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Abstract

Harnessing the concept of inertial amplification, an inertial amplifier coupled base isolator (IABI) is
proposed in this paper. The seismic performance, in terms of story drift, base shear reduction, of this
proposed inertial amplifier coupled base isolator has been compared with that of the classical base isolator
(CBI) and inerter-based isolation system (Inerter-BI). A thorough analytical study, implementing ratio-
nals of random vibration for harmonic and Gaussian white noise is conducted to identify the performance
of the inertial amplifier coupled base isolator (IABI) in the frequency domain. Further, a numerical
study is conducted to determine the story drift, base shear response in time-domain for the inertial am-
plifier based base-isolated structure and classical base-isolated structure for twenty-two real earthquake
ground motions. The results elucidate the histogram of base shear and story drift reduction percentage
shifts towards higher values for inertial amplifier coupled isolator compared to CBI and Inerter-BI. From
both analytical and numerical study, it is observed that the seismic performance and response reduction
capacity of proposed IABI is significantly 89.38% and 72% superior to the classical base isolator and
inerter-based isolation system, respectively. This finding evidenced towards the supremacy of the inertial
amplifier base isolator over the classical base isolator and inerter coupled base isolator in terms of seismic
vibration control.

Keywords: Inertial amplification; Inertial amplifier coupled base isolator; Stochastic analysis; Classical
base isolator, Inerter-based isolation system.

1. Introduction

The base isolation systems are installed between the structure and foundation to control the seismic
responses of the structure. Touaillon’s [1] isolation system can be considered as the historical origin
of the base isolation system where the base isolator was modelled as double concave spherical sliding
bearing isolation system in 1870. The classical base isolation system can be mathematically modelled as
a viscously damped two degree of freedom system and its generalized solution is served as the baseline
for the designing of the multilayered elastomeric bearings for seismic isolation [2, 3]. Decoupling of the
structures from the earthquake ground motions is the essence of the seismic base-isolation towards the
minimization of inter-story drift and floor accelerations[4]. An appropriate design of the base isolation
device absorbs and/ or dissipate a significant part of the seismic energy [5, 6]. The base isolation devices
were exhaustively studied, and widely acclaimed since 1990 [4]. Simplified but useful comprehension can
be developed from the analytical solution of a linear classical base isolator [7] consists of two degrees of
freedom system with springs, masses and viscous dampers. Additionally, non-viscous [8] or viscoelastic [9]
damping in the context of vibration reduction were also studied and found that [10] a optimally designed
viscoelastic tuned-mass damper can out perform a classical viscous tuned-mass damper. Although not
investigated in this work, non-viscous or viscoelasticaly damped systems may have the potential for
enhanced isolation. The nonlinear isolators can be perceived by altering the viscous dampers of the
linear system with hysteresis damping [11–13]. Lead rubber bearing [14], New Zealand bearing [15],
Friction-Pendulum system [16], Resilient Friction Base Isolator [17] and Pure-Friction system [18] are
some examples of the nonlinear base isolation devices which results in the hysteresis damping. Among
the nonlinear systems friction pendulum system (FPS) is provided a larger isolation period which makes
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the base of the isolated structure more flexible and its high re-centring capacity decouples the mass of
the main structure from the ground during earthquakes [19–23].

On the other hand, an inerter is applied in the traditional vibration control devices to enhance its
energy dissipation capacity by massive effective mass amplification through rotational mass with motion
transformers [24, 25] inside the system. The inerter was first introduced by Smith [26, 27] from the
force to the current analogy for mitigation of vibration responses of the structures. Since then, these
inerters have widely been implemented in mechanical systems as vibration control devices, especially for
automobiles [28–33]. Recently, Kuhnert et al. [34] critically reviewed the advantages and disadvantages
of the inerter-based vibration isolation systems. Most of the previous inerter based isolation devices
are made by flywheel-gear inerter [35, 36]. Inerters were often used in conjunction with other vibration
control devices to enhance its performance [37, 38]. For example, Qian et al. [35] enhance the seismic
performance of a base-isolated structure with a tuned inerter damper [39]. The seismic performance of
the base-isolated structures have been enriched by incorporating the inerter-based systems [40, 41]. In
this context, the inerter has induced inside the traditional Friction Pendulum system (FPS) system [42]
and it is observed that the vibration reduction capacity of traditional FPS has increased [43, 44]. Not
only for the building frames, the inerter-based isolation systems can also be mitigated the vibrations of
the water storage tanks [40, 45, 46] during any seismic events. These inerter-based isolation systems
for vibration control of multi-storied building [47] can be modelled with helical springs and Čakmak et
al. [48] studied the vibration fatigue analysis of inerter-based isolation system with helical spring. To
optimize the governing parameters of the inerter based base-isolator, h2 [36] and h∞ [49] optimization
schemes are widely acclaimed.

Apart form the inerter, massive mass amplification can also be obtained by inertial amplifiers and a
large wide bandgap will occur at low frequencies [50–53]. This inertial amplifier based isolation system
is entirely different [36] from the widely acclaimed flywheel-gear inerter [35, 41]. The characteristics of
widen band gaps at low frequencies allows these amplifiers to surpass the vibration of low frequency based
periodic lattice structures [52, 54–56], acoustic insulation of walls[57, 58], beams [59–62] etc. However,
the application of these inertial amplifier in massive civil engineering structure like building [63] and
bridges is not extremely studied. Recently, Cheng et al. [64] enhanced a tuned mass damper (TMD)
with the help of inertial amplifier mechanism (IAM) and the results showed that the seismic performance
of IAM-TMD is superior to the traditional TMD [65–68]. However, an inertial amplifier coupled base
isolator is not presented in the existing state of the art.

An inertial amplifier coupled base isolator is introduced in this paper. The massive effective mass
amplification occurs due to the geometry of the inertial amplifier which enhanced the vibration reduction
capacity of the proposed IABI. The frequency domain and stochastic responses have been evaluated ana-
lytically while the time-domain responses are produced numerically. The sensitivity analysis considering
system parameters of proposed IABI have been conducted to investigate the effectiveness of system pa-
rameters on structural responses. The dynamic responses of the uncontrolled and controlled structures
are compared to evaluate the vibration reduction capacity of the each isolators. In the present study, the
vibration mitigation capacity of the inertial amplifier coupled base isolator is evaluated compared to that
of the classical base isolator and inerter-based isolation system [40].

2. Structural model and Equations of motion

The schematic diagrams of structures isolated by classical base isolator (CBI), inerter-based isolation
system (Inerter-BI), and inertial amplifier coupled base isolator (IABI) are presented in Figure 1 (a), (b)
and (c). It is considered that the isolated structures are subjected to ground motions üg.
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Figure 1: Schematic diagrams of dynamic systems isolated by (a) classical base isolator, (b) inerter-based isolation system,
(c) inertial amplifier coupled base isolator.

In Figure 1 (a), mb, cb, kb refer the base mass, damping, and stiffness of the CBI. us and ub refer the
displacement of structure and CBI. In Figure 1 (b), mirb, cirb, kirb refer the base mass, damping, and
stiffness of the Inerter-BI, and min indicates the mass of the inerter. us and uirb refer the displacement
of structure and Inerter-BI. In Figure 1 (c), mib, cib, kib refer the base mass, damping, and stiffness of the
IABI. θ indicates the inertial angle between the y- axis and the rigid links when the isolated structure is
in undeformed state. us and uib refer the of structure and IABI. ms, cs, and ks refer the mass, damping,
and stiffness of the main dynamic systems for all isolated systems presented in Figure 1.

2.1. Structures isolated by classical base isolators

The responses of the structure isolated by inertial amplifier coupled base isolator are compared with
the responses of structure isolated by classical base isolator. The structural parameters are contained
similar and the damping and total mass ratios of both isolators are retained similar.

mbÿb + cbẏb + kbyb − ksys − csẏs = −mbüg

msÿs + csẏs + ksys = −ms(üg + ÿb)
(1)

where, yb = ub − ug and ys = us − ub. ˙(•) defines the derivative with respect to time. The isolated
structure is subjected to a harmonic base motion. The relative displacement of the structure and the
base isolator in Eq. (1) can be considered as ys = Yse

iωt and yb = Ybe
iωt. The function of ground

accelerations are considered as ug = Uge
iωt. In the displacement notations, Ys, Yb, and Ug are the

displacement amplitudes of the structure, base isolator, and the ground motion. After substituting the
values in Eq. (1), the equation of motion can be expressed as:

q2mbYb + qcbYb + kbYb − ksYs − qcsYs = −q2mbUg

q2msYs + q2msYb + qcsYs + ksYs = −q2msUg

(2)

where q = iω. The transfer function can be evaluated as:

[

A11 A12

A21 A22

]

{

Ys

Yb

}

= −q2

[

1

µb

]

Ug (3)

A11 = 2 ζsqωs + q
2 + ωs

2;A12 = q
2;A21 = −2 ζsqωs − ωs

2;A22 = µbq
2 + 2 ζbqωb (µb + 1) + ω

2

b (µb + 1) (4)
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Isolator parameters are considered as: isolator mass ratio to the structure µb =
mb

ms

, damping ratio of the

base isolator ζb which can be calculated from ζb =
cb

2ωbM
, M = ms +mb, ǫb = (ωb

ωs
)2. The displacement

responses of the structure and base isolator are obtained as:

Hs(q) =
Ys

Ug

=
−q2 (µb + 1)

(

2 ζbqωb + ω2
b

)

∆b

(5)

Hb(q) =
Yb

Ug

=
−q2

(

2 qζsµbωs + µbq2 + 2 ζsqωs + µbωs
2 + ωs

2
)

∆b

(6)

∆b = 2 ζsωs (µb + 1) q3 +
(

ωs
2 + ω2

b

)

(µb + 1) q2 + 2 ζsωsω
2
b (µb + 1) q

+ω2
bωs

2 (µb + 1) + 2 qζb
(

2 ζsqωs + q2 + ωs
2
)

(µb + 1)ωb + q4µb

(7)

The shear force can be obtained as:

Hsf (q) =
qζsYs + ω2

sYs

Ug

=

(

−q2 (µb + 1)
(

2 ζbqωb + ω2
b

) (

qζs + ωs
2
) )

∆b

(8)

The transfer matrix in Eq. (3) can be represented as fully non-dimensional manner and presented as:

[

Ã11 Ã12

Ã21 Ã22

]

{

Ys

Yb

}

= η2

[

1

µb

]

Ug (9)

Ã11 = −η
2 + 2 iζsη + 1; Ã12 = −η

2; Ã21 = −2iζsη − 1; Ã22 = −µbη
2 + 2iζbη

√

ǫb (µb + 1) + ǫb (µb + 1) (10)

The non-dimensional displacement responses are evaluated as:

Hs(η) =
Ys

Ug

=
−η2

(

2iζbη
√
ǫb + ǫb

)

(µb + 1)

∆b1
(11)

Hb(η) =
Yb

Ug

=
−η2

(

−µbη
2 + µb + 1 + i (2 η ζsµb + 2 ζsη)

)

∆b1
(12)

∆b1 = 2 (µb + 1) ζb
(

η2i + 2 ζsη − i
)

η
√
ǫb − η4µb + 2iζs (µb + 1) η3

+(ǫb + 1) (µb + 1) η2 − 2iζs (µb + 1) ǫbη − ǫb (µb + 1)
(13)

where η = ω/ωs.

2.2. Structures isolated by inerter-based isolation systems

In recent days, inerter based systems have been widely used for structural vibration control. The
structure isolated by inerter-based isolation system is presented in Figure 1 (b).The equations of motion
of the structure isolated by inerter-based isolation system [41] are expressed as:

msÿs + (ms +mirb +min)ÿirb + cirbẏirb + kirbyirb = −(ms +mirb)üg

msÿs + csẏs + ksys = −ms(üg + ÿirb)
(14)

Above equations of motion can be written as:

(ÿs + ÿirb) + 2ζωsẏs + ω2
sys = −üg

(ÿs + ÿirb) + µirbÿirb + κ2ω2
syirb + 2ξωsẏirb + µÿirb = −(1 + µirb)üg

(15)

where mass ratio of base mass to structure: µirb =
mirb

ms
, frequency of the structure: ωs =

√

ks

ms
, viscous

damping ratio of the structure: ζ = cs
2msωs

, frequency ratio of the inerter-bi to structure: κ =
√

kirb

ms

/ωs,

viscous damping ratio of the inerter-bi: ξ = cirb
2
√
ksms

, mass ratio of inerter to structure: µ = min

ms

. In

Eq. (15), yirb = (uirb − ug), the relative displacement of the base mass with respect to ground and
ys = (us − uirb), the relative displacement of structure with respect to base mass. It is considered
that the isolated system is subjected to harmonic ground motions. The steady state solutions of the
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displacements of the dynamic system isolated by Inerter-BI under harmonic ground motions can be
evaluated as: ys = Yse

iωt, yirb = Yirbe
iωt. ˙(•) defines the derivative with respect to time. The function

of ground accelerations are considered as ug = Uge
iωt. The transfer function can be formed as:

[

V11 V12

V21 V22

]{

Ys

Yirb

}

= −q2

[

1

1 + µirb

]

Ug (16)

V11 = 2 ζsqωs + q2 + ωs
2;V12 = q2;V21 = q2;V22 = (1 + µ+ µirb) q

2 + 2 ξ qωs + κ2ωs
2 (17)

where q = iω. The displacement responses of structure and Inerter-BI are evaluated as:

Hs(q) =
Ys

Ug

=
−q2(κ2ωs

2 + µ q2 + 2 ξ qωs)

∆irb

(18)

Hirb(q) =
Yirb

Ug

=
−q2

(

2 ζ qµirbωs + 2 ζ qωs + q2µirb + µirbωs
2 + ωs

2
)

∆irb

(19)

∆irb = (µ+ µirb) q
4 + 2 ((1 + µ+ µirb) ζ + ξ)ωsq

3 + κ2ωs
4

+ωs
2
(

4 ζ ξ + κ2 + µ+ µirb + 1
)

q2 + 2ωs
3
(

ζ κ2 + ξ
)

q
(20)

The shear force can be obtained as:

Hsf (q) =
qζYs + ω2

sYs

Ug

=

(

−q2(κ2ωs
2 + µ q2 + 2 ξ qωs)

(

qζ + ωs
2
) )

∆irb

(21)

The displacement responses of the structure can also be evaluated in non-dimensional manner. To evaluate
the dimensionless responses, Eq. (16) can be re-constructed as:

[

Ṽ11 Ṽ12

Ṽ21 Ṽ22

]{

Ys

Yirb

}

= η2

[

1

1 + µirb

]

Ug (22)

Ṽ11 = −η2 + 2iζ η + 1; Ṽ12 = −η2; Ṽ21 = −η2; Ṽ22 = − (1 + µ+ µirb) η
2 + 2iξ η + κ2 (23)

The displacement responses of the structure and Inerter-BI are evaluated as:

Hs(η) =
Ys

Ug

=
−η2(−η2µ+ κ2 + 2iξ η)

∆irb

(24)

Hirb(η) =
Yirb

Ug

=
−η2

(

−η2µirb + µirb + 1 + 2iζ η
(

1 + µirb)

) )

∆irb

(25)

∆irb = −η4µ− η4µirb + 4 ζ η2ξ + η2κ2 + η2µ+ η2µirb

+η2 − κ2 + 2i
(

((µ+ µirb + 1) ζ + ξ) η2 − ζ κ2 − ξ
)

η
(26)

2.3. Structures isolated by inertial amplifier coupled base isolators

The schematic diagram and free body diagrams of inertial amplifier are presented Figure 2.
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Figure 2: (a) Schematic diagram of inertial amplifier (b) free-body diagram of inertial amplifier.

An inertial angle θ between the y-axis and bars, is indicated in the diagrams when the inertial amplifier
is in undeformed state. It is considered that the system moves towards the y-axis and small deflections
occurred in lateral masses in x and y-directions. xa and ya indicate the displacement of lateral masses in
x and y-directions, respectively. The values of the deflections can be evaluated as:

ya =
y1 + y2

2
(27)

xa = ±y2 − y1
2 tan θ

(28)

It is assumed the total system is in equilibrium condition and inertial forces generated through the lateral
masses can be evaluated as: fix = mẍa and fiy = mÿa. The internal forces through the rigid links are
obtained as f1 and f2 and presented in Figure 2 (b). The values of f1 and f2 can be evaluated as:

f1 =
1

2

(

fix
sin θ

− fiy
cos θ

)

(29)

f2 =
1

2

(

fix
sin θ

+
fiy
cos θ

)

(30)

The total reaction forces through the system presented in Figure 2 can be evaluated as:

F = −2f1 cos θ + kib(y2 − y1)

= d1 (ÿ2 − ÿ1) + d2 (ÿ2 + ÿ1) + kib(y2 − y1)
(31)

in which d1 = 0.5ma

tan2 θ
and d2 = 0.5ma are the constants produced through the balancing of the inertial

forces generated in the inertial amplifier which is presented in Figure 2 (a). In the lateral masses, the

total inertial forces are proportional to the mean of accelerations
(

ÿ2+ÿ1

2

)

generated through the two

terminals of the inertial amplifier and the inertial constant d2 is produced through that. d1 constant
produced by the inertial forces generated in the geometry of the inertial amplifier and the lateral masses
of the entire system. It is observed that the inertial forces of the entire system is directly proportional

to the relative acceleration
(

ÿ2−ÿ1

2

)

between two terminals. The equations of motion of the structure

isolated by inertial amplifier coupled base isolator in Figure 1 (c) can be obtained as:

miaÿib + cibẏib + kibyib − ksys − csẏs = −miaüg

msÿs +msÿib + csẏs + ksys = −msüg

(32)

In Eq. (32), the total effective mass of the IABI is evaluated as: mia = mib + 0.5ma

(

1 + 1
tan2 θ

)

. Now,
inertial amplification need to be evaluated and can be determined as:

α =
ma

mib + 2ma

;ma =

(

α

(1− 2α)

)

mib (33)
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β =
mib

mib + 2ma

= (1− 2α) (34)

Λf =
mib

mib + 2ma

+
0.5ma

mib + 2ma

(

1 +
1

tan2 θ

)

= (1− 1.5α) +

(

0.5α

tan2 θ

)

(35)

In Eq. (33), Eq. (34), and Eq. (35), α, β, and Λf refer the mass ratios of inertial amplifier, base mass,
and effective mass to the total static mass of the IABI. The inertial amplification of IABI system is
presented in Figure 3.
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Figure 3: Contours of log10 of inertial amplification of IABI as a function of the inertial angle θ and mass ratio α.

In Figure 3, more inertial amplification occurs at the lower angel and higher mass ratio of the inertial
amplifier to total static mass α. To get inertial amplification through the increment of dynamic mass,
α < 0.5. At α = 0.5, the effective mass ratio Λf = 0 and α > 0.5, the effective mass ratio Λf becomes
−ve. In Eq. (32), the relative displacement of base with respect to ground: yib = (uib − ug), and the
relative displacement of structure with respect to base mass: ys = (us − uib). It is considered that the
isolated system is subjected to harmonic ground motions. The steady state solutions of the displacements
of the dynamic system isolated by IABI under harmonic ground motions can be evaluated as: ys = Yse

iωt,
yib = Yibe

iωt. ˙(•) defines the derivative with respect to time. The function of ground accelerations are
considered as ug = Uge

iωt. The displacement of the structure and IABI can be obtained by deriving
the solutions analytically. After substituting the steady state solutions in Eq. (32), the transfer matrix
can be formed. From where the responses can be evaluated easily and the transfer matrix of the above
equations motion can be presented as:

[

B11 B12

B21 B22

]

{

Ys

Yib

}

= −q2

[

1

µia

]

Ug (36)

B11 = 2 ζsqωs + q2 + ωs
2;B12 = q2;B21 = −2 ζsqωs − ωs

2B22 = 2 ζibqωibµia + µiaq
2 + ωib

2µia (37)

where q = iω. The displacement responses of structure and IABI are evaluated as:

Hs(q) =
Ys

Ug

=
−q2µiaωib (2 ζibq + ωib)

∆ia

(38)

Hib(q) =
Yib

Ug

=
−q2

(

2 qζsµiaωs + µiaq
2 + 2 ζsqωs + µiaωs

2 + ωs
2
)

∆ia

(39)
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∆ia = q4µia + ((2 ζibωib + 2 ζsωs)µia + 2 ζsωs) q
3 +

((

4 ζibζsωibωs + ωib
2 + ωs

2
)

µia + ωs
2
)

q2

+2µiaωsωib (ζibωs + ζsωib) q + µiaωib
2ωs

2
(40)

The shear force can be obtained as:

Hsf (q) =
qζsYs + ω2

sYs

Ug

=

(

−q2µiaωib (2 ζibq + ωib)
(

qζs + ωs
2
) )

∆ia

(41)

The displacement responses of the structure can also be evaluated in non-dimensional manner. To evaluate
the dimensionless responses, Eq. (36) can be re-constructed as:

[

B̃11 B̃12

B̃21 B̃22

]{

Ys

Yib

}

= η2

[

1

µia

]

Ug (42)

B̃11 = −η2 + 2iζsη + 1; B̃12 = −η2; B̃21 = −2iζsη − 1; B̃22 = −µiaη
2 + 2iζibη ηibµia + ηib

2µia (43)

The displacement responses of the structure and IABI are evaluated as:

Hs(η) =
Ys

Ug

=
−µiaη

2ηib (2iζibη + ηib)

∆ib

(44)

Hib(η) =
Yib

Ug

=
−η2

(

−µiaη
2 + µia + 1 + 2i (η ζsµia + ζsη)

)

∆ib

(45)

∆ib =
(

−η4 +
(

4 ζibζsηib + ηib
2 + 1

)

η2 − ηib
2
)

µia + η2

+2 iη
((

(ηibζib + ζs) η
2 − ζsηib

2 − ηibζib
)

µia + η2ζs
) (46)

where frequency ratio of harmonic ground motions to structure: η = ω
ωs
, mass ratio of IABI to structure:

µia = mia

ms

, frequency ratio of IABI to structure: ηib =
ωib

ωs

, viscous damping ratio of IABI: ζib =
cib

2miaωib

,

and viscous damping ratios of the structure: ζs = cs
2msωs

, frequency of the structure: ωs =
√

ks

ms
,

frequency of the IABI: ωib =
√

kib

mia
.

3. Stochastic response evaluation

To evaluate the stochastic responses, it is considered that the isolated structures in Figure 1 are
subjected to Gauassian White Noise. It is also noted that all the isolated structures are linear vibratory
system and the general form of the equations of motion Eq. (1), Eq. (14) and Eq. (32) can be written
as:

Mÿ(t) + Cẏ(t) +Ky(t) = −Fb(t) (47)

Fb(t) represents the forcing vector which is different for each isolated structure and presented as: [ms,mb]
T üg(t)

for structure isolated by CBI, [ms, (ms+mirb)]
T üg(t) for structure isolated by Inerter-BI, and [ms,mia]

T üg(t)
for structure isolated by IABI. Each force acting to the corresponding degree of freedom. The general
form of the forcing function can be represented as:

Fb(t) =















fb1(t)
fb2(t)
...

fbn(t)















(48)

Each component of force fbi(t) is assumed as randomly correlated. The power spectral density matrix
can be formed as:

SFbFb
(ω) = E[Fb(ω)

∗Fb(ω)]

=









Sfb1fb1 (ω) Sfb1fb2(ω) ... Sfb1fbn(ω)
Sfb2fb1 (ω) Sfb2fb2(ω) ... Sfb2fbn(ω)

... ... ... ...
Sfbnfb1(ω) Sfbnfb2 (ω) ... Sfbnfbn(ω)









(49)
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In Eq. (49), the off-diagonal values are indicated as cross power spectral density functions and the diagonal
values are indicated as auto power spectral density functions. After substituting üg(t) = Uge

iωt in Fb(t),
the loading function can be represented in frequency domain and presented as: Fb(t) = Fb(ω)e

iωt. In
Eq. (47), y(t) refers the displacement vectors containing the relative displacement of the main structure
ys(t) and each isolator (i.e. yb(t) for CBI, yirb(t) for Inerter-BI, yib(t) for IABI), respectively. Thus,
the displacement vectors for each isolated system are represented as: [ys, yb]

T for structure isolated by
CBI, [ys, yirb]

T for structure isolated by Inerter-BI, and [ys, yib]
T for structure isolated by IABI. The

generalized form of the displacement response vectors can be converted to frequency domain by assuming
y(t) = Y (ω)eiωt, where Y (ω) is the displacement amplitude vectors of the isolated structures. After
substituting the values of y(t) and Fb(t) in Eq. (47), the equations of motions are converted to frequency
domain and presented as:

(q2M + qC +K)Y (ω) = −Fb(ω);U(ω)Y (ω) = −Fb(ω);Y (ω) = H(ω)Fb(ω) (50)

The matrix of power spectral density containing the vector y(t) is obtained as:

SY Y (ω) = E[Y (ω)Y (ω)∗] = H(ω)SFbFb
(ω)H(ω)∗ (51)

The Gaussian White Noise have zero mean and standard deviation 2. The standard deviation of the
displacement response has derived by using the dimensional terms to implement the formula below:

σ2
ys

= E[y2s(t)] = Ryy(0) =

∫ ∞

−∞

|H(ω)|2SFbFb
(ω) dω (52)

In the frequency domain, the velocity of the structure can be expressed as

Ẏs(ω) = (iω)Ys(ω) = (iω)Hs(ω)Fb(ω) (53)

Since ẏs(t) is also a zero-mean stationary Gaussian random process, its standard deviation can be obtained
in a similar manner as

σ2
ẏs

= E[ẏ2s(t)] =

∫ ∞

−∞

{(iω)H(ω)}{(iω)H(ω)}∗SFbFb
(ω)dω =

∫ ∞

−∞

ω2|Hs(ω)|2SFbFb
(ω)dω (54)

The expressions of σys
and σẏs

are then substituted into the expressions derived in the previous subsec-
tions. The calculation of the integral on the right-hand side of equations Eq. (52) and Eq. (54) in general
requires the calculation of integrals involving the ratio of polynomials of the following form

In =

∫ ∞

−∞

Ξn(ω) dω

Λn(iω)Λ∗
n(iω)

(55)

(•)∗complex conjugate. Here the polynomials are expressed as

Ξn(ω) = bn−1ω
2n−2 + bn−2ω

2n−4 + · · ·+ b0 (56)

Λn(iω) = an(iω)
n + an−1(iω)

n−1 + · · ·+ a0 (57)

Following Roberts and Spanos [69]this integral can be evaluated as

In =
π

an

det [Nn]

det [Dn]
. (58)

Here the n× n matrices are defined as

Nn =

















bn−1 bn−2 · · · b0
−an an−2 −an−4 an−6 · · · 0 · · ·
0 −an−1 an−3 −an−5 · · · 0 · · ·
0 an −an−2 an−4 · · · 0 · · ·
0 · · · · · · 0 · · ·
0 0 · · · −a2 a0

















(59)
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and

Dn =

















an−1 −an−3 an−5 −an−7

−an an−2 −an−4 an−6 · · · 0 · · ·
0 −an−1 an−3 −an−5 · · · 0 · · ·
0 an −an−2 an−4 · · · 0 · · ·
0 · · · · · · 0 · · ·
0 0 · · · −a2 a0

















(60)

These expressions will be used for the two cases considered. We assume that the excitation üg is Gaussian
white noise so that its spectral density is constant with respect to frequency. But different spectral
densities can be easily used within the scope of this formulation.

3.1. Peak statistics for structure with inertial amplifier coupled base isolator

Since the forcing function has constant spectral density we assume that

SFbFb
(ω) = S0 (61)

As the input spectrum is considered as white, thus S0 refers a constant for all frequencies. Therefore, the
standard deviation of ys(t) can be obtained using equation Eq. (52) as

σ2
ys

=

∫ ∞

−∞

|H(ω)|2S0 dω = S0

∫ ∞

−∞

ω2

∆1(iω)∆∗
1(iω)

dω (62)

The standard deviation of the derivative of the voltage ẏs(t) can be obtained using equation Eq. (54) as

σ2
ẏs

=

∫ ∞

−∞

ω2|H(ω)|2S0 dω = S0

∫ ∞

−∞

ω4

∆1(iω)∆∗
1(iω)

dω (63)

The shear force of the structure due to the effect of random ground motions can be evaluated as:

σ2
sf =

∫ ∞

−∞

|Hsf (ω)|2S0 dω (64)

It can be found from the Eq. (65) that it is a 4th order polynomial equation.

∆ia = q4µia + ((2 ζibωib + 2 ζsωs)µia + 2 ζsωs) q
3 +

((

4 ζibζsωibωs + ωib
2 + ωs

2
)

µia + ωs
2
)

q2+

2µiaωsωib (ζibωs + ζsωib) q + µiaωib
2ωs

2
(65)

where q = iω. The solution is derived below:

n = 4, b0 = 0, b1 = 0, b2 = 1, b3 = 0, a0 = µiaωib
2ωs

2, a1 = 2µiaωsωib (ζibωs + ζsωib) ,

a2 =
(

4 ζibζsωibωs + ωib
2 + ωs

2
)

µia + ωs
2, a3 = (2 ζibωib + 2 ζsωs)µia + 2 ζsωs, a4 = µia

(66)

Now using Eq. (55), the integral can be evaluated as

∫ ∞

−∞

ω2

∆(iω)∆∗(iω)
dω =

π

a4

det









b3 b2 b1 0
−a4 a2 −a0 0
0 −a3 a1 0
0 −a4 a2 a0









det









a3 −a1 0 0
−a4 a2 −a0 0
0 −a3 a1 0
0 −a4 a2 a0









(67)

The standard deviation of the displacement response due to white represented as:

σ
2

ys =
S0π (ζibωs + ζsωib)





8 ζib
3ζsµia

2ωib
2ωs

2 + 8ωibµiaωs

( (

0.25 + (µia + 1) ζs
2
)

ωs
2 + µiaζs

2ωib
2

)

ζib
2

+8 ζs
(

0.25 (µia + 1)2 ωs
4 + ωib

2
(

(µia + 1) ζs
2
− 0.5µia

)

µiaωs
2 + 0.25µia

2ωib
4

)

ζib
+2 ζs

2µiaωib
3ωs





(68)
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The standard deviation in velocity responses are derived as:

σ
2

ẏs =
S04π

( (

ζs
2ζibωsωib

2 + ζsζib
2ωs

2ωib + 0.25 ζsωib
3 + 0.25 ζibωs

3
)

µia + 0.25 ζibωs
3

)

8µia









ζsζib

(

ζib
2ωs

2ωib
2 + ζsωsωib

(

ωib
2 + ωs

2
)

ζib
+0.25 ωs

4 + ωib
2
(

ζs
2
− 0.5

)

ωs
2 + 0.25ωib

4

)

µia
2

+

( (

ωs
2ωib

(

0.25 + ζs
2
)

ζib
2 + 0.25 ζs

2ωib
3

+ζsωs

(

ζs
2ωib

2 + 0.5ωs
2
)

ζib

)

ωsµia + 0.25 ζsζibωs
4

)









(69)

The standard deviation values for the shear force can be evaluated in similar manner. Now considered,
ζs = 0, and the mean square values are evaluated as:

σ2
ys

=
S0π

2ζibωs
2ωibµia

=
S0π

2ωs
3ζibηibµia

(70)

σ2
ẏs

=
(µia + 1)S0π

2ζibµia
2ωib

=
(µia + 1)S0π

2ωsζibµia
2ηib

(71)

Shear force can be evaluated as:

σ2
sf =

S0π
(

ωs
2 + ωib

)

8ωs
4ζib∆sf

(72)

∆sf =





(

1
4 + µia

2

4 +
(

ωib

4 + 1
2

)

µia

)

ωs
8 +

((

ζib
2 − ωib

4

)

µia + ζib
2 + ωib

4

)

µiaωibωs
6

+
(4 ζib

4+(−ωib+2)ζib
2−ωib)µia

4 + ζib
2

2 + ζib
2µia

2ωib
3
(

ζib
2 − ωib

4

)

ωs
2 + ζib

4µia
2ωib

4

4



 (73)

It has observed that from Eq. (70) that the mass response of the structure is decreased by increasing
the mass of the amplifier mia. Similar phenomena can also be observed damping ratio of the isolator
ζib. Here uncertainties in the base excitation is considered. There can be uncertainties in the model
parameters also. Under certain assumptions, the response statistics of SDOF uncertain systems can be
obtained analytically [70, 71]. Future work will address the combined effect of model and base excitation
uncertainties.

3.2. Comparison of stochastic responses of uncontrolled and controlled structures

The stochastic responses of uncontrolled and controlled structures are evaluated under GaussianWhite
Noise. The parameters of the main structures are considered exactly same and total mass ratios, viscous
damping ratios, and frequency ratios are also considered exactly same.

4. Stochastic and frequency domain responses

In this section, the seismic responses of controlled and uncontrolled structures subjected to harmonic
and Gaussian White Noise are presented.

4.1. Comparison of seismic performance of CBI, Inerter-BI, and IABI under harmonic ground motions

and Gaussian White Noise

It is also noted that the super-structural parameters for uncontrolled and controlled structures are
considered exactly same. The cumulative masses of classical base isolator, inerter-based isolator, and in-
ertial amplifier coupled base isolator are remained similar as to compare between the seismic performance
of the proposed isolation system and other conventional systems, respectively. Total system parameters
of uncontrolled and controlled structures [41] are presented in Table 1.
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Table 1: Details of system parameters of uncontrolled and controlled structures.

Description Symbol Value

CBI Inerter-BI IABI

Structural damping ratio ζs ζ ζs 0.01
Isolator damping ratio ζb ξ ζib 0.05
Frequency ratio of
isolator to structure ǫb κ ηib 0.20
Total mass ratio of
isolator to structure µb µirb + µ µib + 2µa 0.6
mass ratio of
base mass to structure ... µirb µib 0.4
mass ratio of
inerter to structure ... µ ... 0.2
mass ratio of lateral
mass to structure ... ... µa 0.1
Inertial angle ... ... θ 30o

The dynamic response of isolated structures under harmonic ground motions are shown in Figure 4.
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Inerter-BI
IABI

Harmonic ground motions

Figure 4: (a) Variations of displacement amplitudes of structures with frequency ratios.

In Figure 4(a), the displacement amplitudes of the uncontrolled structure, structure isolated by clas-
sical base isolation system, structure controlled by inerter-based isolation system, and structure with
inertial amplifier coupled base isolator are compared. The peak non-dimensional displacement ampli-
tudes of the structure isolated by CBI, Inerter-BI and IABI are evaluated as 6.17, 4.84 and 1.76. Thus, It
is observed that the seismic performance of IABI system is significantly 71.47% and 63.60% superior to
the CBI and Inerter-BI. The stochastic responses of the structure isolated by CBI and IABI are evaluated
and presented in Figure 5.
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Figure 5: Variations of power spectral density of the structures with frequency ratios.

As the uncontrolled and controlled structures are linear, it is expected that the stochastic response
behaviour is also similar to the harmonic responses.

4.2. Sensitivity of system parameters of proposed IABI on the structural responses

The dynamic responses of structure isolated by proposed IABI under harmonic ground motions for
different values of ζib are presented in Figure 6.
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Figure 6: Variations of displacement amplitudes of the structures isolated by IABI with frequency ratio for different value
of ζib, subjected to harmonic base excitation.

It can be observed from Figure 6 that for damping ratios less than 20% the peak displacement ampli-
tude decreases, and it becomes pretty stable and approximately constant for higher damping values. The
values of peak displacement amplitude of structure isolated by IABI are evaluated as 1.76, 1.44, 1.33,
1.34, 1.35, 1.36 for 0.05 < ζib < 0.50.
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Figure 7: Variations of displacement amplitudes of the structures isolated by IABI with frequency ratio for different value
of µib, subjected to harmonic base excitation.

In Figure 7, the displacement amplitudes of the structure isolated by IABIs for different values of the
µib are shown. The value of µib are varied from 0.2 to 0.8. For the harmonic case, the peak values of the
displacement amplitudes are as: 1.16, 1.76, 2.21, and 2.58. Similar type of results are observed for the
random case. The seismic responses of the structures for different values of θ are presented in Figure 8.
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Figure 8: Variations of displacement amplitudes of the structures isolated by IABI with frequency ratio for different value
of θ, subjected to harmonic base excitation.

The structural displacement amplitudes are obtained for four different values of inertial angle θ. 10o,
15o, 20o and 30o of the inertial angles are chosen to plot the results. For the harmonic case, the peak
responses for adopted angles are 2.03, 1.92, 1.78, and 1.76. The stochastic response behaviour are also
similar as all the systems are linear.
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5. Time history analysis

The numerical study is conducted to evaluate the vibration reduction capacity of the proposed IABI.
To perform the study, the time history plots of the uncontrolled and controlled structures are determined,
and the structural responses of the controlled systems are compared with the structural responses of the
uncontrolled structures. The masses of the structures (ms) for uncontrolled and controlled structures
are similar and considered as: 300 tons. Other structural and system parameters are already men-
tioned in the previous section. For the loading part, twenty-two real earthquake ground motions are
implemented to perform these numerical study and the data of the earthquakes are downloaded from
https://peer.berkeley.edu/peer-strong-ground-motion-databases. The details of the considered earth-
quakes are listed in Table 2. Es defines the epicentral distance in km.

Table 2: Details of earthquake ground motions.

Earthquake Year Mw Recording station V s30(m/s) Component Es (km) PGA,g

Northridge 1994 6.7 Beverly Hills - Mulhol 356 MUL009 13.3 0.52
Northridge 1994 6.7 Canyon Country-WLC 309 LOS270 26.5 0.48
Duzce, Turkey 1999 7.1 Bolu 326 BOL090 41.3 0.82
Hector Mine 1999 7.1 Hector 685 HEC000 26.5 0.34
Imperial Valley 1979 6.5 Delta 275 H-DLT352 33.7 0.35
Imperial Valley 1979 6.5 El Centro Array 11 196 H-E11230 29.4 0.38
Kobe, Japan 1995 6.9 Nishi-Akashi 609 NIS090 8.7 0.51
Kobe, Japan 1995 7.5 Shin-Osaka 256 SHI000 46 0.24
Kocaeli, Turkey 1999 7.5 Duzce 276 DZC270 98.2 0.36
Kocaeli, Turkey 1999 7.3 Arcelik 523 ARC000 53.7 0.22
Landers 1992 7.3 Yermo Fire Station 354 YER270 86 0.24
Landers 1992 7.3 Coolwater 271 CLW-TR 82.1 0.42
Loma Prieta 1989 6.9 Capitola 289 CAP090 9.8 0.53
Loma Prieta 1989 6.9 Gilroy Array 3 350 G03000 31.4 0.56
Manjil, Iran 1990 7.4 Abbar 724 ABBAR–T 40.4 0.51
Superstition Hills 1987 6.5 El Centro Imp. Co. 192 B-ICC090 35.8 0.36
Superstition Hills 1987 6.5 Poe Road (temp) 208 B-POE270 11.2 0.45
Cape Mendocino 1992 7.0 Rio Dell Overpass 312 RIO270 22.7 0.55
Chi-Chi, Taiwan 1999 7.6 CHY101 259 CHY101-N 32 0.44
Chi-Chi, Taiwan 1999 7.6 TCU045 705 TCU045-N 77.5 0.51
San Fernando 1971 6.6 LA - Hollywood Stor 316 PEL180 39.5 0.21
Friuli, Italy 1976 6.5 Tolmezzo 425 A-TMZ270 20.2 0.35

The response spectra[72] at 5% damping for all the selected records have been plotted and presented
in Figure 9.
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Figure 9: Response spectra of the various earthquakes considered along with the designed spectra.

The displacement histories of uncontrolled and controlled structures are presented in Figure 10.
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Figure 10: Displacement history of the structures with time for different earthquake ground motion.

The time history responses are evaluated for all twenty two earthquakes but only for plots are presented
as the nature of the plots are similar. In Figure 11, statistical data of the displacement reduction (%)
capacity of the proposed inertial amplifier coupled base isolator and classical base isolation is shown by
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histogram plot.
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Figure 11: Variation of number of occurrence with range of displacement reduction percentage.

This plot provides the exact seismic performance of the IABI and CBI systems. The peak relative
displacement of the structure for all structural systems along with the response reduction(%) is listed in
Table 3.

Table 3: Displacement reduction (%) of structure with respect to uncontrolled structure under different earthquake ground
motions.

Earthquake Displacement reduction (%)
CBI Inerter-BI IABI

Northridge 61.86 92.33 99.04
Northridge 56.48 86.57 98.76
Duzce, Turkey 51.52 89.26 99.01
Hector Mine 38.71 91.13 94.77
Imperial Valley 63.11 86.89 94.66
Imperial Valley 47.15 83.74 94.27
Kobe, Japan 54.14 82.71 97.42
Kobe, Japan 43.59 87.82 98.72
Kocaeli, Turkey 41.13 79.84 88.71
Kocaeli, Turkey 42.55 72.34 74.47
Landers 47.03 89.73 92.43
Landers 4.23 63.38 83.10
Loma Prieta 70.51 83.87 99.19
Loma Prieta 63.64 84.09 97.99
Manjil, Iran 39.88 89.88 95.78
Superstition Hills 30.77 86.54 93.99
Superstition Hills 59.88 88.95 98.77
Cape Mendocino 5.94 73.27 95.36
Chi-Chi, Taiwan 45.92 84.12 90.56
Chi-Chi, Taiwan 54.17 81.55 96.35
San Fernando 41.33 87.78 96.73
Friuli, Italy 48.98 71.43 97.63
Mean 46.02 83.51 94.44
Standard Deviation 16.4297 7.3814 5.9500
Maximum 70.51 92.33 99.19
Minimum 4.23 63.38 74.47

It can be observed from the Table 3 and Figure 10 that the response reduction capacity of the iner-
tial amplifier coupled base isolator is better than CBI and Inerter-BI. The pattern of the displacement
histogram plot is indicating as random distribution as it has several different peaks. The majority of the
displacement reduction percentage for the IABI system wait between 80% to 100% while for the CBI

17



system, the majority shows from 1% to 70%, and for Inerter-BI, from 70% to 80%. The time history plots
of the base shear are evaluated and presented in Figure 12(a-d) for similar earthquakes. IABI system
performs significantly better than the CBI and Inerter-BI in terms of base shear reduction.
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Figure 12: (a-d) Variations of the base shear of the structure with time for different earthquakes.

The histogram plot for the base shear reduction is indicating it as random distribution and shown in
Figure 13. The majority of the reduction in base shear waits between 1% to 50% for CBI, 1% to 70%
for Inerter-BI, while for inertial amplifier coupled base isolator it waits between 30% to 90%. Base shear
reductions(%) for all adopted earthquakes are presented in Table 4.
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Figure 13: Variation of number of occurrence with range of reduction percentage of the base shear.
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Table 4: Base shear reduction (%) of controlled structure with respect to uncontrolled structure for different earthquakes.

Earthquake Base shear reduction(%)
CBI Inerter-BI IABI

Northridge 57.07 76.13 78.73
Northridge 31.47 46.67 53.35
Duzce, Turkey 40.72 59.12 59.86
Hector Mine 56.93 71.01 72.50
Imperial Valley 63.31 72.95 74.37
Imperial Valley 36.51 61.18 63.09
Kobe, Japan 53.98 55.34 55.72
Kobe, Japan 54.12 74.54 74.97
Kocaeli, Turkey 40.19 63.08 64.38
Kocaeli, Turkey 30.88 45.92 47.29
Landers 63.68 77.13 82.44
Landers 16.70 38.18 43.40
Loma Prieta 54.15 63.96 66.40
Loma Prieta 12.82 29.92 37.97
Manjil, Iran 42.45 58.29 60.33
Superstition Hills 17.90 61.87 63.12
Superstition Hills 45.99 61.03 62.65
Cape Mendocino 36.09 46.05 56.94
Chi-Chi, Taiwan 54.19 66.90 68.86
Chi-Chi, Taiwan 38.74 56.58 58.95
San Fernando 25.75 49.26 53.06
Friuli, Italy 46.56 59.87 65.76
Mean 41.83 58.86 62.01
Standard Deviation 14.8780 12.3602 11.1150
Maximum 63.68 77.13 82.44
Minimum 12.82 29.92 37.97

The variations of kinetic energy, damping energy, and potential energy of structure and isolators are
presented in Figure 14, Figure 15, and Figure 16.
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Figure 14: (a) Energy plots of the structure isolated by classical base isolation system under Friuli, Italy earthquake.

19



Time (s)

0 5 10 15 20 25 30 35

E
ne

rg
y 

(J
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Kinetic energy (Inerter-BI)
Damping energy (Inerter-BI)
Potential energy (Inerter-BI)
Kinetic energy (structure)
Potential energy (structure)

Friuli, Italy earthquake

Figure 15: (a) Energy plots of the structure isolated by inerter-based isolation system under Friuli, Italy earthquake.
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Figure 16: (a) Energy plots of the structure isolated by inertial amplifier coupled base isolator under Friuli, Italy earthquake.

The plots are proven the superior seismic performance of the proposed inertial amplifier coupled base
isolator. The presented figures are evaluated due to the effect of Friuli, Italy earthquake ground motions.
It is also seen that the nature of the energy plots for other earthquakes are similar.
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6. Conclusions

A vibration base isolation system coupled with inertial amplifier has been proposed in the paper. An
analytical solution has been developed to obtain the structural displacement of the amplified isolated
system under harmonic ground motion. The frequency-domain results are also validated by the time
history analysis. Standard deviation of the system response due to broadband random excitation has
been obtained in closed-form. Twenty-two real earthquakes ground motions are implemented in the
design to generate the earthquake responses. It can be concluded from the overall study that the seismic
performance of the inertial amplifier coupled base isolator is significantly greater than the classical base
isolation system. The proposed research can also be implemented in a practical scenario in the future.
A fair comparison has been conducted between the inerter-based isolation system and inertial amplifier
coupled base isolator to investigate the seismic performance and response reduction capacity, respectively.
The key points of the proposed research are following:

• The underlying mechanics of the inertial amplifier coupled base isolator, introduced in this paper,
is conceptually different from the well known flywheel-gear inerter [73] based base isolator.

• From the frequency domain results, it is observed that the seismic performance of proposed IABI
system is 71.47% and 63.60% superior to the CBI and Inerter-BI. As all the systems are linear, the
stochastic behaviour of the responses are similar to the responses evaluated under harmonic ground
motions.

• It is also evidenced from the parametric study that with the help of smaller mass ratios of the
inertial amplifier coupled base isolator to structure, the inertial angle between the stiffness spring
and rigid link, and lower isolation damping, the proposed inertial isolation system mitigate the
seismic responses most.

• It is also observed from the parametric study that for damping ratios less than 20% the peak
displacement amplitude decreases, and it becomes pretty stable and approximately constant for
higher damping values. The values of peak displacement amplitude of structure isolated by IABI
are evaluated as 1.76, 1.44, 1.33, 1.34, 1.35, 1.36 for 0.05 < ζib < 0.50.

• It is observed from the standard deviation solutions for structural displacement, acceleration and
shear force of the structure that the favourable condition for the structural control achieved while
the values of the effective mass of the inertial amplifier coupled base isolator (mia) and damping
coefficient (ζib) increases.

• From the numerical study, it is observed that the response reduction capacity of the IABI is 89.38%
and 72% superior to the CBI and Inerter-BI.

The results implied that the proposed inertial amplifier coupled base isolator can be successfully imple-
mented in vibration control of various structures. Future study will be conducted towards it experimen-
tation and implementation in bridges and multi-storied buildings to mitigated the vibration responses.
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