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ABSTRACT. We present a completeness characterization of box splines on three-directional
triangulations, also called Type-I box spline spaces, based on edge-contact smoothness prop-
erties. For any given Type-I box spline, of specific maximum degree and order of global
smoothness, our results allow to identify the local linear subspace of polynomials spanned by
the box spline translates. We use the global super-smoothness properties of box splines as
well as the additional super-smoothness conditions at edges to characterize the spline space
spanned by the box spline translates. Subsequently, we prove the completeness of this space
space with respect to the local polynomial space induced by the box spline translates. The
completeness property allows the construction of hierarchical spaces spanned by the trans-
lates of box splines for any polynomial degree on multilevel Type-I grids. We provide a basis
for these hierarchical box spline spaces under explicit geometric conditions of the domain.

1. INTRODUCTION

Boz splines are locally supported piecewise polynomial functions defined on uniform grids.
They were first introduced by de Boor and DeVore in [4], and are considered a generalization
of the univariate B-spline functions to the multivariate setting. From a geometric point of
view, box splines can be seen as density functions of the shadows of higher dimensional boxes
and half-boxes [35]. We remark that they can also be studied as a special case of the so-called
simplex splines [10]. Box splines possess a number of useful properties that make them well-
suited for applications[14, 34]. For instance, it has been shown that box splines have small
support (a few cells of the underlying grid), they are non-negative, form a partition of unity,
and are refinable i.e., the box spline spaces on refined grids are nested [3,7].

Box splines can be defined from an arbitrary set of directional vectors in R™, but of par-
ticular interest for Geometric Design are box splines surfaces which are defined on uniform
triangulations of the plane. In this article, we focus on type-I box splines. They are splines
defined on three-directional meshes that are commonly known as type-I triangulations of R2.

From the rich literature on box splines, we mention a few monographs and survey articles
which include [6-9,35], and a few representative publications on two specific topics. Firstly,
a substantial number of results on the approrimation power of box splines is described in the
literature e.g., [5,30,36,37]. Secondly, several publications discuss techniques for the efficient
manipulation of box spline bases. Sablonniere pioneered local Bernstein-Bézier representations
for a variety of splines, including type-I box splines, see [38] and references therein. A general
stable evaluation algorithm is devised in [27]. In [26] the problem of efficient evaluation of
box splines is addressed by making use of the local Bernstein representation of basis functions
on each triangle. Recent applications of box splines include surface fitting [24], and solving
linear elasticity problems in isogeometric analysis [20]. In other areas of mathematics, the

2020 Mathematics Subject Classification. 41A15, 65D07, 13D02 .
Key words and phrases. Type-1 box splines, contact edge-edge characterization, completeness of box spline
spaces, hierarchical box spline spaces, kissing triangles, over-concave vertices.
1



2 N. VILLAMIZAR, A. MANTZAFLARIS, AND BERT JUTTLER

theory of box splines has been proved useful to compute the volume of polytopes, and to deal
with the integration of continuous functions over polytopes [44].

In this article, we are interested in the linear spaces of spline functions generated by the
translates of any fixed type-I box spline. These spline spaces share good approximation
properties. For example, the set of translates of any type-I box spline form a partition of
unity on R?, they are globally, and also locally, linearly independent. These properties of
type-I box splines were studied by Dahmen and Micchelli in [13] and Jia in [21]. In particular,
they investigated the linear independence of translates of a box spline in [12,22].

The linear independence property implies that the set of translates of any type-I box spline
constitutes a basis for the spline space they span. In general this property is not satisfied for
box spline functions associated to other uniform partitions, and that makes type-I box splines
particularly relevant for applications. For instance, the set of translates of box splines defined
from a set of four directional vectors, the so-called type-I1I box splines, are linearly dependent.
For a concise treatment of type-II box splines, further references, and alternative proofs of
box spline properties, see [29, Chapter 12] and [8, Chapter 2].

A second interesting feature of type-I box splines is that, although for any fixed type-I box
spline of degree d and order of smoothness r, the box spline translates form a basis, in general
these translates do not generate all possible piecewise polynomial functions of degree < d and
global smoothness r over the three-directional mesh. More precisely, the box spline translates
span a proper subspace of the space of C"-continuous spline functions S};(G) of degree at most
d on a three-directional mesh G (cf. Figure 1), for any d > 1. Thus, if the domain is taken as
the entire mesh GG, or as an infinite collection of triangles in GG, then both spaces are infinite
dimensional. However, if the domain is restricted to a finite collection of triangles €2, as it is
the usual setting in practice, then their finite dimension differ. Explicit dimension formulas
in terms of the combinatorics of the domain € are well known for both spaces, dim S} (£2) can
be computed using homological methods [33], or Bernstein-Bézier methods as in [8, Chapter
2].

The understanding of the space spanned by (a finite set of) translates of type-I box splines in
terms of continuity and polynomial or spline function inclusion is paramount for inducing the
approximation power of the considered finite dimensional space. We refer to [5] for early results
in this direction based on truncated power bases and [37] for results based on the construction
of quasi-interpolants. In our work we deduce hierarchical space and basis constructions for
adaptively refined type-I grids, thus extending the aforementioned approximation results to
the hierarchical setting.

In the present paper we provide a characterization for the space spanned by box splines
translates based on supersmooth conditions across the edges of the underlying partition. We
prove that for any fixed degree d and order of global smoothness r, the space of splines satis-
fying these extra local smoothness conditions is precisely the space spanned by the translates
of the corresponding type-I box spline. From this we deduce that the type-I box spline spaces
are complete with respect to the local polynomial space induced by the box spline translates.
The proof of this result uses the Fourier transform of box splines, as well as the algebraic
properties of the Bernstein-Bézier representations of type-I box splines. We generalize the
classic definition of spline space in Definition 1 to link the spline polynomial pieces to specific
polynomial subspaces of R[x,y] and present the main result in the paper in Section 4.

Furthermore, in Section 5, we apply the completeness characterization of box splines into
the construction of hierarchical spline spaces based on local refinements of a type-I triangu-
lation. Hierarchical splines constitute a well-established approach to adaptive refinement in
geometric modeling [15] and numerical analysis [39,43]. Hierarchical tensor-product spline
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spaces were introduced by Kraft in [28] using a selection mechanism for B-splines. The method
has been refined leading to spline basis with better approximation properties, such as the par-
tition of unity property, strong stability and full approximation power [18,19,41,45]. It has
also been adapted to Powell-Sabin splines [40], Zwart-Powell elements and B-spline-type ba-
sis functions for cubic splines on regular grids [46]. In an earlier article, we constructed a
hierarchical basis for quartic C2-continuous box splines [42]. Quartic hierarchical box splines
spaces have also been studied and used for surface fitting applications by Kang, Chen and
Deng in [24] and [25]. Truncated hierarchical type-I box splines were considered in [23] and
[20] in connection to isogeometric analysis applications. Other subdivision schemes has been
explored in [16,32]. A C'-continuous scheme based on cubic half-box splines was presented
in [1].

The results we present in this article generalize our previous work [42] on quartic box
splines. Our results apply to type-I box splines of any polynomial degree with no restriction
on the symmetry of their support.

The remainder of this paper is organized as follows. In Section 2 we introduce the relevant
notation for type-I triangulations, spline functions and the directional derivatives. Section 3
concerns the definition and properties of type-I box spline spaces. We define the space of
translates and recall existing results on local and global smoothness of these functions. In
Section 4 we prove Lemma 22 which is the main result in the paper, and corresponds to the
edge-contact characterization for type-I box splines. In Section 5 we construct the hierarchical
type-I meshes and the corresponding hierarchical box spline spaces. This construction follows
the approach presented in [31] and [42]. We conclude the paper with some final remarks in
Section 6.

2. PRELIMINARIES

Throughout this article we assume that G is the uniform type-I triangulation of the real
plane R?, see Figure 1. This triangulation is obtained by drawing in the north-east diagonals in
the bi-infinity grid with grid lines at the integers. This triangulation of the plane is associated
to three directional vectors, namely e; = (1,0), ez = (0,1) and ez = (1,1), and therefore is
also called a three directional mesh. Each line of G is parallel to one of these vectors and go
through the points of the integer grid Z2.

We consider G as the union of T, F and V', where T denotes the collection of triangles in
G, which are considered as open sets in R?, E is the collection of all edges, and V = Z? is the
collection of all vertices. The set of edges is the disjoint union F = Fy U Ey U E3, where E;
is the set of edges that are parallel to the vector e;. The edges in E; are called edges of type
1. The combinatorial closure of a triangle A € T', denoted by A, is the set consisting of the
vertices and edges of A, and A itself. Analogously, € of an edge € € F is the set consisting of
the edge itself and its two vertices.

A multicell domain M is the triangulation in R? induced by a finite set of triangles

{Al, RN Am} CcT,ie.

m

M=JA.

i=1
This means, that for every triangle A; € M, all the vertices and edges of A; are considered
as elements of M. The subspace of R? defined by the (topological) closure A, of the triangles
A\; defining the multicell domain M will be denoted by M™*, namely
(1) M* = U A.

AeM
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FIGURE 1. Uniform type-I triangulation (or three-directional mesh) of R? as-
sociated to the directional vectors e; = (1,0),e2 = (0,1) and e3 = (1,1). We
denote this grid as G.

Given a multicell domain M, the diamond of an edge € is defined as the union of all (at most
two) triangles of M which have ¢ as an edge, that is

o= Y A
AEM,ecA
Similarly, the diamond of a vertex v is defined by
owy= U A,
AeM,veA
which is the union of the (at most six) triangles A in M such that v is a vertex of A.

Notice that the diamond o(-), of an edge or a vertex, depends on the multicell domain M.
From the context, it will be clear the particular domain we are considering in each case.

We denote by R[z,y] the space of bivariate polynomials over the real numbers, and for
d >0, Py C R[z,y| is the set of all bivariate polynomials in z and y of total degree < d. In
our presentation, the polynomial pieces that define the splines are taken from a finite vector
subspace V of R[x,y]. This subspace V is not necessarily the same as P, for any polynomial
degree d, it may be a proper linear subspace. In this setting, we define the space of continuous
splines P(M, V) on a multicell domain M as follows.

Definition 1. Given a multicell domain M, and a vector subspace V C R|z,y], we define
P(M,V) as the set of piecewise polynomials functions on M i.e.,

P(M,V) = {f € CO(M*): f|n € V|a for each triangle A € M},

where M* is as defined in Equation (1), and f|a denotes the restriction of the function f to
the triangle A\, and V|a is the restriction to A of the polynomials in V (seen as functions on
R?).

In particular, when V = P, the space P(M,V) coincides with the usual space of C°-

continuous splines (or piecewise polynomial functions) on M of degree at most d.

For any index s = (s1,s2,53) € Zgo, that we also called regularity vector, we consider the
mixed directional derivative operator

Ds: Rz, y] — Rz, y]
p = (V-e1) (V-e2)®(V-e3)(p).
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For a given multicell domain M and a polynomial vector space V, we extend the operator Dy
to elements f € P(M,V) by applying Ds to the restrictions f|a, namely

(Dsf)|a = Ds(f|n), for each triangle A € M.

If &g is a point on the boundary of triangle A i.e., if xy is a vertex or a point on an edge
of A, we define (Dsf|A)|ay as limg_yz,(Dsf|a)|z- By an abuse of notation, we say that for
Dsf € CO(M*) if (Dsf|a)lwy = (Dsflar)|e, for any pair of triangles A, A’ € M such that
X € AN Z/.

Definition 2. For a given index set I C Z;O, and a vector space of functions V C R[x, y], we
define the space of functions D;(M, V) on a multicell domain M by

D;(M,V) = {f € P(M,V): Dsf € CO(M*) for all s € I},
where M* is as defined in Equation (1).

Remark 3. Using the notation in Definition 2 we have
Dy(M,V) =P(M,V).
If §;(M) denotes the space of globally C"-continuous spline functions on M of degree at most

d, then Sj(M) can be written as D;(M, Py), where I = {s € Z2: 51+ s2 + s3 < r}.

In this paper, for a given multicell domain M, we shall consider piecewise polynomial
functions, or splines, on M with a specific order of smoothness associated to each of the three
directions associated to the grid G. Namely, for a regularity vector d = (dy,d2,ds) € Z;O we

define the index sets:
It ={se€Z: so+s3<di},

I$={se€Z%): s1+s3 <do},

< dy)

I$={s€Z:s1+s2<ds

and consider the spline space S*(M, V) defined as follows.

Definition 4. For a multicell domain M of the three directional grid G, a vector space
V C R[z,y], and a vector d € Z3, the spline space with edge smoothness d on M denoted
S%(M, V) is defined as the set of piecewise polynomial functions on M such that the derivatives
of order s € Izd are continuous across the edges of type ¢ for ¢ = 1,2,3. More precisely,

SUM,V) = {f € P(M,V): flo@)- € C4 (O(e)*) for every e € B;N M
and i€ {1,2,3}},
={f eP(M,V): flow)» € Dya (C(e)*, V) for every e € E;N M
and i€ {1,2,3}},
where O(e)* = Upeo(eynr 2 as defined in Equation (1).

Later in this paper (see Definition 8 below), we shall introduce a spline space but with
smoothness conditions at the vertices of the domain M, the notation in Definition 4 will be
particularly convenient for that purpose.

In the following example we illustrate Definition 4 for a specific multicell domain in the
grid G and a regularity vector d € Z‘;O.
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(1,2) (2,2)
Ay

&9 %3
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FIGURE 2. Multicell domain M = U;l:lAi, with edges ¢; = Zi N Zi—kl fori=1,2,3.

Example 5. Let M be the multicell domain in Figure 2. It is composed of four triangles
denoted Ay, ..., Ay, we take V = Py (the polynomials in Rz, y] of degree at most 2), and
the regularity vector d = (0,1,0). Then

I8 ={(i,0,0): i € Zzo}, I$ = {(0,4,0),(1,4,0),(0,4,1): j € Zzo},

and I = {(0,0,k): k € Z>o} .
If we define f € P(M,P2) by f|z, = fi, where

fi =% f3=(y—2z)(y —2);

(2) 2 _ 5
fo=@—-y+1)% fa=20@-1(y—2)+2z-y".

Then f is an element in S4(M, Py). In fact, if we put g12 = (f1, fo) = flo(er), since f1 — fo =
(y — 1)(22 — y + 1) then Ds gy 2 is a continuous function on o(e;) for s € If. Similarly, if we
put gii+1 = (fi, fix1) it is easy to check that Dy g2 3 and Dy g3 4 are continuous functions for
every s € I and t € I on o(e2) and o(e3), respectively. o

In an analogous way as we defined a spline space associated to smoothness along the edges
(Definition 4) of a multicell domain, we will introduce a space of splines with additional
smoothness at the vertices of a given multivariate domain M. We prepare this definition by
listing the possible vertex-vertex contact configurations A N A = {v} between any pair of
triangles A, A’ € T. First we need the following definitions.

Definition 6. Two triangles A and A’ in the grid G, are said to be edge-connected if there is
a collection of triangles Ag, A1, ..., Ay € T such that A = Ag, A = Ayyand A, NA, € E
for every i = 1,...m. Such a collection of triangles Ay, A1, ..., 2\, is called an edge-connected
chain between A and A'.

Definition 7. If A, A’ € T are triangles such that ANA # (), we define the smoothness type
ST(A,A") C {1,2,3} as the set of edge-types that are in the shortest edge-connected chain
in G between A and A'. If A = A’ we define ST(A, A') = ().

For any given pair of triangles A, A’ € T with a non-empty intersection, we can identify
them with a pair of triangles from A to F in Figure 3, and their smoothness type ST(A, A)
becomes one of the subsets listed in the table on the left of Figure 3.

We now use Definitions 6 and 7 to introduce the space of strongly regular splines associated
to a multicell domain M in the three directional grid G.
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sT(a, Ay | oA B c D E F
A 0 {1 {2 (123 {23 {3 e
B {1} 0 {2} {23} {123} {1,3} Ap Aa
c {1,2} {2} 0 {3} {1,3}  {1,2,3} 1 1
D (.23 {23} {3} 0 ay 2y | en e
E {2,3} {123} {1,3} {1} 0 {2} 3 AC(}
F By {13} {123} {12} {2 0 i

FIGURE 3. Smoothness types of a pair of triangles A, /A’ such that AND # 0.
We can identify A, A’ with two triangles in the picture on the right. The type
ST(A, A") is the corresponding index set shown in the table on the left side,
which is constructed according to the shortest edge-connected chain between
them (see Definition 6).

Definition 8. For a multicell domain M in G, a vector space V C R[z,y|, and a regularity
vector d = (dy,dz,d3), we define the set S*(M, V) of strongly regular splines on M as follows,

§4(M, V) = {f eP(M,V): flu € Di(U,V) for A, AN € MANK £0,
U=AUA, and I = NiesT(r,A0 I;i}.

Namely, the elements in S*(M,V) are the splines f € P(M,V) such that for any pair of
triangles A, A’ € M such that ANA # (), the derivatives Dy of f are C%-smooth for every
8 € NiesT(A,A7) I¢. A spline f € P(M, V) that satisfies this property is called strongly regular.
(Notice that an edge-connected chain is composed of triangles in the grid G and are not
necessarily in M.)

The set Sd(M ,V) is the linear space of splines with edge and vertex smoothness d on the
multicell domain M.

Example 9. Let M be the multicell domain in Figure 2, V = Py and d = (0,1,0) as
in Example 5. It is easy to check that the piecewise function f defined in Equation (2)
is in Sd(M ,V). For instance, if we take the triangles A; and A4, the smoothness type
ST(A1,As) = {1,2,3}. Then I = N, I? = {(0,0,0)}, and in fact fi(1,1) = fa(1,1).
Similarly, taking the triangles Ay and Ay, we get ST(Ag, Ay) = {2,3} and T = N2, I¢ =
{(0,0,k): k=0,1}. The polynomials fo and f; and also their derivatives 9(f;)/0(x — y), for
i = 2 and 3, have the same value at (1,1).

In contrast, if g is the function on M defined by g|a, = ¢; with g1 = 0, g2 = y — 1,
g3 = 22 —2x+y and g4 = 22 —y, then g is also in S4(M, V), but it is not in Sd(M, V). In fact,
for the triangles Ag and Ay, the derivatives 0go/0(x — y) = —1 and 9g4/0(x — y) = 2z + 1.
Then g|y € Dy (U, V) for U = Ay U A, <&

Remark 10. From Definitions 4 and 8, it is clear that both §4(M, V) and S#(M, V) are con-
tained in the space of splines that are globally C"-continuous on M, where r = min{d;, d2, d3}.
Moreover, they are both contained in D;(M, V) for I = I¢ N I$ N I¢ (see Definition 2), and
Sd(M , V) C S4(M,V). By Example 9 we also know that the set of strongly regular splines
S4(M, V) may be properly contained in the spline space S*(M, V).
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In the following we give a sufficient condition for the equality S*(M,V) = S%(M, V). For
this we introduce the concept of over concave vertices and kissing triangles.

Definition 11. For a multicell domain M in the three-directional grid G we say that a vertex
v € V on the boundary of M is over-concave if star (v)\ M consists of a single triangle, where

star (V) ={AeT:ve AyUu{eec E:veé}U{v}.

Since we work exclusively in the three directional grid G then star (v) consists of 6 triangles,
6 edges and v itself. An example of an over-concave vertex is illustrated in Figure 4.

/ /

FIGURE 4. On the left, the shadowed regions around the vertices v; € M
correspond to the triangles in star (1) N M, respectively; notice that in this
multicell domain M, by Definition 11, the only over-concave vertex is v5. On
the right, the multicell domain N does not have over-concave vertices; the
figure also illustrates Definition 25 from Section 4, the shadowed region corre-
sponds to the support of the box spline B(; 31)(- — v) considered in Example
26.

Definition 12. Two non edge-connected triangles A and A’ in M are called kissing triangles
if ANA = {v} for a vertex v € V.

In Figure 3, for instance, in a multicell domain composed by only two triangles, the triangles
{A,E}, {A,D}, and {A,C} are kissing triangles.

Proposition 13. If M is a multicell domain in the three directional grid G, such that it does
not have kissing triangles nor over-concave boundary vertices, then S¢(M,V) = S4(M, V) i.e.,
all splines with edge smoothness d on M are strongly regular.

Proof. Let A and /A’ be two triangles in the multicell domain M, and denote U = AUN. If
ANA =c € E;thenU = o(e)*. By Definition 7, the smoothness type of this pair of triangles
is ST(A, A') = {i}, and the index set associated to U in Definition 8 is simply I = IZ. Then,
by Definition 4 and Definition 8, we have S¥(M,V) C S%(M,V). Conversely, let us take
f € SY(M,V). By hypothesis, M does not have kissing triangles and since we have checked
that the continuity conditions restricted to two triangles are equivalent if the triangles have a
common edge, then let us assume that ANA = {v} for a vertex v € V, where A and A’ are
edge-connected. We want to check that f|y € D;(U, V). By Definition 12, we know that here
exist an edge-connected chain of triangles Ag, Ay, ..., A, in M Nstar (v) such that A = A\
and A" = A,,. The smoothness type ST(A,A’) is contained in every set of edge-types in
any edge-connected chain in G between A and A’. In particular, ST(A,A’) is a subset of
the edge-types in the chain Ag, Ay, ..., A,. Since f € S4(M,V) then D,f is continuous at
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v for every s € de and every j in the edge-types of the chain Ay, Ay, ..., Ay, In particular,
Dsf|y is a continuous function for every s € I Jd and every j € ST(A, /). Tt follows that
f € §4M,V), and hence S*(M, V) C S*(M, V) as required. O

3. BOX SPLINES ON TYPE-I TRIANGULATIONS

In this section we define box splines on the uniform type-I triangulation G defined in Section
2, Figure 1. This triangulation has vertices at all lattice points (i, j) € Z2.

Definition 14. If 3 is a real-valued function on R?, we denote by supp (3) the support 3,
and it is defined as the set of points € R? such that 8(zx) # 0.

Recall from Definition 11, that the star of a vertez v € V', denoted star (v), is composed of
v and all the triangles A € T and all edges ¢ € E which have v as one of their vertices.

Definition 15. If n = (n1,n9,n3) € Z3 is a triple of integers such that n; > 1, the type-I
box spline B, associated to m is defined recursively by

1
By(z) = /0 Bo. (@ — te;)dt,

for £ € R? and i € {1,2,3} such that n — e; > 1 = (1,1,1); the function By is the classical
Courant hat function with support on the star of the vertex (1,1) given in Figure 5. More
precisely, B is the piecewise linear function on R? satisfying By(1,1) = 1 and By (i, j) = 0 for
every (i,7) € Z*\ {(1,1)}.

(1,2) 22

0,1) @1 2.1) 1,1) 1,1)

(0,0) (1,0)

FIGURE 5. Support of the Courant hat function By, it corresponds to star (v)
where v is the vertex (1,1) (left), support of the box splines By 1,1) (center)
and 8(27271) (I‘lght)

The coordinates n; of n denote the number of convolutions of By along the directions e;.
The support of the box spline B,, is the zonotope in R? formed by the Minkowski sum of the
direction vectors e; taken n; times, for ¢ = 1,2, 3, respectively (see Figure 5 for an example).
Moreover, for every m, the box spline B, is strictly positive for all x in the interior of its
support, and zero otherwise [29, Theorem 12.2].

From the general theory of type-I box splines, it follows that the box spline B, is inde-
pendent of the order in which the vectors e; appear in the recursive construction of B, in
Definition 15. This result follows immediately from the formula for the Fourier transform of
a type-I box spline [29, Theorem 12.6].

For any n, the box spline B, is a piecewise polynomial function on three directional trian-
gulation G, and each polynomial is of total degree n = |n| — 2, where |n| = n; +na+ns. It is
also well-known that B,, is a C"-continuous function on R?, where r = min;—; 2 3{|n| —n; —2}
[29, Theorem 2.4].
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There is a rich literature on type-I box splines, a detailed construction and the proof of
structural and smoothness properties can be found for instance in [29, Chapter 12] or [6]. In
particular, it is known that each convolution along a direction e; increases the continuity of the
box spline with respect to differentiation in that direction by one [29, Theorem 12.3]. Thus,
following the notation introduced in Section 2, if d = (ng + ng — 2, n1 +n3 — 2, n; +ng — 2)
then
(3) B, € SYG, Py).

We denote by B, (G) the set of integer translates of the box spline By,, which is defined as the
set

(4) Bn(G) = {Bp(-—v): v e Z?).

The set By (G) is also called the set of shifted box splines associated to the direction vector n.

Remark 16. Notice that the translates in By (G) have distinct support, it is the zonotope
which is the support of B, shifted by v. In fact, the set By, (G) is (globally) linearly indepen-
dent [29, Theorem 12.19] i.e., if

Z aoBn(z —v) =0, for all z € R?

vEZ?

then a, = 0 for all v € Z2. Furthermore, it has been shown that the translates in By, (G) are
also locally linearly independent i.e., if A is an open set, then the shifted box splines

{Bn(- —v): supp (Bp(- —v)) NA#0}
are linearly independent [11,22]. Here, supp (/) denotes the support of the function 5 (Defi-
nition 14).

We now introduce the definition of the set of active box splines on a given multicell domain
M in the type-I triangulation G.

Definition 17. If M C G is a multicell domain, we define
Supp,, (M) = {v € Z?: supp (Bn(- —v)) N M* # 0},
and the set of active box splines B, on M by
Bn(M) = {Bn(- = v)[),: v € Supp, (M)},
where M* is the closure of M in R? as defined in Equation (1).

In particular, if the multicell domain M = A, for a triangle A € T', then Bn(A) is the set
of translates By (- — v) € Bp(G) whose support contains A. We will denote the number of
elements in By, (A) by ¢(n).

Notice that this number ¢(n) can be computed by counting the number of different triangles
in the support of B, which are translations (and not a reflection) of A. This number is exactly
half of the total number of different triangles in the support of B,,. Thus,

(5) ¢(n) = ning + ning + nang,

for n = (n1,n2,n3) € Z2,.

Definition 18. If B,,(- — v) is the translate of the type-I box spline B,, by v € Z?2, then we
take (1,1) — v as the point of reference of supp (B (- —v)) in the lattice. For a triangle A € T,

we define the I-ring neighborhood of /A as the set of reference lattice points (1,1) — v such
that supp (Bn(- — v)) N A # 0.
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A~

For instance, if 2 = (2,2,2) then the elements in B(A) are the translates Ba2(- — v)
associated to the ¢(n) = 12 lattice points in a 1-ring neighborhood of A in the grid G, which
are shown in Figure 6.

F1cURE 6. The 12 lattice points correspond to the 1-ring of a triangle A € T
associated to the box spline Bz = By 3 7). Each of these points is the reference
point (1,1) — v for the translate Bz(- — v) such that A C supp (B2(- — v)).

Notice that to any type-I box spline B,, and a triangle A € T we can associate a linear space
of polynomials. Namely, extending by linearity, we can take Vp|a as the space generated by
the restrictions of the active box splines B, to the triangle A i.e.,

(6) Vnla = span By ().
By Equations (6) and (3), we see that Vp|a is a linear subspace of P, C R|z,y], for any
AeTand n=ny+no+ng—2.

We now prove that for any n € Z3, the subspace V,,|an C P, is independent of the choice of
the triangle A € T'. The proof of this result is a generalization of [42, Proposition 27], where
we consider the case 2 = (2,2,2) and the box spline Bs.

Proposition 19. Let n = (n1,ng,n3) € Z;l with n = ny +ng+ng —2. Then, V,|a = Valas
for any pair of triangles A and A’ in T

Proof. Let A and A be two triangles in the three-directional grid G. Denote by G° the
triangulation of R? obtained by the lines parallel to the vectors e} = (a,0), €, = (0,a) and
e} = (a,a), for a fixed number a € Z. Notice that for any a € Z, we can see the grid G
as a refinement of a grid GY. Denote by A, the triangle in G® with vertices at (0,0), (0, a)
and (a,a). In particular, let us take ¢ € Z, and a = 2¢ in such a way that the translate
A = Aq —v of Ay by a vector v € Z2? contains both A and A’. Then, Bp(1/2¢-) is the
correspondent box spline associated to n in the grid G°. By the refinement equation for box
splines [29, Theorem 12.9], there exists a finite sequence {c, },ecz2 such that

(7) Bn(1/2°) = > cuBu(- —v).
vEZ?

Let us denote by V9|« the span of the box spline translates By, (1/2¢ - —v) restricted to A in

GY. By the symmetry of the box splines supports, the number ¢(n) of active translates on a
triangle is independent of the grid and of the given triangle in the grid. Furthermore, these
translates are linearly independent (see Remark 16). Thus,

(8) dim Vo| x = dim Vy|a = dim V| .
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Taking the restrictions to A and A, Equation (7) implies (V2| )|a € Vnla and (V9|x)|ar C
Valar

Since VY|« is a polynomial subspace of Py, we have VJ|x = (Vi[x)la = Vi|x)|ar. In
particular, both (V9] z)|a and (V9|x)|as have the same dimension as V)| . The statement
follows by applying Equation (8). O

Proposition 19 implies that for a given n € Z;l the restrictions of the translates of the box
spline B,, to a triangle A € T define a polynomial space which is independent of A. From
now on, we will denote such polynomial space as V.

Remark 20. For any A € T and n € Z2 |, Remark 16 implies that Bn(A) C P, is a linearly
independent set. Here P, is as before, the set of bivariate polynomials of degree at most

~

n =ny +ng +n3— 2, and n = (n1,n2,n3). The number of elements in By(A) = ¢(n)
(Equation (5)) is the dimension of the space of polynomials dim V), associated to the type-I
box By,. Thus, dim(V,) = ning + nins + nong < (”1+T‘22+”3) =dimP,,.

For n; > 1, equality holds only for n = 1 = (1,1, 1), which corresponds to polynomial
space V; associated to the Courant hat function B; in Definition 15. For any other n € Z3
and the corresponding box spline B,,, the polynomial space V), is a proper subspace of P,,.

4. CHARACTERIZATION OF BOX SPLINE SPACES

Let A € T, n € Z2,, and consider V,, = span Bn(A). As observed in Remark 20, the set

~

By (A) of the box spline translates with support on A is linearly independent, and hence the
restriction of a polynomial f € V, to A has a unique representation

9) fla@y= > MNifla)b), zeh,

BEBR(A)

for coefficients )\i(ﬂA) €R.

Lemma 21. Let n = (ni,ng,n3) € Z,, f and f' in Vo, and M = AU A, such that
AN €T and ANA € E; for some i € {1,2,3}.
If (fla, f'lar) € SH(M,Vy), then there exist polynomials g, h € Vy, such that
(10) (f|Aa f/|A/) = (g’Avf,’A’) + (h|A7O|A’)7
with )\i(g’A) = )\i,(f’\g) Jor every B € Bp(A) N Bp(A).

Proof. Define
gla = > XN (F'1anBla + > 0-Bla.
BeB(A)NB(AY) BeB(AN\B(A)

Then g|a € Vnl|a, and extending by linearity we can see g|a as the restriction to A of a
polynomial ¢ in V, C R[z,y]. By construction, the pair (g|a, f'|as) satisfies the required
condition, and taking h = f — g we obtain Equation (10). O

Lemma 22. Letn = (ny,n2,n3) € Z;l, fand f inVy, and A\, N' € T, such that ANA' € E;

for some i € {1,2,3}. Then, for M = AU A’ the following two statements are equivalent:
(i) The pair (f|a, f'|ar) € SHM,Vy), with d = (ng +n3 — 2,n1 +n3 — 2,11 +ng — 2).
(ii) For every B € Bu(A) N Bu(A), it holds A3 (fla) = Na (f'|ar) -
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Proof. (ii) = (i) Let (f, f’) € Vn be a pair of polynomials satisfying (ii). Then

(11) (flasFlay = S NA(fla)Blavar + (hla,0[a) + (0|ar, B |ar),
BEBn(A)NBR(A)

where

Ba= 3 NA(fla)Bla, and Hla= 3 NA(F|a)Bla-
BEBn(A)\Bn(A) BEBn(AN\Bn(A)
Since B € S4M,V,) for every 3 € Bp(M), then the first term in Equation (11) is in
S4M,V,). Now, if 3 € B(A) \ B(A!) then (B|a,0|a’) = B|u, and similarly for 8 €
B(A")\ B(A). Hence, the last two terms in Equation (11) are also in S4(M,V,), and (i)
follows.

(i) = (ii) By Lemma 21 it is enough to consider (f|a,0/a/) € S¥(M,V,,). We need to show
that )\i(.ﬂA) = 0 for every 8 € B(A) N B(A). To simplify, by an abuse of notation we will
denote Supp,,(A) N Supp,,(A’) simply by Supp,,(€3).

Let ANA = g; € E;, and denote by b; the barycentric coordinate relative to A which
vanishes at the edge &;. Let n = ny +ns+n3. Then (f|a,0|a/) € SH(M,V,,) if and only if the
polynomial b?_"i_l divides f, see [2, Lemma 2.2]. Notice that the latter condition is satisfied
if and only if the Bernstein-Bézier coefficients c;jis of f|a are zero for every 0 < j < n—mnj—2.

Without loss of generality we can assume that ¢ = 3 and A is the triangle with vertices at
(0,0),(1,0), and (1,1). Thus, by =  —y. We will prove that if f € V,, and b5 """ divides f
then Ai(ﬂA) = 0 for every 8 € B(A) N B(A'). We proceed by induction on n, with n; > 1.

The induction base is n = 3, with n = (1,1,1), n3 =1 and n — ng — 1 = 1. We have
B'n(A U A/) = {5]'}?:07

with Sy = By, and 8; = By(- + €;) for i = 1,2,3. Thus, the only translates with support on
A are ,30, ﬁg and Bg. Since ﬁo = bl, ﬁg = b3, and ,33 == bz, then

Fla = X2 (fla)brla + N2 (Fla)bsla + X2 (fla)bala.

Since the polynomials b1, by, bg are linearly independent, and by hypothesis bs|f, it follows
/\[2 (fla) =0 for i = 0,3. This proves the statement for the case n = 3.

Let us assume that the result is true for every m < n for some n > 3. Let n = (n1,n2,n3)
with n + 1 = ny1 + ny + n3. We consider three cases, in the first two cases only one of the
indices n; is > 2 and in the last case at least two of the indexes are > 2.

Case 1.: Suppose nq > 2, and no = ng = 1.
We have (x —y)"t|f and De, f =0 mod (z — y)™~!. Notice that Equation (9) may
be rewritten as

(12) f‘A: Z Av(f)Bn('_v”A,
vEZ?
where A\, = 0 for every v ¢ Supp,(4), and A\,(f) = )\i(ﬂA) for 8 € B(A) and
B = Bn(-—v).
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Moreover, we know that for any linear combination of box splines

Dei aan('—’U) = Z aU(Bm('_U) _Bm('_v_el))

vEZ? veZ?

(13) = Z (aerei - av)Bm(' —v+ ei)a

veZ?

for a, € R for every v € Z%, and m = (n1 — 1,n2,n3), see [29, Lemma 12.3].
Thus,

Del Z AU(f)B"<' - ”)‘A = Z (/\v+el(f) - )\v(f))Bm(' —v+ 61)’A

vEZ? veZ?
=0 mod (z—y)"

where m = (n; — 1,1,1). By induction hypothesis Ayte, (f) = Aop(f) for every v €
Supp, (€3)- R

Notice that, since n = (n1, 1,1) then the elements v € Supp, (A) are either a multiple
te; of ey or of the form ey + teq, for t € Z. Thus, we have

fla = Ae (f ZB - —ter)|a 4 ey )ZBn('—62+t61)|A,

teZ tEL

for constants Ae,(f) € R, for i = 1,2. Moreover, By (- — te1)]z, = 0 for every t. In
particular, they are zero at the vertex (0,0). But f(0,0) = 0, and

1= Z B (- — ZB —tey) + Bn(- — ey + tey).

vEZ? teZ

Then f|(0,0) = e, (f) EteZ Bn( —ex+ tel)’(0,0) = ey (f) = 0. We obtain )\el(f) =0

by considering the restriction at the vertex (1,1).

Case 2.: Suppose n3 > 2 and ny = ny = 1.
By hypothesis (z — y)|f, and so De,f = 0 mod (z — y). Following the same
argument as above, Ayye;(f) = Ay(f) for every v € Supp,,(é3). Thus, there is a
constant \e, which is equal to A\, (f) for every v € Supp,,(¢3), and

f’53 = /\eg(f) Z Bn(

veZ?

Since f|e; =0, and Y, cz2 Bn(- — v)‘83 =1, it follows ey (f) = 0.

Case 3.: At least two of the indices n; are > 2, say ni,n2 > 2. By hypothesis (z —
y)"ttm2=L f and so D, f =0 mod (x — y)™+"2~2 for 4 = 1,2. Similarly as before,
rewrite f|a as in Equation (12), and consider Equation (13) with ¢ = 1. Thus,

Del Z Av(f)Bn( - U)‘A = Z (/\v+el(f) - )‘v(f))Bm( —v+ el)’A

vEZ? vEZ?
=0 mod (z —y)mtm2"2

By induction hypothesis Ayte, (f) = Ap(f) for every v € Supp,,(£3). Similarly, by
considering D, f we get Apie,(f) = Ap(f) for every v € Supp,,,/(¢3), where m’ =
(n1,n2 — 1,n3). This implies that the coefficients A, (f) are equal to a constant A, for
every v € Supp,,(€3).
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Therefore, flo, = XX yez2 Bn(- — v)|ey. But flo; = 0, and > cz2 Bu(- —v) = 1,
in particular when taking the restriction to €3. Hence, 0 = A = )\i( f), for every
B e B(A)n B(A).
An analogous proof applies when the edge of intersection between A and A\’ is parallel to one
of the other two vectors e; or es. O

The edge-contact property plays a fundamental role for the construction of hierarchical
spline spaces, we present that construction for any type-I box spline in Section 5. The following
examples illustrate the special nature of type-I box splines, as depicted in Lemma 22; simply
requiring continuity of a spline space will not yield such intrinsic properties.

Example 23. Let M = AU A’ be the multicell domain in Figure 7.

(0,1) 11
A/

(~1,0)

(0,0)

FIGURE 7. The triangles A and /A’ in G define the multicell domain M in Ex-
ample 23, the triangles share the edge £ € F5 that is parallel to the directional
vector es.

Take the set B = {fi,..., fa} of spline functions f; on M defined as
fr= (432" + 4z, " +2), fo= (47, 47,

f3 = (2%,0), and f; = (0, 2?).
Each pair of polynomials f; is defined on A and A’, respectively. Then, B is contained in
the space of splines S°(M, Q), where 0 = (0,0,0), and @ C Py is the linear subspace of
polynomial spanned by z, 22, and y?.
We have

Qlpn = B|a = {y2 + 322 + 4z, 497, w2}]A, and
Q|A’ = B‘A’ = {y2 +z, 4y27 1"2}|A"

Then, g = (5 (y* + 322 + 4z) + 4y%, y* +  + 2 - (4y*)) € S°(M, Q), but g is not an element
in span (B). &

The following example illustrates the importance of the spline space S¢(M, V,,) (Definition
4) in the proof of Lemma 22.

Example 24. Let M = A U A’ be the multicell domain defined from the triangles A and
A such that ANA = ¢ € E5 in Figure 8. Take m = (2,1,1), and consider the linear
space Vy, = span Bn(A). The support and Bernstein coefficients of the box spline By 1)
are displayed in Figure 8. The generators of V(y ) can easily be described by restricting
the translates Ba11)(- — v) € Bp(M) to A" and using the Bernstein coefficients of By q 1.

Namely, V(2 1,1) is generated by

fi=2@—-yy+y*; fo=2(1-2)y+v*;
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0 0 0
BB

0

0 0 1
([),())(l/o A |/D ‘/
[

/1 /

FIGURE 8. Bernstein coefficients of the box spline 2B(3 1 1.

fa=(z —y)*;
fi=(1—2)? +4(1 —2)(z —y) + (z —y)* +2(1 - 2)y + 2(z — y)y;
and f5 = (1 —z)2.
In particular,
f=A4z—yy+al-z)@z -y +@—y)’=fi—fot fi—f5 €V, -

Let us notice that g = (0], f|ar) € S°(M,V,,), but g ¢ span B, (M). In fact, for 8(-) = Bp(+)

we have B|ar = f1, and )\i,(ﬂg) =1, but )\Z(OM) =0.
On the other hand, € € Fj i.e., € is an edge parallel to the directional vector es, and g is
not a C'-continuous spline on M. Thus, g ¢ S¢(M,V,,) for d = (0,1, 1). &

Definition 25. A multicell domain M is admissible with respect to a type-I box spline B,
if the support of any 5 € By, (M) is a connected set, and there exist no over-concave vertices
(Definition 11), and no kissing triangles in M (Definition 12).

Example 26. The multicell domain on the left of Figure 4 is not admissible for any type-I
box spline B,, because it has an over-concave vertex 5. If the over-concave vertex is elim-
inated by adding one more triangle, we obtain the domain N shown on the right of Figure
4. The multicell domain N is admissible with respect to the box splines By and B o 1) for
example, but N it is not an admissible domain with respect to the box spline B(; 3 1) because
supp B(1,3,1y(- — v)|n is not connected.

In view of Lemma 22 we arrive to the following completeness result.

Corollary 27 (Completeness of type-I box splines). If M C G is an admissible domain, and
n = (n1,n2,n3) € Z%,, then the generating set By(M) is complete for SH™) (M, Vy,), where
d(n) = (n2 +n3 —2,n1 +n3 — 2,n1 +nz — 2).

5. HIERARCHICAL TYPE-I BOX SPLINES

In this section, to any given box spline B,, we associate a space of special splines defined
on a hierarchical grid. We construct a hierarchical basis for such space and prove that this
basis is complete under certain assumptions on the domain hierarchy.

For an integer N > 0, we recursively define a sequence of three-directional grids G, G?,...,GN
as follows. We take G' = G as the three-directional grid with vertices Z? introduced in Section
2, Figure 1. The hierarchical grids

G' for (=2,...,N

are defined recursively, in such a way that G*! is obtained from G¢ by one global, uniform
dyadic refinement step. More precisely, the grid G = %Ge is the triangulation of R? with
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vertices at points 1/2¢(k, k), obtained by drawing in the lines z = k/2¢, y = k/2¢, and
x—y=k/2¢ for all k € Z. Thus, to construct G**!, every triangle in the grid G* is split into
four smaller ones, as illustrated in Figure 9. The index ¢ will be called the level of the grid,
and the number N specifies the number thereof. Each grid G* is a uniform three-directional
grid, similarly as for the grid G = G' before, we consider the triangles in this grid as open
sets in R2.

F1GURE 9. Three levels of three-directional hierarchical grids.

Let © be a domain of R? whose boundary 92 is the union of edges from the grid GV. We
define a hierarchical multicell domain H associated to the domain € as follows.
A nested sequence of subdomains of Q is defined as a collection of domains M? such that

p=M'Cc M C...c MN =qQ,

where M¢ = U A, and M C G* is a multicell domain in the grid G*, for for each
AeM*t

¢(=1,...,N.

Thus, for each level £, the boundary dM? is a union of edges of the grid G¢. The difference
between two successive subdomains, denoted DY, is defined as the closure

D' = MO\ ML,
The associated refined domain of level DY C G* is defined as DY = T*(D"), where T*(-) is
the triangulation operator which restrict the grid G* to a given subset of the plane R2. More
precisely,
TY(Q) ={A G AcC Q).

The hierarchical multicell domain H associated to 2 is then the collection of triangles form
all levels of the refinement area

N
H=|JD"
=1

Using this notation, the domain €2 can be written as the union ) = UAGHZ'

Definition 28. Let H be a three-directional hierarchical multicell domain associated to a
domain 2 C R2, and let B, be a box spline, for some triple n = (n1,n9,n3) € Z;l. We define
P(H,Vy) as the set of piecewise polynomial functions on H associated to By, i.e.,

P(H,Vp) = {f € C°(Q): flan € Vn|a for each triangle A € H} .

If d = (ng+ng —2,n1 +ng — 2,n1 + no — 2), the hierarchical box spline space with edge
smoothness d on H is defined as the set

(14) SYUH,Vp) = {f € P(H,Vn): flo@) € C% (O(e)*) for every
e€ E;NHand i€{1,2,3}}.
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For d as above, we define the linear space of hierarchical box splines with edge and vertex
smoothness d on the hierarchical multicell domain H as the set

(15) SYH,Va) = { € UL V) flu € Dy(U,V,) for &, 4 € MY,
for some £, ANA #£0,U=AUA, and I = NiesT(a,A7) ]id}.

In Equation (14), the diamond of and edge e € H is taken over the multicell domain M?*
such that € is an edge of the a triangle A € M*. Namely,

ole)= | A.

AeMtecA

Let us fix n = (n1,n2,n3) € Z‘;l and the corresponding box spline B,.
For each level £ = 1,..., N we denote by B the set of translates of B,, with respect to the
grid G*. In particular, we have B} = B, (G) as defined in Equation (4), and recursively

B ={B(2-): Be B} .

In an analogous way as we introduce By, (M) in Definition 17 for a multicell domain M in the
three-directional grid G, we now define the set BY(M?*) of active box splines on the multicell
domain M* in G* as follows,

BfL(ME) ={Blye: B € Bfl, and supp 3 N M* #0}.

A set of linearly independent box splines on a hierarchical multicell domain H can be con-
structed by a selection procedure analogous to that proposed by Kraft in [28] in the context
of tensor-product B-splines.

For all levels ¢, we select box splines translates, and define the sets K¢ as follows

K*={p* e BL(M"): supp - N ML =P}

The collection of these box splines translates in the levels £ = 1,..., N forms a hierarchical
bor splines basis given by

N
(16) K =J K"
/=1

The linear independence of the functions in K is implied by the local linear independence of
the box splines at each level, see [28].

Then the question of completeness of hierarchical type-I box spline spaces can be stated as
follows. For a given hierarchical multicell domain H, does the basis K in Equation (16) span
the hierarchical box spline space S%(H, V,,) defined in Equation (14)? Does K span S4(H, V,,)
defined in Equation (15)?

In the following theorem we address the first question, and provide a sufficient condition
for the completeness of the hierarchical spline basis.

Theorem 29. Let H be a three-directional hierarchical multicell domain, and let B, be a
box spline, for some triple n = (ni,ng,n3) € Z;l. The basis K in Equation (16) spans
the hierarchical box spline space SH(H,Vy,) if each multicell domain M* of H is admissible
(Definition 25) with respect to the grid level £.
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Proof. The proof follows standard arguments already presented in [17,31] for the case of
hierarchical tensor B-spline bases. Let © C R? be the domain associated to H. We prove by
induction on the levels £ that every spline function s € S*(H,V,,) admits a representation

(17) s= '+ + 12,
where h? € span BY,(M?"), and
(18) he‘Me:S|Me—(h1+...+hé_1)‘Me.

for{=1,...,N.
For any given level ¢, all functions h¥| . of lower levels k < £ are contained in S%(M*, V).
This follows from the relation

span BE(M")|ye € SYUME, V).

It follows that s|,. € S¢(M? V,). Consequently, the right-hand side of Equation (18) is
contained in S(M* V,). Since the multicell domain M? is admissible, we conclude that
h' € span BY (M*) according to Corollary 27. In particular, choosing £ = N in Equation (18)
we get Equation (17).

Moreover, the construction of the functions h‘ ensures that

h£|M£71 - O|MZ71.

Since the box splines possess the property of local linear independence we can conclude that
ht € span K. This completes the proof. O

Theorem 29 is a consequence of Corollary 27, and therefore of Lemma 22. This result
generalizes the completeness property of the space of translates of the quartic box spline Bg
proved in [42, Theorem 26].

6. CONCLUDING REMARKS

Remark 30. The contact characterization property proved in Lemma 22 implies the com-
pleteness of the space spanned by the translates of type-I box splines B,, on a multicell domain
M with respect to the spline space S#™) (M, Vy,), where d(n) = (ng+n3—2,n; +ng—2,n1 +
ny—2), and n = (n1,ng,ng). This result holds whenever M is an admissible domain i.e., when-
ever M does not have over-concave vertices nor kissing triangles, and supp () is connected
for all translates 3 of B, which have support on M. This is a sufficient condition, but it will
also be interesting to prove necessary conditions to achieve this completeness property of the
type-I box spline. In this direction, a complete characterization of the vertex-vertex contact
plays a crucial role. This calls for exploring the algebraic formulation of super-smoothness at
vertices in order to proving an analogous to Lemma 22 for vertex-vertex contact of type-I box
splines.

Remark 31. We partially undertake the vertex-vertex contact question raised in the previous
remark, for low degrees. In particular, we have verified algorithmically the vertex-vertex
contact (that is, Lemma 22 for the case AN A € V and the space SA(M, Vy)) for all type-I
box splines up to n = (4,4, 4).

The approach is based on the fact that both statements (i) and (i7) of Lemma 22 yield
linear relations on the coefficients )\ﬁA( fla) and )\’i/( f'|ar). We can express each of the two

statements as matrices A and A, The latter matrix has the form

AW =11, 0, —PI, 0,
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A A~

where P is a permutation matrix, p = #Bn(A) N By (A'), and ¢ = ¢(n) — p.

The matrix! A® can be computed as a product A® = C,Ly;. The factor C, describes the
Bézier continuity conditions at the common vertex v, corresponding to the smoothness type
ST(A, A") (Definition 7) and to the regularity vector d = (ng+ng—2,n1+n3—2,n1 +n2—2).
The right factor L, is the Bernstein—Bézier representation of the translates of ,,, considered
independently on each of the two triangles of M:

Ln 0O

L =
M 0 LA/

or, equivalently, a change of basis matrix of the space C~1(M*).

Showing that Lemma 22 holds in this setting (and for a fixed n) is done by showing that
A® and AU are equivalent matrices. Indeed, in all our computations we obtain A as the
reduced row echelon form of A® for type-I box splines up to total degree 12. This verifies
that the matrices are equivalent and so the vertex-vertex contact lemma holds in these cases.

Remark 32. In the discussion of completeness of hierarchical type-I box splines spaces there
are two main differences to the original approach, which was formulated for tensor-product
splines.

First, the translates of a box spline do not span the whole space of bivariate polynomials
of a given total degree. For this reason, this special polynomial subspace had to be identified.
In some sense this situation generalizes the tensor-product case, where the B-splines span a
polynomial space of a given (coordinate-wise) bi-degree, instead of the the space of bivariate
polynomials of a given total degree.

Second, the constraints on the domains are entirely different, due to the differences in the
characterization of contacts between polynomial pieces. For bivariate tensor-product splines,
both edge-edge and vertex-vertex contacts could be characterized easily by the equality of
spline coefficients. In the case of type-I box splines, we proved the characterization solely
for edge-edge contacts. Consequently, the completeness of hierarchical splines requires more
severe restrictions to the hierarchical grid.

We have alleviated these extra restrictions by proving algorithmically the vertex-vertex
contact for small polynomial degrees (total degree up to 12). By proving a characterization of
the vertex-vertex contact of box splines for arbitrary degree, as we indicated in Remark 30, we
could relax these restrictions on the hierarchical grids and construct more general hierarchical
type-I spline space. We leave this as a future research direction.
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