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Abstract

Collaborative robots are becoming increasingly important for advanced manufacturing processes. The purpose of this
paper is to determine the capability of a novel Human-Robot-interface to be used for machine hole drilling. Using a
developed voice activation system, environmental factors on speech recognition accuracy are considered. The research
investigates the accuracy of a Mel Frequency Cepstral Coefficients-based feature extraction algorithm which uses
Dynamic Time Warping to compare an utterance to a limited, user-dependent dictionary. The developed Speech
Recognition method allows for Human-Robot-Interaction using a novel integration method between the voice recogni-
tion and robot. The system can be utilised in many manufacturing environments where robot motions can be coupled to
voice inputs rather than using time consuming physical interfaces. However, there are limitations to uptake in industries

where the volume of background machine noise is high.
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Introduction

Since Bell Laboratories proposed a system for speech
analysis and synthesis in the 1930s, the challenge of
speech recognition has been improved progressively. In
1952, they built a system for isolated digit recognition
for a single speaker. Then, in the mid-1970s, the basic
ideas of applying pattern recognition technology to
speech were proposed. This included Bridle and Brown
developing the mel-based cepstral parameters for fea-
ture extraction from speech in 1976." Research in the
1980s shifted from pattern recognition towards a more
rigorous statistical modelling framework. This included
the Hidden Markov model, Gaussian mixture models
and the application of Artificial Neural Networks.?
The technology’s commercial break came in 1990 when
Dragon Co. released ‘Dragon Dictate’, the first speech-
to-text software for the consumer market. This soft-
ware relies on statistical analysis to convert its diction-
ary to a lexicon through corpus analysis to predict the
words that may come next in a sentence. This reduces
the computational load of speech recognition; however,
the software is limited by processing power. It was not
until 2010 that Google introduced the first personal

assistant which used cloud computing to recognize
human speech; these have rapidly increased in popular-
ity since.

Voice control has been rapidly adopted for Human-
Robot-Interaction (HRI) and can be found on a wide
array of consumer products with implementation meth-
ods from across the development history of speech rec-
ognition. Despite commercial success the technology
has never been widely accepted in industry. The weight
of financial loss and risk deter the use of temperamental
interfaces. The accuracy of machine control is para-
mount and with the trend for automation and data
exchange in the manufacturing industry, it is apparent
that effective collaboration between humans and robots
is needed to increase productivity and quality.® When
applied to robotic assembly operations, Human-Robot-
Collaboration (HRC) allows the worker to operate near
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the robot. Several HRC robots have been developed,
these robots use intelligent control technology, high-
performance sensors and state-of-the-art software tech-
nologies.* HRC Models for the ‘trust’ between humans
and robots have also been developed.’ This is a promis-
ing application for a semi-autonomous voice-controlled
system, as the combination of speech and haptic control
has the potential to form an intuitive HRI. Gustavsson
et al.® has proved this by making a HRC demonstrator
which combines speech recognition and haptic control.

Currently, most HRI in industry utilize physical and
graphical user interfaces. These can substantially bur-
den the cognitive load of a worker. HRI through spo-
ken dialogue aims to reduce this load: uttering a voice
command is often simpler than entering data using a
keyboard and does not engage the operator’s hands or
restrict the operator’s movements.” In an industrial set-
ting, noise from environmental factors can affect the
accuracy of speech recognition.

This paper will test an algorithm based on a non-
statistical model, allowing for a significantly lower
implementation complexity. The chosen method of
speech recognition reduces language from a nuanced
message into a discrete command. The machine is not
aware of the meaning of the words, but is associating a
noise to an action. Additionally, the research will con-
sider the environmental factors that could effect the
accuracy of quasi-natural speech analysed using Mel
Frequency Cepstral Coefficients (MFCC)®  with
Dynamic Time Warping (DTW).” Once recognized, the
signals can be sent downstream to control other sys-
tems, in this case, a KUKA KR16 industrial robot with
Robot Sensor Interface (RSI) software. The paper is
organised as follows: the next section reviews different
approaches to speech recognition with a consideration
for industry application. Then, environmental factors
that effect speech recognition are assessed and the
experimental set-up used to investigate the capabilities
of the identified algorithm and hardware is described.
Finally, the experimental results of the voice output
commands are presented and conclusions on the cap-
abilities of the designed system are made.

Adoption of a voice activation system in
an industrial setting

Industry application

HRI in industry are mostly realised through physical
(buttons, switches and dials) and graphical user inter-
faces; these are regulated by DIN EN ISO 9241-110."°
A graphical user interface can burden the cognitive
load of a worker. HRI through spoken dialogue aims
to reduce this by allowing the worker to concentrate on
more critical aspects of the work.!" Despite the bene-
fits, voice control as an HRI is rarely utilised in con-
trolling industrial devices. The requirements that
must be met by industrial voice control systems are
more stringent than those related to non-industrial

solutions.!? In the application of assistance robots, a
field in which voice control has been more widely uti-
lised, an accuracy of 95% or less is considered a risk."?
This makes the accuracy of the input command para-
mount. Implementation has been attempted with three
methods: push-and-hold, trigger phrases and long
pauses.'* Industrial robots are programmed infre-
quently by a small number of skilled operators.'® It is
expected that the regular users of the interface will be
qualified machine operators trained to adapt them-
selves to a restrictive input structure. Therefore, instead
of the natural language, a combination of commands
that fit the input structure can be used to build the dic-
tionary; a quasi-natural language. Users can be
expected to practice discipline while speaking the
defined utterances inputs. As the language used in engi-
neering is rich in numerical values,” engineering appli-
cations do not lend themselves to being fully controlled
by speech. Considering voice control is not an efficient
mechanism for defining commands containing numeri-
cal values, the application of the technology is better
suited to semi-autonomous systems.'¢

Industrial drilling application

Drilling holes for the assembly of fasteners, like bolts
and rivets is a major activity in the aerospace sector; a
typical Boeing 747 has around 3 million fasteners.'’
This amounts to roughly 1.1million holes per day'®
and, unlike the automotive industry, many drilling
operations are performed manually. It is a challenge
for a large workforce of drill operators to produce con-
sistency throughout a working shift due to fatigue. In
order to improve efficiency, automation levels within
the automotive sector have increased from 20%-80%
(2008)"” and automated tasks showed an individual
task time savings of 60%-85%.%° Durham?® identified
that the optimal level of automation is a balance
between decreasing manual touch time, improving pro-
duction capacity and automation costs. A fully auto-
mated drilling system for an aerospace wing is
unrealistic due to wing size and variation. However, a
collaborative robot or cobot has the potential to pro-
vide a semi-automated solution. The human drilling
operator works within the shared space of the robot
and interacts with knowledge-based guidance.
Cooperation in a drilling operation means the robot
performs the ergonomic task that can deliver consistent
hole quality while the human provides positional gui-
dance and inspection. This is made possible in recent
years due to vast improvements in 6-axis manipulator
type robots. They have become increasingly stiffer
which equates to higher accuracy levels compared to
older generations of robots. This has allowed for
machine spindles to be used as end effectors, thus
allowing for highly flexible drilling operations. This
study was conducted using a KUKA KRI16 6-axis
robot. This robot is highly accurate with a position
repeatability of £0.04 mm and a reach of 1610 mm — a
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precision suitable for drilling. The end effector is a
Zimmer HFL04-103-01-A-00 Machine Spindle capable
of speeds of > 24,000 RPM.

In this study, voice activation will be limited to com-
mands that align the robot and an 8§ mm drill to a
known target position. Automation to roughly position
the robot to the target will be done via the main pro-
gram. Once this is achieved the robot will wait for a
dedicated set of positional commands from the human.
These have been simplified to ‘Up’, ‘Down’, ‘Left’ and
‘Right’. The KUKA has macro functions that allow
each positional command to increment at step intervals
(0.1-100 mm). For example, a single command of Left
can move the robot to a desired position by 0.1 mm,
allowing the operator to align any positional errors
from the initial position.

Approaches to speech recognition

To recognise speech, the features of an utterance must
first be extracted. MFCCs are used to reduce an utter-
ance to a vector of coefficients that represent its struc-
ture. The utterance is recorded in the time domain.
This is split into windows and each window is con-
verted to the frequency domain using a Fast Fourier
Transform (FFT). The powers from the obtained spec-
trum are mapped onto the mel scale using triangular
overlapping windows. The mel scale is a perceptual
scale of pitches judged by listeners to be equidistant
from one another. A discrete cosine transform is then
applied to the logs of the powers (taken at each of the
mel frequencies) as if it was a signal. The resulting
amplitudes of the spectrum are the MFCCs; the fea-
tures of the utterance.’’ The methods for comparing
the inputs coefficients and a pre-recorded dictionary of
coefficients to determine the closest match are where
different methods of speech recognition diverge in
approach and complexity. The Distance Comparison
method is the most straight forward approach. It com-
pares the distances between the coefficient vectors to
determine the most likely match. The output is the
utterance with the shortest distance. A Euclidean
approach can be used to directly compare the coeffi-
cients, although DTW is better utilised as it accounts
for temporal variability by finding alignment functions
for the inputs coefficients and each set of coefficients in
the dictionary. DTW has been utilised in numerous
applications including the analysis for human motion,
although as of 2017, hasn’t been utilised in an indus-
trial setting.”> DTW achieves reasonably accurate
alignments for small dictionaries, even with large differ-
ences in speaking rates. Alternatively, Hidden Markov
Models (HMMs) are a class of probabilistic graphical
models that allow the prediction of a sequence of
unknown (hidden) variables from a set of observed
variables. HMMs are commonly used for Speech
Recognition but can also be utilised in other pattern
recognition applications. Their use in identifying

assembly contact states’® has already shown their

Input Speech Reference Samples
1 1
Utterance Detection Utterance Detection
1 1
FFT FFT
Il Il
MFCC MFCC
Il
Dictionary
I
Dynamic Time Warping
1
Distance Comparison
Il
Output

Figure 1. Algorithm flow chart.

potential to streamline HRC. In the application of
speech recognition, the observations are the segments
of the utterance and the hidden states are the words the
program is looking to recognise from its dictionary.
Most modern speech recognition systems use HMMs
to deal with the temporal variability of speech and
Gaussian mixture model (a probabilistic model for rep-
resenting normally distributed sub-populations within
an overall population) to determine how well the state
of each HMM fits a frame of coefficients that repre-
sents the utterance.”* While an HMM is more robust
than DTW, it is more complex and therefore has a
greater implementation cost for the increased accuracy.
After comparing the approaches discussed above,
MFCC and DTW were chosen for the algorithm.

Adoption of an algorithm for feature extraction

The algorithm that will be tested in this paper uses
MFCCs for feature extraction and utilises DTW to
compare the coefficients of the input with the diction-
ary of coefficients to determine the command. Figure 1
shows the order in which the algorithm interprets the
recorded speech. The algorithm was written in Matlab
R2018b with the Signal Processing toolbox. The para-
meters used for each function are detailed in their
respective sections. For humans, the process of recog-
nising speech can be categorised into four steps (Figure
2). The algorithm is designed to mimic these steps, con-
verting a continuous waveform into distinctive sound
features for comparison to a known dictionary. The
segment is collected and once the utterance has been
extracted the spectral conversion that takes place in the
inner ear (Basilar Membrane Motion) is approximated
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Figure 2. The steps in the human speech perception chain.2*

by the algorithm using the Fast Fourier Transform
(FFT). The frequency spectrum is then mapped from
the linear frequency scale of the speech signal to the
mel-scale. This makes the spectral frequency character-
istics of the signal more closely correspond to the
human auditory perception of sound (Neural
Transduction).?® Once the features of the utterance
have been extracted, the algorithm uses DTW and
Distance Comparison to deduce the word that has been
said (Language Translation). After the input word has
been identified, a corresponding output can be pro-
grammed, this gives the message a meaning and is the
final step in the process.

Segments are recorded in the Waveform Audio File
Format (.wav) at 44,100 Hz. After ambient noise has
been recorded at the beginning of the segment for 0.5s
the user is prompted to speak the command. The user
has 2s to speak the command before the recording
stops. These segments are then compiled into a diction-
ary or are passed into the algorithm as the input to be
evaluated. An example of a recorded segment is shown
in Figure 3(a), the utterance can be seen around 1.5s.

For Feature Extraction and Utterance Detection,
the algorithm sequentially applies a low-pass (3000 Hz)
and high-pass (300 Hz) filter to the segment which iso-
lates the frequencies of the human voice. Next, the
ambient noise level of the first 1323 samples is evalu-
ated and multiplied by 1.3 to establish a threshold.
After the magnitude of the segment exceeds the thresh-
old, the subsequent 0.36s (16,000 samples) is extracted
as the utterance. The extracted utterance from the
example segment is shown in Figure 3(b). Fourier anal-
ysis converts a signal from its original time domain to a
representation in the frequency domain. The utterance
is divided into 1323 samples and FFT is then per-
formed. An example of the domain change can be seen
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Figure 3. (a) Recorded segment, (b) extraction utterance,
(c) frequency spectrum after FFT, and (d) representation of
MFCCS.

in Figure 3(c). Mel Frequency Cepstral Coefficients
(MFCCs) are then used for feature extraction. Each
window is converted into 13 coefficients and the first
coefficient is replaced with the log energy of the signal.
These coefficients are shown in Figure 3(d).

For feature comparison, DTW was used to calculate
the distances between the input coefficients and the 40
sets of coefficients in the dictionary. As per Figure 4,
DTW compares the distances of two vectors while
accounting for temporal variability by mapping similar
features to each other before evaluating distance. The
distances calculated correspond to the four sets of ten
commands in the dictionary. To determine the closest
match whilst accounting for anomalies, all 9999 combi-
nations of the dictionary commands are assembled.
This process mirrors counting in base 10 from 0000 to
9999. The closest match (smallest value) in each combi-
nation is evaluated and the most frequently chosen
command is outputted as the best match to the input.
To compare the effects of the different environmental
factors, a metric for assessing how ‘confident’ the algo-
rithm is in its choice has been developed (equation 1).
When the correct command has been identified, the
confidence shows how close the algorithm was.

C= ACC(R] — Rz) (1)
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Figure 4. (a) Vectors to be compared and (b) visualisation of
feature mapping between vectors.?®

Where C is confidence, R; and R, are the top and sec-
ond ranking results respectively and Acc is Accuracy.
Accuracy is 1 if the result matches the input and 0 if it
does not. Examples of 4 movement commands
(‘Down’, ‘Left”, Right” and ‘Up’) with of high and low
confidence are shown in Figure 5.

KUKA KR 16 interface

Pre-defined outputs from the Matlab algorithm are
processed into the Kuka RSI. The RSI is an advanced
proprietary software package that expands the capabil-
ities of the Robot Controller, enabling it to complete
data exchange between a robot and sensor system via
Ethernet or the I/O system of the robot. Thus, allowing
sensory input to influence the motion of the robot or
program execution. Configuration of the RSI signal
flow is done through the visual software package.
Through RSI Visual, it is possible to access a library of
Objects which are used to configure the signal flow.
Finally, it provides an online visualization of the RSI
signals through the RSI Monitor. The Ethernet inter-
face provides flexibility by allowing complete control of
robot motion through introducing an external device
that processes and corrects data sent from the C4 con-
troller. In this instance, the external device is a laptop
running the Matlab algorithm. Using a real-time capa-
ble network connection, data is transmitted via the
UDP/IP protocol where no fixed data frame is speci-
fied. When using RSI, cyclical data transmissions from
the robot controller to sensor system are run in parallel
to the robot program execution. Position data and axis
angles can be sent to the sensor system and data via
cyclical data transmissions. This sends information in
parallel to the Kuka program execution. Importantly
for the voice activation, the RSI allows the user to exert
continual influence over the motion of the robot. There
are two types of sensor correction available, either
Cartesian or axis-specific. Cartesian creates a

5
100 T T . :
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Figure 5. Results example with high (78%) and low (5%)
confidence.

Correction Coordinate System at the TCP where the
BASE, ROBROOT, TOOL, WORLD or Tool-based
coordinate frames can be used as a reference coordinate
system. There are two correction modes, relative and
absolute, where relative correction values are added
together and the new position results from the offset of
the starting position by the previous correction and the
current correction value combined. Absolute correction
results in an offset from the starting position by the
correction value. Finally, there are two sets of correc-
tion methods available; superposed sensors correction
and sensor-guided motion. In the former, corrections
would be superposed over the existing programmed
movement running on the Kuka C4 controller.

Experimental methodology
Audio signals

All audio signals were recorded at 44,100 Hz with a
Rode NTG2 Shotgun Microphone, through External
Line Return cables and a Scarlett 2i2 USB Pre Amp
Audio Interface. These took place in a 7.7m X 6.3m
room with painted concrete walls (Figure 6). The room
also contained two KUKA KR16 Robots. The location
and gain settings of the microphone were kept consis-
tent across all recordings. A Shotgun microphone was
used as the interface due to its directional sensitivity.
The microphone is significantly more sensitive to noise
in the direction it is pointing while attenuating sur-
rounding sources of noise. A sound level monitor set
below the microphone was used to evaluate dB level
which allowed a reference volume to be associated with
each recording.

For the voice commands three Female and three
Male subjects each recorded a training dictionary.
These consisted of 40 samples, 10 of each command:
‘Up’, ‘Down’, ‘Left’ and ‘Right’. This was achieved
with a program which prompted the user on which
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Figure 6. Kuka Robot setup.

phrase to say and when to say it. The subjects sat
approximately 300 mm directly in front of the micro-
phone and spoke authoritatively but did not shout, this
same tone was used for the inputs. The average volume
of the utterances was 68.5 = 2 dB. All samples were run
through the Utterance Detection and Feature
Extraction. The coefficients for each sample were com-
piled into a dictionary (matrix of coefficients) unique
to the subject.

The environmental factors selected for testing were
chosen by considering the proposed application and by
assessing possible levels which could affect speech intel-
ligibility. The intended operation of the software is to
operate a KR16 6-axis robot, the speed of the move-
ment produces different volumes of noise. To assess the
full range of noise, samples of the robot movements at
0% speed, 25%, 50% and 100% were recorded. This
had a volume range of 40.6-65.7dB. The Machine
Spindle for drilling was also tested, recordings were
taken between 0 and 24,000 rpm producing a noise of
51.6-63.4dB. In an industrial environment, the robot
may be used in proximity to other machinery, therefore
background machine noise is considered. To measure
this, a recording was taken in an active workshop: the
machines sampled were a lathe, milling machine, air
compressor, wire EDM and multiple CNC machine

Table |. Experimental parameter.

centres. These were played in the room with an ampli-
fier at different sound levels. When the recording was
not being played, the ambient noise was 40 dB. As per
the limits of UK law, 85dB?’ was the upper limit for
testing.

Human-to-human interference was considered, as
conversations may be conducted near the system and
unintended utterances may be registered by the micro-
phone. The worst-case scenario would be that a word
from the Dictionary is registered simultanecous to a
command being issued. To test this scenario, a com-
mand from the dictionary (different to the test-com-
mand) was recorded. The command was recorded at
incremental distances away from the microphone, 1-
Sm. At the microphone the volume of the command
ranged between 41.8dB and 55.5dB. The factors were
recorded based on these parameters and each recording
had its reference volume recorded. The parameters and
references can be seen in Table 1.

Full factorial design of experiments

To run the experiments, each factor had each level
recorded separately. These were overlaid onto the input
sample based on a 5°4 (625 level) full factorial array.
Per subject each of their four command words were
used as an input leading to 24 Full Factorial Design of
Experiments (FFDoE). Every input was run through
the algorithm and the confidence for that experiment
was recorded. Minitab 18 was used to analyse the
results of each FFDoE. Matlab R2018b was then used
to run a #-test to the effect of each factor at each level
for statistical significance. The FFDoE and following
analysis was performed in Minitab 18.

Results

Main effects plots

The main effects-plots (Figures 7 and 8) show how each
factor effects the mean confidence and accuracy. A
main effect exists when different levels of a factor affect
the characteristic differently. The FFDoE showed that
the mean confidence for the KUKA noise, Speech and
Drill Noise did not drastically change across the levels;

| 2 3 4 5

Parameters (relative)

KUKA KR16 noise (%) 3 25 50 75 100

Speech (m) 5 4 3 2 |

Drill noise (rpm) 0 6000 12,000 18,000 24,000

Machine noise (dB) 40 (off) 50 60 70 85
Parameters (dB)

KUKA KR16 noise 40.6 59.5 62.7 63.2 65.7

Speech 41.8 434 454 49.9 55.5

Drill noise 51.6 53.2 55.8 61.8 63.4

Machine noise 40.2 50.6 61.2 70.8 85.5
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however, Machine noise showed a drop off in confi-
dence. This correlates with the inputs as the levels 1-5
for the machine noise is distributed linearly as opposed
to the logarithmic decibel scale. Each increase of 10dB
is perceived as 2 X as loud, and an increase of 15dB is
2.8 X as loud. The effect-to-mean accuracy follows a

similar trend; however, Level 3 for Machine Noise does
not show a drop in accuracy. This shows at Level 3, the
Machine Noise is affecting the confidence. Due to this
sensitivity, Confidence is used for further analysis.

ANOVA analysis

Figure 7 shows the results from a one-way ANOVA
with Tukey Pairwise comparison performed on the

results of the 24 FFDoE. An ANOVA evaluates the
probability that the null hypothesis (the effect of the
environmental factor is 0) is due to random chance
to assess the statistical significance of the effect.
Points on the graph which do not share a letter are
statistically significantly different. The ANOVA
showed Level 4 and Level 5 Machine Noise had a

statistically significant effect on the confidence of
the algorithm.

Factor interactions

The interaction-plot (Figure 9) shows interactions
between factors. Nonparallel lines indicate interaction.
The results show that there is minimal interaction
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between any of the factors as all the lines are near
parallel. _ 001
= 0.005
i 0 fae
Failure modes 0 5001000 1500 2000 2500 3000
Across all 15,000 experiments, the accuracy of the algo- f(Hz)
rithm was 71.31%. When machine noise is kept below (a)
61.2dB (Level 3) the accuracy of the algorithm _ oo
increases to 93.51%. When volume is above 61.2 db the Z0.005
. =
accuracy drops to 29.17%. There are multiple compo- I
nents that contribute to this significant drop in 0 500 1000 1500 2000 2500 3000
accuracy. f(Hz)
{ (b)
%107
. . . . 2
Volume. High volumes of noise could interfere with the z
extracted features of the utterance leading to a false z! | |
identification. If there was a defined volume at which U”“ o x; 1(:()1)1 1500 2000 ;q; * 3000
the algorithm was affected, then all factors louder than ) f(Hz) - '
this volume would have a significant effect. As this is ©)
not the case, the drop in confidence cannot be solely
attributed to volume as machine noise has a significant =0.05
effect at 61.2dB, which is a lower volume than the z | !
Level 5 setting of KUKA noise (63.2dB) and the Drill {1”' :‘)“ 11;{‘;; 144’);11 “'_’Jm“ ‘1_’:{;)“ o0
noise (61.8dB). Volume is therefore a contributing ) fHn -
factor. ‘
(d)

Frequency. Frequencies of the environmental noise can
alter the extracted MFCCs and effects the accuracy.
All the environmental factors tested have frequencies
between 300 and 3000 Hz. These are not filtered by the
algorithm, so could interfere with voice identification.

Figure 10. Frequency spectrum of: (a) KUKA KR16 noise,
(b) speech noise, (c) drill noise: and (d) machine noise at level 5.

Figure 10 indicates the higher influence of the Machine
noise is likely due to the higher prevalence of
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frequencies between 300 and 3000 Hz. The Machine
Noise is a recording composed of multiple separate
machines, this leads to a higher range of frequencies
which can interfere with the extracted features.

Implementation of the system in industry

The direction input via speech would supplement the
buttons on the KUKA control pad. This could be
expanded to include voice commands to interact with
other KUKA technologies such as grippers. Robot
safeguards can be configured in the RSI to prohibit
any corrections greater than a predefined value. Any
movements over this value would result in a program
pause, safeguarding the user and the robot. The full
system detailing the information flow from the user to
the robot is outlined in Figure 11.

Conclusion

HRI in industry utilise physical and graphical user
interfaces. These can substantially burden the cognitive
load of a worker. Interaction through spoken dialogue
aims to reduce this load. In this study, the voice activa-
tion is limited to four commands that align the robot
and drill to a known target position. The noise from
environmental factors are assessed based on the factors
which affect speech intelligibility. The identification of
the most relevant factors is necessary to allow voice
activation solutions to be implemented efficiently. This
research evaluated multiple approaches to speech recog-
nition and a limited dictionary was chosen. The study
concludes the following.

e For cobots with voice activation interfaces, the
external machine noise above 61.2dB is the only
statistically significant factor on voice recognition
accuracy.

e Machine Noise had an effect of —7.82%
Confidence between 40.2 and 61.2dB and an effect
of -74.60% Confidence between 61.2 and 85.5dB.
At 85dB the algorithm could only correctly identify
the input with an accuracy of 29.17%.

¢ In industrial applications where noise is < 61.2dB,
the algorithm will not require modification to
account for the environment.

e HRI using a novel integration method can be uti-
lised in manufacturing environments where minor
corrections to the robot can be coupled to voice
inputs rather than using physical interfaces.

e If the environmental noise does exceed 61.2dB,
Utterance Detection filtering techniques to account
for the noise will have to be developed for improved
Feature Extraction.

e Before the algorithm could be applied in industry,
safeguards would have to be implemented and the
accuracy would have to be evaluated in a less con-
trolled environment.

e The maximum accuracy achieved by the algorithm
was 93.51%, further research will be required to
improve this and additional noise control will be
required for some industrial environments. Despite
this, the application of voice control within a semi-
autonomous industrial system remains a promising
solution to streamline HRI.
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