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Abstract

SCARA robot is one of the most popularly used robots in industry. The ob-

stacle avoidance feature of multiple SCARA robot collaboration is essential and

prominent, which can be used to support multiple robots to accomplish not

only more sophisticated tasks but also more efficient than individual robot.

This paper mainly focuses on studying the problem of simultaneous multi-robot

coordination and obstacle avoidance. A cooperative kinematic control problem

of multiple robot manipulators, collision avoidance is taken into account to be

the primary task as an inequality constraint and trajectory planning task is

considered to be the secondary objective as to ensure the priority of safety, is

described as a quadratic programming(QP) problem. Then, a recurrent neural

network (RNN) based dynamic controller is designed to solve the formulated QP

problem recursively. The convergence of the designed neural network is proved

through Lyapunov analysis. With three SCARA planar robots, the effectiveness

of the proposed controller is validated through numerical simulations. As ob-

served in the results, when the minimal distance between robots is less than the

setting safety distance, the collision avoidance strategy reacts to impel robots

to avoid collision, which achieves the primary objective for obstacle avoidance;

otherwise, the robot performs the desired trajectory tracking task.
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authors.
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1. Introduction

In recent years, robot technology has continuously improved the capabilities

of robots, and has constantly expanded the scope of robot applications[1, 2, 3, 4].

While society often expects robots can accomplish more sophisticated tasks,

these challenges can hardly achieve by an individual primitive robot[5]. The5

superior advantages of multi-robot collaboration are reflected mainly in the

wide application field, good fault tolerance, high efficiency and good scalability,

which leads for the need of Multi-Robot Coordination. Having said that, path

planning, synchronized control, and team formation [6, 7, 8]are crucial fields

of diverse robot application features. Thanks to the enhanced reliability of10

platforms and sensors, as well as the low-cost of technology, robotic platforms are

now used widely for sophisticated tasks such as domestic services or industrial

assembly lines.

Multi-robot systems have been broadly applied to various applications to

perform a given task collaboratively and cooperatively[9]. In a multi-robot15

environment, path-planning or collision avoidance is an important feature[10].

In multi-robot collaborations, direct collisions between robots and any collateral

damage for technicians will be prevented. Thus, Real-Time obstacle avoiding

is the main target. But for non-redundant robots, due to the limitation of

the degree of freedom, the robot cannot physically achieve the motion control20

task while realizing obstacle avoidance. In view of the above contradiction, we

proposed a safety precaution mechanism, i.e., the priority of obstacle avoidance

is superior to kinematic control.

Obstacle avoidance is a fundamental yet profound design factor of rigorous

industrial manipulators. It has been a long journey for scholars studying various25

methods aiming to solve different scenarios of real applications. According to

[11][12], Zhang et al. used online quadratic-programming(QP) method to solve
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for inverse-kinematic obstacle avoidance control problem. The simulation was

based on the PAlO robot(redundant) manipulator in the presence of obstacles.

In [13], similarly, Xu et al. described the avoidance strategy as QP with general30

class-K functions to solve QP problem online. The simulation was done on a

4-link planar redundant robot. Both static and dynamic obstacles were there to

test for its performance. Khan et al. [14] announced an ”beetle antennae olfac-

tor” RNN which integrates path tracking control with obstacle avoidance into

a optimization problem. The proposed algorithm was proved via simulations35

done by KUKA LBR 7-DOF industrial manipulator. All of these studies aimed

to find solutions via online programming planning, and realized by single robot

manipulator as the main object in actual trials. Obstacles are either static or

dynamic objects. In factory assembly lines, manipulators often encounter colli-

sion risks from other robots or machines. Our study is focusing on multi-robot40

collaboration scenarios.

On the contrary, the following studies examined multi-robot collaboration

control with obstacle avoidance. Both [15] and [16] implemented kinematic con-

trols to solve for optimal trajectory problem with affective algorithms where

multi-robot cooperation can be achieved. In [16, 17, 18, 19], authors examined45

dynamic trajectory planning method of multiple robot manipulators scenario

as an optimal control problem. Analogously,[20] researched collaboration of

multiple wheeled mobile manipulators by a collision avoidance technique. [21]

used another optimization algorithm to solve for trajecotory planning problem

of multi-robot formation. [15, 16, 20, 21] negelected to explore an immportant50

feature in depth when desgining our multi-robot coordination control system,

that is the obstacle avoidance whose function is to ensure safety while in op-

eration with other machines. [22] asserted that by exploiting redundancy and

potential function method to avoid collisions when manipulating two coopera-

tive robots. In pursuit of fastness of completion of certain kinematic tasks, we55

cannot afford to sacrifice safety criterion. Safety shall always be the top priority,

and everything else builds upon this foundation. Our research goal is to fulfill

secure operation while adding tracking control for multi-robot collaboration on
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top of this foundation.

Neural networks, combining with artificial intelligence techniques, provide60

a fresh perspective for robotic formation control.[23]. Planning problem is an

important topic for robotics control. It can be catagorized as online planning

and offline planning[24, 25]: Offline planning lacks of the ability for real-time

controlling of manipulators. It is ideally suited for simplex trajectories in static

known environment. In virtue of its rapid response when environments are con-65

stantly changing, online planning can handle challenges in unknown dynamic by

continually modifying strategies and models[26, 27]. Berkeley Artificial Intelli-

gence Research Lab announced a full-fledged discovery that a dynamic neural

network model-based reinforcement learning algorithm can produce sound and

creditable gaits that accomplish various complex locomotion tasks[28]. [29] is70

an example of an offline path planning problem. This problem pertains to com-

binatorial optimization problems. In [30], authors developed a neural network

confined by kinematic constraints for mobile robots; The dynamics is identified

online by the neural network estimators. Without measuring joint velocities,

a robust online learning neural network output feedback scheme is offered to75

control motion control of robot manipulators[31].

Neural networks have various computational methodologies that can be re-

alized to increase processing speed[32, 33]. In studies of [34] and [35], both ob-

jectives were to solve for unknown dynamics of manipulators; while the former

used adaptive neural network and the later modified the conventional backprop-80

agation algorithm. In an unknown environment, [36] provides an effective RNN

model for collision-free path planning with limited information of the obstacle

positions. Nevertheless, [37] mentions a Lagrangian network(RNN) can be used

to deal with obstacle avoidance and trajectory tracking simultaneously knowing

obstacle positions. [38] presents two neural networks of velocity inverse kinemat-85

ics problem for redundant robots. In each proposed neural network approach,

two cooperating recurrent neural networks are used.

Enlightened from the above awareness, we describe the problem of robot

kinematic control as an optimization problem, which describes obstacle avoid-
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ance as an inequality constraint. As stated before, the foundation of multi-robot90

collaboration is based upon safety ensurance. The design intellection is to keep

the moving error of manipulators running with respect to desired trajectory. Fol-

lowing this concept, we took a step forward by designing a dynamic(recurrent)

neural network to solve this problem. Through assigning robot manipulators

as a set of critical points, the distances between the manipulators are approx-95

imately described by a group of point-to-point distances. The obstacle avoid-

ance problem is then reformulated as a QP problem in the velocity level, and

a dynamic(recurrent) neural network is designed to solve the QP online. In

numerical results, we show the experiment results from simulation of 3 Scara

robots to prove the reliability of our method proposed in this paper.100

The remainder of this paper is arranged as below. In Section 2, fundamental

robot kinematics are given, and illustration of obstacle avoidance implication

are demonstrated with the control objective. In Section 3, original QP formu-

lation is introduced first, then an optimization control problem is shown. With

further in-depth derivations, we summarize a sophisticated constrained opti-105

mization problem. Followed by Section 4 an RNN algorithm is implemented

for solutions to the inequality constraint and analysis of the tracking error in

Cartesian space is also discussed. In Section 5, numerical and experimental

results and comparisons are conducted on three 2-link Scara planar robot ma-

nipulators. Lastly, a comprehensive conclusions are included to summarize our110

overall effort devoted in this work. Before ending the introductory section, we

highlight the main contributions of this paper as below:

• By the proposed RNN based control scheme, both trajectory tracking and

collision avoidance can be realized concurrently. Meanwhile, Manipula-

tors’ kinematic and dynamic constraints are satisfied. We are able to keep115

manipulators running with pre-defined trajectory while complying with a

safe distance between one another.

• An innovative method of obstacle avoidance between multiple SCARAma-

nipulators in the form of multi-robot-collaboration system is introduced.
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The RNN algorithm(QP-based optimization) we designed for this research120

is capable of simultaneously guaranteeing controlled quantity in real time,

and maintaining the stability of the control system.

• The distinction from others is that our method first considers planning

collision-free path of multiple planar Scara manipulators, and then takes

further exploration on physical simulation held by these 2-link robots, par-125

ticularly to test robot’s self-correcting competency when pre-defined path

is impacted and minimized the production loss(i.e. machine damages).

2. Problem Formulation

In this section, basic knowledges of robot kinematics and obstacle avoidence

are presented to lay a foundation for latter illustrations.130

2.1. Robot Kinematics

The forward kinematics of a non-manipulator involves a nonlinear transfor-

mation from a joint space to a Cartesian workspace, as described by

r(t) = f(θ(t)). (1)

where r(t) ∈ R
m is an m-dimensional vector in the workspace that describes

the position and orientation of the end effector at time t, θ(t) ∈ R
n is an n-

dimensional vector in the joint space, each element of which describes a joint

angle, and f(· ) : Rn → R
m denotes the nonlinear mapping from the joint space

to the task space of the manipulator. Because of the nonlinearity of the mapping

f(· ), it is usually difficult to directly obtain the corresponding θ(t) for a desired

r(t) = rd(t), rd(t) : R → R
m is a smooth function defining a desired path to

be tracked by the end-effector. By contrast, the mapping from the joint space

to the workspace at the velocity level is an affine mapping and thus can be

used to significantly simplify the problem, which can be illustrated as follows.

Computing the time derivative on both sides of (1) yields

ṙ(t) = Jθ̇(t). (2)
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where J = ∂(f)/∂(θ) ∈ R
m×n is the Jacobian matrix of f(· ), and ṙ(t) and θ̇(t)

are the Cartesian velocity and the joint velocity, respectively.135

2.2. Obstacle Avoidance

Generally speaking, obstacle avoidance problem usually contains how to

track the desired end-effector trajectory while simultaneously ensuring that

there are no collisions with any obstacle in the workspace of the manipulator.

Similar to game theory phenomenon, each robot can be treated as a individ-140

ual player, and consider all other robots as obstacles during kinematic operation.

Between the robot i and the specific obstacles, there exists the closest distance

with two fix points. While satisfying kinematic condition, robot i also has to

maintain a safe distance that is further than the closest distance with obstacles.

Every robot i cares only about those two objectives, such as the player only145

acting on his/her behalf.

Let Z1 be the set of all points on robot i, and Z2 be the set of points on

obstacle(s), then the goal of obstacle avoidance of a robot manipulator is to

constantly satisfy Z1 ∩ Z2 = ∅. By presenting a safety distance d0 between the

robot and obstacle(s). The obstacle avoidance is formulated as

||p∗i − p∗j || ≥ d0, p∗i ∀Z1, p∗j∀Z2 (3)

while p∗i , i = 1, . . . , a and p∗j , j = 1, . . . , b being the vertexes of a specific robot

and another vertex of the obstacle(s) within testing environment, respectively.

To avoid any possible obstacles the manipulator has to maintain that dmin ≥ d0

as shown in Fig. 1, where dmin = ||p∗i − p∗j || denotes the Euclidean distance150

of p∗i − p∗j . dmin is the minimum distance between all robot manipulators for

obstacle avoidence. The safety distance d0 is a positive constant resolved by the

developer.

Conventionally, the basic strategy for obstacle avoidance is to identify the

points on the robotic arm that are near obstacles and then assign to them the155

motion component that moves those points away from the obstacle, as shown in

Fig. 1. The robot motion (configuration) is changed if at least one part of the
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Scara i Scara j

Figure 1: Two SCARA robots moving towards each other while avoiding collision. dmin is

the minimum distance between the two robots. For safety consideration, dmin ≥ d0, where

d0 is the critical distance.

robot is at a critical distance from an obstacle. We denote the obstacles that

are closer to the critical distance as the active obstacles and the corresponding

closest points on the body of the manipulator as the critical points.160

Remark 1. For industrial robots it is usually assumed that the motion of the

end-effector is not disturbed by any obstacle. If such a situation occurs, either

the task execution has to be interrupted and the higher-level path planning has

to recalculate the desired motion of the end-effector.

2.3. Control Objective165

In this paper, we consider obsctacle avoidance problem of multi-robot col-

laboration for multiple planar non-redundant robot manipulators, where precise

values of kinematic parameters are available. Based on this target, we proposed

the safety precaution mechanism. In order for us to achieve this goal, we adjust

this kinematic control problem to an optimization problem in which obstacle170

avoidence condition turns into an inequality constraint of the opimization prob-

lem. More specifically, we keep this avoidence constraint always fulfilled, while

trying to make end-effector’s kinematic error as small as possible.

The control objective, theoretically speaking, is to express dmin in the in-

equality constraint, and with the aid of our RNN algorithm as the main tool175
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for solution, we can manage to find the minimum value of the optimization

problem which is down to the joint velocity level to find the norm distance of

critical points of joints’ actual speed ṗ∗i to the end-effectors’ desired speed ṙid.

As mentioned earlier, dmin is the minimum distance between all robot manipu-

lators for obstacle avoidence. However, how to find dmin and keep the condition180

dmin ≥ d0 remain the biggest challenge for this research experiment.

3. Quadratic Problem Formulation

3.1. Original QP Formulation

Based on above mentioned, the kinematic control of a redundant manipulator

while avoiding obstacles can be prudently described as:185

min

N
∑

i=1

||ri(t)− rid(t)||
2/2, (4a)

s.t. ri(t) = f(θi(t)), i = 1, · · · , N, (4b)

where ri(t) and rid(t) are the actual position and desired position of end-effector

respectively; p∗i , p
∗

j are the critical points resulting minimum distance dmin, i.e.

dmin = ||p∗i − p∗j ||.

As seen from (4), the end-effector of the manipulator is expected to track

a desired path defined by rd(t), which is often referred to as the primary task190

of a manipulator. Specifically, during the tracking process, the position norm

ri(t)− rid(t) needs to be minimized.

3.2. QP Reformulation

Directly finding the direct solution for (4) is quite difficult, we need to make

some adjustments if we want to receive an expressive answer. The main reason195

behind this phenomenon is that all three formulas were made in the displace-

ment(position) level, which is not quite related to our control quality θ̇. There-

fore, to bypass this barrier, the best way to go about it is to reformulate these
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equations to which can link to θ̇ directly, so that they can facilitate the progress

of our research.200

The derivation process can be presented as to focus on transforming the

original optimization function, and from there branch out new twigs of origi-

nal inequality constraint, and arrive at the ultimate version of our constrained

optimization problem formulation.

For a non-redundant manipulator described by Equation(2) that is subject205

to the joint velocity θ̇(t), we wish to find a control variable θ̇(t), such that

the tracking error ei(t) = ri(t) − rid(t) for a given reference trajectory rid(t)

converges over time. Generating joint velocity θ̇(t) command in real-time to

ensure the difference between ri(t)− rid(t) coverges to zero.

By using the formula ė(t) = −C0e(t), which guarantees that e(t) exponen-210

tially converges to zero with constant C0 > 0 ∈ R being the parameter to scale

the convergence rate, the following equation is obtained:

ṙiref (t) = ṙid(t)− C0(ri(t)− rid(t)), (5)

From (4) and (5), the objective function can be rewritten as follows:

min
N
∑

i=1

||ri(t)− riRef (t)||
2/2. (6)

Based on dmin = ||p∗i −p∗j ||, we can consider p∗i , p
∗

j at the velocity level, which

equal ṗ∗i , ṗ
∗

j . We can further rewrite the formula for the inequality constraint as

following:

dmin ≥ d0 <=> ||p∗i − p∗j ||
2/2 ≥ d20/2,

(p∗i − p∗j )
T(ṗ∗i − ṗ∗j ) ≥ −k1[d

2
min/2− d20/2]

(7)

By algebraically rewritting, we have

(p∗i − p∗j )
T(J∗

i θ̇
∗

i − J∗

j θ̇
∗

j ) ≥ −k1[d
2
min/2− d20/2], (8)

with k1 > 0 is used to adjust the tracking accurracy of the manipulator to the

10



desired trajectory, and then we define a1, a2, a3 to be the value of:

a1 ≡ −(p∗i − p∗j )
TJ∗

i ,

a2 ≡ (p∗i − p∗j )
TJ∗

j ,

a3 ≡ −k1[d
2
min/2− d20/2].

From Equation (8), we have the following format:

a1θ̇
∗

i + a2θ̇
∗

j + a3 ≤ 0. (9)

Refer back to (2), θ̇i is the angular speed of a specific joint of the manipulator,

Ji is the Jacobian matrix from the critical point to joint space. Then the215

velocities of critical points can be described as ṙi = Jiθ̇
∗

i .

Hence, we have the new form of constrained optimization problem:

min ||Jiθ̇
∗

i − ṙiRef ||
2/2, (10a)

s.t. a1θ̇
∗

i + a2θ̇
∗

j + a3 ≤ 0. (10b)

4. Design of Recurrent Neural Network

As stated in Section I, the kinematic control of non-redundant manipulators

using RNNs has been extensively studied in recent decades. Although the ex-

isting methods of this type differ in the objective functions or neural dynamics220

used, most of them follow similar design principles. The redundant manipulator

control problem is typically formulated as a constrained quadratic optimization

problem, which can be equivalently converted into a set of implicit equations.

Then, a convergent RNN model, the equilibrium of which is identical to the

solution of this implicit equation set, is devised to solve the problem recursively.225

In this paper, the secondary task is set to minimize joint velocity while

avoiding obstacles. In real implementations, both joint angles and velocities

are limited because of physical limitations such as mechanical constraints and

actuator saturation. In this paper, we aim to design a kinematic controller

which is capable of avoiding obstacles while tracking a pre-defined trajectory230
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in the cartesian space. For safety’s sake, the robot is wished to move at a low

speed, on the other hand, lower energy consumption is guaranteed.

4.1. Setup Lagrange Function

Consider a Lagrange function as

L =

n
∑

i=1

(Jiθ̇i − ṙiRef )
T(Jiθ̇i − ṙiRef )/2 + u(a1θ̇

∗

i + a2θ̇
∗

j + a3), u ∈ R
m (11)

with u serves as the Lagrange multiplier corresponding to the inequality con-235

straint (10).

4.2. KKT Condition

According to Karush-Kuhn-Tucker conditions, the optimal solution of the

optimization problem (11) can be equivalently formulated as:

∂L

∂θi(t)
= 0 (12a)

(u+ a1θ̇
∗

i + a2θ̇
∗

j + a3)
+ = u (12b)

Which can be elaborated as:

JT
i (Jiθ̇i − ṙiRef ) + aT2 u = 0, for robot i (13a)

JT
j (Jj θ̇j − ṙjRef ) + aT1 u = 0, for other robot (13b)

(u+ a1θ̇
∗

i + a2θ̇
∗

j + a3)
+ = u (13c)

In Equation (12b) and (13c), the opertation function (·)+ is defined as a mapping240

to the non-negative space. For instance, x+ = max(x, 0) takes the positive part

of the real x, denoted by x+.

4.3. RNN design

The solution of (13) is exact optimal solution of the constrained-optimization

problem (10), it is still a challenging issue to solve (13) online since its inherent245
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nonlinearity. In this paper, in order to solve (13), a recurrent neural network is

designed as:

θ̈(t) = −k0[J
T
i (Jiθ̇i − ṙiRef ) + aT1 u], (14a)

θ̈(t) = −k0[J
T
j (Jj θ̇j − ṙjRef ) + aT2 u], (14b)

u̇ = k0[(u+ a1θ̇
∗

i + a2θ̇
∗

j + a3)
+ − u]. (14c)

where k0 > 0 is a constant which is used to scale the convergence rate of neural

network. λ = 0 will always hold for dmin = ||p∗i − p∗j || ≥ d0, except when the

collision detection mechanism is met, (14c) comes into play. Now, λ > 0.250

Algorithm 1 Multiple SCARAs cooperation incorporated with obstacle avoid-

ance based on RNN

Input: Control parameters ε, k1, number of SCARAs n; SCARA parameters

rd, L, d0; task duration and internal ts, dt, safety distance d0; initial param-

eters θi(0), θ̇i(0), base; desired trajectory information rid and ṙid; feedback

information riRef and ṙiRef .

Output: To simultaneously achieve obstacle avoidance and global cooperation

between multiple SCARAs.

1: while t < ts do

2: Reading ṙiRef , θ(t) by sensor.

3: Calculate ṙiRef and error e = rid − riRef .

4: Calculate A,B.

5: Update joint velocities of every SCARA using Eq.(26a).

6: Update state variable λ using Eq.(26b).

7: Update θ and riRef .

8: end while

4.4. Optimality and Convergence Analysis

In this subsection, we provide stability and convergence analysis of the ob-

stacle avoidance algorithm based on sophiticated RNN method to show our
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controller can reach an optimal solution through iterations of feedback distance

tracking. The theoretical deriviation process relies on important definitions and255

lemmas.

Definition 1 (Projection Operator). The projection operator for a set S ⊂

R
m and x ∈ S is defined by:

PS(x) = argminy∈S ‖ y − x ‖2, (15)

where ‖ · ‖ denotes the Euclidean norm.

Definition 2 (Monotone Mapping). A mapping F (·) is called monotone if260

for each pair of points (x,y), there is:

(x− y)T(F (x)− F (y)) ≥ 0. (16)

This property can be extended to multi-variable mappings. For a continuously

differentiable mapping F (·), it is a monotone mapping if

∇F +∇TF ≥ 0, (17)

where ‘≥ 0’ means the left side of this operator is positive semi-definite, knowing

∇F is the gradient of F (·).

Lemma 1 (Convergence Of Dynamic Neural Networks). Assume that

F (x) is monontone and continuously differentiable. The dynamic system (18)265

is said to converge to its equilibrium point correspond to:

kẋ = −x+ Ps(x− ̺F (x)), (18)

where k > 0 and ̺ > 0 are both positive constants. (15) is a projection operator

to closed set S.

Proof : There are two parts of analysis: Part I is to reformulate the designed

RNN (14) as the form of (18). Part II is to compute the value of the expression270

shown in (17).
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Part I : First provide value ranges of three parameters, assuming there are

N robots in the environment, let

ri =

















r1

r2
...

rN

















∈ R
2N , rid =

















r1d

r2d
...

rNd

















∈ R
2N (19)

θi =

















θ1

θ2
...

θN

















∈ R
2N . (20)

by rewritting (8) as Hθ̇ ≤ HR, where H is −(p∗i − p∗j )
T(Ji − Jj) and HR is

k(||ri − rj ||
2/2− d20/2). From (10) We have:

min ||ri − riRef ||
2/2, (21a)

s.t. Hθ̇ ≤ HR. (21b)

To elaborate on 21b, H =−ABC. Matrix A = diag(M) ∈ R
(N2

−N)/2×(N2
−N)

with M = [m12,m13, · · · ,

mij , · · · ,m(N−1)N ∈ R
1×2N ]. diag(•) denotes a diagonal matrix and mij is

represented as mij = (p∗i − p∗j )
T , i = 1, · · · , N − 1; j = i + 1, · · · , N . The

complete form of A is displayed bellow:

A =

















(p∗1 − p∗2)
T

(p∗1 − p∗3)
T

. . .

(p∗N−1 − p∗N )T

















∈ R
(N2

−N)/2×(N2
−N)

, (22)

Additionally, B and C are expressed in the following:

B =











I −I 0

I 0 −I

0 I −I











∈ R
(N2

−N)×2N , (23)
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C =

















J1

J1
. . .

JN

















∈ R
2N×2N . (24)

The Lagrange function and its derivative are compute as followed:

L = ||ri − riRef ||
2/2 + λT(Hθ̇ −HR), (25a)

∂L

∂θ̇
= JT(ṙ − ṙiRef ) +HTλ. (25b)

The designed RNN(14) becomes:

kθ̈ = −θ̇ + PΩ(θ̇ −
∂L

∂θ̇
)

= −θ̇ + PΩ(θ̇ − JT(Jθ̇ − ṙiRef )−HTλ), (26a)

kλ̇ = −λ+ (λ+Hθ̇ −HR)
+. (26b)

Part II : Define x = [θ̇ ;λ], so that (26) can be converted to:

F (x) =





JT(Jθ̇ − ṙiRef ) +HTλ

−Hθ̇ +HR



 .

From (17), we have:

∇F (x) =





JTJ HT

−H 0



 ,

and

(∇)TF (x) =





JTJ −H

HT 0



 .

Thus, F(x) is countinuously differentiable in light of the existence of ∇F (x);

furthermore, we can sum them together to produce:

∇F (x) + (∇)TF (x) =





2JTJ 0

0 0



 .

According to Definition 2, we can conclude that ∇F (x) + (∇)TF (x) is indeed275

positive semi-definite, and F (x) is monotone function.
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From Lemma 1, it can be summarized from the above analyses with general-

ized description that the proposed dynamical neural network(14) is stable and

is globally convergent to the optimal solution of (10). The proof is completed.

5. Numerical Results280

SCARA(RRPR)

1

0

2

3

4

~ : manipulator joints

0~4:  manipulator links, 0 

is fixed link

(a)

1 0 0 0

2 0 0

3 0 0

4 0 0 0

(b)

Figure 2: Scara manipulator kinematic properties. (a) Analysis of Scara’s physical structure.

(b) D-H parameters of Scara manipulator.

In this section, the proposed RNN based controller is applied to three planar

2-link robots. Fig. 2 is a detailed self-explainatory supplement to our agenda.

Complying to the principle of our main task, a simplified yet sufficient version

of the Scara robot—2-link planar non-redundant type of Scara robot is going

to be the main object that we studied in this experiment. Firstly, a successful285

case where manipulators are allowed to draw circles by pre-defined trajectory

planning is discussed, and then the controller is tested to run with the case that

manipulators follow the safety protocal which cannot finish the task because of

obstacles avoidance mechanism.

5.1. Simulation Setup290

To verify the effectiveness of our controller, we decide to implement our

simulation on three Scara manipulators for validation. The general physical

structure of the 2-link Scara manipulator can be dissected as shown in Figure.

2(a). The Kinematic characteristics are also displayed in Figure. 2(b). It is
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noteworthy to point out that Jacobian matrix J2, critical points coordinates Pi,295

manipulators’ angular speed and end-effectors’ coordinates are the key variables

in the proposed control scheme.

For our simulation, the 3D model of Scara manipulator in Figure. 3. marked

with critical points P1, P2 and P3 is more intuitive for inspection and compre-

hension. As shown in Figure. 3, critical points P1, P2 and P3 are selected at the300

center of maniputors’ joints.

Figure 3: 3D model of Scara manipulator

Based on the above description of Scara manipulators, for the sake of this

research experiment, we establish the following parameters: The values of the

number of manipulators n, manipulators’ link length L, manipulators’ base co-

ordinates base, manipulators’ initial joints’ angle θ, manipulators’ initial joints’305

angular speed θ̇, and manipulators’ end-effectors’ initial coordinates rd are all

known at the start of this experiment.

Since the goal of controlled simulation is to the express dmin such that

dmin ≥ d0 is fulfilled, our focus next is to express this inequality constraint as the

relationship between critical points of the manipulator. Therefore, to find the310

norm of the distance between the critical point of a manipulator p∗1 and another

critical point of second manipulator p∗2 is the next step, i.e. dmin = ||p∗1 − p∗2||.

After the long inequality constraint is formed as Equation(12) shown, we use

a1, a2, a3 to denote three polynomials as parts of the Equation(13), and we

realize these formulas in the core body of the RNN algorithm code. Finally, the315
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optimization index mu is achieved and updated as simulation proceed.

5.2. Simulation Results

The RNN controller is comprised of two parts: motion tracking and collision

avoidance. When robots run in a collision-free environment, motion tracking

plays the dominant role; however, as collision is detected, the obstacle avoidance320

mechanism takes control.

-0.5 0 0.5

x(m)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y
(m

)

3 SCARA Manipulators

min dis = 0.2

dis0 = 0.03

Robot A

Robot B

Robot C

(a)

0 5 10 15 20 25 30

t(s)

0

0.1

0.2

0.3

0.4

0.5

M
in

 d
is

(m
)

Safety Distance Between SCARAs

Safety Distance

11 12 13 14
0.19

0.2

0.21

(b)

0 5 10 15 20 25 30

t(s)

0

0.2

0.4

0.6

0.8

1

m
u

Optimal Dynamics

State Variable

0 0.01 0.02
0

0.05

0.1

(c)

0 5 10 15 20 25 30

t(s)

0

0.01

0.02

0.03

0.04

0.05

tra
c

kin
g e

rror(m
)

Tracking Error Profile

Robot A

Robot B

Robot C

3 SCARAs

2 3 4 5 6 7 8
0.038

0.04

0.042

0.044

(d)

Figure 4: Simulation results for the kinematic control of end effector of three 2-link Scara

robots where each of them is placed to be interference-free from other robots along a circular

path. (a) End-effector trajectory (blue curver) with respect to the reference position. (b)

Minimum distance determined by RNN algorithm to maintain safety between robots. (c)

Ensuring the inequality constraint (10b), Optimized index(mu) is mesured at k0 = 105. (d)

Tracking errors with respect to time history at k0 = 105.

5.2.1. Obstacle Free

As indicated in Fig. 4, from plot (a) can readily see the harmonious working

environment between the three 2-link planar Scara robots. One robot is located
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Figure 5: Simulation results for the kinematic control of end effector of three 2-link Scara

robots where each of them is placed to be interference-free from other robots along a circular

path. It is remarkable to note that k0 = 103 achieves slower convergence of mu, thus The

larger k0, the faster the RNN converges. (a) Optimized index(smaller k0). (b) Obstacle-free

tracking errors

on top of the figure, and the other two robots are based on the middle part of325

figure, all of them are placed on the same platform. In this case, we select dis0 =

0.03 to be the value for safety distance, and the instant value for min dis after

the simulation finished is 0.2. The state variable also named as the optimization

index u is put into the control scheme so that the inequality constraint (10b)

is ensured, as shown in (13c) and also in the code where the kernal of RNN330

is placed. The Index u is updated according to the difference between actual

speed Jiθ̇
∗

i and reference speed ṙiRef . During the experiment, it is engaging to

find out that k0 plays an significant role in the convergence of the RNN control

system. The larger k0, the faster the RNN converges. From Fig. 4(c) and (d),

the simulation performance result can verify our initial statement which is this335

simulation is successfully ran. The zoom-in figure within Fig. 4(d) exhibits the

process is carried smoothly and congruently, indicating no collision risk. From

Fig. 5(a) and (b), an illustration of the optimized controller converges in a

slower response.
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Figure 6: Simulation results for the kinematic control of end effector of three 2-link Scara

robots where each of them is placed to have interference(obstacle detected) from other robots

along a circular path. (a) End-effector trajectory (blue curver) with respect to the reference

position. (b) Minimum distance determined by RNN algorithm to maintain safety between

robots. (c) Ensuring the inequality constraint (10b), Optimized index(mu) is mesured at

k0 = 105. (d) Tracking errors with respect to time history at k0 = 105.

5.2.2. Obstacle Encountered340

In this scenario, an illustration of the case when the middle Scara robots

strived for trajectory tracking as its original kinematic motion object, but as

displayed that the middle robot is contiuously moving in its best to approach the

pre-defined curve, this is under the influence of the safety precaution implanted

to prevent robots from running too close to collide with each other. We can345

also comprehend this as Fig. 6(a) and 6(d) shown, both plots indicate that

the middle robot tried to avoid running into the robot on the right during

simulation. In Fig. 6(d), both the left and right robots are running ordinarily
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with planned trajectories, however the middle robot is following safety protocal

to avoid collision, this is the reason that the purple line deviates from other350

two tracking errors. Based on this phenomenon, an conclusion can be summed

up: 1) Avoid placing robots too close to one another. 2) The safety distance

can affect the simulation as it can pose a hedge while robots are in operation.

3) Slow down the angular speed of end-effectors can support the movement

realization as to give more time for robots to react with incoming obstacles.355

6. Conclusion

In allusion to obstacles avoidance between operational robots among multi-

robot collaboration, this paper represents the knowledge of Recurrent Neural

Network method specialized designed for preventing collisions between robot

manipulators, and proposes a corresponding mechanism of safety assurance360

based on a unique control constraint that can trigger the precautions when

certain parts of machines are determined to be within the safe distance. Utiliz-

ing geometric features of manipulators, the manipulators can be denoted by sets

of critical points, thereby the distance between the robots is approximately de-

scribed as point-to-points distances. Therefore, the collision avoidance strategy365

can be formulated as an inequality constraints. By keeping the minimal distance

between robots, collision-free environment is ensured. With three Scara robots,

we perform simulative experiments on Matlab, indicating that when the mini-

mal distance between robots is less than the setting safety distance, the collision

avoidance strategy come in the control command, the robots successfully avoid370

collision with other manipulators. If forthcoming path is free of obstacles, the

robot performs the desired trajectory tracking task with a promising tracking

error. In the future, this proposed method can be further upgraded to apply for

multiple redundant industrial manipulators in three-dimensional space. Each

robot act as a player in the game theory, and by having an inequality con-375

trol constraint which treats all other robots as obstacles, a congruous industrial

multi-robot collaboration platform can be achieved.
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