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Abstract—This paper proposes a strategy to search opti-
mal control parameters of a complex nonlinear system using
a metaheuristic optimization algorithm in a computationally
efficient manner. The proposed algorithm, called BAS-swarm
(Beetle Antennae Search-swarm), is a gradient-free optimizer
based on the BAS algorithm, inspired by mimicking the food
foraging behavior of beetles. BAS-swarm takes advantage of
the fact that the antennae of insects are not single sensory
organs. The antennae contain an array of tiny fiber. Antennae
fiber enables the insects to have a microscopic insight into the
environment when moving toward the source of food smell.
BAS-swarm uses this insight to improve the performance of
BAS by approximating the gradient direction at each iteration
with the help of a swarm of antenna fiber. Since the proposed
algorithm approximates gradient by mimicking the behavior of
beetle antenna fiber located at random locations, it does not
require the numerical computation of the actual gradient, making
it very efficient for optimization of nonlinear non-convex systems.
We verified the accuracy and efficiency of the proposed algorithm
by training single-layer neural networks with nonlinear activation
function and compared its performance with Particle Swarm
Optimizer (PSO), a well-studied extremum seeking algorithm,
and the original BAS algorithm. The experiment shows that the
proposed algorithm provides several-fold improvement and faster
convergence as compared to other metaheuristic algorithms.

Index Terms—Metaheuristic Optimization, Nature-inspired Al-
gorithm, Swarm Intelligence

I. INTRODUCTION

Most of the real world systems are nonlinear and require
optimization of non-convex multimodal function for their
operation [1], [2], [3], [4]. With the rise of Machine Learning
(ML), the need to develop a numerically efficient optimization
method with fast convergence have gained huge attention
from researchers [5], [6]. Most common optimum searching
algorithm use gradients of the objective function to search
for the optimum value [7], [8], [9], [10]. For complicated
functions, the calculation of gradient is numerically expensive
[11], [12]. Furthermore, the calculation of gradient requires
the objective function to be continuous and differentiable [13].
Such conditions does not hold true for some practical systems
[14], [15], [16].

Natural phenomenon act as a great source of inspiration for
the development of metaheuristic algorithms, e.g. biological
evolution, animal lifestyle and chemical reactions. Several
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nature-inspired metaheuristic algorithms have been proposed
in literature [17], [18]. The process of biological evolution and
natural selection of living organisms have given rise to a com-
plete class of Evolutionary Algorithms (EAs) [19] including
the Genetic algorithm (GA) [20], [21], [22], [23]. Kennedy et
al. [24] proposed Particle Swarm Optimizer (PSO), which is
inspired by the swarming behavior of insects and birds. Fig. 1
shows how metaheuristic algorithm can be used for optimizing
performance of a nonlinear system. Metaheuristic algorithms
have found several real-world applications in recent years; they
are being applied for robotics [25], [26], manipulator dynamics
control [27], [5], and optimizing the dynamical performance
of soft robotic systems [28].

Among the proposed metaheuristic algorithms BAS [29],
inspired by food forging behavior of beetles, is of particular
interest because beetles do not usually work in a swarm
to search for food. An individual beetle is fully capable of
searching for food by just using a pair of antennae and a
strong sense of smell. Original BAS algorithm is based on
the fact that the smell differential at two antennae will help
the beetle in choosing the correct direction, i.e. direction of
maximum smell. However, the original BAS took a rather
simplistic approach in term of the sensory capability of the
beetle antennae. It assumes that each antenna act as a single
smell sensor. We improve the performance of BAS by taking
advantage of a well known biological fact; antennae of insects
are not single sensory organs [30]. Antennae have several tiny
fiber which act as separate smell sensor and give fine grain
sensory capability to the insects. By feeling the difference in
intensity of smell at different antennae fiber, the beetle can
make a better choice for the search direction as compared to
bidirectional search outlined by original BAS.

The remaining paper is orgainized as follow; Section II lays
down the details of BAS-swarm, Section III describe the ex-
perimental methodology, Section IV present the experimental
results, and Section V concludes the paper.

II. BAS-SWARM ALGORITHM

The biological reasoning behind the BAS-swarm algorithm
has already been described in the Introduction. Now we will
describe the technical details of the algorithms.

A. Beetle behavior Modeling

We will first model the simple food foraging behavior of
the beetle as outlined in the original BAS ([31]). Consider the
following unconstrained optimization problem:

max
x

f(x), (1)
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Fig. 1: Schematic diagram showing the role of BAS-swarm to
optimize the parameters of a nonlinear control system.

where x ∈ Rn and f(x) is the n-dimensional objective
function. For the beetle analogy, this essentially translates
to a beetle searching food in an n-dimensional, where f(x)
describe the smell distribution in the space. The objective
of the beetle is to search the location of food source, i.e.
maximum smell. Suppose at time instant t the beetle is
located at location xt. In order to get an estimate for the
direction of the food source, the beetle uses its two antennae to
measure smell intensity at its right and left antennae. The smell
intensity in these two opposite directions can be modeled using
a normally distributed normalized random vector

#»

b ∈ Rn:

xl = x+ dt
#»

b ,

xr = x− dt
#»

b , (2)

where dt is the length of the beetle antenna at time instant t,
xl and xr are the endpoints of the two antennae. We made
the antennae length d dependent on the time instant t to make
the algorithm adaptive for improved searching performance.
dt is the diameter of the search probed by beetle to decide an
optimal direction. It is a usual practice to keep search region
large in the beginning iterations of optimization and gradually
decrease its size with time; this process is called annealing
[32]. Therefore in our work, we defined dt as follow:

dt =
d0

(1 + ηt)γ
, (3)

where d0 is the initial antennae length, η and γ are the
factors controlling the decay rate. We found the following rule
provides a good initial guess for d0,

d0 ∝
√
n (4)

where n is the dimensionality of the search space, this rule
makes sure that for high dimensional spaces, the initial anten-
nae length is also significant since the volume of the search
region increase with dimensionality.

After the two direction xl and xr are calculated. The next
step is to sense smell intensity i.e. evaluate objective function
value at those points. The differenc in objective function values
f(xl) and f(xr) defines the direction of increasing smell.
Based on this fact, we can write an updated value xnew as:

xnew = xt + δtsign(f(xl)− f(xr))
#»

b , (5)

where δt is called the step size and denote the euclidean
distance between xt and xt+1. Note that xnew is the candidate

for the update value not the actual update rule, the update rule
xt+1 is defined later. The sign(f(xr)−f(xl)) factor make sure
that if f(xr) > f(xl), then step direction is +

#»

b , otherwise
it is − #»

b . The step length δ is also a function of time instant
t. In our work, we defined it as proportional to the antennae
length as follow:

δt = cdt, (6)

where c is a constant factor representing the ratio of step length
to the antennae length.

To define the update rule for xt+1, we also keep track
of the best solution xbest and the corrosponding objective
function value fbest obtained thus far i.e. f(xbest) = fbest.
We only update the value of xt+1 if there is any improvement
as compared to fbest i.e.,

xt+1 =
{ xnew, if f(xnew) > fbest

xt, otherwise. (7)

B. Modelling Antennae Fiber

As already explained in Section I, the antenna of beetle have
small fiber, which provide micro-grain smell sensing capabil-
ity. Therefore instead of generating just one random direction
b is shown above, the beetle can sense smell at a swarm
of points and use the smell measurement to estimate smell
gradient, i.e., the direction of maximum smell change. This
ability can be exploited in beetle search algorithm to enhance
its convergence speed further. To model it mathematically,
consider a set B of m normally distributed normalized random
vector i.e. B = { #»

b1,
#»

b2, ...,
#»

bm} ⊂ Rn corresponding to m
antennae fiber. If the current location of the beetle is xt than
we can describe the location of each antennae fiber as follow:

xb1 = xt + dt
#»

b1,

xb2 = xt + dt
#»

b2,

...
...

...

xbm = xt + dt
#»

bm, (8)

where dt is the antennae length and controlled by same
annealing rule as described in (3). We denote the set of these
atennae fiber location as X = {xb1 ,xb2 , ...,xbm}

After generating a swarm of m antennae fiber, we create
a set F of the objective values at points of set X i.e. F =
{f(x) : x ∈ X} = {f(xb1), f(xb2), ..., f(xbm)}. In order
to get an estimate for the gradient direction, our strategy is
to find a vector from the point xl ⊂ X corrosponding to the
lowest value in set F , to the point xh ⊂ X corrosponding to
the heighest value in the set F . To make this strategy more
robust, we choose k(< m) lowest and heighest points instead
of a single points. To denote it mathematically, we first create
the following sets

Fl = {f : f ⊂ F ∧ f ∈ min
k
F},

Fh = {f : f ⊂ F ∧ f ∈ max
k
F}, (9)

where notation min
k

and max
k

represnent choosing k minimum
and maximum value from the set corrospondingly. These
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Fig. 2: Validations problems. (a) 3D point cloud for the linear regression and the neural network training problem. (b)
Michalewicz function referred in Section III-B. (c) Neural network architecture used in validation problem of Section III-C.

values are selected by first evaluating the objective function at
m antennae fiber locations and sorting them in a descending
order. The value of k controls the robustness of the gradient
estimation. The higher the value of k, the accurate the value
of the estimated gradient to the true gradient; however, it will
reduce the BAS algorithm’s stochastic nature. The algorithm
is more likely to get trapped in a local minimum. On the
other hand, using a smaller k will make the algorithm more
stochastic. It is more likely to reach a global solution but at
the cost of a highly variant convergence profile (i.e., large
oscillations and overshooting near the optimal point).

The sorted list is then used to select k elements with
the highest and lowest values. Then we create subsets of X
corrosponding to values in Fl and Fh as follow:

Xl = {x : x ⊂ X ∧ f(x) ∈ Fl},
Xh = {x : x ⊂ X ∧ f(x) ∈ Fh}. (10)

In simple terms, Xl and Xh are subsets of antenna fiber
locations X , which generate k lowest and highest values for
the objective function f . We calculate the centroid of sets Xl
and Xh to get the mean location of antenna fiber corresponding
to the minimum and the maximum smell as follow:

xl =
∑
x∈Xl

x/k

xh =
∑
x∈Xh

x/k. (11)

To summarize, the vectors xl ∈ Rn and xh ∈ Rn calculated
in (11) corresponds to points inside a swarm of antennae fiber
at which the value of the objective function is minimum and
maximum respectively. Once we obtained these points, we
calculate the approximate gradient as follow:

∇̃ = xh − xl, (12)

where ∇̃ represent the approximate gradient. We can now use
this approximated gradient to write an update value of xnew
as follow:

xnew = xt + δtsign(f(xh)− f(xl))∇̃, (13)

the significance of δt and explanation for using sign(.) is
already provided in (5). Similar to 7, we keep track of best

solution xbest and corrosponding objective function value fbest
and write the following update rule for xt+1 as follow:

xt+1 =
{ xnew, if f(xnew) > fbest,

xt, otherwise. (14)

III. VALIDATION METHODOLOGY

In this section, we will present the validation methodology
to verify the performance, efficacy, and efficiency of the
proposed BAS-swarm algorithm. We choose a set of three
problems to present the validation results in this paper.

A. Problem: Linear Regression

Linear regression is a convex optimization problem and
simplest of all the three validation since it only has a single
minimum. The linear regression problem can be defined as
follow: given an array of n variables {x1, x2, ..., xn}, estimate
the parameter {θ0, θ1, θ2, ..., θn} which best fit the following
equation:

y = θnxn + θn−1xn−1 + ...+ θ1x1 + θ0 =

n∑
i=0

θixi, (15)

where x0 = 1. Lets denote an array of variables x =
[x0, x1, x2, ..., xn]

T ∈ Rn+1 and an array of cofficient pa-
rameters θ = [θ0, θ1, θ2, ..., θn] ∈ Rn+1, the above equation
can be simplified as:

y = θTx. (16)

If we are given with a set of m sample values of variable x,
i.e. {x1,x2, ...xm+1}, and corrosponding values of variable y
i.e. {y1, y2, ...ym} we can define a vector of residual as follow:

R(θ) = [y1 − θTx1, y2 − θTx2, ..., ym − θTxm]T , (17)

and define the following squared residuals cost function:

C(θ) = ||R(θ)||2, (18)

=
m∑
i=0

(yi − θTxi)
2. (19)

This fundamentally transforms the linear regression problem
into the following least square optimization problem:

θ∗ = min
θ
C(θ) ≡ max

θ
−C(θ). (20)
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Fig. 3: Numerical results. Convergence of BAS, BAS-swarn abd PSO for (a) linear regression problem, (b) Michalewicz
function, and (c) Neural network training.

We use −C(θ) as the objective function for our BAS-swarm
algorithm.

For the numerical validation, we choose n = 2, m = 300
i.e. 300 samples points. The resultant data is shown in Fig.
2(a). The solution to this problem requires estimation of three
parameters i.e. θ = [θ1, θ2, θ3] ∈ R3 In Section IV we will
present and discuss the numerical results for this problem.

B. Problem: Michalewicz function

Michalewicz function ([33]) is a nonlinear multimodal func-
tion with an infinite number of local minimum and unique
global minimum. The function is excellent in testing the
abilities of optimization algorithm to avoid local minimums.
Therefore, it is used as a testbench function to evaluate
the performance of the proposed optimization algorithm.
Michalewicz function is defined as follow:

M(x) = −
d∑
i=1

sin(xi) sin
( ix2i
pi

)2m
, (21)

where d is the dimensionality of the function i.e. x =
[x1, x2, ..., xd] ∈ Rd. The value of m controls the steepness
of the valleys of the function. It has been shown in literature
that M(x) have a total of d! local minima in the range
xi ∈ [0, π]. The plot of Michalewicz function is shown in
2(b). Since it is a highly non-convex function with several
local minima, it provides a good validation of the performance
of any optimization algorithm. In its actual form Michalewicz
function is solved as a minimization problem, therefore we
formulate the following maximization problem based on (21):

x∗ = min
x
M(x) ≡ max

x
−M(x). (22)

For numerical validation, we choose d = 2 and m = 10.
d = 2 was choosen for ease of visualization. The results are
presented in Section IV.

C. Problem: Training Neural Network

The third problem involved the training of a single layer
neural network. We choose this as a validation problem
because most of the metaheuristic algorithm show poor per-
formance when it comes to the training of a machine learning

model. The machine learning models usually have a large
number of trainable parameters and highly nonlinear transfer
functions, which make it difficult to find an optimal solution
by just using metaheuristic algorithms. On the other hand, the
gradient-based methods have been known for their superior
performance for the training of a machine learning model, e.g.
neural networks ([34]). As already explained in Section II that
our algorithm integrate the swarm behaviour of metaheuristic
algorithms with the gradient estimation ∇̃ using (12) at each
iteration. Therefore it tends to show better performance as
compared to other metaheuristic algorithms in the training of
the machine learning models.

IV. RESULTS & DISCUSSION

In this section we will present experimental results by
solving the three validation problem presented in Sections
III-A, III-B, and III-C. We compared the performance of the
proposed algorithm with PSO and original BAS to compre-
hensively evaluate the efficiency of the proposed algorithm.
We also present the statistical results to verify the robustness
and repeatability of the proposed algorithm.

A. Problem: Linear Regression (Solution)

Among the three validation problems, this one simplest in
term objective function. It is a convex optimization problem
with a single minimum. The objective function given in (20) is
essentially a second order polynomial in term of the estimation
parameters θ0, θ1 and θ2. We optimized the objective function
using BAS-swarm, original BAS and PSO algorithm. For the
BAS-swarm and original BAS, we used equal values for pa-
rameters d0, η, γ and c. For BAS-swarm we additionally used
m = 20 and k = 5. The significance of these parameters is
given in Section II-B. For PSO we used the default parameter
in MATLAB’s toolbox implementation. The performance of
the three algorithms is shown in Fig. 3(a). It can be seen that all
three optimization algorithms are eventually able to reach the
optimal solution. However, the speed at which they converge
varies widely. Our proposed BAS-swarm took just around ten
iterations to reach the optimum. On the other hand, the PSO
tool around 25 iterations (2.5x slower) and original BAS tool
around 50 iterations (i.e., 5x slower). The rate of convergence
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clearly shows the superiority of the proposed BAS-swarm as
compared to the other metaheuristic algorithms. This fast rate
of convergence can be attributed to the estimation of gradient
which is absent from other optimization algorithms. Based on
the obtained results we can say that the following equation of
a plane is the best fit to the 3D point cloud given in Fig. 3(a):

y = 0.52 + 1.92x1 + 5.00x2 (23)

B. Problem: Michalewicz function (Solution)

Searching the minima of Michalewicz function is a harder
optimization problem as compared linear regression discussed
above. It is a non-convex multiple modal function with
multiple local minima. It is a good benchmark to test the
global convergence of an optimization algorithm. For the
Michalewicz function in (21), it is known in literature that
for used d = 2 and m = 10, the function have a global
minima at x∗ ≈ [2.20, 1.57] with an optimal value of
M(x∗) ≈ −1.8013. Similar to validation problem 1, we used
BAS-swarm, PSO and original BAS for searching the optimal
solution. The performance of the three algorithms is shown in
Fig. 3(b). It can be seen that BAS-swarm has again had the
fastest convergence rate as compared to the other algorithms.
Additionally, the optimal point reached by the BAS-swarm
is the same is the global optimum shown in Fig. 2(b). This
shows that BAS-swarm can effectively reach global optimum
even for a highly multimodal objective function. In comparison
original BAS converges relatively slow and the final point
is a bit far from the global optimum. For PSO, it can be
seen that it converges to a local minimum very far from the
global minimum shown in Fig. 2(b). This experiment again
confirms the fast global convergence of the proposed BAS-
swarm algorithm.

C. Problem: Neural Network Training (Solution)

Neural network training is the most complicated among
all the three validation problem for the reasons explained in
Section III-C. We used the point cloud shown in Fig. 2(a) to
train the neural network. Although we used the same point
cloud for linear regression problem but neural network are
excellent in modeling nonlinear features of a system and
therefore expected to produce better accuracy. The neural
network architecture used in this paper is shown in Fig. 2(c).
It has ten nonlinear neurons in the hidden layer. We solved the
neural network training problem using all the three algorithms.

The performance of the optimization algorithms for training
the neural network is shown in Fig. 3(c). It can be seen that the
performance shown by BAS-swarm is far superior as compared
to original BAS and PSO. The BAS converge to the optimum
value in just ten iterations. Whereas original BAS and PSO
show poor behavior while searching for the minimum value.
The BAS-swarm is able to reach a minimum value of around
5 i.e. C(W∗

1,W
∗
2,b
∗
1,b
∗
2) = 5. In the case of the BAS the

minimum value is around ten while for PSO the minimum
value is around 15. It is also worth noting that although the
linear regression and the neural network are modeling the
same point cloud using linear regression and neural network

respectively, the final cost for BAS-swarm in case of the neural
network is much lower.

V. CONCLUSION

In this paper, we presented a nature-inspired metaheuristic
algorithm, BAS-swarm, inspired by the original BAS algo-
rithm. The algorithm makes use of the fact that beetles have
excellent food searching ability because of their antennae
and tiny antenna fiber. We provided comprehensive exper-
imental results using three different optimization problems,
including training a hidden-layer neural network, to validate
the performance of our proposed algorithm. We solved all
three validation problems using original BAS, PSO, and BAS-
swarm. The experimental results show that on average BAS-
swarm takes 500% fewer iterations as compared to origi-
nal BAS, and 250% fewer iterations as compared to PSO.
Additionally, by efficiently training a neural network using
BAS-swarm, this paper demonstrates the potential application
of metaheuristic algorithms in training the machine learning
models. A potential future research direction is introducing
an adaptive step-size adjustment mechanism (e.g., ADAM
algorithm) to speed up the convergence. Another development
is to implement the algorithm on a real-world system and
evaluate its performance.
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