are to investigate the plasticity of Z. marina by comparing a range of 

morphological and physiological indicators alongside environmental conditions across a range 
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of seagrass meadows and hypothesise that these responses can be used to explain changes 

occurring in these meadows over time using available long-term monitoring survey data.  A 

sixth seagrass site in the Isles of Scilly was included where anthropogenic pressures and 

impacts from degraded water quality are known to be minimal and seagrass condition has 

been found to be close to pristine.  

 

5.2. Methods 

5.2.1 Seagrass condition in Wales 

Six Z. marina meadows around the coast of Wales and the Isles of Scilly (UK) were assessed 

for morphological and physiological factors. The sites were as follows: Littlewick bay 

51.706°N, -5.067°E (Milford Haven), North Haven 51.738°N, -5.280°E (Skomer), Pen-y-chain 

52.899°N, -4.322°E, Criccieth 52.917°N, -4.227°E and Porthdinllaen 52.943°N, -4.565°E (Llyn 

Peninsula) and Little Arthur 49.948°N, -6.265°E within the Isles of Scilly (Fig. 5.1, locations in 

decimal degrees).  All sites were surveyed in August and September 2016 using snorkellers, 

apart from data from Skomer collected by Skomer MCZ (Marine Conservation Zone) team 

(Natural Resources Wales - NRW) and the Isles of Scilly, collected within yearly monitoring 

programmes by Natural England, both using SCUBA. 
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Figure 5.1. Seagrass sites surveyed in August to September 2016 around Wales and on the Isles of 
Scilly, UK.  
 

At each site a PAR logger (Odyssey, Dataflow systems Ltd) and a temperature logger (Tinytag 

aquatic 2) were deployed and left in situ for a month to record light availability and 

temperature in the middle of the seagrass meadows.  The light logger was placed vertically 

attached on the mooring block at 50 cm above the seabed so it would be recording at the top 

of the canopy, and to avoid shading.  A Secchi disk was used to measure turbidity, and depth 

was recorded using a dive computer (Suunto zoop) on the survey days and corrected to Chart 

Datum using tidal prediction software (POLTIPS v3, Bell, 2016).  Wave energy index for each 

site was calculated using data taken from EMODnet (http://www. Emodnet. eu/en/seabed-

habitats).  For each site the three grid squares (0.3 km resolution) closest to the survey 

position that contained wave energy data were averaged to give an overall value. 

At each site the mid-meadow and meadow edges were identified from previous site data 

collection and drop-down camera work (Brown, 2015; Burton et al., 2015; Nagle, 2013).  Ten 

50 cm x 50 cm quadrat were placed haphazardly through the middle of the meadow, 

perpendicular to the shore.  Within each quadrat, 25 cm x 25cm area of seagrass was 

removed, with shoots being cut just at the level of the substrate and cut shoots placed in 
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separate zip lock bags.  Where visibility was good enough, a Go-Pro®Hero 4 camera attached 

to the top of the quadrat frame was used to video the quadrats. This allowed extra data to be 

collected including percentage coverage of seagrass and algae which were analysed from 

video footage.  This was repeated at the edge of the meadow in order to get a good 

representation overall.  At Pen-y-chain and Criccieth, the seagrass was found to be relatively 

patchy, and a distinct edge was not found owing to poor visibility, so only measurements 

through the middle of the meadow were possible.  

All shoots collected were counted and each leaf measured.  Shoot measurements included 

leaf length (taken from top of sheath to tip of leaf), leaf width, epiphyte and wasting disease 

cover.  Leaf length was measured with a measuring tape to the nearest mm, and leaf width 

was measured using callipers to the nearest 0.1 mm. Canopy height was interpreted by taking 

the maximum leaf length of each shoot.  Epiphyte and wasting disease cover was scored 

between 0-5 for each leaf (whereby 0= 0%, 1= >0% - 2%, 2=>2% - 25%, 3=>25% - 50%, 4=>50% 

to 75% and 5=>75 - 100%) based on the index developed for wasting disease (Burdick et al., 

1993). 

Shoot data for the Isles of Scilly site, Little Arthur, was obtained from Natural England annual 

surveys which follow a comparable method outlined in Bull et al., (2016).  This allowed for the 

inclusion of metric data from 2016 survey to be included into this study. 

Leaf nutrient analysis 

Samples of seagrass were taken from each of the sites and leaves were separated, scraped 

free of epiphytes, and dried.  The dried seagrass was ground up with a pestle and mortar to a 

fine homogenous powder. Samples were sent to OEA laboratories Limited for analysis of the 

% composition of Carbon, Nitrogen and Phosphorus by weight using a continuous flow 

isotope ratio mass spectrometer (Sercon 20-20 IRMS coupled to Thermo EA1110 elemental 

analyser). The ratios of stable isotopes 13C to 12C (δ13C) and 15N to 14N (δ15N) were also 

determined to give values which can indicate light availability, nutrient availability, and 

anthropogenic sources of nutrients (Jennings et al., 1997; Lepoint et al., 2004).  Leaf nutrient 

data for the Isles of Scilly was obtained from a previous study by Jones et al., (2018). 
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5.2.2 Long-term data analysis 

Four long-term monitoring datasets for Skomer (Burton et al., 2019), Littlewick  (Hiscock, 

1987; Irving and Worley, 2000; Nagle, 2013; Unsworth et al., 2017), Porthdinllaen (Project 

Seagrass, 2019) and Isles of Scilly (Alotaibi et al., 2019) were collated and standardised.  All 

comparable data were extracted for analysis for temporal changes and trends. 

5.2.3 Statistical analysis  

All averages are reported ± Standard Deviation.  Generalise Linear Modelling (GLM) is a 

flexible method of analysis that can be used on different types of data including count data 

(shoot density) and continuous data (leaf lengths) without being limited by the assumptions 

of normally distributed data (Crawley, 2005).  For leaf lengths and widths, GLMs with Gamma 

errors were used which is most appropriate for continuous data such as measurements 

(Crawley, 2005; Zuur et al., 2009).  For epiphyte, wasting disease, seagrass cover and algae 

cover, GLM with binomial errors was used for proportion data.  All scores and percentages 

were converted to proportions (0-1). For over or underdispersed data whereby the residual 

deviance was higher or lower than the degree of freedom, quasi-binomial GLM was used 

instead to correct for this, making the models more conservative with lower chance of type 1 

error (Crawley, 2005). For count data, shoot density and number of leaves, Poisson (or quasi-

poisson for overdispersion) GLM with log link was used which ensures all fitted values are 

positive (Crawley, 2005).  All GLM were carried out using R Studio (R version 4.0.2).  Model 

comparisons were made using a likelihood ratios test with and without site as a factor to 

assess significance of site on the parameter.  Where appropriate, Tukey pairwise comparisons 

between sites were undertaken using the ‘glht’ function in the ‘multcomp’ package in R 

studio.  This analysis was also carried on long-term datasets using year as a factor. 

Principal Component Analysis (PCA) was carried out using shoot level data for maximum leaf 

length, leaf width, epiphytes and wasting disease. All data were scaled before analysis.  As 

not all data were collected at the same resolution separate PCA were conducted including 

shoot metric data, quadrat level data (to include shoot density), and meadow-scale data (to 

compare nutrient data). PCA was conducted on quadrat level data to include shoot density 

and leaves per shoot.  Leaf nutrients and stable isotopes (C:N, %N, %P, δ15N, δ13C) were 

analysed using PCA separately alongside average shoot density to see if they were having an 
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effect on shoot count as has been found in other studies.  Owing to cost of nutrient analysis, 

sample number for nutrients was limited therefore a separate PCA was conducted to visualise 

similarities between meadows. Principal components with eigenvalues >1.0 were considered, 

and eigenfactors or variable coefficients ≤−0.3, or ≥ 0.3 were selected. All PCA was carried out 

using Primer-e (version 6). 

 

5.3. Results 

5.3.1 Seagrass condition in Wales 

The morphological plasticity of seagrass throughout our six survey sites from 2016 was highly 

variable and likelihood ratios tests showed that site as a factor had a significant effect on all 

metrics (Table A.5.1).  Leaf length was significantly longer in the Isles of Scilly (630.68 ± 162.71 

mm, t=17.74, p=<0.001, d.f=677) than any other site (Fig. 5.2).  Littlewick had the widest 

leaves than the remaining sites (450.79 ± 173.93 mm, 3.41 ± 0.78 mm respectively) although 

width data was not available for Isles of Scilly.  Density was highest in Porthdinllaen (189.18 ± 

109.43 shoots per m2) along with Skomer and Isles of Scilly all of which were found to have 

significantly higher shoot densities than other sites.  Criccieth and Pen-y-chain were found to 

have similar shoot densities to Littlewick albeit with shorter and narrower leaves (Fig. 5.2). 

Wasting disease was significantly higher in Littlewick than Porthdinllaen, Skomer and Isles of 

Scilly (1.29 ± 0.51, z=2.68, p=0.007, d.f=1741) with the lowest scores in Porthdinllaen (0.47 

±0.47).  Pen-y-chain had the highest epiphyte score (2.12 ± 0.59) and the lowest scores were 

in the Isles of Scilly (0.67 ± 0.39, z=-5.55, p=0.001, d.f=1856) although most sites were not 

different from eachother. Number of leaves per shoot were highest on the Isles of Scilly (4.38 

± 0.86, z=2.54, p=0.011, d.f=673) and significantly higher than all sites except for 

Porthdinllaen.   
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Figure 5.2. Boxplots showing different seagrass shoot and meadow characteristics measures at 
different seagrass sites. The box-whisker represents the median (line) and interquartile range (box) 
with additional 1.5 x interquartile range shown as whisker.  Outliers are shown as points outside the 
box-whisker plots. Algae and seagrass cover taken from drop-down camera footage of quadrats taken 
at each site except Isles of Scilly (n=>40 per meadow except Criccieth where n=12 due to poor 
visibility). 
 

Seagrass cover and algae percentage cover from the drop-down camera varied significantly 

between the sites surveyed (no data for Isles of Scilly).  Model comparisons found that site as 

a factor was found to having a significant effect on seagrass and algae cover.  Seagrass cover 

was significantly higher in Porthdinllaen (54.2 ± 37.69%) than all other sites (t=3.07, p=0.002, 
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d.f=231).  Algae cover was highest in Littlewick (44.8 ± 28.51%, Fig. 5.2).  Littlewick which had 

significantly higher cover than Skomer and Pen-y-chain.  The interaction between seagrass 

cover and algae cover was also found to be significant (t=-8.9, p=<0.001, d.f=231).   

5.3.2. Nutrient analysis 

Seagrass nutrient results show high levels of variability between sites (Table 5.1).  Isles of Scilly 

had the lowest %P and δ15N content showing little if any evidence of nutrient enrichment 

from anthropogenic sources at this site.  These nutrient parameters were found to be highest 

in seagrass from Littlewick indicating nutrient enrichment.  Skomer however had the lowest 

C:N, δ13C and the highest %N suggesting light limitation and nutrient enrichment. 

 
Table 5.1. Results from the elemental analysis of Z. marina leaf tissue taken from the study sites. The 
stable isotope values for δ15N indicate the deviation of the isotopic composition relative to air.  The 
isotope values for δ13C indicate the deviation of the isotopic composition relative to the Vienna 
PeeDee Belemnite (VPDB) standard. All values are unitless. 
 

 

Principal component analysis (PCA) was carried out to compare shoot density, shoot metrics 

and shoot nutrient data for each of the sites in Wales and the Isles of Scilly (Fig. 5.3. Table 

5.2). Data from a previous study (Jones et al., 2018) was provided for the Isles of Scilly included 

all parameters except for δ13C. Epiphytes, δ15N and %P showed significant negative 

correlation with leaf length, width and leaves per shoot in PC1 (47% variation).  Clustering of 

sites shown in fig. 5.3 shows the Isles of Scilly sharing no overlap with other sites particularly 

on PC1 axis, whereas Skomer, Pen-y-chain and Criccieth show more similarity. 

Site %N %P C:N δ15N δ13C 

Criccieth 2.23 ± 0.23 0.24 ± 0.03 15.87 ± 0.46 6.37 ± 0.33 -14.71 ± 0.22 

Littlewick 2.27 ± 0.24 0.40 ± 0.04 18.98 ± 0.18 10.17 ± 0.1 -14.36 ± 0.31 

Pen-y-chain 2.26 ± 0.13 0.29 ± 0.03 19.41 ± 0.82 7.60 ± 0.63 -13.69 ± 0.57 

Porthdinllaen 2.22 ± 0.38 0.33 ± 0.04 21.09 ± 0.59 7.72 ± 0.05 -13.65 ± 0.59 

Skomer 3.04 ± 0.19 0.33 ± 0.02 14.71 ± 0.18 8.03 ± 0.1 -16.90 ± 0.28 

Isles of Scilly 2.76 ± 0.29 0.14 ± 0.01 20.56 ± 2.55 4.47 ± 0.97 n/a 

Study average 2.46 ± 0.36 0.29 ± 0.09 18.44 ± 2.44 6.71 ± 3.06 -14.66 ± 1.28 
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Figure 5.3. Graphs of Principal Component Analysis plots carried out on shoot nutrient and stable 
isotope data for each site, plotted with shoot density and metrics.  Nutrient data for Isles of Scilly 
provided from Jones et al., (2018). 
 

Table 5.2. Results from the Principal Component Analysis carried out using available data from Welsh 
sites and Isles of Scilly for nutrient data, shoot metrics and density.  Bold values show significant levels 
of eigenvalues (above 1 for principal component, and eigenfactors or variable coefficients ≤−0.3, or ≥ 
0.3). 
 

PCA1 – Shoot data PC1 PC2 PC3 

Summary Values    

Eigenvalues 4.72 2.05 1.33 

Percent variation 47.2 20.5 13.3 

Cumulative percent variation  47.2 67.7 80.9 

Seagrass variables    

Max. leaf length 0.333  -0.437 0.074 

Leaf width 0.440 -0.058 0.075 

Epiphyte -0.355 -0.186 0.145 

Wasting 0.013 -0.440 0.163 

Leaves per shoot 0.428   0.008 0.062 

% N 0.145   0.204 0.750 

% P -0.338  -0.381 0.176 

C:N 0.245  -0.383 -0.493 

δ15N -0.411  -0.254 0.023 

Density 0.147   -0.424 0.317 
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5.3.2 Environmental variables 

Environmental variables are shown in Table 5.1.  No data was available for the Isles of Scilly 

site.  Pen-y-chain and Porthdinllaen were found to have the highest light availability based on 

PAR logger data, whereas light Criccieth had the lowest (Table 5.3).  Temperature results 

showed little difference between sites so is likely having limited effect on the meadows that 

can be discerned from this short-term data (Table 5.3).  Wave energy data shows the higher 

wave exposure effecting the seagrass at Criccieth and Pen-y-chain when compared to average 

results for Skomer, Porthdinllaen and Littlewick.  Criccieth and Pen-y-chain were also found 

to be considerable shallower than other sites with higher turbidity. 

 

Table 5.3. Abiotic and environmental data collected for each site collected in August-September, 
averages ± standard deviation. Light data for each site is a daily average of PAR logged every 10 mins. 
Temperature was also logged every 10 minutes.  Depths were adjusted to Chart Datum. Wave energy 
was averaged from data taken from EMODnet https://www.emodnet-seabedhabitats.eu/access-
data/launch-map-viewer/ 
 

Site Light (PAR) Temp (C°) Wave energy 
(N.m2.s-1) 

Turbidity - 
Secchi (m) 

Max. depth 
(m) 

Criccieth 391.42 ± 506.28 17.64 ± 0.31 160.45 ± 28.15 0.5 ± 0.01 2.5 ± 0.25 

Littlewick n/a n/a 83.54 ± 46.49 1.65 ± 0.01 4 ± 0.45 

Pen-y-chain 796.74 ± 875.16 17.76 ± 0.34 165.68 ± 39.1 1 ± 0.02 2.5 ±0.32 

Porthdinllaen 779.84 ± 702.83 16.53 ± 0.25 19.18 ± 9.1 5 ± 0.02 5.2 ± 0.39 

Skomer 420.49 ± 324.84 16.07 ± 0.34 24.20 ± 3.2 6 ± 0.025 8.2 ± 0.46 

Study average 595.89 ± 656.68 16.99 ± 0.78  90.61 ± 70.45 2.83 ± 2.23 4.48 ± 2.12 

 

 

5.3.3 Long-term changes  

Long-term monitoring data was only available for shoot density, leaf length, wasting disease 

and epiphyte cover, and not at all sites.  Analysis shows high variability between survey 

years with the likelihood ratios tests showing that year as a factor had a significant effect on 

all factors measured, except for shoot density at Porthdinllaen (Table A.5.3).   

 

 

 

https://www.emodnet-seabedhabitats.eu/access-data/launch-map-viewer/
https://www.emodnet-seabedhabitats.eu/access-data/launch-map-viewer/
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Shoot density 

Significant changes in shoot density with year were found at all sites except for Porthdinllaen.  

For Littlewick, shoot density was found to be the highest in 1999 (141.39 ± 61.9, t=0.070, 

p=0.944, df=906).  Shoot density has consistently decreased since surveys began (Fig.5.4) with 

the lowest density recorded in 2012 (t=-10.93, p<0.001).  Pairwise comparisons show that all 

years measured have significantly lower shoot density than 1986 and 1999.  Most recent 

surveys (2012, 2016 and 2018) are also significantly lower than in 2008 (Fig. 5.4).  For Skomer, 

seagrass densities show a different pattern with densities significantly increasing between 

1997 and 2006.  The surveys in 2014 show the lowest overall density recorded (36.15 ± 22.04, 

t=-2.91, p=0.04, df=1986). Density was found to be highest in the 2016 survey (t=12.14, 

p=<0.001), although overall there appears to be some stability despite differences between 

years monitored (Fig. 5.4).  Seagrass shoot density in Porthdinllaen has shown little variation 

with year having no effect on density for the years measured (deviance=125.78, p=0.41, df=4).  

For the annual Isles of Scilly surveys, year was found to be having a significant effect on density 

(p<0.001, deviance 4099.2, df=21).  The highest average shoot counts overall were recorded 

in 2003 (256.64 ± 199.76 shoots m2) and the lowest shoot density was in 2015 (106.24 ± 93.17 

shoots m2, t=-5.574, p=<0.001, df=495).  The pairwise comparison showed that only the years 

2002, 2003, and 2004 (with the highest densities recorded) were significantly higher than 

other years, with only 14 out of 231 pairwise comparisons showing significance. Most years 

did not show significant differences, and shoot density appears to be relatively stable over 

time (Fig.5.4).  The lowest shoot densities for Isles of Scilly were found to correlate with 

historic sunshine hour data taken the closest weather station data (Metoffice.gov.uk)(Fig. 

A.5.1).  
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Figure 5.4. Boxplots showing change in average shoot density per m2 over time for Isles of Scilly, 
Littlewick, Porthdinllaen and Skomer.  The box-whisker represents the median (line) and interquartile 
range (box) with additional 1.5 x interquartile range shown as whiskers.  Outliers not shown for clarity 
(data provided by NRW, Project Seagrass and Natural England respectively, with data from this study 
included for Skomer and Littlewick). 

 

Leaf length 

Leaf length data was the only other comparable metric monitored long-term, and only 

available for Littlewick and Porthdinllaen in Wales, and the Isles of Scilly whereby maximum 

leaf lengths are measured (Fig. 5.5).  Model comparison demonstrated that leaf length at all 

three sites showed significant changes with year. Leaf length in Littlewick has changed 

significantly over time with the biggest overall increase in lengths recorded in 1999 (t=12.83, 

p=<0.001, df=7419), followed by the largest decline in 2012 (t=-21.96, p=<0.001).  The survey 

in 2016 did not record a significant change in leaf length, but 2018 data shows a significant 

increase (372.9 ±192.02 mm, t=7.44, p=<0.001), back to similar lengths recorded in 1999.  For 

Porthdinllaen, since 2015 there is some decline in leaf length, with the biggest decline in 2018 

(t=-4.51, p=<0.001 df=1374), but lengths have increased somewhat by 2019 with pairwise 

comparisons showing a significant increase in length from 2015 to 2018 (z=-4.512, p= < 0.001).  

The seagrass in the Scilly Isles is showing significant fluctuations in leaf length with the longest 

records in increase since monitoring started in 2009 (994.16 ± 265.43mm, t=14.22, p=<0.001, 

df=5154), and the shortest in 2014 (534.63 ± 155.47mm, t=-15.655, p=< 0.001). Over time leaf 
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length appears relatively stable (Fig. 5.5), however the results of the pairwise comparison 

showed significant differences between most years (156 out of 231 pairwise comparisons).  

 

Figure 5.5. Boxplots showing change in average leaf length over time for Littlewick, Porthdinllaen and 
average maximum leaf length for Scilly Isles.  The box-whisker represents the median (line) and 
interquartile range (box) with additional 1.5 x interquartile range shown as whisker and a temporal 
trendline in blue (GLM smooth with Gamma family), grey area shows 95% confidence. Outliers not 
shown for clarity (data provided by NRW, Project Seagrass and Natural England respectively, with data 
from this study included for Littlewick). 

 

Leaf condition 

Long-term shoot condition data was only available for Littlewick and the Isles of Scilly.  For 

Littlewick, both epiphyte and wasting disease showed significant temporal changes, with a 

decrease in epiphytes and an increase in wasting disease cover over each year (Fig. 5.6).   

Changes in epiphyte cover between years for the Isles of Scilly site fluctuate but with a slight 

increase over time.  Wasting disease shows little variation with the only significant increases 

shown in 2001 and 2015 (Fig. 5.6). 
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Figure 5.6. Boxplots showing change in leaf condition (epiphyte cover and wasting disease) over time 
for Littlewick and the Isles of Scilly.  The box-whisker represents the median (line) and interquartile 
range (box) with additional 1.5 x interquartile range shown as whisker.  Scale is as a proportion based 
on the original scores, with temporal trendline in blue (GLM smooth with binomial errors for 
proportion data) with 95% confidence in grey either side. Outliers have been taken out for clarity (data 
provided by NRW, and Natural England, with data from this study included for Littlewick for 2016). 
 

5.4. Discussion 

Here we provide a unique analysis of bioindicators of seagrass at spatial (short-term) and 

temporal (long-term) scales.  The spatial study allowed for the measurement of a wide range 

of seagrass characteristics which can provide evidence of environmental drivers affecting the 

variation in seagrass plasticity and condition between different locations.  The long-term 

study involving the analysis of data from monitored seagrass sites provides insight into the 

relative stability or instability of the meadows studied.   

The plasticity of seagrasses enables them to adapt to changes in environmental conditions 

and to a degree withstand or recover from some level of anthropogenic disturbance (Maxwell 

et al., 2014; Short and Wyllie-Echeverria, 1996).  At sites in Wales and SW England 

environmental and anthropogenic factors were found to influence this plasticity as 

demonstrated in the large variation found across a suite of seagrass of indicators.  
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All the bioindicators measured were found to describe significant amounts of variation 

between sites.  The morphological and physiological bioindicators enabled differentiation in 

Wales between sites, with the extensive meadow at Porthdinllaen appearing to be the 

healthiest reflected by shoot morphology, condition and leaf biochemistry.  This meadow was 

found to have the highest shoot density and cover, with leaf nutrient bioindicators indicating 

a higher light environment and lower nutrient loading.  The long-term data and earlier studies 

validate this finding with the seagrass community found to be stable between years (Edwards 

et al., 2003; Morris et al., 2009).  Although the temporal range of data for Porthdinllaen is 

limited, evidence exists that this site remains a stable eelgrass bed showing similar shoot 

density to the Isles of Scilly site.   

Relatively high wave energy and turbidity were recorded as the principle drivers of the two 

shallowest meadows at Criccieth and Pen-y-chain.  These meadows had the shortest and 

narrowest leaves and lowest shoot densities, a possible response to increased wave motion 

and risk of uprooting.  Average temperatures measured over the survey period were over 1 

°C higher in these two shallow meadows than the other sites surveyed which is likely to have 

an effect on the respiratory demand of the plants.  Higher variability in temperature in 

shallower waters will be contributing to the dynamism of the localised environment.  Eelgrass 

from Criccieth was found to be in the poorest condition due to low shoot C:N, δ13C, shoot 

density and high epiphyte cover.  The PAR levels measured were found to be lowest in 

Criccieth presumably due to increased turbidity via the resuspension of sediments from high 

wave energy.  However, shoot nutrient analysis indicates low nutrient input at this site 

suggesting natural processes are having the biggest impact on seagrass condition.  Pen-y-

chain was found to have the highest PAR levels most likely due to shallow depth and lower 

turbidity, reflected by high shoot C:N and δ13C.  Criccieth has been previously recorded as a 

sparse meadow (Edwards et al., 2003), suggesting it is somewhat dynamic owing to its 

physical environment. 

Our bioindicator approach found low light differentiated the meadow at Skomer from other 

localities (low PAR, C:N, δ13C) even though superficially shoot density was similar to 

Porthdinllaen and the Isles of Scilly.  This prognosis is verified by the long-term instability in 

the system.  Low light maybe a natural phenomenon driven by elevated nitrogen due to run-
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off from the colonies of breeding seabirds that nest on the surrounding cliffs from April to 

June (Wilkie et al., 2001).  This regular seasonal input of nutrients appears to be causing 

periodic reductions in the local light environment, causing seagrass here to be relatively dense 

but with shorter and narrower leaves.  The long-term data shows this meadow to be 

fluctuating significantly but there is no steady decrease which suggests these changes could 

be attributed to natural fluctuations in yearly sunshine hours and short-term, seasonal light 

limitation from plankton blooms and epiphyte growth caused by nutrient run-off from seabird 

colonies.   

By comparison, the bioindicators measured show the meadow at Littlewick is showing strong 

signs of anthropogenic impact.  The shelter from wave action suggests the area should be 

conducive to seagrass growth, yet shoot densities are comparable to sites where wave action 

is much higher.  The leaf condition and nutrient biondicators suggest that nutrient loading is 

impacting this meadow (highest δ15N, %P and wasting score) despite leaf length and width 

being high.  This meadow was also found to have the highest percentage cover of algae.  Other 

studies looking at the effects of eutrophication in eelgrass beds have also found increases in 

leaf length and a reduction in shoot density as a response to increased shading from 

opportunistic algae (Moore et al., 1996; Schmidt et al., 2012; Short and Burdick, 1996).  High 

inorganic nitrogen (Ni) in the water column can cause seagrasses to be more susceptible to 

infections from wasting disease as anti-microbial compounds are produced less to 

compensate for the synthesis of excess nitrogen in plant tissues (Burkholder et al., 2007; Short 

and Burdick, 1996).  These factors combined strongly to imply that the seagrass meadow in 

Littlewick is under threat from eutrophic conditions and is undergoing a system shift from a 

seagrass dominated to macroalgae-dominated community.  Long-term data for Littlewick 

supports this assumption, whereby leaf length has shown significant increases in most years, 

but shoot density is showing a steady significant decline.  Wasting disease has also increased 

significantly since monitoring started.  

Seagrass in Wales relative to the Isles of Scilly (IoS) as a reference site seagrass with limited 

anthropogenic impacts.  Shoot densities and leaf widths in IoS are somewhat comparable with 

Skomer and Porthdinllaen, but the addition of shoot nutrient parameters (in this case C:N, 

δ15N and %P) results in huge dissimilarities between meadows.  Leaf length is significantly 
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longer in Isles of Scilly which has been previously recognised as the longest eelgrass found in 

UK waters (Den Hartog, 1970; Jones and Unsworth, 2016).  The increased water clarity of this 

archipelago is caused by the granite substrate and sediments that settle rapidly (Jackson et 

al., 2011) and the lack of large scale agriculture and urbanisation.  This allows Z. marina to 

grow at greater depths with longer leaf lengths than other locations where turbidity reduces 

the maximum depth limit of seagrass growth (Nielsen et al., 2002).  The lower impacts from 

terrestrial run-off are shown in the high C:N and lower %P and δ15N. The long-term yearly 

monitoring of the eelgrass meadows in the Isles of Scilly allows for fine-scale temporal 

changes to be shown.  The main threats to seagrass around these remote islands is physical 

damage caused by boat moorings, anchoring and storms (Bull and Kenyon, 2015; Jackson et 

al., 2013; Unsworth et al., 2017), not necessarily water quality issues. The data used for this 

study comes from the site that was found to be the least impacted and provided a good 

control site for comparison of status.  The yearly monitoring of the Isles of Scilly allows for 

better evidence-based projections of long-term trends and changes, with shoot density 

showing much more stability than canopy height over time. It is likely that fluctuations are 

caused by changes in sunshine hours or other natural processes, with sunshine hours showing 

a positive correlation with shoot density for the Isles of Scilly.  The slower response of shoot 

density to environmental stresses than other metrics raises the alarm for systems that are 

seeing continuous declines.    

Density of the seagrass Zostera marina overall is showing some decline over the last two 

decades, providing evidence that seagrass in the UK is still somewhat degraded in state with 

no measurable upward trend of recovery as seen in some species such as Z. noltii (Bernard et 

al., 2007; Bertelli et al., 2018).  The lowest densities appear to have been recorded between 

2012 and 2015 which could be a UK wide response to natural processes such as significant 

changes in average recorded sunshine hours.   

We also present strong evidence of significant and consistent long-term decline of one of 

Wales’ largest seagrass meadows at Littlewick in the Milford Haven Waterway.  The increase 

in leaf length together with the reduction in density strongly indicate that Littlewick Bay is 

suffering from frequent and/or prolonged nutrient loading, to the point that natural 

environmental processes, such as fluctuations in sunshine hours, could be hidden.  Milford 
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Haven Waterway, which encompasses Littlewick, has been designated as being of moderate 

status and hypernutrified in terms of the WFD standards for nutrients (NRW, 2016).  This is 

reflected in the high tissue nutrients found from the spatial study which explains this trend.  

By contrast, other sites have shown some increase in shoot density in the most recent years 

and an overall level of stability in density as seen in the Isles of Scilly, Porthdinllaen and 

Skomer.   

Due to complexities of the factors influencing the resilience of seagrass meadows it is difficult 

to determine how close such a meadow is to a catastrophic tipping point, however 

considerable long-term seagrass monitoring evidence globally indicates that once such a 

point is reached complete degradation and loss can be rapid (Waycott et al., 2009). 

Shoot density is affected by numerous disturbances, including light limitation, nutrient 

loading, physical damage, temperature, or natural storm events, and therefore is one of the 

most important parameters that can be implemented into monitoring programmes.  

Consistent monitoring methods between sites can enable the identification of naturally 

occurring temporal trends that could be affecting structural responses or where trends are 

not consistent, indicate localised anthropogenic disturbances.  Significant changes to shoot 

density should then justify the use of other robust bioindicators of stress to determine the 

causes of decline.       

 

5.5. Conclusion 

This study demonstrates the high levels of plasticity exhibited by eelgrass to environmental conditions 

and the need for regular, consistent long-term monitoring of seagrass sites for significant declines to 

be detected.  Structural bioindicators or responses such as shoot density, cover, biomass and extent 

are often included (one or all) in general seagrass monitoring programmes but do not integrate the 

use of bioindicators.   

Our evidence indicates that where significant changes are detected such biochemical indicators can 

become powerful metrics for determining sources of declines.   For sites where there is a lack of 

monitoring data, a suite of bioindicators and abiotic factors can be measured to interpret 

environmental conditions and provide meaningful understanding as to the status of those seagrasses 

that are potentially indicative of long-term trends.  Left unchecked seagrass meadows are highly 
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susceptible to degradation and loss, principally due to the development of a phase shift from seagrass 

to an algal dominated state. Our study provides a warning that such shifts may be likely at some, 

particularly as their resilience to future stressors is compromised by poor water quality. In conclusion 

we find that long-term monitoring of seagrasses is critical for helping inform management of such 

meadows to prevent catastrophic changes from occurring. 
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5.7 Appendix 

Figures 

 

 

Figure A.5.1. Graph showing linear regression of yearly average shoot density (m2) from Isles of Scilly 
plotted against average sunshine hours per month for each year density data was available, taken 
from Met Office data recorded at nearby Cambourne weather station, Cornwall. The blue line shows 
linear trendline (linear model) with 95% confidence limits shaded in grey. Results from the linear 
regression shows a positive correlation (R2=0.505, F=22.4, p=<0.001). 
 

Tables 

 

Table A 5.1.  Analysis of Deviance table showing results of the likelihood ratios test for comparing GLM 
models with and without ‘Site’ to assess significance of test. 

Shoot density 

Model 1: density ~ 1 

Model 2: density ~ site 
 

Resid. 

Df 

Resid. Dev Df Deviance F Pr(>F) 

1 98 6322.6 
    

2 93 4158.5 5 2164.1 9.6228 1.993e-07 *** 

No. of leaves 
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Model 1: no_lvs ~ 1 

Model 2: no_lvs ~ site 
 

Resid. 

Df 

Resid. Dev Df Deviance Pr(>Chi) 
 

1 678 145.04 
    

2 673 104.38 5 40.66 1.099e-07 *** 

Leaf width 

Model 1:leaf_width ~ site 

Model 2: leaf_width ~ 1 
 

Resid. 

Df 

Resid. Dev Df Deviance F Pr(>F) 

1 1670 92.069 
    

2 1674 148.729 -4 -56.659 273.06 < 2.2e-16 *** 

Max. leaf length 

Model 1: max_length ~ 1 

Model 2: max_length ~ site 
 

Resid. 

Df 

Resid. Dev Df Deviance F Pr(>F) 

1 682 156.22 
    

2 677 91.637 5 64.582 111.93 < 2.2e-16 *** 

Wasting 

Model 1: wasting_prop ~ 1 

Model 2: wasting_prop ~ site 
 

Resid. 

Df 

Resid. Dev Df Deviance Pr(>Chi) 
 

1 1746 179.14 
    

2 1741 146.06 5 33.082 3.626e-06 *** 

Epiphytes 

Model 1: epiphyte_prop ~ 1 

Model 2: epiphyte_prop ~ site 
 

Resid. 

Df 

Resid. Dev Df Deviance F Pr(>F) 

1 1861 496.29 
    

2 1856 477.21 5 19.078 14.395 7.421e-14 *** 

Seagrass cover 

Model 1: seagrass_cover ~ 1 
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Model 2: seagrass_cover ~ site 
 

Resid. 

Df 

Resid. Dev Df Deviance F Pr(>F) 

1 235 125.944 
    

2 231 68.337 4 57.607 50.371 <2.2e-16 *** 

Algae cover 

Model 1: algae_cover ~ 1 

Model 2: algae_cover ~ site 
 

Resid. 

Df 

Resid. Dev Df Deviance F Pr(>F) 

1 235 129.78 
    

2 231 108.65 4 21.132 11.264 2.291e-08 *** 

 

 

Table A.5.2.  Results from Generalized Linear Models (GLM) for shoot metrics (leaf length, width, 
epiphyte and wasting disease scores) and meadow data (shoot density and number of leaves per 
shoot).  Gamma GLM was used for continuous measures (length and width), binomial GLM for 
proportion data (epiphyte and wasting scores, seagrass and algae % cover as proportion 0-1), and 
poisson or quasipoisson GLM for count data (shoot density and number of leaves). 

Coefficients - Metric Estimate  Std. Error t-value Pr(>|t|) 

Max. leaf length formula=glm(max_leaf_length~site, family = Gamma (link=”log”)) 

(Intercept) Criccieth 5.25119   0.06308 83.243 < 2e-16 *** 

Littlewick      0.85980  0.07428 11.575 < 2e-16 *** 

Pen-y-chain     0.30616    0.08125 3.768   0.000179 *** 

Porthdinllaen   0.85557   0.06846  12.497  < 2e-16 *** 

Skomer          0.59197 0.06834    8.662   < 2e-16 *** 

Isles of Scilly (Little Arthur) 1.19561 0.06740 17.740 < 2e-16 *** 

Leaf width formula=glm(leaf_width~site, family = Gamma (link=”log”)) 

(Intercept) Criccieth 0.31316     0.02362    13.26    <2e-16 *** 

Littlewick    0.93534     0.02749    34.02    <2e-16 *** 

Pen-y-chain    0.59841     0.03065    19.53    <2e-16 *** 

Porthdinllaen  0.82705     0.02531    32.68    <2e-16 *** 

Skomer          0.78844     0.02551    30.90    <2e-16 *** 

Epiphytes  formula=glm(epiphyte~site, family = binomial) z-value  

(Intercept) Criccieth -1.0479 0.2365 -4.431 9.39e-06 *** 

Littlewick   -0.8245 0.3133 -2.632 0.008501 ** 
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Pen-y-chain    -0.6641 0.2922 -2.272 0.023062 * 

Porthdinllaen  -0.2471 0.316 -0.782 0.434137 

Skomer         -1.0085 0.2682 -3.761 0.000169 *** 

Isles of Scilly (Little Arthur) -0.6495 0.2646 -2.455 0.014092 * 

Wasting disease  formula=glm(wasting~site, family = binomial)   

(Intercept) Criccieth -3.449 0.597 -5.777 7.59e-09 *** 

Littlewick       -1.2557 0.9513 -1.32 0.1869 

Pen-y-chain    1.1674 0.6339 1.842 0.0655 . 

Porthdinllaen  -0.511 0.9089 -0.562 0.574 

Skomer           -0.6738 0.6911 -0.975 0.3296 

Isles of Scilly (Little Arthur) -0.2895 0.6614 -0.438 0.6615 

Shoot density  formula=glm(shoot_density~site, family = quasipoisson) t-value  

(Intercept) Criccieth                   3.8373      0.3113   12.325 < 2e-16 *** 

Littlewick  0.3216      0.3660    0.879   0.38180     

Pen-y-Chain  0.4169      0.4010    1.040   0.30124     

Porthdinllaen      1.4054      0.3330    4.220 5.68e-05 *** 

Skomer      1.1100      0.3360    3.304   0.00136 ** 

Isles of Scilly (Little Arthur) 1.1228      0.3326    3.375   0.00108 ** 

Leaves per shoot formula=glm(leaves_per_shoot~site, family = poisson) z-value  

(Intercept) Criccieth 1.20039     0.10370   11.576    <2e-16 *** 

Littlewick      0.03722     0.12070    0.308    0.7578     

Pen-y-chain    -0.07125 0.13517   -0.527    0.5981     

Porthdinllaen   0.14680 0.11112    1.321    0.1865 

Skomer          0.01944    0.11221    -0.173    0.8625 

Isles of Scilly (Little Arthur) 0.27692     0.10901    2.540    0.0111 *   

Seagrass cover  formula=glm(seagrass_cover~site, family=quasibinomial) t-value  

(Intercept) Criccieth -4.426       1.492   -2.967   0.00332 ** 

Littlewick        2.208       1.510    1.462   0.14504 

Pen-y-chain       1.228       1.530    0.802   0.42318    

Porthdinllaen    4.596       1.498   3.068   0.00241 ** 

Skomer            3.085       1.506    2.048   0.04172 * 

Algae cover  formula=glm(algae_cover~site, family=quasibinomial)   

(Intercept) Criccieth -17.57    816.92 -0.022     0.983 

Littlewick        17.36      816.92    0.021    0.983 
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Pen-y-chain       16.02      816.92    0.020     0.984 

Porthdinllaen    16.69 816.92    0.020     0.984 

Skomer            15.96 816.92    0.020     0.984 

Seagrass cover ~algae cover formula=glm(seagrass cover ~algae cover + as.factor (Site), family = 

quasibinomial) 

(Intercept) as.factor(Site)Criccieth -4.4262      1.3038   -3.395 0.000808 *** 

Algae cover -4.1674      0.4684   -8.898   < 2e-16 *** 

as.factor(Site)Littlewick        3.6014      1.3260    2.716 0.007108 ** 

as.factor(Site)Pen-y-chain       1.4919      1.3379    1.115 0.265969 

as.factor(Site)Porthdinllaen    5.7542      1.3161    4.372 1.86e-05 *** 

as.factor(Site)Skomer            3.6233      1.3179    2.749 0.006447 ** 

 

Table A.5.3. Analysis of Deviance table showing results of the likelihood ratios test for comparing GLM 
models with and without ‘Year’ to assess significance of test for shoot density and leaf lengths from 
long-term monitoring data. 

Skomer 

Model 1: Z.marina_density ~ 1 

Model 2: Z.marina_density ~ as.factor(Year) 
 

Resid. Df Resid. Dev Df Deviance F Pr(>F) 

1 1992 51997 
    

2 1986 47325 6 4672 36.774 < 2.2e-16 *** 

Isles of Scilly - Little Arthur 

Model 1: density_m2 ~ 1 

Model 2: density_m2 ~ as.factor(Year) 
 

Resid. Df Resid. Dev Df Deviance F Pr(>F) 

1 516 33303 
    

2 495 29204 21 4099.2 3.7908 5.013e-08 *** 

Model 1: max_length ~ 1 

Model 2: max_length ~ as.factor(year) 
 

Resid. Df Resid. Dev Df Deviance F Pr(>F) 

1 5166 680.75 
    

2 5145 583.63 21 97.118 55.368 < 2.2e-16 *** 

Model 1: av_inf ~ 1 

Model 2: av_inf ~ as.factor(year) 
 

Resid. Df Resid. Dev Df Deviance Pr(>Chi) 
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1 5207 240.85 
    

2 5186 196.69 21 44.152 0.002234 ** 

Model 1: prop_epiphytes ~ 1 
    

Model 2: prop_epiphytes ~ Year 
    

 
Resid. Df Resid. Dev Df Deviance Pr(>Chi) 

 

1 5207 588.53 
    

2 5186 359.5 21 229.03 < 2.2e-16 *** 

Porthdinllaen 

Model 1: Z.marina_density ~ 1 

Model 2: Z.marina_density ~ as.factor(Year) 
 

Resid. Df Resid. Dev Df Deviance F Pr(>F) 

1 584 22633 
    

2 580 22507 4 125.78 0.9984 0.4078 

Model 1: leaf_length ~ 1 

Model 2: leaf_length ~ as.factor(Year) 
 

Resid. Df Resid. Dev Df Deviance F Pr(>F) 

1 1378 357.09 
    

2 1374 351.57 4 5.5175 5.7486 0.0001375 *** 

Littlewick 

Model 1: Z.marina_density ~ as.factor(Year) 

Model 2: Z.marina_density ~ 1 
 

Resid. Df Resid. Dev Df Deviance F Pr(>F) 

1 906 33543 
    

2 911 44976 -5 -11433 71.322 < 2.2e-16 *** 

Model 1: leaf_length ~ 1 

Model 2: leaf_length ~ as.factor(Year) 
 

Resid. Df Resid. Dev Df Deviance F Pr(>F) 

1 7424 1990.9 
    

2 7419 1802.8 5 188.17 181.32 < 2.2e-16 *** 

Model 1: prop_wasting ~ 1 

Model 2: prop_wasting ~ as.factor(Year) 
 

Resid. Df Resid. Dev Df Deviance Pr(>Chi) 
 

1 4051 1016.51 
    

2 4048 858.51 3 158 < 2.2e-16 *** 
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Model 1: prop_epiphytes ~ 1 

Model 2: prop_epiphytes ~ as.factor(Year) 
 

Resid. Df Resid. Dev Df Deviance Pr(>Chi) 
 

1 4051 1904.1 
    

2 4048 1370.2 3 533.86 < 2.2e-16 *** 
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Chapter 6. General Discussion 
 

This thesis thoroughly explores the responses of Z. marina, Z. noltii and H. wrightii to a range 

of environmental drivers through experiments, field survey and utilizing existing long-term 

monitoring data.  This study examined seagrass responses at shoot and meadow-scales across 

a range of Z. marina, Z. noltii and H. wrightii meadows and the environmental parameters 

that are modifying them, specifically related to water quality. The findings were then applied 

to long-term monitoring case studies to assess if current methods are picking up important 

changes. Declines in the status of seagrass meadows will affect the ecological benefits they 

provide, as described in Chapter 1. Decreases in structural properties including density, cover 

and extent will affect the stability and reduce resilience to future impacts that arise from 

localised pollution events and climate change.   

At a meadow-scale, shoot density was consistently found to be a robust bioindicator of 

environmental disturbance within seagrass meadows, whilst other responses including leaf 

length, shoot nutrients and stable isotopes of nitrogen and carbon, provided evidence of 

potential sources of disturbance. This work explores the range of morphological and 

physiological responses that seagrasses can exhibit to a range of local environmental drivers, 

and the complexity of these relationships.  Understanding these bioindicators and the rate at 

which they respond provides useful, applied information for identifying where seagrass 

meadows may be at risk and in need of strategic intervention.  It also highlights the necessity 

for continued monitoring and the need for consistency in methods for successful conservation 

and management which will in turn help them adapt to effects of climate change. 

One of the biggest threats to seagrasses worldwide is light limitation caused by deteriorating 

water quality (Hemminga, 1998; Unsworth et al., 2019).  As primary producers, seagrasses 

need a minimum level of photosynthetically active radiation (PAR) to survive.  The effects of 

light limitation on seagrass have been well studied, although responses can vary between 

species, within species and geographically due to local environmental conditions (Collier et 

al., 2012; Longstaff and Dennison, 1999).  Only a few studies have investigated an extensive 

range of bioindicators for looking at light stress within a laboratory setting or in situ, therefore 

the experiment in Chapter 2 was designed to explore this in detail.  This experiment allowed 

a wide range of bioindicator responses to be measured regularly and to assess the rate of 
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change using conventional methods as well as PAM fluorescence.  This study found the 

minimum light threshold for Z. marina was above 20 µmol photons m-2s-1 which is comparable 

to other studies (Lee et al., 2007).  Photosynthesis rates, inferred from ETRmax, alpha and Ek, 

showed rapid responses to light limitation followed by shoot growth within the first week.  

Morphological factors took longer to be affected by light stress with responses dependent on 

previous condition, such as larger shoot surface area and rhizomal stores, which would affect 

the rate of the negative effects caused by reduced light.  Monitoring of light levels within Z. 

marina meadows would enable potential risks to be foreseen if light is being attenuated to 

around 20 µmol photons m-2s-1 or below for prolonged periods of time.  This would be 

especially important at sites that where seagrass has been known to be decreasing in density 

or extent or for sites where seagrass restoration is being considered.  Using a combination of 

robust bioindicators that have been identified as particularly relevant to Z. marina (leaf 

length, width, leaf area, alpha, ETRmax/Ek), would make it possible to assess whether light 

limitation has or is occurring.  If this study were to be repeated, it would be recommended to 

investigate the use of other parameters that can be measured using PAM fluorometry, such 

as relationship between photochemical quenching (NQ) and non-photochemical quenching 

(NPQ) which can provide more insight into the overall photosynthetic activity.  As this was not 

considered to be a robust bioindicator in the review by McMahon et al. (2013) it was not used, 

however, this could be due to the limited use of it as a parameter in seagrass studies at the 

time. It has since been used to evidence photoacclimation to reduced light in Z. marina (Park 

et al., 2016).  Other bioindicators such as shoot C:N, chlorophyll content and rhizome sugars 

were not found to exhibit such strong bioindicator responses in the relatively short time-scale 

of the laboratory experiment, however they could give longer-term responses to the light 

environment of a meadow and have been found to be consistent, robust bioindicators in 

other in situ studies.   

Around the world, there are many seagrass meadows at risk from light limitation caused by 

known anthropogenic causes such as harbour dredging, nutrient loading and run-off from 

poorly managed catchments.  Milford Haven (Wales, UK) provides an interesting case study 

for looking at the effects of a highly industrialised waterway on seagrass habitats within.  

Milford Haven has been subjected to serious pollution events in the past, the most significant 

being the grounding of the Sea Empress oil tanker in 1996 at the mouth of the Haven.  The 
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industrial nature of the Haven has resulted in the area being more regularly monitored than 

other locations.  In Milford Haven there are several Z. noltii meadows, some of which have 

been monitored for many years.  This provided an opportunity to look at changes over time 

to see whether the Z. noltii is surviving, improving or in decline as is so often the case when 

looking at the status of seagrasses globally (Unsworth et al., 2019). For this intertidal species 

of seagrass, despite being exposed to a highly nutrient enriched and industrial waterway, it 

was found to have been able to endure in a favourable state over a long timescale.  The Z. 

noltii in Milford Haven was found to be increasing in extent over the past decade.  The 

abundance data for the two largest meadows strengthens these findings although 

unfortunately, long-term abundance data were unavailable for the other sites.   Reasons for 

this improvement could be that although Milford Haven has been found to have far from 

favourable nutrient levels, the Haven is well flushed owing to its size, depth and tidal range.  

Also, the fast-growing, dynamic properties of small seagrass species like Z. noltii lends itself 

to coping in perhaps more challenging conditions such as the intertidal within which it is 

found.  Long-term monitoring data provides evidence for the status of this seagrass species 

in Milford Haven and highlights the importance of monitoring, particularly where risks are 

potentially higher.  By including other metrics, such as shoot density, leaf length and shoot 

nutrients in monitoring strategies, evidence of the status of the seagrass meadows would be 

more conclusive.  Measuring leaf length and shoot density, not just % cover, will provide a 

better idea of productivity of a seagrass meadow, whilst tissue nutrient analysis can provide 

further indication of environmental conditions including light availability (using C:N ratio and 

stable isotope of δ13C) and nutrient availability (%N, %P, δ15N).  The very presence of 

seagrass in coastal waters is used as an indicator of water quality within Water Framework 

Directives (WFD).  In the case of Z. noltii presence alone, Milford Haven Waterway appears to 

be improving but consistent monitoring needs to continue as it is critical for effective 

management (Griffiths et al., 2020). 

Seagrasses grow in shallow coastal waters and estuaries, which are often subjected to the 

worst levels of anthropogenic impacts within the marine environment.  H. wrightii is a species 

of seagrass commonly found along tropical to subtropical and warm temperate coasts, and is 

the most common seagrass species in Brazil (Copertino et al., 2016; Sordo et al., 2011).  Like 

Z. noltii, it is a pioneering species well adapted to high levels of disturbance and grazing (Sordo 
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et al., 2011).   Around the coast of southern Brazil, H. wrightii meadows exist under various 

anthropogenic impacts including discharges from highly urbanised areas, industry, and 

untreated sewage.  The prolonged intense rainfall in this area can exacerbate turbidity with 

run-off from surrounding catchments effected by soil erosion. This study tested a wide range 

of bioindicators, including those identified in Chapter 1, in situ in order to further explore the 

effects of anthropogenic stressors on seagrasses.  An impact assessment index was created 

to establish a gradient of disturbance against which seagrass bioindicators could be assessed.  

Some bioindicators well reflected the level of impact, particularly in the most impacted site, 

which included shoot density, photophysiological responses and shoot nutrients.  However, 

the least impacted site showed significant levels of disturbance indicated by low shoot density 

and biomass.  This study highlights the complexity of the environmental drivers that affect 

seagrass meadows, especially when impacts are multi-faceted.  The site perceived to be least 

impacted could have been subjected to increased storm event leading to burial, damage and 

reduced production shown in reduced density and biomass.  However, this could not be 

determined from this study which assessed these meadows at one point in time. The lack of 

long-term data for most of these sites means only inferences can be made on their previous 

condition. Seagrass meadows, such as these H. wrightii beds, growing at their geographical 

limit will likely be significantly affected by the climate change.  More storm events, and 

increased rainfall will have a severe impact on seagrasses that are already existing under 

levels of disturbance affecting their resilience.  The perceived anthropogenic impacts were 

reflected in shoot density and leaf nutrients for the most impacted sites, but other 

bioindicators such as leaf length, did not.  Leaf length as a metric on its own does not provide 

a clear enough reflection of environmental stress which stands for most metrics if taken in 

isolation.  In many cases, leaf length has been found to reduce with light stress (Bertelli and 

Unsworth, 2018; Collier et al., 2012) but in some cases leaf length can increase as a response 

to competition for light (Schmidt et al., 2012; Shafer, 1999).  When leaf length is measured 

alongside shoot density, it provides a much better idea of impacts that can be cause for 

concern.  Decreases in density with increases in leaf length can be indicative of nutrient 

loading (Schmidt et al., 2012) which has been shown to be the case for the most impacted 

sites for H. wrightii  in Brazil and which also rings true for the Z. marina meadow in Milford 

Haven (Chapter 5).   
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The plasticity of seagrasses enables them to adapt to a range of environmental drivers to 

some extent, making them excellent indicators of the conditions within which they exist.  

However, increasing human pressures are causing decreases in coastal environmental quality 

to a point where seagrasses are unable to cope resulting in significant declines in seagrass 

meadows globally (Marbà et al., 2013; Orth et al., 2006).  The short-term spatial surveys 

conducted in Chapter 5 were found to be indicative of the long-term trends for the sites.  

When analysed alongside long-term monitoring data, shoot density, leaf length, leaf nutrients 

(C:N ratio, %N, %P) and stable isotope of δ13C and δ15N, presented good insight into the 

longer-term status of the meadows studied and good indication of the causes of long-term 

decline. The Isles of Scilly presents a seagrass meadow with little evidence of impacts when 

compared to other sites and also uses thorough monitoring protocol carried out yearly.  By 

contrast, Littlewick showed high levels of impacts, with bioindicators showing clear warning 

signs of nutrient loading reflected in the long-term decline.  Littlewick is a relatively large Z. 

marina meadow located in a sheltered bay within Milford Haven. The meadow has been 

monitored every 4+ years since 1986 but has been declining in density since 1999. Littlewick 

is showing effects of eutrophic conditions which are causing a system shift from a seagrass 

dominated to macroalgae-dominated community. Without intervention, this meadow will 

not be able to recover and is at risk of being lost, along with all the ecological functions it 

provides. 

As sentinel species, seagrasses have been integrated into water quality frameworks around 

the World. Nonetheless, not all seagrass meadows are monitored, and where they are, there 

are discrepancies in methodologies, occurrence and the chosen parameters, even at a 

national scale (Marbà et al., 2013).  There is still the need for regular, consistent long-term 

monitoring of seagrass sites and careful consideration of the bioindicators measured so that 

any declines and their causes can be detected and acted upon.  For this to become possible, 

the difficulty then arises with the decision to persist with the following of current, diverse 

methodologies that have been implemented for many years in some places, in order to 

continue to collect comparative datasets to determine long-term trends, or to change to a 

different approach, breaking the cycle.  To avoid losing consistency in monitoring data, the 

addition of indicators to existing monitoring protocols is one way forward to avoid any 

disruption to data collection as is, although this will require extra funding.  For example, in 
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the UK, many seagrass sites are not regularly monitored and where they are, methods vary 

(Unsworth et al., 2014). There is a gap for the creation of a standardised seagrass monitoring 

programme that is specific to the species and the main environmental stressors that exist 

around the UK.  Comprehensive seagrass monitoring protocols have been produced by 

SeagrassWatch (McKenzie et al., 2003) and SeagrassNet (Short et al., 2015), both of which are 

global networks which are focused on collecting comparable long-term datasets and have 

been employed at a few locations around the UK.  These protocols are relatively thorough but 

may not be practical for monitoring at all seagrass sites.  For example, SeagrassWatch uses 

seagrass cover not density as the main abundance parameter, whereas SeagrassNet uses both 

parameters.  To have a broader general monitoring protocol that can be implemented at a 

wider range of sites more consistently, is arguably more achievable.   

A global review of seagrass indicators of environmental stressors by Roca et al., (2016) 

describes a fit-for-purpose monitoring strategy that brings in finer-scale bioindicators for use 

depending upon the outcomes of general seagrass monitoring programme.  Figure 6.1. shows 

a monitoring strategy adapted to the findings from this thesis including the main 

environmental stressors likely to be affecting seagrasses (Zostera genera) in the UK.  The 

programme consists of a general monitoring protocol for assessing seagrass status using 

metrics such as shoot density, percentage cover, extent, maximum depth and biomass, 

although not necessarily all of these.  Most of the monitoring protocols currently in use 

measure two or more of these already.  If significant changes are detected, the use of 

bioindicators can be used to determine the cause of decline in status.  The inclusion of abiotic 

measurements may allow stressors to be identified prior to the initial survey and justify the 

inclusion of extra bioindicators to be measured at this point.  However, if a change has been 

detected after the initial assessment and the stressor remains unknown, a range of 

bioindicators can be used to determine the cause of decline.  Instead of drastically changing 

the current monitoring practises in place, this strategy suggests the inclusion of extra 

bioindicators if a change/decline is detected.  Some of the robust bioindicators measured in 

this study may need the use of highly specialised equipment such as the PAM fluorometer for 

gaining photosynthetic parameters, would prove to be costly to include in regular monitoring 

programmes but could be considered in when significant declines are observed. This strategy 

could be adapted even further for local areas or Marine Protected Areas (MPAs) to make it 
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more applicable.  The monitoring programme suggested (Fig. 6.1) is based on the major 

concerns for Z. marina, based upon the sites that have been covered in this study.   

 

Figure 6.1. Suggested monitoring programme adapted from Roca et al., (2016) for UK seagrass 
assessments, modified for main environmental threats from water quality issues. In the UK, general 
seagrass status is measured using various methods but always include structural indicators such as 
density/cover.  If significant change is measured, more detailed bioindicator analysis should then be 
undertaken, especially if the stressor is unknown. Abiotic measurements can help determine the 
stressor and can indicate when reference conditions have been achieved. 
 

The programme only relies on the use of additional bioindicators if necessary - if significant 

changes are detected.  This programme can be adapted for other species or to be more site 

specific.  For example, intertidal species or meadows found in shallow lagoons or estuaries, 

are likely to be affected by fluctuations in temperature and salinity more so than subtidal 

sites. Therefore, salinity would be an extra abiotic factor to be considered.  Some species are 

heavily affected by grazers so including those species in surveys may be more practical.  In 

some locations, seagrass meadows overlap with physical modifiers, such as established 
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moorings, jetties, harbour activities etc. so these factors would need to be considered within 

the general monitoring strategy.  A monitoring programme of this kind needs a set of 

reference or baseline conditions to be established.  For sites where there is a lack of 

monitoring data, an initial assessment covering a wide range of meadow-scale and shoot 

bioindicators would be recommended along with a range of abiotic factors.  This would be 

useful in determining if the seagrass traits measured are being modified by naturally occurring 

pressures such as wave exposure, or from anthropogenic causes.  Increasing the consistency 

in approach to seagrass monitoring and management will have positive consequences for the 

protection of these habitats and their adaptation to future shifts in environmental conditions 

caused by the effects of climate change. 

 

Conclusion 

The aims of this thesis were to investigate the biological responses of seagrasses to 

environmental drivers, specifically related to water quality issues which is one of the biggest 

threats to seagrasses worldwide.  This study provides useful evidence of seagrass responses 

to a variety of environmental drivers and how these bioindicators can be utilised for assessing 

and monitoring the status of seagrass meadows.  Shoot density is consistently shown to be 

indicative of environmental stresses at a meadow scale as it will decline with light limitation, 

nutrient loading and wave exposure. This is the reason why it is one of the most commonly 

measured metrics within monitoring programmes.   However, only measuring one metric is 

not suitable for management purposes as different bioindicators have different response 

times and sensitivities to different stressors. However, measuring other metrics in 

conjunction will provide better insight into the possible causes of change in meadow density 

over time.  Measuring shoot nutrients and stable isotopes can provide a clear indication of 

light limitation, nutrient loading, and its possible sources.  The more data collected for 

different seagrass species will provide a better picture of what the typical ranges should be 

and at what point they are indicative of thresholds and the need for intervention.  Leaf length, 

or canopy height, was found to respond rapidly to light limitation under experimental 

conditions, but this was not always found to be the case in the field.  Some sites with lower 

light levels were found to have smaller, shorter shoots which will reduce the respiratory 
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pressure on the plant.  However, other sites, where light was found to be limited, the seagrass 

was found to have significantly longer leaves.  Leaf length can also increase as a response to 

other factors such as competition, therefore the measurement of shoot density and algal 

cover, for example, would be important in determining the environmental pressures.   

These findings highlight the need for regular, long-term monitoring of seagrass sites including 

a range of robust bioindicators of light stress and poor water quality if significant changes are 

detected.  For sites that have not been surveyed before, initial monitoring should include as 

many applicable bioindicators as possible in order to provide a baseline.  Shoot density, and 

shoot biochemistry can provide ample warning of water quality issues such as hyper-

nutrification as was found to be the case with H. wrightii and Z.marina.  If these impacts are 

not addressed, the possibility of a phase shift could result, leading to a loss of seagrass 

meadows and their ecosystem benefits.  The monitoring programme suggested in Figure 6.1, 

adapted for seagrass monitoring around the UK, provides a useful strategy/framework that 

can aid the decision-making process for seagrass monitoring.  The more that is known about 

these bioindicators the easier it will be to designate the status of a meadow. Due to the 

plasticity of seagrasses, it is difficult to determine what the current status of a seagrass 

meadow is without long-term monitoring data.  Levels of change can then be used to establish 

if the status or health of a seagrass meadow is stable or in decline. 

Seagrasses have been identified as significant contributors to climate change mitigation and 

adaptation (UNEP, 2020) as natural carbon sinks, by stabilising coastal sediments, reducing 

coastal erosion and buffering the effects of ocean acidification.  Disturbance to seagrasses 

has been repeatedly shown to increase vulnerability to pressures and will decrease their 

ability to provide the ecosystem services upon which we depend.  The continued failure to 

effectively manage pressures on seagrass meadows is effectively in breach of international 

conventions and our commitments for tackling climate change.  If water quality issues are not 

addressed, it will be difficult to determine what the future for seagrass meadows entails. 
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