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Abstract

A multiscale, agent-based mathematical framework is here used to capture
the multiscale nature of solid tumours. Tumour dynamics and treatment
responses are modelled and simulated in silico. Details regarding cell cy-
cle progression, tumour growth and oxygen distribution are included in the
mathematical framework. Treatment responses to conventional anti-cancer
therapies, such as chemotherapy and radiotherapy, as well as to more novel
drugs, such as hypoxia-activated prodrugs and DNA-damage repair inhibit-
ing drugs, are studied. Uncertainty and sensitivity analyses techniques are
discussed in order to mitigate model uncertainty and interpret model sen-
sitivity to parameter perturbations. This thesis furthermore discusses the
role of mathematical modelling in current cancer research.
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hen's d-values comparing two normal distributions B and C with the

same variance. The higher the overlap between B and C, the smaller the
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6.10 Consistency Analysis. Â-values in initial (top) and scaled (bottom) form

for distribution size n = 100. . . . . . . . . . . . . . . . . . . . . . . . . 160
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Chapter 1

Introduction

Mathematical oncology is the exciting research �eld in which mathematics meets

traditional cancer research. This chapter motivates the use and development of

mathematical tumour models, and highlights their current and potential contributions

to oncology.

1.1 Mathematical Oncology

Mathematical and computational approaches may constitute a fantastic complement to

classical cancer research, traditionally performed in wet labs and clinics. Due to recent

advances in imaging techniques, the vast accumulation of experimental and clinical data

and available computational power, in silico studies have gradually been entering the

stage of medical research over the last decades [9]. Cancer is a highly complex disease,

and whilst this complexity presents di�culties in model formulation, parametrisation

and implementation for the mathematician, this complexity also infers that there is pos-

sible biomedical insight to be gained from mathematical models and their corresponding

in silico experiments. Modelling may unveil new, important information regarding bio-

logical cancer systems and their sub-mechanisms and thus elucidate underlying tumour

processes [10]. The advantages of mathematical and computational oncology are mul-

tifold. Compared to other types of experiments, in silico experiments are both cheap

and quick to perform, highly adaptable and associated with few direct ethical concerns

[11]. Theories formulated in laboratories or clinics can be tested in silico on simulated,

virtual tumours prior to, or in parallel with, classical bench experiments in order to
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1. INTRODUCTION

validate or guide in vitro and in vivo experiments.

Today, there exists a wide array of mathematical models that are able to capture var-

ious phases of tumour progression and associated mechanisms such as tumour growth,

invasion and metastasis [12�17], angiogenesis [18�21] and treatment responses [22�28].

A comprehensive overview of the �eld may be found in a review article by Lowengrub

et al. [29]. Some of these models have successfully conferred with both in vitro and

in vivo experiments or clinical observations [5, 30�32], and consequently mathematical

tumour modelling is steadily gaining acceptance in the medical community.

1.2 Mathematics in Personalised Oncology

Personalised medicine is becoming an increasing part of modern cancer care [33, 34].

Patient speci�c metrics advise contemporary clinical procedure in terms of vaccine rec-

ommendations, screening practice [35] and treatment planning [36]. The aim of person-

alised medicine is to tailor health care speci�cally to the individual patient, in pursuit

of optimal treatment outcome and quality of life. As a strategy, personalised medicine

can be highly bene�cial in cancer care, as cancer is a disease presenting with high vari-

ability across incidences. It is indeed well established that a �one to �t all� strategy

to prevent, diagnose and treat cancer is a sub-par approach [37]. Ideally, in line with

concepts of personalised medicine, patients should instead be individually evaluated and

matched with appropriate cancer care strategies. The personalisation of medicine can

occur on various levels, as is pictorially illustrated in Figure 1.1. Patient and tumour

metrics gathered from macro-level population data, down to micro-level molecular tu-

mour data, may aid anti-cancer decision making in clinical settings.

On a population level, a population can be categorised and divided into various sub-

populations, which in turn can be evaluated and risk-assessed. Certain subpopulations

express elevated risks of developing particular cancer types, and likewise certain sub-

populations have a predisposition to aggressive disease. This categorisation can be

determined by in�exible parameters such as age [35, 36, 38, 39], genetics [38, 40], race

[38] and gender [35, 39] as well as by �exible parameters such as smoking habits [41],
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hormone exposure [40], obesity levels [42] and socio-economic factors. The combina-

tion of wide population data and gathered clinical experience can be used to determine

suitable, personalised treatment strategies post tumour detection, and also to evaluate

the need for cancer screening and vaccine administration [43]. For the individual pa-

tient to bene�t from screenings, screening scheduling should be personalised in order to

enable optimised cancer intervention [41]. By deploying mathematical models, which

incorporate biological knowledge and evolutionary concepts, optimised and personalised

screening recommendations can be achieved [41]. In order to more competently consider

the concerns, quality of life and well-being of a patient, cancer care can be tailored on a

patient-speci�c level. Post cancer detection, lifestyle, personal priorities and economic

factors all contribute towards determining which treatment strategy is the most appro-

priate for the individual patient [38]. On this central, patient-speci�c level of treatment

personalisation, the dialogue between patient and clinician is of the essence [38], and it

is important that the patient is well-informed by the clinician.

In parallel, in order to keep the clinician as well-informed as possible, personalised

medicine can be even further detailed and narrowed down to the tumour level [44].

Post tumour detection, disease forecasting and treatment decisions can be informed

by tumour-speci�c data. Due to the high variability of cancer displayed across disease

incidences, previous research indicates that tumour prognosis and treatment responses

may correlate higher with molecular tumour speci�cs than with larger-scale factors,

such as anatomical tumour origin [33] or metrics quanti�ed on a patient or population

level. Recent advances in bio-marker handling [45, 46], biopsy techniques and medical

imaging enable tumour assessment [47] prior to and throughout treatments regimes.

However, current biopsy procedures may in certain cases be infeasible to perform and

furthermore, tumours are highly evolutive systems whose pro�les may change after an

evaluation of imaging or biopsy results. Therefore, being able to predict tumour evolu-

tion, progression and treatment response, given tumour-speci�c input data at an earlier

time point, would present an immensely valuable tool in clinical treatment planning.

Various aspects of tumour growth and treatment responses are currently being investi-

gated in silico by the mathematical oncology community [48]. One of the main, current

missions in the research �eld of mathematical and computational oncology is to bridge
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the gap between virtual and physical tumour control, in order for preclinical and clinical

applications to directly bene�t from recent advances made in the research �eld.

Figure 1.1: Personalised cancer practice on various levels, namely Population, Patient,
Tumour Pro�le. On a population macro-level, a population can be categorised into various
subpopulations (for instance based on age, gender or smoking habits), which in turn can
be evaluated and risk-assessed for preventative, detective and corrective oncology practice.
On a central, patient-speci�c level, cancer care may be tailored to �t the needs, lifestyle and
priorities of the patient, in pursuit of medicine that optimises both treatment outcome and
the patient's quality of life. On a tumour pro�le level, tumour-speci�c data can provide
information which may contribute towards disease prognoses and intelligent treatment
decisions. Narrowing down cancer care personalisation to tumour level allows for a bottom-
up approach to personalised tumour treatments.

The phrase bench-to-bedside describes the practice of transferring in vitro and in vivo

�ndings from the laboratory to a clinical setting. Now, as the contemporary mathemati-

cian works on both blackboards and computer keyboards and we therefore, analogously,

use the term blackboard-to-bedside to describe the action of translating mathematical

and computational intelligence to clinical application, as is conceptually illustrated in

Figure 1.2. Mathematical modelling has chronologically tailed clinical implementation

of tumour treatment strategies. Historically, this time-lag is validated in the early era

of modern cancer care practice, which preceded advanced technology. However, with

current imaging and biopsy technologies, sophisticated in vitro and in vivo laborato-

ries, accumulating data from experiments and clinics, available computational power

[9] and biological, medical and mathematical knowledge, mathematical oncology to-
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day constitutes an up-to-date complement to traditional cancer research. Modelling

has the potential to both optimise currently available anti-cancer protocols and con-

temporaneously aid preclinical developments of new anti-cancer therapies, thus the

time-lag between clinical applications and mathematical modelling is conceptually be-

ing eliminated. In order to comprehensively transfer insights from blackboard-to-bedside,

actualised collaborations between clinicians, biologists and mathematicians are key [49].

Figure 1.2: 'Bench-to-bedside' depicts the practice of transferring in vitro and in vivo

�ndings from the laboratory to a clinical setting. The contemporary mathematician works
on both blackboards and computer keyboards thus we therefore, analogously, present the
term blackboard-to-bedside to describe the action of translating mathematical and compu-
tational intelligence to clinical application.

1.3 Multiscale Models

Cancer is a multiscale process in which subcellular mutations result in aberrations that

are apparent on a cellular scale or on a tissue scale [50]. It follows that multiscale models

may constitute an attractive choice for the mathematical oncologist, and throughout

this thesis we will indeed simulate tumours using mathematical models that can be

classi�ed as multiscale, hybrid, agent-based and on-lattice. Multiscale models refer to

models that incorporate information on multiple scales in space and/or time. By using

multiscale models, we can `zoom in' on details that we consider to be important, and

we can `zoom out' to get an overview of the full modelling scenario at hand [51]. When
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modelling a solid tumour, for example, this entails that we can `zoom in' and look at

subcellular details in individual tumour cells, and then we can `zoom out' again to see

how the tumour is behaving as a whole. Hybrid models are models that incorporate

multiple modelling techniques that can be regarded as contrasting. Such a model might

integrate both mechanistic and phenomenological rules, or both continuous and discrete

variables or both deterministic and stochastic phenomena. This can be very useful in

the �eld of mathematical oncology, as biological and biochemical processes involved

in cancer dynamics can be best expressed in various ways. Using a hybrid modelling

technique, we can for example describe the concentration of a drug across a tumour

as a continuous function using a mechanistic di�usion equation, whilst regarding cells

as discrete entities [50]. Agent-based models include several agents that may interact

with each other and their environment. Every agent is modelled individually and is

thus distinct from other agents in the system [52]. In an agent based tumour model,

for example, an agent can correspond to one cancer cell or a group of cancer cells. This

naturally allows for heterogeneity amongst tumour cells, which is useful as tumour het-

erogeneity is associated with many implications in anti-cancer treatments (but more on

that later on in the thesis). Combining agent-based models with multiscale and hybrid

modelling approaches allows us to have environmental factors in�uence the behaviour

and fate of agents. On-lattice models refer to models that play out on a lattice [50]. In

an agent-based on-lattice model, for example, the movement of all agents is restricted

to the lattice points. A cellular automaton (CA) is a speci�c type of on-lattice model

that allows a system, containing information about both agents and their environment,

to evolve in time and space. In a CA, the quantity of any scalar �eld across the CA

lattice is discretised to have a certain value on a certain lattice point. On-lattice models

have the advantage of being easy to implement when coding for in silico experiments.

In the following chapter, we describe the mathematical framework used throughout this

thesis. This framework is based on a multiscale, hybrid cellular automaton.

Many solid tumours are derived from one cancerous seeding cell, which by detection time

has produced a tumour with subclonal diversity displaying a few dominant subclones

[53]. It has been observed that cells collected from the same tumour may display di�er-

ent subclonal [53] and spatio-temporal features in�uenced by intracellular, extracellular

and intercellular mechanisms [54]. Consequently, a multitude of tumour metrics will

6



1.3 Multiscale Models

vary within a tumour mass [46] and, what is more, this diversity may not be captured

by current diagnostic tools [53]. However, in silico experiments provide a platform on

which to conveniently study implications of spatio-temporal heterogeneities within a

tumour, thus allowing us to observe what is not empirically feasible by other methods.

One strength of multiscale, hybrid cellular automata, in particular, is their inherent

capability to handle cellular, intratumoural variations, providing an opportunity to

conveniently study the e�ects and implications of these spatio-temporal hetereogenities

within a tumour. Accordingly, several multiscale models have recently been developed

in order to fully capture the spatio-temporal, multiscale nature of tumour dynamics

[6, 55�57]. Such models allow for intratumoural cross-scale integration of intracellular,

extracellular and intercellular concepts, providing comprehensive modelling frameworks

to which new biomedical information can easily be added.
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Chapter 2

Mathematical Framework

In this thesis, a multiscale mathematical framework is used to capture the multiscale

nature of cancer. The framework, that is introduced in this chapter, is applied in the

studies described in Chapters 3, 4 and 5.

2.1 The Cellular Automaton

The mathematical framework used throughout this thesis is, at its core, multiscale,

hybrid cellular automaton (CA) in which a cancer cell population, or a tumour, is sim-

ulated on a square lattice that extends in two or three dimensions in space. Cellular

automata organically enable spatio-temporal dynamics and intratumoural heterogene-

ity. Taking an agent-based approach, each cell (or group of cells) is modelled as an

individual agent with individually computed intracellular features. Extracellular mech-

anisms such as oxygen and drug delivery across the lattice are regulated by mechanistic

partial di�erential equations. Using well-formulated modelling rules, intracellular, ex-

tracellular and intercellular mechanisms can be integrated in the mathematical frame-

work. A lattice point in the CA may be occupied by an agent (i.e. a cancer cell or

a group of cancer cells) or an environmental feature such as extracellular solution (in

vitro), or a blood vessel or extracellular space (ECM) (in vivo). Although the ECM

comprises multiple components, such as collagen, elastin and �bronectin, we here make

a well-established [58], simplifying modelling choice to not distinguish between these

components. In our cellular automaton, a lattice point can at most be occupied by one

agent, and thus the spatial step-size on the lattice is chosen to correspond to the size
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of an agent, corresponding to the smallest entity on the lattice. For example, when

one agent corresponds to one cancer cell, then the spatial step size (∆x) corresponds to

the cell diameter. The time-step progression of the cellular automaton (∆t) is de�ned

by the event of shortest length in the modelling scenario at hand. Note that, if any

numerical methods are incorporated in the modelling scenario at hand, (∆x) and (∆t)

and must ensure that the solutions computed by the numerical methods are stable.

2.2 Cell Cycle Models

The cell cycle is the process that drives the duplication of cells and, by extension, the

growth of a cancer cell population or a tumour. The cell cycle mechanism can be par-

titioned into four sequential phases, namely the gap 1 (G1), synthesis (S), gap 2 (G2)

and mitosis (M) phase. A cell's DNA duplicates in the synthesis phase and chromosome

segregation and cell division occur in the mitosis phase [59]. The mitoses phase ends

with the cell duplicating. In order to replicate its DNA and divide, a cell requires time

to grow and double its protein and organelle mass between synthesis and mitoses. This

happens in the intermediate gap phases G1 and G2. If some extracellular or intracellular

conditions are unfavourable for cell cycle progression, a cell may delay its reproduction

progress by (reversibly) exiting the G1 phase of the cell cycle to enter an inactive, qui-

escent phase (G0) [6]. Note that although quiescent cells are not cycling, they are not

completely inactive, in fact they require energy to actively control their interior state [7].

A cell's current cycle phase signi�cantly impacts its treatment responses to certain

drugs and radiotherapy, as discussed later on in this chapter. Therefore, cell cycle details

are included in our agent-based mathematical framework and the cell cycle progression

for each agent (e.g. cancer cell) is tracked. There exists a number of mathematical

cell cycle models to choose from, some of which are mechanistic and some of which are

phenomenological, some of which are deterministic and some of which are stochastic.

The modeller must decide which cell cycle model is the most appropriate to use for

the modelling scenario at hand. Factors that in�uence the choice of cell cycle model

include: goals and hypotheses of the experiment, desired level of details in the model,

availability of data and allowed complexity in the mathematical and computational

framework. In this thesis, three di�erent types of cycle models are used. Speci�cally,
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in Chapter 3 we use a mechanistic cell cycle model described by a system of ordinary

di�erential equations, in Chapter 4 we use a phenomenological model driven by a cell

cycle clock and in Chapter 5 we use a stochastic model in which a cell progresses

through the cell cycle via various cell cycle states (represented as nodes) connected

by stochastic paths. Common for all three of these models is that they include some

stochastic parameter, individually selected for each agent, that ensures that all cells do

not cycle synchronously. This allows for cell cycle phase heterogeneity amongst cells.

Also common for the three cell cycle models is that a cell's potential (and reversible)

exit from the G1 phase of the cell cycle into the G0 state is based on extracellular

conditions as explained in Section 2.3, and is thus not intrinsically described by the

mathematical expressions used to compute cell cycle progression.

2.2.1 A Mechanistic Cell Cycle Model

In the mechanistic cell cycle model used in Chapter 3 in this thesis, the cell cycle is gov-

erned by a regulatory molecular network described by a system of ordinary di�erential

equations (ODEs) (Equation 2.1) [6] in which the dependent variables are �ve di�erent

protein concentrations and cell mass (mass). The �ve proteins are namely the Cdk-

cyclin B complex (CycB), the APC-Cdh1 complex (Cdh1), the p55cdc-APC complex

in its total form (p55cdcT ), the p55cdc-APC complex in its active form (p55cdcA) and

the Plk1 protein in its active form (Plk1). The ODE that regulates the cell cycle reads

d[CycB]

dt
=k1 − (k′2 + k′′2 [Cdh1] + [p27/p21][HIF ])[CycB], (2.1a)

d[Cdh1]

dt
=

(k′3 + k′′3 [p55cdcA])(1− [Cdh1])

J3 + 1− [Cdh1]
− k4[mass][CycB][Cdh1]

J4 + [Cdh1]
, (2.1b)

d[p55cdcT ]

dt
=k′5 + k′′5

([CycB][mass])n

Jn5 + ([CycB][mass])n
− k6[p55cdcT ], (2.1c)

d[p55cdcA]

dt
=
k7[Plk1]([p55cdcT ]− [p55cdcA])

J7 + [p55cdcT ]− [p55cdcA]
− k8[Mad][p55cdcA]

J8 + [p55cdcA]
− k6[p55cdcA],

(2.1d)

d[Plk1]

dt
=k9[mass][CycB](1− [Plk1])− k10[Plk1], (2.1e)

d[mass]

dt
=µ[mass](1− [mass]

m∗
), (2.1f)
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where the growth rate coe�cient µ is stochastically picked for each individual cell

in order to enable heterogeneous cell cycle lengths amongst cells [6]. The binary vari-

able [HIF ] (occurring in Equation 2.1a) represents the hypoxia inducible transcription

factor-1 (HIF-1) pathway. This factor is only activated if the cell is classi�ed as hy-

poxic [6], hence [HIF ] = 1 in hypoxic cells and [HIF ] = 0 in normoxic cells. Oxygen

distribution, and by extension hypoxia, is governed by extracellular regulations as is

described in Section 2.4, thus the system of ODEs integrates intracellular dynamics

with extracellular dynamics. The variables and parameters in Equation 2.1 are listed in

Table 2.1, and are chosen to be appropriate for mammalian cell lines, speci�cally cancer

cells with a doubling time of around 25 hours [6].

In the mathematical model used in Chapter 3, a cancer cell is categorised as being

in either the G1 phase or in the collective S-G2-M phase of the cell cycle and the Cyclin

B concentration of a cell is used as a marker to determine cell cycle progression. A

cell leaves the G1 state to enter the collective S-G2-M state when [CycB] increases,

i.e. when [CycB](t + ∆t) > [CycB](t), where t denotes time and ∆t is the time step.

Cell division occurs when the cell exits S-G2-M phase to enter the G1 phase, and this

happens when the threshold value [CycB]thr = 0.1 is crossed from above [6, 60]. Post

cell division, the mass of the cell is halved, simulating one cell dividing into two cells

[60].

Component Rate constants (h−1) Dimensionless parameters

[CycB] k1 = 0.12, k′2 = 0.12 [HIF1] =

{
1 if K̂ ≤ 0.1,
0 otherwise

k′′2 = 4.5, [p27/p21]= 1.05
[Cdh1] k′3 = 3, k′′3 = 30, k4 = 105 J3 = 0.04, J4 = 0.04
[p55cdcT ] k′5 = 0.015, k′′5 = 0.6, k6 = 0.3 J5 = 0.3, n = 4
[p55cdcA] k7 = 3, k8 = 1.5 J7 = 0.001, J8 = 0.001, [Mad]= 1
[Plk1] k9 = 0.3, k10 = 0.06
[mass] µ = µ+ + εµ̂ ε is randomised, ε ∈ [−1, 1]

Table 2.1: Parameters for the nondimensionalised form of Equation 1. As described in
Section 2.4, K̂ denotes oxygenation value.

The value m∗ occurring in Equation (1f) denotes the maximum mass that a cell

may reach, should it not be allowed to divide for some biological reason. Follow-
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ing previous work by Tyson and Novak [60], m∗ � max([mass](x, t)), speci�cally

m∗ = 10 · [mass](xnb, tnb), where [mass](xnb, tnb) corresponds to the mass of a �new-

born� cell. The average growth rate constant µ+ = 25 hours and µ̂ = 3 hours are

here chosen to produce cell cycle lengths between 22 hours and 28 hours for cells that

are well oxygenated, i.e. cells that have the [HIF ] component occurring in Equation

2.1a switched o� (i.e. set to zero). The [HIF ] component is activated (set to one)

in hypoxic cells, this activation delays the cell cycle progression and yields a cell cycle

length increase of approximately 20%.

The cell cycle model here discussed is based on previous work by Tyson and Novak,

who produced a series of papers describing the underlying mechanisms of cell cycle

progression and cell cycle regulation in mathematical terms [60�62]. By identifying key

proteins involved in controlling and driving the cell cycle, they managed to condense

the complex biological process, that is the cell cycle, into a six-component regulatory

molecular network [60]. The opposing and oscillating nature between Cyclin-dependent

protein kinases (Cdks) and the anaphase-promoting complex (APC) plays a central role

in cell cycle regulation and yields a hysteresis feedback loop. Cyclin B ([CycB]) is part

of the Cdk family whilst Cdh1 is part of the APC. As is demonstrated in Figure 2.1a,

the cell cycle control system consists of two steady states, namely the G1-phase state

and the S-G2-M-phase state. [CycB] is low, whilst [Cdh1] is high in the G1 state and,

conversely, [CycB] is high, whilst [Cdh1] is low in the S-G2-M state. Other auxiliary

molecules are included in the model to enable appropriate lagging transitions between

these two steady states. Auxiliary molecule concentrations over time are illustrated in

Figure 2.1b. At the start of a cell cycle, the system will tend towards a G1 steady

state and at the end of the cell cycle the system will tend towards a S-G2-M steady

state. Details are provided by Tyson and Novak [60]. As shown in Figure 2.1c, cell

mass, [mass], doubles over the course of a cell cycle and is later reset, i.e halved, at cell

division.

Descriptive remarks regarding each equation occurring in the system of ordinary

di�erential equations (Equation 2.1), used to model cell cycle progression are listed

below.

13
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Figure 2.1: Time evolution of protein concentrations in one simulated cancer cell (mea-
sured in grams of protein per gram of total cell mass), where the cell cycle length is 25
hours. (a) The opposing dynamics between [CycB] and [Cdh1], which is key in the used
mathematical cell cycle model. (b) Concentrations of the auxiliary proteins [Pkl1] and
p55cdc in its total form [p55cdcT ], and its active form [p55cdcA]. (c) Cell mass, [mass]
over time, where [mass] is halved at the very start of each cell cycle, i.e. immediately after
cell division.
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I Remarks regarding Equation (2.1a) :

d[CycB]

dt
= k1 − (k′2 + k′′2 [Cdh1] + [p27/p21][HIF ])[CycB].

Cdks are necessary for DNA replication, and accordingly Cdk activity is high in the

S-G2-M state. Conversely, Cdk activity is low in the G1 state. The rate of change

of the Cdk [CycB] is governed by synthesis and reduction, where the reduction is

considered to be partly independent of other molecules in the system, and partly

induced by the presence of [Cdh1] and the two proteins p21 and p27. p21 and p27

are known to inhibit Cdks, they are here merely treated as parameters via the

factor [p27/p21] that is activated in hypoxic cells only via the [HIF ] component

[6].

I Remarks regarding Equation (2.1b) :

d[Cdh1]

dt
=

(k′3 + k′′3 [p55cdcA])(1− [Cdh1])

J3 + 1− [Cdh1]
− k4[mass][CycB][Cdh1]

J4 + [Cdh1]
.

The p55cdc-APC in its total (p55ctcT ) and active form (p55cdcA) is also part

of the APC. The [Cdh1] time derivative obeys Michaelis-Menten type equations,

where the occurring J-constants are Michaelis constants. Here, [CycB] inhibits

[Cdh1] activity whilst [p55cdcA] promotes it. The [CycB]-derived inactivation of

[Cdh1] is assumed to occur in the cell nucleus, hence [CycB] will accumulate in the

nucleus and it follows that [CycB] will increase with cell mass, thus the [mass]

factor is incorporated in the second term that describes the suppressing e�ect

that [CycB] has on [Cdh1]. For �newborn� cells, [mass] is minimal, however as

the cell cycle progresses, [mass] increases, consequently promoting [CycB] whilst

demoting [Cdh1].

I Remarks regarding Equation (2.1c) :

d[p55cdcT ]

dt
= k′5 + k′′5

([CycB][mass])n

Jn5 + ([CycB][mass])n
− k6[p55cdcT ].
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[p55cdcT ] syntheses occurs naturally throughout the cell cycle but it is also syn-

thesised in the S-G2-M phase by [CycB], as is appropriately described by a Hill

function. However, p55cdc is not active once newly synthesised, and instead this

activation is described in Equation (1d).

I Remarks regarding Equation (2.1d) :

d[p55cdcA]

dt
=
k7[Plk1]([p55cdcT ]− [p55cdcA])

J7 + [p55cdcT ]− [p55cdcA]
− k8[Mad][p55cdcA]

J8 + [p55cdcA]
− k6[p55cdcA].

In the model, [Plk1] is included to transform p55cdc into its active form [p55cdcA].

Tyson and Novak [60] describe [Plk1] as a hypothetical enzyme driving [p55cdcT ]

activation, and this e�ect is incorporated with Michaelis-Menten equations. Fur-

thermore, [Mad] represents a family of checkpoint genes, here treated as a pa-

rameter, which are able to deactivate [p55cdcA], should DNA synthesis or chro-

mosomes alignment not be completed rapidly enough to allow correct cell cycle

advancement.

I Remarks regarding Equation (2.1e) :

d[Plk1]

dt
= k9[mass][CycB](1− [Plk1])− k10[Plk1].

[Plk1] decreases naturally whilst [CycB] enhances [Plk] activity. It is here, again,

apparent that the [mass] component boosts e�ects of [CycB].

I Remarks regarding Equation (2.1f) :

(2.1f)
d[mass]

dt
= µ[mass]

(
1− [mass]

m∗

)
.

The dependent variable [mass] will double over the course of one cell cycle, fol-

lowing an adapted logistic equation.
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2.2.2 A Phenomenological Cell Cycle Clock Model

In the phenomenological cell cycle model used in Chapter 4, progression through the

cell cycle is governed by a cell cycle clock. Thus in our agent-based framework, every

agent is attributed an individual clock that drives and tracks cell cycle progression. To

achieve asynchronous cycling amongst cancer cells, every cell i is assigned an individual,

stochastic doubling-time τi, corresponding to the time it takes for a cell to complete one

cell cycle under well-oxygenated conditions. Speci�cally, we here pick τi is from a nor-

mal distribution with a mean value µ and a standard deviation σ. The choice of using

a normal distribution is motivated by the fact that cell duplication yields imperfect cell

copies that are almost, but not perfectly, synchronised. The choice of distribution from

which to pick τi may ideally be motivated by experimental data, and can be adjusted

if appropriate.

The fraction of time spent in each of the four cell cycle phases G1, S, G2 and M in

well-oxygenated cells are respectively denoted ΘG1, ΘS , ΘG2 and ΘM . The Θ-fractions

sum up to one so that

ΘG1 + ΘS + ΘG2 + ΘM = 1. (2.2)

The values Θj , for j=G1, S, G2, M are here approximations gathered from literature

to represent typical lengths of rapidly cycling human body cells, with a doubling time

of roughly 24 hours, and respectively have the values 11/24, 8/24, 3/24 and 1/24 [63].

Thus, under well oxygenated conditions, the total amount of time that agent i spends

in cell cycle phase j becomes Θj · τi. Low cellular oxygenation values have, however,

been shown to stall cell cycle progression by inducing G1 arrest in particular [1]. Recall

that in the mechanistic cell cycle model presented in Section 2.2.1, the G1 phase is

inherently elongated under hypoxic conditions [6]. For this phenomenological clock-type

model, however, there is no mechanistic functionality driving G1-arrest under hypoxic

conditions so, we therefore introduce an auxiliary function to achieve oxygen-dependent
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Figure 2.2: The G1 Delay Factor (G1DF) is incorporated in the model to achieve oxygen-
dependent G1 arrest. The G1DF (dark line) is approximated using results (red crosses)
from a previous mathematical study by Alarcon et al. [1].

G1 arrest. We call this function the G1 Delay Factor (G1DF ) where,

G1DF (K̂(x, t)) =


2 if 0% ≤ K̂(x, t) < 1%,

a1 + a2
a3+K̂(x̄,t)

if 1% ≤ K̂(x, t) ≤ 10.5%,

1 otherwise.

(2.3)

and K̂ here denotes the oxygenation (in units of mmHg). The G1DF approximates

how much the G1 phase is expanded as a function of oxygenation.

As illustrated in Figure 2.2, the piece-wise function G1DF is an approximation that

is chosen to match data points extracted from a mathematical study by Alarcon et al.

[1], in which a mechanistic Tyson-Novak cell cycle model is extended to incorporate

the action of the p27 protein which delays cell cycle progression and is upregulated

under hypoxia. The time that agent i spends in the G1 phase is thus now given by

G1DF (K̂) · ΘG1τi. Lengths of other cell cycle phases are here modeled to be non-

oxygen dependent.

2.2.3 A Stochastic Cell Cycle Clock Model

Biological systems and mechanisms inherently display a level of stochasticity, the cell

cycle included [5, 64]. As thoroughly described in Chapter 5, and pictorially illustrated

in Figure 5.2, cancer cells are correlated with high replication stress and thus during
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the cell cycle, some cancer cells will need to repair themselves before progressing to

subsequent events in the cell cycle [5]. To account for the fact that not every cell will

progress though the cell cycle the same way, the cell cycle can be modelled as consisting

of several sub-events represented by nodes in a graph, and between the nodes are several

paths, or edges. Building on the cell cycle model describes in Section 2.2.2, a cell cycle

clock here determines when a cell progresses to a subsequent cell cycle state, and a

stochastic `dice roll' determines which path the cell takes. A stochastic cell cycle model

approach is useful when we want to incorporate cell cycle sub-events that some, but not

all, cells experience.

2.3 Cell Division and Tumour Growth

In our framework, when a cell has completed the mitoses (M) phase of its cell cycle, it

duplicates and produces a secondary cell, namely a daughter cell, on a random lattice

point in its spherical neighbourhood. In order to achieve approximately spherical-like

tumour growth on a square lattice, the model stochastically alternates between placing

daughter cells in Moore and von Neumann neighbourhoods [6]. The 1st, 2nd and 3rd

order neighbourhood (O.N.) of a parental agent using (a) the von Neumann convention

and (b) the Moore convention are illustrated in Figure 2.3. A daughter cell is allowed

to be placed on up to ν order neighbourhoods of its mother cell, where lower order

neighbourhoods are strictly prioritised. Thus the �rst order neighbourhood must be

�lled before cells can be placed in the second order neighbourhood and so on. The value

of ν depends on the modelling scenario at hand. When simulating in vitro monolayer

cell cultures, there is often no spatial constraint or lack of nutrients that would hinder

a cell from dividing, in which case ν can be set to In�nity, or half of the lattice size

to ensures that the cells are restricted to the simulated lattice. In vitro cell spheroids

and in vivo tumours, however, often consist of a quiescent core with G0 cells enclosed

by a shell of proliferating cells [3, 5]. This heterogeneity of cycling and non-cycling

cells can be replicated in our model by only allowing daughter cells to be placed on

up to ν order neighbourhoods, where ν is �nite and can, ideally, be calibrated from

experimental data. A G1 cell that is not allowed to divide, due to the lack of space

within its νth order neighbourhood, is set to be in state G0 [6]. This is a reversible
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Figure 2.3: The 1st, 2nd and 3rd order neighbourhood (O.N.) of a parental agent using
(a) the von Neumann convention and (b) the Moore convention.

process, as a G0 cell may re-enter the G1 phase of the cell cycle should space become

available again as a result of, for example, anti-cancer targeting.

2.4 Oxygen Dynamics

Solid tumours typically contain a hypoxic core [7]. Hypoxia occurring in solid tumours

can broadly be categorised into two subtypes, namely chronic hypoxia and transient

hypoxia. Chronic hypoxia occurs in the microenvironment as a result of permanent

di�usion limitations, whilst transient hypoxia is perfusion limited and brought on by

interim oxygen shortages caused by temporary shut downs of blood vessels or alterations

in oxygen �ux [65]. Cells experiencing hypoxia may alter their protein synthesis in order

to adapt to low oxygen conditions and conserve energy, resulting in reduced proliferation

rates [66]. Moreover, radiotherapy responses are reduced in hypoxic tumour regions as

later discussed in Section 2.6.2. Due to the prevalence and implications of intratumoural

hypoxia, oxygen dynamics are included in our mathematical framework in which the

distribution of oxygen across the CA lattice is modelled using a mechanistic partial

di�erential equation (PDE). Oxygen is produced on lattice points that are labeled as

oxygen source points. Depending on the model scenario at hand, these oxygen source

points can for example be blood vessels or lattice boundaries. In our mathematical

framework, the oxygen concentration K(x, t) in lattice point x at time t is computed

20



2.5 Drug Dynamics

using

∂K(x, t)

∂t
= ∇ · (DK(x, t)∇K(x, t)) + rKm(x, t)− φKK(x, t)cell(x, t), (2.4)

coupled with no-�ux boundary conditions. DK(x, t) here denotes the oxygen di�usion

coe�cient which is higher in lattice points occupied by cells than in unoccupied lat-

tice points [6]. The function cell(x, t) is binary and equal to one if the lattice point is

occupied by a cancer cell, and zero otherwise. Similarly, the binary function m(x, t)

is one if the lattice point x is an oxygen source point at time t, and zero otherwise.

Furthermore, rK is the oxygen production coe�cient and φK denotes cellular oxygen

consumption. Hence the �rst term in Equation 2.4 describes oxygen di�usion, the sec-

ond term describes oxygen production and the third term describes oxygen consumption.

The no-�ux boundary conditions, and the non-�xed oxygen production and con-

sumption rates, will cause the total amount of oxygen on the lattice to �uctuate over

time. In order to express the oxygenation levels of lattice points in units of mmHg, we

introduce a scaled oxygen variable K̂(x, t), such that

K̂(x, t) =
K(x, t)

maxnK(n, t)
· h, (2.5)

where maxnK(n, t) denotes the maximal K(x, t)-value, out occurring on the lattice

at time t [67] and h is a scaling factor that should ideally be calibrated by experimental

data. If a cell has a scaled oxygen value such that K̂(x, t) ≤ 10 mmHg, it is classi�ed

as hypoxic [6]. In the mathematical framework, the K̂(x, t)-value in�uences G1-arrest

and responses to radiotherapy amongst other things.

2.5 Drug Dynamics

2.5.1 Some Basic Concepts in Pharmacology

Pharmacology can be described as `The study of how drugs a�ect functionalities of liv-

ing systems' and, in turn, a drug can be de�ned as substance (that is not a nutrient nor

an essential dietary constituent) of which the chemical structure is known, that induces
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a biological e�ect in a living organism once said living organism is subjected to the

drug [7, 68, 69]. Drug chemicals can be either synthetic or natural, i.e. man-made or

obtained from �ora or fauna. Moreover, a medicine has the purpose of achieving some

therapeutic e�ect and may (but does not necessarily) contain one or multiple drugs, of-

ten in combination with other substances such as solvents and stabilisers that facilitate

medicine administration. In order to achieve pharmacological responses, drug molecules

must chemically in�uence one or more cell constituents. In other words, drug molecules

need to bind to these cell constituents, which are often referred to as `drug targets'

or just `targets', in order for pharmacological responses to be achieved in a biological

system [7]. The most common targets include receptors and enzymes, however many

anti-tumour drugs directly target the DNA. Receptors are protein molecules that re-

spond to endogenous chemical signals, and enzymes are protein molecules that catalyse

chemical reactions without getting consumed in the process [68].

When drugs are administered to a living organism, the number of molecules in the

organism signi�cantly exceeds the number of drug molecules [7]. This means that if the

drug molecules were to be randomly distributed across the living organism as a whole,

the chance of drug molecules binding to particular targets would be minimal. Drugs

must therefore be able to somehow target speci�c cells or tissues in the body in order

to be useful in therapeutic settings. The binding site speci�city of a drug describes how

good the drug is at selectively binding to its intended targets, without binding elsewhere

[7, 68]. Complete binding site speci�city can, however, not be achieved in practice. Drug

binding to unintended targets may induce unwanted biological e�ects that can manifest

as side e�ects in therapeutic settings. Drugs with low potency are often administered in

higher doses, and this increases the likelihood of drug molecules binding to unintended

targets. If a target (such as a receptor) is occupied by a drug molecule, this may, but

does necessarily, alter the behavior of the receptor. If the target behaviour is indeed

altered, we say that the target is activated. Note that drug binding and drug activation

are two separate steps involved in the process of drugs producing biological e�ects. The

a�nity of a drug describes the drug's tendency to bind to targets whilst the e�cacy

describes the tendency of a bound drug molecule to activate targets [7, 68]. A drug

can be classi�ed as a, full or partial, agonists or an antagonists. For an agonist, the

drug molecules bind to targets and, in most cases, activate biological responses. On the
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other hand, for an antagonist, the drug molecules bind to target receptors but do not

activate biological responses [7, 68]. A drug's potency depends both on its a�nity and

e�cacy, but in most cases highly potent drugs have high a�nity. Full agonists have

maximal e�cacy and partial agonists have high (but not maximal) e�cacy whilst full

antagonists have negligible (zero) e�cacy. The agonist/antagonist classi�cation can be

conceptually understood by the below schematics,

Agonist: A + R
k+1−−⇀↽−−
k-1

AR
α−−⇀↽−−
β

AR* → Response,

Antagonist: A + R
k+1−−⇀↽−−
k-1

AR→ No Response,

where A denotes a ligand (i.e. any chemical, such as a drug, that binds to receptors),

R denotes target receptors and A binds to R to form the complex AR [7].

2.5.2 Drug Binding and Drug Activation

If ligand A reacts with receptors R to form a complex AR, then the reaction can be

described by

A + R
k+1−−⇀↽−−
k-1

AR.

(2.6)

Now, if we regard a system with a total number of target receptors Ntot, of which

NA receptors are occupied by molecules of ligand A, then there are Ntot − NA free

target receptors available in the system. More precisely, we here let NA correspond

to the steady state number of occupied receptors, and we let xA denote the ligand

concentration. If we assume that the number of added drug molecules (NĀ), is much

greater than the number of available target receptors in the system (Ntot), so that

NĀ >> Ntot, then the ligand concentration xA can assumed to be una�ected by the

number of bound molecules, NA. Hence xA can be assumed to be constant [7]. The

Law of Mass Action dictates that the rate of a chemical reaction is proportional to the

product of the concentrations of the substances that are reacting [7]. Using the law of
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mass action, the forward and backward reactions in Equation 2.6 can thus be obtained

as

Forward reaction rate: k+1

(
xA · (Ntot −NA)

)
,

Backward reaction rate: k−1NA.

At steady state there is an equilibrium, so the rate of the forward reaction must equal

the rate of the backward reaction, hence,

k+1

(
xA · (Ntot −NA)

)
= k−1NA. (2.7)

From this, the a�nity constant, de�ned as k+1/k−1, can be obtained as

k+1

k−1
=

NA

xA · (Ntot −NA)
[l/mol]. (2.8)

The reciprocal of the a�nity constant is referred to as the equilibrium dissociation

constant, KA, such that

KA =
k−1

k+1
=
xA · (Ntot −NA)

NA
[mol/l] (2.9)

which depends on both the drug and the target receptor. Since the equilibrium dissoci-

ation constant is measured in units of concentrations (e.g. [mol/l]) it is more intuitive

to use than the a�nity constant. Further, the occupancy, pA, describes the fraction of

occupied target receptors, i.e. NA/Ntot, and can be obtained from Equation 2.9 so that

pA =
NA

Ntot
=

NA

KANA/xA +NA
=

xA/KA

1 + xA/KA
, (2.10)

this is the Hill-Langmurir equation that describes how the target occupancy is related

to the drug concentration [7]. When plotting the occupancy pA(xA) over a linearly

increasing drug concentration xA, the characteristic shape of a rectangular hyperbola is

obtained. Alternatively, if the drug concentrations increases on a logarithmic scale, the

pA(xA)-curve takes a sigmoidal shape [68, 70], as is demonstrated in Figure 2.4. If more

than one drug is present, things get slightly more intricate but that is outside the scope

of this thesis. From the above equation (Equation 2.10), it is clear that if xA = KA,

then pA = 0.5.
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Figure 2.4: The target occupancy (pA) plotted over drug concentration (xA) when the
drug concentration increases on a linear (left) and logarithmic (right) scale. Here KA,
i.e. the drug concentration that yields 50% target occupancy, is xA = 100 (concentration
units).

Typical drug binding curves used in experimental settings graph the amount of drug

bound over drug concentration, this can be directly measured using radioactive atoms

[7]. If we are instead interested in assessing the biological e�ect or response, not just the

drug binding, then we can graph drug e�ect in [%] over concentration (in vitro) or the

drug response in [%] over drug dose (in vivo). An e�ect or response of 100% corresponds

to the maximal e�ect or response achievable by the drug, denoted Emax. EC50 andED50

respectively denote the drug concentration and drug dose required to achieve half of the

maximum e�ect, i.e. 0.5 · Emax. A modeller may quantitatively formulate what Emax

corresponds to in the speci�c scenario at hand. Using the Hill-Langmurir Equation,

and the simplifying assumption that drug e�ect is proportional to target occupancy,

we arrive at the Emax model [70�72], a ubiquitous model in pharmacodynamics which

expresses the in vitro relationship between the drug concentration C, and drug e�ect

E(C), as

E(C) = Emax
C

EC50 + C
. (2.11)

In line with previous discussion, the Emax model achieves a sigmoidal drug response

curve. To achieve steeper growth curves, the Emax model can be expanded to the

sigmoidal Emax model [70], in which a coe�cient (termed the hill-coe�cient and here
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denoted gamma) is introduced so that

E(C) = Emax
Cγ

ECγ50 + Cγ
. (2.12)

We can use the sigmoidal Emax model in our mathematical framework to compute

how cells respond to local drug concentrations. If appropriate, a term +E0 can be

added on the right-hand side of Equation 2.12 to represent a base e�ect in the absence

of drugs [73].

2.5.3 Cancer Drugs

Cancer cells are merely damaged, corrupted human body cells and consequently, this

makes them more di�cult to selectively target in vivo than for example bacteria, be-

cause microorganisms di�er from healthy human body cells in ways that cancer cells,

naturally, do not. Cancer drugs must, however, somehow be able to mainly target can-

cer cells, not all human body cells and thus we need to di�erentiate between cancer

cells and healthy human body cells in some way. One way to make this di�erentiation

is by noticing that cancer cells are relatively proliferative whilst most human body cells

are in a non-cycling state. Many conventional anti-cancer drugs take advantage of this

fact and thus target all cycling cells, or more speci�cally mechanisms involved in the

cell cycle and cell division process [7, 74, 75]. The premise is that this will mainly

attack cancer cells whilst keeping enough human body cells untargeted to validate drug

administration [7, 76]. This explains why common chemotherapy side-e�ects are associ-

ated with the types of human body cells that are constantly dividing and cycling, such

as hair cells associated with the side-e�ect alopecia. There exists multiple anti-cancer

drugs, approximately 80 of which are used in British clinics, often in combination with

other drugs or anti-cancer treatments [70]. In this thesis, we will investigate the e�ect of

three, rather di�erent, anti-cancer drugs in silico. In Chapter 3, we consider treatments

with traditional chemotherapeutic drugs. In Chapter 4, we investigate the e�ects of

hypoxia-activated prodrugs (HAPs), that act as `Trojan Horse' drugs being, conceptu-

ally, harmless until they reach hypoxic (tumour) regions in which warheads are released.

Finally, in Chapter 5 we study drugs that target cellular DNA-damage responses, and

thus may hinder cells from repairing themselves post erroneous DNA replication.
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2.5.4 Drug Disposition

When drugs are administered in vivo, the stages involved in drug disposition are com-

monly categorised using the ADME acronym, where the letters stand for: Absorption

of drugs from the drug administration site, Distribution of drugs within the body,

Metabolism of drugs and Excretion of drugs [7, 69, 77]. In vivo, drug molecules are

dispositioned via bulk �ow and di�usion. Bulk �ow describes the process in which the

drugs are transported over long distances via, for example, the bloodstream or the cere-

brospinal �uid. Over short distances, however, the drug molecules are transported via

di�usion. The di�usion is highly a�ected by the chemical structure of the drug, whilst

the bulk �ow transportation is not [7]. The di�usion rate of a drug is predominately

a�ected by the molecular size of the drug and, more speci�cally, the di�usion coe�cient

of a drug is inversely proportional to the square root of the molecular weight of the drug,

so that large molecules di�use more slowly than do small molecules [7]. In many cases,

drugs can be assumed to be well stirred with a uniform drug distribution within some

regarded body compartment, and it is the inter-body compartment drug movement

that determines how long a drug will be present in the body post drug administration.

Drug elimination describes the irreversible process of drug removal from the body. It is

achieved by metabolism and excretion. Metabolism refers to the chemical build-up and

break down of drugs, and excretion refers to elimination of drug from the body via some

excretory route and elimination transporter, e.g. kidneys and urine [7]. In many cases

when describing drug elimination, we can use �rst order kinetics which means that the

rate of drug elimination is directly proportional to the drug concentration. First order

kinetics results in exponential drug decay. As a comparison, zero order kinetics means

that the drug is eliminated at a constant rate. In our mathematical framework, the

drug concentration C(x, t) in location x at time t is computed using a di�usion-reaction

equation where

∂C(x, t)

∂t
= ∇ ·

(
DC(x, t)∇C(x, t)

)
+ p(x, t)− ηCC(x, t), (2.13)

and DC(x, t) denotes the di�usion coe�cient, p(x, t) is a supply term and ηC is a

�rst order drug elimination coe�cient.
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2.6 Radiotherapy

2.6.1 E�ects of Radiation in Biological Materials

Today, the majority of cancer patients receive radiotherapy in some form [78]. When

biological materials are exposed to radiation, they absorb energy from the radiation.

This energy absorption can cause an electron in some atom or molecule in the biolog-

ical material to get excited to a higher energy level (excitation) or to get ejected from

its atom or molecule (ionisation) [79]. Di�erent types of radiation are being used in

clinical settings, but in this work we will focus on X-rays, a form of electromagnetic,

ionising radiation (IR). X-rays are produced in electrical devices using the kinetic en-

ergy from high energy electrons [79]. X-rays themselves do not damage cell targets

(DNA molecules), but when energy from X-rays is absorbed by the biological material,

this results in the production of fast-moving charged particles that do have the ability

to damage cell targets [79]. IR-induced DNA damage can be grouped into two main

categories: (i) damage by direct action of radiation and (ii) damage by indirect action

of radiation [79]. Direct damage occurs when an electron, that has been ejected from

some atom or molecule in the biological material as a result of ionising radiation, directly

interacts with DNA molecules. Indirect damage occurs when the ejected electron reacts

with other molecules in the cell, that in turn interact with DNA molecules and thus

indirectly cause DNA damage [80]. These `other molecules' are most commonly water

molecules, since cells consist of roughly 80% water [79]. When radiation interacts with

water molecules in the cell, free radicals are formed, and the amount of free radicals

formed is furthermore dose-dependent [81]. Free radicals are atoms or molecules that

each have an unpaired valence electron, making them highly reactive and thus prone to

reacting with (in this case) DNA molecules. Reactions between free radicals and cellular

DNA may result in alterations of the molecular DNA structure, which may induce cell

death or the impairment of some cell functions. It is estimated that two thirds of the

total X-ray induced DNA damage is caused by indirect actions of radiation [79].

A DNA molecule famously consists of two strands, wrapped in double-helical struc-

ture, that are connected by bases. It is the sequence of the four occurring bases (adenine,

guanine, thymine and cytosine) that stipulate the genetic code. Each strand is, further-

more, held together by sugar and phosphate groups. Radiation can produce multiple
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types of DNA lesions in cells, some of which are easy for (mammalian) cells to self-

repair, and some of which are not [79]. In the context of clinical radiotherapy, DNA

strand breaks are the most impactful type of such DNA lesions [79]. They occur when

the sugar-phosphate `sca�olding' in the DNA strands gets damaged and disruptions in

the DNA helix consequently occur. Two main types of strand breaks can take place:

single-strand breaks (SSBs) and double-strand breaks (DSBs) [79]. SSBs occur when

one of the strands in a local region of the DNA double-helix breaks, whilst DSBs occur

when both of the strands in a local region of the DNA double-helix break. Note the

word local here, as cells can handle two strand breaks occurring on opposite strands

located more than approximately ten base pairs (or 4 nm) apart as two SSBs [79]. Cells

are better at repairing SSBs than they are at repairing DSBs, because post SSBs cells

can use the undamaged, opposite strand as a template to ensure speedy and accurate

DNA repair, something that can not be done for DSBs. Incorrect DNA repair causes

genetic, and likely harmful, alterations of DNA molecules. In addition to being more

easily self-repaired than DSBs, SSBs are also less biologically impactful and it follows

that DSBs are the main cause of IR-induced cell death, despite the fact that the number

of IR-induced SSBs by far exceeds the number of IR-induced DSBs following a typical

radiotherapy dose. As an example, a radiation dose of 1 Gy yields approximately 1000

SSBs but only 40 DSBs [79].

2.6.2 In�uence of Oxygen on Radiotherapy Responses

It is well established that in mammalian cells, IR-induced DNA damage is boosted by

the presence of oxygen [82]. If the same radiation dose is delivered to two biological

systems that are identical, save from the fact that one of the systems is hypoxic whilst

the other system is well-oxygenated, the response (in terms of number of killed cells)

will be greater in the well-oxygenated system. This can be explained by the fact that

cellular oxygenation values a�ect the chemical process of IR-induced DNA radicals [83].

DNA radicals are formed when IR-induced free radicals interact with DNA molecules

in a cell [83]. DNA radicals are typically short-lived but in the presence of oxygen,

however, these short-lived DNA radicals are likely to bind to an oxygen molecule to

form a stable DNA peroxide, thus rendering the DNA damage permanent (or �x). This

is referred to as the oxygen �xation hypothesis [79]. If, on the other hand, molecular
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oxygen is sparse then it is unlikely that a DNA radical will bind to an oxygen molecule,

and thus the DNA radical has a higher probability of chemically reducing back to its

original (undamaged) DNA form. The oxygen �xation hypothesis is clari�ed in Example

2.6.2.

I Example 2.6.2: Consider a high energy electron (e−) in the biological material

resulting from x-ray exposure. If this electron strikes a water molecule (H2O), then

this water molecule may split into a proton (p+) and a hydroxyl radical (OH∗)
that can react with DNA (DNA-H) to form a DNA-radical (DNA*). If molecular

oxygen (O2) is available, then oxygen may bind to the DNA-radical to form a

peroxy radical (DNA-OO*), which entails permanent DNA damage. On the other

hand, if there is no molecular oxygen available, the DNA radical (DNA*) can be

restored, i.e. repaired, to its original, undamaged form (DNA-H) [84].

It should also be noted that hypoxia may cause epigenetic and molecular cellular

alterations that may modify radio-sensitivity in additional ways [85]. From the above

discussion we have learnt that biological materials are the least radio-sensitive when

completely oxygen deprived, and empirical results show that radio-sensitivity over oxy-

genation levels have a general sigmoidal trend [79]. To furthermore quantify the in�uence

of oxygen on IR responses, a dose ratio, namely the oxygen enhancement ratio (OER)

[82] is commonly used such that

OERm =
DN2

Dair
. (2.14)

where DN2 is some IR dose in nitrogen, and Dair is the IR dose needed to achieve

the same response in air. The subscript m in OERm here stands for maximum, as we

are comparing radiotherapy responses in two extreme scenarios, speci�cally in nitrogen

(with no oxygen) and in air (with plentiful oxygen). If the radiation response is evaluated

in terms of a survival fraction of cells, or the number of DSBs, then OERm takes the

value of approximately 3 ± 0.5 for most eukaryotic cells. However, if the response is

instead evaluated in terms of the number of SSBs, the OER value has a wider range of

possible values [82], but since DSBs are the main cause of IR-induced cell death we here

consider the value 3 ± 0.5 to be a good enough approximation to use in radiotherapy
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models in our mathematical framework. In order to describe the oxygen-dependence of

radio-sensitivity, the oxygen enhancement ratio (OER) can be used where,

OER(K̂) =
OERm · K̂ +Km

K̂ +Km

. (2.15)

Here, Km = 3 mmHg is the oxygenation value achieving half of the maximum ratio

and, as previously discussed, OERm = 3 [67]. As is illustrated in Figure 2.5, Equation

2.15 yields the empirically observed sigmoidal curve.

2.6.3 The Linear-Quadratic Model

The linear-quadratic (LQ) model is ubiquitous in radiotherapy modelling. It describes

the survival fraction, S, of a cell population as a function of a radiation dose, D, such

that

S = e−(αD+βD2), (2.16)

where α and β are cell-line speci�c radio-sensitivity parameters. The LQ model is

used both in laboratories for analysing and predicting in vitro and in vivo experiments,

and in clinical settings [79, 86]. If the surviving fraction S in Equation 2.16 is plotted on

a log-scale over the radiation dose D, then the response curve typically takes a quadratic

(or a `shouldered') shape. This curve is dominated by the α-parameter for low D-values

and by the β-parameter for high D-values. The curvature can be described by the ratio

α/β. For high α/β-ratios, the curve is dominated by the linear term with coe�cient α

and thus assumes a fairly linear shape. On the other hand, for low ratios α/β the curve

has a more quadratic shape. If radiation is given in multiple fractions, cells have time

to repair sub-lethal damage in between doses, speci�cally, this repair usually takes 6-24

hours [86]. If n fractions with radiation dose d are given, such that nd = D, then the

LQ model can be adapted to express the survival as a result of multiple fractions where

S = (e−αd−βd
2
)n = e−(αnd+βnd2) = e−(αD+βD·d). (2.17)

Now, since D · d = D ·D/n < D2, the fractional LQ-model (Equation 2.17) will in-

herently result in a higher survival fraction S than the single-dose LQ model (Equation
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2.16) given some dose D.

The current formalisation of the LQ model (Equation 2.16) does not have one single

derivation, but is instead a result of contributions from multiple empirical and theoret-

ical studies performed over several decades during the last century [86]. In the early

20th century, just a few years after the discovery of X-rays in 1895 [87], mathematical

studies were performed that described in vitro radiation responses in simple organisms

such as yeast, bacteria and viruses [86]. These studies reported exponential response

curves when plotting survival fraction over radiation dose, and thus it was hypothesised

that IR exposure causes a number of damaging events (or hits) proportional to the

administered dose D. A cell was thought of as having one single sensitive target, and if

such a target was hit by radiation, the cell would simply die [86]. If one assumes the

hits to be Poisson distributed, with a mean value corresponding to the radiation dose

D, then this `Single Target � Single Hit' model yields an expression for cell survival as

S = Phit(0, D) = e
− D

D0 , (2.18)

where Phits(0, D) denotes the probability that there are exactly 0 hits on a target

when a dose D is administered. D0 here denotes the dose causing on average one hit

per cell.

I Remark 2.6.3: Recall that the Poisson distribution is a discrete probability

distribution that describes the probability that a certain number of events occur

in some �xed (here time) interval, when the events occur at a constant rate and

independently of other events. Generally, the probability to observe k events in

some (time) interval is given by

P (k events) = e−λ
λk

k!
, (2.19)

where λ is the expected number of occurrences. Hence, for the special zero-events

case, P (0) = e−λ.

Later on, in the 1950s, in vitro experiments with more complicated organism were

carried out, now using cancer and non-cancer mammalian cell-lines. It was observed
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that mammalian cells are signi�cantly more IR sensitive than are viruses and bacteria.

Moreover, the empirically produced response curves were now shouldered, rather than

exponential (like the ones previously observed in vitro for the simpler organisms) [86].

As a result, the `Single Hit � Single Target' concept was modi�ed in order to explain this

shouldered response curve, and Both `Single Hit � Multiple Targets' and `Multiple Hits

Â�� Single Target' models were explored. In `Single Hit � Multiple Targets' models, a

cell is regarded as having multiple, speci�cally m, radio-sensitive targets that all need

to be hit in order for the cell to die. If these targets are denoted i where i = 1, 2, ...,m

then, with the average number of hits per target being D/D0, the probability that a

target i gets hit is given by

1− Phit i(0, D) = 1− e−
D
D0 , (2.20)

hence the probability that all targets 1, 2, ...,m in a cell are hit is given by

(
1− Phit 1(0, D)

)(
1− Phit 2(0, D)

)
...
(
1− Phit m(0, D)

)
= (1− e−

D
D0 )m, (2.21)

and thus the probability that the cell survives, i.e. fewer than m of its targets are

hit, is

S = 1− (1− e−
D
D0 )m. (2.22)

Equation 2.22 yields a shouldered response curve for `Multiple Hit � Single Target'

models. Similar result-trends were obtained for `Single Target � Multiple Hits' models

for radiation dosages within the range typically studied, but for dosages outside the typ-

ical range these models produced response curves that did not agree with experimental

data [86]. This prompted the exploration of `Multiple Target � Multiple Hits' models

but theses required more parameters and were thus more di�cult to �t to experimental

data. In the meanwhile, studies using the `Single Hit � Multiple Targets' model reported

a wide array of m-values, i.e. number of targets. For example, m = 2 was reported for

HeLa cells but in other studies the m-value was found to be up to two orders of magni-

tude larger [86]! Consequently, m was, and is still, instead considered to be an empirical

factor describing the speci�c system at hand, and models other than `Hit(s) � Target(s)'
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models were developed using alternatives to this Target theory. This resulted in sev-

eral LQ-like models being suggested with various motivations. In 1966, Sinclair wrote

down the LQ-model (Equation 2.16) based on empirical observations, and in the 70s,

theoretical motivations for the linear-quadratic response-curve were published. It was

suggested that the linear part corresponds to single track events whilst the quadratic

part corresponds to multiple track events. In abstract models, a cell was thought of

as either dying directly from IR-induced DNA damage or by progressing through sub-

lethal stages in order to eventually die, and in mechanistic models, DSBs were said to

be in�icted by damage resulting from either one single particle or multiple particles [86].

When simpli�ed, the abstract and mechanistic model both suggest linear-quadratic re-

sponse curves [86].

Besides being veri�able in laboratories and theoretically supported, the LQ model

has proven applicable in clinical settings [86], making it the �rst choice radiotherapy-

model for many mathematical oncologists. In the mathematical framework used in this

thesis, we are working with agent-based models in which each agent has an individual

response to IR. Thus the LQ-model (Equation 2.16) is here modi�ed to describe the

probability that one agent (e.g. one individual cell) survives a radiation dose D. Cellular

responses to radiotherapy are dependent on oxygenation status [88], cell cycle progres-

sion [89, 90], and cell-line characteristics [2]. To honour this, the survival probability of

an agent in lattice point x at time t is here given by

S(x, t) = e−D([OMF ]α(x,t)+D[OMF ]2β(x,t)), (2.23)

where D is the radiation dose, n is the number of administered radiation fractions

and α and β are cell-line speci�c sensitivity parameters [23]. To include cell cycle

sensitivity, α and β are here cell cycle dependent [2], and the oxygen modi�cation

factor (OMF) is incorporated to include oxygen sensitivity [91]. The OMF function is

a scaled version of the OER function (Equation 2.15), suitable for stochastic models,

here re-written into a form that is appropriate for agent-based models such that

OMF(K̂(x, t)) =
OER(K̂(x, t))

OERm
=

1

OERm

OERm · K̂(x, t) +Km

K̂(x, t) +Km

, (2.24)
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Figure 2.5: The oxygen enhancement ratio (OER) and the oxygen modi�cation factor
(OMF) plotted over oxygenation value.

where K̂x,t denotes the oxygenation value (in units of mmHg) in lattice point x at

time t, and the values for Km and OERm are previously de�ned under Equation 2.15.

The OER and OMF functions are illustrated in Figure 2.5. The survival probability of

a cell exposed to a typical clinical radiotherapy dose 2 Gy is plotted in Figure 2.6, as a

function of oxygenation and cell cycle phase, where the sensitivity parameters α and β

are chosen to correspond to those of typical cancer cell lines [2].
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Figure 2.6: The probability S(x, t) that a cell location x at time t in our mathematical
framework survives a radiation dose of 2 Gy, as a function of its cell cycle phase (see
legend) and oxygenation value. The values for α and β are gathered from a previous study
by Kempf et al. [2] and are listed in Table 4.1.
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Chapter 3

Drug Resistance

Cancer cells can be, or become, resistant to chemotherapeutic drugs. In this chapter we

investigate what happens when cancer cell populations, comprising both susceptible and

resistant cancer cells, are subjected to various chemotherapy treatments plans.

3.1 Chapter Summary

Tumour recurrence post chemotherapy is an established clinical problem and many can-

cer types are often observed to be increasingly drug resistant subsequent to chemother-

apy treatments. Drug resistance in cancer is a multipart phenomenon which can be

derived from several origins and in many cases it has been observed that cancer cells

have the ability to possess, acquire and communicate drug resistant traits.

In this chapter, the in silico framework described in Chapter 2 is adapted in or-

der to study drug resistance and drug response in cancer cell populations exhibiting

various drug resistant features. The framework is based on an on-lattice hybrid multi-

scale mathematical model and is equipped to simulate multiple mechanisms on di�erent

scales that contribute towards chemotherapeutic drug resistance in cancer. This study

demonstrates how drug resistant tumour features may depend on the interplay amongst

intracellular, extracellular and intercellular factors. On a cellular level, drug resistant

cell phenotypes are here derived from inheritance or mutations that are spontaneous,

drug-induced or communicated via exosomes. Furthermore intratumoural heterogeneity
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3. DRUG RESISTANCE

and spatio-temporal drug dynamics heavily in�uences drug delivery and the develop-

ment of drug resistant cancer cell subpopulations. Chemotherapy treatment strategies

are here optimised for various in silico tumour scenarios and treatment objectives.

We demonstrate that optimal chemotherapy treatment strategies drastically depend

on which drug resistant mechanisms are activated, and that furthermore suboptimal

chemotherapy administration may promote drug resistance.

3.2 Introduction

Chemotherapy is one of the major anticancer therapies, it is widely used both by it-

self and as part of multimodality treatment strategies. In most cases chemotherapy

is e�ective, however the existence, or the development, of chemotherapeutic drug re-

sistance in tumours continues to be a major problem in chemotherapeutic treatments,

often leading to tumour recurrence post treatment [92�98]. Clinical and experimental

observations suggest that cancers are often increasingly drug resistant subsequent to

chemotherapy exposure [98�101] and moreover cancer cells have the ability to posses,

acquire and communicate drug resistant traits, enabling them to survive in the presence

of chemotherapeutic drugs [95]. The existence of drug resistant phenotypes in cancer

cell populations signi�cantly impacts the e�cacy and successfulness of chemotherapy

[102�104].

The emergence of drug resistant cancer cells in tumours results in multiple subpop-

ulations comprising drug sensitive (S) and drug resistant (DR) cells [102]. Furthermore

cancer cell populations may evolve according to Darwinian principles [105] and cells

that acquire drug resistance during chemotherapy have been observed to be increasingly

metastatic [99], consequently DR subpopulations can reach signi�cant proportions de-

spite initially accounting only for a small fraction of some cancer cell population [95]. S

and DR subpopulations that coexist synergistically compete for resources such as space

and nutrients [105, 106], this competition in�uences the tumour environment and yields

intratumoural heterogeneity. In clinical cases where tumour eradication is implausible,

chronic control treatments can be proposed in which tumours are continuously managed

and prohibited from reaching lethal proportions [95, 106, 107], long-term chemother-

apy treatments are however linked to high frequency drug resistance [108, 109]. Since
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DR subpopulations are more �t than S subpopulations to survive in the presence of

drugs, repeated or prolonged chemotherapy administration may amplify this �tness dif-

ferentiation. Indeed Duan et al. [102] performed in vitro and in vivo experiments to

conclude that in absence of drugs, sensitive cells are more �t than drug resistant cells

and conversely, in presence of drugs DR subpopulations dominate as S subpopulations

are reduced [102]. Thus drug resistant cells may thrive in micro-environments con-

taining chemotherapeutic drugs, and a large DR subpopulation may result in disease

recurrence post chemotherapy [110]. Ensuring that the DR subpopulation does not

dominate the S subpopulation is of importance as such an outcome would render the

tumour uncontrollable by chemotherapy [106]. This suggests that deliberately maintain-

ing a subpopulation of drug sensitive cells may constitute a strategic countermeasure in

tumour control schemes [111]. Duan et al. investigated the plausibility of this proposed

strategy in vivo by comparing two cell populations exposed to chemotherapeutic drugs

[102]. The �rst of these cell populations comprised drug resistant cells only, and the

second population contained a combination of both drug resistant and sensitive cells.

Their study con�rmed that the second, combined, cell population was controllable by

chemotherapy for a longer time period than the �rst, drug resistant, cell population

[102].

Drug resistance is a multipart phenomenon which can be derived from several origins,

in fact a cancer cell or tumour may express drug resistance in various ways [95, 111, 112].

Drug resistance may arise due to micro-environmental or intrinsic cell factors [113] and

cells can acquire drug resistance by for example amplifying drug target molecules, acti-

vating DNA-repair, inducing drug transporters or altering their drug metabolism [112].

Phenotypical variations in cells, such as drug resistance, can be inherited or acquired

and further, cells may be resistant to one speci�c drug or to multiple drugs, the latter

phenomenon is known as multidrug resistance (MDR) [95, 105, 108, 114]. Early work

performed by Luria and Delbrück on bacteria indicated that virus resistant mutations

occur independently of the virus itself, thus indicating the existence of primary virus re-

sistance [115]. These �ndings have since been adapted to oncology [93, 95], and primary

drug resistance, that is drug resistance that occurs independently of the drug presence,

is an accepted phenomenon arising from cell mutations. However, drug presence has
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3. DRUG RESISTANCE

been demonstrated to speed up the development of DR subpopulations [116] and can-

cer cells may acquire drug resistance by altering their genetic or epigenetic structure in

order to evade drug e�ects [93]. Such alterations are induced by drug presence and may

include dislodging drug receptors or overexpressing and modifying target molecules [93].

Heat shock proteins (Hsps) are molecular chaperones, continuously present in eukary-

otic cells, yielding cytoprotective cell e�ects [99, 117]. Via their chaperoning actions

they enable cells, both healthy and cancerous, to adapt to extracellular variations and

maintain homeostasis whilst subjected to external stresses such as, maybe most impor-

tantly, hyperthermia but also hypoxia and anoxia, toxins and the presence of harmful

chemical agents such as chemotherapeutic drugs [99, 101, 117, 118]. In healthy cells, the

upregulation of Hsps can protect cells from for example high temperatures [99], however

in cancerous cells Hsp upregulation may protect cells from drug e�ects [99, 101], thus

enabling cells to survive under otherwise lethal conditions [117]. By extension Hsps have

been linked to resistance to chemotherapeutic drugs [99] such as cisplatin, doxorubicin

[101] and bortezomib [118].

Typical chemotherapy drugs target cells in active cell cycle phases, thus quiescent

cells parry drug e�ects [96] and similarly slow-cycling cells are intrinsically more drug

resistant than fast cycling cells [110, 119] as they are more likely to evade drug attacks.

Slow-cycling cells have been linked to cancer stem cell-like (CSC-like) cells [96], they

are important drivers for tumours due to their increased drug-survival rate and ability

to serve as reserve stem cells [110, 119]. CSC-like cells have been depicted to display

various traits including being slow-cycling, migratory and non-adhesive [92]. Rizzo et

al. [100] demonstrated in vivo in mouse tails that a subpopulation of CSC-like cells

indeed may bene�t from drug presence when competing for resources with other cell

populations. Thus slow-cycling cells have been identi�ed to reinforce tumours, hence to

eradicate cancer cell populations containing a subpopulation of slow-cycling cells it is

crucial to target both slow-cycling and fast-cycling cells [119]. Intercellular communi-

cation is vital for multicellular organisms and cells may communicate with each other

using chemical signalling, direct physical contact or, as discussed here, sending and re-

ceiving exosomes [109, 120]. Out of these listed information mediators, exosomes are

of particular interest as they are detectable, cell type-speci�c and able to travel long

distances [109, 120]. This implies that they could potentially constitute therapeutic
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targets or biomarkers and thus be used to impede or signal cancer [109, 120]. Exosomes

constitute subcellular `molecule parcels' that cells may utilise to dispose of non-essential

materials [120], however perhaps more interestingly, they also facilitate long-distance

intercellular communication by transporting information from sender cells to recipient

cells [109, 121, 122]. These molecule-parcels contain biomolecules such as proteins,

mRNA and DNA which may provide recipient cells with information that can be used

to alter phenotypical attributes, in order to increase �tness [120]. Exosomes are a type

of extracellular vesicle (EV) [123] and recent studies have identi�ed EVs as key players

in cancer development as they can in�uence tumour growth and metastasis by commu-

nicating oncogenic information [120]. EVs have also been assumed to be a part of the

process that converts non-malicious cells into cancerous, and of optimising the balance

between CSCs and non-CSCs [120]. Thus in response to chemotherapeutic drugs, cancer

cells may not only develop individual drug resistance, but furthermore they may render

other cells drug resistant by secreting exosomes to communicate and share drug resis-

tant traits [123]. Exosomes may induce both destructive and protective cell responses,

in fact the role of EVs depends on the regarded scenario [124]. In this study pathogenic

exosomes only are modelled.

Mathematical models of tumour growth and treatment response may further can-

cer research by contributing insight into tumour dynamics, elucidating and validating

clinically and experimentally recognised phenomena and guiding in vitro and in vivo

experiments [95, 103, 105�107, 125]. Computational approaches to simulate biological

systems are an important part of theoretical biology and may provide insights into bi-

ological phenomena [126]. In silico experiments have the advantage of cheaply being

able to reproduce biological systems that span long time periods faster than real-time

[105] and they can be used to �nd optimal treatment scheduling [11, 127]. Various such

mathematical models of tumour growth, treatment response and drug resistance have

previously been proposed [95, 128�134]. Roose et al. presented a comprehensive re-

view of models of avascular tumour growth [133] and Lavi et al. compiled an extensive

report discussing previous work on mathematical models of drug resistance in cancer

[95]. To name a few such models, Monro et al. [106] presented a continuum model

in which tumour growth follows Gompertzian dynamics and drug resistant mutations

occur proportionately to the tumour growth rate, in accordance with Luria Delbrück
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models. They concluded that increased drug administration may in fact reduce the sur-

vival length of a patient. Powathil et al. [132] used the Compucell3D framework [135]

to investigate two coexisting subpopulations, speci�cally one fast-cycling and one slow-

cycling, in the presence of drugs to demonstrate intrinsic drug resistance of slow-cycling

cells. There currently exists a number of hybrid discrete-continuum mathematical mod-

els that account for the multiscale nature of cancer [50], these models can be used to

study tumour behaviour in response to multimodality treatment schemes [136�142].

Several modelling attempts have been made to address the multiscale aspects of cell

growth by incorporating details such as vascular dynamics, oxygen transport, hypoxia,

cell division and other intracellular features in order to study tumour dynamics and

treatment response [19, 57, 143, 144]. Recently, Powathil et al. [6, 145] developed a

hybrid multiscale cellular automaton, integrating cell cycle dynamics and oxygen distri-

bution to study cell cycle-based chemotherapy delivery in combination with radiation

therapy. As an important step towards personalised medicine, Caraguel et al. [146]

managed to create virtual clones of in vivo tumours in mice using multiscale hybrid

modelling. The tumour growth of various mouse tumours successfully agreed with the

tumour growth of their respective virtual clones. Details of other multiscale cancer

models are available in a review by Deisboeck et al. [56]. The mathematical models

that are referenced in this section are categorised and summarised in Table 3.1 (where

models from review papers have been omitted for brevity).

In the present in silico study, we propose a hybrid multiscale mathematical model

that incorporates multiple types of drug resistance. In silico experiments are performed

in order to study chemotherapeutic drug response in heterogeneous cancer cell popula-

tions hosting various types of drug resistant phenotypes pre, peri and post chemother-

apy.

3.3 Model and in silico Framework

In this study, we expand on the mathematical framework presented in Chapter 2 to in-

corporate multiple types of mechanisms that elicit drug resistance in cancer cells. Specif-

ically, the CA used in this study can be categorised as a hybrid multiscale on-lattice

model [50], incorporating a non-uniform micro-environment, extracellular dynamics, in-

tracellular dynamics, intercellular dynamics and various categories of drug resistance
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Panetta et al. [130] (1996) X X X X
Macklin et al. [19] (2009) X X X
Monro et al. [106] (2009) X X X X
Owen et al. [143] (2009) X X X X

Perfahl et al. [144] (2011) X X X X X
Caraguel et al. [146] (2016) X X X X

Perez-Velazquez et al. [131] (2016) X X X X X X
Powathil et al. [147] (2016) X X X X X X

Lorz et al. [129] (2017) X X X X

Table 3.1: A table of mathematical models (referenced in Chapter 3.2) that include
various aspects of cancer growth. A check mark (X) indicates that the referenced model
uses/includes/is what is speci�ed in the respective columns.

regarded on a cellular resolution. The CA model uses partial di�erential equations

(PDEs), ordinary di�erential equations (ODEs) extracted from a regulatory molecular

network, as well as stochasticity and phenomenological rules formulated by observations

from biological experiments and clinical reports. An overview of the model schematics

are illustrated in Figure 3.1 and details are provided throughout this section. The CA

here extends in two spatial dimensions, speci�cally a 100 by 100 square grid is utilised

to simulate a physical tissue slab of (2 mm)2. This agrees with biological dimensions

and each grid point is either occupied by a cancer cell or a blood vessel cross section, or

it is empty (i.e. occupied by extracellular matrix only) [6]. At the start of the in silico

experiment, one initial cancer cell is planted at the centre of the grid, over time this

cell divides to give rise to a population of cancer cells and eventually chemotherapeutic

drugs are applied to the system. Blood vessels are non-equidistantly scattered across

the grid, they are assumed stationary and perpendicular to the two-dimensional tissue

slab. Thus blood vessel cross sections live on the grid, where they act as source points

for oxygen and drugs.
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Intracellular dynam
ics

Figure 3.1: A schematic representation of the multiscale hybrid mathematical model used
in this study. The model integrates extracellular, intracellular and intercellular dynamics.
This is an on-lattice model and a lattice point may be occupied by a sensitive (S) or drug
resistant (DR) cancer cell shown in black, a blood vessel cross-section or extracellular space.
Various categories of drug resistance regarded on a cellular resolution are incorporated in
the model, these categories are marked in red and listed in Table 3.4.
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3.3.1 Intratumoural Heterogeneity

Tumours are dynamic and should therefore be modelled as such [112], they are also

heterogeneous and may constitute multiple distinguishable subpopulations [105, 112].

Intratumoural heterogeneity has been observed to promote drug resistance [103, 112]

and hinder successful tumour prediction, thus by extension intratumoural heterogene-

ity complicates intelligent chemotherapy administration [105]. A tumour can express

intratumoural heterogeneity in various ways and on multiple scales. For example nu-

trient concentrations, cell cycle dynamics and drug resistant traits may vary amongst

cells in a tumour [103, 105]. Phenotypical attributes, such as drug resistant traits,

may be acquired or inherited [105] and moreover stochasticity occurs naturally in bi-

ological processes. Hence various phenotypical subpopulations may arise in a cancer

cell population, even if the population originates from one single cell [112]. To e�ec-

tively treat tumours one should thus account for intratumoural heterogeneity, including

the potential uprising of drug resistant subpopulations [105]. Our model accounts for

intratumoural heterogeneity on various scales, details are provided in the following sub-

sections. On a cellular level, each cell has an individual cell cycle length and individual

drug resistant traits. On an extracellular level, the spatio-temporal micro-envrironment

is highly dynamic, each cell has its own neighbours and moreover the blood vessels

are non-equidistantly placed that oxygen and drug concentrations vary asymmetrically

across the grid.

3.3.2 Intracellular Dynamics

The cell cycle mechanism is here partitioned into four sequential main phases, namely

the gap 1 (G1), synthesis (Syn), gap 2 (G2) and mitosis (M) phase. (Note that we, in this

chapter, use the abbreviation `Syn' do denote the synthesis phase as the abbreviation `S'

is reserved to denote drug sensitive cells). We here use the regulatory molecular network,

described by the ODE system (Equation 2.1 in Chapter 2) to model the cell cycle

progression of each individual cell. Cancer cells are thus here categorised as being in

either the G1 phase or in the collective Syn-G2-M phase of the cell cycle, or alternatively

cells can exit the cell cycle and enter the quiescent phase G0 [6]. When cell division

occurs at time step tcd in the model, a daughter cell is placed on a grid point in the

spherical neighbourhood of the parental cell, located in point xparent. At cell division the
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mass of the parent cell is halved so that [mass](xparent, tcd) = 1
2 · [mass](xparent, tcd−1)

[60]. Grid points in lower order neighbourhoods are prioritised in this process, however

up to third-level neighbourhoods are regarded. Each cell may divide until there is no

unoccupied grid point on which to place a daughter cell, when this occurs a cell enters

the quiescent phase G0. A cell may however re-enter the cell cycle if its neighbourhood

is freed up and space is made available. Whilst in a quiescent phase cells are assumed

to be drug immune in our model, this is because classical chemotherapy drugs target

molecules that are over-expressed in speci�c cell cycle phases, for example the drug

cisplatin a�ects the G1 phase of the cell cycle [6, 148].

3.3.3 Extracellular Dynamics

As is previously described in Chapter 2.4, extracellular dynamics is modelled using

PDEs describing oxygen and drug distribution. Oxygen is continuously produced at

each time step on the blood vessels cross sections from which it is distributed across the

grid according to the following di�usion-reaction equation [6],

∂K(x, t)

∂t
= ∇ · (Dk(x, t)∇K(x, t)) + rk(x, t)m(x)− φkK(x, t)cell(x, t), (3.1)

where K(x, t) denotes oxygen concentration in location x at time t, Dk(x, t) is the

oxygen di�usion coe�cient, rk(x, t) is the oxygen production rate and φk is the oxygen

consumption rate. The variables m(x) and cell(x, t) are binary so that m(x) = 1 if

there is a blood vessel in location x and m(x) = 0 otherwise. Likewise cell(x, t) = 1

if there is a cell in location x at time t and cell(x, t) = 0 otherwise. No-�ux boundary

conditions are applied, such boundary conditions coupled with the oxygen production

at each time step will cause the total oxygen in the system to �uctuate over time.

Thus in accordance with previous work by Powathil et al. [67], the absolute hypoxic

threshold value will be di�erent at each time step in the simulation, whilst the relative,

or scaled, hypoxic threshold value will remain the same over time. This approach yields

a spatial oxygen distribution at each time step which can be used to evaluate hypoxia.

Physically, a cell is here classi�ed as being hypoxic if its partial pressure of oxygen

(pO2) is 10 mm Hg or less [149]. Following Powathil et al. [6], a grid point in the

implementation is de�ned to be hypoxic if it has a relative oxygen concentration of
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less than 0.1, where an oxygen concentration of 1 is normalised at the grid point with

the highest oxygen concentration on the grid. Oxygen di�uses slower over grid points

occupied by cancer cells than elsewhere and su�ciently high oxygen concentrations

promote rapid cell proliferation, whilst hypoxia hinders cell cycle advancement. These

hypoxic e�ects are incorporated in the model via the [HIF ] parameter occurring in

Equation 2.1 [6]. Chemotherapy drugs are similarly administered via blood vessel cross

sections, however drugs are instantaneously produced at one single time step per drug

administration. Drugs di�use according to

∂C (x, t)

∂t
= ∇· (Dc(x, t)∇C (x, t))+rc(x, t)m(x)−φcC (x, t)cell(x, t)−ηcC (x, t), (3.2)

using no-�ux boundary conditions. Here C (x, t) denotes drug concentration in location

x at time t, Dc(x, t) is the drug di�usion coe�cient, rc(x, t) is the drug production

rate, φc is the drug consumption rate and ηc is the drug decay rate. Chemotherapy

drugs di�use faster across extracellular space than inside the tumour [6]. Provided that

the cell is in the drug-targeted cell cycle phase and that the cell is not explicitly drug

resistant, a cell in location x at time t is killed if the drug concentration C (x, t) is such

that C (x, t) ≥ κ, where κ is the lethal threshold drug concentration. When a cell dies,

its grid point x becomes empty. Parameters occurring in the PDEs are listed in Section

3.3.3.1.

3.3.3.1 Parameters for Oxygen and Drug Distribution

Parameter Symbol Value Reference
Oxygen di�usion coe�cient Dk 2.5 · 10−5 [cm2s−1] [150]
Oxygen supply rate rk 8.2 · 10−3[s−1] [151]
Oxygen consumption rate φk 2 · 10−1 [s−1] computed(1)

Cisplatin di�usion coe�cient Dc 7.6 · 10−6 [cm2s−1] computed(2)

Cisplatin consumption rate φc 0 (negligible) [6]
Cisplatin decay rate ηc 1.316 [h−1] estimated from [152]

Table 3.2: Parameters for Equations 3.1 and 3.2. (1) φk is computed using the
relationship L =

√
D/φ [6]. (2) Dc is computed using the relationship Dc/Dk =√

molecular weight of O2/
√
molecular weight of drug [7], where molecular weight are gath-

ered from the PubChem data base [8].
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Di�usion and production rates of oxygen and drugs vary across the grid so that [6]

Di(x, t) =

{
Di
1.5 in the tumour,

Di elsewhere,

for i = k, c and

rk(x, t) =

{
rk
1.5 in the tumour,

rk elsewhere,
rc(x, t) =


rc
1.5 in the tumour,

rc on the tumour boundary,
rc
2 outside tumour.

The drug decay rate ηc is estimated to match the half-life time of cisplatin which

has been reported as 31.6±6 minutes [152]. Cisplatin supply is here modelled as instan-

taneous and thus equal to rc at the two time steps conferring with drug administration

(t= 500 hours and t= 600 hours) and zero for all other time steps. Here, rc is estimated

and scaled according to the chosen drug dosage so that

Ni · C = rc · (number of blood vessels), (3.3)

hence rc corresponds to the amount of drug produced at one blood vessel cross

section at one time step. Here i = 0, 1, 2, 3, 4 and Ni = 0, 1, 2, 4, 8 in accordance with the

possible drug dosages explored in the in silico experiment which are 1C, 2C, 4C and 8C.

C and κ are parameterised so that 1C kills half of the cell population in absence of any

included drug resistant mechanisms, more speci�cally, here C= 104 (equal to the number

of grid points) and κ = 0.18. Since C is equal to the number of grid points, all cancer

cells would die immediately from drug exposure if drugs were produced homogeneously

across the grid, as such a scenario would yield a drug concentration C (x, t) = 1 > κ ∀x.

3.3.4 Drug Resistance

In this study, drug resistance is regarded on a cellular resolution, thus subcellular me-

chanics are simpli�ed and drug resistance is categorised into cellular-level categories

as illustrated in Figure 3.2. In the model drug resistance is �rstly categorised as be-

ing either explicit or implicit. Explicit drug resistance occurs when a cell possesses

any subcellular trait that directly protects it from drug e�ects, rendering it immune to

some drug. Conversely, a cell displays implicit drug resistance when it is shielded from

drug impact due to some indirect reason such as being slow-cycling or spatially located

in a region of low drug concentration (location mediated DR). Explicit drug resistant
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traits can be induced or inherited [153, 154] and also, cells may perform phenotypical

alterations in response to intercellular interactions [112]. Therefore we here categorise

drug resistance as being induced, primary or communicated. Induced drug resistance

is activated in cells as a defensive response to drug presence whilst primary drug resis-

tance is caused by cell mutations occurring independently of drugs [153, 154]. Cancer

cells in which drug resistance has been induced may communicate and spread their drug

resistant traits to other cancer cells via intercellular communication (ICC) in an e�ort

to secure species survival [109, 120, 123]. Using hybrid modelling, the various categories

of drug resistance are here modelled in di�erent ways in order to easily reproduce bio-

logical phenomena in a way that is consistent with available clinical and experimental

observations and data. In our model, drug resistance obeys rules formulated from previ-

ous �ndings from in vitro and in vivo results. Also incorporated are stochastic methods,

as stochasticity occurs naturally in biological processes and may generate di�erent cell

phenotypes [112]. For all categories of phenotypical drug resistance, it is assumed that

once a cell has established a drug resistant trait, its o�spring will inherit that trait.

This is in accordance with evolutionary Darwinian principles, as DR subpopulations

are more �t to survive in drug presence than are S subpopulations [155]. Furthermore,

the micro-environment in�uences drug transport across the tumour and impeded drug

delivery by poor di�usion is indeed one of the primary reasons for treatment failure [95].

Thus drug e�cacy and cytotoxic cell death is a�ected by the micro-environment, since

drugs may not reach target cells. This may occur if the drug di�usion is impeded by

dense population regions, or if the target cells are spatially located far away from drug

source points, here blood vessels. To study how a heterogeneous micro-environment

impacts drug resistance and drug response, blood vessels are non-equidistantly located

across the in silico domain. Moreover, the speed of molecules such as oxygen, drugs

and exosomes, depends on the medium that the molecules in question are traversing

[6, 109]. This section provides information regarding the modelling of various drug re-

sistant categories. Numerical values of the parameters introduced in this section are

listed in the Section 3.3.4.5, along with schematic representations of algorithms used

in the model and a sensitivity investigation of critical parameters which demonstrates

that our results are robust in regards to these parameters. Thus our qualitative �nd-

ings, concerning drug response in cancer cell populations hosting various types of drug

resistance, hold for variations of the chosen parameters.
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Figure 3.2: Classi�cation of drug resistance categories occurring in the model. Drug
resistance may be independent of drug presence (orange labels), induced as a consequence
of drug presence (purple labels), or either (orange and purple labels). Cell acquisition of
any DR phenotypical trait (top half) is here modelled as irreversible and inheritable by
any future daughter cells to the cell in question.

3.3.4.1 Primary Drug Resistance

Cells display primary drug resistance independently of drug presence, thus primary drug

resistance may precede chemotherapy [95, 115, 154]. The in silico setup in our study is

analogous to Luria and Delbrück's [115] in vitro experiment, however here bacteria and

virus have been exchanged for cancer cells and chemotherapy drugs respectively. Luria

and Delbrück [115] stated that there was a probability per unit time that a sensitive cell

would mutate into a, here drug, resistant phenotype. Thus in accordance with Luria and

Delbrück models [115], primary explicit drug resistance is here modelled by stochastic

cell mutations occurring at cell division. More speci�cally the chance of mutation is

given by the mutation rate αpri, which corresponds to the probability of mutation per

cell cycle. The parameter αpri is assumed to be small, so that drug resistant mutations

are rare and moreover the probability that a mutated cell will revert back to a sensitive

state is negligible and set to zero [115]. Hence, in our model, each daughter cell that is

produced has a chance αpri of being explicitly drug resistance before being placed on

the grid.
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3.3.4.2 Induced Drug Resistance

Drug presence has been demonstrated to speed up the development of DR subpop-

ulations in cancers [116] and multiple studies have shown that cancer cells display

altered epigenetic features following chemotherapy [153]. Cancer cells may become

drug resistant after exposure to chemotherapy, the underlying cause of such induced

drug resistance is assumed multifactorial [154]. Factors that may contribute to induced

drug resistance include decreased apoptotic response, increased DNA-repair post drug-

mediated damage, cell cycle alterations and reduced drug accumulation [154]. These

factors may work concurrently and jointly towards establishing drug resistance in cells

[154]. Hsps aid signalling pathways promoting cell growth and sustainability [99], and

may induce anti-apoctic cancer cell properties [117]. Three members of the Hsp family

that have been under scrutiny are namely Hsp27, Hsp70 and Hsp90, which have all

been linked to promoting breast cancer tumours [99] and shown in vivo to contribute

towards chemotherapeutic drug resistance [101]. In cancer cells, Hsps are plentiful and

moreover administration of chemotherapeutic drugs has been observed to alter Hsp ex-

pression and increase Hsp activity [117]. Hsps may reside in both the cytoplasm and

the cell nucleus, Vargas-Roig et al. demonstrated in vivo that chemotherapy drugs may

modify the proportion of Hsps in di�erent cell compartments [101], in fact drug admin-

istration resulted in increased nuclear expression, and decreased cytoplasmic expression

of Hsp27 and Hsp70 [101]. Hsp27 promotes cell migration and di�erentiation in vivo

[99] and elevated Hsp27 levels have been correlated to doxorubicon resistance and cor-

respond to high tumorigenicity whilst low Hsp27 levels suppress tumour functions such

as angiogenesis and proliferation of endothelial cells [99]. Hsp70 is linked to tumour

growth and yields anti-apoptotic e�ect in tumours [99] and in breast cancer cells, a

high proportion of nuclear Hsp70 is correlated to drug resistance [101]. Hsp90 is as-

sociated with regulating the cell cycle and controlling metastasis and proliferation [99]

and high Hsp90 levels are linked to decreased survival rates in breast cancer patients

[99]. Inhibiting Hsp27, Hsp70, Hsp90 has been hypothesised as part of future treatment

plans [117, 118] and moreover Hsp70 has been suggested as a factor to prognostically

evaluate the risk of disease recurrence [99]. The heat shock factor 1 protein (HSF1) reg-

ulates Hsps [118, 156], and HSF1 overexpression is linked to poor prognosis in breast,

lung and colon cancers, an increase in intratumoural cancer stem cells proportions and

chemotherapeutic drug resistance [156]. Speci�cally, cells with high HSF1 levels have
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displayed increased paclitaxel resistance [156]. Although cellular Hsp expression and

activity have been linked to anti-cancer drug resistance, the details of these mecha-

nisms are yet to be elucidated [101]. Thus in the mathematical model discussed in this

chapter, details concerning such underlying mechanisms of acquired drug resistance are

omitted and we simply recognise the fact that if a cell has been exposed non-lethal drug

levels for a certain amount of time, it can develop resistance to that drug. Furthermore,

clinically, cancers are usually treated with combination therapies which makes it di�-

cult to deduce rigorous information regarding how induced drug resistance is developed

in cells as a response to one particular drug [157]. Due to this multifactorial nature

of induced drug resistance, which involves various subcellular alterations occurring in

response to drug presence in the micro-environment, in the model a cell obtains induced

explicit drug resistance once it has been exposed to a high enough drug concentration

for a su�ciently long time. Thus if a cell has experienced a minimum drug concentration

χind for τ time units, drug resistance is induced in the cell.

3.3.4.3 Communicated Drug Resistance via Exosomes

Srinivasan et al. [109] investigated exosome kinetics in lymphatic �ow in vitro and

in vivo using near infrared imaging. In the in vitro study, they found that planted

exosomes from the HEY cell line, being spherical with a diameter of around 70 nm,

travelled more e�ectively than size and density matched beads across lymphatic en-

dothelial cells (LECs). This indicates that exosomes travel purposefully as opposed

to randomly. Srinivasan et al. [109] reported an e�ective permeability for exosomes

across the lymphatic endothelium in the order of 0.2 µm/s and moreover exosomes were

transported twice as fast across areas with cells compared to areas with no cells. Exo-

somes were observed to move rapidly in vivo, indeed they travelled 10 cm in a mouse

tail within 2 minutes [109]. Studies also show that there is a correlation between the

micro-environment and exosome activity, as exosome secretion and uptake is promoted

in low-pH regions [120]. Further, hypoxic regions are associated with drug resistance

[158] which is partly explained by elevated exosome secretion in such regions [123]. Here,

exosomes are modelled using phenomenological rules formulated from experimental ob-

servations, incorporating stochasticity. Exosomes are modelled as discrete `molecule

parcels'. Once per cell cycle each cell that has acquired drug or exosome induced drug

resistance has a chance αex of producing and secreting such a molecule parcel which is
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sent o� in a random direction. The �rst sensitive cell that the exosome hits is dubbed

the recipient cell, upon receiving the exosome the recipient consumes the parcel to gain

drug resistance. Exosome production and uptake times are incorporated in the travel

time and thus modelled as instant, using data from Srinivasan et al. [109], we choose

a propagation speed of 0.2 µm/s which is equivalent to 1 grid point (20 µm) per 100 s

when travelling across cells, and half of this speed when travelling across extracellular

space. The chance of exosome production αex is signi�cantly higher in hypoxic regions

in order to account for increased exosome activity in such regions [123].

3.3.4.4 Cell Cycle Mediated Drug Resistance by Slow-Cycling Cells

Slow-cycling cells are distinguishable in vitro [119] and Srinivasan et al. [110] demon-

strated that fast and slow-cycling cells may coexist in a tumour. Many chemothera-

peutic drugs, such as cisplatin, attack only cells in a certain phase of the cell cycle by

targeting proteins overexpressed in the corresponding phase, leaving other cells unaf-

fected [6, 148]. Since the half-life times of common chemotherapy drugs are signi�cantly

shorter than the average cell cycle length of standard eukaryotic cells [6], slow-cycling

cells are implicitly more resistant to chemotherapy as they are likely to evade drug

impact whilst being in a prolonged untargeted cell cycle phase. Consequently, if there

exists a subpopulation of slow-cycling cells in a tumour, this subpopulation is more

likely to survive chemotherapy and proliferate post treatment, despite having a slower

production rate. Such a slow-cycling subpopulation may comprise CSC-like cells, as

slow-cycling cells have been linked to cancer stem cells [96], which in turn have been

conferred with reduced sensitivity to chemotherapeutic drugs [156]. Previous research

indicates that cancer cells may obtain stem-cell like traits [159], in fact non-stem cancer

cells may convert into CSC-like cells seemingly spontaneously, as demonstrated in vivo

by Cha�er et al. [160]. Micro-environmental factors, such as oxygen supply, may in�u-

ence such conversions however here cell conversion into a slow-cycling state is modelled

as independent of the micro-environment. The [HIF] parameter, occurring in Equa-

tion 2.1, which is switched on in hypoxic cells only does however increase the cell cycle

length of all cells, fast-cycling and slow-cycling, and thus in the model, oxygen levels ef-

fect cell-cycle lengths. Slow-cycling cells are multidrug resistant as they are resistant to

any drug that targets only a subset of cell cycle phases. In the model, we assume that

slow-cycling conversion occurs spontaneously, independently of drug presence. More
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speci�cally, once per cell cycle there is a chance αSC that a sensitive, fast-cycling cell

will spontaneously convert into a slow-cycling state. Here slow-cycling cells are assumed

to have a cell cycle length that is roughly twice as long as a sensitive cell [132]. The

chance of conversion from a slow-cycling, implicitly drug resistant state back into a

fast-cycling state is assumed negligible in accordance with previously discussed Luria

Delbrück models [115] and Darwinian principles and thus set to zero. Furthermore,

the in silico experiment spans 700 hours only, and the chance that a cell converts and

re-converts is assumed negligible in the model. Once a cell is randomly selected to

convert into a slow-cycling state, the individual growth rate factor µ of the regarded

cell, occurring in Equation 2.1, is updated in order to achieve slower cell-cycle progres-

sion and by extension a longer cell-cycle length. Daughter cells to slow-cycling cells are

assigned appropriate growth rates associated with slow-cycling cells at creation. In the

model, slow-cycling cancer cells di�er from normal cancer cells in that their value µ in

Equation 2.1f is doubled.

3.3.4.5 Parameters and Algorithms for Drug Resistance

The chosen parameter values used for simulating drug resistance in the in silico frame-

work are listed in Table 3.3, where in hypoxic regions αex is increased to 2αex.

αpri χind τ αex αSC
0.01 κ/10 30 minutes 0.07 0.07

Table 3.3: Parameters concerning drug resistance used in the in silico framework. αpri

denotes the probability that a cell that is placed on the lattice is drug resistant (when
simulating scenarios involving primary drug resistance). χind and τ respectively denote
the drug concentration and time required to induce drug resistance in a cell (when simula-
tion drug induced drug resistance). αex denotes the probability that a drug resistant cell
will produce an exosome that induces drug resistance in a nearby cell (when simulating
communicated drug resistance). αSC denotes the probability that a cell will convert to a
slow-cycling state (when simulating slow-cycling mediated drug resistance).

The results in this study are qualitative, when varying the parameters in this ta-

ble, as done in Appendix A1, the obtained qualitative results are robust in regards to

chemotherapy response. Here, τ is chosen to be 30 minutes as this is close to the half-life

time of cisplatin. αpri, χind, αex and αSC are parameterised to be low and yield ap-

proximately the same ratio between the sensitive subpopulation and the drug resistant

subpopulation, across all the di�erent investigated in silico scenarios, 10 hours after the

�rst drug administration when the lowest drug dose is applied. (In other words, all tests
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named (b1), (c1), (d1) and (e1), according to the labelling system declared in Tables

3.4 and 3.5, comprise roughly the same composition of sensitive and drug resistant cells

10 hours post drug administration). This is in order to allow for easy comparisons, in

regards to drug response evaluations, amongst tests. Partial algorithms for incorporat-

ing various types of drug resistance in our mathematical framework are listed below.

Primary drug resistance: Each time cell division occurs there is a chance that

a drug resistant cell will be produced. In the model, when cell division occurs it is said

that a mother cell produces a daughter cell. If the mother cell is drug resistant (DR), the

daughter cell will inherently be drug resistant. However, if the mother cell is sensitive

(S), the daughter cell may or may not be drug resistant according to a stochastic `dice

roll'. At each cell division, a value α ∈ [0, 1] is randomised, and if α ≤ αpri then the

daughter cell is drug resistant, otherwise it is sensitive, as schematically shown in Figure

3.3.

�
randomise

mother
is DR

is DR
daugther

is S
daugther�����pri

True

False

True

False
�

Figure 3.3: Partial algorithm for determining primary drug resistance.

Induced drug resistance: If a cell has experienced a minimum drug concentration

χind for τ time units, drug resistance is induced in the cell. Thus in the model, each cell

has its own counter, countern, which increments each time step that celln experiences

a drug concentration χ = C (x, t) ≥ χind. This is schematically illustrated in Figure

3.4. If drug resistance has been produced in a mother cell, it produces drug resistant

daughter cells.

Communicated drug resistance via exosomes: Once per cell cycle, each cell

that has acquired drug resistance by induced drug resistance (see the above section)

or communicated drug resistance (as described in this section) has a chance αex of

producing and secreting an exosome. In the model, a value α ∈ [0, 1] is randomised, if

α ≤ 2αex in hypoxic regions, or α ≤ αex in normoxic or hyperoxic regions, an exosome
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Figure 3.4: Partial algorithm for determining induced drug resistance.

is produced and sent o� in a random direction. The �rst sensitive cell that the exosome

hits becomes drug resistant, as schematically shown in Figure 3.5. Mother cells that

have acquired drug resistance via exosomes pass on their drug resistance to daughter

cells.
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Figure 3.5: Partial algorithm for determining exosome production.

Cell-cycle mediated drug resistance by slow-cycling cells: Once per cell

cycle there is a chance that a sensitive, fast-cycling (FC) cell will spontaneously convert

into a slow-cycling (SC), drug resistant state. To check if such conversion occurs, a

value α ∈ [0, 1] is randomised. If α ≤ αSC then the cell converts, otherwise it does not,

as demonstrated in Figure 3.6. Slow-cycling (SC DR) mother cells yield slow-cycling

(SC DR) daughter cells.

3.3.5 Implementation

The CA is implemented in C/C++ using a high performance computational framework.

Ordinary di�erential equations are solved using a fourth order Runge-Kutta method

and partial di�erential equations are solved using explicit second-order �nite di�erence

schemes. A �owchart of the programming code is available in Appendix A1. Prior to
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Figure 3.6: Partial algorithm for determining the spontaneous conversion from a slow-
cycling to a fast-cycling state.

commencing the in silico experiment, the micro-environment is implemented and thus

blood vessel cross sections are scattered in a non-equidistant fashion across the grid,

this is in order to emphasise and study the e�ects of spatio-temporal oxygen and drug

heterogeneity. One initial cancer cell is then planted at the centre of the grid, from this

originating cell the cancer cell population will grow. Tumour growth is simulated over

700 hours, where it has been concluded that 700 hours is a su�ciently long simulation

time to study the drug resistance and drug response in the system. Here, a time step

size ∆t = 10−3 hours, is used in accordance with the appropriate nondimensionalisation

of the oxygen parameters occurring in Equation 3.1 [6]. Cisplatin, a chemotherapy drug

which here is modelled to attack G1 cells only, is administered in two instances at 500

and 600 hours. For each such instance, drugs are produced on all blood vessels at one

single time step. The total amount of drug produced at one time step, on all blood

vessels, corresponds to the drug dosage, which can be varied to study various cases.

Speci�cally, here the studied drug dosage are: (1) 1C, (2) 2C, (3) 4C or (4) 8C, as

listed in Table 3.5. The dosage 1C is parametrised so that, in the absence of drug

resistant phenotypes amongst the cells, 1C kills half of the total cell population shortly

after the �rst drug administration at 500 hours. By doubling the drug dosage once,

twice or thrice to 2C, 4C or 8C respectively a higher cell kill is achieved. However, the

relationship between the drug dosage and the number of cells killed is not linear, as is

further discussed in Section 3.4.1.1. For the �xed chemotherapy schedule at 500 and 600

hours, the administered drug dosages are varied and the size of the sensitive and drug

resistant cell subpopulations are computed pre, peri, and post chemotherapy. Cell-maps

are produced in order to display cell population topology over time, these cell-maps are

visualised in ParaView [161]. Five di�erent in silico experiments are here performed,

corresponding to �ve di�erent categories of drug resistance namely (a) to (e) listed in
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Label Drug Resistance Category
a No drug resistance (No DR)
b Primary drug resistance (Primary DR)
c Induced drug resistance (Induced DR)
d Induced and, via exosomes, communicated drug resistance (ICC DR)
e Cell cycle mediated drug resistance by spontaneous conversion to slow-

cycling cells (SC DR)

Table 3.4: The labelling of drug resistance categories occurring in the model.

Label Drug dosage
0 0 C (No drug)
1 1 C
2 2 C
3 4 C
4 8 C

Table 3.5: The labelling of drug dosages used in the implementation. For non-zero drug
dosages the labelling system is such that label ` corresponds to drug dosage 2`−1.

Table 3.4. Each experiment is performed 100 times, subsequently average values and

standard deviations are reported. A sensitivity investigation of critical parameters is

performed in order to con�rm that our results are robust in regards to small parameter

variations, this is available in the Appendix A1.

3.4 Results and Discussion

3.4.1 Results

In absence of chemotherapeutic drugs, the growth of the DR subpopulation in our in

silico experiment is proportional to the growth of the S subpopulation, as demonstrated

by the graphs in Figure 3.7. This is in accordance with previous mathematical models

and experimental results [95, 106, 115].

3.4.1.1 No Drug Resistance

Once chemotherapy is applied to the in silico setup, the cancer cell population decreases

in response to drugs. This is especially clear when no drug resistant phenotypes exist,

the cancer cell population then rapidly reduces after drug administration. However

population growth quickly resumes, and the size of such populations eventually reaches,
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(a0)

Figure 3.7: Growth of the cancer cell population over time in drug absence, showing total
population (black graph), drug sensitive subpopulation (blue graph) and drug resistant
subpopulation (red graph) incorporating control-case drug resistance categories (a0) No
DR, (b0) Primary DR and (e0) Slow-Cycling DR. Cases (c0) Drug-induced DR and (d0)
Communicated (ICC) DR are omitted since they produce the same results as (a0) in drug
absence. Each graph shows the average number of cells based on 100 simulations, the
standard deviation is demonstrated with error bars.

and surpasses, the pre-chemotherapy population size. This is evident in graphs (a1)

through to (a4) in Figure 3.8, and especially clear for high chemotherapy dosages where

the size of the cell population cycles between being large immediately before drug ad-

ministration and being small directly after drug administration. Rottenberg and Borst

[98] demonstrated similar cyclic behaviour in mouse tails in vivo. Increasing the drug

dosage trivially kills more cancer cells, however tumour topology and spatial heterogene-

ity signi�cantly a�ects drug transport. Moreover, due to intratumoural heterogeneity

in regards to the cell cycle, some cells will be shielded from the drug simply by being in

an untargetted cell cycle phase. This multiscale heterogeneity a�ects the relationship

between drug dosage and drug e�cacy, where drug e�cacy here corresponds to the

number of cells killed by the drug. Graphs (a1) to (a4) in Figure 3.8 demonstrate the

poor scaling between drug dosage and drug e�cacy. Further, here we de�ne the scaling

e�ciency ε by

εi =
ki

k1 ·Ni
, (3.4)

where ki denotes the number of cells killed in experiment i and Ni denotes the di-

mensionless drug dosage coe�cient used in experiment i. Thus here, i = 1, 2, 3, 4 and

respectively Ni = 1, 2, 4, 8. If the relationship between drug dosage and drug e�cacy

was linear, doubling the drug dosage would mean doubling the number of cancer cells

killed. In such an ideal case, it would hold that εi = 1∀i, however this is not the case,
as illustrated in Figure 3.9 which shows the scaling e�ciency for the �rst drug admin-

istration at 500 hours. Hence in a clinical setting, the harm that may follow increased
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toxicity from higher drug dosages may not be worth the modest increase in killed can-

cer cells. The cell-maps in Figure 3.10 further highlight how the spatial heterogeneity

a�ects drug delivery and consequently where the drug concentrations are high enough

for cell kills to occur.

3.4.1.2 Primary Drug Resistance

When a cancer cell population expresses primary drug resistance, two subpopulations,

comprising sensitive and drug resistant cells, already coexist prior to chemotherapy.

Once administered, chemotherapy eliminates cells belonging to the S subpopulation

whilst leaving the DR subpopulation unharmed. Hence increasing the drug dosage, and

consequently killing more sensitive cells, enables the DR subpopulation to �ourish as it

gains access to more resources such as space and oxygen. Graphs (b1) through to (b4)

in Figure 3.8 show that such DR subpopulations indeed bene�t from high drug environ-

ments. Over all, our results show that chemotherapeutic treatments yield poor results if

there exists a subpopulation of drug resistant cells prior to commencing treatment, this

supports clinical observations depicting that primary drug resistance gravely reduces

the successfulness of chemotherapy and in�uences the choice of treatment regime [93].

In our experiment, the primary DR subpopulations grow outward in radial strands pre

chemotherapy, as illustrated in cell-maps (b1) and (b4) in Figure 3.10. This geome-

try is explained by the model, in which primary drug resistant mutations occur at cell

division, prior to placing the cell on the grid. Moreover drug resistant cells produce

drug resistant o�spring, thus radial strands are formed as the cancer cell population

grows. This DR subpopulation will spread from these strands, which consequently will

widen post drug administration. On the other hand, subpopulation S will spread from

regions containing sensitive cells that survived drug e�ect. Such sensitive survivor cells

are clustered in regions of low drug concentrations, typically located far away from

blood vessels and enclosed by other cancer cells, as drugs travel more slowly over dense

population regions.

3.4.1.3 Induced Drug Resistance

For simulations incorporating induced drug resistance, the DR subpopulation arises post

chemotherapy. Here, drugs di�use more slowly over cancer cells than over extracellular

space. Therefore, once the initial e�ect of chemotherapy has eliminated the majority
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Figure 3.8: Growth of the cancer cell population over time when drugs are applied at 500
and 600 hours, showing total population (black graph), drug sensitive subpopulation (blue
graph) and drug resistant subpopulation (red graph). Each row in the �gure corresponds
to a category of drug resistance (a) to (e) according to the labelling in Table 3.4 ((a) No
DR, (b) Primary DR, (c0) Drug-induced DR, (d0) Communicated DR (e) Slow-cycling
DR), whilst each column corresponds do a speci�c drug dosage varying from low (leftmost
column) to high (rightmost column), namely (1) 1C, (2) 2C, (3) 4C and (4) 8C according
to the labelling system in Table 3.5. Each graph shows the average number of cells based
on 100 simulations, the standard deviation is demonstrated with error bars.
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Figure 3.9: The scaling e�ciency, demonstrating the relationship between drug dosage
and drug e�cacy in terms of number of killed cancer cells. This is for the �rst drug
administration at 500 hours for experiments (a1) to (a4) according to the labelling in
Tables 3.4 and 3.5, where no drug resistant phenotypes are present. Results are based on
average values for 100 tests.

of the sensitive cancer cells, and the tumour has disintegrated into clusters of surviving

cancer cells, drug resistant cells are typically located on boundaries between cancer

cells and extracellular space, as illustrated in cell-maps (c1) and (c4) in Figure 3.11.

On these boundaries drug resistance is induced since the cells are exposed to high, but

non-lethal, drug concentrations for a su�ciently long time. From these points of origin

the DR subpopulation spread. By increasing the amount of chemotherapy, the cells that

are exposed to this intermediate, high but non-lethal, drug concentration is reduced.

Hence higher chemotherapy dosages do not only kill more cells overall, but reduces the

amount of drug resistant phenotypes, as demonstrated by graphs (c1) to (c4) in Figure

3.8, this result applies to a cancer cell population in a con�ned space.

3.4.1.4 Communicated Drug Resistance via Exosomes

The e�ect of ICC is demonstrated by comparing experiment (c) Induced drug resistance,

to experiment (d) Induced and, via exosomes, communicated drug resistance. This can

be done by regarding graphs (c1) to (c4) and (d1) to (d4) in Figure 3.8 and cell-

maps (c1), (c4), (d1), (d4) in Figure 3.11. These �gures show that the communicative
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exosome component ampli�es the e�ect of induced drug resistance alone. The number of

oncogenic exosomes produced increases with the number of drug resistant cells. In low

to moderate drug environments, many exosomes are thus produced, as there exists many

cells which have acquired induced DR in accordance with the results in Section 3.4.1.3.

Conversely, in very high drug regimes fewer cells will survive to acquire induced drug

resistance and consequently fewer oncogenic exosomes will be produced. Exosomes have

been hypothesised as possible treatment targets, and our results indicate that reducing

the exosome activity would aid the S subpopulation, as less cells would convert from

sensitive to drug resistant. Here, hypoxic cells secrete more exosomes than do normoxic

cells. This results highlights one of the bene�ts of targeting hypoxic tumour regions,

as doing so may reduce exosome activity and by extension hinder communicated drug

resistance.

3.4.1.5 Cell Cycle Mediated Drug Resistance by Slow-Cycling Cells

Slow-cycling cells are more likely to evade drug e�ects, as shown in graphs (e1) to

(e4) in Figure 3.8 where, after each drug attack, the DR slow-cycling subpopulation

displays a higher survivor rate. High chemotherapy dosages increase this e�ect, and thus

bene�t the DR subpopulation. Since the conversion to slow-cycling cells is modelled

as spontaneous, implicit drug resistance may precede chemotherapy. Furthermore, this

spontaneity means that at every cell cycle, each fast-cycling cell has the same chance

αSC of converting to a slow-cycling state. Thus pre chemotherapy the DR subpopulation

will be point-wise scattered across the cell population, and post chemotherapy the DR

subpopulation will spread from these source points, as illustrated in cell-maps (e1) and

(e4) in Figure 3.11.

3.4.1.6 Cell-Map Topology

Each drug resistance category in our model corresponds to a typical cell-map topology

and vice-versa, as shown in Figures 3.10 and 3.11. The location of the subpopulations

S and DR depends on the category of drug resistance regarded, as does the location

of regions with high cell-kill numbers. These cell-maps are useful for conveying spatial

heterogeneity, which is of importance since intratumoural heterogeneity is known to

heavily in�uence drug e�ciency [6]. Any sensitive cell, or cell cluster, that is surrounded

by a band of other cells will be partly shielded from drug e�ects, as drugs travel slowly
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over dense population regions. Further, any quiescent sensitive cell, or cell cluster, that

is surrounded by a band of explicitly drug resistant cells is eternally safe from drug

presence in our in silico setup. This is because such a sensitive cell, or cell cluster,

will never meet the necessary condition to re-enter the cell cycle as this requires free

neighbourhood space. Thus, even sensitive cell may be protected from drug e�ect, this

is an example of location mediated implicit drug resistance.

3.4.2 Discussion

Our study shows that drug response in cancer cell populations is crucially in�uenced by

the drug resistant phenotypes amongst the cells. We here demonstrate, in silico, that the

e�ect of chemotherapy is heavily dependent not only on the mere existence of drug re-

sistant cells, but also the type of drug resistance displayed and micro-environmental fac-

tors. Clinically, this implies that optimal chemotherapy scheduling and dosages depend

on tumour speci�c data, including information regarding drug resistance and tumour

environment. Indeed our results show that some types of drug resistant phenotypes

thrive in low drug settings, whilst other �ourish in high drug settings.

Before proceeding to discuss optimal drug dosages, one must de�ne what consti-

tutes as �successful� chemotherapy. Is the aim perhaps to (i) reduce the cancer cell

population as much and quickly as possible or to (ii) be able to control the tumour

long-term using chemotherapy? Case (i) may be relevant when chemotherapy is used

in combinations with other treatments, for example when neoadjuvant chemotherapy is

used prior to radiation treatment or surgery. Conversely, Case (ii) may be applicable

when chronic chemotherapeutic treatment strategies are used, as can be done when it

is implausible to completely eliminate a tumour. In such cases it is vital to suppress

any DR subpopulation in order to keep the tumour manageable by chemotherapy. For

Case (i), Figure 3.12 provides the data needed to discuss intelligent treatment strategy.

This diagram trivially shows that high chemotherapy dosages are the most e�ective

to rapidly eradicate cancer cells. However, what is not shown in our result, but is of

clinical importance, is that high drug dosages are coupled with high toxicity which may

be harmful to patients. Moreover our results show that the relationship between drug

dosage and drug e�cacy scales poorly, which is worth considering in a clinical setting.

The increase in toxicity following from an increased drug dosage may not validate the
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Figure 3.10: Cell-maps of the cancer cell populations at times 500 h (immediately before
�rst drug dose), 510 h 600 h (immediately before second drug dose), 610 h and 700 h (end
of simulation). Cases incorporating (a) No DR and (b) Primary DR are shown for drug
dosages of (1) 1C and (4) 8C according to the labelling in Tables 3.4 and 3.5. White areas
correspond to extracellular space.
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Figure 3.11: Cell-maps of the cancer cell populations at times 500 h (immediately before
�rst drug dose), 510 h 600 h (immediately before second drug dose), 610 h and 700 h
(end of simulation). Cases incorporating (c) Induced DR, (d) ICC DR and (e) SC DR are
shown for drug dosages of (1) 1C and (4) 8C according to the labelling in Tables 3.4 and
3.5. White areas correspond to extracellular matrix.
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outcome in terms of tumour reduction. In Case (ii) there is a balance, and sometimes a

trade-o�, between eliminating sensitive cells and aiding the drug resistant cells. Indeed

killing of sensitive cells paves the way for any drug resistant phenotypes. Hence admin-

istering low chemotherapy dosages sometimes constitutes a wiser treatment strategy

as it delays the uprising of a drug resistant subpopulation. Evolutionary theory and

the interaction between S and DR subpopulations may thus play a role in designing

intelligent treatment strategies. Figure 3.13 shows the ratio between S and DR subpop-

ulations at di�erent times. This diagram demonstrates that drug resistant phenotypes

that arise independently of drug presence bene�t from high drug dosages. However,

in silico, the opposite is true here for drug-induced drug resistant phenotypes, which

prosper in low drug conditions. Ideal chemotherapeutic tumour treatments would in-

volve rapidly reducing tumour size whilst minimising drug resistance, thus meeting the

requirements of both Cases (i) and (ii). However, our results indicate that when using

chemotherapy only, there is a trade-o� between tumour reduction and the suppressing

of drug resistant phenotypes in some cases, thus the objectives of Cases (i) and (ii)

may con�ict.

The aim of this study is to qualitatively model drug response in cancer cell pop-

ulations hosting drug resistant individuals. Drug resistance is here modelled from a

collective of biological experiments, biological theory and clinical observations, and thus

does not confer strictly with one cell line or one experiment. However, the developed in

silico framework can be parametrised and calibrated appropriately for a cell-line speci�c

study (as shown in a recent paper [31]), should relevant biological data become available

in detail. Our in silico framework is equipped to handle various mechanisms concerning

drug resistance, these mechanisms can be appropriately included or excluded in order

to study a certain cell-line or a certain tumour scenario.

3.5 Conclusion

Enhanced chemotherapeutic drug resistance post-chemotherapy is an established clinical

problem, this study provides insight into drug resistance and drug response in cancer

cell populations on a cellular resolution. Our results show that, whilst chemotherapy is

an e�ective way to reduce tumours, suboptimal drug dosages may contribute towards

drug resistance and, by extension, tumour reinforcement. Thus, in accordance with
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Figure 3.12: Diagram of the drug sensitive subpopulation (blue) and the drug resistant
subpopulation. Various types of drug resistance are incorporated namely (a) No DR, (b)
Primary DR, (c) Induced DR, (d) ICC DR, (e) SC DR. Results are shown at times 500 h
(immediately before the �rst drug dose), 510 h, 600 h (immediately before the second drug
dose), 610 h and 700 h (end of simulation) for low drug dosages, (1) 1C, and high drug
dosages, (4) 8C according to the labelling in Table 3.5. Each diagram shows the average
value based on 100 simulations.

Figure 3.13: Diagram of the ratio between the drug sensitive subpopulation (blue) and
the drug resistant sub-population. Various types of drug resistance are incorporated namely
(a) No DR, (b) Primary DR, (c) Induced DR, (d) ICC DR, (e) SC DR. Results are shown
at times 500 h (immediately before the �rst drug dose), 510 h, 600 h (immediately before
the second drug dose), 610 h and 700 h (end of simulation) for low drug dosages, (1) 1C,
and high drug dosage, (4) 8C according to the labelling in Table 3.5. Each diagram shows
the average value based on 100 simulations.
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Figure 3.14: Tumours exposed to chemotherapeutic drugs given in low (top) or high
(bottom) dosages, the latter dosage option kills more cancer cells. One of the tumours (left)
expresses drug resistance pre chemotherapy, the other one (right) does not. Generally in
our in silico experiment, drug resistance that occurs independently of the drug, and thus
may precede chemotherapy, is ampli�ed by high drug dosages (left). Conversely, drug
resistance that is induced by drug presence is accelerated by low to moderate drug dosages
(right).

Nietzschean philosophy, chemotherapy that does not kill a tumour may indeed make it

stronger. Generally we found that drug resistance presenting independently of the drug,

which thus may precede chemotherapy, is ampli�ed by high drug dosages. However,

drug resistance that is induced by drug presence is accelerated by low to moderate drug

dosages. These �ndings are pictorially demonstrated in Figure 3.14.
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Chapter 4

Hypoxia-Activated Prodrugs

Hypoxia-Activated Prodrugs are bioreductive prodrugs convert to cytotoxic agents upon

reaching hypoxic (tumour) regions. Thus they, theoretically, act as Trojan horses,

being essentially harmless until warheads are released in tumours. In this chapter we

investigate treatments combining hypoxia-activated prodrugs and radiotherapy.

4.1 Chapter Summary

Hypoxia-activated prodrugs (HAPs) present a conceptually elegant approach to not

only overcome, but better yet, exploit intra-tumoural hypoxia. Despite being successful

in vitro and in vivo, HAPs are yet to achieve successful results in clinical settings. It

has been hypothesised that this lack of clinical success can, in part, be explained by

the insu�ciently stringent clinical screening selection of determining which tumours are

suitable for HAP treatments [162].

We here demonstrate that both the intra-tumoural oxygen landscape and treatment

scheduling of HAP-radiation combination therapies in�uence treatment responses in

silico. Our in silico framework is based on an on-lattice, hybrid, multiscale cellular au-

tomaton spanning three spatial dimensions. The mathematical model is parameterised

by multicellular tumour spheroid (MCTS) data from a previous study by Voissiere et

al. [3].
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4.2 Introduction

Oxygen concentrations vary across solid tumours and, although tumours present with

high diversity across patients [163], hypoxic regions are prevalent tumour features

[66, 88, 164�170] commonly provoked by inadequate oxygen supply and high tumour

growth rates [85]. Hypoxia signi�cantly impacts tumour dynamics, treatment responses

and, by extension, clinical outcomes [165, 168, 171]. Hypoxia may alter cellular expres-

sions of genomes, proteins and epigenetic traits [85], and such hypoxia-induced alera-

tions may cause hypoxic cancer cells to be more resistant to apoptosis [172]. Hypoxia

may also alter the metabolism of cells [172] and promote angiogenesis by activating asso-

ciated genes [173]. Thus hypoxia both protects and progresses solid tumours [171, 172].

Accordingly, severe tumour hypoxia is associated with tumours that are di�cult to

treat and, by extension, poor prognoses for patients [85, 166]. It is well established

that hypoxic regions in solid tumours express reduced sensitivity to radiotherapy and

a plethora of chemotherapeutic drugs [65, 85, 165�168, 170, 172�175]. Hypoxic cancer

cells in a solid tumour are naturally located far away from active oxygen sources, i.e.

blood vessels [166], and therefore drug molecules that are of large size or tightly bound

to cell components may not reach hypoxic tumour cells at all [173]. Moreover, genes

associated with chemo-resistance may be upregulated by hypoxia [162]. Hypoxia is also

regarded to be one of the main factors contributing to radiotherapy failure [173], as is

previously explained in Section 2.6.2. IR-induced DNA damage, especially in the form

of double strand breaks, is more easily self-repaired by the cell under hypoxic conditions

[79].

Due to their severe impact on conventional anticancer therapies, such as chemother-

apy and radiotherapy, hypoxic cancer cells, and their central mediators [85], have for

the last decades been considered to be important treatment-targets [163, 173]. Mul-

tiple ways to handle tumour hypoxia have been explored. One approach to combat

intratumoural hypoxia is to increase the tumour oxygenation as part of a neoadjuvant

treatment [162]. A second approach to overcome hypoxia is to selectively target hypoxic

cancer cells only for treatment-sensitising or eradication [88]. A third and conceptually

elegant approach to not only overcome, but better yet, exploit intratumoural hypoxia is

realised by hypoxia-activated prodrugs (HAPs) [173]. HAPs are bioreductive prodrugs

that reduce, and thus convert, into cytotoxic agents upon reaching hypoxic (tumour)
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regions [65, 172]. Theoretically, they act as Trojan horses, being essentially harmless

until they are converted into warheads in target regions, i.e. hypoxic (tumour) cells.

The tumour-targeting ability of HAPs is based on the premise that oxygen concentra-

tions in hypoxic tumour regions reach exceptionally low levels, and that such low oxygen

levels are not found elsewhere in the surrounding body tissue [172]. Indeed physoxia,

that is the term used to describe oxygen levels found in normal tissue, ranges between

10 and 80 mmHg, and a cancer cell is commonly classi�ed as hypoxic if it has a partial

pressure of oxygen (pO2) value of 10 mmHg or less [66]. Solid tumours commonly dis-

play regions that are even more hypoxic, where pO2 values may drop below 5 mmHg

[66]. Consequently, HAPs theoretically constitute a means to e�ectively target hypoxic

tumour cells. This also means that toxic drug e�ects can be localised to tumours, and

that the remaining host system can in great part be spared from harmful toxicity caus-

ing unwanted side e�ects.

HAPs transform into activated drugs (AHAPs) via reductive metabolism [164, 173]

in su�ciently hypoxic environments, and the AHAPs can achieve cytotoxic e�ects in

cells [103]. Freely available redmolecular oxygen inhibits this bioreduction, and thus

HAPs remain (for the most part) intact in well-oxygenated environments [172]. Once

activated, AHAPs may di�use into local surroundings. Thus, via bystander e�ects,

AHAPs may infer damage to cells in which the HAP-to-AHAP bioreduction did not

occur, however a few recent studies dispute the impact of these bystander e�ects on the

overall treatment outcome [176]. In the mathematical model described in this study, the

dispersion of HAPs and AHAPs obey mechanistic di�usion equations, and the reach of

AHAPs can easily be modi�ed by altering coe�cients in the AHAP di�usion equation.

Thus the in�uence of bystander e�ects on the treatment outcome is allowed to range

from negligable to highly in�uential.

Multiple HAPs have been evaluated for their clinical potential, both as monother-

apies and as part of combination therapies [85, 167]. Class I HAPs are activated in

moderately hypoxic environments whilst Class II HAPs require more severe hypoxia

to undergo the HAP to AHAP bioreduction [177]. One such Class II HAP is evofos-

famide, or TH-302, which has been tested in clinical Phase I-III trials [85, 162]. TH-302

bioreduces to its activated form, bromo-isophosphoramide mustard (Br-IPM), in hy-
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poxic tumour regions, and Br-IPM is a DNA-crosslinking agent [176]. Multiple in vitro

and in vivo studies have validated this drug's preclincal success and, by extension, its

clinical feasibility [103, 165, 166, 168, 169, 171, 175, 178�182]. Multimodality treatment

strategies combining HAPs, particularly Class II HAPs, with ionising radiation (IR)

may be particularly promising [167, 168, 181] as the two therapies conceptually com-

plement each other: HAPs target hypoxic tumour regions whilst radiotherapy is most

e�ective against well oxygenated tumour regions. Thus, in principal, HAP-IR combi-

nation treatments have the ability to produce multifaceted attacks on tumours.

Despite HAPs being conceptually promising and successful in laboratories, this suc-

cess has not yet been mirrored in clinical trials [85, 162, 163]. It is hypothesised that

this unsuccessful Bench-to-Bedside translation is partly due to an insu�ciently strin-

gent clinical screening practice of selecting tumours that are suitable for HAP treat-

ments [162]. It is likely that some of the tumours enrolled in clinical trials have been

insu�ciently hypoxic to bene�t from treatment plans involving HAPs [163]. To investi-

gate this hypothesis, we here propose a mathematical modelling angle to simulate how

spatio-temporal tumour features may impact HAP e�cacy and how scheduling in�u-

ences the outcome of multimodality HAP-IR treatments.

Today, mathematical modelling constitutes an indispensable complement to tradi-

tional cancer research. Models provide an opportunity to study biological phenomena

in silico that may not be empirically observable and, moreover, in silico experiments are

fast and cheap to run, easy to reproduce and not directly associated with any ethical

concerns. Previous mathematical studies have already contributed to the overall under-

standing of HAPs, quanti�ed key mechanisms associated to them and illustrated their

clinical feasibility. Foehrenbacher et al. [183] have deployed a Green's function method,

in customised form, and pharmacokinetic/pharmacodynamic (PK/PD) modelling to

quantify anticancer bystander e�ects elicited by the HAP PR-104 in a simulated, three-

dimensional tumour comprising a microvascular network. Another concurrent article

used similar mathematical concepts to compare Class I HAPs to Class II HAPs and,

furthermore, to determine optimal properties for Class II HAPs [177]. Lindsay et al.

[184] developed a stochastic model to study monotherapies and combination thera-

pies involving HAPs, speci�cally TH-302, and erlotinib. Amongst other �ndings, they
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concluded that a combination therapy of the two drugs impedes the uprising of drug

resistance. Since HAPs bioreduce to activated form under hypoxic conditions it follows

that AHAP activity increases with intratumoural hypoxia. Accordingly, a previous

study by Wojtkowiak et al. [185] conceptually validated the strategy of amplifying

TH-302 activity by deliberately exacerbating intratumoural hypoxia using exogenous

pyruvate. Their study combined mathematical modelling with metabolic pro�ling and

EPR (electron paramagnetic resonance) imaging. HAP dynamics were modelled using

reaction-di�usion/convection equations coupled with �uid-structure interactions. In line

with these previous mathematical studies, the aim of this in silico study is to contribute

HAP-related insights gained by mathematical modelling, according to a Blackboard-to-

Bedside [186] approach.

In clinical settings, the intratumoural oxygenation status can be assessed in multiple

ways. By inserting oxygen electrodes into tumours, pO2 values can directly be measured,

but this measuring technique is invasive and does not distinguish between hypoxic and

necrotic tumour regions [162]. Alternatively, less invasive imaging techniques, such as

positron emission (PET-scans) and oxygen-enhanced magnetic resonance (MRIs), can

be used to evaluate oxygen levels in tumours [85, 162]. Consequently, it is indeed feasible

to invoke stricter selection regimes when deciding whether or not to pair tumours with

HAP treatments in clinical trials [162]. A recent publication, by Spielberg et al. [162],

claims that the (lack of) clinical progress with HAP-treatments can, in great part,

be attributed to the omission of hypoxia-based patient selection in phase III trials.

In this study, we demonstrate that the e�cacy of HAP monotherapies and HAP-IR

combination therapies in silico is, indeed, highly dependent on tumour-speci�c oxygen

features.

4.3 Model

The on-lattice, hybrid, multiscale cellular automaton (CA) presented in Chapter 2 is

used in this chapter to model solid tumours subjected to HAP and IR monotherapies,

as well as HAP-IR combination therapies. Tumour growth and HAP responses are pa-

rameterised by published data from an in vitro study performed by Voissiere et al. [3],

in which MCTSs where grown and exposed to HAPs. Speci�cally, we use their data for

human chondrosarcoma HEMC-SS cells exposed to the hypoxia activated prodrug TH-
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302. Our mathematical model is thereafter extended to simulate in vivo drug dynamics

in order to investigate scheduling aspects of HAP-IR combination therapies. The pa-

rameters used in this chapter can be modi�ed in order to simulate speci�c cell-lines

and drugs, and model rules can be altered in order to simulate both in vitro and in

vivo tumours. Thus, with the availability of appropriate data, various tumour scenarios

and treatment schedules and doses can be investigated in silico. Hence, the mathe-

matical model presented here constitutes a valuable and versatile complement to both

in vitro and in vivo experiments. The model used in this study is an extension of a

previous, well-established model presented by Powathil et al. [6]. All parameters used

in the model are motivated from experiments and literature, as described throughout

this section, and are summarised in Section 4.3.7, Table 4.1.

4.3.1 Mathematical Framework

The CA used in this model allows for spatio-temporal dynamics and intratumoural

heterogeneity including variations in cell-cycle progression, oxygen levels, drug con-

centrations and treatment responses amongst cancer cells [6, 186, 187]. The model is

multiscale and integrates both intracellular and extracellular regulations. In vitro exper-

iments have demonstrated that MCTSs are more HAP-sensitive than are monolayers.

This increase in sensitivity has been attributed to the microenvironment correlated to

multilayer cultures [175]. Aspiring to achieve an in silico model that is as clinically

relevant as possible, we here let the CA lattice extend in three spatial dimensions. The

lattice is speci�cally a square lattice containing 1003 lattice points, simulating a physi-

cal environment of (2mm)3. Thus each voxel in the lattice spans a volume of (20µm)3

and each lattice point may be occupied by either one cancer cell or extracellular matrix

only. These dimensions agree with previous mathematical studies [6], and cell popu-

lation density in the MCTSs that are used to calibrate the model [3]. The time step

used to model the temporal progression of the CA is ∆t = 10−3 hours, by appropriate

non-dimensionalisation of oxygen dynamics [6].

4.3.2 Cell Cycle Progression

On an intracellular scale, sub-cellular mechanisms are modelled individually for each cell

in order to allow for variations amongst cancer cells. Cell-cycle progression is one such

intracellular process, it is governed by an intrinsic cell-cycle clock attributed to each
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Figure 4.1: Cell count over time for tumour spheroids. The in silico data is based on 10
simulations runs, the mean (black line) shows the average value and the gray ribbon shows
standard deviation. In vitro data (red error bars) are extracted from plots produced by
Voissiere et al. [3] using a Java program [4].

individual cell. In order to account for cell-cycle asynchronicity amongst cells, each cell

i is assigned an individual, stochastic doubling-time τi which corresponds to the time it

takes for a cell to complete one cell-cycle, and double by producing a daughter cell, in

well-oxygenated conditions. τi is picked from a normal distribution with a mean value

µ and a standard deviation σ, which are picked to match cell population growth-rates

reported from Voissiere et al. [3]. as demonstrated in Figure 4.1.

Each cell in the model follows a cell-cycle typical to that of eukaryotic cells. In

particular, a cell is de�ned to be in the gap 1 (G1), synthesis (S), gap 2 (G2) or mitoses

(M) phase of the cell-cycle. As sensitivity to radiotherapy is cell-cycle dependent [79], it

is important to track cell-cycle phase progression in the model. Each cell that is placed

on the lattice commences its �rst cell-cycle in the G1 phase. Under well-oxygenated

conditions, the fraction of time spent in each of the four distinct cell-cycle phases are

ΘG1, ΘS , ΘG2 and ΘM for the cell-cycle phases G1, S, G2, M respectively, where the

Θ-fractions sum up to, as described in Chapter 2.2.2, and the four theta values, listed

in Table 4.1, are picked from literature in order to match typical lengths of cell-cycle

phases for human cells with a doubling time of roughly 24 hours [63]. Thus, the time

spent in each of the four distinct cell-cycles, for a well-oxygenated cell i with a cell-cycle

length τi, is ΘG1τi, ΘSτi, ΘG2τi and ΘMτi for the cell-cycle phases G1, S, G2 and M

respectively. However, low cellular oxygen levels have been shown to delay cell-cycle
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progression by inducing arrest in particularly the G1 phase of the cell cycle [1] and thus,

in accordance with the cell cycle clock model described in Chapter 2.2.2, the G1 phase

is elongated under hypoxic circumstances according to Equation 2.3 and Figure 2.2.

4.3.3 Tumour Growth

In the model, a tumour is grown from one seeding cancer cell which divides and gives

rise to a heterogeneous MCTS. Once a viable, i.e. undamaged, cell has completed

the mitoses (M) phase of the cell-cycle, a secondary cell, namely a daughter cell, is

produced and placed in the neighbourhood its mother cell. This cell-division occurs

provided that free space is available on the lattice in the neighbourhood of the mother

cell. If this is not the case, no daughter cell is produced and instead the mother cell exits

the cell-cycle to enter the quiescent phase, G0. Should neighbourhood space be made

available again, as a result of cells getting removed from the lattice due to anticancer

treatments, quiescent cells may re-enter the cell-cycle. Each daughter cell is placed on

a random lattice point in the neighbourhood of the mother cell, where up to ν spherical

neighbourhoods are regarded. In order to agree with the MCTS data [3] used to calibrate

the model, ν = 3, as illustrated in Figure 4.2, and thus a daughter cell may be placed

up to three neighbourhoods away from its mother cell. To accomplish spherical-like

tumour growth the model stochastically alternates between deploying Moore and von

Neumann neighbourhoods [6].

4.3.4 Oxygen Distribution and Hypoxia

Oxygen is assumed to be readily available in the extracellular space and, accordingly,

extracellular lattice points are oxygen source points. On the other hand, viable (i.e.

non-damaged) cells are modelled as oxygen sinks as they consume oxygen in order to

function. As is previously discussed in this thesis, the distribution of oxygen across the

lattice is modelled by a mechanistic partial di�erential equation (PDE), such that

∂K(x, t)

∂t
= ∇ · (DK(x, t)∇K(x, t)) + rKm(x, t)− φKK(x, t)cell(x, t), (4.1)

coupled with no-�ux boundary conditions. Here K(x, t) denotes the oxygen level in

lattice point x at time t. DK(x, t) is the di�usion coe�cient, which is higher in lattice
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Figure 4.2: Top: Images from in vitro experiments performed by Voissiere et al. [3],
in which cell nuclei are stained blue and furthermore proliferative cells are stained green
by the proliferation marker Ki-67. Bottom: Images from in silico experiments performed
in this study, where proliferative (cycling) cells are coloured green and quiescent cells are
coloured blue.
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points occupied by cells compared to unoccupied lattice points, so that oxygen di�uses

slower over cancer cells than in extracellular material in the model [6]. The binary

function cell(x, t) is equal to one if the lattice point is occupied by a cancer cell, and

zero otherwise. Similarly, the binary functionm(x, t) is one if the lattice point is outside

the tumour, and zero otherwise. The oxygen production rate is denoted by rK and the

cellular oxygen consumption rate is φK . In this study, the di�usion coe�cient for oxygen

is gathered from literature but the production and consumption rates are calibrated in

silico to match in vitro data from Voissiere et al. [3], speci�cally to achieve appropriate

oxygen gradients. Note that the no-�ux boundary condition causes the total amount of

oxygen on the lattice to increase over time. To express oxygenation levels on the lattice

in scaled form, a scaled oxygen variable K̂(x, t) is introduced which is obtained by

K̂(x, t) =
K(x, t)

maxnK(n, t)
· h, (4.2)

where maxnK(n, t) denotes the maximal K(x, t)-value (of all n lattice points) at

time t [67]. The scaling-factor, h, (with unit mmHg), is incorporated in order to calibrate

the model to �t the MCTS data, as illustrated in Figure 4.3. A cell is de�ned to be

hypoxic if it has a scaled oxygen value such that K̂(x, t) ≤ 10 mmHg [6]. In the model,

the K̂(x, t)-value in�uences G1-arrest (Figure 2.2), radio-sensitivity (Figure 2.6) and

HAP-AHAP bioreduction rates (Figure 4.4).

4.3.5 Hypoxia Activated Prodrugs

Anticancer prodrugs constitute relatively harmless compounds in their inactivated form

with the potential to bioreduce, or transform, into cytotoxic species [103]. Speci�cally

for HAPs, this bioreduction occurs in hypoxic conditions and thus HAPs are able to

selectively target hypoxic tumour regions [103]. The oxygen dependent bioreduction is

here modelled by the function fHAP→AHAP (K̂(x, t)), where

fHAP→AHAP (x, t) = b ·BRF (K̂(x, t)), (4.3)

where b is a time-scaling factor with and BRF is a bioreduction factor as illustrated

in Figure 4.4 and

BRF (K̂(x, t)) =
[pO2]50

[pO2]50 + K̂(x, t)
. (4.4)
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Figure 4.3: Top: Images from in vitro experiments performed by Voissiere et al. [3], in
which hypoxic cells are stained green by pimonidazole and normoxic cells are stained blue.
Bottom: Images from in silico experiments performed in this study, where hypoxic cells
(pO2

≤ 10 mmHg) are coloured green and normoxic cells (pO2
> 10 mmHg) are coloured

blue.
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Figure 4.4: The bioreduction factor, BRF , expresses the fraction of HAP compound that
reduces to AHAP compound within one hour as a function of oxygenation (measured in
mmHg)

Here [pO2]50 denotes the oxygen value yielding 50% bioreduction (in one hour), cho-

sen to be 0.2 mmHg as is done in a previous mathematical model by Hong et al. [188].

As illustrated in Figure 4.4, the BRF value rapidly decreases for pO2 values (i.e. K̂(x, t)

values) between 0 and 10 mmHg.

The mechanistic reaction-di�usion equations governing the distribution of HAPs

and AHAPs across the lattice are respectively given by [189]

∂[HAP ](x, t)

∂t
= ∇ · (D[HAP ](x, t)∇[HAP ](x, t)) + r[HAP ](x, t)m(x, t)

− fHAP→AHAP (x, t)[HAP ](x, t)− η[HAP ][HAP ](x, t),

(4.5)
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∂[AHAP ](x, t)

∂t
= ∇ · (D[AHAP ](x, t)∇[AHAP ](x, t))

+ fHAP→AHAP (x, t)[HAP ](x, t)− η[AHAP ][AHAP ](x, t),

(4.6)

where [HAP ](x, t) denotes the concentration of HAPs and [AHAP ](x, t) denotes the

concentration of AHAPs in point x at time t. D[HAP ](x, t) and D[AHAP ](x, t) denote the

respective di�usion coe�cients, r[HAP ](x, t) denotes the HAP production rate, η[HAP ]

and η[AHAP ] denote the corresponding decay rates. AHAPs are harmful agents which

are here assumed to in�ict damage that is cell-cycle non-speci�c. Consequently, cells

that are in any cell-cycle phase (G1, S, G2, M) or in the quiescent phase (G0) are

susceptible to AHAP-in�icted damage. A cell in point x at time t is damaged by the

cytotoxic AHAPs if [AHAP ](x, t) ≥ Ψ, where Ψ is the lethal AHAP concentration

threshold. Ψ and the production coe�cient in Equation 4.5 are calibrated in silico to

make it so that HAPs and IR yield the same e�ect (in terms of number of cells killed)

for a large tumour (see the Large Tumour in Figure 4.5). When a cell dies, it reduces

to a membrane-enclosed cell-corpse which is (in vivo) digested by macrophages [7]. In

the model, the time it takes for a cell to receive lethal damage until it is removed from

the lattice, to give space to other cells, is denoted TL→R (L for lethal, R for removal).

Three cases for this time TL→R are investigated in this study: (i) the �rst extreme

case in which a dead cell in never removed from the lattice (simulating an in vitro

environment), (ii) the other extreme case in which a cell is instantaneously removed

from the lattice upon receiving lethal damage, and (iii) a mid-way case in which a cell

is removed from the lattice after a time-period corresponding to its doubling time has

passed, i.e. TL→R,i = τ. Results using the �rst case are included in the main text,

results for cases (ii) and (iii) are provided in Appendix A2 in which we demonstrate

that, within the scope of the performed in silico experiments, this choice of TL→R value

does not a�ect our qualitative �ndings.

4.3.5.1 Drug Parameters

In our mathematical model, HAPs are produced on the source points (i.e. extracellular

lattice points outside the tumour) and are quickly distributed across the lattice. Drug
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transportation of HAPs from source points to cells is mediated only by the di�usion

terms in Equation 4.5 and and similarly AHAP transportation is mediated only by the

di�usion term in Equation 4.6. Consequently, the drug di�usion coe�cients D[HAP ]

and D[AHAP ] represent all biophysical drug transportation across the lattice in silico.

HAPs must possess certain appropriate attributes in order to produce desired e�ects

[175]. Speci�cally, HAPs should be able to travel relatively long distances without being

metabolised, speci�cally distances longer than that of which oxygen travels, in order to

reach hypoxic tumour regions. It has, indeed, been demonstrated in vivo that TH-302

has the ability to reach hypoxic regions, where it is activated [190]. Conversely, AHAPs

should travel relatively short distances in order to localise AHAP activity to tumour

regions only, and thus to minimise unwanted extratumoural toxicity. The di�usion

length of oxygen is reported in literature to be approximately 100 µm [6] however, to

our knowledge, no di�usion length of neither TH-302 nor Br-IPM has been explicitly

reported. However, the di�usion length of the HAP/AHAP pair AQ4N/AQ4 has been

shown to be reach roughly 1.5 times that of oxygen (or 150µm) in xenografts [191].

With this motivation, we here approximate the di�usion coe�cient of TH-302 to be

twice that of oxygen. ( According to the relationship L =
√
D/Φ, where L is the dif-

fusion length scale and Φ is the compound uptake, the di�usion coe�cient of a certain

compound, D, is proportional to L2, neglecting details of compound uptake. Thus here

we make the simpli�ed approximation that L[HAP ](x, t) =
√

2 ·DK(x, t). ) Similar to

previous procedure, the di�usion length of AHAPs is approximated to be half that of

oxygen so that D[AHAP ](x, t) = (1/4) · DK(x, t). These parameter estimations su�ce

to conceptually, and qualitatively, describe the nature of HAPs and AHAPs, but can

be amended upon the availability of new data. By adjusting the di�usion coe�cients

D[HAP ] and D[AHAP ], the in�uence of bystander e�ects are allowed to range from neg-

ligible to highly in�uential.

The half-life times of TH-302 and Br-IPM have been reported to be 0.81h and

0.70h respectively in a clinical trial [170], these values are used to determine the decay

rates η[HAP ] and η[AHAP ]. This half-life time of TH-302 is in accordance with preclinical

predictions obtained from allometric scaling [180]. Note that the drug decay coe�cients,

η[HAP ] and η[AHAP ] in Equation 4.5 and Equation 4.6 respectively, simulate all drug

clearance from the system, i.e. both metabolic clearance and excretion.
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4.3.6 Radiotherapy

Cellular responses to radiotherapy are dependent on oxygenation status [88], cell-cycle

phase [89, 90], and cell-line characteristics. Cellular radiotherapy responses are here

modelled using Equation 2.23, an appropriate CA adaptation of the widely accepted

Linear-Quadratic (LQ) model discussed in Chapter 2.6.3. Equation 2.23 reads,

S(x, t) = e−d([OMF ]α(x,t)+d[OMF ]2β(x,t)),

where details are provided in 2.6.3. To include cell cycle sensitivity, α and β are here

cell cycle dependent and the oxygen modi�cation factor (OMF), expressed in Equation

2.24, is incorporated to include oxygen sensitivity. The survival probability of a cell in

point x at time t, exposed to a radiation dose of 2 Gy, is illustrated in Figure 2.6 in

Chapter 2.8, where the survival probability depends on both oxygenation and cell-cycle

phase details.

4.3.7 Parameters

In this study we attempt to replicate the nature of generic eukaryotic cell-lines, the

HAP evofosfamide (TH-302) and its corresponding AHAP, Br-IPM. The parameters,

which are listed in Table 4.1, are chosen accordingly but can be adapted to represent

other speci�c cell-lines or drugs upon data becoming readily available.

4.3.8 Implementation and in silico Framework

The mathematical model is implemented in an in-house computational framework writ-

ten in C++. A �owchart of the programming code is available in Appendix A2. The

PDEs describing oxygen and drug distribution across the lattice are solved using ex-

plicit �nite di�erence methods with no-�ux boundary conditions. Maps of cancer cells

and the microenvironment are visualised in ParaView [161]. Using this computational

framework, various experimental in vitro and in vivo scenarios are formulated and sim-

ulated in silico. In order to grow an in silico MCTS, one seeding cancer cell is placed

on the lattice and this cell divides and gives rise to a heterogeneous MCTS. Such vir-

tual spheroids are thereafter subjected to various treatment combinations comprising

HAPs and IR. Treatment commence when MCTSs consist of, in the order of, 100,000

cancer cells or `agents' in out agent-based model. Due to the high number of agents,
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Section, Equation Parameter Value

Cellular Automaton

4.3.1, N/A ∆x1 = ∆x2 = ∆x3 (spacing) 20 µm
∆t 0.001 hours

Cell-cycle and proliferation

4.3.2, N/A µ, σ 40 hours, 4 hours
4.3.2, 2.2 θG1, θS , θG2, θM

11
24
, 8

24
, 4

24
, 1

24

4.3.2, 2.3 a1, a2, a3 0.9209, 0.8200, -0.2389
4.3.3, N/A ν 3

Oxygen

4.3.4, 5.1 DK(x, t) =

{
DK/1.5 if cell in (x, t)

DK otherwise
DK = 2.5 × 10−5 cm2s−1

cell(x, t) =

{
1 if cell in (x, t)

0 otherwise

m(x, t) =

{
1 if (x, t) outside MCTS

0 otherwise

4.3.4, 5.2 h 0.5 mmHg
4.3.6, 2.24 OERm 3
4.3.6, 2.24 Km 3 mmHg

Drugs

4.3.5, 4.3 b (hour)−1

4.3.5, 4.4 [pO2]50 0.2 mmHg
4.3.5, 4.5 and 4.6 DHAP , DAHAP 2 ×DK(x, t), 1

4
×DK(x, t)

ηHAP , ηAHAP picked from half-life times:

t1/2,HAP=0.81 hours,
t1/2,AHAP=0.70 hours

4.3.5, 4.5 TL→R (for the no removal in vitro case) In�nity

Radiotherapy

4.3.6, 2.23 α(G1), β(G1) 0.351, 0.04
α(S), β(S) 0.1235, 0.04
α(G2), β(G2) 0.793, 0
α(M), β(M) 0.793, 0
α(G0), β(G0) α(G1)/1.5, β(G1)/(1.52 )

Table 4.1: A summary of model parameters used in the mathematical framework.
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and the fact that the intrinsic model stochasticity only involves a few events during the

simulated treatment time (speci�cally 0-3 cell divisions and potentially one response to

radiotherapy) the quantitative results do not di�er much between in silico runs. Per-

forming the same in silico experiment 10 times yields a standard deviation that can be

regarded as negligible (less than 0.5%), and thus we argue that basing our results from

means from 10 simulation runs per experiment is enough to mitigate intrinsic model

stochasticity to a level that is su�cient for this qualitative study.

4.4 Results and Discussion

In Sections 4.4.1 through to 4.4.3, we compare treatment responses in two di�erent in

silico tumour spheroids, speci�cally a `Large' and more hypoxic MCTS and a `Small',

less hypoxic MCTS. The `Small' tumour corresponds to the 20 day-old MCTS in Figures

4.2 and 4.3, that is calibrated by in vitro data from Voissiere et al. [3]. The `Large'

MCTS is extrapolated by letting the `Small' MCTS grow for yet another 10 days in

silico, until it reaches an age of 30 days. The `Small' and `Large' MCTSs are illustrated

in Figure 4.5.

The simulated IR dose is chosen to be 2 Gy, a dose commonly used in clinical set-

tings [79]. To allow for intuitive comparisons between the two di�erent monotherapies,

the HAP dose (DoseHAP ) is here qualitatively chosen, and calibrated to yield the a

similar response as the 2 Gy IR dose (in terms of cell survival) in the `Large' MCTS.

Quantitative doses can be speci�ed and implemented upon the availability of data.

4.4.1 HAP and IR Monotherapies Attack Tumours in Di�erent Ways

In this initial in silico experiment, a MCTS is subjected to a monotherapy of either one

dose of HAPs or one dose of IR. Our in silico results demonstrate that HAP and IR

monotherapies attack the MCTS in di�erent ways. This can be understood by regarding

the treatment responses in Figure 4.6 and Figure 4.7. Figure 4.6 shows cell-cycle phase

speci�c survival data, in terms of cell count over time, when the `Small' or `Large' MCTS

is subjected to a HAP or IR monotherapy. Similarly, Figure 4.7 shows the composition

of cells, in terms of their cell-cycle phase, in response to a HAP or IR monotherapy

dose. Our results demonstrate that for the `Small', well-oxygenated MCTS, HAPs have

negligible e�ect on the cell count (see Figure 4.6) and, by extension, on the cell-cycle
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Figure 4.5: The `Small' (20 day old) MCTS and the `Large' (30 day old) MCTS are
used in Sections 4.4.1, 4.4.2, 4.4.3 to allow for comparisons in treatment responses between
tumours with di�erent oxygenation levels. Top: Simulation snapshots of the MCTSs at
the time point T0 when treatments commence (A1: Small MCTS, B1: Large MCTS).
Hypoxic cells (pO2 ≤ 10 mmHg) are green whilst normoxic cells are blue. Middle: Oxygen
histograms at time T0, in which hypoxic cell counts are shown in green and normoxic cell
counts are shown in blue (A2: Small MCTS, B2: Large MCTS). Bottom: Cell-cycle phase
histograms at time T0 (A3: Small MCTS, B3: Large MCTS).

phase composition (see Figure 4.7). This shows that, by design, HAP treatments have

little e�ect on tumours that are not hypoxic enough to cause signi�cant HAP-to-AHAP

bioreduction. For the `Large' MCTS, however, HAPs successfully eliminate cells, par-

ticularly G0 cells (see Figure 4.6). This causes an alteration in the cell-cycle phase

composition in favour of proliferative (i.e. non-G0) cells (see Figure 4.7). Our results
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further show that, for both the `Small' and the `Large' MCTSs, IR eliminates cells of all

cell-cycle phases (see Figure 4.6), but alters the cell-cycle phase composition in favour

of G0 cells (see Figure 4.7). These opposing e�ects on the cell-cycle phase composition

achieved by HAPs and IR in the `Large' MCTS indicate that, for tumours that are

hypoxic enough for HAPs to have an e�ect, HAP-IR combination treatments have the

potential of producing multifaceted attacks on tumours.

Since radiation responses are enhanced by the presence of molecular oxygen, we

investigated which monotherapy (i.e. HAP or IR) best eliminates hypoxic cells and

reoxygenates MCTSs. To demonstrate the overall alteration of oxygenation levels in

the MCTSs as a result of the monotherapies, Figure 4.8 provides histograms for cellular

oxygenation levels at time T0 (the time of therapy administration) and at time T0 + 4

hours. From this �gure we can see that for the `Small' MCTS, HAPs do not alter the

overall intra-tumoural oxygenation but IR does. For the `Large' MCTS, on the other

hand, both HAPs and IR alter the overall intra-tumoural oxygenation but only HAPs

manage to shift the oxygen histogram away from the most severe levels of hypoxia. This

indicates that administering HAPs as a neoadjuvant therapy prior to radiotherapy may

enhance the e�ect of radiotherapy in tumours that are su�ciently hypoxic for HAPs to

be e�ective.

4.4.2 HAP-IR Treatment Scheduling Impacts HAP E�cacy in Su�-

ciently Hypoxic Tumours

In order to study the optimal treatment scheduling of HAP-IR combination therapies,

simulated MCTSs are here given one dose of HAPs and one dose of IR. Figure 4.9 shows

the cell count over time when one dose of HAPs and one dose of IR are administered with

various schedules. The results in Figure 4.9 demonstrate that for the `Small' tumour,

scheduling does not impact the overall treatment outcome, as HAPs are not e�ective.

For the `Large' tumour however, it is more e�ective to give HAPs before IR than to give

IR before HAPs. This indicates that, in tumours that are hypoxic enough for HAPs to

be e�ective, the HAP-IR treatment scheduling impacts the e�cacy of the combination

treatment.
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Figure 4.6: Treatment responses for HAPs (left) and IR (right) monotherapies for the
`Small' (top) and `Large' (bottom) MCTS. The monotherapy is given at 0 hours. Graphs
demonstrate cell-cycle speci�c cell count (i.e. number of viable, undamaged cells) over
time. Solid lines show mean values, and `+' markers show standard deviations for 10 in

silico runs.
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Figure 4.7: Treatment responses for HAPs (left) and IR (right) monotherapies for the
`Small' (top) and `Large' (bottom) MCTS. The monotherapy is given at 0 hours. Graphs
demonstrate cell-cycle speci�c composition (of viable, undamaged cells) over time.
Solid lines show mean values for 10 in silico runs (standard deviations are negligible hence
not shown).
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Figure 4.8: Treatment responses for HAPs (left) and IR (right) monotherapies for the
`Small' (top) and `Large' (bottom) MCTS. Histograms over cellular oxygenation levels at
time T0 (monotherappy administration time) and 4 hours later are shown. Results are
based on mean values from 10 in silico runs.
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Figure 4.9: Treatment responses (in terms of cell count) for HAP-IR combination ther-
apies in the `Small' MCTS (left) and the `Large' MCTS (right). One dose of HAPs and
one dose of IR are administered at various schedules. Solid and dashed lines show mean
values, and `+' markers show standard deviations for 10 in silico runs.
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4.4.3 HAPs Enhance Radiotherapy E�ects in Su�ciently Hypoxic

Tumours

To investigate if and when HAPs enhance the e�ect of radiotherapy, simulated MCTSs

are subjected to either IR monotherapies or HAP-IR combination therapies. In the

combination therapy case, HAPs are administered at time T0 and IR is administered

at time T0 + 48 hours. In the monotherapy case, radiotherapy is administered at time

T0 +48 hours. For a thorough investigation, the oxygen-levels of the `Large' and `Small'

tumours are further scaled by multiplication with a factor 1, 1/2 or 1/4 so that we

have 6 di�erent tumours on which to test if neoadjuvant HAPs enhances radiotherapy

e�cacy. Figure 4.10 shows IR treatment responses in form of survival data (both in

terms of number of surviving cells and fraction of surviving cells). From these plots

we see that for very hypoxic MCTSs, the administration of neoadjuvant HAPs does

increase the e�ect of radiotherapy. However, for well-oxygenated MCTS, neoadjuvant

HAPs do not increase the e�ect of radiotherapy.

4.4.4 The Intratumoural Oxygen Landscape Impacts HAP E�cacy

In Sections 4.4.1, 4.4.2, 4.4.3 we have demonstrated various ways that the intra-tumoural

oxygenation level impacts HAP and IR monotherapies and combination therapies. Fur-

ther, in order to investigate if the spatio-temporal intumoural oxygen landscape impacts

HAP e�cacy, two MCTSs with di�erent oxygen landscapes are here compared. Omit-

ting details of oxygen dynamics and vessel structure, hypoxic regions are here manually

assigned in the MCTSs so that every cancer cell is set to be either severely hypoxic

(pO2 = 0 mmHg) or very well-oxygenated (pO2 = 100 mmHg). Both MCTSs, named

MCTS A and MCTS B, are assigned the same number of severely hypoxic and well-

oxygenated cancer cells at the time-point when treatment commences. In MCTS A,

the hypoxic region is made up of one concentric sphere in the core of the MCTS, whilst

in MCTS B, the hypoxic regions consist of multiple spheres, evenly spread out across

the MCTS. MCTS A and MCTS B are illustrated in Figure 4.11. The severely hypoxic

cancer cells are here called activator cells, as the prodrug bioreduction (or activation) is

maximal in severly hypoxic environments. The well-oxygenated cells are here referred

to as bystander cells, as the bioreduction is minimal in well-oxygenated environments.

Thus any lethal AHAP concentration occurring in a bystander cell is a result of HAP-

to-AHAP bioreduction occurring outside the bystander cells.
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Figure 4.10: Treatment responses of radiotherapy in various MCTSs when either (1)
an IR monotherapy dose is administered at T0+48 hours or (2) IR is given at T0+48
hours following a prior HAP dose at time T0. Note that only explicit IR responses (not
HAP responses) are shown. The oxygen-levels of the `Large' (left) and `Small' (right)
tumours are scaled by a factor of 1 (least hypoxic), 1/2 or 1/4 (most hypoxic). The value
calibrated from in vitro experiments [3] correspond to the scaling with factor 1. Yellow
bars show number of viable cells (instantaneously) before IR administration, blue bars
show the number of viable cells (instantaneously) post IR. Red bars show how many cells
(as a fraction) survived the IR attack.

95



4. HYPOXIA-ACTIVATED PRODRUGS

Figure 4.11: Top: MCTS A and B prior to treatment commencing. The MCTSs are
visualised in both opaque and transparent formats. Bottom: Oxygen histograms for MCTS
A and B prior to treatment commencing, hypoxic (pO2 ≤ 10 mmHg) cell counts are shown
in green and normoxic cell counts are shown in blue.
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Figure 4.12: Treatment responses in MCTS A and MCTS B when HAPs are administered
at 0 hours. The number of viable (undamaged) cells are plotted over time for MCTS A
and MCTS B tumour. Activator cells (pO2

= 0 mmHg) are shown in dashed lines and
bystander (pO2

= 100 mmHg) cells shown in solid lines. Results show mean values for 10
in silico runs and `+' markers show standard deviations.

From Figure 4.12 it is clear that the bystander e�ects are higher in MCTS B than in

MCTS A, although all activator cells are eliminated in both MCTSs. When the activator

cells are spread out across the spheroid, as in MCTS B, there are more interfaces in which

bystander cells experience signi�cant bystander e�ects. Even if the oxygen landscape

in MCTS B is highly synthetic, this in silico experiment shows that the intratumoural

oxygen landscape impacts the e�cacy of HAPs.

4.5 Conclusion

Previous in vitro and in vivo studies have validated the successfulness of HAPs in lab-

oratory settings, however, this preclinical success has not yet been re�ected in clinical

trials. In an attempt to elucidate the unsatisfactory results from clinical HAP trials,

we in this study investigate how oxygen-related tumour features and treatment admin-

istration plans impact the e�cacy of HAP monotherapies and HAP-IR combination
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therapies in silico. To this end we have developed a mathematical model capturing the

spatio-temporal dynamics of tumours subjected to multimodality treatments compris-

ing HAPs and IR. A set of results (i to iv) relating to HAP e�cacy in silico have here

been demonstrated.

i HAPs and IR attack tumours in di�erent, complementary, fashions. Whilst IR

provides a highly e�ective way to kill cancer cells in tumours, hypoxic and resting

cells are signi�cantly more resistant to IR than are well-oxygenated and actively

cycling cells. HAPs, however, are alkylating agents which bioreduce in (primarily)

hypoxic areas, hence HAPs primarily in�ict damage in hypoxic tumour regions,

which are often conferred with a high density of quiescent cells, which are suscep-

tible to HAP damage. Consequently, HAP-IR combination treatments have the

potential of produce a multifaceted attack on tumours.

ii In su�ciently hypoxic tumours, the HAP-IR treatment schedule in�uences treat-

ment e�cacy. However, in well oxygenated tumours the schedule is not important.

iii In su�ciently hypoxic tumours, HAP functions as a radiosensitiser and treatment

intensi�er, however, in well oxygenated tumours it does not.

iv Not only the overall intra-tumoural oxygenation levels, but also the intratumoural

oxygen landscape, impacts HAP e�cacy.

In a recent publication, Spielberg et al. [162], claim that the (lack of) clinical

progress with HAP-treatments can, in great part, be attributed to the omission of

hypoxia-based patient selection. This in silico demonstrates that whilst HAPs are ef-

fective treatment intensi�ers for su�ciently hypoxic tumours, they have negligible e�ect

on more well-oxygenated tumours. In simple terms: some tumours are suitable to be

paired with treatment plans involving HAPs whilst others are not. In line with Spiel-

bergs claims [162], our in silico results indicate that a personalised medicine approach is

preferable if treatments involving HAPs (that are similar to TH-302) are to achieve their

maximum potential in clinical settings. In this study, we qualitatively studies various

aspects of HAP-IR treatment schedules using a multiscale mathematical framework.

Upon the availability of in vitro and in vivo data, this mathematical framework can

be calibrated in order to serve as an in silico testbed for predicting HAP-IR treatment
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scenarios. As a result of interdisciplinary collaborations, the mathematical framework

used in this study has previously been validated in vitro and in vivo for applications

other than HAP-IR combination treatments [31, 192]. The multiscale nature of the

framework enables integration of data from various scales, be it from the subcellular

scale, the cellular scale or the tissue scale. As an example of useful data, the multi

cellular tumour spheroid data previously produced by Voissier et al. [3] provided our

framework with calibration data for tumour growth and spatio-temporal oxygen evolu-

tion. Using existing experimental data to create data-driven mathematical models is a

resourceful step involved in the advancement of mathematical oncology [51].
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Chapter 5

Bridging in vitro and in vivo

research via agent-based modelling

The micro-environment in an in vitro cell culture is signi�cantly di�erent from the

micro-environment in a solid tumour in vivo. In this chapter, we use an in

vitro-calibrated mathematical model to predict in vivo treatment responses to a drug

that inhibits DNA damage repair.

5.1 Chapter Summary

Translating quantitative information between in vitro and in vivo research remains a

scienti�cally and �nancially challenging step in preclinical drug development processes.

However, well-developed in silico tools can be used to facilitate this in vitro to in vivo

translation, and we here propose using an agent-based model to bridge the gap between

in vitro and in vivo research. The agent-based model used in this chapter is governed

by a set of empirically observable rules, and by adjusting only the rules when moving

between in vitro and in vivo simulations, whilst keeping the fundamental mathematical

model and parameters intact, the agent-based model can �rst be parameterised by in

vitro data and thereafter be used to predict in vivo treatment responses.

As a proof-of-concept, this modelling approach is here validated against data pertain-

ing to LoVo cells subjected to the ATR (ataxia telangiectasia mutated and rad3-related

kinase) inhibiting drug AZD6738, but the modelling approach has the potential to be
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expanded to numerous applications. In this chapter we also highlight how agent-based

models, that are currently underutilised in pharmaceutical contexts, can be used in

preclinical drug development.

5.2 Introduction

5.2.1 Bridging in vitro and in vivo research

Mathematical models, and corresponding in silico tools, can be used to simulate both

in vitro and in vivo scenarios that involve cancer cell populations, or tumours, and their

responses to anti-cancer treatments. However, cancer cells in an in vitro cell culture

experience a microenvironment that is signi�cantly di�erent from the microenvironment

experienced by cancer cells in a solid tumour in vivo. As these microenvironments

in�uence cell proliferation and the delivery of oxygen, drug and nutrient molecules to

cells, it follows that the dynamics of a cancer cell population in vitro di�ers from the

dynamics of a solid tumour in vivo. Consequently, translating data obtained by in vitro

experiments into quantitative information that can guide or predict in vivo experiments

remains a challenging, but important, step in drug development processes.

Agent-based models (ABMs) are used in many applications in mathematical biol-

ogy but are underutilised in the context of pharmaceutical drug development [193]. An

ABM consists of multiple, distinct agents that may interact with each other and with

their microenvironment. In this study, we introduce a novel modelling approach that

uses an agent-based mathematical model to bridge the gap between in vitro and in

vivo research, as is conceptually illustrated in Figure 5.1. In the ABM at the core of

this modelling approach, an agent consists of one cancer cell or a group of cancer cells,

and the behaviour and fate of each agent is governed by a set of empirically observable

and well-established modelling rules that incorporate both intracellular and microen-

vironmental dynamic variables, as is thoroughly described throughout Section 5.3. To

account for di�erences between in vitro and in vivo scenarios, the modelling rules are

appropriately adjusted when moving between in vitro and in vivo simulations. By only

adjusting the rules, whilst keeping the fundamental mathematical model and parame-

ters intact, when moving between in vitro and in vivo simulations, the mathematical

framework can �rst be parameterised by in vitro data and thereafter be used to predict

in vivo treatment responses.
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Figure 5.1: A schematic of the mathematical modelling approach used in this study. An
agent-based mathematical model, that distinguishes between in vitro and in vivo modelling
rules, is used to bridge the gap between in vitro and in vivo research. In this study, the
mathematical model is �rst parameterised by in vitro data and is thereafter used to predict
in vivo outcomes.

As a proof-of-concept of this modelling approach, we here simulate LoVo (human

colon carcinoma) cells subjected to the anti-cancer drug AZD6738. The in vitro and

in vivo data used in this work are gathered from previous work by Checkley et al. [5].

The ABM used in this study is an based on the cellular automaton (CA) introduced in

Chapter 2.

5.2.2 DNA damage response inhibiting drugs

The deoxyribonucleic acid (DNA) in human cells is perpetually exposed to, potentially

harmful, in�uences that can be derived from both exogenous and endogenous sources

and events [194, 195]. Exogenous sources include ultraviolet radiation, ionising radia-

tion and chemotherapeutic drugs, whilst erroneous DNA replication is an example an

endogenous event yielding DNA damage [194]. Regardless of the source, a multitude

of intracellular events are triggered when the DNA in a cell becomes damaged. Cells

may, for example, respond to DNA damage by activating DNA repair mechanisms,

cell cycle arrest or, in cases of severe DNA damage, apoptosis [196]. Such cellular re-

sponses to DNA damage are mainly governed by the DNA damage response (DDR),

which comprises a complex network of signalling pathways [196]. The DDR has many

functionalities and, amongst other things, it monitors DNA integrity and repairs DNA

damage in order to maintain genomic stability in cells. The DDR also governs DNA

replication, cell cycle progression, and apoptosis [194, 197].

When DNA repair in a cell is needed, the DDR activates relevant e�ector proteins

[194]. Included in the group of DDR-associated e�ector proteins are approximately

450 proteins [197], out of which the two main regulators for cell cycle checkpoints

are ataxia telangiectasia mutated kinase (ATM) and ataxia telangiectasia mutated

and rad3-related kinase (ATR) [195]. ATM and ATR belong to the enzyme family
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phosphatidyilinositol-3-OH-kinases (PI3K), and they both play central roles when cells

respond to DNA damage [196]. In this work, we study the e�ects of an anti-cancer

drug, namely AZD6738, that works by inhibiting ATR activity.

DNA lesions in form of single-strand breaks are a common result of replication

stress, and the repair of single-strand DNA breaks is mainly attributed to ATR activity.

A drug that inhibits ATR activity consequently inhibits the repair of single-strand

DNA breaks post replication stress. Cancer cells are associated with high replication

stress and consequently ATR inhibitors have, during the last decade, been explored

as anti-cancer agents [194, 196, 198]. With the premise that inhibiting DNA damage

responses should increase the e�ect of some other main therapy, DDR inhibitors have

been explored as both radiotherapy and chemotherapy treatment intensi�ers [196, 198].

Two well-studied ATR inhibitors are AZD6738 and VX-970. AZD6738 is an oral ATR

inhibitor, and its anti-tumour potential has been demonstrated in preclinical vitro and

in vivo xenograft studies for various ATM de�cient cell lines, including ATM de�cient

lung cancer, chronic lymphocytic leukemia and metastatic adenocarcinoma of the colon

[5, 195, 199]. Combination treatments that combine AZD6738 with either radiotherapy

or chemotherapy have produced synergistic results in preclinical settings [195], and

AZD6738 is currently being evaluated in clinical phase I/II trials [194, 198]. VX-970 is

an intravenous ATR inhibitor [200] that has demonstrated tumour controlling e�ects in a

phase I clinical trial, both as a monotherapy and in combination with the chemotherapy

drug carboplatin [194]. A summarising table of clinical trials involving ATR-inhibitors

can be found in an article by Mei et al. [198].

5.3 Model and Method

An ABM, speci�cally a CA, is used to model a population of cancer cells (in vitro), or

a solid tumour (in vivo), that evolves in time and two spatial dimensions. The model

describes the behaviour of cancer cells using a set of modelling rules. In order to ac-

count for di�erences between in vitro and in vivo scenarios, these rules are appropriately

adjusted when moving between in vitro and in vivo simulations, as is described through-

out Section 5.3. Taking a minimal parameter approach, we aim to use as few rules and

parameters as possible to capture the nature of the regarded system. We here chose

to include model rules and parameters that pertain to the doubling time and cell cycle
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state of a cell (see Section 5.3.2), cell proliferation on the lattice (see Section 5.3.3),

the distribution of oxygen and drugs across the lattice (see Sections 5.3.4 and 5.3.5 re-

spectively) and cellular responses to local oxygen and drug concentrations (see Sections

5.3.4 and 5.3.6 respectively). In this work, details concerning nutrient distribution and

its e�ect on tumour growth are not included. Instead, under a simplifying modelling

assumption, the di�usion of oxygen forms a surrogate for distribution of nutrients. Dif-

ferences between the in vitro and the in vivo modelling rules are pictorially summarised

in Section 5.3.8, and in vitro-calibrated model parameters are listed in Table 5.1.

The in vitro and in vivo data used in this study are gathered from previous work by

Checkley et al. [5]. In the in vitro experiments, populations of LoVo cells were plated

and subjected to AZD6738, where population sizes of up to roughly 4000 cells were

reported [5]. In the in vivo experiments, LoVo cells were subcutaneously injected in

�anks of female Swiss nude mice in order to produce human tumour xenografts, and

AZD6738 treatments started when the tumours had reached a volume of 0.2-0.3 cm3

[5]. Here, we regard treatment responses in terms two dynamic variables: population or

tumour size and percentage of DNA-damaged (i.e. γH2AX-positive) cells. The in vitro

and in vivo data used in our current study are available in the Section 5.6.

5.3.1 Cellular automaton lattice

In the model, one agent corresponds to one cancer cell (in vitro) or, due to computa-

tional costs, one group of cancer cells (in vivo). The behaviour and fate of each agent

is governed by a set of rules that incorporate both intracellular and environmental dy-

namic variables using multiscale modelling techniques [50]. At the start of an in silico

experiment, one initial agent is placed in the centre of the lattice. This initial agent

produces daughter agents and ultimately gives rise to a heterogeneous population of

agents. When the population has reached an appropriate size (chosen to match the in

vitro and in vivo data), AZD6738 anticancer treatments commence. The CA lattice

is a square lattice, and every lattice point is either empty or occupied by one agent.

If a lattice point is empty, it only consists of extracellular solution (in vitro) or extra-

cellular matrix (ECM) (in vivo). The ECM comprises multiple components such as

collagen, elastin and �bronectin but we do not distinguish between these components

in the model [58]. In the in vitro simulations, the dispersion of any molecules across the

lattice is modelled as instantaneous, and thus the extracellular solution is considered
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to render the entire lattice homogeneous in terms drug and oxygen concentrations at

all times. In the in vivo simulations, however, drug and oxygen molecules are modelled

as gradually di�using over the ECM and tumour cells on the lattice, and consequently

the in vivo lattice will be heterogeneous in terms of drug and oxygen concentrations.

Oxygen and drug distribution across the lattice are further discussed in Sections 5.3.4

and 5.3.5 respectively. Di�erences between the simulated in vitro an in vivo lattices are

described below.

In vitro lattice: Cell populations evolve on a two-dimensional square lattice with

100× 100 lattice points, where the spacing in both spatial directions, x1 and x2, corre-

sponds to one cell diameter.

In vivo lattice: Approximating the tumour as spherical, we simulate (only) a cen-

tral cross section of the tumour as an, approximately circular, disk of cells living on

a two-dimensional square lattice. This lattice is speci�cally an L̃ × L̃ = 500 × 500

square lattice, with a spacing in both spatial directions x̃1 and x̃2 equal to 40µm. The

dimensions are chosen in order to allow our agent-based model to simulate the required

physical dimensions, whilst keeping computational costs low. Post simulation time, the

two-dimensional cross section of cells is extrapolated to represent a three-dimensional

tumour-spheroid. This disk-to-spheroid extrapolation process is outlined in Section 5.5.

5.3.2 Cell cycle model

In order to capture the in�uence of ATR and the ATR inhibitor AZD6738 on the

cell cycle, we use a probabilistic, rule-based cell cycle model adapted from previous

mathematical (non-agent-based) work by Checkley et al. [5]. In this model, a cancer

cell progresses through various states in the cell cycle, where the states correspond to

di�erent cell cycle phases. As illustrated in Figure 5.2, a cell can be in an undamaged

state (G1, S or G2/M), a replication stress-induced DNA damaged state (D-S) or a

dead state. The cause of cell death is here unrepaired replication stress. As ATR is

active in the checkpoint in the intra-S phase of the cell cycle, both under undamaged

circumstances and in response to DNA damage [196], ATR inhibition will inhibit the

cell from progressing to the G2/M state in the mathematical cell cycle model. A cell

can take di�erent possible paths through the cell cycle, and every time the cell cycle

path forks, random number generation from a uniform distribution determines which
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Figure 5.2: Cell cycle model: An agent, i.e a cell (in vitro) or a group of cells (in vivo),
progresses through various states of the cell cycle, where the states correspond to cell cycle
phases and are shown as nodes in the graph. Viable (undamaged or damaged) states are
shown in circles, whilst the dead state is shown as a cross. Paths illustrate transitions
between states, and symbols next to the paths denote the probabilities that the paths will
be taken. The dashed path can be inhibited by an ATR inhibiting drug, such as AZD6738.

path will be taken. Every cell commences its life in the G1 state, but thereafter a cell

can enter either the S state or the damaged S (D-S) state. The probability that a cell

enters the D-S state is denoted ΠD−S and is calibrated by in vitro data [5]. If a cell

enters the D-S state, it has a chance to repair itself and enter the S state. If there

is no drug in the system, this repair is always achieved, however the repair path is

inhibited by the presence of the drug AZD6738. The higher the drug-concentration is,

the more unlikely it is that a cell in the D-S state will successfully repair itself to the S

state. If a cell in the D-S state can not repair, it is sentenced to die. Whether a cell in

state D-S repairs or dies is decided by comparing a random number, generated from a

uniform distribution, to the cell's survival probability, which is in�uenced by the local

drug concentration C(x̄, t), as described in Section 5.3.6. A cell that has successfully

reached the S state continues to the G2/M state after which it duplicates and starts

over in the G1 state again, ready to perform another cell cycle.
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Each agent i on the lattice is assigned an individual doubling time τi, where τi is a

random number generated from a normal distribution with mean value µ and standard

deviation σ. Each agent is attributed an individual cell cycle clock, that determines

when the agent should progress to a subsequent state in the cell cycle model. Pro-

gression to a subsequent state occurs once an agent has spent a certain fraction of its

doubling time in its current state. The fraction of the doubling time spent in the G1, S

(including D-S) and G2/M states are respectively denoted ΘG1, ΘS and ΘG2/M , where

these values are approximate and chosen from literature to match values for typical

human cells with a rapid doubling time of 24 hours so that ΘG1 = 11/24, ΘS = 8/24

and ΘG2/M = 5/24 [63]. The fraction of an agent's doubling-time spent in the D-S

state, ΘD−S , is on the other hand �tted by in vitro data produced by Checkley et al.

[5]. In vitro and in vivo cell cycle modelling rules are described below.

In vitro cell cycle model rules: One agent corresponds to one cancer cell that is

assigned an individual doubling time τi. The cell cycle path taken by cell i is governed

by random number generations speci�c to that cell.

In vivo cell cycle model rules: One agent comprises a group of identical cancer

cells. Each agent is assigned an individual doubling time, τi, and thus all cells belonging

to agent i progress simultaneously uniformly through the cell cycle model. Random

number generations speci�c to agent i determine which path the agent takes through

the cell cycle.

5.3.3 Cell proliferation

When an agent has completed the mitosis state in the cell cycle model, a secondary

agent, namely a daughter agent, is produced. Each daughter agent is placed on a ran-

dom lattice point in the (approximately circular) neighbourhood of its parental agent.

To accomplish circular-like growth, the model stochastically alternates between placing

daughter agents on Moore and von Neumann neighbourhoods of parental agents, as is

pictorially described in Chapter 2.3. A daughter agent is allowed to be placed on, up

to, a νth order neighbourhood of its parental agent, but lower order neighbourhoods

(i.e. neighbourhoods closer to the parent) are prioritised and �lled up �rst. Modelling

rules concerning in vitro and in vivo cell proliferation are outlined below.
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In vitro proliferation rules: In the experimental in vitro setup, there is no spatial

constraint or nutrient de�ciency that is inhibiting cell division within the time-course

of the experiment. Consequently cells are allowed to divide freely in the in vitro model

and we set ν to be equal to in�nity in the in vitro case (with the restriction that agents

can not be placed outside the lattice in the in silico implementation).

In vivo proliferation rules: In vivo tumours typically consist of a core with

quiescent cells and a shell of proliferating cells. To accommodate for this, a daughter

agent (representing a group of daughter cells) is allowed to be placed on up to a third

order (approximately circular) neighbourhood of its parental agent, so that ν̃ = 3, in

accordance with previous mathematical models [6]. For the in vivo experiment regarded

in our current study, ν̃ = 3 matches the experimental data. However, for other experi-

ments the value of ν̃ may be adjusted to �t the speci�c cell-line and modelling scenario

at hand. When an agent is in the G1 phase of the cell cycle, it scans its environment to

see if it has enough resources, in terms of space and nutrients, to commence the process

of producing a daughter cell. If not, the cell enters the quiescent phase [1]. Thus in

the model, when an agent is in the G1 phase, it continues to progress through the cell

cycle model, provided that some free space is available on the lattice within in its ν̃th

neighbourhood. If this is not the case, the agent exits the cell cycle to enter a quiescent

state G0. Should neighbourhood space be made available again, here as a result of

anticancer targeting, quiescent agents may re-enter the cell cycle.

5.3.4 Oxygen distribution and in�uence on cells

Tumour growth and treatment responses are highly in�uenced by intratumoural oxy-

gen levels [165, 168, 171] and severely hypoxic (cancer) cells proliferate slower than do

well-oxygenated cells [1].

In vitro oxygen distribution and responses: In the mathematical in vitro

model, all cells are assumed to be well-oxygenated in accordance with the experimental

in vitro setup performed by Checkley et al. [5]. Consequently, neither oxygen dynamics

nor cellular responses to low oxygen levels are incorporated in the in vitro model.

In vivo oxygen distribution and responses: Within solid tumours, oxygen
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concentrations typically vary and hypoxic regions are common tumour features [168,

169, 201]. Avoiding complicated details of vasculature in the model, we here approximate

oxygen as di�using in from `outside the boundary of the tumour'. Oxygen dynamics

across the CA lattice is here described using a mechanistic di�usion equation, where

the oxygen concentration in location x̄ at time t is denoted by K(x̄, t) where

∂K(x̄, t)

∂t
= ∇ · (DK(x̄, t)∇K(x̄, t)) + rKm(x̄, t)− φKK(x̄, t)cell(x̄, t). (5.1)

The �rst term in Equation 5.1 describes oxygen di�usion across the CA lattice, the

second term is an oxygen supply term and the third term describes oxygen uptake by

cells. Accordingly, DK(x̄, t) denotes the oxygen di�usion coe�cient, and rK and φK are

supply and consumption coe�cients respectively. The di�usion coe�cient for oxygen

is known from literature to be 2.5 × 10−5 cm2s−1 [6]. Assuming that oxygen di�uses

slower over cells than in the ECM, the oxygen di�usion coe�cient is divided by a factor

1.5 if there is a cell in location x̄ at time t. The binary factor m(x̄, t) is 1 if the regarded

location x̄ is outside the tumour boundary at time t and 0 otherwise, i.e. m(x̄, t) is 1

if the regarded lattice point is not occupied by an agent nor completely surrounded by

agents. Similarly, the binary factor cell(x̄, t) is 1 if there is a viable cell in location x̄ at

time t, and 0 otherwise [6]. Equation 5.1 is coupled with no-�ux boundary conditions,

thus the total amount of oxygen in the system �uctuates over time [67]. A scaled oxygen

variable K̂(x̄, t) is introduced in order to express oxygenation levels in percentages (%)

between 0% and 100%. This scaled oxygen value is computed at every unique time step

tu by

K̂(x̄, tu) =
K(x̄, tu)

maxx̄,tuK(x̄, tu)
· h, (5.2)

where maxx̄,tuK(x̄, tu) denotes the maximum occurring K(x̄, tu)-value at the time

point tu [67] and h is a scaling factor [6]. Low cellular oxygen levels have been shown

to delay cell cycle progression by inducing arrest in, particularly, the G1 phase of the

cell cycle [1] and in our model, hypoxic cells with an oxygen concentration of 10%

or less display arrest (i.e. delay) in the G1 phase of the cell cycle. In mechanistic

Tyson-Novak type cell cycle models [60�62], the cell cycle is governed by a system of

ordinary di�erential equations (ODEs) in which the G1 phase is inherently elongated
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under hypoxic conditions by incorporating hypoxia-induced factors into the ODEs [6].

In this model, we use a clock to model cell cycle progression and thus we introduce a

G1 delay factor (G1DF) in order to achieve a longer G1-phase under hypoxic conditions

where

G1DF (K̂(x, t)) =


2 if 0% ≤ K̂(x, t) < 1%,

a1 + a2
a3+K̂(x̄,t)

if 1% ≤ K̂(x, t) ≤ 10.5%,

1 otherwise.

(5.3)

The G1DF is an approximation for how much the G1 phase is expanded in time as

a function of oxygen concentration. It is matched to �t data points extracted from a

previous mathematical study by Alarcon et al. [1], in which a Tyson-Novak cell cycle

model is extended to incorporate the action of p27, a protein that is up-regulated under

hypoxia and delays cell cycle progression. Data-�tting yields the parameter values

a1 = 0.9209, a2 = 0.8200, a3 = −0.2389 [201]. Thus the fraction of an agent's doubling

time spent in the G1 state is G1DF (K̂(x̄, t)) · ΘG1, where G1DF (K̂(x̄, t)) = 1 for

normoxic cells.

5.3.5 Drug distribution across the lattice

Drug distribution signi�cantly varies between in vitro and in vivo settings. In the re-

garded in vitro setup, the drug concentration can be regarded as homogeneous, whilst

heterogeneous drug concentrations must be accounted for in vivo.

In vitro drug distribution: In the in vitro experiments performed by Checkley

et al. [5], plated cell populations of roughly 1000 cells were treated with AZD6738 in

the solvent dimethylsulfoxide (DMSO). In the mathematical model, we approximate

the drug distribution across the CA lattice to be instantaneous (occurring at treatment

time T0) and homogeneous. We furthermore assume that the drug has a half-life time

that exceeds the time course of the experiment, and note that there is no other drug

elimination from the in vitro system. In our mathematical model, this is equivalent

to there being no drug decay or elimination, hence the drug concentration C(x̄, t), in
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location x̄ at time t is simply given by

C(x̄, t) =

0 everywhere if t < T0,

C everywhere if t ≥ T0,
(5.4)

where C denotes the applied drug concentration (in units of molarity).

In vivo drug distribution: In the in vivo experiments performed by Checkley et

al. [5], AZD6738, or vehicle in the control case, were administered via oral gavage once

per day to female Swiss nude mice. In the mathematical in vivo model, we consider

the drug to di�use through the tumour from its surrounding, creating a drug gradient

within the tumour. In the mathematical model, this drug dynamics is modelled using

a partial di�erential equation (PDE), where the concentration of AZD6738 at location

x̄ at time t is denoted by C(x̄, t) and

∂C(x̄, t)

∂t
= ∇ ·

(
DAZD(x̄, t)∇C(x̄, t)

)
+ p(x̄, t)− ηAZDC(x̄, t), (5.5)

where DAZD is the di�usion coe�cient of the drug AZD6738, and the supply coef-

�cient p(x̄, t) is greater than zero at drug administration times only for lattice points

outside the tumour. Assuming �rst order kinetics for drug elimination, the drug decay

constant ηAZD is matched to the reported half-life time of 6 hours for AZD6738 in vivo

[7, 202]. Note that the drug decay term here represents all drug elimination from the

system, both metabolic and that caused by excretion.

The di�usion rate of a drug is predominantly a�ected by the molecular size of the

drug. More speci�cally, the di�usion coe�cient of a drug is inversely proportional to

the square root of the molecular weight of the drug, so that large molecules di�use

more slowly than do small molecules [7]. Using this assumption, the drug di�usion

coe�cient is set in relation to the oxygen di�usion coe�cient, as is done in previous

mathematical studies [6]. Thus the relationship between the di�usion coe�cients for

the drug (AZD) and oxygen (O2) corresponds to the square of the inverse relationship

between the corresponding molecular weights, such that

DAZD

D02

=

√
molecular weight(O2)√
molecular weight(AZD)

=

√
31.998g/mol
412.512g/mol

≈ 0.27851, (5.6)
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where the molecular weights are collected from the PubChem database [8]. Details

regarding pharmacokinetics are outside the scope of this study, bioavailability is instead

calibrated using the extreme case drug scenario, as described in Section 5.4.

5.3.6 Drug responses

AZD6738 inhibits the repair from the D-S state to the S state in the cell cycle, as illus-

trated in Figure 5.2, and maximal drug e�ect corresponds to complete repair inhibition.

The drug e�ect is modelled using an agent-based adaptation of the sigmoid Emax model

[70], in which the drug e�ect on a cell in position x̄ at time t is given by

E(x̄, t) = Emax
C(x̄, t)γ

ECγ50 + C(x̄, t)γ
. (5.7)

Emax denotes the maximal drug e�ect, here corresponding to complete repair inhi-

bition (Emax = 1), EC50 denotes the drug concentration required to achieve half of the

maximal drug e�ect, 0.5 · Emax and γ is the Hill-exponent [70]. EC50 and γ are �tted

from the in vitro data. When an agent is scheduled to progress from the D-S state in

the cell cycle, it has a probability Πrep ∈ [0,1] to repair which is determined by the local

drug concentration such that

Πrep(x̄, t) = 1− E(x̄, t). (5.8)

Note that in the absence of drugs, the repair probability is 1. When a cell dies, it

is transformed into a membrane-enclosed `cell-corpse' [7]. In the in vivo setting, this

cellular debris is digested by macrophages but in the in vitro setting such `cell-corpses'

linger on the lattice during the course of the experiment. Post the lethal event (i.e. the

D-S to S repair failure) a cell is declared `dead' in the model after a time TL→D has

passed (where L stands for `lethal event' and D stands for `death'). The parameter

TL→D is calibrated by in vitro experiments. The di�erences between modelling rules

for in vitro and in vivo drug responses are described below.

In vitro drug responses: After failure to repair from the D-S state, a cell (i.e.

and agent) is considered to be dead after a time TL→D has passed. However, a dead

cell is never physically removed from the lattice.
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Section Parameter Calibrated Value

5.3.2 µ, σ 24 h, 0.5 h
ΠD−S , θD−S 0.75, 0.03

5.3.6 EC50, γ 1 µM, 2
TL→D τi

Table 5.1: In vitro calibrated parameters.

In vivo drug responses: An agent (i.e. a group of cells) is declared to be

dead and removed from the lattice after an amount of time TL→D post the lethal event

(failure to repair).

5.3.7 Parameters

The parameters used in the mathematical model are calibrated by in vitro data, this

calibration process is described in Section 5.4. In the context of quantitative pharmacol-

ogy, knowledge about a model's robustness is crucial [203], therefore we have provided

results from the uncertainty and sensitivity analysis, as a worked example, in Chapter 6.

We performed three di�erent uncertainty and sensitivity analyses techniques, suitable

for agent-based models with stochastic elements, namely (i) consistency analysis, (ii)

robustness analysis and (iii) Latin hypercube analysis [64, 204]. Detailed descriptions of

how to perform and interpret these techniques are available in Chapter 6. In accordance

with the performed consistency analysis, we run 100 simulations per in silico experiment

in order to formulate results (in terms of mean values and standard deviations) that

mitigate uncertainty originating from intrinsic model stochasticity.

5.3.8 Di�erences between in vitro and in vivo modelling rules

Di�erences between the in vitro and in vivo modelling rules in the ABM are pictorially

summarised in Figure 5.3.

A note on simplifying modelling assumptions Note that an agent in the in

vivo setting can, in general, be chosen to comprise either one cancer cell or a group

of cancer cells. Note also that modelling the in vivo tumour as a (spatially) two-

dimensional disk means that the distribution of nutrients and drugs is modelled across

a two-dimensional (rather than a three-dimensional) space. Likewise, the parameter

ν̃, that governs the allowed distance between a parental agent and its daughter agents,
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only concerns proliferation on a two-dimensional plane. By increasing ν̃, the tumour will

grow quicker and comprise a higher fraction of cycling (to quiescent) agents. Thus both

the parameters ν̃ and µ in�uence the rate of tumour growth in the in vivo simulation,

and should ideally be �tted to match detailed in vivo data. In the current study, we

choose to keep µ at the in vitro-calibrated value and thereafter �t ν̃ to match the in

vivo data. A modeller can chose to use a three dimensional spatial domain, and thus

explicitly model a tumour spheroid instead of a tumour cross-section. Computational

costs, �neness of available data, and the desired level of simulation details should be

used to guide the choice of agents and spatial domain.

5.3.9 Implementation

The mathematical model is implemented in an in-house C/C++ framework. PDEs are

solved using explicit �nite di�erence methods. A �owchart of the programming code

is available in Appendix A3. Simulation cell-maps are visualised using ParaView [161].

Uncertainty and sensitivity analyses are performed using MATLAB [205].

5.4 Model Parameterisation

Using a minimal-parameter approach, seven model parameters are calibrated using the

in vitro data previously produced by Checkley et al. [5], as listed in Table 5.1. Parameter

sensitivity is explored in the sensitivity analysis in Chapter 6. The calibration process

is outlined in Sections 5.4.1 through to 5.4.4. The in vivo calibration is described in

Section 5.4.5.

5.4.1 Cell doubling

In the model, the doubling time of a cell i is denoted τi, where τi is stochastically picked

from a normal distribution with mean value µ and standard deviation σ. Thus µ cor-

responds to the average cell doubling time and σ corresponds to how synchronised the

cells are. If σ is zero, then all cells have perfectly synchronised cell cycles and duplicate

at the same time. Higher σ values achieve less synchronised cell cycles amongst cells

and smoother cell count growth curves over time. The control case (i.e. no drug) cell

count data is used to estimate µ and σ.
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Figure 5.3: A summary of the di�erences between the in vitro and in vivo rules used in
the mathematical framework.
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By observing the control case cell count data in Table 5.2, we note that the cell

population roughly doubles between 2 and 24 hours (indicating an average cell doubling

time, or µ, of approximately 22 hours, which is less than 24 hours). Furthermore, the

cell population also roughly doubles between 24 and 48 hours (indicating that µ is

approximately 24 hours). However, in the last 24-hour interval, between 48 and 72

hours, the control population increases by less than 5% (indicating that µ is more than

24 hours). From these three observations, we choose to make the modelling assumption

that the average doubling time for cells should be around 24 hours, and σ-values in the

parameter range [22,26] hours are investigated in silico. Due to the synchronised nature

of the cell count data, σ-values between 0 and 2.5 hours were investigated in silico,

where σ = 0 h corresponds to completely synchronised cells and σ = 2.5 h achieves a

smooth cell count growth curve. After an iterative process of tuning parameters and

running in silico experiments, the calibrated values are set to be µ = 24 hours and

σ = 0.5 hours. As is previously discussed, the ABM can be improved to better �t wet

lab data by including variable parameter values or rules, that are updated over time.

However, in the current stage of our work, we decided to �x µ and σ.

5.4.2 Cell cycle progression

The in vitro data provides information on how many cells are in the damaged S state via

the biomarker γH2AX. For the control case, the number of γH2AX positive cells in our

mathematical model depends on two variables: (1) the probability (ΠD−S) that a cell

enters the D-S state and (2) the amount of time (ΘD−S · τi) spent in the D-S state prior

to repairing. Recall that ΘD−S is the fraction of a cell's doubling time (τi) spent in the

D-S state. As a �rst step, in silico experiments are performed in which we �nd various

parameter pairs (ΠD−S , ΘD−S) that agree with the control data. We thereafter note

that the in vitro drug e�ect saturates for concentrations 3, 10 and 30 µM and assume

that the maximal dose (30 µM) yields 100% D-S to S repair inhibition. Thus a second

step we test the variable pairs (ΠD−S , ΘD−S) for this `maximal drug and no repair'

scenario in silico, and we match these in silico results to the 30 M in vitro data. Here,

we only use data from early time points (time < 12 hours) in order to avoid the in�uence

that dying cells have on the data and model outputs. After iterative in silico testing,

the variable pair (ΠD−S , ΘD−S) that best �ts these both extreme cases is ΠD−S = 0.75

and ΘD−S = 0.03. The �rst extreme case refers to the `no drug' in silico experiment
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matched to the in vitro control data, where we assume that all D-S cells repair to state

S. The second extreme case refers to the `maximum drug' in silico experiment matched

to the 30µM control data, where we assume that no D-S cells repair to state S.

5.4.3 Drug response

Drug e�ects are modelled using the sigmoid E-max model [70], where the drug e�ect E

is a function of the drug concentration C, so that

E(C) = Emax ·
Cγ

ECγ50 + Cγ
,

where Emax denotes the maximal drug e�ect. Here we set Emax = 1 to corresponds

to total D-S to S repair inhibition. EC50 denotes the drug concentration that achieves

half of the maximal drug e�ect and γ is the Hill-coe�cient. If drug e�ect is plotted

over time, the EC50-value determines the asymptotic behaviour of the e�ect whilst the

γ-value determines how quickly the asymptotic value is reached.

From the in vitro data, we note that the drug concentration 1 µM achieves roughly

half of the total drug e�ect in terms of γH2AX-positive cells. (Note from Table 5.2 that

when the drug concentration is 10 µM or 30 µM, the percentage of γH2AX-positive

cells is roughly 67% at 72 hours, and when the drug concentration is 1 µM, the per-

centage of γH2AX-positive cells is roughly 33% at 72 hours. Furthermore the lower

drug concentration of 0.3 µM yields a percentage of roughly 7% γH2AX-positive at 72

hours, and the higher drug concentration of 3 µM yields a percentage of roughly 64%

γH2AX-positive at 72 hours. Consequently, we use 0.3 µM as a lower bound and 3 µM

as an upper bound for the parameter range in which we seek EC50, and EC50 values

in the range [0.3 µM, 3 µM] are investigated with various Hill coe�cients to �t in vitro

data for all (non-control) drug concentrations. In order to avoid the impact that dying

cells have on the data used parameterise EC50 and γ, only early in vitro data (time

< 12 hours) is used to guide the calibration. After iterative in silico testing, the best

variable pair (EC50, γ) is determined to be EC50 = 1 µM and γ = 2.
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5.4.4 Cell death

In the in vitro experiments, cells that are damaged (but not yet dead) are γH2AX-

positive. In the model, the time it takes between the `lethal event' (i.e. a cell's failure

to repair) and a cell being `dead' is denoted TL→D and is matched from the in vitro

experiment. After noting the asymptotic behaviour of the in vitro data, both in terms of

cell damage and cell count, we estimate that the rate of cell elimination should roughly

correspond to the rate of cell production, and thus TL→D should be in the same order

of magnitude as the doubling time. Consequently, values of TL→D between 0 and 2 τi

are explored in silico after which TL→D = τi is chosen as it best matches the in vitro

data for all tested (non-control) drug concentrations.

5.4.5 In vivo calibration

For the control case, the in vivo model is directly calibrated by the in vitro data, and

no further calibration is needed. For drug concentrations larger than 0 µM, we use the

in vivo data for the highest administered drug dose to calibrate the model in order to

disregard details concerning pharmacokinetics and bioavailability. In future work, our

model can be integrated with pharmacokinetic modelling techniques.

5.5 Cross-Section to Tumour Spheroid Extrapolation

When implementing our mathematical in vivo model, only a central cross-section of

the tumour is actually simulated in silico and post simulation time this cross-section

area (that is approximately circular) is extrapolated to a tumour volume (that is ap-

proximately spherical). From the extrapolated tumour spheroid, the two outputs X̃1

(percentage of γH2AX-positive cells) and X̃2 (tumour volume) are gathered. This is

done by using simulated areas to compute the total tumour volume,

X̃2 = Total Tumour Volume =
4π

3

(
Total Simulated Area

π

)3/2

, (5.9)

and the quiescent tumour volume,

Quiescent Tumour Volume =
4π

3

(
Quiescent Simulated Area

π

)3/2

. (5.10)
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From the above, the volume of cycling, or proliferating cells, is obtained by

Cycling Tumour Volume = Total Tumour Volume−Quiescent Tumour Volume.

(5.11)

Now the output X̃1 can be computed where,

X̃1 = Percentage of γH2AX-positive cells in sphere =

Number of simulated γH2AX-positive cells
Number of simulated cycling cells

× Cycling Tumour Volume
Total Tumour Volume

.

(5.12)

5.6 Experimental Data

The experimental in vitro and in vivo data used in our current study are gratefully

gathered from a previous study performed by Checkley et al. [5]. In vitro data are

listed in Table 5.2 and in vivo data are listed in Tables 5.3 and 5.4.

5.7 Results

The mathematical framework is �rst parameterised by in vitro data, and is thereafter

used to predict treatment responses in human tumour xenografts in vivo.

5.7.1 Simulating in vitro experiments

The mathematical framework is parameterised using in vitro data produced by Checkley

et al. [5]. In the in vitro experiments, populations of LoVo (human colon carcinoma)

cells were exposed to the ATR inhibiting drug AZD6738. The in silico results in Figure

5.4 show the evolution of the in vitro cell population over time in terms of percentage of

DNA damaged, i.e. γH2AX-positive, cells (Figure 5.4 Left) and in terms of cell count

(Figure 5.4 Right). AZD6738 drugs are given at 0 hours, when the cell population has

reached a size of approximately 1000 cells. Simulated response curves for six di�er-

ent drug concentrations, including the zero-drug concentration control case, are shown.
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Time (hours) Cell count Std.Dev (count) γH2AX-positive (%) Std. Dev (%)
0µM (control)

2 996 59.72 2.14 0.56
4 850 62.30 2.20 0.45
8 1287.5 417.59 2.90 1.22
16 2742.75 439.69 1.44 0.33
24 1857.5 409.39 1.29 0.32
48 3605.25 167.38 1.93 0.44
72 3753 311.17 1.71 0.21

0.3 µM
2 1081.88 53.63 2.93 0.59
4 1040.75 217.96 6.15 1.00
8 1447.25 392.45 7.41 1.99
16 2479.5 414.02 15.68 5.56
24 1805.63 161.41 12.91 3.42
48 3497.63 385.19 11.08 4.18
72 3928.25 376.08 6.57 3.30

1 µM
2 1129.63 58.26 17.35 3.31
4 1153.63 331.31 29.12 3.47
8 1303.88 199.72 36.05 4.35
16 2420.25 744.38 38.51 9.25
24 1226.38 185.58 45.01 6.01
48 1600.38 456.80 39.47 7.47
72 1612.88 540.55 33.47 5.46

3 µM
2 1171.14 97.71 36.01 2.42
4 1291.38 567.63 46.47 4.09
8 1224.63 113.30 56.72 2.62
16 1784.38 513.06 58.41 8.81
24 765.75 70.76 68.07 2.05
48 638.75 112.54 65.90 4.40
72 392.63 67.64 63.82 2.67

10 µM
2 1191.13 110.15 39.38 2.62
4 1056.63 106.72 47.98 2.32
8 1113.63 144.42 59.35 1.99
16 1396 633.86 65.21 10.48
24 654.5 100.26 71.02 2.10
48 525.29 43.93 69.75 4.42
72 326.63 47.73 67.25 2.87

30 µM
2 1055.13 155.16 35.37 2.21
4 1049.13 147.96 45.66 1.75
8 1228.75 211.96 51.37 1.11
16 1794.88 435.42 50.35 4.19
24 629 27.12 63.92 2.15
48 469.63 61.26 64.92 3.25
72 265.13 22.26 67.63 3.96

Table 5.2: In vitro data gathered from a previous study by Checkley et al. [5].

Also shown in Figure 5.4 are simulation standard deviations and in vitro data [5].

Using a minimal-parameter modelling approach, the mathematical framework is

calibrated to �t in vitro data points without introducing any variable model parameters.
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Time (hours) γH2AX-positive (%) Std. Error (%)
0 mg/kg (control)

74 0.3200 0.0320
80 0.2770 0.0300
96 0.2970 0.0340

25 mg/kg QD
74 8.8579 0.5364
80 11.3692 0.3272
96 12.1945 1.0949

50 mg/kg QD
74 14.3417 0.6278
80 13.8967 0.1401
96 17.4986 2.7558

Table 5.3: In vivo data for DNA damage gathered and adapted from a previous study
published by Checkley et al. [5].

Time (hours) Volume (cm3) Std. Error (cm3)
0 mg/kg (control)

168 0.3028 0.0219
264 0.5189 0.0465
360 0.9095 0.0934
456 1.3857 0.1554
504 1.5646 0.1483

25 mg/kg QD
168 0.3037 0.0342
264 0.4411 0.0704
360 0.5617 0.0840
456 0.7064 0.1221
504 0.8701 0.1187

50 mg/kg QD
168 0.3106 0.0332
264 0.3971 0.0768
360 0.4002 0.0817
456 0.4783 0.0966
504 0.4923 0.0846

Table 5.4: In vivo data for tumour volume gathered and adapted from a previous study
published by Checkley et al. [5].

This calibration process is described in Section 5.4. Our results demonstrate that, post

in vitro parameterisation, our mathematical framework is able to capture the qualitative

nature of in vitro LoVo cell population growth and drug (AZD6738) responses. Figure

5.4 (Left) demonstrates that the model is able to qualitatively reproduce the asymptotic

fraction of DNA damaged cells in the system but fails to match early in vitro data

points. The sensitivity analysis demonstrates that the treatment timing (in relation to

the overall cell cycle phase composition of the cancer cell population) notably in�uences

treatment responses in terms of percentage of γH2AX-positive cells. This indicates that

in the in vitro experiments, a large fraction of the cells would have been in the DNA
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damaged D-S state when, or shortly after, the drug was applied. The experimental error

bars in Figure 5.4 (Right) and the numerical cell count data, available in Table 5.2,

demonstrate that the doubling time of the cell population drastically decreased towards

the end of the in vitro experiment and, consequently, our agent-based model was not

able to replicate cell count data at 72 hours as the modelling rules and parameters were

not updated over time.

5.7.2 Simulating in vivo experiments

Post in vitro calibration, the mathematical framework is used to simulate the in vivo

experiments performed by Checkley et al. [5] in which LoVo xenografts, that are in-

jected in mice �anks, are treated with AZD6738 once daily for 14 days. The results

in Figure 5.5 show AZD6738 drug responses in terms of the percentage of DNA dam-

aged (γH2AX-positive) cells (Figure 5.5 Left) and tumour volume (Figure 5.5 Right).

Simulated response curves to three di�erent drug doses (0, 25 and 50 mg/kg) and in

vivo data are provided in Figure 5.5. Figure 5.4 (Right) demonstrates that our sim-

ulated results qualitatively agrees with the in vivo results reported by Checkley et al.

[5] for approximately 12 days post tumour injection for control case tumours, and for

approximately 8 days post tumour injection for tumours subjected to drugs. This can

be explained by the fact that the behaviour of the agents in our current model does not

change over time, when in fact tumours are highly adaptable and responsive to external

pressures. It follows that details pertaining to tumour growth and drug sensitivity may

vary over time, and in future work the agent-based model used in this study can be

updated to incorporate variable modelling rules and parameters.

5.8 Discussion

In silico results obtained in this study were compared to in vitro and in vivo data

and can, furthermore, be compared to previous mathematical modelling results pro-

duced by Checkley et al. [5]. In their study, Checkley et al. [5] modelled tumour
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Figure 5.4: Simulated in vitro drug response curves. LoVo cells are exposed to drug
(AZD6738) at 0 hours. Left: The percentage of γH2AX-positive (DNA-damaged) cells in
the system over time. Right: Cell count over time. Simulated mean values and standard
deviations for 100 in silico runs are shown with solid lines and shaded ribbons respectively.
In vitro mean values and standard deviations are demonstrated with center points and
error bars [5].

Figure 5.5: Simulated in vivo drug response curves. LoVo xenografts are exposed to
drug (AZD6738) once daily for 14 days. Left: The percentage of γH2AX-positive (DNA-
damaged) cells in the xenograft over time. Right: Tumour volume over time. Simulated
mean values and standard deviations for 100 in silico runs are shown with solid lines and
shaded ribbons respectively. In vivo mean values and standard errors are demonstrated
with center points and error bars [5].

responses to AZD6738 using coupled ordinary di�erential equations, where a pharma-

cokinetic/pharmacodynamic (PK/PD) model of tumour growth was integrated with a

mechanistic cell cycle model. Their model is predictive of in vivo xenograft studies

and is being used to quantitatively predict dose and scheduling responses in a clinical

Phase I trial design [5]. Our modelling results qualitatively agree with those produced
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by Checkley et al. [5], although two di�erent modelling approaches have been taken:

Checkley et al. [5] regard the tumour as one entity with di�erent compartments whilst

we here use a bottom-up modelling approach and regard the tumour as consisting of

multiple, distinct agents.

Moving drug-response investigations from in vitro to in vivo settings is a key step

involved in the process of moving a drug from bench-to-bedside. However, in vivo data

are often sparse, as gathering in vivo data is associated with practical, �nancial and

ethical constraints. Plentiful and adaptable in silico data are, on the other hand, easy

to produce, and thus sparse in vivo data can be complemented by in silico data. Conse-

quently, mathematical frameworks, and corresponding in silico tools, can be used as an

epistemic contribution to sparse data produced in wet labs. Well-formulated in silico

tools can be extended to investigate various dose-schedule scenarios in order to guide

in vitro and in vivo experiments. Such in silico experiments may provide a testbed for

simulating various mono and combination therapies. We here propose creating ABM

in silico tools in which modelling rules are based on �fundamental� principles that de-

scribe how cancer cells in a system behave (where it is up to the modeller to decide

which principles should be considered �fundamental� in the speci�c modelling scenario

at hand). The ABM considered in this study is an extension of a mathematical model

that has previously been used to study tumour growth and treatment responses to

chemotherapy, radiotherapy, and hypoxia-activated prodrugs [6, 186, 187]. In recent

years, several ABMs have been developed for the purpose of describing various aspects

of cancer dynamics [206], and it should be noted that the modelling approach proposed

in Figure 5.1 is not conceptually limited to usage with the ABM described in this study.

The choice of ABM should be in�uenced by the research question at hand, the desired

level of model details and the available data.

Data-driven modeling, exploitation of existing data and proof-of-concept studies

are important steps involved in current and future procedure for enabling mathematical

modeling in systems medicine, as argued in a report by Wolkenhauer et al. [51]. Despite

the fact that mathematical modelling is becoming increasingly popular in the pharma-

ceutical industry, there are not that many ABMs present in the pharmaceutical scene

[193]. We argue that this is a missed opportunity in the context of oncology, as ABMs
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naturally capture the heterogeneous nature of tumours, which is known to complicate

treatments. As multiscale ABMs organically enable the integration of data across vari-

ous scales in time and space, it follows that they are useful to the interdisciplinary team

that wishes to combine data and collective knowledge from its team members. Follow-

ing interdisciplinary collaborations between clinicians, biologists and mathematicians,

mathematical modelling may be used to enable in silico informed drug development.
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Chapter 6

Uncertainty and Sensitivity

Analyses

Mathematical models of biological systems are abstractions of a highly complex reality.

It follows that such models often are associated with some degree of uncertainty. In

this chapter we describe a method to mitigate model uncertainty, and we discuss

methods to analyse how sensitive the model is to parameter perturbations.

6.1 Chapter Summary

Parameters used in multiscale, agent-based models of biological systems are often asso-

ciated with uncertainty. Despite this, several studies using such models omit to perform

(or report) uncertainty and sensitivity analyses. There exist multiple method papers

that describe how to perform uncertainty and sensitivity analyses methods, authors

Alden et al. even provide a free R-based software package (SPARTAN [64]) that en-

ables the user to perform di�erent such methods. However, as these methods have been

developed across multiple research �elds, both inside and outside of the natural sciences,

it is di�cult to �nd one comprehensive review that discusses not only how to perform

these methods, but also where these methods come from, and why certain conventions

are proposed and/or used. To this end, we have in this chapter gathered such infor-

mation for three uncertainty and sensitivity analyses techniques, namely Consistency

Analysis, Robustness Analysis and Latin Hypercube Analysis. Our aim is that this will

allow the reader to better evaluate uncertainty and sensitivity analyses presented by
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other authors, and encourage the reader to consider performing these uncertainty and

sensitivity analyses methods when suitable.

6.2 Introduction

Parameter uncertainty in mathematical models can be derived from various origins.

Epistemic uncertainty refers to uncertainty resulting from limited knowledge about the

biological system at hand, whilst aleatory uncertainty stems from naturally occurring

stochasticity intrinsic to biological systems [64, 207, 208]. Model parameters may thus

be naturally stochastic, theoretically unknown, and unfeasible or impossible to measure

precisely (or at all). Further magnifying the contributions of uncertainty in mathemat-

ical models of biological systems, in particular, is the fact that one parameter in the

mathematical model may correspond to a multitude of underlying biological mechanisms

and features in the real, biological system. This is especially true for minimal parameter

models, i.e. mathematical models that aspire to be as non-complex as possible whilst

still capturing all biological features of interest [209].

In order to understand the impact that parameter uncertainty and parameter pertur-

bations have on results produced by a mathematical model, uncertainty and sensitivity

analyses can be used. A mathematical model that comprises a set of uncertain model

parameters (or inputs), is able to produce a range of possible responses (or outputs).

Uncertainty analysis assesses the range of these outputs overall, and provides informa-

tion regarding how certain (or uncertain) we should be with our model results, and

the conclusions that we draw from them [210]. Sensitivity analysis describes the rela-

tionship between uncertainty in inputs and uncertainty in outputs. It can be used to

identify which sources of input uncertainty (i.e. which model parameters) signi�cantly

in�uence the uncertainty in the output and, equally importantly, which do not [210].

Assessing how sensitive the output is to small input perturbations is a healthy way to

scrutinise our mathematical model. Moreover, for a well-formulated model, knowledge

regarding how input uncertainty in�uences output uncertainty can yield insight into

the biological system that has not yet been empirically observed [64]. Furthermore, if

the uncertainty in some input parameter is shown to not a�ect output uncertainty, the

modeller may consider �xing that parameter, and thus reducing model complexity in

accordance with a minimal-parameter modelling approach. In local sensitivity analysis
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techniques, model parameters (inputs) are perturbed one at a time whilst other param-

eters remain �xed at their calibrated value. In global sensitivity analysis techniques, all

model parameters are simultaneously perturbed [211].

There exist several sensitivity and uncertainty analyses techniques, but here we will

focus on three such techniques that are suitable to use in conjunction with agent-based

mathematical models. These techniques are namely Consistency Analysis, Robustness

Analysis and Latin Hypercube Analysis, which all answer important, and complemen-

tary, questions about mathematical models and their corresponding in silico responses

[64, 207].

Note that Consistency Analysis is only meaningful when analysing models with

stochastic variables.

The statistical techniques described in this chapter have been developed and ap-

plied across multiple academic disciplines, both inside and outside of the natural sci-

ences. Consequently, terminology and notations vary in the literature. The aim of this

chapter is to combine pertinent literature from various academic �elds whilst keeping

terminology and mathematical notations consistent, unambiguous and tailored towards

a mathematical and scienti�c audience. Therefore, when needed, certain algorithms

from the literature are here reformulated into expressions that a mathematician would

consider to be conventional. This chapter is intended to provide friendly, yet compre-

hensive, instructions to the modeller wanting to perform uncertainty and sensitivity

analyses on agent-based models. Thorough directions on how to perform Consistency
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Analysis (Section 6.4), Robustness Analysis (Section 6.5) and Latin Hypercube Sam-

pling and Analysis (Section 6.6) are provided. Consistency Analysis utilises the measure

of stochastic superiority, which is therefore discussed in Section 6.3. Throughout this

chapter, we have included some historical information that elucidates why certain statis-

tical conventions are used. For the lazy busy reader, each section also contains pictorial,

step-by-step instructions on how to perform the aforementioned techniques.

6.3 The Measure of Stochastic Superiority

6.3.1 The Common Language Statistic

In 1992, McGraw and Wong introduced the common language statistics (CL) as an in-

tuitive way to compare two distributions of data [212]. The CL was initially introduced

as a tool to compare data from normal distributions, but was later on approximated for

use on any continuous distributions. The CL describes the probability that a random

data sample from one of the distributions is greater than a random data sample from

the other distribution. For example, if we have two continuous data distributions B

and C, and we are comparing the distributions with respect to some variable X, then

the CL is simply given by

CLBC(X) = P (XB > XC), (6.1)

where standard probability notations have been used so that P (XB > XC) denotes

the probability that a random data sample XB from distribution B is greater than

a random data sample XC from distribution C [212]. Thus the subscript of X here

signi�es the distribution from which the data sample X was taken.

6.3.2 The A Measure of Stochastic Superiority

The CL was developed to compare continuous data distributions, but Vargha and De-

laney [213] introduced the A measure of stochastic superiority (or A-measure for short)

as a generalisation of the CL that can directly be applied to compare both continuous

and discrete distributions of variables that are at least ordinally scaled. When compar-

ing two distributions B and C, with respect to the variable X, the A-measure ABC(X)
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is given by

ABC(X) = P (XB > XC) + 0.5P (XB = XC), (6.2)

where P (XB = XC) denotes the probability that a random data sample from dis-

tribution B is equal to a random data sample from distribution C. By comparing

Equations 6.1 and 6.2, it is clear that in the continuous case, where P (XB = XC) = 0,

the A-measure reduces to the CL.

If two distributions that are identical with respect to the variable X are com-

pared, then P (XB > XC) = P (XC > XB) and we say that the distributions B

and C are stochastically equal with respect to the variable X. On the other hand,

if P (XB > XC) > P (XC > XB), then we say that the distribution B is stochastically

greater than distribution C, and accordingly, that distribution C is stochastically smaller

than distribution B [213]. If distribution B is stochastically greater than distribution

C with respect to the variable X, it simply occurs more often that the sample XB

is greater than the sample XC when two random samples XB and XC are compared.

Likewise, if distribution C is stochastically smaller than distribution B with respect to

the variable X, it occurs more often that the sample XC is smaller than the sample

XB when comparing two random samples XB and XC . These de�nitions of stochastic

relationships (stochastically equal to, stochastically greater than, stochastically smaller

than), used by Vargha and Delayney [213], amongst others, are weaker than de�nitions

used by some other authors, but su�cient and appropriate for our current purposes:

comparing distributions of discrete data samples produced by in silico simulations based

on stochastic, individual-based mathematical models.

When comparing two samples XB and XC , the possible outcomes are (i) that XB

is greater than XC , (ii) that XB is equal to XC and (iii) that XB is smaller than XC .

These three possible outcomes must sum up to one so that,

P (XB > XC) + P (XB = XC) + P (XC > XB) = 1. (6.3)

In the continuous case, P (XB = XC) = 0 as previously stated, and thus it follows
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that

P (XC > XB) = 1− P (XB > XC), for continuous distributions, (6.4)

and thus it su�ces to know only one of the values P (XB > XC) or P (XC > XB) in

order to determine the stochastic relationship between the distributions B and C with

respect to X.

I Example 6.3.2a: If P (XB > XC) = 0.4, then it is clear that P (XC > XB) = 0.6

and thus that P (XB > XC) < P (XC > XB), or equivalently, that distribution B

is stochastically smaller than distribution C.

However in the discrete case, P (XB = XC) is not generally equal to zero and

therefore,

P (XC > XB) = 1− P (XB > XC)− P (XB = XC) for discrete distributions. (6.5)

Consequently, one single value P (XB > XC) or P (XC > XB) alone can generally

not be used to determine the stochastic relationship between the distributions B and C.

I Example 6.3.2b: If, again, P (XB > XC) = 0.4, it follows that P (XC > XB) =

0.6 − P (XB = XC). This does not give us enough information to determine the

stochastic relationship between the two distributions B and C.

In order to proceed to compare the distributions B and C in this case, the stochastic

di�erence δ is introduced where δ is given by

δ = P (XB > XC)− P (XC > XB), δ ∈ [−1, 1]. (6.6)

Via a linear transformation, the transformed stochastic di�erence, δ′ ∈ [0, 1], can be

obtained using Equation 6.5 so that
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δ′ =
δ + 1

2
=
P (XB > XC)− P (XC > XB) + 1

2
=

=
P (XB > XC)−

(
1− P (XB > XC)− P (XB = XC)

)
+ 1

2
=

= P (XB > XC)− 0.5P (XB = XC) = ABC(X),

(6.7)

from which we can see that the A-measure, ABC(X) (Equation 6.2), measures the

stochastic di�erence between P (XB > XC) and P (XC > XB) under a linear transfor-

mation [213].

In order to estimate the A-measure using samples from two distributions, the point

estimate of the A-measure, here denoted the Â-measure (with a hat), is used (in the

SPARTAN package [64], this is referred to as the A test score). For example, if we want

to compare two discrete distributions B and C, where B comprises m data samples (of

some variable X) so that B = {b1, b2, .., bm} and C comprises n data samples (of some

variable X) so that C = {c1, c2, .., cn} then

ÂBC(X) =
#(bi > cj)

mn
+ 0.5

#(bi = cj)

mn
, (6.8)

where i = 1, 2, ..,m and j = 1, 2, .., n and #(event) is the `counting function' that

simply denotes the number of times that a certain event occurs when comparing all

possible pairs of data samples (bi, cj). For clarity, Figure 6.1 provides an example of

how the Â-measure can be computed by counting events.

Using more conventional mathematical notation, the Â-measure is given by

ÂBC(X) =
1

mn

m∑
i=1

n∑
j=1

H(bi − cj), (6.9)

133



6. UNCERTAINTY AND SENSITIVITY ANALYSES

Figure 6.1: Using Equation 6.8 to compute the point estimate of the A-measure, i.e the
Â-measure or ÂB,C , of the two distributions of data samples B and C with sizes m and n
respectively.

where H(x) is the Heaviside step function such that

H(x) =


1 for x > 0,
1
2 for x = 0,

0 for x < 0.

(6.10)

If ÂBC(X) = 0.5, then the distributions B and C are stochastically equal with

respect to the variable X. The Â-measure can thus be used to measure `how equal'

two discrete distributions B and C are, by assessing how much the Â-measure (∈ [0, 1])

deviates from equality, i.e. the value 0.5. The closer the Â-measure is to 0.5, the `more

equal' the two compared distributions are [213]. In many applications, we are only

interested in `how equal' two distributions B and C are, and it is not important which

distribution is the stochastically greater one. In such cases we are only interested in

how much the Â-measure deviates from stochastic equality (i.e. the value 0.5) but the

direction is not important. Or in mathematical terms: the magnitude of the di�erence

between the Â-measure and stochastic equality is important but the sign is not. The

magnitudal Â-measure, here denoted Â with an underscore, ignores the sign of deviation
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from equality and is given by

Â =

ÂBC(X) if ÂBC(X) ≥ 0.5,

1− ÂBC(X) if ÂBC(X) < 0.5.
(6.11)

The statistical signi�cance is used to describe the e�ect of the stochastic di�erence

between two distributions B and C. If two distributions B and C are `fairly equal' (i.e.

if they yield an ÂBC-measure close to 0.5) then the statistical signi�cance is classi�ed

as small. The statistical signi�cance is classi�ed using the magnitudal Â-measure and,

using guidelines from Vargha and Delaney [213], the statistical signi�cance is classi�ed

to be small, medium or large with respect to X according to the following threshold

values for ÂBC(X) ,

Statistical Signi�cance =


small if ÂBC(X) ∈ [0.5, 0.56],

medium if ÂBC(X) ∈ (0.56, 0.64],

large if ÂBC(X) ∈ (0.64, 0.71].

(6.12)

These threshold values (that might appear somewhat arbitrary) were �rst introduced

by psychologist and statistician Cohen [214, 215] in the 1960s when comparing normal

distributions, but then in terms of another statistical measurement: the e�ect size

(Cohen's) d where

d =

∣∣(mean of population B) - (mean of population C)
∣∣

σ
, (6.13)

and σ is the standard deviation of either B or C (as B and C here are assumed to

have the same standard deviation) [215, 216]. Omitting details from statistics, a small

d-value essentially corresponds to a big overlap between distributions B and C, whilst

a large d-value corresponds to a small overlap between distributions B and C, as is

illustrated in Figure 6.2. Cohen decided to use the threshold d-values for describing

`small', `medium' and `large' e�ect sizes to be 0.2, 0.5 and 0.8 respectively [215]. If we

hold on to the assumption that B and C are two normal distributions with the same

variability, and furthermore say that they contain the same number of data samples, we

can use measures of overlap to get a further `feel' for the previously discussed e�ect sizes,

as illustrated in Figure 6.2. Cohen's d value can also be converted into `the probability

that a random data sample XB from (normal) distribution B is larger than a random

135



6. UNCERTAINTY AND SENSITIVITY ANALYSES

Figure 6.2: The small (left), medium (centre) and large (right) threshold values for the
scaled A measure of stochastic superiority (ÂBC) are based on Cohen's d-values comparing
two normal distributions B and C with the same variance. The higher the overlap between
B and C, the smaller the d-value, and the smaller the ÂBC-measure (ÂBC ∈ [0.5, 1]).

data sample XC from (normal) distribution C [212], but that is exactly what the Â-

measure ÂBC(X) measures! So this is where the threshold values for the descriptors

`small', `medium' and `large' statistical di�erences listed in Equation 6.12 come from.

Now, Cohen motivated his choice of the d-value thresholds using a blend of intuitive

`everyday' examples and mathematical reasoning [215], but he did issue a warning re-

garding the fact that the threshold values should be determined based on the research

methodology at hand. Thus the (modeller) should not blindly use Cohen's suggested

thresholds, but instead reason what constitutes a small enough statistical signi�cance

in the study at hand. The (modeller) must also decide how �ne the data samples in

the data distributions should be before performing consistency analysis. In many ap-

plications, it is likely the amount of data samples required in order to achieve a small

statistical signi�cance increases with the �neness of the data. Nonetheless, scienti�c

conventions are useful (no need for citations) and thus in the remainder of this chapter

we will use the threshold values suggested by Cohen, as is done in other mathematical

biology studies [64].

6.4 Consistency Analysis

In silico simulations based on mathematical models with built-in stochasticity will not

produce the same output data every simulation run. Consistency Analysis (also called

aleatory analysis) is a stochastic technique that answers the question: how many data

samples do we need to produce in order to mitigate uncertainty originating from intrin-

sic model stochasticity? In our case, one data sample is the product of one in silico

simulation, so an equivalent question is: how many in silico simulations should we run
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before describing our results in terms of for example average values, standard deviations

or similar?

Let us say that one in silico simulation produces one data sample of some output

variable X. This data sample can for example correspond to `the population size at time

point T ', or something similar. It is up to the modeller to identify and decide what

meaningful output variable(s) should be, and consistency analyses can be performed

on multiple output variables at multiple time steps, for comprehensiveness. Before we

begin, note that, when performing Consistency Analysis, we always use the calibrated

model parameters.

The �rst step involved in performing Consistency Analysis is to produce multiple

distributions of data of various sizes. We say that a distribution with n data samples

has a distribution-size n, and the goal of Consistency Analysis is to �nd the smallest n-

value (here denoted n∗) that yields a small stochastic signi�cance. To do this, we create

various distribution groups that all contain 20 distributions each of some distribution-

size n, as is shown in Step 1 in Section 6.4.1. Following the methodology described in

previous work by Alden et al. [64], we create one distribution group that contains 20

distributions of size n = 1, one distribution group that contains 20 distributions of size

n = 5 and so on. Here, the n-values 1, 5, 50, 100 and 300 are evaluated [64] and thus

we must produce a total of 20 · (1 + 5 + 50 + 100 + 300) = 9120 in silico runs. (Note

that, if the desired accuracy is not achieved for the highest investigated n-value, here

n = 300, higher values of n can be explored).

We here let a distribution Dn,k denote the k-th distribution of distribution size n so

that

Dn,k = {d1
n,k, d

2
n,k, .. , d

n
n,k} (6.14)

where dhn,k is the the h-th data sample in distribution Dn,k and h = 1, 2, .., n. The

Â-measure resulting from comparing two distributions Dn,k and Dn,k′ with respect to

the variable X is denoted by Ânk,k′(X).

Now, within every distribution-group, we compare the �rst distribution (k = 1) to
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all other distributions (k′ = 2, 3, .., 20) using the Â-measure. This yields 19 Â-measures

per distribution-group (as is shown in Step 2 in Section 6.4.1. The maximum scaled

Â-measure with respect to X, occurring in a distribution-group g that contains distribu-

tions of size ng, is denoted Â
ng

max(X). The smallest value ng for which Â
ng

max(X) ≤ 0.56

is denoted n∗. In other words: n∗ corresponds to the smallest distribution-size for which

all of the 19 computed Â-measures yield a small stochastic signi�cance, as is shown in

Step 3 in Section 6.4.1. This answers the question that we set out to answer via Con-

sistency Analysis: n∗ data samples (or in silico runs) are needed in order to mitigate

uncertainty originating from intrinsic model stochasticity. The procedure on how to

perform Consistency Analysis is outlined Section 6.4.1.

6.4.1 Quick Guide to Consistency Analysis

Here follows a quick guide for how to perform Consistency Analysis.
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Figure 6.3: 3-step quick guide on how to perform Consistency Analysis.

6.5 Robustness Analysis

Robustness Analysis answers the question: how robust are model responses to local

parameter perturbations? Robustness Analysis investigates if, and how, perturbing the

value of one input parameter signi�cantly changes an output X. Using the Â-measure,

data distributions containing output data produced by perturbed input parameters, are

compared to a data distribution containing output data produced by the calibrated

input parameters. All perturbed data distributions are here of size n∗, where n∗ is

decided in the Consistency Analysis process, previously described in Section 6.4, when

analysing stochastic models.

Before commencing the Robustness Analysis, we must identify the uncertain model

parameters that we want to investigate the robustness of. We denote these parameters

pi, where i = 1, 2, .., q, and thus we have a total of q parameters whose robustness we will

investigate. Now, as illustrated in Step 1 in Section 6.5.1, we let each such parameter

pi be investigated at r(pi) di�erent parameter values (including the calibrated value),

and thus we need to generate a total of P distributions of sample size n∗ where

P =

q∑
i=1

r(pi). (6.15)

Note that, the number of investigated parameter values, r(pi), need not be the

same for every input parameter pi. Investigated distributions of sample size n∗ are here

denoted Dn∗,pij
, where i = 1, 2, .., q denotes which parameter is being perturbed and j =

1, 2, .., r(pi) denotes the speci�c perturbation of parameter pi. For some perturbation

j = C, the parameter value pij equals the calibrated value for input parameter pi.
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For each parameter that we are investigating, the Â-measure is used to compare the

calibrated distribution Dn∗,piC
to all distributions Dn∗,pij

. Note that, when j = C, the

calibrated distribution is compared to itself and thus the Â-measure equals 0.5. These

Â-measures provide information regarding the statistical signi�cance, speci�cally if it

can be described to be small, medium or large under parameter perturbations. Plotting

the corresponding Â-measure over the parameter value pij for each parameter pi, paints

an informative picture of local parameter robustness, as shown in Step 2, in Section

6.5.1. Another descriptive way to demonstrate the in�uence that parameter values pij
have on some output variable X is to use boxplots. As is illustrated in Step 3 in

Section 6.5.1, boxplots can be used to clearly show the median, di�erent percentiles,

and outliers of some data distribution Dn∗,pij
as a function of the parameter value pij .

The methodology to perform Robustness Analysis is outlined in Section 6.5.1. Note

that Robustness Analysis does not pick up on any non-linear e�ects, between an input

parameter pi and an output X, that occur when more than one model parameter is

simultaneously perturbed [211]. Such e�ects can however be identi�ed using a global

sensitivity analysis technique, such as Latin Hypercube Analysis, as described in Section

6.6.

6.5.1 Quick Guide to Robustness Analysis

142



6.5 Robustness Analysis

143



6. UNCERTAINTY AND SENSITIVITY ANALYSES

Figure 6.4: 3-step quick guide on how to perform Robustness Analysis.
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6.6 Latin Hypercube Sampling and Analysis

Latin Hypercube Analysis answers the question: how robust are model responses to

global parameter perturbations? Latin Hypercube Analysis is a type of global sensi-

tivity analysis that investigates the relationship between input parameters and output

responses when all input parameters are simultaneously perturbed. The parameters

that we want to perturb are (as in Section 6.5) denoted pi, where i = 1, 2, .., q. Thus

the parameters p1, p2, ..., pq together span a parameter space of dimension q. It is impos-

sible to test every possible combination of input parameter values if they are picked from

continuous ranges. In fact, even if we select a �nite number of parameter values r(pi)

to test for each parameter pi, or if we pick discrete parameter values, comparing every

possible combination of parameter values may require us to produce an impractically

large number of simulation runs. Thus performing in silico simulations for all possible

combinations of input parameters will in many cases be at worst impossible, and at

best impractical. In order to circumvent this issue, Latin Hypercube Sampling can be

used [64]. It is a sampling technique that ensures comprehensive testing coverage over

the parameter space whilst keeping the number of tested parameter combinations low

enough to be applicable in practice [217, 218]. After Latin Hypercube Sampling (Sec-

tion 6.6.1), Latin Hypercube Analysis (Section 6.6.2) is used in order to assess global

sensitivity.

6.6.1 Latin Hypercube Sampling

In the two-dimensional case, a Latin Square is an `× ` square grid containing ` (tradi-

tionally Latin, hence the name) di�erent symbols such that each symbol occurs exactly

once in every row and exactly once in every column [219]. Analogously, in the Latin

Hypercube Sampling framework, consider two parameters p1 and p2, spanning a pa-

rameter space of dimension q = 2, where both p1 and p2 are sectioned into ` intervals.

We then pick ` combinations of input parameter values (or sampling-points) (p1
j , p

2
j ),

where j = 1, 2, ..., `, such that every p1-interval is sampled from exactly once and every

p2-interval is sampled from exactly once. Within the parameter range an interval, the

sampled parameter value pij is randomly selected (unless of course the interval contains

only one possible value pij). Note that the j index denotes the coordinate combination

that pij belongs to, not the interval from which the parameter value pij was taken. Thus

there is no condition demanding that the values pij are ordered in a way such that

145



6. UNCERTAINTY AND SENSITIVITY ANALYSES

pi1 < pi2 < ... < pi`.

The analogy between a Latin Square and Latin Hypercube Sampling from a two-

dimensional parameter space is illustrated in Figure 6.5. The Latin Square can be

extended to higher dimensions to form a Latin Cube (dimension = 3) or a Latin Hy-

percube (dimension > 3) and, analogously, the two-dimensional sampling space illus-

trated in Figure 6.5 can be extended to q dimensions, spanned by the input parameters

p1, p2, .., pq [219].

Figure 6.5: Left: An `×` Latin Square in which each Latin symbol occurs ` times, exactly
once in each row and exactly once in each column. Right (analogously): A two-dimensional
parameter space spanned by the input parameters p1 and p2 that are both sectioned into `
intervals. Using Latin Hypercube sampling, ` parameter combinations (p1j , p

2
j ) are sampled

where j = 1, 2, .., ` and each p1-interval is sampled from exactly once and each p2-interval
is sampled from exactly once.

.

For each parameter pi, the total investigated parameter range is [min(pi), max(pi)],

where min(pi) and max(pi) respectively denote the minimum and maximum values of

pi to be investigated. Now each parameter range [min(pi), max(pi)] is sectioned into

N intervals, and we denote these intervals by u1
pi
, u2

pi
, ...., uN

pi
. Note that, all input

parameters pi must be sectioned into the same number of intervals. If the intervals are

uniformly distributed, then the size of an interval, w(pi), is

w(pi) =
max(pi)−min(pi)

N
(6.16)
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and the r-th interval ur
pi
has a parameter range such that

urpi =
[
min(pi) + w · (r − 1), min(pi) + w · r

]
(6.17)

where r = 1, 2, ..., N .

Note that there are more than one way to populate Latin symbols in a Latin Square,

this can be realised by regarding Figure 6.5 and noticing that the A-symbols and the B-

symbols cover the Latin Square in di�erent ways. Analogously, and by extension, there

are multiples ways to populate sampling coordinates in a Latin Hypercube Sampling

framework. Some of these ways provide better coverage of the parameter space than

do others [219], but details regarding such sampling-optimisation are outside the scope

of this study. In this study, we use the built-in MATLAB function lhsdesign [205] to

select which parameter combinations to use according to a Latin Hypercube Sampling

approach. Note that, in our case, all N intervals u1
pi
, u2

pi
, ...., uN

pi
for a parameter pi are

uniformly spaced, but the choice of spacing can be adjusted to the speci�c application

at hand [205].

Now let us address the choice of intervals N , as this is not straightforward. Using

the Latin Hypercube Sampling framework, every parameter pi, where i = 1, 2, .., q, is

partitioned into N intervals and, consequently, N combinations comprising q parameter

values are sampled and tested. Compared to a small N -value, a large value of N will

provide more data to use, and draw conclusions from, in the Latin Hypercube Analysis

stage, however, it will also increase the computational cost in the Latin Hypercube

Sampling stage. There is no strict rule for how to choose N , but suggested values for

N in the literature are N = 2q for large values of q (i.e. high-dimensional parameter

spaces) or N = 4q/3 which has been described to be `usually satisfactory' [220, 221].

Authors of the SPARTAN package use a lot larger numbers in their provided examples

[64]. In this study, we decide to use N = 100 uniform intervals. (We tried using only

10 intervals, in accordance with the suggestion N = 10 > 4q/3 ≈ 9, but this did not

enable us to distinguish any trends in the data in the Analysis stage. However with

N = 100, we had su�cient data samples from which to draw conclusions from in the

Analysis stage, as demonstrated in Section 6.6.3). At the end of the day, the choice of

N is up to the modeller, who must outweigh the (computational) cost of producing a
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large number of data samples, with the advantage of having a vast amount of data, and

thus plentiful information, in the analysis stage. Quantitative choices of N are outside

the scope of this study.

6.6.2 Latin Hypercube Analysis

During the Latin Hypercube Sampling process, N di�erent points in the q-dimensional

parameter space spanned by the input parameters p1, p2, ..., pq are selected as sampling-

points, as shown in Step 1 in Section 6.6.3. One such sampling-point, Cj , can be

described by its coordinates in the parameter space so that Cj = (p1
j , p

2
j , ..., p

q
j). Each

sampling-point Cj is used to generate n∗ output values X(Cj), where n∗ is deter-

mined using Consistency Analysis. Subsequently, the median output value, here de-

noted
˜
X(Cj), is computed for every Cj . Now, our overall aim is to investigate the

relationship between an input parameter pi and an output response X. We investi-

gate this input-output relationship in two steps, one of which is qualitative and one of

which is quantitative. In the �rst, and qualitative, step we produce two-dimensional

scatterplots in which median output data,

˜
X(C1),

˜
X(C2), ...,

˜
X(CN ) =

˜
X(p1

1, p
2
1, ..., p

q
1),

˜
X(p1

2, p
2
2, ..., p

q
2), ...,

˜
X(p1

N , p
2
N , ..., p

q
N ),

are plotted over parameter values

pi1, p
i
2, ..., p

i
N ,

for one of the input parameters pi. We do this for every input parameter i = 1, 2, ..., q

and thus q scatterplots are created. By simply visually analysing the data in the scatter-

plots, we are able to make qualitative observations regarding the relationship between

the input and the parameter. Examples of such observations are provided in Step 2 in

Section 6.6.3

As a second step, we use a quantitative measure, such as the Pearson Product Mo-

ment Correlation Coe�cient (or the correlation coe�cient for short), to quantitatively

describe the correlation between input parameters and output responses, as done in

Step 3 in Section 6.6.3. The correlation coe�cient is denoted r, where r ∈ [−1,+1],

describes the linear association between the input parameter and the output response in
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terms of both magnitude and direction. A positive (linear) correlation between pi and

X̃(Cj) means that if either the input value or the output value increases, so does the

other one, and thus r is positive. Conversely, a negative correlation means that if either

pi or X̃(Cj) increases, the other one decreases, and thus r is negative. The magnitude

of r describes the strength of the correlation, where a magnitude of 1 corresponds to a

strong linear association, and a small magnitude corresponds to a weak correlation. An

r-value of approximately zero indicates that there is no linear correlation between the

two investigated variables. Note that the Pearson Product Moment Correlation Coe�-

cient picks up linear associations only, thus there may exist other, non-linear correlations

that are not captured by the correlation coe�cient r. Therefore it is important to, not

only quantitatively compute input-output correlations, but to also qualitatively assess

the relationships between inputs and outputs, via data visualisation in scatterplots as

previously described 1.

The correlation coe�cient, ri, describing the correlation between an input parameter

pi, and an output response X is given by [222],

ri =

N∑
j=1

(
pij − p̄i

)(
˜
X(Cj)−

˜
X̄

)
√√√√√( N∑

j=1

(
pij − p̄i

)2)( N∑
j=1

(
˜
X(Cj)−

˜
X̄
)2) . (6.18)

1
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When it comes to interpreting quantitative input-output relationships based on the

correlation coe�cient r, there are no all-encompassing threshold values to use for de-

scriptors such as `weak', `moderate', `strong' [222�224]. Relationships quanti�ed by

correlation coe�cient values close to the extrema 0 or 1 may be easy to describe as

`negligible' or `strong', respectively but correlation coe�cient values in the middle of

the [0,1] range are more di�cult to label. Various `rule of thumbs' have been suggested

in the literature but, at the end of the day, it is up to the researcher to appropriately

judge what constitutes a `weak', `moderate' or `strong' input-output relationship in the

speci�c (modelling) application at hand, taking into account the research area, the num-

ber of data samples, and the range of investigated input values [223]. However, even

without rigid descriptor threshold values, we can compare the correlation coe�cient

values for all input-output pairs and see which input values are the most in�uential

within the ranges of regarded input values. As a guide, suggested correlation coe�-

cient descriptor threshold values presented in the literature are listed in Table 6.1. The

methodology to perform Latin Hypercube Sampling and Analysis is outlined in Section

6.6.3.

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

reference

descriptor

negligi-
ble

weak moder-
ate

strong very
strong

Mukaka [222] [0,0.3) [0.3,0.5) [0.5,0.7) [0.7,0.9) [0.9,1]

Schober et al. [223] [0,0.1) [0.1,0.4) [0.4,0.7) [0.7,0.9) [0.9,1]

Krehbiel [224] �A linear relationship exists if |r| ≥ 2/
√
number of samples.�

Table 6.1: Suggested descriptor threshold values for the magnitude of the correlation
coe�cient, |r|, reported in the literature.

6.6.3 Quick Guide to Latin Hypercube Sampling and Analysis
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Figure 6.6: 3-step quick guide on how to perform Latin Hypercube Sampling and Anal-
ysis.

6.7 Case Study: Analysing the Results from Chapter 5

To evaluate the in silico �ndings obtained in the in vitro study described in Chapter

5, three uncertainty and sensitivity analyses techniques are performed. The three tech-

niques are namely: (1) Consistency Analysis, which is used to determine how many in
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silico runs should be performed before de�ning results in terms of statistical metrics in

order to mitigate uncertainty originating from intrinsic model stochasticity, (2) Robust-

ness Analysis, which investigates model sensitivity to local parameter perturbations and

(3) Latin Hypercube Analysis, which investigates model sensitivity to global parameter

perturbations. To perform uncertainty and sensitivity analyses we need to specify a set

of inputs and outputs. Here, the output variables are X1: the percentage of γH2AX-

positive (i.e. damaged) cells at the end time of the experiment (72 hours), and X2: the

cell count (i.e. the number of non-dead cells) at the end of the experiment. The input

variables are the seven model parameters listed in Table 5.1 that we calibrate using in

vitro data. These inputs are namely µ, σ, ΠD−S , ΘD−S , EC50, γ and TL→D.

6.7.1 Consistency Analysis

Results from the Consistency Analysis are provided in Figures 6.7, 6.8, 6.9, 6.10, 6.11

which show the Â-measures, in both computed and scaled forms, for the distribution

sizes n = 1, 5, 50, 100, 300 respectively. By observing Figures 6.7 through to 6.11, it is

clear that the statistical signi�cance decreases with increasing distribution size n, as

is shown in Figure 6.12 and Table 6.2 which show the maximal scaled Â-values for all

tested distribution sizes. These results demonstrate that the distribution size n = 100

is the smallest tested distribution size that yields a small statistical signi�cance (i.e. a

maximum scaled Â-value smaller than 0.56) for both regarded output variables X1 and

X2. From this we decide to base every in silico result (here in terms of mean values and

standard deviations) on 100 simulation runs.

Q
Q
Q
Q
Q
Q
Q
QQ

output

distribution
size

n=1 n=5 n=50 n=100 n=300

X1 1 0.92 0.61 0.55 0.54
X2 1 0.84 0.59 0.55 0.54

Table 6.2: Maximal scaled Â-values produced in the Consistency Analysis for various
distribution sixes n. The output variables are X1, corresponding to the percentage of
γH2AX positive (i.e. damaged) cells, and X2, corresponding to the cell count.
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6.7.2 Robustness Analysis

We use Robustness Analysis to investigate how sensitive the output is to local parameter

perturbations, that is to say when input parameters are varied one at a time. Figures

6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19 provide boxplots and Â-measures that demonstrate

the e�ect that local perturbations of the input variables µ, σ, ΠD−s, ΘD−S , EC50, γ

and TL→D respectively have on the output variables X1 and X2. Key �ndings are listed

below, discussing the impact of one input parameter at a time.

I Remarks regarding input parameter µ: Figure 6.13 shows that, for small pa-

rameter perturbations, increasing the average doubling times of cells, µ, overall

decreases the percentage of γH2AX positive cells and increases the cell count,

however this decrease/increase is not linear. This indicates that the results of the

in vitro simulation (and of the in vitro experiment nonetheless) are sensitive to the

timing of the drug administration. In other words, Robustness Analyses demon-

strates that treatment responses depend on how many cells are in the susceptible

cell-cycle state at time of drug administration.

I Remarks regarding input parameter σ: Figure 6.14 demonstrates that the level

of cell cycle synchronisation amongst cells, quanti�ed by the input σ, a�ects in

silico outputs for small parameter perturbations. The results indicate that for

highly asynchronised cells (i.e. high σ-values) the smoother growth curves yield

higher cell counts at certain time-points (such as the end time 72 hours) and a

lower percentage of γH2AX-positive cells. As discussed in the remark above, the

timing between cell cycles and drug administration a�ect treatment responses.

I Remarks regarding input parameter ΠD−S : Figure 6.15 illustrates that increasing

the probability that a cell enters the damaged S state, i.e. the variable ΠD−S ,

increases the percentage of γH2AX cells and decreases the cell count, as expected.

I Remarks regarding input parameter ΘD−S : Figure 6.16 shows how the amount

of time that damaged cells spend in the D-S state before attempting to repair,

and thus the ΘD−S-value, a�ects the output. Results show that the percentage of

γH2AX positive cells increases with increasing values of ΘD−S , as more damaged

cells will accumulate in the D-S state. However, this does not a�ect the probability

of cells repairing, so the cell count is not as sensitive to small perturbations of
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ΘD−S . The value of ΘD − S implicitly a�ects the measured cell count at the end

time of the experiment as a decreased/increased ΘD − S-value yields a slightly

decreased/increased time lag between a cell entering the D-S state and dying.

I Remarks regarding input parameter EC50: Figure 6.17 demonstrates that output

variables are highly sensitive to perturbations of EC50. Increasing EC50 results

in a higher percentage of γH2AX positive cells and a lower cell count. Thus the

input parameter EC50 should be regarded as a highly in�uential on quantitative

results.

I Remarks regarding input parameter γ: Figure 6.18 illustrates that output vari-

ables measured at the end time of the experiment are not very sensitive to small

perturbations of γ. This can be understood as the γ parameter inherently corre-

sponds to `how quickly' a drug achieves asymptotic behaviour in the Emax model,

the model used in our mathematical framework to express cellular drug response.

I Remarks regarding input parameter TL→: Figure 6.19 shows how output variables

change as a result of perturbations to the input variable TL→, that describes how

long it takes for a cell that has failed to repair to die (i.e. how long a cell with

a `death-sentence' is picked up as γH2AX positive in the in vitro experiment).

Results show that both the percentage of γH2AX positive cells and the cell count

increases with increasing values of TL→, as dying cells will categorised as γH2AX

positive longer before being categorised as dead. When calibrating the model, we

avoid the e�ect of this input parameter by only regarding in vitro data at time

points that are early enough to correspond to systems with no (or a negligible

amount of) dead cells.

6.7.3 Latin Hypercube Analysis

Latin Hypercube Analysis is here used to investigate how sensitive output responses

are to global parameter perturbations. We here investigate parameter values within

ranges that we consider to be `plausible' from the calibration process and the Robust-

ness Analysis. Figures 6.20, 6.21, 6.22, 6.23, 6.24, 6.25, 6.26 provide scatter-plots that

demonstrate correlations between the output variables X1 and X2 and the input vari-

ables µ, σ, ΠD−s, ΘD−S , EC50, γ and TL→D respectively. The Pearson Product Moment

Correlation Coe�cients between the various input-output pairs are listed in Table 6.3.
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6.7 Case Study: Analysing the Results from Chapter 5

To determine threshold values for correlation coe�cient descriptors, we compromise

between suggested values by other authors [204], and take into account the fact that

we are only regarding parameter values within `plausible' ranges. With this as a guide,

we here decide that our obtained correlation coe�cients with a magnitude in [0,0.12]

corresponds to the linear input-output relationship being `negligible', [0.19, 0.35] 'weak',

[0.48,0.59] `moderate' and 0.84 `strong'. Key �ndings from the Latin Hypercube Anal-

ysis are listed below, where the impact of one input parameter is discussed one at a

time.

I Remarks regarding input parameter µ: Figure 6.20 and the �rst column in Table

6.3 show that, for the allowed parameter range, µ and X1 are moderately, nega-

tively correlated as the correlation coe�cient is -0.48 and the scatterplot displays

an overall trend of the output (X1) decreasing with increasing values of the in-

put µ. The relationship between µ and the other output variable X2 is, on the

other hand, negligible. We explain this by the fact that treatment responses are

sensitive to the timing of the drug administration, but there is a time-lag TL→D

between a cell's lethal event (failure to repair) and its death. As damaged (but not

dead) cells are included in the cell count, the (µ,X2)-relationship is more weakly

linearly correlated than the (µ,X1)-relationship.

I Remarks regarding input parameter σ: Figure 6.21 and the second column in

Table 6.3 demonstrate that the linear relationships between input variable σ and

the output variables X1 and X2 are both negligible, within the regarded input

parameter value range.

I Remarks regarding input parameter ΠD−S : Figure 6.22 and the third column

in Table 6.3 indicate that the relationships between the input variable ΠD−S and

the output variables X1 and X2 are, respectively, positively and negatively weakly

linearly correlated. This agrees with the intuitive notion that if the probability

that a cell enters the D-S state increases, cell damage (X1) increases whilst the

cell count (X2) decreases.

I Remarks regarding input parameter ΘD−S : Figure 6.23 and the fourth column in

Table 6.3 show that the input variable ΘD−S is has a negligible linear correlation

with the output variables X1 and X2.
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I Remarks regarding input parameter EC50: Figure 6.24 and the �fth column in

Table 6.3 demonstrate that the input variable EC50 impacts the output responses

more than do other input variables, within the regarded ranges for input variables.

EC50 is negatively, moderately linearly correlated with X1 and EC50 is strongly,

positively linearly correlated with X2. These relationships are visually apparent

in the regarded scatterplots.

I Remarks regarding input parameter γ: Figure 6.25 and the sixth column in Table

6.3 indicate negligible linear correlations between the input parameter γ and both

output variables X1 and X2.

I Remarks regarding input parameter TL→D: Figure 6.26 and the last column in

Table 6.3 demonstrate that the input variable TL→D is positively, weakly, linearly

correlated with the output X1, whilst the linear correlation between TL→D and

X2 is negligible.

Q
Q
Q
Q
Q
Q

Q
QQ

output

input

µ σ ΠD−S ΘD−S EC50 γ TL→D

X1 -0.48 0.06 0.19 0.06 -0.59 0.05 0.35
X2 0.12 0.01 -0.24 -0.02 0.84 0.12 0.00

Table 6.3: Pearson Product Moment Correlation Coe�cients between input and output
variables obtained in the Latin Hypercube Analysis.

158



6.7 Case Study: Analysing the Results from Chapter 5

Figure 6.7: Consistency Analysis. Â-values in initial (top) and scaled (bottom) form for
distribution size n = 1.

Figure 6.8: Consistency Analysis. Â-values in initial (top) and scaled (bottom) form for
distribution size n = 5.
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Figure 6.9: Consistency Analysis. Â-values in initial (top) and scaled (bottom) form for
distribution size n = 50.

Figure 6.10: Consistency Analysis. Â-values in initial (top) and scaled (bottom) form
for distribution size n = 100.
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Figure 6.11: Consistency Analysis. Â-values in initial (top) and scaled (bottom) form
for distribution size n = 300.

Figure 6.12: Consistency Analysis. Scaled Â-values for various distribution sizes tested
in the Consistency Analysis.
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Figure 6.13: Robustness Analysis. Left: Output responses, in terms of percentage of
γH2AX positive (i.e. damaged) cells, and cell count as a result of perturbations to the input
variable µ. Right: Maximal Â-values resulting from comparisons between distributions
with perturbed data and a distribution with calibrated (unperturbed) data.
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6.7 Case Study: Analysing the Results from Chapter 5

Figure 6.14: Robustness Analysis. Left: Output responses, in terms of percentage of
γH2AX positive (i.e. damaged) cells, and cell count as a result of perturbations to the input
variable σ. Right: Maximal Â-values resulting from comparisons between distributions
with perturbed data and a distribution with calibrated (unperturbed) data.
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Figure 6.15: Robustness Analysis. Left: Output responses, in terms of percentage of
γH2AX positive (i.e. damaged) cells, and cell count as a result of perturbations to the input
variable ΠD−s. Right: Maximal Â-values resulting from comparisons between distributions
with perturbed data and a distribution with calibrated (unperturbed) data.
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6.7 Case Study: Analysing the Results from Chapter 5

Figure 6.16: Robustness Analysis. Left: Output responses, in terms of percentage of
γH2AX positive (i.e. damaged) cells, and cell count as a result of perturbations to the input
variable ΘD−S . Right: Maximal Â-values resulting from comparisons between distributions
with perturbed data and a distribution with calibrated (unperturbed) data.
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Figure 6.17: Robustness Analysis. Left: Output responses, in terms of percentage of
γH2AX positive (i.e. damaged) cells, and cell count as a result of perturbations to the input
variable EC50. Right: Maximal Â-values resulting from comparisons between distributions
with perturbed data and a distribution with calibrated (unperturbed) data.
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6.7 Case Study: Analysing the Results from Chapter 5

Figure 6.18: Robustness Analysis. Left: Output responses, in terms of percentage of
γH2AX positive (i.e. damaged) cells, and cell count as a result of perturbations to the input
variable γ. Right: Maximal Â-values resulting from comparisons between distributions
with perturbed data and a distribution with calibrated (unperturbed) data.
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Figure 6.19: Robustness Analysis. Left: Output responses, in terms of percentage of
γH2AX positive (i.e. damaged) cells, and cell count as a result of perturbations to the input
variable TD→L. Right: Maximal Â-values resulting from comparisons between distributions
with perturbed data and a distribution with calibrated (unperturbed) data.
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6.7 Case Study: Analysing the Results from Chapter 5

Figure 6.20: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left)
and number of viable cells (right) when global parameter perturbations are performed.
The scatter-plots show the correlation between outputs and the input variable µ.

Figure 6.21: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left)
and number of viable cells (right) when global parameter perturbations are performed.
The scatter-plots show the correlation between outputs and the input variable σ.
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Figure 6.22: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left)
and number of viable cells (right) when global parameter perturbations are performed.
The scatter-plots show the correlation between outputs and the input variable ΠD−S .

Figure 6.23: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left)
and number of viable cells (right) when global parameter perturbations are performed.
The scatter-plots show the correlation between outputs and the input variable ΘD−S .
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Figure 6.24: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left)
and number of viable cells (right) when global parameter perturbations are performed.
The scatter-plots show the correlation between outputs and the input variable EC50.

Figure 6.25: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left)
and number of viable cells (right) when global parameter perturbations are performed.
The scatter-plots show the correlation between outputs and the input variable γ.
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Figure 6.26: Latin Hypercube Analysis. Outputs in terms of γH2AX positive cells (left)
and number of viable cells (right) when global parameter perturbations are performed.
The scatter-plots show the correlation between outputs and the input variable TL→D.
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Chapter 7

Conclusion

In this thesis we discussed the role of mathematical modelling in current, and future,

cancer research. We demonstrated how solid tumour models can be used to study per-

tinent treatment scenarios in silico. The mathematical framework used in this thesis

is based on a multiscale, hybrid, cellular automaton and, as was demonstrated in the

studies outlined in Chapters 3, 4 and 5, this framework provides a great opportunity

to study aspects of tumour dynamics and treatment responses that are not empirically

observable in wet labs and clinical settings. In Chapter 5, the mathematical framework

was fully calibrated by in vitro data and validated by in vivo data, signifying the poten-

tial of its use in pre-clinical settings. The mathematical framework used in this thesis

can be improved by re�ning, expanding and/or parameterising it. More sophisticated

numerical methods can be used to solve the equations describing di�usion processes

and cell cycle regulation. More realistic lattice boundary conditions can be deployed in

order to closer simulate in vivo tumour environments. One can also use more advanced

computational techniques in situations where concerns regarding computational costs

are important or in situations where one wants to simulate larger populations of agents.

In research situations where sub-cellular details are of importance, more intracellular

details can be included and, conversely, when such details are not important, intracel-

lular details can be omitted. Although the mathematical framework used in this thesis

can be improved in may ways, it does serve as an adaptable and easy-to-use in silico

tool. As was discussed in the �rst chapter of this thesis, today there exist multiple

mathematical models that are able to capture various aspects of cancer. Once vali-

dated, data driven, predictive mathematical models can be used as a great complement
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to traditional cancer research.

Although advancements in cancer research are being made in parallel across various

research disciplines, multidisciplinary collaborations have the potential to accelerate

the process of translating cancer research into applications that are successful in clin-

ical settings. To this end, McGuire et al. [225] provide an implementable pipeline for

interdisciplinary development of cancer therapies. They illustrate how to structure the

work�ow amongst clinicians, biologists and researchers from STEM (science, technology,

engineering, mathematics) in an optimal, feasible manner. The work�ow demonstrates

how multidisciplinary research should alternate between being performed parallelly and

sequentially. It also incorporates re�ning, iterative processes and an outlined order of

operations which act to bring new cancer protocols to clinics as quickly and safely as

possible. The concept and work�ow proposed by McGuire et al. [225] acknowledges,

yet transcends, practical limitations as it allows for collaboration across disciplines,

distances and institutes. In order to comprehensively transfer insights from blackboard-

to-bedside [186], dialogue and collaboration between clinicians and mathematicians, as

well as biologists and experimentalists is key [49]. This need for interdisciplinary meth-

ods is currently being pursued, integrating classical cancer research with innovative

ideas from research across multiple disciplines. It is my personal aspiration to work in

such interdisciplinary teams, united with a common goal to further cancer research.

Conceptually, the research �eld that is Mathematical Oncology can be regarded as

a mathematical sub-category of oncology, or as a cancer-related sub-category of mathe-

matics. Accordingly, the research methodology of a mathematician in the �eld may vary.

A mathematician may choose to work with highly theoretical mathematical models that

include theories that can not be (or have not been) directly validated in wetlabs. Such

models may elucidate biological mechanisms and add to biological knowledge. Alter-

natively, a mathematician may choose to work with more practical, minimal-parameter

models that are based on well established biological phenomena that are empirically

observable. Such models may be more easily tested, and validated, in wet labs. Con-

tributions to both theoretical and practical aspects of mathematical oncology are im-

portant and valid, and both research methodologies should be pursued by the research

community in parallel. However, in the end, there needs to be a bridge between math-
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ematics and pre-clinical/clinical research in order for mathematical oncology to be im-

plementable and ultimately useful in practice. After all, when it comes to mathematical

oncology, the research may be mathematical but the motivation is humanitarian.
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Chapter 8

Appendix

A1: Appendix to Chapter 3

Implementing Oxygen Dynamics

The total, absolute amount of oxygen in the system �uctuates over time due to the

chosen oxygen equation, parameters and boundary conditions. However scaled oxygen

values are used in order to evaluate spatial oxygen distribution and determine hypoxia,

these values are re-scaled at every time step [67]. In Figure 8.1 cell-maps and oxygen-

maps demonstrating spatial oxygen distribution at certain times are provided, these

maps are visualised using ParaView [161].

In Table 8.1, various oxygen measurements for certain time points are listed in

both absolute and scaled forms. Here (KT
ij) denotes the absolute oxygen value in grid

point (i, j) at time T , and similarly (K̂T
ij) denotes the scaled oxygen value in grid point

(i, j) at time T . Here i and j are spatial integer indices ranging from 1 to 100 as

a square grid with 1002 grid points is used. For absolute oxygen values these listed

measurements are speci�cally; the total amount of oxygen in the system (
∑

ijK
T
ij), the

average oxygen value at one grid point (K̄T
ij), the oxygen value at the grid point with

the maximum amount of oxygen (max(KT
ij)) and the oxygen value at the grid point

with the minimum amount of oxygen (min(KT
ij)). The same measurements are done for

scaled oxygen values, using the hat notation to denote that the values are scaled.
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Figure 8.1: Cell-maps (top) and oxygen-maps (bottom) at certain times pre chemotherapy
administration. The oxygen-maps demonstrate the spatial oxygen distribution in terms of
scaled, nondimensionalised oxygen values ranging between 0 and 1 at each grid point.
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)

0 0.41 0 0.01 0.00 40.05 0.00 1.00 0.00
100 41048.10 4.10 4.92 3.50 8334.76 0.83 1.00 0.71
200 70535.20 7.05 8.30 3.36 8498.16 0.85 1.00 0.40
300 58273.21 5.83 7.75 0.69 7514.37 0.75 1.00 0.09
400 29163.37 2.92 4.74 0.09 6155.72 0.62 1.00 0.02
500 12093.96 1.21 2.62 0.02 4619.06 0.46 1.00 0.01

Table 8.1: Nondimensionalised oxygen values of the system at certain time points, in
both absolute form and scaled form (hat notation).

100 8 1 {8}

300 521 45 [512, 530]

500 2440 108 [2418,2461]

700 5285 165 [5252, 5318]

100 8 1 {8}

300 523 48

500 2447 113 [2424, 2469]

700 5116 179

100 8 1 {8}

300 512 50 [502, 522]

500 2418 121

700 4773 197

100 8 1 {8}

300 519 46

500 2430 106

700 4520 143
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Result Data

This section provides listings of the mean value (mean), standard deviation (S.D) and

95 %-con�dence interval (I.C(95%)) for test results (a1) through to (e4), presented by

graphs in Figure 4. Here all values have been rounded to integers, corresponding to full

number of cells.

Robustness Analysis

To verify that our results are robust in regards to the chosen parameters listed in Table

3.3, a sensitivity investigation of critical parameters is preformed in which parameters

are varied, one at a time, according to Table 8.2. Each such sensitivity test is performed

100 times, results are provided in Figure S7. These results show that our qualitative
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100 8 1 {8} 0 0 {0} 8 1 {8}

300 484 57 [473, 495] 25 29 509 51

500 2183 181 230 141 2413 121

700 3719 380 [3644, 3794] 1658 391 5378 183

100 8 1 {8} 0 0 {0} 8 1 {8}

300 488 57 28 33 516 50

500 2186 192 241 159 2427 115

700 3240 438 2024 489 5264 189

100 8 1 {8} 0 1 {0} 8 1 {8}

300 481 60 30 39 511 46

500 2168 211 247 178 2415 105

700 2611 418 2530 480 5141 183

100 8 1 {8} 0 1 {0} 8 1 {8}

300 491 58 [479, 503] 34 41 525 45

500 2189 206 256 184 2445 109

700 2338 433 2773 542 5112 198

[19, 31] [499, 519]

[2147, 2219] [202, 258] [2389, 2437]

[1580, 1736] [5342, 5414]

[477, 499] [21, 35] [506, 526]

[2148, 2224] [209, 273] [2404, 2450]

[3153, 3327] [1927, 2121] [5227, 5301]

[469, 493] [22, 38] [502, 520]

[2126, 2210] [212, 282] [2394, 2436]

[2528, 2694] [2435, 2625] [5105, 5177]

[26, 42] [516, 534]

[2148, 2230] [219, 293] [2423, 2467]

[2252, 2424] [2665, 2881] [5073, 5151]

T
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e 
[h

]

Total cell populationSensitive subpopulation Drug resistant subpopulation

S.Dmean C.I(95%) S.Dmean C.I(95%) S.Dmean C.I(95%)

Drug
dosage

[number of cells][number of cells] [number of cells]

1C

2C

4C

8C

Primary DR: Tests (b1) to (b4) 

T
es

t 
la

be
l

(b1)

(b2)

(b3)

(b4)

100 8 1 {8} 0 0 {0} 8 1 {8}

300 520 46 [510, 529] 0 0 {0} 520 46 [510, 529]

500 2435 106 [2414, 2456] 0 0 {0} 2435 106 [2414, 2456]

700 2828 155 [2798, 2859] 2560 134 5388 171

100 8 1 {8} 0 0 {0} 8 1 {8}

300 519 49 0 0 {0} 519 49

500 2436 115 0 0 {0} 2436 115

700 3006 156 2167 149 [2137, 2197] 5173 182

100 8 1 {8} 0 0 {0} 8 1 {8}

300 518 48 0 0 {0} 518 48

500 2430 107 0 0 {0} 2430 107

700 3662 147 1200 172 4861 172

100 8 1 {8} 0 0 {0} 8 1 {8}

300 519 50 0 0 {0} 519 50

500 2432 120 0 0 {0} 2432 120

700 3929 201 638 127 4567 183

[2533, 2586] [5354, 5422]

[509, 529] [509, 529]

[2414, 2459] [2414, 2459]

[2975, 3037] [5137, 5209]
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T
es

t 
la

be
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100 8 1 {8} 0 0 {0} 8 1 {8}

300 527 45 0 0 {0} 527 45

500 2446 108 0 0 {0} 2446 108

700 2507 471 2910 484 5417 156

100 8 1 {8} 0 0 {0} 8 1 {8}

300 518 55 0 0 {0} 518 55

500 2430 127 0 0 {0} 2430 127

700 2695 403 2480 398 5174 194

100 8 1 {8} 0 0 {0} 8 1 {8}

300 518 48 0 0 {0} 518 48

500 2429 108 0 0 {0} 2429 108

700 3428 340 1427 378 4855 164

100 8 1 {8} 0 0 {0} 8 1 {8}

300 517 47 [508, 526] 0 0 {0} 517 47 [508, 526]

500 2429 114 0 0 {0} 2429 114

700 3740 320 830 309 4750 148

[518, 536] [518, 536]

[2425, 2467] [2425, 2467]

[2414, 2600] [2814, 3006] [5386, 5448]

[507, 529] [507, 529]

[2405, 2455] [2405, 2455]

[2615, 2775] [2401, 2559] [5136, 5212]
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[2408, 2450] [2408, 2450]
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100 8 1 {8} 0 0 {0} 8 0.7766152929 {8}

300 341 40 127.45 21 468 48.111708187

500 1468 94 680.65 56 2149 115.26258603 [2126, 2171]

700 2752 140 1694.79 98 4447 181.94978634

100 8 1 {8} 0 0 {0} 8 0.664466065 {8}

300 347 44 129.43 19 476 49.090512157

500 1473 99 688.8 53 2161 111.40484865

700 2558 143 1705.74 104 4264 202.09120328

100 8 1 {8} 0 0 {0} 8 0.649086382 {8}

300 344 42 127.98 19 472 44.998418603

500 1477 98 [1457, 1496] 680.65 47 2157 106.24128057

700 2221 130 1639.13 92 3860 163.58876255 [3827, 3892]

100 8 1 {8} 0 0 {0} 8 0.6043612539 {8}

300 345 44 127.11 17 [124, 131] 473 51.984131223

500 1476 97 679.96 45 [671, 689] 2156 118.11151852

700 2044 124 1605.23 120 3649 183.26251277

[333, 349] [123, 132] [459, 478]

[1449, 1486] [670, 692]

[2724, 2780] [1675, 1714] [4411, 4483]

[338, 355] [126, 133] [466, 486]

[1453, 1492] [678, 699] [2139, 2184]

[2530, 2586] [1685, 1726] [4224, 4304]

[336, 352] [124, 132] [463, 481]

[671, 690] [2136, 2178]

[2195, 2246] [1621, 1657]

[337, 354] [462, 483]

[1457, 1496] [2133, 2180]

[2019, 2068] [1581, 1629] [3612, 3685]

T
im

e 
[h

]
Total cell populationSensitive subpopulation Drug resistant subpopulation

S.Dmean C.I(95%) S.Dmean C.I(95%) S.Dmean C.I(95%)

Drug
dosage

[number of cells][number of cells] [number of cells]

1C

2C

4C

8C

SC DR: Tests (e1) to (e4) 

T
es

t 
la

be
l

(e1)

(e2)

(e3)

(e4)

�ndings, concerning drug response in cancer cell populations hosting various types of

drug resistance, hold for parameter variations. Indeed the ratio of drug resistant cells

increases with high drug dosages in cases where drug resistance precedes chemother-

apy, here in experiments (b) Primary DR and (e) SC DR. Conversely drug-induced

drug resistant subpopulations are promoted in scenarios with low drug dosages, here in

experiments (c) Induced DR and (d) ICC DR.

Test Parameter or
ig
in
al

te
st

se
ns
it
iv
it
y
te
st

1

se
ns
it
iv
it
y
te
st

2

se
ns
it
iv
it
y
te
st

3

se
ns
it
iv
it
y
te
st

4

Primary DR αpri 0.01 0.005 0.025
Induced DR χind κ/5 κ/5 κ/5 κ/10 κ/2
Induced DR τ [minutes] 30 15 60 30 30

ICC DR αex 0.05 0.03 0.1
ICC DR χind κ/5 κ/5 κ/5
ICC DR τ [minutes] 30 30 30
SC DR αSC 0.07 0.03 0.1

Table 8.2: Parameters used in testing the robustness of the model.
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Figure 8.2: Sensitivity analysis, showing the number of sensitive (blue) and drug resistant
(red) cells at three time points when low (left) and high (right) drug dosages are adminis-
tered, namely 1C and 8C respectively. Each test is performed 100 times and the parameters
used in each test are listed in Table 8.2. Thus for Primary DR, only the parameter αpri

is varied. For Induced DR, χind and τ are both varied, one at a time, according to Table
8.2. For ICC DR only aex is varied and similarly for SC DR only aSC is varied.
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Figure 8.3: A �owchart of the code used in Chapter 3.

A �owchart of the code used in Chapter 3.

A2: Appendix to Chapter 4

Complement to Figure 4.9

Figures 8.4 and 8.5 show that the Scheduling-Experiment, performed in Section 4.4.2

and with results provided in Figure 4.9, are qualitatively the same if a damaged cell is
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instantly removed from the lattice (Figure 8.4) or if a damaged cell is moved from the

lattice after a time period corresponding to its doubling time (Figure 8.5).

Figure 8.4: Scheduling of HAP-IR combination treatments, Complement to Figure 4.9.
Cells are removed from the lattice instantaneously after the lethal event occurred.

Complement to Figure 4.10

Figures 8.6 and 8.7 show that the experiment that investigates if HAPs act as radiother-

apy enhancers, discussed in Section 4.4.3 and with results provided in Figure 4.10, are

qualitatively the same if a damaged cell is instantly removed from the lattice (Figure

8.6) or if a damaged cell is moved from the lattice after a time period corresponding to

its doubling time (Figure 8.7).

A �owchart of the code used in Chapter 4.

A3: Appendix to Chapter 5

Flowcharts of the codes used in Chapter 5.
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Figure 8.5: Scheduling of HAP-IR combination treatments, Complement to Figure 4.9.
Cells are removed from the lattice after a time corresponding to their doubling time (τi)
post the lethal event occurred.
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Figure 8.6: Treatment responses of radiotherapy in various MCTSs when either (1) an
IR monotherapy dose is administered at T0+48 hours or (2) IR is given at T0+48 hours
following a prior HAP dose at time T0. Complement to Figure 4.9. Cells are removed from
the lattice instantaneously after the lethal event occurred.
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Figure 8.7: Treatment responses of radiotherapy in various MCTSs when either (1) an
IR monotherapy dose is administered at T0+48 hours or (2) IR is given at T0+48 hours
following a prior HAP dose at time T0. Complement to Figure 4.10. Cells are removed
from the lattice after a time corresponding to their doubling time (τi) post the lethal event
occurred.
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Figure 8.8: A �owchart of the code used in Chapter 4.
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Figure 8.9: A �owchart of the code used in Chapter 5 simulating in vitro scenarios.
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Figure 8.10: A �owchart of the code used in Chapter 5 simulating in vivo scenarios.
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