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A B S T R A C T 

Coastal reservoirs are widely regarded as a viable solution to the water scarcity 

problem faced by coastal cities with growing populations. As a result of the 

accumulation of anthropogenic wastes and the alteration of hydroecological processes, 

these reservoirs may also become the emission hotspots of nitrous oxide (N2O). 

Hitherto, accurate global assessment of N2O emission suffers from the scarcity and 

low spatio-temporal resolution of field data, especially from 

with high spatial heterogeneity and multiple water sources. In this study, we measured 

the surface water N2O concentrations and emissions at a high spatial resolution across 

small coastal reservoirs 

three seasons in a subtropical coastal reservoir in southeastern China, which was 

hydrochemically highly heterogeneous because of the combined influence of river 

runoff, aquacultural discharge, industrial discharge and municipal sewage. Both N2O 

concentration and emission exhibited strong spatio-temporal variations, which were 

correlated with nitrogen loading from the river and wastewater discharge. The mean 

N2O concentration and mission were found to be significantly higher in the summer 

+ than in spring and autumn. The results of redundancy analysis showed that NH -N 4 

explained the greatest variance in N2O emission, which implied that nitrification was 

the main microbial pathway for N2O production in spite of the potentially increasing 

- 
importance of denitrification of NO -N in the summer. The mean N O emission 3 2 

-2 -1 
across the whole reservoir was 107 µg m h , which was more than an order of 

magnitude higher than that from global lakes and reservoirs. Based on our results of 
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Monte Carlo simulations, a minimum of 15 sampling points per km2 would be needed 

to produce representative and reliable N2O estimates in such a spatially heterogeneous 

aquatic system. Overall, coastal reservoirs could play an increasingly important role in 

future climate change via their N2O emission to the atmosphere as water demand and 

anthropogenic pressure continue to rise. 

Keywords: Greenhouse gases; Water management; itrous oxide; Spatial 

heterogeneity; Wastewater discharge; Coastal reservoir 

3 



  

  

Journal Pre-proof 

1 . Introduction 

Over 30 % of the world’s population currently live in water-scarce regions (United 

Nations, 2018). In many of these regions, water scarcity is caused not by water shortage 

but rather insufficient water storage, leading to the construction of reservoirs as one of 

the common solutions to help divert and retain surface runoff (Sitharam et al., 2020). 

Coastal reservoirs are particularly appealing because of their low cost, low ecological 

impacts on upstream areas, and close proximity to the coastal populations with growing 

water demand (Liu et al., 2013). Coastal reservoirs are considered a key water 

management solution in densely populated coastal cities around the world by providing 

portable water for irrigation, preventing flooding downstream, and treating the 

discharged wastewater (Sitharam et al., 2020). 

By retaining surface runoff  and lengthening the water residence time, coastal 

reservoirs may accumulate pollutants and alter various hydroecological processes, 

leading to the release of greenhouse gases (e.g., nitrous oxide or N2O) into the 

atmosphere. This is of particular concern for reservoirs in densely populated areas with 

high loadings of nutrients and wastes. In general, high nutrient loadings will increase 

the microbial-mediated process of N2O production (Davidson et al., 2015; Wang et al., 

2 017; Xiao et al., 2019a), subsequently triggering more N2O emission from reservoirs 

to the atmosphere (Wang et al., 2017; He et al., 2017). In addition, high nutrient loads 

in the reservoirs can drive large oxygen depletion, further promoting denitrification as 

the primary pathway of N2O production (Borges et al., 2015). Dammed rivers and 
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reservoirs are thus potentially N2O emission hotspots. 

N2O is a highly potent greenhouse gas with a global warming potential almost 300 

times higher than that of carbon dioxide (CO2) over a 100-year period (IPCC, 2013), 

and is also one of the major ozone-depleting substances (Ravishankara et al., 2009; 

Shaaban et al., 2018). The average atmospheric N2O concentration reached 331 ppbv in 

2 018, which was approximately 23% above the pre-industrial level (World 

− 1 Meteorological Organization, 2019) with a growth rate of 0.7–0.8 ppb yr over the last 

three decades (Davidson, 2009; Saikawa et al., 2014; Xiao, et al., 2019a). Despite the 

climatic importance of N O, accurate assessment of N O emissions are limited by the 2 2 

low availability of field data and the use of emission factor (EF) that is associated with 

the background N stock only. While it may be appropriate to apply EF for 

agriculture-based emission with easi l y quantifiable N input from fertilizers, applying 

specific EF in aquatic systems may yield large errors in the estimation of N2O emission 

(Maavara et al., 2019), because of the highly variable N dynamics in both quantity and 

quality (Ivens et al., 2011). Furthermore, the assessment of N2O emission is often done 

at low spatial resolutions (e.g., 1°1° grids), which is too crude for small coastal 

reservoirs with high hydrographical heterogeneity and multiple water sources. 

To address these limitations and explore the potential importance of coastal 

reservoirs as a net N O source, we measured in this study the surface water N O 2 2 

concentrations at a high spatial resolution in a subtropical coastal reservoir in southeast 

China, from which we calculated N2O emissions using the wind-based thin boundary 
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layer model. We also examined the influence of environmental factors on the spatial 

variations of N2O emissions and determined the optimal sampling strategy for assess 

N2O emissions from spatially heterogeneous water bodies. 

2 . Materials and methods 

2 .1. Study area 

The Wenwusha Reservoir (25°49′36″–25°54′00″ N, 119°35′12″–119°38′11″ E) is a 

coastal reservoir located at the mouth of the Nangyangdong River in Fujian Province in 

southeast China (Fig. 1). It has a surface area of 5.2 km2, a mean depth of 9.0 m, a total 

8 3 2 volume of 3.20×10 m and a catchment area of 275 km (Yang et al., 2020a). 

Influenced by a humid subtropical monsoonal climate, this reservoir has an annual 

mean temperature of 19.3 °C and an annual precipitation of 1390 mm, with 75% of the 

precipitation occurring during the wet season (May - September). 

The reservoir is divided into two basins, namely the north basin (NB) and the 

2 8 3 south basin (SB) (Fig. 1) (Yang et al., 2020a). NB (1.9 km ; 1.40×10 m ) is located in 

an urbanized area and is heavily impacted by aquacultural, industrial and municipal 

waste discharges while also receiving input from the Nanyangdong River. On the other 

2 8 3 hand, the watershed of SB (3.3 km ; 1.69×10 m ) is dominated by natural wetlands 

and forests. This study covered a total of 10 transects in NB and 11 transects in SB, 

with 3-10 sampling sites selected along each transect (Fig. 1). A total of 103 sampling 
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sites (56 in NB and 47 in SB) were included, which could be categorized into five 

different sections according to the types of discharge: industrial effluents (Section-I; n = 

4 ), town sewage (Section-T; n = 6), river inputs (Section-R; n = 7), aquacultural waste 

(Section-A; n = 22) and non-wastewater discharge (Section-N; n = 64). 

2 .2. Dissolved N2O concentrations 

Three sampling surveys covering the entire reservoi were conducted in November 

018, March 2019, and June 2019, respectively. In each survey, sample collection was 2 

completed within two consecutive days. We collected water samples at 20 cm depth 

using a 100-mL syringe equipped with three-way stopcock, and quickly transferred 

them into 55-mL glass serum bottles. We added 0.2 mL of saturated HgCl2 into each 

bottle to inhibit microbial activities (Taipale and Sonninen 2009; Zhang et al., 2013), 

and then immediately sealed the bottle with an open-topped screw cap equipped with a 

halobutyl rubber septum to exclude air bubbles (Borges et al., 2018; Xiao et al., 2019a; 

Yang et al., 2020b). All the water samples were stored in an ice box and analyzed 

within 48 hours of collection. 

Dissolved N2O concentrations were measured following the headspace 

equilibration method (Yu et al., 2013; Yu et al., 2017). In the laboratory, N2 gas (>99.9% 

purity) was injected into each sample bottle to displace a 25-mL headspace. The bottles 

were then shaken vigorously for 10 minutes in an oscillator to gas achieve an 
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equilibrium in N2O between the headspace air and the liquid phase. After waiting for 30 

minutes, 5 mL of headspace air sample was collected with a syringe and analyzed for 

N2O concentration using a gas chromatograph (GC-2014, Shimadzu, Kyoto, Japan) 

equipped with an electron capture detector. The detection limit was 0.02 ppm and the 

relative standard deviations of the measurements were ≤ 5.0% (Yang et al., 2020b). 

Dissolved N2O concentration was then calculated based on the temperature, Henry's 

law constant (salinity-dependent) and the measured head space N2O concentration 

according to Weiss and Price (1980). 

2 .3. N2O emission 

N2O emission (FW-A, μmol m−2 h−1 was calculated using the thin boundary layer 

model (Equation 1) that has been widely applied in the lentic ecosystem (e.g., Cole and 

Caraco, 1998; Musenze et al., 2014 Xiao et al., 2019b): 

FW-A  k (C  C ) (Eq1) obs eq 

- 1 where k is the gas transfer velocity (m h ); C is the measured N2O concentration obs 

- 1 -1 (nmol L ) in the surface water; C is the dissolved N O concentration (nmol L ) in eq 2 

equilibrium with the atmospheric concentration at the prevailing in situ conditions, as a 

function of atmospheric pressure, water temperature, and the ambient atmospheric N2O. 

Because of negligible surface water flow at the reservoir, the N2O transfer velocity 

is primarily controlled by wind speed (Xiao et al., 2019b). In this study, we calculated k 

value using a wind-dependent equation (Eq 2) for small shallow lakes (Cole and Caraco, 
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1 998): 

k  (Sc / 660 )n (2.07  0.215 U1
1
0
.7 ) (Eq 2) 

where Sc is the temperature-dependent Schmidt number for N2O; n is a constant that 

- 1 −1 
varies between 0.66 (for wind speeds ≤3 m s ) and 0.50 (wind speeds >3 m s ); U is 10 

− 1 the frictionless wind speed (m s ) at 10 m height. Sc and U were calculated using the 1 0 

following equations (Crusius and Wanninkhof, 2003; Wanninkhof, 1992): 

Sc  2055 .6 137 .11T  4.3173T 2  0.054350 T 3 
(Eq 3) 

(Eq 4) 
(C )1/2 10 

ln( )] U  U [1 d10 

K 
1 0 z 

z 

- 1 where U is the wind speed (m s ) at a ght of z above the water surface (2.0 m in this z 

-1 study); Cd10 is the drag coefficient at 10 m above the water surface (0.0013 m s ); and 

K is the von Karman constant (0.41). 

2 .4. Environmental variables 

Water samples were collected at a depth of 20 cm with a 5 L organic glass 

hydrophore and transferred into 150 mL polyethylene bottles. About 0.5 mL of 

saturated HgCl2 solution was added to inhibit microbial activities (Zhang et al., 2013). 

The water samples were transported in an ice box back to the laboratory for analysis. In 

the laboratory, the water sample was filtered through a 0.45-μm cellulose acetate filter 

(Biotrans™) and then analyzed for the concentrations of total dissolved nitrogen (TDN), 

+ – 
ammonium-nitrogen (NH -N), and nitrate-nitrogen (NO -N) using a flow injection 4 3 
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+ + analyzer (Skalar Analytical SAN , The Netherlands) (Yang et al., 2020b). The 

-1 detection limit and relative standard deviations were 3.0 μg L and ≤2.0% for TDN, 0.6 

- 1 + -1 – μg L and ≤3.0% for NH -N and 0.6 μg L and ≤2.0% for NO -N. 4 3 

Concurrent measurements of water temperature (TW) and pH (IQ150 

pH/mV/Temperature meter, IQ Scientific Instruments, USA), salinity (Eutech 

Instruments-Salt6 salinity meter, USA), dissolved oxygen (DO; 550A YSI sonde, USA) 

and electrical conductivity (EC; 2265FS electrical conductivity meter, Spectrum 

Technologies, USA) were also made at a water depth of 20 cm (Yang et al., 2020a). The 

relative standard deviations of the measurements were between ≤1.0% and ≤2.0%. Air 

temperature (T ), wind speed at 2 m height (W ) and atmospheric pressure (P ) were A S atm 

measured by a portable weather meter (Kestrel-3500, USA). 

2 .5. Statistical analysis 

Results were presented as mean  1 standard error. Significant differences in 

hydrographical properties, dissolved N O concentration and N O emission among 2 2 

reservoir basins and discharge sections were tested by analysis of variance (ANOVA) 

using the statistical software SPSS 17.0 (SPSS Inc., USA). Correlations between 

hydrographical parameters and N2O concentration or emissions were investigated by 

Pearson correlation analysis. The extent to which environmental variables affected the 

spatiotemporal variations in N2O emissions was tested by Redundancy Analysis (RDA) 

using the software CANOCO 5.0 (Microcomputer Power, Ithaca, USA), with TW, pH, 
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– + DO, salinity, NO -N and NH -N, and TDN being inputted as environmental variables. 3 4 

Monte Carlo analysis was used to determine the optimal sample size for assessing 

the mean N2O emission at the whole-reservoir scale. The measured fluxes were 

resampled from the 103 sites with varying sample sizes (n = 10, 20, 30…, 100) without 

replacement for 10,000 times. The overall mean and standard deviation of N2O 

emission were subsequently calculated for each sample size. Plots were created using 

OriginPro 7.5 (OriginLab Corp. USA). To illustrate the spatial variations in 

hydrographical parameters and N2O concentration (or flux) in the reservoir, the Kriging 

method in ArcGIS 10.2 (ESRI Inc., Redlands, CA, USA) was employed for spatial 

interpolation. 

3 . Results 

3 .1. Hydrographical parameters 

There were large differences in hydrographical parameters between NB and SB 

across the three campaigns. NB had lower DO, EC, and salinity (Fig. S1) and higher 

− + NO -N, NH -N and TDN concentrations as compared to SB (Fig. 2). T and pH were 3 4 W 

comparable between the two basins (Fig. S2). Water chemistry also varied spatially 

− depending on the discharge types. In Section-N without sewage discharge, the NO -N, 3 

+ NH -N, and TDN concentrations were significantly lower (p<0.05) while DO and 4 

salinity were generally higher than in other sections. 
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The hydrographical parameters also showed strong temporal variation across the 

whole reservoir (p<0.001). Average water temperature was 23.6 oC during the study 

period, while the seasonal pattern was clear decreasing in the order: summer (29.3 oC) > 

o o spring (23.1 C) > autumn (18.3 C) (Fig. S2). The seasonal mean concentrations of 

− + NO -N, NH -N and TDN ranged from 0.95 to 1.47, 0.28 to 0.57, and 1.43 to 1.82 mg 3 4 

-1 L , respectively. The seasonal mean DO concentration, pH and salinity ranged from 

- 1 4 .60 to 8.87 mg L , 6.88 to 10.70, and 0.41 to 1.49‰, respectively. We observed 

− generally higher NO -N, TDN, pH and salinity in autumn (Fig. 2 and Fig. S1), but 3 

+ higher DO and lower NH -N in spring (Fig. 2 and Fig. S1). The seasonal mean water 4 

depth ranged from 6.0 to 8.6 m, with a maximum value occurring in summer. 

3 .2. Spatial variation in N2O concentration 

Surface water N2O concentrati in the reservoir showed high spatial heterogeneity, 

varying by 9 to >30 folds between the two basins (Fig. 3a-3c). The mean N2O 

concentrations were significantly higher in NB than in SB (Table 1), while the overall 

mean N2O concentrations in November, March and June were 46.4±2.0, 58.9±5.9, and 

− 1 4 3.9±2.7 nmol L , respectively. 

N2O concentration also varied spatially depending on the discharge types, with 

significantly lower values in Section-N (non-wastewater discharge) and generally 

higher values in Section-T (town sewage) (Table 1). Overall, N2O concentration 

showed significant differences between the sections with and without wastewater 
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discharge (Fig. 4a-4c). 

3 .3. Spatial variation in N2O emission 

From November to June, N2O emission varied spatially by from >100 to >300 

folds between the two basins (Fig. 3d-3f). N2O emissions were generally high in NB, 

− 2 −1 −2 −1 ranging from 6.9 to 711.5 μg m h with a mean of 153.1±8.6 μg m h . In contrast, 

N2O emissions were significantly lower in SB (Table 1), with occasional occurrence of 

negative values (i.e. net uptake of N2O). The reservoir-wide mean N2O emissions were 

110.4±9.3, 78.5±6.3, and 153.1±8.6 μg m−2 h−1 in November, March, and June, 

respectively. 

There were clear spatial differences in N2O emission as a function of discharge 

types, with lower emissions in Section-N without wastewater discharge but higher 

emissions in Section-I (industrial effluent) and Section-R (river runoff) across the three 

seasons (Table 1). Overall, there were significant differences in mean N2O emission 

between the sections with and without wastewater discharge (Fig. 4d-4f). 

3 .4. Effects of environmental variables on N2O concentration and emission 

Results of Pearson correlation analysis showed that the reservoir-wide N2O 

concentration and emission were correlated negatively with DO, EC, and salinity (Table 

- + S2) and correlated positively with NO -N, NH -N and TDN concentrations across all 3 4 

surveys (Table S2, Fig. S3 and S4). Over the whole study period, the N2O concentration 

and flux in the reservoir were positively correlated with air temperature but negatively 
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correlated with wind speed (p<0.05 or < 0.01; Table S2). Atmospheric pressure had no 

significant correlation with either N2O concentration or flux (p>0.05; Table S2). 

- 
Based on the result of RDA analysis, EC, TDN and NO -N were the 3 

environmental variables that explained the most spatial variations in N2O concentration 

and emission in November, March, and June, respectively (Fig. 5). Combining all the 

+ data together, NH -N had the largest explanatory power (50.4%) for the 4 

- spatio-temporal variations in N O concentration and emission, followed by NO -N 2 3 

(23.5%) and salinity (20.2%) (Fig. 5). 

3 .5. Determining the optimal sample size 

Based on the results of Monte rlo analysis, the uncertainty of mean N2O 

emission estimates across the reservoir decreased markedly with increasing number of 

sampling sites. For each sample size, we created the boxplots of N2O resampling means 

after 10,000 times of resampling (Fig. 6a). The Highest Probability Density ranges 

converged with increasing sample size, indicating improved accuracy of N2O emission. 

In addition, the bias of the resampling N2O estimations declined and the standard 

deviations of resampling means decreased exponentially with sample size (Fig. 6b). 

Notably, an increase in sample size from 10 to 100 decreased the relative standard 

deviation of mean N2O emission by nearly 20-fold, from 21% to 1.2%. 

The results of Monte Carlo analysis could also be used to determine the optimal 

sample size for assessing the reservoir N2O emission. To achieve an error of under 5%, 
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2 2 at least 80 samples over the whole reservoir (5.2 km ) or ca. 15 samples per km would 

be needed to resolve the high spatial heterogeneity of N2O emissions. With a sample 

size of only 10, we obtained a high relative standard deviation of estimated average 

N2O emission of 22.6% after 10,000 times of resampling. Despite this large deviation, 

−2 −1 the median of the resampled means was 107 μmol m h (Fig. 6a), which was close to 

the overall mean of all 103 samples combined. Therefore, the high spatial resolution 

measurements across multiple transects effectively reduced the estimation bias of N2O 

emission in our study. 

4 . Discussion 

4 .1. N2O production in reservoir systems 

N2O production is driven by microbial transformation of N substrates (Herrman et 

al., 2008; Liu et al., 2011; Phanwilai et al., 2020; Xiao et al., 2019b). Previous studies 

have reported significant relationships between sewage input, N substrates and N2O 

emission in lakes (e.g., Xiao et al., 2019a), coastal river network (Yu et al., 2013) and 

inland reservoirs (e.g., He et al., 2017; Liu et al., 2011, 2017). In this study, while 

several environmental variables such as air temperature, wind speed, atmospheric 

pressure and solar radiation were quite homogeneous across the reservoir, the 

+ - 
availability of N substrates as reflected by the concentrations of NH -N, NO -N and 4 3 

TDN showed high spatial variations (Fig. 2). Both the concentrations of N substrate and 
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N2O emission rates were much higher in the north basin than in the south basin (Table 

1 ). Located in an urbanized region, our reservoir was heavily impacted by 

anthropogenic activities, particularly the discharge of domestic and industrial 

wastewaters and the nutrient-rich effluents from aquaculture ponds. The highest 

- + average NO -N and NH -N concentrations were found in the section with river input, 3 4 

indicating the pronounced influence of the upstream area as a N source. In contrast, the 

N-section without wastewater discharge had better water quality as reflected by the 

- + lower NO -N and NH -N concentrations and higher DO level (Table S1). Taken 3 4 

together, our results showed that the high spatial he erogeneity of N2O emission was 

closely linked to the input of localized N subst ate into the reservoir. 

- N O can be produced via denitrification of NO under oxygen-poor conditions, or 2 3 

+ nitrification of NH -N under aer bic conditions. The DO levels obtained in this 4 

reservoir were generally high enough (ca. ≥ 25% sat.) to favor nitrification process (Fig. 

+ S1), which was further supported by the results of RDA analysis in which NH -N 4 

explained the largest overall variance in N2O emission (ca. 50%) during the study 

period (Fig. 5d). However, it should be noted that DO was only measured in the surface 

water in this study, but could drop to lower levels in deeper water, especially during the 

summer, where denitrification might dominate. This hypothesis was supported by the 

- 
results of RDA analysis in which NO -N explained >73% of the variance in N O 3 2 

emission in June (Fig. 5c) when the average DO level was slightly lower (Table S1) and 

was the second most important factor in accounting for the overall variance (ca. 24%) 
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(Fig 5d). Interestingly, salinity also explained about 20% of the variance in N2O 

emission (Fig. 5d). Because of the proximity of the south basin to the sea, salt intrusion 

and deposition has created spatial differences in salinity across the reservoir, which 

could adversely impact the abundance and activity of nitrifiers that are of freshwater in 

origin (Francis et al., 2003; Monteiro et al., 2017) and subsequently decrease N2O 

production (Sun et al., 2013; Wang et al., 2018; Welti et al., 2017). 

4 .2. Spatial and temporal variations in N2O emission 

Large spatial variations in N2O emission have been observed in freshwater lakes 

and reservoirs (Cheng et al., 2019; Musenze et al., 2014; Zhao et al., 2013). Based on 

field measurements with a high spatia resolution, we successfully characterized the 

spatial heterogeneity of N2O emission from the Wenwusha Reservoir, which exhibited 

coefficients of variation ranging from 81% to 110% across the three seasons. Land use 

change in the catchment can disturb various biogeochemical processes on land and in 

adjacent waters (Hosen et al., 2014; Williams et al., 2016), with the consequence of 

changing the direction and magnitude of N2O fluxes among different areas (He et al., 

2 017; Wang et al., 2017; Zhou et al., 2017). In our study, the concentrations of nitrogen 

- + substrate (NO -N, NH -N, and TDN) were substantially lower in sites without 3 4 

wastewater discharge than in those in close proximity with aquaculture ponds, 

municipal and agricultural lands with wastewater discharge (Table S1). The N2O 

concentration and flux increased with nitrogen concentration across the whole reservoir. 

Most notably, the sites under the influence of wastewater discharge covered only 30% 
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of the reservoir area but contributed to approximately 60% of the total N2O emission 

from the whole reservoir. Our results demonstrated that the spatial variation in N2O flux 

in the subtropical Wenwusha reservoirs was largely affected by various anthropogenic 

activities (e.g., urbanization and land use) in the catchment area. 

N2O emission also exhibited clear seasonal variation with significantly higher 

values in the summer (Table 1), similar to the observations made in other inland waters 

(Musenze et al., 2014; Xiao et al., 2019b; Zhu et al., 2013). Temperature is considered a 

dominant factor driving the temporal variation in N2O emission by regulating microbial 

activity (Beaulieu et al. 2010; Harrison and Matson, 2003; Hinshaw and Dahlgren 

2 013). The higher N2O emission observed in the summer coincided with the higher 

water temperature (Fig. S2c), which could have stimulated N2O production. 

Interestingly, we observed that the verage N2O emission in spring was substantially 

lower than that in autumn (Fig. 3 and Table 1), which were opposite to the trend with 

water temperature (Fig. S2a and S2b). There were several heavy rain events that 

occurred in spring. Previous studies have shown that heavy precipitation could 

transport a greater amount of nutrients and greenhouse gases from the surrounding 

watershed into the lentic ecosystems (Dinsmore et al., 2013; Sinha et al., 2017; Xiao et 

al., 2021), thereby increasing the saturation level of dissolved greenhouse gases and 

stimulating microbial greenhouse gas production (Stanley et al., 2016; Yu et al., 2017). 

However, we found no significant increase in dissolved N2O concentrations and fluxes 

in association with the heavy spring precipitation, which was probably a result of the 
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dilution effects of precipitation on the biogeochemical reactions in the reservoir 

(Outram and Hiscock, 2012; He et al. 2017). 

Furthermore, the drainage of aquaculture ponds after harvest in autumn as a 

common management practice could introduce N-rich effluent into the reservoir and 

stimulate N2O production. This was supported by the elevated concentrations of 

- + NO -N, NH -N, and TDN found near the aquaculture ponds in November (Fig. 2) and 3 4 

the strong positive correlations detected between N2O emission and the concentration 

of N substrates (Fig. S4). 

4 .3. Subtropical coastal reservoir as a net N2O source 

The average N2O fluxes across the water-air interface from the Wenwusha 

-2 -1 Reservoir was 107.0±15.6 µg m h , which was about 3.9 and 1.9 times higher than 

that observed in the marsh (Wang et al., 2018) and aquaculture ponds (Yang et al., 

2 020b), respectively, in the same subtropical coastal region. This magnitude of N2O 

emission was also substan tially higher than the average rate reported in the lakes (12.2 

- 2 -1 -2 -1 µg m h ) and reservoirs (42.3 µg m h ) of China (Li et al., 2018). When compared 

with the N2O emission rates globally (Table S3), the mean emission from our reservoir 

was lower than only a handful of tropical or subtropical reservoirs, but was over an 

-2 -1 
order of magnitude greater than the global average of 7.2 µg m h for lakes and 

reservoirs spanning across the tropical to polar regions (Hu et al., 2016). Our results, 

along with similar findings by others (Chen et al., 2014), suggested that subtropical 

1 9 



  

  

Journal Pre-proof 

coastal reservoirs were strong N2O sources and could play an increasingly important 

climatic role as countries seek to construct more coastal reservoirs (Yang and Kelly, 

2 015). 

4 .4. Implications for N2O assessment and reservoir management 

Over the past two decades, researchers have increasingly recognized the role of 

reservoirs as a potential source of greenhouse gases including N2O (Deemer et al., 2016; 

Descloux et al., 2017; Maavara et al., 2019). However, reliable assessment of N2O 

emission from global reservoirs remains a challenge due to the scarcity and low 

resolution of field data. Results from this study highlighted the high spatial and 

temporal heterogeneities of N2O concentration and emission in a subtropical coastal 

reservoir, with significant implications to representative sampling for flux estimation. 

Our results of Monte Carlo analysis suggested that reliance of field data from only one 

or a few sampling points, as quite commonly done in the literature (Table S3), could 

yield large errors. Urbanized, coastal reservoirs such as the one studied here are often 

influenced by runoff and discharge from multiple sources. Our Monte Carlo simulation 

results (section 3.5) suggested that a minimum of 15 sampling points per km2 would be 

needed to produce a reliable and representative estimate of spatially-averaged N2O 

emission in the spatially heterogeneous coastal reservoir system. 

Our data showed a strong correlation between N2O emission and wastewater 

discharges, affirming the important role of wastewater input in promoting N2O 
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emission. This problem of greenhouse gas release can be exacerbated by the race to 

modernization and urbanization, particularly in developing countries where wastewater 

treatment remains inadequate (Hosen et al., 2014; Williams et al., 2016; Yang et al., 

2 013). Strengthening environmental regulation, particularly for wastewater treatment 

and discharge, will be key to mitigate water pollution and greenhouse gas emission in 

reservoir management (Yang, 2014; Yang et al., 2015). To the best of our knowledge, 

this study was the first attempt to characterize N2O concentration and emission from a 

coastal reservoir at a very high spatial resolution. Our data would be valuable for global 

biogeochemical modelling and prediction of N2O emission from costal reservoirs that 

are under intense human disturbance. 

Several aspects of our study could be improved further in future studies. Firstly, 

several studies in inland waters have reported diurnal variations with higher N2O 

emissions at night (Baulch et al., 2012; Wu et al., 2018; Yang et al., 2011). Our 

measurements in the Wenwusha Reservoir were limited to daytime and therefore the 

emission might have been underestimated. Diurnal differences in N2O emission from 

the reservoir should be compared to improve the reliability of flux estimates. Secondly, 

in a thermally stratified water column, nitrogen transformation can differ between the 

epilimnion and the hypolimnion (Beaulieu et al., 2015; Liang et al., 2019; Salk et al., 

2 016), which was not included in our study. Future studies might use novel methods 

such as isotopic tracing to examine the relative importance of different nitrogen 

biogeochemical processes throughout the water column (Sebilo et al., 2006). While we 
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aimed to resolve the spatial heterogeneity with high spatial resolution sampling, our 

data also showed considerable seasonal variations in N2O concentration and emission 

(Fig. 4). However, resolving temporal variation at a higher frequency (monthly to daily) 

could be challenging logistically without the help of in situ automated sampling 

systems. Lastly, the microbial abundance and functional groups (e.g. nitrifier, denitrifier, 

and ammonifier) should be further characterized to shed light on the dominant 

microbial pathways of N2O production in the reservoir. 

5 . Conclusions 

We characterized the variation of  N 2O concentration and emission in a coastal, 

urbanized reservoir in southeastern China with a high spatial resolution in this study. 

We found that N2O concentration and emission were strongly influenced by localized 

runoff and discharges, resulting in very high spatial heterogeneity in addition to the 

seasonal variations. Resul ts of Monte Carlo simulations showed that a minimum of 15 

sampling points per km2 would be required to produce a reliable estimate of the 

whole-reservoir N2O emission. Based on the analysis of water chemistry data, 

nitrification appeared to be the main pathway for N2O production, although 

denitrification might become increasingly important in the summer months with 

reducing DO level. Total N2O emission from our subtropical coastal reservoir was 

-1 
estimated to be 4.8 Mg yr , which was considerably higher than the global average for 
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lakes and reservoirs. Continued construction of coastal reservoirs for water 

management may exacerbate future climate change by increasing N2O emission. 
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 1 

Fig. 1. Sampling sites within the Wenwusha Reservoir in Fujian Province, southeastern China. A total of 2 

21 transects were sampled, with 11 transects in the south basin (SB) (1–11), and 10 in the north basin 3 

(NB) (12–21). Each circle represents a sampling site influenced by different discharge type: A: 4 

aquacultural effluent (n = 4); I: industrial effluent (n = 6); R: river input (n = 7); T: municipal sewage (n 5 

= 22); N: non-discharge (n = 64). 6 



 7 

Fig. 2. Spatial distributions of surface-water NO3
–-N (a-c), NH4

+-N (d-f) and TDN (g-i) in the 8 

Wenwusha Reservoir.9 



 10 

Fig. 3. Spatial distributions of surface-water N2O concentration (a-c) and fluxes (d-f) in the Wenwusha 11 

Reservoir.12 
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  25 

Fig. 6. (a) The box and whisker plots and (b) standard deviation of estimated N2O fluxes from the Wenwusha 26 

Reservoir. Monte Carlo analysis was used to evaluate the effect of sample size on the emission estimate. 27 

Without replacements, the N2O emission measurements were resampled from all sites (n = 10, 20, 30…, 28 

100). The resampling process was repeated 10,000 times. For each sample size, the overall mean and 29 

standard deviation of N2O emission were calculated. The N2O emission are a function of the number of 30 

sampling sites selected from a total of 103 sites based on 1000 simulations. In panel a, the margins of the 31 

boxes are the upper and lower quartiles, and the line in the box represents the median. The whiskers are the 32 

extreme values that fall within 1.5 times the interquartile range and the circles represent extreme values that 33 

fall outside 1.5 times the interquartile range. The red line are the overall average N2O flux based on the 34 

results from all 103 sites. The grey areas represent 70, 95 and 99% of the Highest Probability Density ranges. 35 

(a) (b) 
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Fig. S4. Relationships between N2O fluxes and surface-water NO3
--N, NH4

+-N and TDN 55 

concentrations in the Wenwusha Reservoir. Parameter bounds on the regression coefficients are at 95% 56 

confidence limits.57 
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