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Abstract

The focus of this work is on the topic of gravitational wave cosmology. We look
for new observational signatures for primordial gravitational waves and especially
for frameworks that can produce an enhanced tensor spectrum. In such cases, the
gravitational wave energy density can enter within the sensitivity curves of gravi-
tational wave detectors or it could leave a measurable imprint in the polarization
pattern of the Cosmic Microwave Background radiation. This is very important
as more sensitive, next generation experiments are expected to make indirect and
direct measurements of the primordial stochastic gravitational wave background.

Our investigation showed that an enhanced tensor amplitude can be achieved,
within the framework of the Horndeski theory, if there is a short period where slow-
roll inflation is violated. We considered a model of kinetically driven inflation where
for a short time the scalar field velocity is heavily time-dependent. During that
time the would-be decaying tensor mode becomes a growing mode. Analysis of the
bispectrum showed that this can lead to sizeable tensor non-Gaussianities.

We also considered possible realizations of the effective field theory of Scalar-
Tensor gravity. In particular, we looked for a setup up of operators that could lead to
the enhancement of parity violating effects for tensors. We introduced modifications
to gravity which enabled us to parametrically approach the scale at which maximal
parity violation occurs. Using the mathematical machinery for effective field theories
we showed that sub-leading quadratic operators can become important signalling
the presence of the Chern Simons instability. This inevitably implies the existence
of non-trivial cubic interactions which could stand the theory strongly coupled at
energies not far above the energy scale of inflation. Consequently, this can lead to
large parity violation in tensor non-Gaussianity.
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Introduction

The focus of this work is to look for theoretical frameworks, in the context of single-
field inflation, which can lead to new observational signatures for tensors [7–9]. Next
generation of experiments will signal a new era for early universe cosmology. More
sensitive CMB experiments, such as LiteBIRD, SPIDER and CMBpol, will measure
the B-Mode polarization anisotropies with expected precision r ∼ 10−3 [10, 11]. A
direct detection of a primordial stochastic gravitational wave background may be
possible with space-based interferometers, such as LISA, DECIGO (Deci-Hertz) or
their proposed successor BBO (Big Bang Observer) [6, 12, 13], as well with PTAs
(Pulsar Timing Arrays) [14]. A definitive detection will provide evidence of the
inflationary paradigm and most importantly reveal the energy scale of inflation.
This can help to constrain a number of cosmological parameters and consequently
to exclude non-viable inflationary models.

A potential obstacle to making a successful detection is that conventional in-
flationary scenarios predict a very small tensor amplitude. Our research focuses
on finding ways to overcome these limitations by considering inflationary scenar-
ios with much richer phenomenology. We especially focus on frameworks that can
produce an enhanced tensor spectrum. In such cases the gravitational wave energy
density can enter within the sensitivity curves of gravitational wave detectors or
leave a measurable imprint in the CMB polarization pattern. Together with my
collaborators we showed that this can be achieved, within the framework of the
Horndeski theory, if there is a short period where slow-roll inflation is violated [8].
Furthermore we analysed the bispectrum and found this can lead to sizeable tensor
non-Gaussianities [9].

In more recent work [7], we considered possible realizations of the effective field
theory (EFT) of scalar-tensor gravity. The upper bound to the energy scale of
inflation, from the Planck collaboration [15], is currently at H . 1013 GeV, so it is
reasonable to wonder whether inflation could be sensitive to high energy physics.

In particular, we looked for a setup up of operators that could lead to the en-
hancement of parity violating effects for tensors. This is challenging to achieve in
the context of single-field inflation as theoretical predictions tend to suffer quanti-
tatively, due to the Chern Simons instability [16], leading to a negligible chirality
enhancement. To re-examine this problem in a more systematic way we introduced
modifications to gravity which enabled us to parametrically approach the scale at
which maximal parity violation occurs. Using the mathematical machinery for ef-
fective field theories we showed that sub-leading quadratic operators can become
important signalling the presence of the Chern Simons instability. This inevitably
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implies the existence of non-trivial cubic interactions which could stand the theory
strongly coupled at energies not far above the energy scale of inflation. Conse-
quently, this can lead to large parity violation in tensor non-Gaussianity. This is
a great insight as we can use this as an opportunity to try and identify what are
the necessary changes in the physical description of the system that will enable us,
in a consistent manner, to maintain sufficient parity violation while ensuring the
stability of the modes. This translates to finding a weakly coupled description of
the system so that we can consistently parametrize the physics as we extrapolate it
to higher energies.

The thesis is organized as follows. In Chapter (1) we introduce the theory of
inflation and briefly explain how it solves some of they key problems within the Big
Bang theory. In Chapter (2) we briefly review the theory of gravitational waves and
their observational consequences in the Cosmic Microwave Background (CMB). In
Chapter (3) we look at effective field theories (EFT) of gravity, from the bottom-up
point of view, as well modifications to gravity that lead to second-order equations of
motion for gravitational waves but change the dispersion relation of the fluctuations,
such as the Horndeski theory. In Chapter (4) we re-examine the problem of parity
violation in single-filed inflation by looking at extensions, from the effective field
theory point of view, of theories with a non-trivial dispersion relation for the gravi-
ton. There we show that the Chern Simons instability is a consequence of the theory
being strongly-coupled. This means that new physics may appear not far above the
energy scale of inflation which could lead to a maximally left-handed gravitational
wave signal at the end of inflation and consequently to large parity violation in ten-
sor non-Gaussianity. In Chapter (5 ) we develop a framework in terms of kinetically
driven single-field inflation where for a short time the scalar field velocity is heavily
time-dependent. During this phase, which we dub as a non-attractor inflationary
phase, the would-be decaying tensor mode grows outside the horizon leading to the
enhancement of tensor fluctuations. Finally in Chapter (6) we investigate primor-
dial tensor non-Gaussianity during the phase of non-attractor evolution. We find
that the amplitude of the tensor bispectrum is enhanced at the squeezed limit with
respect to slow-roll models. Finally, we include several technical Appendices.
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1. The theory of inflation

A successful theory of the early universe could offer scientists a deeper understanding
on the physical processes which take part at energy scales that we cannot attain with
any terrestrial experiment, such as particle accelerators. In the absence of a complete
theory of quantum gravity, we can only reasonably speculate about physics below
the scale of the reduced Planck mass (MPl ∼ 18 GeV). The theory of inflation is the
result of bringing together our best knowledge from particle physics and Einstein’s
theory of General Relativity (GR). This enables us to develop theoretical models that
can predict what happened in the first moments of the Big Bang. We cross reference
these early universe models with data from the Cosmic Microwave Background and
by accounting for their effect on subsequent epochs in the evolution of the universe.

Inflation was introduced in the seminal paper by Guth in 1981 [17] and later on
improved by Starobinsky [18], Linde [19], Albrecht and Steinhardt [20]. It has gained
popularity ever since and grew to become the well established research field which
goes under the specialized tag of inflationary cosmology. Among other successes the
inflationary paradigm offers solutions to some key problems within the Big Bang
theory, namely the flatness problem, the horizon problem and the monopole problem,
by postulating a period, in the early universe, of accelerated expansion of spacetime.
This is how we think that all causally disconnected regions of spacetime came to be
under one common horizon. As well, due to the rapid expansion the universe grew
enough so that the apparent curvature of spacetime, at large scales, appears to be
flat.

The simplest model that describes this process if that of a single scalar field
slowly rolling down its potential till it reaches the bottom where it starts to oscillate,
causing the universe to expand [21]. At the end of this process reheating commences
while the scalar field decays into other particles. Our physical measurements start
when the Universe was 380.000 years old, as indicated in Figure (1.1), at the time of
decoupling where photons were able to escape and reach us as the Cosmic Microwave
Background radiation. These photons appear to arrive on Earth evenly from every
direction forming a uniform sphere around the observer known as the surface of last
scattering. The temperature of the CMB photons in the present epoch is measured
to be T0 ≈ 2.7 K. The CMB temperature contains small temperature fluctuations
known as anisotropies which are thought to be responsible for structure formation
in the universe [22, 23]. Additionally, a small percentage of the CMB radiation
is expected to be weakly polarized due to Thomson scattering of photons by free
electrons. Of particular interest, to this work, are the B-Modes which if they are
detected this will be solid proof of primordial gravitational waves. Next we give a

3



1. THE THEORY OF INFLATION

brief introduction to the theory of General Relativity (GR).

Figure 1.1: The history of the Universe. Image credit: BICEP2 2014 Release Image
Gallery

1.1 Introduction to General Relativity

Below we introduce some of the basic ingredients that we will use throughout
this work. We employ the sign conventions in [24] unless otherwise stated. The
Minkowski metric signature is given by ηµν = diag(−,+,+,+). The metric gµν ,
with inverse gµν , describes the geometric and gravitational properties of spacetime.
Natural units apply throughout the document with c = ~ = G = 1 and the Einstein
summation is omitted, unless is otherwise stated. Covariant differentiation may be
denoted by a semicolon, i.e. ∇µ ≡ ;µ while partial differentiation may be denoted by
a comma, i.e. ∂µ ≡ ,µ.

Covariant derivatives are defined in terms of partial derivatives plus a correction,
which is given in terms of the connection coefficient Γρµσ [25]

∇µV
ν = ∂µV

ν + ΓνµλV
λ. (1.1.1)

The Christoffel symbols of the first-kind are defined as

Γναβ = 1
2
(∂αgνβ + ∂βgαν − ∂νgαβ), (1.1.2)

4



1.1 Introduction to General Relativity

while the Christoffel symbols of the 2nd-kind are obtained by rising the first index

Γµαβ = gµνΓναβ = 1
2
gµν(∂αgνβ + ∂βgαν − ∂νgαβ). (1.1.3)

In terms of the above one can derive a useful formula for the divergence of a vector
[26], given by

∇µV
ν =

1
√
g
∂µ(
√
gV µ). (1.1.4)

The Riemann curvature tensor is defined as

Rα
βγδ = ∂γΓ

α
βδ − ∂δΓαβγ + ΓαµγΓ

µ
βδ − ΓαµδΓ

µ
βγ, (1.1.5)

and has the following useful properties; antisymmetry in the first and second index
and third and fourth index, i.e. Rµνρσ = Rνµρσ = −Rµνσρ. It is symmetric under
exchange of first and second pairs of indices, i.e. Rµνρσ = Rρσµν . Other useful
properties are swapping indices, i.e. Rσ

µνρAσ = RσµνρA
σ and Rρ

ρµν = 0. The Ricci
tensor is obtained by contracting two indices of the Riemann tensor Rµν ≡ Rλ

µλν ,
and it is symmetric under exchange of indices

Rβδ ≡ Rα
βαδ = ∂αΓαβδ − ∂δΓαβα + ΓαµαΓµβδ − ΓαµδΓ

µ
βα. (1.1.6)

From this, the Ricci scalar is obtained by contracting the remaining two indices

R = gβδRβδ = ∂αΓαδδ − ∂δΓαδα + ΓαµαΓµδδ − ΓαµδΓ
µδ
α. (1.1.7)

Some useful identities that involve the Riemann tensor are:

The cyclic identity:

Rµ
[νρσ] = Rµ

νρσ +Rµ
ρσν +Rµ

σνρ = 0. (1.1.8)

The Ricci identity:

(∇µ∇ν −∇ν∇µ)Aρ = Rλ
ρνµAλ. (1.1.9)

The second Bianchi identity:

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0. (1.1.10)

The contracted Bianchi identity:

Rρ
λ .ρ =

1

2
R.λ ⇒ 2Rρ

λ .ρ = R.λ. (1.1.11)

Note, partial derivatives always commute, i.e. ∂σ∂ρgµν = ∂ρ∂σgµν .

5



1. THE THEORY OF INFLATION

1.1.1 Variational approach to General Relativity

The Lagrangian formalism is widely used in the formulation of classical and quantum
field theories. It helps to identify conserved quantities present in the system and
to derive the equations of motion. This is achieved with the use of a variational
principle, by imposing that the action integral of the system has to remain stationary
under any variations of the field variables that the Lagrangian of the theory depends
on.

In this Section we consider an asymptotically flat spacetime, meaning that the
field variables vanish at infinitely large spatial distances. The action is evaluated by
using a boundary that it is assumed to be at a very large radius.

Finally, it is useful to include the following formulae; the Euler-Lagrange equa-
tions for an arbitrary number of derivatives are given by

− ∂L
∂X

+ ∂α

{
∂L

∂(∂αX)

}
− ∂β∂α

{
∂L

∂(∂β∂αX)

}
+ · · · = 0. (1.1.12)

In terms of partial derivatives (∂η, ∂k, ∂m, · · · ), then we have

− ∂L
∂X

+ ∂η

{
∂L

∂(∂ηX)

}
+ ∂k

{
∂L

∂(∂kX)

}
− ∂η∂η

{
∂L

∂( ∂η∂ηX)

}

− ∂k∂m
{

∂L
∂( ∂k∂mX)

}
− ∂η∂k

{
∂L

∂( ∂η∂kX)

}
+ · · ·

+ ∂k∂m∂l

{
∂L

∂( ∂k∂m∂lX)

}
+ · · · − ∂k∂m∂l∂n

{
∂L

∂( ∂k∂m∂l∂nX)

}
+ · · · = 0.

(1.1.13)

1.1.2 The Einstein field equations

In the classical theory of General Relativity, one is interested to find an action
which describes gravity as a manifestation of the curvature of spacetime [27]. This
is achieved with the use of the Einstein-Hilbert action

SEH [gµν ] =
1

16πG

∫
dvxg

µνRµν , (1.1.14)

where G is Newton’s gravitational constant and dvx = d4x
√
|g| is the invariant

volume element in four spacetime dimensions. The Lagrangian scalar density L =√
|g|L =

√
|g|gµνRµν depends on components of the metric tensor and derivatives

of it. The metric is treated as a dynamic field variable defined on a 4-dimensional
manifold M. The Ricci scalar R = gµνRµν is the simplest scalar quantity that one
can derive from the metric tensor.

We can produce the Einstein field equations (EFE) by varying the action with
respect to variations of the metric, demanding that the variation vanishes at the

6



1.1 Introduction to General Relativity

boundaries (δS = 0). The integration is taken to be over a 4-dimensional volume,
where the fixed endpoints are hypersurfaces of constant time t, in which case the
boundary terms are integrals over a spatial region R [25]. Variation of the action
with respect to variations of the metric gµν and minimizing (Appendix A.2) leads
to the Einstein field equations for vacuum [28], which read

δSEH
δgµν

= (16πG)−1Gµν = (16πG)−1(Rµν −
1

2
gµνR) = 0, (1.1.15)

where Gµν = Rµν− 1
2
gµνR is the Einstein tensor, which is symmetric under exchange

of indices Gµν = Gνµ.
The gravitational action SEH in vacuum does not depend on matter fields and

thus the left-hand side (LHS) of the Einstein field equations will be comprised by
geometric terms, while the right-hand side (RHS) is equal to zero. In the presence
of matter fields, one can obtain the non-vacuum Einstein field equations by simply
adding an extra term to the Einstein-Hilbert action

S = SEH + SM . (1.1.16)

The variation of the matter action SM with respect to variations of the metric, reads

δSM =

∫
dnx

δSM
δgµν

δgµν , (1.1.17)

where the energy momentum tensor (EMT) of the fields is defined as

Tµν ≡ −
2√
|g|
δSM
δgµν

, (1.1.18)

where δSM
δgµν(x)

is a functional derivative and the minus sign is due to the mostly

“plus” metric signature convention used here. The stress-tensor is symmetric under
exchange of indices Tµν = Tνµ and covariantly conserved (Appendix A.2)

∇µT
µν = 0. (1.1.19)

This way one recovers the full Einstein field equations (EFE) in the presence of
matter

δS = δSEH + δSM = 0⇒ Gµν = kTµν , (1.1.20)

where k = 8πG. The normalization factor 8π ensures that we can obtain the correct
Newtonian limit. In the case where the matter action is comprised of the kinetic term
of a single scalar field and a potential U(φ) which can contain mass and interaction
terms, we have

S =

∫
dnx
√
|g|L = 1

2

∫
dnx
√
|g|
[
gαβ∂αφ∂βφ+ U(φ)

]
. (1.1.21)

Then using (1.1.18), gives

Tµν = ∂µφ∂νφ− gµνL. (1.1.22)

7



1. THE THEORY OF INFLATION

Therefore, the EFE becomes

Rµν −
1

2
gµνR = (8πG)[∂µφ∂νφ− gµνL]

= (8πG)[∂µφ∂νφ− gµνgαβ∂αφ∂βφ− gµνU(φ)].
(1.1.23)

We can approximate the matter in the Universe at large scales with a perfect fluid
with pressure p, energy density ρ and velocity uµ, where uµ is a time-like vector
(uµu

µ = −1). This way the EMT is expressed as

Tµν = (ρ+ p)uµuν + pgµν . (1.1.24)

In the presence of a cosmological constant Λ, the EFE are given by

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (1.1.25)

Next, we examine the EFE by considering a homogeneous and isotropically expand-
ing background.

1.2 The expanding universe

Our homogeneous and isotopically expanding Universe is well described by the spa-
tially flat Friedmann-Robertson-Walker (FRW) metric [24] given by

ds2 = gµν dxµ dxν = g00 dt2 + gij dxi dxj, (1.2.1)

where

g00 = −1 and gij = a2(t)δij, (1.2.2)

where δij = 1 for i = j and it is zero for i 6= j. The time-dependent coefficient a(t) is
the scale factor, which is taken to increase monotonically, and xi are the commoving
coordinates related to the physical coordinates by the transformation x′i = a(t)xi.
Hence, the physical distance between commoving points is proportional to the cos-
mological factor a(t), i.e. as time evolves the distance between commoving points
gets larger and larger resulting to an expanding universe. Introducing conformal
time

dτ =
dt

a(t)
, (1.2.3)

the metric becomes

g00 = −a2(t) and gij = a2(t)δij. (1.2.4)

In this way, the metric is factorized into the Minkowski metric times the time-
dependent conformal factor a(τ). Rescaling by x′i = a(t)xi reduces (1.2.4) back into
the Minkowski one. Although the distance between comoving points is changing,
their coordinates remain the same.
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1.2 The expanding universe

Furthermore, in an expanding universe (assuming no other external forces apart
of gravity) the momenta of particles are inversely proportional to the scale factor [29].
For massless particles that is E = kph ∝ a−1. In other words, the momenta k and
energy E of free particles and fields decrease as the spacetime fabric expands, while
their wavelength λph ∝ a increases in proportion to the scale factor. We say that
the proper wavelength of a photon emitted at some initial time tin and observed at
time t0 is redshifted where the redshift z is defined as

(1 + z) =
λ0

λin
=

a(t0)

a(tin)
. (1.2.5)

It is convenient to work with the FRW metric in spherical polar coordinates, given
by

g00 = −1, grr =
a2(t)

1−Kr2
, gθθ = a2(t)r2 and gφφ = a2(t) sin2 θr2. (1.2.6)

where K describes the curvature of the universe, which is positive if K = 1, negative
if K = −1 or zero if K = 0. The radial distance, from an event stationed at the
centre of a sphere, is given by r.

The Friedmann equations (Appendix A.4) describe the dynamic evolution of the
scale factor. The first Friedmann equation is given by

H2 =
8πG

3

(
ρ+

Λ

8πG

)
− K
a2
, (1.2.7)

and the second Friedmann equation is given by

ä

a
= −4πG

(
p+

ρ

3

)
+

Λ

3
, (1.2.8)

where

H(t) =
ȧ(t)

a(t)
=
H(τ)

a(τ)
, (1.2.9)

is the Hubble parameter and for positive values H > 0 describes an expanding
universe. The evolution of the energy density ρ(t) is given by the fluid equation
which can be easily derived by employing the first law of thermodynamics [30],
giving

ρ̇+ 3
ȧ

a

(
ρ+

p

ρ

)
= 0. (1.2.10)

We can find a relation for the scale factor at a particular epoch by solving the
above equations for a known matter density ρ and pressure p [31]. Therefore, for a
radiation dominated universe we have

9



1. THE THEORY OF INFLATION

ρR ∝ a−4, with a ∝ t
1
2 ∝ τ, (1.2.11)

and for a matter dominated universe

ρm ∝ a−3, with a ∝ t
2
3 ∝ τ 2. (1.2.12)

From this we conclude that the energy density of radiation (i.e. relativistic parti-
cles) decreases much faster, as the volume of the universe expands, due to that its
wavelength is redshifted. While the energy density of matter goes as inversely pro-
portional to the volume (i.e. ρm ∝ a−3 = V −1). The critical density ρc is the density
required for the geometry of our present universe to be flat and can be computed
from (1.2.7) by setting K = 0 and Λ = 0, giving

ρcrit(t) =
3

8πG
H2(t), (1.2.13)

with the current value being ρc(t0) ∼ 10−29 g/cm3 (this is about 6 hydrogen atoms
per cubic meter) [32]. We can re-express (1.2.7) in terms of the density parameter,
defined as the ratio of the density of matter and energy to the critical density

Ω =
ρ(t)

ρcrit(t)
=

8πGρ

3H2
, (1.2.14)

which describes the density of matter and energy in the universe at any time. From
this we get

Ω− 1 =
K

a2(t)H2(t)
, (1.2.15)

where we divided everything by H2 and absorbed the cosmological constant into the
definition for Ω. Using (1.2.11) and (1.2.12 ), to calculate the value of the scale factor
at different epochs, we can see that in the standard Big Bang model the quantity on
the RHS of (1.2.15) always increases with time, i.e. we find that Ω− 1 ∼ t

2
3 during

radiation era and Ω − 1 ∼ t during matter era. Therefore, the value of Ω would
have been much larger than unity in the early universe (i.e. Ω ∼ 10−60) [30]. This
is the so called flatness problem, in the standard model of cosmology, as it requires
extremely fine tuned initial conditions in order to recover the observed value of the
spatial curvature of the universe, which is flat (Ωk = 0.001 ± 0.002) [33]. With
inflation the initial value of Ω does not play any significant role anymore. The
scale factor increases for such an enormous amount (say 1027 or a lot more) that
any curvature in the geometry of spacetime becomes approximately flat at the end
of inflation. This is easy to see, as the denominator in the RHS of (1.2.15) will
quickly attain a value (aH)2 � 1 therefore, Ω − 1 ∼ 0 and we can safely consider
the universe to be flat with K = 0 at the time of decoupling and to, consequently,
remain this way till the present day.

Next, we look at the horizon problem. The value of H−1 defines the horizon
size at each epoch1, that is, the maximum distance at which an observer, stationed

1With our conventions t ∼ H−1 is the Hubble time and d ∼ H−1 is the Hubble length.
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1.2 The expanding universe

at the centre of a sphere with radius r, would be able to receive light signals from.
As light signals travel in null geodesics2, then the line element in (1.2.1) becomes
ds2 = 0 = − dt2 + a2(t) dr2. Integrating the quantity dta(t)−1, over a finite time
interval, gives the comoving distance travelled by the signal, which reads∫

dr = τ =

∫ t

0

dt′

a(t′)
. (1.2.16)

Assuming the early universe was matter and radiation dominated, we can use rela-
tions (1.2.11) and (1.2.12) to estimate the size of patches in the sky in which physics
would have been in causal contact some time in the past. Extrapolating this to the
present time τ0 one finds that physics would be correlated only for points on the
CMB sky that are 1◦ apart [34]. This does not explain why we see a homogeneous
temperature in the CMB for points that are, for example, 180◦ apart in the sky.
This is known as the horizon problem. Next, we look at how inflation solves this
problem.

As the Friedmann equations have three unknowns a(t), p(t) and ρ(t), we need
one more relation to help us relate these parameters. Assuming a homogeneous and
isotropic mass-energy distribution, the material content of our system is character-
ized by a constant equation of state

p = ωρ, (1.2.17)

where ω is a dimensionless number. We can write the acceleration equation in
(1.2.8), as

ä

a
= −(1 + 3ω)

(
4πG

3
ρ

)
. (1.2.18)

For positive acceleration ä > 0 it requires that 1+3ω < 0, meaning that the equation
of state is characterized by negative pressure p < 0. Therefore, ω < −1/3 denotes a
universe with accelerated expansion [35].

Let us look at the case where matter is taken to be negligible (ρm ' pm ' 0).
The Friedmann equation in (1.2.7) reduces to

H2 =
8πG

3
ρΛ, (1.2.19)

which results to the scale factor growing exponentially with time a(t) ∝ eHt. This
is known as the de Sitter spacetime which will be the focus of this work. Using
relationship (1.2.3 ) for the conformal time we find that the definition of the scale
factor in de Sitter space is

τ = − 1

aH
. (1.2.20)

The usual convention is that the conformal time is negative during the inflationary
period, where τ → 0 denotes the end of the inflationary period, while τ → ∞
denotes the infinite past.

2In this case two points are linked by a radial path and dθ = 0,dφ = 0.
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1. THE THEORY OF INFLATION

In the theory of inflation we postulate a period of rapid expansion of space time
where the scale factor grew by a factor of e per Hubble time which is denoted by an e-
folding [31]. This remedies the so called horizon problem, as during inflation physical
scales grow proportionally with the scale factor λph ∼ a ∼ exp(Ht). Therefore, at
some point in the far past they must have been within the horizon λph < H−1

and in causal contact. After that the universe must had gone through a period of
rapid expansion where the length scales λ grew faster than the horizon scale. This
way regions of spacetime that would seem to be causally disconnected in the Big
Bang model of cosmology, can come into causal contact and therefore into thermal
equilibrium, in agreement with predictions. Next we take a closer look at the theory
of inflation.

1.3 Inflation from a single scalar field

In slow-roll inflation we assume that, in the first moments after the Big Bang, a
scalar field dominated the energy content of the universe. The potential is taken to
be almost flat so that the scalar field evolves slowly and that its behaviour effectively
resembles that of a cosmological constant as seen in Figure (1.2)

Figure 1.2: Inflaton rolling down its potential [1]. The amount of inflation is con-
trolled by the “flatness” of the potential. The excursion of the field between horizon
exit and the end of inflation is denoted by ∆φ.

Slow-roll inflation ends when the scalar fields reaches the bottom of the poten-
tial, which is where the scalar field starts to oscillate around its minimum and it
consequently decays into standard model particles. This process is called reheat-
ing. The process described so far is model-dependent and it heavily depends on the
shape of the potential. In Figure (1.3) we see the latest constraints from the Planck
Collaboration on a selection of inflaton potentials.
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1.3 Inflation from a single scalar field

Figure 1.3: A comparison to theoretical predictions for inflationary models with data
from Planck alone and in combination with BK14 or BK14 plus BAO data, for r
and ns at the pivot scale k = 0.002/Mpc−1 [2].

There are many models that can lead to inflation. Here we consider the case
where the dynamics of inflation are governed by a single scalar field φ, known as the
inflaton. In this case the action is given by (1.1.21), where the scalar field is taken
to be minimally coupled to the metric via the canonical kinetic term.

More general models can involve non-minimal couplings between the scalar field
φ and the curvature R, generalizations of the gravitational sector by including func-
tions of the form f(R) [18] or non-canonical kinetic terms [36]. In this work we focus
on the latter. In particular, in this work we are interested to study the dynamics of
the tensor sector therefore, we do not review inflationary models. For a pedagogical
introduction to inflationary models see [21, 37].

Let us start by considering the Lagrangian for a single scalar field with canonical
kinetic term and a potential defined as in (1.1.21). We assume an isotropic and
homogeneous FRW cosmology with line element

ds2 = − dt2 + a2(t) dx2 . (1.3.1)

For a homogeneous scalar field φ = φ(t) in FRW spacetime (
√
−g = a3), the Euler-

Lagrange equations (1.1.12) give (Appendix A.5)

φ̈+ 3Hφ̇+
∂U(φ)

∂φ
= 0, (1.3.2)

where an overdot indicates a derivative with respect to time t and the Hubble
parameter is defined by H = ȧ/a. For now, φ is taken to be a classical scalar
field. We will look at quantum fluctuations later in this section.
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1. THE THEORY OF INFLATION

The second term in (1.3.2) is understood as a friction term which damps the ve-
locity of the field due to the expansion of the universe. Furthermore, the Friedmann
equations become

H2 =
8πG

3

[
1

2
φ̇2 + U(φ)

]
. (1.3.3)

The EMT in (1.1.22) for an perfect fluid becomes

ρ =
1

2
φ̇2 + U(φ),

p =
1

2
φ̇2 − U(φ).

(1.3.4)

From this, the equation of state for a homogeneous scalar field becomes

ω =
p

ρ
=

1
2
φ̇2 − U(φ)

1
2
φ̇2 + U(φ)

, (1.3.5)

and we find that the de Sitter condition p = −ρ is satisfied for as long as the kinetic
energy is negligible compare to the potential energy φ̇2 � U(φ). From this we
see that the potential energy dominates and acts like a cosmological constant, i.e.
ω → −1, which leads to the accelerated expansion of the Universe. With these
considerations, the Friedmann equations (1.3.3) reduce to

H2 =
8πG

3
U(φ). (1.3.6)

To ensure that this constraint is satisfied we also demand that φ̈� ∂U/∂φ. Assum-
ing that the friction term dominates we have that (1.3.2) becomes

3Hφ̇+
∂U(φ)

∂φ
= 0⇒ φ̇ = − 1

3H

∂U(φ)

∂φ
. (1.3.7)

Equations (1.3.6) and (1.3.7) are known as the slow-roll approximations. Next, it is
useful to introduce the slow-roll parameters ε and η. From the second Friedmann
equation we find that for the potential to be sufficiently flat, it requires

ε = − Ḣ

H2
� 1 and η = − φ̈

Hφ̇
= −1

2

Ḧ

ḢH
� 1. (1.3.8)

The parameter ε is used to describe how much the Hubble parameter differs from a
constant. The condition for inflation demands that this parameter is very small so
that the condition for accelerated expansion ä� 0 is satisfied. The parameter η is
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1.3 Inflation from a single scalar field

just the requirement that φ̈� ∂U/∂φ. The parameter ε can be expressed in terms of
the number of e-folds, which is a way of measuring how the scale factor increases. In
this way we can measure the amount of inflation. We can do that by making use of
that the Hubble parameter can be expressed as Ht = ln a⇒ dN = d ln a = −H dt,
where we adopt this sign convention so that as the scale factor increases N decreases,
i.e. a ∝ exp

∫
(H dt) = exp(−N). Assuming Ω − 1 ∼ 10−60, inflation can ensure

Ω0 ∼ 1 if N ∼ 70 e-folds [38]. For ε→ 0 we find the de Sitter limit p = −ρ. In the
main text of this work we focus on de Sitter space with H = const.

The inhomogeneities we observe today, in the matter content of the Universe, are
thought to have started as quantum fluctuations that were, consequently, stretched
by inflation and became classical. These are expressed as perturbations around the
inflationary background. The scalar and metric fields can be expanded as

φ(t,x) = φ̄(t) + δφ(t,x) and gµν(t,x) = ḡµν + hµν(t,x). (1.3.9)

These fluctuations are treated as small variations away from the homogeneous and
isotropic background. Therefore at the level of the fluctuations the universe is not
necessarily homogeneous and/or isotropic which means that the geometry where the
fluctuations live is different than that of the background. Consequently, in order to
study these fluctuations we need to choose a specific spacetime gauge i.e. a map
that links points between the two geometries.

The usual procedure is to first foliate spacetime into slices of spacelike surfaces
of constant time t and thread it in terms of timelike worldlines of constant x. In the
case of FRW spacetime, comoving observers see a uniform energy density (i.e. ρ(t) =
const). A change of coordinates can introduce gauge artefacts, i.e. inhomogeneities
in spacetime that are not real but a result of changing coordinates. For this reason
it is important to define gauge-invariant quantities.

The metric can be decomposed, according to its symmetries, into Scalar, Vector
and Tensor components via the SVT decomposition [39]. At linear order these
are known to decouple and can be treated separately. In terms of these we can
define the gauge-invariant quantity known as the comoving curvature perturbation
R. Assuming an ADM decomposition of spacetime [93], i.e. where the spacetime is
sliced into three-dimensional hypersurfaces of constant time t, we can geometrically
relate the comoving curvature perturbations R to the spatial curvature by R(3) =
4∇2R/a2.

During a time of quasi-de Sitter expansion, time-diffeomorphisms are broken
due to the homogeneous but time-dependent background. It is typical to treat
the perturbations in a similar manner and consider dynamics that break time-
diffeomorphism invariance but preserve spatial diffeomorphisms, i.e. under time-
diffeomorphism the scalar field fluctuations transform as

δφ→ δφ− φ̇ξ0 (1.3.10)

It is convenient to work in the comoving gauge, which is defined as [40]
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1. THE THEORY OF INFLATION

δφ = 0, gij = a2[(1− 2R)δij + hij], (1.3.11)

where the tensors hij are the transverse traceless perturbations of the metric, which
we will review later, and R is the comoving curvature perturbation. This is a useful
quantity because it stays constant for modes that cross the horizon, which means
that we can compute correlations at horizon crossing, as we shall soon see. In this
way all dynamical degrees of freedom are contained in the metric, i.e. we treat the
scalar field as unperturbed. This makes it explicit that in this scenario inflation is
driven by a single scalar field (the scalar degree of freedom contained in the metric)
and we can use its background value as a clock for inflation.

Through this procedure, the quadratic action for the curvature perturbations
becomes (MPl = 1)

S
(2)
R =

1

2

∫
d4xa3 φ̇

2

H2

[
(Ṙ)2 − (∇R)2

a2

]
. (1.3.12)

This can be brought into the canonical form by defining the canonically normalized
scalar field v = zR, giving

S
(2)
R =

1

2

∫
dη d3x

[
(v′)2 + (∇v)2 +

z′′

z
v2

]
, (1.3.13)

where prime denotes derivatives with respect to the conformal time η and the po-
tential is given in terms of

z = a
φ̇

H
. (1.3.14)

In Fourier space we define

v(x, η) =
1

(2π)3

∫
d3kv(k, η)eik·x, (1.3.15)

from which we get the Euler-Lagrange equations in Fourier space, to be

v(k, η)′′ +

(
k2 − z′′

z

)
v(k, η) = 0. (1.3.16)

The quantization of the field proceeds as in the standard case for scalar fields in
curved spacetime [41]. The field v and its conjugate momentum

π =
∂L

∂(∂0v)
= ∂ηv, (1.3.17)
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1.3 Inflation from a single scalar field

are promoted into quantum operators. Next we expand it in terms of positive and
negative frequency modes, as

v(x, η) =
1

(2π)3

∫
d3k
[
v(k, η)â(k)eik·x + v∗(k, η)â†(k)e−ik·x

]
, (1.3.18)

where the raising and lowering operators obey the following commutation relations

[â(k), â†(k′)] = (2π)3δ(k− k′), (1.3.19)

and where a |0〉 annihilates the Bunch-Davies vacuum3. Here, the normalization of
the mode functions is expressed in terms of the the Wroskian, which is the conserved
quantity

W (u(k, η), u∗(k, η)) = u∗(k, η)∂ηu(k, η)− u(k, η)∂ηu
∗(k, η) = i. (1.3.20)

The derivation of the above involves taking the sub-horizon limit |kη| � 1 in (1.3.16),
giving the equation of a simple harmonic oscillator

v(k, η)′′ + k2v(k, η) = 0. (1.3.21)

We fix the initial condition by choosing the positive frequency mode

lim
|kη|→∞

v(k, η) =
1√
2k
e−ikη, (1.3.22)

which translates to that the fluctuations deep within the horizon live in the Bunch-
Davies vacuum which defines the minimum energy state.

To derive (1.3.20) we need to multiply (1.3.21) by u∗ as well multiply the conju-
gate of (1.3.21) by u and subtract the second from the first, giving u∗u′′− uu∗′′ = 0.
Then, using the product rule gives ∂η(u

∗u′−uu∗′) = 0 implying that the term inside
the brackets, which we identify with the Wroskian, must be a constant. To find
its value one simply needs to substitute in terms of the expressions for the mode
functions v and v∗ which are expressed in terms of plane wave solutions, giving the
result in (1.3.20).

Assuming a de Sitter spacetime (H = const), one can find an exact solution to
(1.3.16), given by

u(k, η) =
1√
2k

[
b1

(
1− i

kη

)
e−ikη + b2

(
1 +

i

kη

)
eikη
]
. (1.3.23)

3For |kη| → ∞ this coincides with the Minkowski vacuum.
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1. THE THEORY OF INFLATION

We can use the conditions (1.3.20) and (1.3.22) to fix the coefficients b1 = 1 and
b2 = 0, which leads to the unique solution

u(k, η) =
1√
2k

(
1− i

kη

)
e−ikη. (1.3.24)

The scalar curvature power spectrum is defined in terms of

〈R(k, η)R(q, η)〉 = (2π)3δ(3)(k + q)PR(k), (1.3.25)

where PR is the dimensionless power spectrum, given by

PR(k) ≡ k3

2π2

|u(k, η)|2

|z(k, η)|2
, (1.3.26)

where z = a in de Sitter. Taking the superhorizon limit of the solutions, i.e.
lim|kη|→0 u(k, η), we find

PR(k) =
H2

(2π)2

H2

φ̇2
, (1.3.27)

which is evaluated at horizon crossing aH = k. So far, data suggests that the density
perturbations from inflation at large scales are highly adiabatic [2]. We view adia-
batic fluctuations from inflation as shifts along the trajectory of the homogeneous
background field in the forward and backward direction. Shifts in other directions
would result to non-adiabatic density perturbations. In terms of the radiation and
matter content in the Universe, we find δ(nm/nr) ' 0, meaning that all density
perturbations are a result of the same curvature perturbation R and not the result
of any other type of perturbations, such as isocurvature modes which are orthog-
onal to the background trajectory and are usually present in multi-field models of
inflation [35].
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2. Introduction to primordial grav-
itational waves

We have seen that although the CMB is mostly homogeneous, it still contains inho-
mogeneities of the form δρ/ρ ∼ 10−5. We believe these to be the seeds that grew to
form their own self-gravitating systems which led to the structure formation we see
in the Universe today.

In this section we are interested to understand where these inhomogeneities may
have come from. We believe them to be quantum fluctuations of the inflaton field
which, during inflation, grew exponentially and exited the horizon, which is where
their amplitudes freeze, to then re-enter the horizon once inflation ended and the
Hubble radius started to grow. Through the Einstein equations we find that metric
perturbations, during inflation, were also stretched to cosmological scales. This
can be understood as perturbations in the scalar sector δφ imply perturbations in
the energy momentum tensor δTµν which, through the EFE, imply perturbations
in the metric δgµν . Consequently the metric perturbations induce a back-reaction
on the scalar field perturbations due to that the later are minimally coupled to
gravity. Therefore, we study the evolution of perturbations around a homogeneous
and isotropic FRW background

φ(t,x) = φ̄(t) + φ(1)(t,x) and gµν(t,x) = ḡµν(t) + g(1)
µν (t,x), (2.0.1)

where the line element for a perturbed metric is given by

ds2 =
[
ḡµν(t) + g(1)

µν (t,x)
]

dxµ dxν . (2.0.2)

Here, φ̄ is a background scalar field and φ(1) is a small fluctuation of the scalar
field (φ(1) � φ̄). The background metric is denoted by ḡµν , while g

(1)
µν describe

the linear perturbations of the metric (g
(1)
µν � ḡµν). The metric perturbations can

be decomposed into scalar, vector and tensor perturbations known as the (STV)
decomposition, which is how they are categorized according to their symmetries in
the 3+1 decomposition of space time i.e. how they transform under rotations on the
three-dimensional spatial hypersurface. Scalar perturbations have spin 0 and lead
to inhomogeneities responsible for structure formation, vector perturbations have
spin 1 and are known to decay as 1/a(t) during inflation, while tensor perturbations
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have spin 2 and give rise to primordial gravitational waves. At linear order the
scalar, vector and tensor perturbations are known to decouple, so it is customary to
consider their evolution independently from one another [40]. In this work we are
interested on tensor degrees of freedom therefore, we won’t spend much time in the
analysis of scalar degrees of freedom. In particular, in this work we are interested on
primordial gravitational waves (tensor perturbations) which are ripples in space and
time that were generated during inflation. We review the subject of gravitational
waves next.

2.1 Linearised gravity

Gravitational waves are understood as deformations on the background spacetime.
In linearised gravity, one considers perturbations around a flat metric (a(t) = 1), of
the form

gµν = ηµν + hµν , |hµν | � 1. (2.1.1)

We use the background metric ηµν = diag(−1, 1, 1, 1) to rise and lower indices of the
metric perturbations hµν . The symmetric tensor hµν is a solution to the linearised
Einstein field equations and it is treated as a plane wave where the direction of
propagation is taken to be the longitudinal one, usually the z-direction, while the
directions perpendicular to it are called transverse. We can obtain the linearised
Einstein equations by substituting for (2.1.1) in

G(1)
µν = R(1)

µν −
1

2
R(1)ηµν = 8πGTµν . (2.1.2)

Using relations (1.1.3), (1.1.6) and (1.1.7), it is straightforward to show that

R(1)
µν =

1

2

(
−�hµν + ∂α∂νh

α
µ + ∂µ∂αh

α
ν − ∂µ∂νh

)
, (2.1.3)

and

R(1) = ∂µ∂νh
µν −�h, (2.1.4)

where h = hµµ and � = ∂µ∂
µ = −∂2

t +∇2. Under a coordinate (gauge) transforma-
tion, of the form

x′µ = xµ + ξµ(x), (2.1.5)

where ξµ(x) are treated as four arbitrary functions, the metric perturbation trans-
forms as
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2.1 Linearised gravity

h′µν → hµν − ∂µξν − ∂νξµ, |∂µξν(x)| � 1. (2.1.6)

To simplify the EFE we impose the Lorentz gauge condition

∂µh̄µν = 0, (2.1.7)

where we defined the trace reversed perturbation

h̄µν = hµν −
h

2
ηµν , h̄ = −h. (2.1.8)

This transforms as

h̄′µν → hµν − ∂µξν − ∂νξµ + ηµν∂ρξ
ρ, (∂ν h̄µν)

′ = ∂ν h̄µν −�ξµ. (2.1.9)

From the above we see that the Lorentz gauge holds if

∂ν h̄µν = �ξµ = 0. (2.1.10)

This can be used to simplify the expressions for (2.1.3) and (2.1.4), so that (2.1.2)
becomes

�h̄µν = −16πGTµν , (2.1.11)

where ∂νTµν = 0. The condition in (2.1.7) reduces the number of independent
components of the symmetric tensor hµν to six. Away from the source, we have that
Tµν = 0, so that this equation simplifies even further to

�h̄µν = 0. (2.1.12)

These are the EFE in vacuum, where metric perturbations are taken to propagate
with the speed of light (c = 1) and have plane wave solutions. Next we remove
another four degrees of freedom by using the so called transverse-traceless gauge
(TT). Looking at (2.1.7), we are still allowed a transformation of the form (2.1.5)
with (2.1.10) and thefore, �ξµν = 0. We can use the residual gauge freedom in
(2.1.10) to choose the arbitrary functions ξµ so that h̄ = 0, h̄µν = hµν and all four
components h0µ = 0. This way the TT gauge reads

h0µ = hii = ∂jhij = 0. (2.1.13)
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2. INTRODUCTION TO PRIMORDIAL GRAVITATIONAL WAVES

This condition only holds away from the source. From this we see that metric
fluctuations are purely spatial and transverse with respect to the direction of propa-
gation of the gravitational wave as well trace free. The general solutions to equation
(2.1.12) are plane waves

hµν(t, x) = Pµνe
ikαxα + P ∗µνe

−ikαxα , (2.1.14)

where the amplitude and phase of the gravitational waves is described by the po-
larization tensor Pµν and kα = (ω,k) is a wavevector. Substituting the solution
(2.1.14) into the wave equation in (2.1.12), we find that k2 = kµk

µ = −ω2 + k2 = 0
is a null vector, where the frequency of the wave is given by ω = |k|. Therefore,
gravitational waves, in the standard theory of General Relativity, propagate with
the speed of light (c = 1). For a given direction of propagation n = k/|k| the non-
trivial components of the symmetric and traceless tensor hij will be on the transverse
directions to n. Then, the amplitude for a gravitational wave travelling along the
z-direction can be written as a linear combination of the two polarization tensors

Pij =
(
h+p+

ij + h×p×ij
)
, (2.1.15)

where pij are the two linear polarization tensors and are defined as

p+
ij =

0 1 0 0
0 0 −1 0
0 0 0 0

 , p×ij =

0 0 1 0
0 1 0 0
0 0 0 0

 . (2.1.16)

The plus and cross polarizations are at 45◦ to each other. If we consider a par-
ticle at rest with uµ = (ut, 0, 0, 0), the geodesic equation vanishes (Γαµν = 0) which
translates to that the particle is at free fall along the geodesic. In this sense, the
coordinates are comoving with the particle. We can envision the passing of a gravi-
tational wave as a deformation on a ring of free falling particles. The displacement
∆s2 can be calculated by perturbing the line element and using (2.1.14). In Figure
(2.1) we visualize gravitational waves by looking at the motion of a ring of test
particles. We see that as gravitational waves are transverse, they distort spacetime
perpendicularly to their direction of propagation.

2.2 Tensor polarizations

Let the unit vectors e(1) and e(2) be orthogonal to each other and to the vector k = ki.
To describe metric perturbations in a more general way that doesn’t rely on choosing
a particular set of basis vectors, we construct the matrices psij(k), with s = ×,+,

from components of the unit vectors e
(1)
i = (e

(1)
1 , e

(1)
2 , e

(1)
3 ), and e

(2)
i = (e

(2)
1 , e

(2)
2 , e

(2)
3 ).

The plus and cross polarization tensors can then be expressed as
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2.2 Tensor polarizations

Figure 2.1: Distortion of a ring of particles by a gravitational wave travelling per-
pendicularly to the plane of the page. The image depicts the two polarizations of
gravitational waves: plus (top) and cross (bottom). Image Credit: Wm. Robert
Johnston, UT Dallas.

p+
ij(k) = e

(1)
i e

(1)
j − e

(2)
i e

(2)
j and p×ij(k) = e

(1)
i e

(2)
j + e

(2)
i e

(1)
j . (2.2.1)

For example, one can reproduce the polarization matrices in (2.1.16) for e
(1)
i =

(1, 0, 0) and e
(2)
i = (0, 1, 0). Similarly, we can define the basis vectors in polar

coordinates, as e
(1)
i = (sinφ,− cosφ, 0) and e

(2)
i = (cos θ cosφ, cos θ sinφ,− sin θ)

for θ < π/2, where n̂ = k/|k| = (sin θ cosφ, sin θ sinφ, cos θ). Finally, under the

transformation k → −k we have e
(1)
i → −e

(1)
i and e

(2)
i → −e

(2)
i , i.e. (θ, φ) →

(π − θ, φ+ π). Using (2.2.1) the polarization tensors are normalized as

psij(k)ps
′

ij(k) = 2δss
′
, psij(k)psij(k) = 2, (2.2.2)

where we also have that psij(k) = psij(−k). The plus and cross polarizations are
orthogonal to the momenta (transversality/orthogonality condition) and traceless

psijkj = 0 and pisi = 0. (2.2.3)

Also, using the above properties and that the perturbations are real h∗ij = hij, we
have that hs∗ij (k) = hsij(−k). Next, we can use a circular polarization basis to define
the left and right polarizations as

pRij ≡
1√
2

(p+
ij + ip×ij) and pLij ≡

1√
2

(p+
ij − ip×ij) = (pRij)

∗, (2.2.4)
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where p+
ij, p

×
ij are the two linear polarization tensors and pRij, p

L
ij are polarizations

that rotate in the right and left handed directions, respectively. The TT-conditions
also hold for (2.2.4).

The vectors k̂ = k/|k|, e(1)
i and e

(2)
j are not unique. Any two vectors that satisfy

the orthogonality conditions can be used to define the polarization tensors. These
can be obtained by rotating through an angle θ about the unit vector k̂, i.e. ps′ij =
e±2iθpsij(k), with (s = L,R). This corresponds to a symmetry in terms of a rotation
by 180◦, in terms of which we define the helicity of the gravitational waves to be
h = ±2 for the right and left circular polarizations, respectively. From this we can
see that the axes of linear polarization are inclined by 90◦/h = 45◦. In standard
Einstein gravity the amplitude of the left and right states are the same. But, as we
will see later, this is not true when we allow parity violating corrections to Einstein’s
gravity.

2.3 Primordial gravitational waves

In this section we depart from the linearised theory by treating gravitational waves as
perturbations over a slowly varying curved spacetime. Let us consider the quadratic
action for canonical Einstein gravity in (1.1.14). Perturbing the metric around an
FRW background gives (Appendix A.6)

S
(2)
GR =

M2
Pl

8

∫
dη d3xa2

[
(hij)

′(hij)′ − ∂khij∂khij
]
, (2.3.1)

where η denotes the conformal time and we omit summation over the polarizations.
We define the Fourier transform for tensor perturbations as

hij(x, η) =
1

(2π)
3
2

∫
d3k

∑
s

hs(k, η)psij(k)eik·x. (2.3.2)

Substituting for (2.3.2) into (2.3.1), and expressing our result in terms of the canon-
ically normalized mode functions1

µs =
MPl

2
ahs, (2.3.3)

we find

S
(2)
GR =

1

2

∑
s

∫
dη d3k

[
(µ′s)

2 −
(
k2 − a′′

a

)
µ2
s

]
. (2.3.4)

This is the action for a harmonic oscillator with a time-dependent frequency ω2(k, η) ≡
k2 − a′′/a. Therefore, we can proceed to quantize the modes as we would do in the

1Here we use the conventions in [37].
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2.3 Primordial gravitational waves

case of a scalar field. We choose to work with the tensor perturbations hij(x, η)
which can be decomposed into positive and negative frequency modes (i.e. the fields
are expanded as sums of creation and annihilation operators as in [42])

hij(x, η) = h+
ij(x, η) + h−ij(x, η)

=
1

(2π)
3
2

∫
d3k
[
hs(k, η)psij(k)âs(k)eik·x + hs∗(k, η)ps∗ij (k)â†s(k)e−ik·x

]
=

1

(2π)
3
2

∫
d3k
[
hs(k, η)psij(k)âs(k) + hs∗(−k, η)ps∗ij (−k)â†s(−k)

]
eik·x,

(2.3.5)

where the sum over s has been omitted. To make this more explicit, we can write
the above expression in terms of left and right helicity modes as

hij(x, η) =
1

(2π)
3
2

∫
d3k
{[
hR(k, η)pij(k)âR(k) + hL(k, η)p∗ij(k)âL(k)

]
eik·x

+
[
h∗R(k, η)p∗ij(k)â†R(k) + h∗L(k, η)pij(k)â†L(k)

]
e−ik·x

}
,

(2.3.6)

where, if we recall from (2.2.4), pLij = (pRij)
∗. As we saw earlier, gravitational in-

teractions are described by a massless spin-2 particle known as the graviton. The
quantization of the gravitational field proceeds the same as in the case of scalar
fields. The raising and lowering operators obey the following commutator

[âs(k), â†s′(−q)] = (2π)3δss′δ(k + q), [âs(k), âs′(−q)] = 0, (2.3.7)

with the normalization condition

h∗(k, η)∂ηh(k, η)− h(k, η)h∗(k, η)∂ηh(k, η) = − 2i

MPla2(η)
, (2.3.8)

where âs(k) |0〉 = 0 annihilates the initial free vacuum state which is usually called
the Bunch-Davies vacuum state and it is defined as the one that is annihilated by
the positive mode

h+
ij |0〉 = 0 and 〈0|h−ij = 0. (2.3.9)

The inverse Fourier transform can be read off directly from (2.3.5), as

hij(k, η) = h+
ij(k, η) + h−ij(k, η)

=
[
h(k, η)psij(k)âs(k) + h∗(−k, η)ps∗ij (−k)â†s(−k)

]
.

(2.3.10)

The two-point function is then defined to be
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2. INTRODUCTION TO PRIMORDIAL GRAVITATIONAL WAVES

〈hij(k, η)hlm(−q, η)〉 = Pij,lm(k)(2π)3δ(k + q), (2.3.11)

where we have adopted the notation in [42,43]

Pij,lm(k) = |h(k, η)|2Πij,lm(k), with Πij,lm(k) = psij(k)ps∗ij (k). (2.3.12)

Finally, the dimensionless tensor power spectrum is given by

Ph(k) =
k3

2π2
Pij,ij. (2.3.13)

To evaluate the two-point function we need to know the form of the solutions. The
equations of motion for the action in (2.3.1), are given by

h′′(k, η) + 2
a′

a
h′(k, η) + k2h(k, η) = 0, (2.3.14)

where k = k = 2πa/λ = af are the comoving momenta and f is the frequency of
the gravitational wave. In terms of the canonically normalized field µ(k, η), we have

µ′′(k, η) +

(
k2 − a′′(η)

a(η)

)
µ(k, η) = 0. (2.3.15)

This way one can rewrite (2.3.14) as the equation of a harmonic oscillator with a
negative time-dependent mass term m2(η) = −a′′/a = −a2(2H2 + Ḣ). From this
we see that m ∝ aH where (aH)−1 is the comoving horizon (i.e. the size of the
observable Universe). As this equation cannot be always solved analytically, this
enalbes us to split the problem into two regimes, as follows. At subhorizon scales
k2 � a′′/a ⇒ k � aH the wavelength of the modes is well within the horizon
λ = a/k � H−1 therefore, we can neglect the friction term in (2.3.14). This gives
just the equation for a harmonic oscillator, which admits plain wave solutions known
as the Bunch-Davies vacuum solution (here we take the positive frequency mode),
where gravitons propagate with a speed c = 1, given by

lim
|kη|→∞

µs(k, η) = −e
−ikη
√

2k
. (2.3.16)

In this limit, spacetime is taken to be approximately flat. We say the wavelength
of the fluctuations is too small so they do not “feel” the curvature of spacetime. At
superhorizon scales k2 � a′′/a ⇒ k � aH the wavelength of the modes is outside
the horizon λ = a/k � H−1 therefore, the negative time-dependent mass in (2.3.15)
dominates. At this limit the solution is a linear combination of a growing and a
decaying mode
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2.3 Primordial gravitational waves

µ(k, η) = c1a(η) + c2a(η)

∫
dη a−2(η). (2.3.17)

In de Sitter space (a′′/a = 2/η2), equation (2.3.15) has the exact solution

µ(k, η) = β1
e−ikη√

2k

(
1− i

kη

)
+ β2

eikη√
2k

(
1 +

i

kη

)
, (2.3.18)

where we can use the initial condition in (2.3.16) to fix the constant parameters to
β1 = 1 and β2 = 0, giving

µ(k, η) =
e−ikη√

2k

(
1− i

kη

)
. (2.3.19)

From this, the superhorizon solution is

lim
|kη|→0

µ(k, η) = − i√
2k3η

. (2.3.20)

We can express the solution in terms of the tensor fluctuations h(k, η), by using
(2.3.3) and that a = −(Hη)−1 in de Sitter, giving

h(k, η) = − Hη

MPl

√
k

(
1− i

kη

)
e−ikη. (2.3.21)

We find that outside the horizon the quantum fluctuations are constant, i.e. we say
they “freeze” which can be seen by taking the small scale limit of the solution in
(2.3.21)

lim
|kη|→0

h(k, η) =
iH

MPlk
3
2

. (2.3.22)

From this we see that the amplitude of tensor fluctuations at superhorizon scales is
proportional to the Hubble parameter H, which can be used to define the energy
scale of inflation. We can now obtain the power spectrum which is calculated to be

Ph =
k3

2π2
Pij,ij =

k3

2π2

H2

k3
psij(k)psij(k) =

2

π2

H2

M2
Pl

, (2.3.23)

where we have summed over the two polarizations. From this we see that during
inflation, due to the rapid expansion of spacetime, quantum fluctuations of spacetime
are stretched to classical scales. The power spectrum is scale-invariant if the Hubble
parameter is constant, i.e. all the modes have the same amplitude ∼ H, or nearly
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scale-invariant if the Hubble parameter is allowed to slowly vary during inflation. At
horizon exit the tensor fluctuations freeze and remain unchanged till they re-enter
the horizon, at some later time, and start to oscillate. This could be during the
radiation or matter domination era.

As we do not have measurements of the tensor power spectrum we usually nor-
malize the tensor amplitudes against measurements of the scalar amplitudes by
defining the tensor-to-scalar ratio

r ≡ Ph(k)

Ps(k)
. (2.3.24)

In terms of slow-roll inflation the scalar-tensor ratio is given by r = 16ε. Addition-
ally, in quasi-de Sitter there will be a mild scale dependence due to that the Hubble
parameter is allowed to vary. We quantify this in terms of the scalar and tensor
spectral indexes, which are defined as [40]

ns − 1 ≡ d lnPs
d ln k

and nt =≡ d lnPh
d ln k

, (2.3.25)

respectively. One can show that to first-order in slow-roll parameters these can be
expressed as [40]

ns − 1 = 2η − 4ε, nt = −2ε. (2.3.26)

The current bound from the Planck collaboration [33] on the scalar spectral index
is ns = 0.956 ± 0.004, which is very close to unity. The spectral indexes could be
a useful tool to help distinguish between the predictions from different models of
inflation, as any deviation from scale invariance will require ns 6= 1 and nt 6= 0.
Additionally, any variation of the spectral index (or running) would have to arise
at second-order in the slow-roll parameters and therefore it is expected to be very
suppressed.

One can relate the scalar-tensor ratio and the tensor spectral index via the
consistency relation

r = −8nt, (2.3.27)

which would be useful in the future, if we could measure the scale dependence
of tensor modes. Next, we examine the observational consequences for primordial
gravitational waves.

2.4 Detecting primordial gravitational waves

In the previous section we saw that the theory of inflation predicts the existence of a
nearly scale invariant primordial stochastic gravitational wave background [44, 45].
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2.4 Detecting primordial gravitational waves

Their amplitude is described by the scalar-tensor ratio r, which is defined as the
ratio between the scalar and tensor power spectra. The current best upper bound
we have is by using a combination of data from BAO, BICEP2 and Keck Array,
r < 0.06 at the pivot scale k∗ = 0.05Mpc−1 [33]. A definite detection of primordial
gravitational waves will help to determine the energy scale of inflation, which we
currently know little about, and can be anywhere between the TeV and GUT scale.
Additionally it could help us discriminate between inflationary models that produce
different observational signatures for gravitational waves.

One way to examine this is by studying the statistical properties of the fluc-
tuations generated during inflation. In particular, tensor perturbations can leave
a characteristic imprint in the CMB polarization with a curl-like pattern known as
B-modes [46,47], shown in Figure (2.2). In what follows, we give a brief introduction
of the CMB and how it can be used to identify the B-mode pattern.

Figure 2.2: The B-mode pattern, thought to be generated by gravitational waves in
the CMB, which was observed with the BICEP2 telescope. The twisting behaviour
of the B-mode pattern in clockwise or anti-clockwise directions is shown in red and
blue colour. Image credit: BICEP2 2014 Release Image Gallery

Soon after the Big Bang there was a cosmic soup of highly energetic particles
undergoing continuous collisions which resulted in them being in thermal equilib-
rium, i.e. the average temperature and kinetic energy were the same everywhere.
When the Universe had expanded and cooled enough for stable hydrogen to form,
around a redshift of z ∼ 1091 [48], photons were able to decouple from the cosmic
plasma and freely travel in the Universe. These are the photons that form the black-
body spectrum that we measure in the CMB with experiments, such as the COBE
satellite [49], WMAP [48] and more recently Planck [15]. The data from these exper-
iments has shown that the observable Universe is homogeneous and isotropic with
a uniform temperature T = 2.7K.
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2. INTRODUCTION TO PRIMORDIAL GRAVITATIONAL WAVES

Figure 2.3: The first map shows the uniform temperature of the CMB, as measured
by COBE, while the second shows the dipole anisotropy ∆T/T ∼ 10−3 at l = 1 due
to the motion of the Earth relative to the frame of the CMB. The third map includes
emissions from the Milky way but the dipole contribution has been subtracted. It
shows the CMB anisotropies for l > 1 at ∆T/T ∼ 10−5. Image credit: COBE Image
Gallery.
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2.4 Detecting primordial gravitational waves

The CMB also contains small temperature anisotropies, see Figure (2.3), which
are represented in terms of an expansion in spherical harmonics, given by

δT (n̂) = T (n̂)− T̄ (n̂) =
∑
lm

almYlm(n̂), (2.4.1)

where the multipole moments l are associated with the scale of the fluctuations,
m = −l, · · · ,+l, T̄ is the background temperature and n̂ points the direction in the
sky. We define the spherical harmonics as

Ylm(θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Plm(cos θ)eimφ, (2.4.2)

where Plm are associated Legendre polynomials. We quantify the amount of corre-
lation there is at a given angular separation in the sky in terms of the angular power
spectrum which, given l, is estimated by averaging over all m-modes for a single
realization of δT , given by

Cl =
1

2l + 1

l∑
m=−l

〈a∗lmalm〉, (2.4.3)

and where the coefficients alm are determined by the CMB data. This way we can
define the CMB angular power spectra for temperature, E-modes and B-modes,
respectively as

CTl = 〈aT∗lmaTlm〉, CEl = 〈aE∗lmaElm〉, CBl = 〈aB∗lmaBlm〉. (2.4.4)

The TT power spectra have been measured to great precision by the Planck satellite
[3], which can be seen in Figure (2.4). On the left we can see that there is greater
uncertainty for multipole moments l ≤ 30 due to cosmic variance. This is because
there is an intrinsic uncertainty in the CMB measurements which relates to that we
can only measure a set amount of fluctuations per given scale, determined by 2l+ 1
in (2.4.3). From this it is easy to see what we can expect less variance at small scales
(large l) and larger variance at large scales (small l), i.e. there is only a set amount
of modes over which to average at large scales, resulting to greater uncertainty.

Most of the photons that we measure from the CMB have no net polarization
i.e. the temperature component of the CMB radiation is completely unpolarized.
DESI [50] and subsequent CMB experiments found that the CMB radiation is par-
tially (10% ) polarized due to Thomson scattering. The predominant mechanism
that sources a quadrupole anisotropy in the CMB is due to the scalar (density)
oscillations known as E-modes [46, 47]. At the end of the recombination era, light
from the hot and cold spots of the quadrupole temperature anisotropy in the CMB
is scattered by electrons with different intensities resulting in a net linear polariza-
tion. Quadrupole anisotropy can also be sourced by vorticity modes (vectors) but
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Figure 2.4: The Planck (2015) temperature power spectrum [3]. The vertical axis
displays the quantity Dl = l(l + 1)Cl/2π. The multipole moments l are displayed
on the horizontal axis. The scale is treated logarithmically till l = 50 and linearly
after that. Large angles correspond to small l. The error bars show uncertainties
of ±1σ due to cosmic variance. We use the peaks to extact information about the
cosmological parameters. The damping tail at high multipoles is because decoupling
of photons from baryons does not happen instantaneously.
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2.4 Detecting primordial gravitational waves

it is assumed to be negligible. More interestingly, a quadrupole anisotropy can be
sourced by gravitational waves as their effect is to distort spacetime. Depending on
the direction in which a gravitational wave squeezes and stretches spacetime, it can
generate both E-modes and B-modes. The latter cannot be sourced by scalar fluc-
tuations therefore, it is said that detection of B-modes will be a definite confirmation
of the production of gravitational waves from inflation [51].

The CMB polarization pattern is usually described by Stoke parameters in anal-
ogy to the way we express polarization of fields in electromagnetism. The E-modes
are curl free ∇ × E = 0, similar to the gradient of a potential, while the B-modes
are divergence free ∇ · B = 0. We do not consider this analysis in detail here. In-
stead we can simplify these arguments by visualizing a plane wave propagating at
the direction of a vector k. The E-mode polarization is parallel or perpendicular to
the direction of k, while the B-modes are at ±45◦ with respect to the direction k,
as shown in Figure (2.5).

Figure 2.5: The mechanism that produces E- and B-modes in the CMB. Image credit:
BICEP2 2014 Release Image Gallery

We can gain more information by cross-correlating the different CMB radiation
modes. The angular cross-power spectra are

CTEl = 〈aT∗lmaElm〉, CTBl = 〈aT∗lmaBlm〉, CEBl = 〈aE∗lmaBlm〉. (2.4.5)

Under parity inversion the T and the E modes stay the same, while the B-modes
have the opposite parity as they transform as B → −B. Therefore the last two
cross-correlations vanish CTBl = CEBl = 0, if the physical processes that give rise to
the CMB polarizations are parity conserving and only the first four power spectra in
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2. INTRODUCTION TO PRIMORDIAL GRAVITATIONAL WAVES

(2.4.4) and (2.4.5) contribute to the CMB statistics [34]. On the other hand, if parity
violating processes are present, we expect to find an additional two cross-correlating
power spectra, which are the last two in (2.4.5).

Figure 2.6: Here we see the sensitivity of LISA to a stochastic GW background
relative to other experiments [4]. The observational predictions from inflation, max-
imum blue-tilted spectrum and electroweak phase transition are indicated with red,
blue and green dashed lines. Current and future sensitivity of experiments is in-
dicated by black and grey curves. The sensitivities displayed are from LIGO and
Virgo, aLIGO, PTA and SKA. On the left of the diagram we can see the sensitivity
for current and future CMB experiments where the black curve shows the current
bound for r < 0.1, while the grey curve shows the projected sensitivity for future
CMB experiments r < 0.001. Finally, the sensitivity to measurements from Big
Bang Nucleosynthesis is displayed by the indirect curve.

So far we have not detected BB power spectra and consequently EB and TB
power spectra. CMB measurements are inhibited by galactic foregrounds such
as galactic synchrotron radiation, dust from thermal emission in the interstellar
medium, detector noise and systematic errors. There can also be lensing-induced B-
modes which is due to photons traversing the gravitational structure of the Universe
at large scales [52,53].

In 2014 the BICEP2 Collaboration which operated from the South Pole presented
what was thought to be evidence for B-mode polarization in the CMB at the level of
r ' 0.2 [54,55], which was then followed by a joint analysis with Planck in 2015 [56]
concluding that the entire signal could be attributed to cosmic dust.

So far we can extract the signal from galactic foregrounds by using multi-frequency
techniques. We hope that improvements on detector noise and de-lensing will help
in the future to probe B-Modes with experiments that are sensitive to a scalar-tensor
ratio of r ∼ 10−3.

There are several current and forthcoming experiments which are especially
equipped to look for B-modes such as the Polarbear experiment in Chile [57], the
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AdvAct telescope at the Atacama desert of northern Chile [58], CLASS at the At-
acama desert of Chile [59] and the balloon-born experiment SPIDER [60]. Several
next generation experiments have been proposed, such as the LiteBIRD satellite [61],
PRISM [62] and many more.

It may also be possible, in the future to detect a primordial stochastic background
with interferometers. Figure (2.6) shows the sensitivity curves of current and future
experiments [4]. The primordial gravitational wave spectrum predicted by standard
inflationary modes is way below the sensitivity of the space interferometer LISA.
On the other hand, models that predict a maximally blue-tilted spectrum could
enter the sensitivity of detectors (see references therein). In this work we consider
models with rich phenomenology that can produce observational signatures which
may be enter the sensitivity curves of future CMB experiments, as well they may
be detectable with interferometers.

2.5 Non-gaussianity

In Sections (1.3) and (2.3) we saw that inflation predicts a nearly scale invariant
spectrum of scalar and tensor fluctuations. We also found in Section (2.4) that
the temperature distribution of the CMB is very close to Gaussian i.e. on average
there is the same amount of colder and hotter patches in the CMB sky. If the
primordial density perturbations were sourced by quantum fluctuations then we do
expect them, at lowest order, to obey a Gaussian distribution. On the other hand,
non-Gaussianities, if present in the CMB, will be the result of interactions and
non-linear dynamics of the quantum fields, which we represent as n-point functions.

If the spectrum is Gaussian then all the information about the perturbations is
contained in the two-point function and we expect that the three-point function or
higher odd n-point correlators to vanish. Also, using Wick’s theorem one can show
that all the even n-point functions can be represented as products of the two-point
function.

So far, CMB experiments have not detected any non-Gaussianity, but if we do
this could be used to probe the physics of the early Universe, as different classes of
inflationary models predict very specific shapes of non-Gaussianity in the tempera-
ture and polarization anisotropies of the CMB [63].

It is worth mentioning that this should not be confused with large scale non-
Gaussianity, i.e. that there is much more empty space in the late-time Universe
compare to regions where there is high density of concentration of matter, such as
galaxies and galaxy clusters. Our present universe is highly non-Gaussian due to
the non-linear effects of gravity which have been accumulated over time. This is
know as secondary non-Gaussianity and it does not concern us in this work.

The methods for studying non-Gaussianities were developed in [42,64]. Here we
introduce the key steps and notation needed for the subsequent sections. We are
interested to compute the leading-order contribution to the three-point function in
the interaction picture of the field theory. In curved spacetime, the quantized fields
are taken, in general, to propagate on some classical time-dependent background.
When working at quadratic order the usual prescription is to split the field, say
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2. INTRODUCTION TO PRIMORDIAL GRAVITATIONAL WAVES

u(x, τ), into a classical part ub (the background field) and a quantum part u0 (per-
turbation). Following a similar procedure, as we are interested into the three-point
function, it is convenient to split the Hamiltonian into three parts,

H = Hb +H0 +Hint, (2.5.1)

where the background HamiltonianHb contains contributions to the background (i.e.
such as the metric gµν , the scale factor a(t), the Hubble parameter and background
quantities associated with the inflaton field) which are c-numbers and commute
with everything. We expand the Hamiltonian around the classical background and
split the perturbation Hamiltonian into the free Hamiltonian H0 which contains
the contributions to the quadratic part and the interaction Hamiltonian Hint which
contains the n-order contributions. The later contributes to the three-point function
and is given by

Hint = −Lint, (2.5.2)

where the Lagrangian density Lint is taken to be n ≥ 3 order in perturbations of
the fields. The time evolution of the state is given by

|0(t)〉 = Te
−i
∫ t

t0

dt′Hint(t
′)
|0(t0)〉 ,

(2.5.3)

where the initial time is taken to be in the infinite past t0 → −∞ and therefore
the initial state is defined as |0〉 = |0(t0)〉 = |0(−∞)〉. Since we are interested in
super-Hubble fluctuations (i.e. modes that their wavelengths have been stretched
to be much larger than the horizon size) the final time t is taken to be when all the
modes of interest have left the horizon. Once the integrals have been evaluated we
can take the limit t→ 0 to find the contribution to the three-point function at the
end of inflation.

In practise, the three-point function is evaluated in the vacuum state of the free
theory at t0 → −∞, which is identified with the vacuum state of the full theory.
Any non-trivial vacuum fluctuations which may be generated by excitations from
interaction terms are smoothed out by using the iε prescription, which also regulates
oscillatory behaviour of the integrand at the infinite past, making the integral well
defined (for more details see the pedagogical treatment in [65]).

We denote the three-point function as a product of field operators Wint(t), i.e.
in terms of tensor perturbations we have that 〈Wint(t)〉 is equivalent to 〈h3(τ)〉 =
〈htm(k1, τ)hnr(k2, τ)hpv(k3, τ)〉. Then, the three-point function is given by in terms
of time and anti-time ordered integrals in (2.5.3), with the fields sandwiched between
the Bunch-Davies vacua. This reads
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〈Wint(t)〉 =

〈[
T̄ exp

(
i

∫ t

−∞(1−iε)
dt′Hint(t

′)

)
Wint(t)

× T exp

(
−i
∫ t

−∞(1−iε)
dt′Hint(t

′)

)]〉
.

(2.5.4)

Since the interaction Hamiltonian is small, the time-ordered arguments (exponen-
tials) can be Taylor expanded (using a Dyson series), i.e at next to leading order in
the expansion we have

T̄ exp

(
i

∫ t

−∞(1−iε)
dt′Hint(t

′)

)
= 1− i

∫ t

−∞(1−iε)
dt′Hint(t

′) + · · · , (2.5.5)

where each order in Hint is a vertex and carries a time integral t and a space integral,
from the definition of Hint, which in Fourier space it enforces momentum conserva-
tion. We can now substitute (2.5.5) into (2.5.4) and after some manipulation one
finds the next-to leading order term is (a single vertex)

〈Wint(t)〉 = Re

〈[
− 2iWint(t)

∫ t

−∞(1−iε)
dt′Hint(t

′)

]〉
, (2.5.6)

where we have used Hermiticity. Once the interaction Hamiltonian is known, we can
substitute it into the expression above. Without delving into the details, we would
like to point out that the interaction Hamiltonian is constructed by the interaction
picture fields (and background quantities). These are defined with Bunch-Davies
initial conditions so that at the infinite past t → −∞ they can be identified with
the fields of the quadratic free theory. All that this means is that the interaction
fields are solutions to the linearized equations of motion.

To evaluate the right-hand side of (2.5.6) one needs to expand the fields as sums
of creation and annihilation operators and contract them. One can then substitute
for the solutions from the equations of motion. We are usually interested at the
leading-order contribution to the three-point function of the fluctuations, which in
the case of tensors, this is given by

〈h3(τ0)〉 = 〈htm(k1, τ0)hnr(k2, τ0)hpv(k3, τ0)〉

= −i
∫ τ0

−∞
dτ 〈htm(k1, τ0)hnr(k2, τ0)hpv(k3, τ0),Hint(τ)]〉,

(2.5.7)

where τ is the conformal time. The usual prescription is to evaluate the correlation
functions by employing the “in-in” formalism [42], which is suitable for calculating
correlation functions in time-dependent backgrounds (as opposed to calculating the
“in-out” matrix element). We do not review the formal derivation here. For more
details see [65].
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2. INTRODUCTION TO PRIMORDIAL GRAVITATIONAL WAVES

We calculate contractions between two fields by normal ordering. This ensures
that all annihilation operators stand to the left of all creation operators, so that
they hit the vacuum as in (2.3.9). These terms drop out leaving just two contracted
fields. The details are shown in the Appendix (A.14).

Next we look at how to make contact with observations. The terms in the inter-
action Hamiltonian are mode-dependent and contribute to the bispectrum shape.
It is convenient to define the bispectrum via the three-point correlation function in
Fourier space. For curvature perturbations, this is defined as

〈R(k1)R(k2)R(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)BR(k1,k2,k3), (2.5.8)

where the delta function ensures momentum is conserved (k1 + k2 + k3 = 0) so
that the amplitudes of the three momenta form the sides of a closed triangle in
Fourier space. The function BR depends on the momenta and, due to rotational
invariance, it has only two independent variables, namely the ratios of k2/k1 and
k3/k2. In general, the bispectrum takes maximal values for the three modes that
have the strongest interaction. This is best described by assigning a shape to the
bispectrum, as shown in Figure (2.7)

Figure 2.7: Shapes of the bispectrum [5] with momenta satisfying k3 ≤ k2 ≤ k1.

To describe the shapes, it is useful to define the local non-Gaussianity for a
primordial curvature perturbation R(x), as in [66], via the relation

R(x) = RL(x) +
3

5
f localNL

[
R2
L(x)− 〈R2

L(x)〉
]
. (2.5.9)
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In this way R(x) is defined as a function of the position, locally in real space, as
opposed to momentum space. The factor 3/5 is for agreement with the literature
as this model was first considered in terms of the Newtonian potential Φ = 3/5R.
This relation describes perturbations beyond linear order in RL(x) which is the
linear Gaussian perturbation. The variance is subtracted from the quadratic term,
in the brackets, to ensure that the expectation value of 〈R(k)〉 vanishes [67]. The
parameter fNL describes the amount of non-linearity of the three-point function
〈R3(x)〉. The parameter fNL is a constant for slow-roll inflation or it can be scale
dependent, i.e. fNL = fNL(k1, k2, k3), if the slow-roll condition is not obeyed [68].
In momentum space this can be expressed as

R(k) = RL(k) +
3

5
fNL

1

(2π)3

∫
d3qRL(q)RL(k− q). (2.5.10)

Using (2.5.8) and (2.5.9) one can obtain the expression for the local bispectrum

Blocal
R (k1,k2,k3) =

6

5
f localNL (PR(k1)PR(k3) + 2perms). (2.5.11)

In the case where the spectrum is scale-invariant, i.e. PR(k) = A/k3 where A =
const., then the bispectrum is found to be [37]

Blocal
R (k1,k2,k3) =

6

5
f localNL A2

(
1

(k1k3)3
+ 2perms

)
. (2.5.12)

In general, the bispectrum takes maximal values when the three modes have the
strongest interaction which leads to different triangle configurations, which can help
differentiate between inflationary models. We briefly mention a few of the possible
shapes.

In the squeezed limit, also known as the local shape, one of the momenta is taken
to be much smaller than the other two, which are taken to be approximately equal
k3 � k1 ∼ k2. During inflation, small wavelengths (large momenta) exit the horizon
first while large wavelengths (small momenta) are already super Hubble therefore,
classical and conserved. These just contribute to the background dynamics, i.e. their
effect is to shift the background by a constant value. From this one finds that in
the squeezed limit this reduces into a two-point function between the momenta. As
an example, consider the squeezed limit k3 � k1 ∼ k2 in (2.5.12). The bispectrum
for local non-Gaussianity becomes

lim
k3�k1∼k2

Blocal
R (k1,k2,k3) =

12

5
f localNL

A2

(k1k3)3
=

12

5
f localNL PR(k1)PR(k2). (2.5.13)

In general multi-field inflation models are known to peak in this shape while non-
Gaussianity in the squeezed limit for single field models is expected to vanish. This
is because of the Maldacena consistency relation for single-field inflation [64, 69]
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where they showed that the three-point function can be expressed as the product of
two-point functions, given by

f localNL ∼ lim
k1→0
〈ζk1ζk2ζk3〉 ∼ (ns − 1)〈ζk2ζ−k2〉〈ζk3ζ−k3〉. (2.5.14)

Therefore, we expect that we should not find non-Gaussianity in the squeezed limit
for most single-field inflationary models (i.e. ns ∼ 1). Later on we present a set-up
for single-field inflation in which it is possible to enhance the tensor bispectrum
in the squeezed limit. The Planck collaboration constraints, using a combination
of temperature and polarization data, give f localNL = 0.8 ± 5.0 at (68% CL) which
corresponds to a very small amount of non-Gaussianity in the CMB at the squeezed
limit.

In the case of equilateral non-Gaussianity, one gets a maximal value for the
bispectrum when all three modes have equal wavelengths. This is particularly in-
teresting for models with higher-derivative corrections, such as DBI inflation [70],
G-inflation [36] and Galileon inflation [71], which are known to be suppressed if one
of the modes is outside the horizon. When all the modes are inside the horizon
this leads to large non-Gaussianity. These models are known to have non-canonical
kinetic terms where fluctuations propagate with non-trivial speeds cs. In the non-
relativistic limit one can have fNL ∼ c−2

s which is constrained by observations to
have the lower bound cs2 > 0.1 [72]. We say that the bispectrum shape peaks in the
equilateral configuration k1 = k2 = k3 (equilateral triangle). The Planck constraints
for these shapes are f equilNL = −4± 43 and f orthoNL = −26± 21 at (68% CL) [73].

There are several excellent reviews on the topic of primordial non-Gaussianity,
some of which are [63,65,67,74–76].
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Effective field theories are at the heart of modern theoretical physics. Physical
processes in nature occur at a wide range of energy scales, of which we can experi-
mentally access only the low-energy part. With regard to cosmological applications,
in the early universe, we expect the energy scale of the Cosmic Microwave Back-
ground radiation to have been several orders of magnitude smaller than that of the
Planck scale, where quantum processes are thought to become important [15]. Yet,
by continuously improving the sensitivity of experiments, in the future, we may
be able to access physical processes at much larger energies and potentially find
new physics. While physical processes at very high energies are largely unknown to
us, the effective field theory machinery enables theoretical physicists to probe such
regimes and make predictions that can be both qualitative but also quantitative.
Below, we review this approach.

3.1 Bottom-up approach

Quantum gravity is known to be non-renormalizable in four dimensions, meaning
the theory loses its predictivity as there can be an infinite amount of corrections
and therefore an infinite amount of parameters present in the theory. String theory
is considered among the best candidates for a complete theory of quantum gravity.
In the so called top-down approach, one can start from a UV complete theory
(i.e String theory or SUGRA) and produce a low energy theory in which high-
energy physics appear as corrections to the inflaton potential. Here we refrain from
discussing such approaches, although they can be phenomenologically interesting,
and we focus instead on the so called bottom-up approach, where one assumes no
previous knowledge of what the fundamental theory may be.

Since the 1980’s, gravity is seen as a low-energy effective field theory [77, 78].
At low energies classical gravity is a diffeomorphism invariant theory with a spin
two particle, the graviton [79]. Quantum effects of gravity are expected to become
important when spacetime is strongly curved, making them negligible with regards
to current experimental applications. On the other hand, if physical processes in the
early Universe took part at very high energy scales, we may be able, in the future,
to find evidence of new physics in our data [80]. In particular, the upper bound
to the energy scale of inflation, from the Planck collaboration [15], is currently at
H ∼ 1013 GeV. So it is not completely unreasonable to wonder whether inflation
could be sensitive to high-energy physics, which can occur at energies MPl ∼ 1018

41



3. BEYOND EINSTEIN GRAVITY

GeV, or below.
Inflation is seen as a period of rapid expansion of spacetime with a ∼ eHt. During

this process, the wavelengths of highly energetic modes are stretched into lower
energy scales. These are the modes that we measure at the end of inflation. The
background geometry of spacetime is treated classically and only the perturbations
are quantized, which are expected to be strongly coupled when their wavelength is
of order MPl, i.e. deep within the horizon.

To construct an effective description for inflation we borrow from methods that
have been used and tested, for a long time now, in particle physics [81]. At very
high energies we expect that heavy degrees of freedom may be excited. These
processes are not energetically accessible to our experiments and are said to be off-
shell, as we can deal only with initial and final states of light particles. In cases
where the fundamental theory is known, the usual prescription is to integrate the
heavy degrees of freedom out of the Lagrangian. This in turn introduces higher
dimensional operators that are suppressed by the heavy mass scale of the physics
that we integrated out. The effect of the UV physics to our low-energy theory is
encoded in the couplings of these operators.

If the fundamental theory is not known then one can employ Weinberg’s theorem
[82], which states that the process described above is equivalent to powercounting
subleading operators to the leading order action. As long as one writes down the
most general set of operators consistent with the symmetries of the full theory, then
it should yield the same Green’s functions as the fundamental theory.

This can be expressed as an energy expansion where the expansion parameter
is given by E/Λ, with E being the energy of our low-energy system and Λ being a
heavy mass scale. The effective Lagrangian is given by the leading order terms plus
an expansion of the form

LEff = L[ψ] +
∑

ci
Oi[ψ]

Λdi−4
, (3.1.1)

where c1 are the dimensionless constant coefficients whose strengths are determined
by the couplings of the full theory and Oi[ψ] are local operators of dimension di. The
operators that dominate in the IR (infrared scales) are known as relevant operators
and have dimension less than four, while operators that dominate in the UV (ultra-
violet scales) are known as irrelevant and have dimension larger than four. Finally,
operators with dimension equal to four are called marginal operators. In this work
we are interested on irrelevant operators which appear as small corrections to the
leading order action in the IR. Although the sum in (3.1.1) is infinite, in practise
only a few terms are needed to reach our current experimental accuracy. Irrelevant
operators of very high dimension are usually suppressed by large powers of Λ and
are not experimentally accessible. For this reason, although EFTs go under the cat-
egory of non-renormalizable theories, this is not a problem because they are finite.
That is, in a finite expansion only a few parameters will have to be determined.
These should be estimated by using observations.

When we construct effective descriptions in a cosmological background, the back-
ground geometry of spacetime is treated classically and only the perturbations are
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quantized. The energy expansion ceases to be valid when the energy ratio E/Λ
reaches order-one. This is when interaction terms become important and the effec-
tive description breaks down. The theory is said to be strongly coupled as this is
the energy scale at which new particles are produced. To put this into a Feynman
language, the strong coupling scale is where loop diagrams are the same size as
tree diagrams (i.e. the energy scale at which the loop expansion breaks down and
perturbative unitarity in graviton scattering is violated).

The scale Λ can be equivalent to the Planck scale or smaller but not arbitrarily
small, i.e. the energy expansion makes sense only for as long as E/Λ � 1. In
the bottom-up approach for single-field inflation we do not have knowledge of the
explicit UV completion of our system, so instead we assume that heavy modes have
been integrated out meaning that we can only trust the effective description at
horizon crossing where the energy scale of inflation is given by H � Λ. Therefore
for energies below the scale Λ, we treat this as a weakly coupled system and can
safely assume that the vacuum state is given by Bunch-Davies.

3.2 Extended theories of gravity

Modified theories of gravity were developed to explore physics beyond the standard
model of cosmology (ΛCDM). They offer a rich phenomenology for dark energy
which is otherwise identified with a very small and otherwise fine-tuned value for
the cosmological constant. They are also ideal for studying deviations from the
canonical inflation paradigm, where a scalar field is thought to be responsible for
the accelerated expansion of the early universe. Modified theories of gravity fall
under the more general category of extended theories of gravity, whose prerequisite
is to relax the assumptions governing Lovelock’s theorem [83, 84] which states that
only Einstein’s equations plus a cosmological constant have second-order equations
of motion in four-dimensions, i.e. the Lagrangian is taken to depend solely on the
metric L[gµν ]. The most usual extensions to gravity come by introducing a scalar
field that is minimally or non-minimally coupled to gravity or by adding higher
derivative corrections to the action.

In particular, in Scalar-Tensor theories the geometry of spacetime is affected not
only by the curvature of spacetime, which is the usual case in Einstein gravity, but
also by an additional scalar field. In that sense, the Lagrangian is taken to depend
on both the metric and the scalar field L[gµν , φ]. During the inflationary epoch,
where scalar fields dominate the dynamics, matter fields are neglected all together.
In the case where the scalar field is non-minimally coupled to curvature, the effect of
the scalar degree of freedom is to alter the strength of the gravitational constant, so
that the gravitational action acquires a time-dependent Planck mass, i.e. a modified
Newton’s constant, such as

M2
Pl

2

∫
d4xf(φ)R =

1

2

∫
d4xM̃R, M̃ = M2

Plf(φ). (3.2.1)

The Horndeski theories fall under the category of extended Scalar-Tensor theories.
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The action contains scalar-tensor modifications to gravity which lead to at most
second-order equations of motion.

The Horndeski action was rediscovered through the Galileon theory which was
originally formulated on flat spacetime [85], where the scalar field (or Galileon)
enjoys a shift symmetry φ→ φ+ bµx

µ + c analogous to the classical Galilean trans-
formations and where bµ and c are vector and scalar constants. Schematically, the
Galileon Lagrangian is given by

LGalil ∼
5∑

n=2

cnφEE(∂∂φ)n−1η5−n, (3.2.2)

where E is the Levi-Civita symbol, η represents the Minkowski metric and the con-
traction of indices is omitted. The Galileon effective description is well defined for
as long as ∂nφ/Λn+1 � 1, with n ≥ 3.

The Galileon theory was later on generalized to curved spacetime but at the
cost of breaking the Galilean symmetry. This is know as the covariant Galileon
theory [86, 87], in which one promotes the Minkowski metric to gµν and partial
derivatives to covariant derivatives. The latter can introduce additional curvature
terms in the field equations, through their commutation relations (i.e. by application
of the Ricci identity), which can be amended by adding suitable counterterms which
help to realize second-order equations of motion. This can be extended further to the
generalized Galileon theories which correspond to the most general covariant Scalar-
Tensor setup of operators with second-order equations of motion. In this way the
Horndeski theory [88] was rediscovered, albeit starting from different assumptions.

The most general model is known as Generalized inflation (G-inflation for short)
[36] which can be used to realize models of canonical single-field inflation as well
several extensions of the canonical inflationary paradigm, some of which are non-
minimally coupled models [89], kinetically driven inflation (k-inflation) [90, 91],
Dirac-Born-Infeld (DBI) inflation [92], R2 inflation and many more.

Below we quickly review the key ingredients of G-inflation which we will em-
ploy throughout this work. This analysis was done in [36]. One can construct
phenomenologically viable inflation models by starting from the following action

S =
5∑
i=2

∫
d4x
√
−gLi(φ,X), (3.2.3)

where the Lagrangians are given by

L2 = G2(φ,X),

L3 = −G3(φ,X),

L4 = G4(φ,X)R +G4X [(�φ)2 − (∇µ∇νφ)2],

L5 = G5(φ,X)Gµν∇µ∇νφ− G5X

6
[(�φ)3 − 3(�φ)(∇µ∇νφ)2 + 2(∇µ∇νφ)3],

(3.2.4)
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and

X = −1

2
∂µφ∂

µφ. (3.2.5)

Here, G2, G3, G4, G5 are generic functions of the scalar field and its first derivatives.
We have adopted the notation Gφ = ∂G/∂φ and GX = ∂G/∂X. Standard inflation
is described by the following choices G2 = X − V (φ), G4 = 1

2
, G3 = G5 = 0, where

V (φ) is the inflaton potential and for simplicity MPl = 1. It is easy to see that in
this case L4 corresponds to the Einstein-Hilbert term.

In this work we are interested only in kinetically driven inflationary models,
therefore we take the functions Ga, a = 2, · · · , 5 to depend only on X. Working
with a homogeneous scalar field φ = φ(t) in the comoving gauge δφ = 0, one
can obtain the background and constraint equations, in FRW spacetime, from the
Lagrangian in (3.2.3). The field equations are given by

5∑
i=2

Ei = φ̇J −G2 + 2X
(

6H2G4X + 2H3φ̇G5X

)
− 6H2G4 = 0, (3.2.6)

and

5∑
i=2

(Ei + Pi) = φ̇J − 2Xφ̈G3X + 2
d

dt

[
2H(G4 − 2XG4X)−H2Xφ̇G5X

]
= 0,

(3.2.7)

where

J = φ̇
[
G2X + 3Hφ̇G3X + 6H2(G4X + 2XG4XX) +H3φ̇(3G5X + 2XG5XX)

]
.

(3.2.8)

Here we employ the ADM formalism [93], which we do not review. The contributions
to the constraint equation (energy constraint) Ei are produced by variation of (3.2.3)
with respect to N(t), where the metric is define as ds2 = −N2(t) dt2 + a2(t) dx2.
The contributions to the evolution equation (pressure constraint) Pi are produced
by variation with respect to a(t). Finally, the generalized Friedmann equations given
above are combined with the scalar-field equation, from which one gets

1

a3

d

dt
(a3J) = 0. (3.2.9)

One can obtain the tensor action, expanded to second-order in metric perturbations,
which is expressed as
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S(2) =
1

8

∫
dt d3xa3

[
GT ḣ2

ij −
FT
a2

(∇hij)2

]
, (3.2.10)

where GT and FT are defined as

FT = 2
[
G4 −X

(
φ̈G5X +G5φ

)]
,

GT = 2
[
G4 − 2XG4X −X

(
Hφ̇G5X −G5φ

)]
.

(3.2.11)

This introduces corrections to the kinetic term, whose overall effect is to scale the
spatial coordinates with respect to the time coordinates. This leads to tensor fields
propagating with a non-luminal speed

c2
T =
FT
GT

. (3.2.12)

We demand positive values for the tensor speed

c2
T > 0, with FT > 0, GT > 0, (3.2.13)

to ensure no gradient instability or else known as Laplacian instability. This is when
a system becomes classically unstable against fluctuations of the background energy
density. Demanding positive values for FT ,GT ensures correct signs for the kinetic
term so to avoid ghost instabilities. Furthermore, causality considerations imply
that perturbations of the fields should propagate with at most luminal speeds. The
form of the action (3.2.10) was derived in [36].

At superhorizon scales this has solutions

hij(x, t) ' Cij(x) +Dij(x)

∫
dt′

a3(t′)GT (t′)
, (3.2.14)

where Cij, Dij come from integrating the gravitational wave equations. It is custom-
ary to assume slow-varying functions which can be approximated as GT ' const. [36].
In this case, the second term in (3.2.14), also known as the decaying mode, becomes
negligible and can be ignored. However, there are cases in which GT can be taken
to be a rapidly varying function of time resulting into the second-term in (3.2.14)
behaving as a growing mode [8]. This case will be discussed later in the text.

In the case where FT ,GT are taken to be slow-varying functions of time the tensor
powerspectum is found to be [36]

Ph =
2H2

4π2cTFT
. (3.2.15)
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3.2 Extended theories of gravity

Note that the speed of propagation for primordial gravitational waves is still largely
unconstrained. Next we look at the scalar sector. The action for scalar-fluctuations
is given by

S(2) =
1

2

∫
dt d3xa3

[
GSṘ2 − FS

a2
(∇R)2

]
, (3.2.16)

where GS and FS are defined as

FS =
Σ

Θ2
G2
T + 3GT ,

GS =
1

a

d

dt

( a
Θ
G2
T

)
−FT ,

(3.2.17)

where Σ and Θ are expressed in terms of the functions Ga(X) and are given by

Σ = XG2X + 2X2G2XX + 12Hφ̇XG3X + 6Hφ̇X2G3XX − 6H2G4

+ 6H2
(
7XG4X + 16X2G4XX + 4X3G4XXX

)
+ 30H3φ̇XG5X + 26H3φ̇X2G5XX + 4H3φ̇X3G5XXX ,

(3.2.18)

and

Θ = −φ̇XG3X + 2HG4 − 8HXG4X − 8HX2G4XX

−H2φ̇
(
5XG5X + 2X2G5XX

)
.

(3.2.19)

For recent pedagogical reviews, on Horndeski theories and beyond, see [94]. For
a more comprehensive review on modified theories of gravity, we point the reader
to [95].

Finally, there are several theories that go beyond the canonical paradigm such
as P (X) theories which involve only single derivatives of the scalar field with X =
−(∂φ)2/Λ4 and Λ being the strong coupling scale. These have been used to examine
kinetic-inflation models, i.e. see [90, 91]. Additionally, there are the so called DBI
(Dirac-Born-Infield) theories LDBI ∼ −Λ4

√
1−X where the scalar field enjoys a

non-linearly realized symmetry φ(x)→ φ(x)+bµx
µ+φ(x)bµ∂µφ(x)/Λ4, with x = xµ,

which derive from the five-dimensional Poincaré invariance [70, 96]. These type of
inflationary theories are known to produce large non-Gaussianity in the scalar sector.

There is, indeed, a large family of theories that go beyond Einstein gravity
with a wide spectrum of observational consequences for both inflation and theories
of the late-time acceleration of the Universe (Dark Energy). In this work we use
modifications to gravity to find new observational signatures for gravitational waves
from inflation.
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4. Chiral primordial gravitational
waves in extended theories of Scalar-
Tensor gravity

4.1 Abstract

We re-examine the problem of parity violation in single field inflation. We look
for a systematic way to parametrically approach the scale at which maximal parity
violation occurs, which is where we expect to find the presence of the Chern Simons
instability. We do so by considering possible realizations of the effective field theory
of Scalar-Tensor gravity, which could offer a rich phenomenology. The gravitational
action is extended to include derivatively coupled interactions which, by means of a
disformal transformation, are scaled by negative powers of a small parameter which
is identified with the graviton speed. This results in suppressing the cutoff scale of
the effective theory leading to parametrically large chiral tensor fluctuations. We
conclude that a change in the physical description of the system is necessary in order
to maintain sufficient parity violation as well ensure stability of the modes.

4.2 Introduction

In Einstein’s theory of General Relativity parity is conserved. On the other hand,
extensions to gravity, motivated by high energy physics, require the addition of
parity violating terms to the Einstein-Hilbert action [97]. These corrections create
a difference in the intensities of the left and right gravitational wave polarizations
resulting to a net circular polarization in the gravitational wave background.

It has been shown that if such an asymmetry was generated during inflation it
could leave an observable trace in the cosmic microwave background (CMB), i.e. by
producing non-vanishing TB and EB mode correlations [98–101], whose amplitude
is characterized by the scalar-tensor ratio r and the degree of polarization Π. The
latter is defined as the difference between the tensor power spectra of left- and
right-helicity modes, at the end of inflation, normalized by the total amplitude

Π =
PLh − PRh
PLh + PRh

, −1 < Π < 1, (4.2.1)
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4.2 Introduction

and it can take values between −1 and 1 for maximally right or left-handed signal
or zero when circular polarization is completely absent from the gravitational wave
background.

Future experiments, such as SPIDER, CMBpol and LiteBIRD, will measure the
B-Mode polarization anisotropies with expected precision r ∼ 10−3 [10, 11, 102,
103]. Additionally, a direct detection of a primordial circularly polarized stochastic
gravitational wave background may be possible with space-based interferometers,
such as LISA, DECIGO (Deci-Hertz) or their proposed successor BBO (Big Bang
Observer) [6, 12,13,104–106], as well with PTAs (Pulsar Timing Arrays) [14].

It has been argued that it, ideally, requires a large circular polarization degree Π
in order to make a detection of parity violation [99,107,108] (for a more recent sum-
mary see [109]). Unfortunately, theoretical predictions for single field inflation tend
to suffer quantitatively due to the Chern Simons instability [16,110–114], leading to
a negligible chirality enhancement.

Alternative approaches have been to consider two-field inflationary models [111],
by introducing a curvaton or several gauge fields [114], couplings in term of a massive
field [115] or to consider models of inflation involving non-Abelian gauge fields [116].
The latter was an extension of the work in [117] where parity violating tensor per-
turbations, during inflation, were used to build a leptogenesis model in which they
focused on the short distance modes. This model was further extended in [118]
to examine baryogenesis in the dark sector. Other approaches have been to study
gravitational wave polarisation in Horava-Lifshitz gravity [119, 120]. See also [121]
for a top-down approach.

In this work we re-examine the problem of parity violation in the context of single
field inflation. The generic effective field theory (EFT) for single field inflation
was studied by Weinberg in [80] in which they produced the most general set of
operators that contribute to the lower energy physics. The gravitational action was
extended at next-to-leading order (NLO) to include the Weyl squared tensor and
the gravitational Chern Simons term, with the latter being responsible for parity
violation. There it was shown that for the energy expansion to be finite1 the heavy
mass scale Λ suppressing the higher-derivative operators cannot be much smaller
than the reduced Planck mass MPl. Considering that MPl ' 1018 GeV and the
energy scale of inflation is constrained to be H . 1013 GeV [15] one would expect
parity violating effects to be very small. Therefore, different assumptions are needed
if one wishes to examine a regime where new physics are expected to be much closer
to the scales that we can measure in the CMB.

In this work we aim to approach this regime parametrically. We ideally want to
keep the heavy mass scale Λ 'MPl fixed and instead introduce a parameter whose
effect will be to parametrically suppress the value of Λ. The most straightforward
way to achieve this is by introducing a non-trivial dispersion relation. This process is
well understood in, for example, the effective field theory of inflation (EFTI) studied
by Cheung et al. [122]. There it is the broken time diffeomorphism (Stückelberg
trick) which introduces extra pieces to the action. This, naturally, results to a non-

1This is a generic effective field theory where various coefficients are assumed to be of order
unity and the strength of the higher-order corrections is determined by dimensional analyses.
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trivial speed for the scalar and tensor sectors whose effect is to suppress the heavy
mass scale of the non-quadratic fluctuations resulting to the strong coupling scale of
the theory appearing parametrically below the scale at which the background was
integrated out, leading to large scalar non-Gaussianity. Later on, they addressed
this issue in [123, 124] by studying weakly coupled completions of the EFTI action
for scalar fluctuations. P (X) theories, where X = −1/2∂µφ∂

µφ, are also known to
produce a similar scenario in the non-relativistic limit [125].

Here we approach this from the point of view of Horndeski theories (or beyond)
which are known to be characterized by non-trivial dispersion relations. Assuming
there exists a UV completion for the Horndeski theory, one could take a bottom-
up approach in which the Horndeski theory could be extended, from an effective
field theory point of view, by writing down the most general set of operators that
agree with the symmetries and particle content of the full theory. So far only partial
extensions to parity-preserving Scalar-Tensor theories have been attempted [126,127]
while ghost-free parity violating corrections to Scalar-Tensor theories were separately
examined in [128].

Here we produce an extension to the Horndeski theory (or beyond) by employing
a disformal transformation of the metric. It is well known that disformal transfor-
mations can generate Horndeski or beyond Horndeski theories. Special disformal
transformations, where the disformal function depends only on the scalar field φ,
were analysed in [129]. General disformal mappings of the Einstein-Hilbert ac-
tion were considered in [130], while general disformal transformations of quadratic
DHOST Lagrangians were investigated in [131, 132]. There it was shown that dis-
formal transformations introduce extra pieces to the action which, naturally, change
the dispersion relation for gravitons.

We extend on these ideas by including disformally transformed higher-curvature
operators from an EFT point of view. As one expects, the formulations can quickly
grow to be too cumbersome when working with disformal transformations at the
covariant level. While we have already taken steps towards that direction (as an
example see Appendix A.11), it is convenient to first examine disformal transfor-
mations of higher-curvature operators for cosmological perturbations as they are
simpler. The results of this work are to be understood as indicative of what can be
achieved when one considers chiral scalar-tensor extensions to Horndeski’s theory
and beyond.

The aim of this work is to parametrically suppress the heavy mass scale Λ of the
higher-derivative operators. To examine this in a systematic way and in the simplest
way possible, we employ an inverse disformal transformation [133] on the extended
action for tensors in [80]. We find that if the higher-curvature operators are scaled
by inverse powers of a small parameter cT , which we identify with the graviton
speed, this pushes their contributions into the “UV sensitive” regime, where the en-
ergy scale suppressing these corrections is well below the scale of the reduced Planck
mass MPl, leading to parametrically large chiral tensor fluctuations. In this sense
the effective field theory is organized into an energy expansion, where E/Λ∗ is the
expansion parameter and Λ∗ is an effective mass scale which parametrically depends
on some power of cT . We find maximal parity violation occurs for parametrically
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4.3 Parametric amplification of chiral primordial gravitational waves

small values of cT � 1 in the limit that E2/Λ2
∗ → 1. This signals the breakdown of

the perturbative expansion and the presence of the Chern Simons instability. Fur-
thermore we expect cubic or higher-order interactions to become important resulting
to a strongly coupled theory.

We conclude that a change in the physical description of the system is necessary
in order to maintain sufficient parity violation as well ensure stability of the theory.
Preliminary results on cubic interactions indicate that one would ideally need to work
with a weakly coupled completion of our system. Such completions have already
been attempted in the scalar sector of the effective field theory of inflation (EFTI)
studied by Cheung et al. [123,124].

The paper is organized as follows. In Section 4.3 we introduce the quadratic
action which we disformally transform in Section 4.3.1. We then examine the validity
of the EFT in Section 4.3.2 and proceed to produce second-order equations of motion
in Section 4.3.3. Next, we identify the conditions for a stable Chern-Simons theory
in Section 4.4 and proceed to solve the linearised theory in the simplest way possible
in Section 4.5. Finally we evaluate the power spectrum in Section 4.5.1 and briefly
look at the different representations of the theory in Section 4.6. We conclude our
results in Section 4.7.

4.3 Parametric amplification of chiral primordial

gravitational waves

We consider possible realizations of the effective field theory of Scalar-Tensor gravity
which could offer a rich phenomenology. One can start with a gravity + scalar system
and extend it with higher-derivative operators from an EFT point of view. Here we
achieve this with an inverse disformal transformation of the quadratic action. We
take a bottom-up approach, in which the action is organized as an energy expansion,
where the leading-order Lagrangian is that of standard canonical Einstein gravity,
while the higher-order Lagrangians are treated perturbatively. At next-to-leading
order (NLO), i.e. four-derivative operators, the action reads [80]

S(0) =
M2

Pl

2

∫
d4x
√
−g

{
R +

f1

M2
Pl

W µνρσWµνρσ + εµνρσ
f2

M2
Pl

WµνκλW
κλ
ρσ

}
, (4.3.1)

where Wµνρσ is the Weyl tensor, and εµνρσ = (−g)−
1
2 εµνρσ is the totally antisymmet-

ric Levi-Civita tensor density. The reduced Planck mass is defined as M−1
Pl =

√
8πG,

with G being the gravitational Newton’s constant. The last term in (4.3.1) is the
gravitational Chern Simons term, which is sometimes denoted as WW̃ and it is
responsible for parity violation.

We denote with Λ ' MPl the energy scale of the heavy degrees of freedom that
have been integrated out of the Lagrangian. Such high energy processes are not
experimentally accessible to us, but instead they enter the low energy action, order-
by-order, though the coefficients in the derivative expansion. Therefore, higher-order
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corrections are expected to be subdominant as they are suppressed by the heavy
mass scale Λ which is the energy scale at which we expect to find ”new physics”.
For a great review on EFTs see [81,134] and the excellent reviews by C.P. Burgess.

The functions f1(φ) and f2(φ) represent generic couplings of the dimensionless
scalar field φ = φc/Λ ' φc/MPl which satisfies inflationary dynamics and is homo-
geneous and isotropic. In the absence of a UV complete description, the form of the
coupling strengths can be motivated from phenomenological considerations and/or
experimental observations.

From now on we choose to work with the conformal time η and assume an
isotropic and homogeneous FRW cosmology with line element

ds2 = a(η)2[− dη2 + dx2], (4.3.2)

where a = −(Hη)−1 is the scale factor and take the scalar field to be homogeneous
φ = φ(t). Although, during inflation, the de Sitter symmetries are taken to be
broken we choose, for simplicity, to work in an approximately exact de Sitter space
with the Hubble parameter given by H(t) ∼ H = const. and where t is the proper
cosmic time. Finally, the metric is expanded, up to second-order in perturbations,
around a de Sitter background

gµν = g̃µν + hµν ,
hµν
gµν
� 1, (4.3.3)

where the perturbations respect the transverse-traceless (TT) conditions, namely
∂ih

i
j = hii = 0. In what follows we focus only on the tensor sector.

4.3.1 Disformally transformed action

We choose to express the quadratic action in terms of barred parameters (see Ap-
pendix A.9). Therefore, we consider the effects of the inverse of a disformal trans-
formation of the form

gµν → ḡµν = cT
[
gµν + (1− c2

T )nµnν
]
. (4.3.4)

Here we have used the normalization nµ = φ,µ/
√

2X with nµn
µ = −1 and X =

−1
2
φ,µφ

,µ. We follow the methods in [133, 135, 136] where it was shown that in
an FRW cosmological setting, with the scalar field φ taken to be homogeneous, a
disformal transformation corresponds to a redefinition of the time-coordinate and
the scale factor. In particular, for an inverse disformal transformation, one can make
the following redefinitions

dη̄ = cT dη , ā = c
1
2
Ta, (4.3.5)
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where for simplicity we take the disformal parameter cT = const. and f̄1, f̄2 to be
functions of the conformal time η̄. At second-order in perturbations of the metric2

the contributions to (4.3.1) transform as follows (see Appendix A.9 for more general
expressions)

S(2) =
M2

Pl

2

∫
d4x

{
a2

4

[
(h′ij)

2 − c2
T (∇hij)2

]
+ εijk0 8f̄2

c2
TM

2
Pl

∂ih
′
lj[Hh′lk + h′′lk]

+
f̄1

M2
Pl

[
(h′′ij)

2

2c3
T

+
h′′ij∇2hij

cT
+
cT (∇2hij)

2

2
−

2(∇h′ij)2

cT

]}
,

(4.3.6)

where we denote time derivatives with a prime (∂η =′). The Hubble parameter in
terms of the conformal time is given by H = aH and we use Latin indices to denote
spatial components. At leading order in (4.3.6) we find a quadratic action with
gravitons having a non-trivial speed, given by

S
(2)
LO =

M2
Pl

2

∫
d4x

a2

4

[
(h′ij)

2 − c2
T (∇hij)2

]
. (4.3.7)

This is because, at the level of the perturbations, the effect of a disformal transfor-
mation can be seen as a stretching of the time-coordinate with respect to the spatial
coordinate. This can also be understood by considering the effect of a disformal
transformation at the covariant level. For example, in [130] (see Appendix B.1, rela-
tion (B10) in [130]) it was shown that the effect of a pure disformal transformation
to the Einstein-Hilbert action translates to adding extra pieces to the action which
results in producing a Horndeski like theory. Such theories are known to be charac-
terised by non-trivial dispersion relations. In this sense, the next natural step is to
identify the parameter cT in (4.3.6) to be the leading order contribution to the tensor
speed. Similarly, the higher-curvature contributions are modified by acquiring extra
pieces (as an example see Appendix A.11).

It is interesting to note that the leading order action in (4.3.7) is related to the
quadratic action for tensors in [122], namely

S(2) =
M2

Pl

2

∫
d4x

a2

4
c−2
T

[
(h′ij)

2 − c2
T (∇hij)2

]
=
M̃2

Pl

2

∫
d4x

a2

4

[
(h′ij)

2 − c2
T (∇hij)2

]
,

(4.3.8)

by a conformal transformation which can be used to set the modified Planck mass
M̃Pl in (4.3.8) to standard. In [122] it is a broken time diffeomorphism (Stückelberg
trick) which introduces extra pieces to the action. This naturally results to a non-
trivial speed for gravitons. It would be interesting to see how parity violation is
affected in their setup. In their work they focused on curvature perturbations which

2 Here we used the formulations in [137] and the Mathematica package in [138] to produce the
perturbed expressions.
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were treated as Goldstone boson modes. There it was found that a small scalar
speed reduces the mass scale that suppresses the non-quadratic fluctuations leading
to sizeable non-Gaussianity.

Here we find that, in a similar fashion, higher-order quadratic operators (and
consequently non-quadratic operators) with more time-derivatives are enhanced, for
small parameter cT � 1, compared to operators with spatial derivatives3. In this
way the sub-leading terms in (4.3.6) could become sizeable as they are scaled by
negative powers of a small parameter, leading to parametrically large chiral tensor
fluctuations. Next we look at the phenomenological consequences of our set-up.

4.3.2 Validity of the EFT

The main aim of this work is to parametrically approach the regime at which the
EFT breaks down, which is where we expect the Chern Simons instability to appear
in the system.

The effective action in (4.3.6) is organized into an energy expansion which is in
terms of powers of the expansion parameter E/Λ∗, where Λ∗ is an effective mass scale
proportional to some power of the parameter cT . The energy expansion will continue
to be valid until the sub-leading terms become as important as the leading order
terms. Therefore we expect that the cosmological perturbation theory will break
down in the non-relativistic limit cT � 1, i.e our effective field theory will cease to
be meaningful if the ratio E/Λ∗ → 1. Putting this into a Feynman language, at this
point one would expect the propagator of the free field theory to pick up substantial
contributions which can affect the leading order kinematics. This can also result
into the presence of unphysical states in the system [80]. The usual prescription is
that one will need to add extra pieces to the action in order to restore the validity
of the EFT4.

To find when this happens we need to estimate the form of the effective mass
scale Λ∗ by examining the action in (4.3.6) which is quadratic in the fields. The case
where cT = 1 was considered in [139]. Here we wish to find the effective mass scale
of (4.3.6) for cT � 1. We employ the methods in [123] (see Section 2). We restore
fake Lorentz invariance by defining the following rescaling of the spatial coordinates
x→ x̃ = c−1

T x and the canonically normalized tensor perturbation

h̃2
ij =

c3
TM

2
Plh

2
ij

4
. (4.3.9)

From this we find that the action in (4.3.6) becomes

3A similar conclusion was reached in [122] for the scalar sector. In their case it was the spatial
derivatives that were enhanced with respect to time-derivatives.

4At some stage one may have to work with the UV complete description of the system.
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S(2) =
1

2

∫
dη d3x̃

{[
(h̃′ij)

2 − (∇̃h̃ij)2
]

+ εijk0 32f̄2

c3
TM

2
Pl

∂̃ih̃
′
lj

[
Hh̃′lk + h̃′′lk

]
+

f̄1

c3
TM

2
Pl

[
2(h̃′′ij)

2 + 4h̃′′ij∇̃2h̃ij + 2(∇̃2h̃ij)
2 − 8(∇̃h̃′ij)2

]}
.

(4.3.10)

The effective mass scale of the theory Λ2
∗ ' c3

TM
2
Pl can be read off directly from

(4.3.10), where for simplicity we have ignored the time-dependence in f̄1 and f̄2 and
treat them as order-one parameters. To ensure the validity of low energy observables
we need our perturbative expansion to hold at the relevant scales that we can mea-
sure in the CMB, i.e. at horizon crossing where the fluctuations freeze. Therefore,
we demand that the size of the fluctuations at the de Sitter scale kph ∼ H, where
kph = k/a is the physical momentum, coming from the higher-order corrections, is
much less than O(1). Therefore, we have

k2
ph

Λ2
∗
' H2

c3
TM

2
Pl

� 1, (4.3.11)

which translates to a lower bound on the graviton speed.
Additionally, the need for a finite perturbative expansion may require us to in-

clude next-to-next-to-leading order (NNLO) operators, i.e. six-derivative terms, as
they can pick up enhancements that could stand them relevant to the calculation.
This is because at (NNLO) the energy expansion ratio will be of order H4/Λ4

∗ (see
Appendix A.12). Higher-derivative parity preserving extensions to scalar-tensor
gravity were discussed in [126] while higher-derivative parity-violating operators for
Scalar-Tensor chiral theories were discussed in [128], where alongside the gravita-
tional Chern Simons term they included first- and second-derivatives of the scalar
field. These were subsequently studied in [140]. We only tentatively look at these
in Appendix A.12.

Additionally, in the limit cT � 1 non-quadratic terms can become important
i.e. terms of the form ∼ hhh. Parity violation in tensor non-Gaussianity was
investigated in [137,141]. They showed that there is no parity violation in de Sitter,
but found non-vanishing contributions to the bispectrum when slow-roll inflation is
taken into account. In particular the three-point correlators 〈TTB〉 〈TEB〉 〈EEB〉
could become non-vanishing, as opposed to the parity conserving case, which could
be observed in the CMB data. Furthermore, mixed correlators were more recently
studied in [142].

We do not consider in detail the effect of higher-order interaction terms in this
work although it would be interesting to examine how the bispectrum is affected in
a more realistic scenario of our setup. In terms of our arguments, we require that
cubic interactions remain sub-leading. As an example, take a cubic interaction of
the form5

5Such interaction terms can be found by expanding the Weyl squared tensor to third-order in
perturbations of the metric.
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S(3) =
M2

Pl

2

∫
dη d3x

f1

M2
Pl

[
1

c3
T

Hh′ijh′ilh′lj − 2cThij∂i∂jh
lm∇2hlm + · · ·

]
(4.3.12)

Once we restore fake Lorentz invariance, we find

S(3) =
1

2

∫
dη d3xc

− 9
2

T

f1

M3
Pl

[
8Hh′ijh′ilh′lj − 16hij∂i∂jh

lm∇2hlm + · · ·
]
. (4.3.13)

From this we can see that the energy expansion ratio is of the order E3/Λ3
∗. We

can approximate the following constraint coming from demanding that the cubic
interactions do not dominate at around the energy scale of inflation kph ∼ H, which
is

k3
ph

Λ3
∗
' c

− 9
2

T

H3

M3
Pl

� 1, (4.3.14)

We see that in the limit cT � 1 new physics could appear at energies not far above
the energy scale of inflation. Consequently, the higher-order interactions may acquire
large couplings which could leave measurable evidence, from the new physics, in the
CMB data. Furthermore, the Chern Simons instability will appear in our system
for some O(1) value of (4.3.11) and (4.3.14) for which we find the limiting value

cT '
(
H

MPl

) 2
3

. (4.3.15)

We will reach the same conclusions when we examine the effective potential, later on
in the text. The behaviour of the coefficients for the quadratic and cubic interactions
around the limit (4.3.15) is shown in figure (4.1). From this we conclude that the
Chern Simons instability is a consequence of the strongly coupled theory. This can
be seen in the graph, as cT approaches the limit in (4.3.15) the cubic interactions
(in blue) shoot up with respect to the quadratic interactions (in red) which, by
definition, leads to the theory being strongly coupled.

4.3.3 The equations of motion

Before we begin with our analysis, we need to briefly discuss the Ostrogradsky
instability whose no-go theorem [143, 144] is central in the study of higher-order
corrections to gravity. The effective Lagrangian in (4.3.6) includes contributions
that lead to higher than second-order equations of motion, which cannot always be
removed by partial integration. While we cannot excite the Ostrogradsky ghost, as
long as we remain in the low-energy regime of the EFT, the system can still exhibit
unphysical effects if the equations of motion are higher than order-two6.

6It will require additional initial conditions in order to eliminate unwanted solutions. At best
such systems can only be solved numerically.
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Figure 4.1: Once the parameter cT attains the value in (4.3.15) cubic interactions
(in blue) become more important than the quadratic ones (in red), signalling the
break down of the effective description. For this plot we take MPl = 1018 GeV,
and H = 1013 GeV. The horizontal axis displays the values of cT in the interval
{10−4, 10−3} which is the range in which we expect to find the value for cT in
(4.3.15) for this particular numerical example, while the vertical axis displays the
energy expansion ratio at the non-relativistic limit Eratio ∼ O(1).

For (NLO) contributions to the action it is possible to obtain second-order equa-
tions of motion via a field redefinition, which amounts to a substitution in terms of
the equations of motion obtained from the leading order action in (4.3.7)

h′′ij + 2Hh′ij − c2
T∇2hij = 0. (4.3.16)

This way one can shift the offending terms at higher-orders in the expansion. As one
expects, this can complicate things when working at (NNLO). It is not, in general,
trivial to find field redefinitions that ensure second-order equations of motion when
the action contains a combination of (NLO) and (NNLO) operators. Although,
such field redefinitions may be possible to find, they tend to be quite involved. As
an example, we would like to point the reader to the analysis that was performed
in [145] for the scalar sector. It would be interesting to see if, in the future, we
could obtain something similar for tensors. As we do not wish to enter into lengthy
discussions regarding these issues we refer the reader to [146–148] and references
therein (see also [149] for a recent pedagogical treatment).

For these reasons, here we focus at (NLO) corrections to gravity and only briefly
discuss (NNLO) operators in Appendix A.12. At second-order in perturbations of
the metric, we expect the disformally transformed action to contain, schematically,
the following type of contributions
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S(2) =
M2

Pl

8

∫
d3x dη a2

{
(1 + α)(h′ij)

2 −
(
c2
T + β

)
(∇hij)2 − γ(∇h′ij)2 + δ(∇2hij)

2

− εijk[ε(hqi)′(∂jhkq)′ − ζ(∂rhqi)∂j∂rhkq]

}
,

(4.3.17)

where the coefficients α - ζ are functions of the conformal time. This form of the
action guarantees second-order equations of motion. Using (4.3.16) we find that the
action in (4.3.6) takes the following form

S(2) =
M2

Pl

8

∫
d3x dη a2

{(
1 +

f̄1H2

c3
Ta

2M2
Pl

)
(h′ij)

2 −

[
c2
T +

(
f̄ ′1H + f̄1H′

)
cTa2M2

Pl

]
(∇hij)2

− f̄1

cTa2M2
Pl

(
∇h′ij

)2
+

f̄1cT
a2M2

Pl

(
∇2hij

)2 − f̄ ′2
a2M2

Pl

εijk
[

1

c2
T

h′qi∂jh
′
kq − (∂rhqi)∂j∂rhkq

]}
,

(4.3.18)

where we have absorbed numerical factors into the definitions of f̄1 and f̄2. It is
easy to see that (4.3.18) has the same form with (4.3.17) which guarantees second-
order equations of motion. Next, we produce the Euler-Lagrange equations which
are expressed in terms of the canonically normalized field7 µs = (MPl/2)hszs, as8

(see Appendix A.9)

(µs)′′ +

k2

(
c2
T +

(f̄1H′+f̄ ′1H)

cT a2M
2
Pl
− cT k

2f̄1
a2M2

Pl
− λskf̄ ′2

a2M2
Pl

)
(

1 + f̄1H2

c3T a
2M2

Pl
− k2f̄1

cT a2M
2
Pl
− λskf̄ ′2

c2T a
2M2

Pl

) − (zsk)
′′

zsk

µs = 0, (4.3.19)

where the effective potential is defined in terms of

zs = a

√
1 +

f̄1H2

c3
Ta

2M2
Pl

− k2f̄1

cTa2M2
Pl

− λskf̄ ′2
c2
Ta

2M2
Pl

. (4.3.20)

The parameter s = L,R is used to denote left and right graviton modes and we have
defined λs = ±1. Finally, we have omitted summation over left and right modes. It
is now evident that the effective potential depends on the polarization modes. This
produces an asymmetry in the amplitude of the solutions for left and right modes
which leads to a circularly polarized gravitational wave background [99]. Next we
look at the Chern Simons instability.

7Here we use the conventions in [37].
8We have dropped, for brevity, the k, η dependencies.
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4.4 On the stability of parity breaking theories

Let us for a moment simplify our arguments by setting cT = 1 in (4.3.20). It is
convenient to express the effective potential in terms of the Chern Simons and Weyl
squared tensor dynamical mass-scales [16] by defining

Mcs =
aM2

Pl

f ′2
, and M2

w =
M2

Pl

f1

, (4.4.1)

respectively, where kph = k/a is the physical wavenumber and as we will soon find
out, M2

w < 0. Therefore, (4.3.20) becomes

zs = a

√
1 +

H2

a2M2
w

−
k2
ph

M2
w

− kphλs

Mcs

. (4.4.2)

If we ignore the Weyl squared tensor contributions, for a moment, it is then straight
forward to see that the linear theory will break down for (zs)2 = 0, i.e. at kph = Mcs.
The amplitude of one of the helicity mode develops an instability which appears as a
logarithmic divergence [110]. In what follows we derive a constraint that can ensure
the stability of all modes within the regime of the validity of the EFT. For the
stability of the solutions it requires

(zs)2 > 0⇒ 4

M2
w

+
4H2

a2M4
w

< −
(
λs

Mcs

)2

. (4.4.3)

The quantity on the RHS of the inequality is negative. This implies that the only
way to satisfy this relationship is to demand that the Weyl squared dynamical mass
scale is tachyonic with

f1 < 0. (4.4.4)

This unfortunately implies the loss of perturbative unitarity due to positivity bounds
requiring f1 > 0 [150]. We can now try to simplify relation (4.4.3) using that
H2a−2 = H2 in de Sitter. In the next step, we make it explicit that the inequality is
satisfied by substituting for M2

w = −|M2
w|. Solving for Mcs, gives the simple relation

M2
cs >

|Mw|4

4(|Mw|2 − 4H2)
. (4.4.5)

As this involves dynamical quantities, in the more general cases, it translates to a
constraint on the time-evolution of the theory. But there is a special case, which we
would like to emphasize, where the dynamical contributions completely drop out.
For specific choices9 of the functions f1 and f2 one finds a simple relationship between
the physical scales involved10, namely Λ2 > H2. Notice that this relationship is

9The functions f1 and f2 have to depend on time in such a way so that all time-variables exactly
cancel in (4.4.5). We give such an example later in the text.

10For simplicity, here we have neglected a small constant contribution to the leading order term.
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always satisfied in EFTs as the scale where we expect to find new physics is always
larger than the energy scale of inflation (i.e. in our case we have Λ ' MPl > H2).
A similar conclusion was reached in [112] in the case of slow-roll inflation where
dynamical parameters depend only weakly on time.

4.5 A toy model

We proceed to solve the equations of motion in (4.3.19). We choose to work in
pure de Sitter (a = −(Hη)−1) and look at a particularly simple example, where11

|f1| = 8|f10| and

f2 = 8f20

∫
η−1 dη , (4.5.1)

with the coupling constants having magnitudes of |f10|, f20 ∼ O(1) ∼ 1. This way
we have that f̄1 = f1 and f̄2 = f2. We introduce the relative parameters ω1, ω2, g1

and g2. These are defined as follows:

ω1 =
f1

cT
, ω2 = f1cT , g1 =

f2

c2
T

, g2 = f2. (4.5.2)

This way the relationships between the functions ω1, ω2, g1, and g2, simplify to

ω1 =
ω2

c2
T

and g1 =
g2

c2
T

. (4.5.3)

We can make contact with (4.3.17) by making the following identifications γ =
ω1(aMPl)

−2, δ = ω2(aMPl)
−2, ε = g′1(aMPl)

−2 and ζ = g′2(aMPl)
−2. Here we have

set α = β = 0 as, with our definitions, these terms only add a negligible constant to
the leading order term. The equations of motion simplify to

(µs)′′ +

k2

(
c2
T − k2ω2

a2M2
Pl
− λskg′2

a2M2
Pl

)
(

1− k2ω1

a2M2
Pl
− λskg′1

a2M2
Pl

) − (zs)′′

zs

µs = 0. (4.5.4)

The speed of gravitons contains corrections coming from the higher-order operators
which, as we shall soon see, they drop out. The effective potential is given in terms
of

zs = a

√
1− k2ω1

a2M2
Pl

− λskg′1
a2M2

Pl

. (4.5.5)

11Here we have reinstated the numerical factors that we had absorbed earlier into the functions
f1 and f2.
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To ensure stability for all modes, within the regime of validity of the EFT, we derive
the simple constraint

(zs)2 > 0⇒M2
cs >

|Mw|2

4c3
T

, f1 < 0, (4.5.6)

which can be re-expressed as a lower bound to the speed of gravitons

c3
T >
|Mw|2

4M2
cs

' H2

M2
Pl

. (4.5.7)

Comparing this to (4.3.11) it is now evident that the Chern Simons instability will
kick in for parametrically small values of cT , in the limit E2/Λ2

∗ → 1. With all
this in place we can now treat the higher-order corrections as being energetically
negligible for as long as we remain within the regime of validity of the EFT. From
now on we make explicit the minus sign in f1 = −|f1| < 0, as demanded by (4.5.6)
and, for simplicity, drop the absolute notation. The effective potential is expressed
as

(zs)′′

zs
=

2

η2
− 1

η

(
2ω10k

2η − g10λ
sk

1 + ω10k2η2 − g10λskη

)
− 1

4

(
2ω10k

2η − g10λ
sk

1 + ω10k2η2 − g10λskη

)2

+

(
ω10k

2

1 + ω10k2η2 − g10λskη

)
,

(4.5.8)

where we have simplified our arguments by introducing the following redefinitions

ω10 =
8f10H

2

cTM2
Pl

, ω20 =
8f10cTH

2

M2
Pl

, g10 =
8f20H

2

c2
TM

2
Pl

, g20 =
8f20H

2

M2
Pl

. (4.5.9)

Using the definitions given above it is easy to see that the corrections to the leading
order contribution to the speed of gravitons drop out, giving

c̃2
T =

c2
T + ω20 k

2η2 − g20λ
skη

1 + ω10k2η2 − g10λskη
= c2

T . (4.5.10)

Note that if we set ω10 = 0 and cT = 1 in (4.5.8) we obtain the form of the effective
potential in [110]. Similarly, if we set g10 = 0 we correctly recover the equation
for infllation which corresponds to a harmonic oscillator with a time-dependent
frequency. Taking the small scale limit (|kη| → ∞) of the equation of motion gives

(µs)′′ + k2c2
Tµ

s = 0. (4.5.11)

This is satisfied by the Bunch-Davies vacuum solution where gravitons propagate
with a speed cT , given by
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lim
|kη|→∞

µs = −e
−icTkη
√

2cTk
. (4.5.12)

Taking the large scale limit (|kη| → 0), gives

(µs)′′ +

(
k2c2

T −
2

η2
− g10kλ

s

η

)
µs = 0, (4.5.13)

where, for simplicity, we have neglected subdominant contributions to the graviton
speed. Equation (4.5.13) can be solved exactly. We bring it into the Whittaker form

(µs)′′ +

[
−1

4
+
ν

χ
+

1
4
− µ2

χ2

]
µs = 0, (4.5.14)

by making a substitution of the form

χ = 2icTkη, (4.5.15)

and therefore, µs = µs(k, χ). Hence, equation to solve is

(µs)′′ +

[
−1

4
+
ig10λ

s

2cTχ
+

(−2)

χ2

]
µs = 0. (4.5.16)

Solutions are in terms of Whittaker functions12 (the details can be found in Appendix
A.10). The tensor power spectrum, per polarization, is found to be

k3P s
h(k) =

1

π2

H2

M2
Plc

3
T

∣∣∣∣Γ(2− ig10λ
s

2cT

)∣∣∣∣−2

e
−πλ

sg10
2cT , (4.5.17)

and it is scale-invariant, as expected. We conclude that, for λ = −1, the left modes
are enhanced.

4.5.1 Chirality enhancement

In this work we are interested to parametrically approach the regime at which maxi-
mal parity violation occurs. Therefore we consider the non-relativistic limit cT � 1.
To find the maximum possible enhancement for the left modes we have to take
into account the condition in (4.3.11) which is equivalent to the lower bound for cT
in (4.5.7). We find that as we parametrically approach the limit E2/Λ2

∗ → 1 the
exponential argument in (4.5.17), namely

12 The prescription for finding inflationary solutions in terms of the Whittaker equations can be
found in [110,113,151].
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e

π g10

2cT ' e

4πH2

c3
TM

2
Pl ' e

H2

Λ2
∗ ,

(4.5.18)

becomes of order one13 leading to maximal parity violation with circular polarization
ratio Π → 1 indicating a fully left-handed signal. This is the point at which we
expect the quadratic theory to break down and the Chern Simons instability to
appear in our system. If we were to include cubic interactions we would also expect
the theory, at this point, to be strongly coupled resulting to large parity violation
in tensor non-Gaussianity.

At this point we would like to emphasize that by using this framework it becomes
explicit that the Chern Simons instability is a consequence of the strongly coupled
theory. From this we conclude that if maximal parity violation is to occur new
physics are ought to be included. This translates to adding extra degrees of freedom
so that we can admit a weakly coupled description of our system which could enable
us to consistently parametrize it when we extrapolate it to higher energies. Such
approaches have been attempted in the scalar sector in [123,124] where they studied
weakly coupled completions of the EFTI action in [122]. It would be interesting to
do something similar for the tensor sector.

Our conclusions are in agreement with the literature, as so far we have not been
able to produce an observable amount of circular polarization of gravitational waves
in single field inflation. Our approach is to be understood as being complimentary
to previously examined cases in the literature.

Another important constraint may come from requiring a small scalar-tensor
ratio as per the results from the Planck collaboration [15]. Looking at the tensor
power spectrum in (4.5.17) we see there is an inverse factor of c3

T scaling the overall
power spectrum, therefore, when we enhance chirality at the same time we also
enhance the overall amplitude of the gravitational waves, so care must be taken.
Taking again the limit E2/Λ2

∗ → 1 and summing over the polarizations we find the
power spectrum can take the maximal value14

k3P s
h(k) ∼ O(1), (4.5.19)

leading to a large tensor amplitude. Either way, if the scalar-tensor ratio is too small
then it would be very difficult to detect circular polarization due to cosmic variance.
Therefore, a large tensor amplitude is preferable. The presence of c−3

T in the power
spectrum could be used to parametrically enhance the amplitude of gravitational
waves which also enhances detectability.

4.6 Relation between frames

It has been shown that disformal transformations cannot remove four- or higher-
derivative corrections to the quadratic action for tensors [152]. Additionally, suffi-

13 Here we used relation (4.3.11) to substitute for c−3
T ∼M2

Pl/H
2.

14 For simplicity, here we have ignored various order one parameters.

63



4. CHIRAL PRIMORDIAL GRAVITATIONAL WAVES IN
EXTENDED THEORIES OF SCALAR-TENSOR GRAVITY

ciently complicated theories do not guarantee to have an Einstein frame. For exam-
ple, consider the scalar-tensor action in (4.3.17) for arbitrary parameters α−ζ. Upon
disformal transformation, in the new frame, one may expect to find a quadratic ac-
tion in terms of canonical Einstein gravity (i.e. as in [135]) but with a non-standard
higher-curvature extension. As here we work with theories that go beyond Einstein’s
gravity, we do not technically consider physics in the Einstein frame. Therefore, in
what follows we simply dub different frames as A and B.

In our case, we started in a frame, say A, where the action in (4.3.1) is described
by the canonical Einstein quadratic term plus the extension to gravity given by
Weinberg in [80]. This theory is understood to be valid up to some fixed heavy
mass scale Λ ' MPl. We then moved our formulations to another frame, say B,
by disformally mapping the operators at the level of the perturbations. We found
an action (4.3.6) in which gravitons propagate with a non-trivial speed cT . We
demonstrated that if cT becomes parametrically small for a fixed scale Λ ' MPl

it could spoil the validity of the EFT. We showed that this is the point where we
expect maximal parity violation to occur resulting to the presence of the Chern
Simons instability. Additionally cubic operators would become important resulting
into tensor modes appearing strongly coupled well below the energy scale Λ 'MPl.

It is to be understood that we work, essentially, with a different representation
of extensions to Einstein’s gravity. In this sense, the A and B frame theories are
said to be mathematically equivalent [153]. In the limit where cT = 1 the theories
are also said to be physically equivalent. On the other hand, when we consider
arguments on the physical equivalence between frames, at the non-relativistic limit
cT � 1, we stumble across a noticeable difference. We cannot bypass the effective
field theory machinery which instructs us that we should have to include additional
degrees of freedom to the B frame theory, so that we can produce a theory that is
valid and consequently weakly coupled all the way from the energy scale of inflation
H to the fixed cutoff scale Λ ' MPl. This is very likely to affect the effective
description of the theory (as in [123,124]) and therefore, the observables as they are
sensitive to the higher-curvature corrections. We find that arguments on physical
equivalence between frames are more difficult to reconcile once we go beyond leading
order effects.

Finally, let us remark that one could build an effective description having the
same form with (4.3.6) by starting with operators that do not admit an inverse
disformal transformation. These were examined in [154].

4.7 Outlook

In this work we re-examined the problem of parity violation in single field inflation.
In particular, we looked for a systematic way to parametrically approach the scale
at which maximal parity violation occurs. We achieved this by introducing a small
parameter, by means of a disformal transformation, whose effect was to suppress the
heavy cutoff scale Λ ' MPl of the effective theory leading to parametrically large
chiral tensor fluctuations.

We found that sub-leading quadratic operators can become important signalling
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the presence of the Chern Simons instability. This inevitably implies the existence
of non-trivial cubic interactions which could stand the theory strongly coupled for
parametrically small values of the parameter cT and, consequently, lead to large
parity violation in tensor non-Gaussianity. We showed that by using this framework
it becomes explicit that the Chern Simons instability is a consequence of the strongly
coupled theory.

We concluded that, at this point, a change in the physical description of the
theory is necessary so that one can consistently parametrize our system as the energy
increases up to the heavy cutoff scale Λ ' MPl. The addition of new degrees of
freedom could help, in a consistent manner, to maintain sufficient parity violation
while at the same time ensure stability of the modes. We hope to examine this in a
future work.

Our approach is to be understood as being complimentary to previously exam-
ined cases in the literature. In particular, extra field content could be incorporated
into our EFT framework in a systematic way.

At this point we would like to emphasize that our work is only indicative of the
many open questions one needs to carefully tackle when considering higher-order
extensions to Scalar-Tensor gravity, especially in the presence of parity violation.
We do not wish to answer these questions in one go. As a first attempt we kept the
formulations as simple as possible and only tentatively looked at these problems.
Indeed, more complicated effective descriptions can come from considering disformal
transformations of operators at the covariant level. Below we address the possible
directions one can take so that progress can be made in the future.

The next step would be to find a phenomenologically viable inflationary model
and do a complete and concrete analysis in quasi-de Sitter. Additionally, one could
take into account the complete set of non-redundant six-derivative operators, as
higher-curvature terms can become important. Such considerations are subject to
finding a field redefinition that can ensure second-order equations of motion. It
would also be interesting to see how the bispectrum is affected in this setup by
considering cubic operators. In particular we are interested in the regime in which
these contributions become important, leading to large tensor non-Gaussianity.

Finally, at the end of inflation the scalar field has reached its minimum (φ =
const.) and the gravitational Chern Simons term becomes a total derivative. There-
fore, we do not expect to find parity violation in the subsequent evolution of the
classical gravitational dynamics [112]. On the other hand, the six-derivative parity
violating terms may not necessarily become surface terms which may affect post-
inflationary predictions. This deserves more investigation.
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5. Non-attractor inflation

5.1 Abstract

We discuss a new mechanism to enhance the spectrum of primordial tensor fluctu-
ations in single field inflationary scenarios. The enhancement relies on a transitory
non-attractor inflationary phase, which amplifies the would-be decaying tensor mode
and gives rise to a growth of tensor fluctuations at superhorizon scales. We show
that the enhancement produced during this phase can be neatly treated via a tensor
duality between an attractor and non-attractor phase, which we introduce. We il-
lustrate the mechanism and duality in a kinetically driven scenario of inflation with
non-minimal couplings between the scalar and the metric.

5.2 Introduction

The linearized action for the comoving scalar curvature fluctuation R, in standard
single-field inflation, is given by [38,155]

S(0) =

∫
dτ d3x

z2
S

2

[
(R′)2 − (∇R)2

]
, zS ≡ a

φ̇

H
, (5.2.1)

where φ is a homogeneous scalar field and prime denotes differentiation with respect
to the conformal time τ , while dots are reserved for differentiation with respect to
the cosmic time t. We can obtain the evolution equations in Fourier space, which
are expressed in terms of the canonically normalized variable u = zSR and are given
by

u′′ +

(
k2 − z′′S

zS

)
u = 0, (5.2.2)

where v = v(k, τ). This is nothing more than the equation of a harmonic oscillator
with a time-dependent mass m2(τ) = −z′′S/zS. The perturbations are quantized
using equal-time commutation relations. At early times, when the perturbations
are well within the horizon (k � aH), we simply get a Klein-Gordon equation

u′′ + k2u = 0. (5.2.3)
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This correctly defines the Bunch-Davies vacuum solution

lim
|kη|→∞

u =
1√
2k
e−ikη. (5.2.4)

On the other hand, at superhorizon scales (k � aH), we find the general solution

lim
kη→0

u = c1 + c2

∫ y dy′

z2
S(y′)

, (5.2.5)

where we have used the substitution y = kτ . In the standard case of slow-roll
inflation, the effective potential is defined to be

zS =
aφ̇

H
. (5.2.6)

At large scales where φ̇ and the Hubble parameter H are taken to be constant, we
have that zS ∼ a is an increasing function of time and we say that inflation is in an
attractor phase. From this it follows that the first term in (5.2.5) is growing, while
the second is decaying. As a consequence R ' const is conserved at large scales,
resulting in a scale invariant spectrum [79].

However, when we study deviations from the canonical inflation paradigm, there
are cases where, for a short period, z can be a rapidly decreasing function of time.
Then the inflationary evolution is no longer an attractor. In that case the second
term in (5.2.5) becomes a growing mode. This in turn enhances the amplitudes of
modes, leaving the horizon during that time, leading to new observational signatures
in the power spectrum. This can occur for example in models where the scalar
derivative rapidly decreases for a short period, as in inflection point ultra slow-roll
and in constant roll inflationary systems (see e.g. [156–163]) or in the Starobinsky
model due to a rapid change in the potential slope [164]. Recently these scenarios
have received a renewed interest, since an amplification of scalar perturbations can
lead to the production of primordial black holes from single field inflation (see e.g.
[165–167] for general reviews and [168–177] for specific models).

Although the non-attractor phase of inflation lies well outside the slow-roll
regime, a duality exists [178] which allows an analytical description of the statistical
features of the enhanced spectrum of fluctuations.

The aim of this work is to present a framework that can produce a similar
enhancement of primordial tensor modes during a phase of non-attractor single-
field inflation. This is phenomenologically interesting because interferometers can
probe a stochastic background of gravitational waves at much smaller scales (see the
textbooks [179,180]) as opposed to CMB polarization that can be used to probe the
amplitude of the gravitational wave background at large CMB scales (see e.g. the
reviews [181,182]). Inflationary models that enhance the primordial tensor spectrum
at interferometer scales could be tested with current or future ground or space based
interferometers.

67



5. NON-ATTRACTOR INFLATION

One way to produce such an enhancement is by exploiting instabilities of addi-
tional source fields during inflation. For example, primordial gravity waves can be
enhanced by coupling fields driving inflation with additional scalars [183–188], U(1)
gauge vectors [114,189–192], non-Abelian vector fields [193–203] or Standard Model
fields [204]. Another approach is to implement space-time symmetry breaking during
inflation. Ways to do so are scenarios of (super)solid inflation (see e.g. [205–214]) or
massive gravity/bigravity models, [215–217]. See e.g. [218] for a more extensive sur-
vey of various models proposed so far, focussing on the detectability of inflationary
tensor modes with LISA.

The aim of this work is to present a mechanism that can enhance the spectrum
of primordial tensor fluctuations, in single-field inflation, at arbitrary scales. We do
so by considering a model of kinetically driven single field inflation. At superhorizon
scales the would-be decaying mode experiences growth for a short period leading to
an enhanced primordial tensor spectrum. This is achieved by introducing disconti-
nuities in the kinetic functions which is analogous to systems with discontinuities in
the potential, such as in the Starobinsky model [164].

The paper is organized as follows. In Section 5.3 we study the second-order action
for primordial tensor fluctuations in single-field inflation. We identify conditions for
obtaining a large enhancement in the tensor spectrum. This is achieved by realizing
a non-attractor phase for tensors which only lasts for a fewN -folds. During that time
the would-be decaying tensor mode is enhanced. These conditions are analogous to
the requirements discussed in various works, starting with [219–221], for enhancing
scalar modes during non-attractor phases and motivate our search for models of
inflation with specific non-minimal couplings of tensors to the inflationary scalar
field.

In order to gain analytic control of the dynamics of fluctuations in a non-attractor
phase, we identify a criterium, in Section 5.4, which we call tensor duality, that en-
sures identical behaviour, up to an overall factor, for the dynamics of perturbations
in two different regimes of the inflationary evolution. This is the generalization to
the tensor case of the duality discussed by Wands [178] for the scalar sector. We
determine the tensor dual of a phase of standard slow-roll inflation, which corre-
sponds to a period of non-attractor inflation, resulting to a scale invariant spectrum
of tensor fluctuations which is amplified with respect to the standard case.

Using this tensor duality as a guide, in Section 5.5 we build and analyse in
detail a representative model of single-field kinetically driven inflation, belonging
to the G-inflation set-up of [36], which is able to amplify tensor modes during the
non-attractor era. Our system is analogous to the Starobinsky model [164], where
instead of having discontinuities in the potential, we have a discontinuity in the
kinetic functions which causes a short non-attractor phase. Through the tensor
duality, we are then able to analytically investigate the dynamics of fluctuations
during the non-attractor era, showing that the amplitude of the spectra of tensor
(and scalar) fluctuations increases by several orders of magnitude with respect to a
standard slow-roll regime.

Finally, we conclude in Section 5.8 with a discussion of possible future directions
to explore and provide technical Appendices for some of the results in the main text.
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5.3 Formulation

5.3 Formulation

The action for G-inflation for tensor perturbations [36], is given by (MPl = 1)

S(2) =
1

8

∫
dt d3xa3

[
GT ḣ2

ij −
FT
a2

(∇hij)2

]
, (5.3.1)

where GT and FT are defined as

FT = 2
[
G4 −X

(
φ̈G5X +G5φ

)]
,

GT = 2
[
G4 − 2XG4X −X

(
Hφ̇G5X −G5φ

)]
,

(5.3.2)

and hij is the transverse traceless spin-2 tensor perturbation. Going to conformal
time, with

dt

a
= dτ , (5.3.3)

this becomes

S
(2)
T =

1

8

∫
dτ d3xa2

[
GT (∂τhij)

2 −FT (∇hij)2
]
, (5.3.4)

where the time-dependent factors GT and FT scale the spatial and time parts of the
quadratic action. The speed of gravitons is given by

c2
T =
FT
GT

. (5.3.5)

It is convenient to define a new time variable

dy =
cT
a

dt = cT dτ . (5.3.6)

With this redefinition the action for tensor fluctuations describes a free field propa-
gating in a time-dependent background, given by

S
(2)
T =

1

2

∫
dy d3xz2

T (y)
[
(∂yhij)

2 − (∇hij)2
]
. (5.3.7)

In terms of the above, the effective potential for tensors is given by

z2
T =

a2

4
cTGT =

a2

4

√
FTGT . (5.3.8)
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The evolution equations for tensors in Fourier space read

h′′ij + 2
z′T
zT
h′ij + k2hij = 0. (5.3.9)

At superhorizon scales (k2 � |z′′T/zT |) the last term in (5.3.9) can be neglected,
giving the general solution

hij(y) = C1 + C2

∫ y dy′

z2
T (y′)

, (5.3.10)

with C1, C2 being integration constants. In the standard case of slow-roll inflation zT
increases rapidly with time so that the second term becomes negligible. The usual
prescription is to neglect this term and fix the constant C1 by matching the sub-
and superhorizon solutions at horizon crossing. This means that tensor modes are
conserved at superhorizon scales.

In what follows, we consider the case where, for a short period, zT is a decreasing
function of time, i.e. the second term in (5.3.9) changes sign so that the second term
in (5.3.10) starts to grow and dominates the tensor dynamics. Consequently the
tensor modes exiting the horizon at that time are enhanced as they do not ”freeze”
like in the usual case of slow-roll inflation, but instead they continue to grow at
superhorizon scales. Since the would-be decaying mode is no longer suppressed by
inverse powers of the scale factor, the system enters a non-attractor regime for the
tensor sector:

z′T
zT

< 0 ⇒ non-attractor phase ⇒ amplification of tensor modes.

(5.3.11)

A short period where the system exhibits such behaviour can be realized if the
functions FT and GT in (5.3.8) are heavily time-dependent [220]. This is similar to
mechanisms employed for producing primordial black holes from single field inflation
[221].

We propose that this mechanism can be used to amplify the tensor spectrum
resulting from inflation, as long as there is a short period where slow-roll inflation is
violated. This introduces discontinuities in the field dynamics making it difficult to
treat the problem analytically as we can no longer analytically describe it by means
of the usual slow-roll formulae. For this reason we employ a tensor duality which
enables us to have analytic control during the phase that the system experiences
heavy time-dependence. Next, we briefly review this tensor duality.

5.4 Tensor duality

The idea of duality for scalar fluctuations was first explored in [178], followed by the
works in [222–229]. It allows one to identify scenarios that are able to produce a
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scale invariant spectrum of fluctuations without invoking a phase of quasi-de Sitter
expansion, as in bouncing cosmologies (see e.g. [230, 231] for recent reviews on this
broad topic). The same concept can be applied to the description of brief transient
phases of non-attractor evolution during inflation, as first discussed in [220, 221],
explaining some of the key features of scalar power spectra in these regimes. In this
Section we develop further this idea, extending it to the physics of tensor modes,
with the aim of setting the stage for determining scenarios that enhance tensor
fluctuations during non-attractor inflationary regimes.

We start by looking at the action in (5.3.7) which can be rewritten in terms of
the canonically normalized tensor field

hij =
qij
zT
. (5.4.1)

In this way, we bring the quadratic action for tensors to the standard form, given
by

S
(2)
T =

1

2

∫
dy d3x

[
(q′ij)

2 − (∇qij)2 +
z′′T
zT
q2
ij

]
, (5.4.2)

where we use a prime to denote derivatives with respect to the variable y. This
corresponds to the action of a harmonic oscillator with a time-dependent effective
mass ∼ −z′′T/zT . In [178] it was shown that z′′T/zT remains invariant under trans-
formations of the effective potential zT (y), which has the general form

z̃T (y) = zT (y)

(
c1 + c2

∫ y dy′

z2
T (y)

)
, (5.4.3)

where c1, c2 are constants. This process leaves the quadratic action and therefore
the equations of motion unchanged. Consequently the solutions to the evolution
equations qij remain invariant, i.e. under this transformation, we have that

z̃′′T
z̃T

=
z′′T
zT
, (5.4.4)

which leaves the canonically normalized tensor field qij unaffected. Since the action
in (5.4.2) contains the same canonical tensor field qij after the redefinition of zT , we
can use this to relate the original tensor fluctuations hij in (5.4.1) to the new tensor
fluctuations h̃ij = qij/z̃T , by


hij = qij/zT

h̃ij = qij/z̃T

⇒ h̃ij =

(
zT
z̃T

)
hij, (5.4.5)

where we call h̃ij the tensor dual of hij. The quadratic action describing the dynamics
of h̃ij has the same structure as (5.3.7), but contains z̃T instead of zT . From this
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it follows that the power spectra associated with these two tensor fluctuations are
simply related by

Ph̃ =

(
zT
z̃T

)2

Ph. (5.4.6)

This implies that if we have analytic control over the dynamics of the pertur-
bations hij and their spectrum, we can easily control the spectrum for the dual
fluctuations h̃ij. From (5.4.6) we see that if the ratio zT/z̃T is large, the dual tensor
spectrum is enhanced.

5.4.1 The tensor dual of a slow-roll phase

We can use this duality to make contact between the dynamics of the tensor fluctu-
ations hij and their dual h̃ij. The dynamics of the tensor field hij, in the slow-roll
regime, were analysed in [36] where they considered a quasi-de Sitter background
with FT and GT taken to be almost constant. The powerspectrum was found to be
almost scale invariant, with amplitude at horizon exit

Ph =
2H2

π2

G 1
2

F 3
2

, (5.4.7)

where here we neglect the (weak) time-dependence of the Hubble parameter and of
the functions FT ,GT (see e.g. [36] for more complete expressions). In the quasi-de
Sitter slow-roll phase, the effective potential in (5.3.8), is given by

z2
T =

a2

4

√
FTGT ∼ const.× a2. (5.4.8)

We are interested in the case where the dual tensor spectrum Ph̃ in (5.4.6) is en-
hanced, i.e. that’s when zT/z̃T � 1. We can use our knowledge of zT during the
slow-roll phase, i.e. z2

T ∼ a2 in (5.4.8), to make contact with z̃T where, for simplicity,
we work in a pure de Sitter background and take FT and GT to be constant. Using
relation (5.4.3), we find

∂y

(
z̃T
zT

)
= ∂y

(
c1 + c2

∫ y dy′

z2
T (y)

)
∝ 1

z2
T

. (5.4.9)

We can express this, using (5.3.6) in terms of the old time coordinate t, as

∂t

(
z̃T
zT

)
∝ 1

a3
, (5.4.10)

where a ∼ eHt in de Sitter. Integrating this result gives
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z̃T
zT
∝ 1

a3
, (5.4.11)

from which we get

z̃2
T ∝

1

a4
, (5.4.12)

where we have used that during the slow-roll phase z2
T ∼ a2. From this we see

that in the slow-roll phase zT increases with time, while in the dual tensor phase z̃T
decreases, meaning that we are in a non-attractor regime in which tensor fluctuations
can grow at superhorizon scales, as we discussed in Section 5.3. From this we find
that the power spectrum of the dual tensor perturbations, given in (5.4.6), is almost
scale invariant and considerably enhanced

Ph̃ =

(
zT
z̃T

)2

Ph ∝ a6Ph. (5.4.13)

Since the scale factor a ∼ eHt is an increasing function of time, this mechanism allows
one to considerably amplify the tensor spectrum in the regime where the relations
(5.4.9), (5.4.10), (5.4.11) and (5.4.12 )hold. This mechanism is the analogue for the
tensor sector, of the mechanism introduced by [178] and well explored in the scalar
sector by [175].

As we have taken that during slow-roll
√
FTGT ' const., then using the result

in (5.4.12), we find that

z̃2
T (y) =

a2

4

√
F̃T G̃T ∝

1

a4
, (5.4.14)

which implies that during the dual tensor phase we must have that

√
F̃T G̃T ∝

1

a6
. (5.4.15)

This defines a non-attractor regime for tensor fluctuations. In the next Section we
present an explicit example in which we realise such regime during a short phase of
non-attractor inflationary evolution.

5.5 Amplifying tensor modes and realising the

tensor duality

5.5.1 Our aims

We now seek a realization of the amplification mechanism and the tensor duality of
Sections 5.3 and 5.4 in a single-field inflationary system, whose background evolution
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is controlled by the scalar field φ. When non-minimal derivative couplings between
scalar and metric are present, the functions FT are GT can have non-trivial time-
dependent profiles. We look for a set-up where they can be expressed as

GT ∝
φ̇2

H2
and FT ∝

φ̇2

H2
, (5.5.1)

which implies that

√
GTFT ∝

φ̇2

H2
and zT ∼ a

φ̇

H
. (5.5.2)

The reason for this choice is to ‘mimic’ the behaviour of the action for scalar fluc-
tuations, as we now explain. There have been several recent studies utilizing the
mechanism described in the previous sections to enhance scalar fluctuations (see
e.g. [168–175] for recent studies). In particular one can start with the action in
(5.2.1) and apply the scalar duality in [178], namely

z̃S(τ) ∝ zS(τ)

∫ τ dτ ′

z2
S(τ ′)

, (5.5.3)

which states that the statistics of scalar fluctuations do not change in regimes related
by condition (5.5.3). In the dual of a slow-roll, quasi-de Sitter phase of expansion
with φ̇ = const., the scalar velocity must decrease as

˙̃φ ∝ φ̇

∫
dt′

a3(t′)φ̇(t′)
∝ 1

a3
, (5.5.4)

precisely the behaviour one encounters in a non-attractor, ultra slow-roll regime of
inflation. In the scalar dual of a slow-roll phase, scalar fluctuations are enhanced by
a factor PR̃ ∝ a6PR.

Here we extend these ideas to the tensor sector. In particular, we are interested in
scenarios in which a phase of de Sitter expansion (where H and φ̇ are approximately
constant) is briefly interrupted by a phase of non-attractor inflation with de Sitter
expansion, but where φ̇ ∼ 1/a3. In this case, one passes from

√
FTGT = const.

during slow-roll to
√
FTGT ∝ 1/a6 during non-attractor inflation, precisely what

we need to amplify the tensor modes and realise the tensor duality (see equations
(5.4.15), (5.5.1) and (5.5.2)). The simplest possibility for having a regime where
φ̇ transiently decreases during inflation is the scenario of Starobinsky [164] (see
Appendix A of [175] for a detailed analysis of this scenario), in which a linear
inflationary potential V (φ) is continuous but has an abrupt change in its slope for
a certain value of the scalar field. In this case, the scalar field velocity φ̇ rapidly
changes during a short fraction of the inflationary period to adapt its value from the
first to the second slow-roll regime which is characterised by a different potential.
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During the transition its value decreases as φ̇ ∼ 1/a3 for an appropriate choice of
the parameters involved. Whilst the Starobinsky model leads to an enhancement of
scalar fluctuations, tensor modes remain small as FT ∼ GT ∼ 1.

In what follows we put forward a mechanism that can realize a brief period during
which the effective potential is decreasing. We build a version of the Starobinsky
model [164], working in the framework of the Horndeski theory introduced earlier in
the text. We consider an inflationary system which is kinetically driven by a single
scalar field φ and where the functions FT and GT exhibit heavy time-dependence. We
select the parameters of the system in such a way such as to ensure that conditions
(5.5.1) and (5.5.2) are satisfied, so that during the short non-attractor regime, in
which φ̇ ∼ 1/a3, tensor modes are enhanced and the tensor duality applies.

Our purpose is specifically to show that our mechanism for enhancing tensor
fluctuations can be realised in a toy model for inflation. Therefore, we do not aim
at building a realistic inflationary model which matches with CMB observations at
large scales and has a realistic exit from inflation. A more realistic set-up will be
explored elsewhere.

5.5.2 The model

The Horndeski theory was introduced in Section (3.2) where we showed that the
Horndeski action is characterized by non-minimal derivative couplings of the scalar
field to the metric and where Ga(φ,X), a = 1, · · · 5 are generic functions of the scalar
field φ and X = 1/2∂µφ∂

µφ. Scenarios of ultra slow-roll, non-attractor G-inflation
have been discussed in [232], concentrating on the dynamics of scalar fluctuations.
Other single field models of kinetically driven non-attractor inflation have been
explored in [233, 234] (see also [235]), focussing especially on the enhancement of
scalar non-Gaussianity in the squeezed limit.

We are interested in the particular case where a de Sitter inflationary expansion
with H ∼ const. and φ̇ ∼ const. is briefly interrupted by a change to the velocity of
the scalar field, namely φ̇ ∼ a−3. For simplicity, we focus on scenarios of kinetically
driven inflation Ga = Ga(X) and build a version of the Starobinski model [164] in
this context, by choosing the following structure for the functions Ga(X):

G
(i)
2 = ρiX +

√
2

3
H2

0αi
√
X − Vi,

G
(i)
3 =

√
2

3H0

δi
√
X,

G
(i)
4 = − βi

6H2
0

X,

G
(i)
5 =

σi√
2H3

0

√
X,

(5.5.5)

where H0 has units of mass and we denote the dual and non-dual phases of inflation
with i = 1, 2, respectively. We introduce a discontinuity in the functions Ga by
demanding that the magnitude of the dimensionless parameters αi, βi, δi, ρi, σi, Vi
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changes at some time t = t0, where i = 1 corresponds to t < t0 and i = 2 corresponds
to t > t0. Schematically, we have

(αi, βi, δi, ρi, σi, Vi) =

{
α1, β1, δ1, ρ1, σ1, V1, t < t0,
α2, β2, δ2, ρ2, σ2, V2, t > t0.

With these in place, the slope of the scalar field velocity will abruptly change
during inflation (i.e. at time t0) signalling the start of the dual phase. Abrupt
changes/discontinuities at time t0 could be smoothed out by introducing step func-
tions, as in [175]. Another important point to make is that our system enters the
dual phase, where tensor fluctuations are amplified, only for a short period of time.
It is important that the system transitions from kinetic domination to slow-roll
inflation, with z ∼ a, before inflation ends. A graceful exit from inflation could
be ensured by allowing φ to be time-dependent so that we can ensure a standard
Einstein-Hilbert term with G4 = const. after inflation. We leave these considerations
for future investigations.

5.5.3 Background evolution

Using the definitions for the functions Ga(X) in (5.5.5), the background equations
for the scalar field in (3.2.9) read

d

dt

{
a3(t)

[
αi
H2

0

3
+

(
−ρi + δi

H(t)

H0

+ βi
H2(t)

H2
0

+ σi
H3(t)

H3
0

)
φ̇

]}
= 0, (5.5.6)

where J is given by the expression inside the square brackets and i = 1, 2 correspond
to the two phases of evolution, before and after the transition at t = t0. We focus on
solutions where the scalar field velocity is monotonic (with convention φ̇ < 0) and
the scale factor is exponentially increasing (de Sitter space) with constant Hubble
parameter H0 during the entire inflationary evolution. We first consider the case
t ≤ t0, which corresponds to parameters with (i = 1). We solve for φ̇ in (3.2.8),
with J = 0, to find

φ̇ = − H2
0α1

3(−ρ1 + δ1 + β1 + σ1)
, t ≤ t0, (5.5.7)

where H(t) = H0 is the Hubble constant and the scale factor in de Sitter is given by

a(t) = eH0(t−t0). (5.5.8)

Therefore, in the first part of the evolution (t ≤ t0) the scalar field velocity is
constant.

Next we consider the case t ≥ t0, which corresponds to parameters with (i = 2).
We solve for φ̇ in (3.2.8), with J = c2/a

3(t), to find
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φ̇ = − 3c2 +H2
0α2a

3(t)

3(β2 + δ2 − ρ2 + σ2)a3(t)
. (5.5.9)

We ensure that the scalar velocity is continuous by matching the solutions in (5.5.7)
and (5.5.9) at time t = t0 where a(t0) = 1. This is possible if

c2 =
H2

0

3

(
−α2 +

α1(β2 + δ2 − ρ2 + σ2)

β1 + δ1 − ρ1 + σ1

)
. (5.5.10)

Substituting for c2 into (5.5.9), we find that the scalar velocity for t ≥ t0 becomes

φ̇ = − H2
0α1

3(−ρ2 + δ2 + β2 + σ2)

[
α2

(
1− 1

a(t)3

)
+

α1(−ρ2 + δ2 + β2 + σ2)

a(t)3(−ρ1 + δ1 + β1 + σ1)

]
, t ≤ t0.

(5.5.11)

Therefore, in the second part of the evolution (t ≥ t0) the scalar field velocity is
allowed to vary. Assuming that for t ≥ t0 we have α2 � α1 (here we take α2 to be
very small i.e. α2 � 1 and neglect its contributions all together), the system enters
a short phase, lasting from t = t0 until t = t1, during which the scalar velocity is
rapidly decreasing with

φ̇ ' − H2
0α1

3(−ρ1 + δ1 + β1 + σ1)a(t)3
⇒ φ̇ ∝ 1

a(t)3
. (5.5.12)

Therefore, the solutions for the scalar equation in (5.5.7) and (5.5.11) produce the
desired behaviour for the scalar field velocity.

The scalar field velocity returns to a constant value, at time t > t1, when the
last term in (5.5.11) becomes comparable to the first one, with its value defined in
terms of the parameters with (i = 2)

φ̇ = − H2
0α2

3(−ρ2 + δ2 + β2 + σ2)
. (5.5.13)

To ensure the scalar velocity remains continuous at that time we match (5.5.12) and
(5.5.13) at t = t1. This is possible if

α2 '
1

a3(t1)

α1(−ρ2 + δ2 + β2 + σ2)

(−ρ1 + δ1 + β1 + σ1)
. (5.5.14)

In Figure (5.1) we give a schematic behaviour of the field derivative.
The energy constraint (Friedmann) equation for Ej in (3.2.6) becomes

Vi =
φ̇2(t)

2

(
−ρi + 2δi

H(t)

H0

+ 3βi
H2(t)

H2
0

+ 4σi
H3(t)

H3
0

)
. (5.5.15)
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Figure 5.1: Schematic behaviour of the scalar field derivative in our system. Notice
the intermediate non-attractor phase φ̇ ∼ 1/a3. During the entire inflationary evo-
lution the background geometry corresponds to pure de Sitter space. Image credit:
G. Tasinato.

Similarly, the pressure constraint Pj becomes

Vi =
φ̇(t)

6

{
2αiH

2
0 + φ̇(t)

[
3ρi + 3βi

H2(t)

H2
0

+ 6σi
H3(t)

H3
0

+ 2Ḣ(t)

(
βi
H2

0

+ 3σi
H(t)

h3
0

)]
+φ̈(t)

(
2
δi
H0

+ 4βi
H(t)

H2
0

+ 6σi
H2(t)

H3
0

)}
.

(5.5.16)

In the first phase of the evolution t < t0, with i = 1, φ̇ = const. and H(t) = H0, the
constraints (5.5.15) and (5.5.16) correspond to

V1 =
H4

0

18

α2
1(−ρ1 + 2δ1 + 3β1 + 4σ1)

(−ρ1 + β1 + δ1 + σ1)2
, (5.5.17)

and satisfy (3.2.7) with Ej = −Pj, namely

5∑
j=2

(Ej + Pj) = 0. (5.5.18)

In the second phase of the evolution t > t0, with i = 2, the scalar field in (5.5.12) is
time-dependent. In order to satisfy both constraints for H(t) = H0, we take V2 → 0.
The background evolution in (5.5.15) becomes

0 =
φ̇2(t)

2

(
−ρ2 + 2δ2

H(t)

H0

+ 3β2
H2(t)

H2
0

+ 4σ2
H3(t)

H3
0

)
. (5.5.19)
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5.5 Amplifying tensor modes and realising the tensor duality

It is easy to see that the RHS in (5.5.19) will vanish for H(t) = H0, if we choose

ρ2 = 2δ2 + 3β2 + 4σ2. (5.5.20)

Similarly, we find that if we set V2 = 0 and solve (5.5.20) in terms of β2, giving

β2 =
1

3
(−2δ2 + ρ2 − 4σ2), (5.5.21)

the pressure constraint in (5.5.16 ) vanishes1 and we have that (3.2.7) is satisfied.
This way we ensure that we have a pure de Sitter expansion during the phase where,
due to the non-standard kinetic terms, the scalar field is rapidly varying.

After determining the homogeneous background configurations for our system,
we now analyze the behaviour of tensor and scalar fluctuations.

5.5.4 Dynamics of fluctuations

The dynamics of primordial tensor and scalar fluctuations for inflationary mod-
els based on Horndeski theory have been explored in detail in [36]. See instead
e.g. [236, 237] for systematic studies on the dynamics of cosmological fluctuations
in inflationary models with parameter discontinuities. The dynamics of tensor fluc-
tuations around a FRW background metric with homogeneous scalar profile are
described by the quadratic action in (5.3.1). We substitute the definitions in (5.5.5)
to find the form of the functions GT ,FT in (5.3.2). We find

GT =
φ̇2(H0βi + 3σiH(t))

6H3
0

,

FT = −
φ̇(t)

(
H0βiφ̇(t)− 3σiφ̈

)
6H3

0

.

(5.5.22)

For the first part of the evolution t ≤ t0 with i = 1, we use the expression for
φ̇ = const. in (5.5.7), φ̈ = 0 and H(t) = H0, to find

GT =
(β1 + 3σ1)

6

φ̇2

H2
0

= gt1
φ̇2

H2
0

and FT = −β1

6

φ̇2

H2
0

= ft1
φ̇2

H2
0

. (5.5.23)

To ensure correct signs for the kinetic term we demand that β1 < 0, β1 + 3σ1 > 0⇒
σ1 > |β1|/3 > 0.

In the second part of the evolution t0 < t < t1, i = 2, the scalar field is time-
dependent, as per the expression in (5.5.12). We find that the functions GT ,FT
become2

1The expression for Pi is too large to include in the text. To simplify the expression we
substituted for Ḣ(t) = −ε(t)H2(t) and used that ε(t) = 0 in de Sitter.

2Here we simplified FT by expressing φ̈ in terms of the field velocity, H(t) and ε(t), i.e. ȧ(t) =
H(t)a(t) and Ḣ(t) = −ε(t)H2(t). Finally we used that during this phase α2 → 0, a(t0) = a0 = 1
and that H(t) = H0, ε = 0 in de Sitter.
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GT =
(β2 + 3σ2)

6

φ̇2

H2
0

= gt2
φ̇2

H2
0

and FT = −β2 + 9σ2

6

φ̇2

H2
0

= ft2
φ̇2

H2
0

. (5.5.24)

To ensure correct signs for the kinetic term we again demand that β2 + 3σ2 > 0 and
β2 + 9σ2 < 0. This is satisfied with 3|σ2| < β2 < 9|σ2|, where β2 > 0 and σ2 < 0.

The dynamics for scalar fluctuations are described by the quadratic action in
(3.2.16). The find expressions for the functions GS,FS, in (3.2.17), we first need to
calculate the functions Σ and Θ in (3.2.18) and (3.2.19), in terms of our definitions
in (5.5.5). We find

Σ = φ̇2

(
1

2
ρi −

3

2
δi
H(t)

H0

− 3βi
H2(t)

H2
0

− 5σi
H3(t)

H3
0

)
,

Θ = φ̇2

(
δi

6H0

+
βiH(t)

2H2
0

+
σiH

2(t)

H3
0

)
.

(5.5.25)

The expressions for GS,FS are long winded so we won’t display them. We go directly
to expressing their behaviour for the first part of the evolution t ≤ t0 with i = 1, in
the same way as we did earlier for tensors. To simplify things we take that δ1 = 0.
We find

GS =
(β1 + 3σ1)[3β2

1 + ρ1(β1 + 3σ1) + 2σ1(4β1 + 3σ1)]

18(β1 + 2σ1)2

φ̇2

H2
0

= gs1
φ̇2

H2
0

,

FS =
(2β1 + 3σ1)2

18(β1 + 2σ1)

φ̇2

H2
0

= fs1
φ̇2

H2
0

and fs1 =
(ft1 − gt1)2

2gt1 − ft1
,

(5.5.26)

where in the last step we related fs1 to the tensor parameters gt1, ft1 in (5.5.23). We
ensure correct signs for the kinetic terms by demanding β1 + 2σ1 > 0⇒ σ1 > |β1|/2
where, as before, β1 < 0 and σ1 > 0. By combining the conditions for stability
in the scalar and tensor sectors, we find the simple condition β1 + 3σ1 > −β1/2.
Furthermore, condition gs1 > 0 can easily be satisfied by making appropriate choices
for the parameter ρ1.

For the second part of the evolution t0 < t < t1, i = 2, we find

GS =
(β2 + 3σ2)(2β2 + δ2 + 3σ2)

2(3β2 + δ2 + 6σ2)

φ̇2

H2
0

= gs2
φ̇2

H2
0

,

FS =
−2β2

2 + δ2(β2 + 9σ2) + 3σ2(β2 + 3σ2)

6(3β2 + δ2 + 6σ2)

φ̇2

H2
0

= fs2
φ̇2

H2
0

,

(5.5.27)

where we used the expression for ρ2 in (5.5.20) to simplify gs2. We also find the
following relations

gs2 =
3

5
(fs2 + ft2 + 5gt2),

ρ2 = −ft2(fs2 + ft2) + 19gt2(fs2 + ft2) + 60g2
t2

fs2 + ft2
.

(5.5.28)
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5.6 Enhancement of fluctuations

As we have already chosen β2 > 0, and σ2 < 0, we demand that the nominator and
denominator of fs2 are negative which guarantees fs2 > 0, by appropriately choosing
values for δ2 < 0. This also implies that ρ2 < 0. Finally we can see from relation
(5.5.28) that gs2 > 0 as long as ft2, gt2, fs2 > 0.

In this work we are only interested to study the enhancement of tensors during
the second part of the evolution. In subsequent parts of the evolution (t ≥ t1) the
behaviour of the fluctuations and therefore the dynamics of the system, that we
are currently studying, will change in order to accommodate a smooth transition
to slow-roll inflation. Consequently, we expect that the parameter α2 will become
important. We leave these considerations for another work.

Next, we analyse an explicit choice of quantities within the available param-
eter space which satisfies the aforementioned stability conditions and discuss the
corresponding physical consequences.

5.6 Enhancement of fluctuations

With all of the above in place we can now examine the physical consequences of our
model. We find that in the second part of the phase, both the scalar and tensor
fluctuations can be enhanced.

In the first part of the phase t < t0, using (5.5.7), we have that the effective
potential for tensor fluctuations, is given by

zT =
a

2
(GTFT )

1
4 =

aφ̇

2H0

(gt1ft1)
1
4 = −a(t)

α1H0(ft1gt1)
1
4

6(−ρ1 + δ1 + β1 + σ1)
, (5.6.1)

while the effective potential for scalars is given by

zS =
√

2a(GSFS)
1
4 =

√
2aφ̇

H0

(gs1fs1)
1
4 = −a(t)

√
2α1H0(fs1gs1)

1
4

3(−ρ1 + δ1 + β1 + σ1)
. (5.6.2)

In the second part of the phase t0 < t < t1, using (5.5.12), we have

z̃T =
a

2
(GTFT )

1
4 =

aφ̇

2H0

(gt2ft2)
1
4 = − 1

a2(t)

α1H0(ft2gt2)
1
4

6(−ρ1 + δ1 + β1 + σ1)
, (5.6.3)

and

z̃S =
√

2a(GSFS)
1
4 =

√
2aφ̇

H0

(gs2fs2)
1
4 = − 1

a2(t)

√
2α1H0(fs2gs2)

1
4

3(−ρ1 + δ1 + β1 + σ1)
. (5.6.4)

It is now clear that, with the scalar velocity behaving like φ̇ ∝ a−3, we realize the
condition in (5.4.15) and the tensor duality indicated in (5.4.13). Therefore, we
expect that modes leaving the horizon during the time interval t0 < t < t1 will
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5. NON-ATTRACTOR INFLATION

receive an exponential enhancement proportional to a6 (recall a ∼ exp[H0t] in de
Sitter). Please note that since, during this phase, fluctuations evolve beyond the
Hubble horizon, the power spectra should be evaluated at the end of this phase at
t = t1, as opposed to taking the limit t → 0, which is when we recover standard
slow-roll inflation dynamics.

Using the above, we find that the tensor power spectrum at the end of the second
part of the evolution can be amplified with respect to the one during the preceding
slow-roll phase, by the following amount

Ph̃
Ph

∣∣∣∣
t=t1

=

(
zT
z̃T

)2∣∣∣∣
t=t1

= a(t1)6

(
gt1ft1
gt2ft2

) 1
2

= a(t1)6

(
β1(β1 + 3σ1)

(β2 + 3σ2)(β2 + 9σ2)

) 1
2

,

(5.6.5)

where we have used (5.5.14) to express the scale factor at t = t1, as

a6(t1) '
(
α1

α2

)2
(−ρ2 + δ2 + β2 + σ2)2

(−ρ1 + δ1 + β1 + σ1)2
. (5.6.6)

It is worth emphasizing that we can enhance the amplitude of the fluctuations
while maintaining a scale invariant statistics in the non-attractor regime3. This
behaviour can be particularly interesting to build models with an enhanced tensor
power spectrum detectable at interferometer scales. See also [238] for a scenario
able to amplify the tensor-to-scalar ratio r at small scales, by reducing the size of
the spectrum of scalar fluctuations.

Similarly to the tensor fluctuations, scalar fluctuations grow during the non-
attractor regime since the scalar pump field z̃S has a similar structure to z̃T . Using
Wands’ duality, the scalar power spectrum reads

PR̃
PR

∣∣∣∣
t=t1

=

(
zS
z̃S

)2∣∣∣∣
t=t1

= a(t1)6

(
gs1fs1
gs2fs2

) 1
2

, (5.6.7)

where gs1, fs1, gs2, fs2 were defined in (5.5.26), (5.5.27) and (5.5.28). Again, we do
not display the evaluation of the terms inside the brackets as the expression is too
long winded.

5.7 Numerical example

Let us now look at a specific example. We define the following set of parameters

(αi, βi, δi, ρi, σi) =


(1,−1, 0, 1, 2.5) t < t0,

(10−3, 1.5,−4,−4.3,−0.2) t > t0.
(5.7.1)

3At scales corresponding to the modes leaving the horizon slightly before the transition to non-
attractor regime, we expect peaks or features in the fluctuation power spectra, whose study require
more careful numerical investigations, see e.g. [221].
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5.7 Numerical example

For this choice, the corresponding field velocity φ̇ and the amplification of |hij|,
using the super-horizon expression in (5.3.10), are shown in Figure 5.2. However,
we would like to note that equation (5.3.10) can be only used as a rough indicator of
the enhancement of the fluctuations as it relies on strict super-horizon limit k = 0
(see for example [221] for a detailed discussion on this issue). On the other hand, to
obtain a more accurate estimate on the enhancement we use the expressions based
on the duality in (5.6.5) and (5.6.7) with the parameter choices in (5.7.1).

From this we find that the tensor power spectrum in (5.6.5) can be enhanced by
a factor of (zT/z̃T )2 ≈ 5 × 107, while the scalar power spectrum in (5.6.5) can be
enhanced by a factor of (zS/z̃S)2 ≈ 5 × 106. At the same time we ensure that the
system obeys all the stability constraints for both scalars and tensors4.

We can also use these parameter choices to investigate the behaviour of the scalar
velocity and the tensor amplitudes. We find, using (5.5.7), that the velocity of the
scalar field at time t ≤ t0 becomes

∣∣∣∣∣ φ̇H2
0

∣∣∣∣∣ =

∣∣∣∣− α1

3(−ρ1 + δ1 + β1 + σ1)

∣∣∣∣ = |−0.67|. (5.7.2)

For the second part of the evolution, we use that the number of e-folds can be
written as dN = H dt = d ln a, to express the scale factor 5 as a(t) ∼ exp

[∫
dtH

]
=

exp[N(t)]. As the second part of the phase ends at t = t1, we solve for N using
(5.5.14)

a3(t1) = e3N ' α1

α2

(−ρ2 + δ2 + β2 + σ2)

(−ρ1 + δ1 + β1 + σ1)
⇒ e3N ' 3200⇒ N ' 2.7. (5.7.3)

From this we find that the enhancement of the scalar and tensor fluctuations is
mainly controlled by the duration of the second part of the evolution, namely by
the ratio α1/α2. We find this is the dominant contribution towards the number of
e-folds with α1/α2 ≈ 1000⇒ N ≈ 2.3. The rest of the model parameters contribute
only a factor of ≈ 3 which gives a negligible contribution of ≈ 0.36 towards the
number of e-folds. Therefore, the role of these parameters is simply to ensure that
the stability conditions are satisfied for both sectors, as they do not add much else
into the model.

We can express the velocity of the field at t0 < t < t1, using (5.5.11), in terms
of the number of e-folds a(t) ∼ exp[N ], giving

4Interestingly, we learn that scalar fluctuations are less enhanced than tensor ones. This could be
useful when building more realistic scenarios of our mechanism, to avoid constraints from excessive
primordial black hole production.

5The usual convention, found in the literature is to adopt a minus sign so that N is large and
decreasing as we approach the end of inflation (i.e. while the scale factor increases). Here we
are interested to find how many e-folds the second part of the evolution lasts for, where N = 0
corresponds to the transition point, so we adopt sign convention opposite to that of the literature
with a ∼ exp[N ].
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∣∣∣∣∣ φ̇H2
0

∣∣∣∣∣ =

∣∣∣∣−0.208e−3N

(
3.199 +

e3N

1000

)∣∣∣∣. (5.7.4)

We use the above to plot the behaviour of the scalar field velocity φ̇ during the
transition. This is displayed on the left graph in Figure (5.2). The scalar field has
constant velocity until the time t = t0 where its velocity starts decreasing, lasting
∆N = 2.7 e-folds. During this time we have, using (5.5.12), that φ̇ ∝ exp[−3N ].

To find the behaviour of the tensor amplitudes during this time, we make use of
the relationship between the tensor field and its dual in (5.4.5). Using (5.3.10), we
have

hij =
z̃T
zT
h̃ij =

z̃T
zT

(
C1 + C2

∫ a1

a0

dt
cT

H0a2(t)z̃2
T (t)

)
, (5.7.5)

where we have rewritten the integrand as shown below

∫ y1

y0

dy
1

z̃2
T (y)

=

∫ t1

t0

dt
cT

a(t)z̃2
T (t)

=

∫ a1

a0

da
cT

H0a2(t)z̃2
T (t)

. (5.7.6)

In the second step we expressed the integrand with respect to the coordinate time
and in the last step we used a(t) = exp[Ht]⇒ da = Ha dt to express it in terms of
the scale factor. We can use the expression for z̃T in (5.6.3) and the relations for ft1
and ft2 in (5.5.24) to evaluate the integrand. We find

∫ a1

a0

da
cT

H0a2(t)z̃2
T (t)

=
64000

√
3
(
−1 + e3N

)
3199 + e3N

, (5.7.7)

where we substituted for a(t1) = exp[3N ]. Therefore, in the second part of the
evolution we have

hij =
z̃T
zT
h̃ij = 10−7

(
1 +

64000
√

3
(
−1 + e3N

)
3199 + e3N

)
, (5.7.8)

where we have used the approximate value (zT/z̃T )2 ≈ 107, meaning (z̃T/zT )2 ≈ 10−7

and have set C2 = C1(H0/cT ). The behaviour of |hij| is shown in the right graph
of Figure (5.2). As expected, the tensor fluctuations are enhanced, starting at the
transition point N = 0 and lasting for 2.7 e-folds.

Finally, we quickly remark on the speed of propagation for tensor and scalar
fluctuations, in our model. The kinetic functions for both scalars and tensors are
characterised by the relations GS 6= FS and GT 6= FT , which lead to fluctuations
propagating with non-trivial speeds. These are given by
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Figure 5.2: The behaviour of φ̇ and |hij| through the transition to the non-attractor
phase where we have used the expressions (5.5.12) and (5.3.10), respectively. On
the right, we have set C2 = C1(H0/cT ) with C1 = 10−7 in (5.3.10) to show the
evolution of |hij|. For both plots we have the following choice of parameters: α1 =
1, β1 = −1, σ1 = 2.5, ρ1 = 1, δ1 = 0, α2 = 10−3, β2 = 1.5, σ2 = −0.2, δ2 =
−4, ρ2 = −4.3 where N = 0 corresponds to the transition point. In these plots the
non-attractor phase lasts approximately ∆N ' 2.7 e-folds.

c2
S =

{
fs1/gs1 t < t0,
fs2/gs2 t > t0,

and

c2
T =

{
ft1/gt1 t < t0,
ft2/gt2 t > t0.

Using our parameter choices, we find that during both phases of the inflationary
evolution, t < t0 and t > t0, the speed of propagation for the fluctuations is less
than unity, i.e. c2

s < 1 and c2
T < 1. In particular, we have c2

T ≈ 0.15 during t < t0
and c2

T ≈ 0.33 during t > t0. Similarly, we have c2
s ≈ 0.69 during t < t0 and c2

s ≈ 0.89
during t > t0.

5.8 Outlook

In this work we discussed a new mechanism to amplify tensor fluctuations during
single field inflation, by exploiting a phase of non-attractor evolution. We have iden-
tified the necessary condition for amplifying the tensor spectrum at super-horizon
scales, in terms of (5.3.8), which decreases with time during a phase of the infla-
tionary evolution. Through this process the would-be decaying tensor mode gets
enhanced and increases the size of tensor fluctuations. We determined a criterium,
which we dub tensor duality, which allows us to analytically estimate the statistical
properties of the amplified tensor fluctuations during the non-attractor era. We then
built and investigated in detail a concrete model of kinetically driven inflation able
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to satisfy our conditions and analytically determined the properties of the enhanced
spectrum of tensor modes in this set-up. Much work is left for the future:

� Our concrete scenario is based on G-inflation, since we need a non-trivial
kinetic mixing between scalar and metric to realise our mechanism. It will be
interesting to understand whether other realisations can exist, for example by
means of sudden changes in the tensor sound speed due to effects of new heavy
physics or string theory, as in [239].

� The quadratic tensor action we obtained in our system is distinct from the
one of single-field inflation with standard kinetic terms, but a sequence of
conformal and disformal transformations can recast it in standard form [135].
In Appendix A.13 we show that our system, during the non-attractor era, can
be disformally related to a rapidly contracting universe. It will be interesting to
further explore the physical implications of disformal transformations during
non-attractor regimes.

� We provided evidence that the spectrum of tensor fluctuations can be non-
Gaussian, besides being enhanced. It will be important to analytically study
in more details the amplitude and shape of non-Gaussianity of tensor modes
in our set-up.

� Finally, it will be important to build a complete and realistic scenario (based
on G-inflation or on other theories) able to sufficiently amplify tensor modes at
interferometer scales and study prospects for the detectability of the stochastic
primordial tensor background and its non-Gaussianity.

Finally, tensor non-Gaussianity, is an observable that can be useful for dis-
criminating among primordial and astrophysical stochastic gravitational wave back-
ground detectable with interferometers [240]. Tensor non-Gaussianity is also an
important observable for characterizing the primordial stochastic gravitational wave
background at CMB scales and have been explored in other contexts, see e.g.
[200, 203, 241]. We plan to examine this subject, in the tensor-dual regime, in the
next Chapter.
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6. Non-Gaussianity in non-attractor
inflation

6.1 Abstract

We investigate primordial tensor non-Gaussianity in single field inflation, during
a phase of non-attractor evolution when the spectrum of primordial tensor modes
can be enhanced to a level detectable at interferometer scales. Making use of a
tensor duality we introduced in [8], we analytically compute the full bispectrum
of primordial tensor fluctuations during the non-attractor era. During this epoch
the shape of the tensor bispectrum is enhanced in the squeezed limit, its amplitude
can be amplified with respect to slow-roll models and tensor non-Gaussianity can
exhibit a scale dependence distinctive of our set-up. We prove that our results do
not depend on the frame used for the calculations.

6.2 Introduction

The possibility to directly detect a stochastic background of primordial tensor modes
with gravitational wave experiments would offer new ways to probe the physics of
inflation. Such an opportunity would allow us to probe a much larger range of
frequency scales than what can be tested with CMB physics. Various scenarios have
been proposed for enhancing the primordial tensor spectrum at interferometer scales:
from coupling the inflation to additional fields, whose dynamics are characterised
by instabilities that amplify the tensor spectrum (see e.g. [114, 183–191, 193–204,
242]), to models that break space-time symmetries during inflation, leading to a
blue spectrum for primordial tensor modes (see e.g. [205–217]). See the general
discussion in [218].

Here we consider scenarios of single field inflation in which the inflationary slow-
roll expansion is briefly interrupted in which case the inflationary expansion un-
dergoes a brief phase of non-attactor dynamics that amplify the tensor modes.
Non-attractor cosmological evolution is known to enhance the scalar sector of fluc-
tuations, for example during ultra-slow roll or in constant roll inflationary sys-
tems [156–164]: this property has been exploited in models producing primordial
black holes in single-field inflation (see e.g. [165–167] for reviews and [168–176] for
specific models).
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During this time the amplitude of the would-be decaying mode becomes amplified
(while the growing mode has a constant amplitude) instead of being suppressed at
superhorizon scales, which is the usual case for slow-roll inflation. This can enhance
the tensor spectrum which may be detectable at interferometer scales. This type of
system was discussed in the previous Chapter [8] where it was demonstrated that
one can maintain analytic control over the dynamics of the tensor modes during the
short period that slow-roll inflation is violated, by employing a tensor duality [178]
which maps the evolution of tensor fluctuations during the non-attractor phase to
the dynamics of tensor fluctuations in a slow-roll phase of expansion. We use the
duality to obtain an analytic control on the physics of tensor modes during the
phase of non-attractor evolution, even if we are far from a slow-roll approximation
and to analytically compute the properties of tensor non-Gaussianity during the
non-attractor phase. This enables us to derive analytic expressions for the tensor
bispectra, which would be mostly the focus of this Chapter.

Tensor non-Gaussianity is an interesting observable which can help to charac-
terise and distinguish different scenarios of inflation that enhance tensor modes at
small or large frequency scales (see e.g. [64, 137, 141, 142, 200, 203, 243–251] and the
review in Section 5 of [240] for more a comprehensive reference list).

In what follows, we show that the tensor bispectrum can be enhanced if slow-
roll inflation is violated for short period of time, as in our setup. We find that
its shape is amplified in the squeezed limit, as during this time the bispectrum
does not satisfy Maldacena’s consistency relation [64], which simply states that
single-field inflation cannot result to large non-Gausianity at the squeezed limit.
We find that the bispectrum, in our case, is parametrically amplified with respect
to the standard slow-roll scenario. Additionally, we find the bispectrum is scale
dependent, in such a way that it could help to distinguish it, in the future, from other
frameworks that produce large tensor non-Gaussianity. Finally, we show that our
results remain the same after applying a disformal plus a conformal transformation
to our system. These transformations, at quadratic level in a perturbative expansion
in tensor fluctuations, render the system identical to Einstein gravity minimally
coupled with a scalar field [135, 136]. On the other hand, as we shall discuss, at
cubic level in a perturbative expansion tensor interactions include terms as ḣ3

ij which
cannot be associated with contributions of standard Einstein gravity.

In Figure (6.1) we show how, in our system, the spectrum of the superhorizon
modes can be amplfied to enter within the sensitivity curves for GW detectors,
using formula (5.6.5) and assuming, for simplicity, instantaneous transitions between
attractor and non-attractor eras. The Figure in (6.1) is only indicative, because it
does not take into account the transition phases during different epochs and, above
all, does not take into consideration additional model-dependent constraints from
amplification of scalar modes.

6.3 The two-point function

The behaviour of the system during the first and second part of the evolution were
analysed in the previous Chapter. The action in (5.4.2) was given in terms of
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Figure 6.1: We show qualitatively how primordial tensor modes get amplified during
a non-attractor phase. They can contribute to the GW energy density ΩGW and thus
enter within the sensitivity curves for GW detectors in their appropriate frequency
ranges (expressed in Hz). We model inflation as a pure de Sitter phase, during which
a short period of non-attractor evolution occurs – whose starting time and duration
depend on the model one considers – enhancing the tensor spectrum. We use formula
(5.6.5) and assume for simplicity instantaneous transitions between attractor and
non-attractor eras. Our conventions for the definition of the GW energy density
ΩGW are the same as in [6]. Image credit: Plots by Cari Powell.

the canonically normalized variable qij in (5.4.1). From this we get the evolution
equation for tensor fluctuations in Fourier space is given by the standard expression

q′′ +

(
k2 − z′′T

zT

)
q = 0, (6.3.1)

where q = q(k, y). Using (5.4.4) and the expression for zT in (5.3.8), we find

q′′ +

(
k2 − 2

y2

)
q = 0, (6.3.2)

which has exact solution

q = − 1√
2k

(
1− i

ky

)
e−iky. (6.3.3)
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The solution q at small scales becomes

lim
|ky|→∞

q = − 1√
2k
e−iky. (6.3.4)

Using (5.4.1), the tensor perturbations can be expressed as

h =
q

zT
= −

e−iky
(

1− i
ky

)√
2Hy

√
FT cTk3

=
i
√

2H√
FT cTk3

(1 + iky)e−iky, (6.3.5)

which is the same with the solution in [252] (see eq (11)) during slow-roll inflation.
Note that we evaluated zT in terms of y by using that a = −[H(y/cT )]−1 in de
Sitter. At large scales, the solution becomes

lim
|ky|→0

h = − i
√

2H√
FT cTk3

. (6.3.6)

The tensor two-point function was defined in (2.3.11) and (2.3.12). Using (2.3.23),
we evaluate the tensor powerspectrum to be

Ph =
k3

2π2
Pij,ij =

k3

2π2

2H2

FT cTk3
psij(k)psij(k) =

2

π2

H2

FT cT
. (6.3.7)

During the second part of the evolution (t0 < t < t1) the tensor kinetic term
evolves as FT ∝ a−6, which is heavily-time dependent. This can be easily seen by
substituting (5.5.12) in (5.5.24). Therefore the amplitude of the tensor spectrum
grows on super-horizon scales and it has to be evaluated at the end of the non-
attractor era.

Using (5.5.13) and (5.5.24), we define

FT (y) = F (0)
T

(
y

y0

)6

, GT (y) = G(0)
T

(
y

y0

)6

, (6.3.8)

where we have absorbed constant parameters in

F (0)
T =

ft
Λ2

H2
0α

2
1

9(−ρ1 + δ1 + β1 + σ1)2
, G(0)

T =
gt
Λ2

H2
0α

2
1

9(−ρ1 + δ1 + β1 + σ1)2
, (6.3.9)

therefore, cT =
(
fT
gT

) 1
2

and we have y0 = − cT
H0

. In the non-attractor era the solution

in (6.3.5) takes the form

h =
i
√

2H√
F (0)
T cTk3

(1 + iky)e−iky
(
y0

y

)3

. (6.3.10)
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From this we find the power spectrum in, (6.3.7), becomes

Ph =
2

π2

H2
0

F
(0)
T cT

(
y6

0

y6
end

)
. (6.3.11)

6.4 Tensor non-Gaussianity in non-attractor in-

flation

Experiments, so far, have shown that the bispectrum for scalar fluctuations is Gaus-
sian. On the other hand if, in the future, we make a detection of large tensor
non-Gaussianity with interferometers, then it is likely that it will be of primordial
origin, since astrophysical stochastic gravitational backgrounds, which are usually
formed by many unresolved sources, are likely to be Gaussian due to the central
limit theorem.

The bispectrum has many important properties that can help us distinguish
between different inflationary models or other primordial sources that can produce
an amplified tensor spectrum at interferometer scales. Some of these are the shape,
scale dependence and its value at the squeeze limit [136].

In this Section we study the tensor bispectrum resulting during the short regime
where slow-roll inflation is violated. Our starting point is the Horndeski cubic action
for tensor perturbations, expanded around an FRW background

S
(3)
T =

1

4

∫
dτ d3x

[
a2FT

(
hjlhik −

1

2
hklhij

)
∂k∂lhij +

Xφ′G5X

12
h′ijh

′
jkh
′
ki

]
, (6.4.1)

where prime denotes differentiation with respect to the conformal time τ and MPl =
1. The first term in (6.4.1) contains only spatial derivatives and for FT = 1 it is
proportional to the Einstein-Hilbert term expanded to cubic order. For convenience
we dub it S

(3)
T (GR). The last contribution, which contains three time-derivatives, is

unique to the Horndeski theory so we dub it S
(3)
T (new). Contributions with (h′ij)

3

usually appear at the cubic Lagrangian for gravitational square curvature terms, i.e.
from the Weyl squared tensor.

The action in (6.4.1) was studied in the slow-roll case in [43, 252], where they
found that the“GR” term is enhanced in the squeezed limit and the “new” term
peaks in equilateral configurations. In what follows we study tensor non-Gaussianity
during the second part of the evolution where slow-roll conditions are violated.

As in the previous Sections, we choose to work in an exact de Sitter background
with H = H0 = const. We first compute the “GR” contribution. Relation (2.5.6)
becomes
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〈h3(τe)〉 = 2 Re

{
−ihtm(k1, τe)hnr(k2, τe)hpv(k3, τe)

×
∫ τe

−∞(1−iε)
dτ

∫
d3x

(
−1

4
a2FT

)[
hjl(x, τ)hik(x, τ)

− 1

2
hkl(x, τ)hij(x, τ)

]
∂k∂lhij(x, τ)

}
,

(6.4.2)

where the initial time τ0 is taken to be some early time in the far past when per-
turbations are still within the horizon τ0 → −∞. The upper limit τe = τend denotes
the end of the second part of the evolution (in the usual case of slow-roll inflation,
it would denote the end of inflation and therefore τe → 0). The details of this
calculation can be found in Appendix [A.14]. The three-point function becomes

〈h3(τe)〉 = (2π)3δ(k1 + k2 + k3)T (GR)
tmnrpv

(
2 Re[I(GR)(τ)]

)
, (6.4.3)

with the polarization expressed in terms of the relations in (2.3.12), as

T (GR)
tmnrpv =

{
(k3l · k3k)

[
Πtm,jl(k1)Πnr,ik(k2)− 1

2
Πtm,kl(k1)Πnr,ij(k2)

]
× Πpv,ij(k3) + 5 perms of 1, 2, 3

}
,

(6.4.4)

and where the final result is given in terms of the power spectrum in the non-
attractor era (A.14.12), as

2 Re
[
I(GR)

]
= −(2π)4P 2

h∏
i k

3
i

K3

64

(
1−

3
∑

i 6=j k
2
i kj

K3
− 6

∏
i ki

K3

)
y2

end + · · · , (6.4.5)

where K = k1+k2+k3 and dots indicate terms higher-order in Kyend i.e. ∼ (Kyend)3.
Here we use “end” to denote the end of the non-attractor phase. In the above, we
expressed the result in (6.4.5) in terms of the variable y in (5.3.6). With these
ingredients we rewrite the bispectra associated with the “GR” term as

〈h3(τe)〉 = (2π)7δ(k1 + k2 + k3)
P end
h∏
k3
i

AGR
tmnrpv, (6.4.6)

where we have defined AGR
tmnrpv = AGR(k1, k2, k3)T (GR)

tmnrpv, with AGR(k1, k2, k3) =

2 Re
[
I(GR)

]
. Next, we consider the second term in (6.4.1),

L =
aXG5X

12

φ′

a
h′ijh

′
jkh
′
ki =

1

12

σiA
2
1H0

18
√

2
a−5h′ijh

′
jkh
′
ki, (6.4.7)
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where

φ′

a
= −H

2
0A1

3
a−3, X =

1

2

(
φ′

a

)2

=
1

2

H4
0A

2
1

9
a−6,

G5X =
σi√
2H3

0

a

φ′
=

σi√
2H3

0

(
− 3

H2
0A1

)
a3.

(6.4.8)

The three-point function becomes

〈h3(τe)〉 = 2 Re
{
− ih(k1, τe)h(k2, τe)h(k3, τe)

∫ τe

−∞(1−iε)
dτ

(
−1

2

σ1A
2
1H0

18
√

2

)
a−5

∂τh
∗
s(k1, τ)∂τh

∗
s(k2, τ)∂τh

∗
s(k3, τ)Πtm,ij(k1)Πnr,jk(k2)Πpv,ki(k3)

× (2π)3δ(k1 + k2 + k3)
}
,

(6.4.9)

where the minus sign inside the brackets in the integral comes from taking L = −Hint

and we have accounted for a symmetry factor of 6. Again, we express the three-point
function as in (6.4.3). We have

〈h3(τe)〉 = (2π)3δ(k1 + k2 + k3)T (new)
tmnrpv

(
2 Re[I(new)(τ)]

)
, (6.4.10)

where the polarizations are given by

T (new)
tmnrpv = Πtm,ij(k1)Πnr,jk(k2)Πpv,ki(k3), (6.4.11)

and where we have used the form of the solutions in (A.14.7), (A.14.8), (A.14.9),
and that a−5 = −(H0τ)5, to express

I(new) = −i y12
0

23(k1k2k3)3z6
0c

18
T

1

2

σ1A
2
1H

6
0

18
√

2

× (i− cTk1τe)(i− cTk2τe)(i− cTk3τe)τ
−9
e e−icTKτe

×
∫ τ0

−∞(1−iε)
dτ τ−7

(
3i+ 3cTk1τ − ic2

Tk
2
1τ

2
)(

3i+ 3cTk2τ

− ic2
Tk

2
2τ

2
)(

3i+ 3cTk3τ − ic2
Tk

2
3τ

2
)
eicTKτ ,

(6.4.12)

where the minus sign from the evaluation of the scale factor cancelled the minus
sign from the interaction Hamiltonian and therefore, we have an overall minus sign.
The integrals are evaluated by following the same procedure as before. We find that
to leading-order this gives

Re[I(new)] =
y12

0

23(k1k2k3)3z6
0c

18
T

1

2

σ1A
2
1H

6
0

18
√

2

× τ−12
e

3c3
T

2
K3

(
−1 +

3
∑

i 6=j k
2
i kj

K3
+

6
∏

i ki
K3

)
.

(6.4.13)
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The coefficient is evaluated to be

y12
0

23z6
0c

18
T

1

2

σiA
2
1H

6
0

18
√

2

3c3
T

2
=

1

2

243
√

2σ1

A4
1f

3
t H

12
0

=
6 · 81σ1

2
√

2A4
1f

3
t H

12
0

. (6.4.14)

We finally have

Re[I(new)] =
6 · 81σ1

2
√

2A4
1f

3
t H

12
0

(∏
i

ki

)−3

× τ−12
e K3

(
−1 +

3
∑

i 6=j k
2
i kj

K3
+

6
∏

i ki
K3

)
.

(6.4.15)

This can be written in terms of the power spectrum, per polarization, in the non-
attractor era (A.14.12), as

2 Re[I(new)] =
3

16

σi

2
√

2

1

gt
P 2
h (2π)4

(∏
i

ki

)−3

×K3

(
−1 +

3
∑

i 6=j k
2
i kj

K3
+

6
∏

i ki
K3

)
+ · · · ,

(6.4.16)

where dots indicate terms higher order in Kyend i.e. ∼ (Kyend)2. We can put this
into a more condensed form, by defining

φ̇ = φ̇(0)a−3, X = X(0)a−6, G5X = G
(0)
5Xa

3, (6.4.17)

where

φ̇(0) = − H2
0α1

3(−ρ1 + δ1 + β1 + σ1)
, X(0) =

1

2

(
φ̇(0)
)2

and

G
(0)
5X =

σ1√
2H3

0

(
φ̇(0)
)−1

.

(6.4.18)

Let us also denote the constant

µ(0) = φ̇(0)X(0)G
(0)
5X . (6.4.19)

From this we find that the result in (6.4.16) becomes
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2 Re[I(new)] =
(2π)4P

(end)2

h∏
i k

3
i

3Hµ(0)

16G(0)
T

×

{
K3

(
−1 +

3
∑

i 6=j k
2
i kj

K3
+

6
∏

i ki
K3

)

− 1

4

(
K3 − 5

∑
i 6=j

k2
i kj +

2

K2

∑
i 6=j

k3
i k

2
j

)
(Kyend)2

}
.

(6.4.20)

The contribution of this term to the three-point function can be written similarly to
the expression in (6.4.6). In a similar manner, we define the amplitude Anew

tmnrpv =

Anew(k1, k2, k3)T (new)
tmnrpv, with Anew(k1, k2, k3) = 2 Re

[
I(new)

]
.

At leading-order we find that the result is scale-independent. The difference
between the scale dependence of the AGR and Anew can be understood by analyzing
the time dependence of each term in the interaction Lagrangian (6.4.1). Using that
FT scales like a−6 during the non-attractor phase, the “GR” term can be written
schematically as a−8hhh, while the “new” term scales as a−6hhh. From this it is
evident why the contribution from each term differs by a factor τ−2 at leading order
in the amplitude of the bispectrum.

Before proceeding we should mention that our expressions for the tensor bis-
pectrum contain a characteristic scale dependence ∼ (Kyend) that is distinctive to
our scenario - being absent in other frameworks with large tensor non-Gaussianity.
We have computed the bispectrum at the end of the non-attractor phase, for which
reason there is an explicit dependence in the time yend in our results. Here, for sim-
plicity, we assume that this era is immediately followed by a slow-roll phase where
tensor fluctuations freeze at super-horizon scales. The overall scale dependence of
the tensor bispectrum, controlled by K, is also distinctive in our setup. This is in-
teresting because a scale-dependent non-Gaussianity might be different at different
interferometer scales i.e. LIGO-VIRGO and LISA. It would be interesting to further
explore the phenomenological consequences of this property, which goes beyond the
scope of our work.

Next, we discuss the physical consequences of the tensor three-point function
during a non-attractor era. In order to express our results more concisely it is useful
to decompose the transverse-traceless tensor hij into the helicity basis

ξs(k) ≡ hij(k)e∗sij (k). (6.4.21)

This is because it is more convenient to work with the two independent scalar degrees
of freedom in hij where the right- and left-handed circular polarizations are given by

the scalar field operators ξR ≡ hije
∗(+)
ij and ξL ≡ hije

∗(−)
ij , respectively [137,203,253].

This allows us to express the three-point function in the non-attractor era as
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〈ξ(s1)(k1)ξ(s2)(k2)ξ(s3)(k3)〉 = (2π)7δ(k1 + k2 + k1)
P

(end)2

h∏
i k

3
i

(
As1s2s3(new) +As1s2s3(GR)

)
= (2π)7δ(k1 + k2 + k1)Bs1s2s3(ki),

(6.4.22)

where the bispectrum Bs1s2s3(ki) is defined as the coefficient of the δ-function and
it depends both on the momenta as well the polarization indices. Using (6.4.4) and
(6.4.11), the amplitudes

As1s2s3(new)(GR) = e
∗(s1)
tm (k1)e∗(s2)

nr (k2)e∗(s3)
pv (k3)A(new)(GR)

tmnrpv , (6.4.23)

can be calculated following the method in [254,255].
In terms of the helicity notation used here, we are, essentially, calculating the fol-

lowing three-point function 〈ξ(R,L)(yend,k1)ξ(R,L)(yend,k2)ξ(R,L)(yend,k3)〉, while on
the RHS we will have, schematically, the product e∗±tm(k1)e∗±nr (k2)e∗±pv (k3) contracted
with the expressions in (A.14.14) for the “GR” term and in (A.14.15) for the “new”,
but with the tensor perturbations decomposed in terms of left and right helicity
modes (see [256] for more details). Here we do not perform the explicit calculation
as in [256], but instead we make direct use of the results in [254, 255]. This results
in the following two expressions for the scalar amplitudes

As1s2s3(new) = A(new)(k1, k2, k3)F (s1k1, s2k2, s3k3),

As1s2s3(GR) = A(GR)(k1, k2, k3)
(s1k1 + s2k2 + s3k3)2

2
F (s1k1, s2k2, s3k3),

(6.4.24)

where

F (s1k1, s2k2, s3k3) = e∗+ij (k1)e∗+jk (k2)e∗+ki (k3) = e∗−ij (k1)e∗−jk (k2)e∗−ki (k3)

= −(k1 + k2 + k3)3(k1 + k2 − k3)(k2 + k3 − k1)(k3 + k1 − k2)

64(k1k2k3)2
.

(6.4.25)

The derivation of this expression can be found in [256] (Appendix B) and [257]
(Appendix C). The amplitudes A(GR) and A(new) were given in (6.4.5) (6.4.20),
respectively.

Using these results, we can compute the bispectrum in the limit of squeezed
isosceles triangle, to find that for s1 = s2

Bs1s2s3(k1,−k1,k3 → 0) =

(
P

(end)
h

)2

32k3
1k

3
3

[
3Hµ(0)

G(0)

(
1 +

(k1yend)2

2

)
+

(k1yend)2

2

]
,

(6.4.26)
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while for s1 6= s2 we find zero. With our notation, Maldacena’s consistency condition
reads, in this case, as

Bs1s2s3(k1,−k1,k3 → 0) =

(
3P

(end)
h

)2

64k3
1k

3
3

. (6.4.27)

Therefore, we find that Maldacena’s consistency relation is violated as during the
non-attractor era, besides the usual growing tensor mode, the would-be decaying
mode is excited as well and we are no longer working in a single-tensor adiabatic
system where Maldacena’s arguments apply. This implies that, by tuning the pa-
rameters of this model, the amplitudes of the tensor bispectrum can be enhanced in
the squeezed limit with potentially interesting phenomenological consequences. Sim-
ilar considerations have been developed in the scalar sector, see e.g. [159, 258–261],
where they found non-attractor models with an enhanced scalar bispectrum in the
squeezed limit. See also [207,208,251,262,263] for different scenarios with enhanced
tensor bispectrum.

We introduce the following definition of the non-linearity parameter fNL, as
in [254,255] which is analogous to the standard fNL for the curvature perturbation
and it is defined in terms of equilateral configurations for tensor bispectra, as well
its value depends on the polarizations

f s1s2s3NL(new)(GR) ≡ 30
As1s2s3(new)(GR)

K3

∣∣∣∣
k1=k2=k3

. (6.4.28)

Also, in [254,255] it was found that due the dependence of the non-linearity param-
eter to the polarization (this can be seen from the definitions in (6.4.24)) one has
the following symmetry f++−

NL(new)(GR) = f+−−
NL(new)(GR) and f+++

NL(new)(GR) = f−−−NL(new)(GR).

Using the definitions for the amplitudes in (6.4.24), we find

f+++
NL(new) =

135

512

Hµ(0)

G(0)

(
1 +

5

36
(Kyend)2

)
, (6.4.29)

and

f++−
NL(new) =

15

512

Hµ(0)

G(0)

(
1 +

5

36
(Kyend)2

)
. (6.4.30)

Similarly, for the “GR” term we have

f+++
NL(GR) =

45

4096
(Kyend)2 and f++−

NL(GR) =
5

36864
(Kyend)2. (6.4.31)

From this we conclude that the fNL parameter is positive during the non-attractor
phase, which is similar to the contracting Universe considered in [228]. Addition-
ally, due to the strong scale-dependence of fNL(GR) the bispectrum is dominated by
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Figure 6.2: A+++
(new)(1, x2, x3)/(x2x3) as a function of x2 and x3 where we set

Hµend/Gend
T → 1 (Left). A+++

(GR)(1, x2, x3)/(x2x3) as a function of x2 and x3 (Right).

In both plots we normalized the amplitudes A+++
(new) and A+++

(GR) to unity for equilateral

configurations x2 = x3 = 1 and took −Kyend = 10−2. Image credit: Plots by O.
Ozsoy.

fNL(new) for Kyend � 1 and Hµ(0)/G(0)
T ∼ O(1), in terms of the background Horn-

deski model we are considering here GT = 2(G4−2XG4X−µH). This means that in

order to achieve Hµ(0)/G(0)
T � 1 we need accidental cancellations between the first

two terms in GT > 0 and µH. Note that this situation is not special to the model
considered here as it can arise for general slow-roll scenarios [43].

In Figure (6.2) we plot the shapes of tensor non-Gaussianity in our model.
Since both of the amplitudes have non-trivial scale dependence, we examine the
shape of the amplitude for fixed Kyend. Here we focus on the dimensionless ratio
As1s2s3(new)(GR)/(k1k2k3) of both amplitudes in (6.4.24) following the literature for scalar

perturbations [264]. We see that both the interaction terms in the cubic action give
rise to non-Gaussianity that peaks in the squeezed limit. This is due to the fact that
during the non-attractor era tensor fluctuations keep growing outside the horizon
due to the dynamics of the would-be decaying mode. In standard slow-roll inflation
tensor fluctuations freeze at large scales and therefore only wavenumbers compara-
ble to the size of the horizon can contribute to the non-Gaussianity for the “new”
term. It was found in [254,255] that this peaks in the equilateral configuration.

6.5 Disformal transformations and tensor

non-Gaussianity

The general quadratic action for tensors in (5.3.1) can be transformed into a form
identical to the action for tensor fluctuations in General Relativity by applying a
disformal + conformal transformation to the metric [135,136]. In this Appendix, we
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6.5 Disformal transformations and tensor
non-Gaussianity

discuss the implications1 of such transformations for the background dynamics and
for the tensor bispectrum discussed in this Chapter. For our system, the correspond-
ing combination of disformal and conformal transformation, in terms of redefinitions
of the time-coordinate and the scale factor, were given in (A.13.6), namely

dt̂ = (cTFT )1/2dt, â(t̂) =

(
FT
cT

)1/2

a(t). (6.5.1)

Using these, we found that the quadratic action in (5.3.1) takes the standard form
of canonical Einstein gravity, as it appears in GR, given by

S
(2)
T =

1

8

∫
dt̂d3xâ(t̂)3

[
(∂t̂hij)

2 − 1

â(t̂)2
(∇hij)2

]
=

1

2

∫
dyd3x

â2

4

[
(∂yhij)

2 − (∇hij)2
]
,

(6.5.2)

where in the second line we have used the fact that the conformal time in the GR
frame is defined by the coordinate y, namely dt̂/â(t̂) ≡ dy, which can be seen by
combining the expressions given in (6.5.1).

In order to describe the time evolution of the background in the Einstein frame,
we make use of the relation between two scale factors in (A.13.6) together with the

fact that FT ∝ a−6 and a ∝ 1/y, i.e. a ∝ F−
1
2

T â ⇒ â ∝ a−2. This procedure leads
to the conclusion that, in the Einstein frame, the Universe appears to be collapsing
as in a dust dominated Universe, that is

â ∝ y2, (6.5.3)

as y → 0. Similarly, we can relate the Hubble rate in the Einstein frame, Ĥ =
d ln â/dt̂, to the Hubble rate in the Jordan frame using (A.13.6), which leads to

Ĥ = − 2H

(cTFT )
1
2

∝ â−
3
2 , (6.5.4)

as expected from a dust dominated universe. Using the transformation (6.5.4) for
the Hubble rate, the power spectrum of tensor fluctuations in the Jordan frame can
be expressed in terms of the quantities in the Einstein frame, as

Ph =
Ĥ2

2π2
∝ â−3. (6.5.5)

1See also [133, 265] for a general analysis of the consequences of disformal transformations on
cosmological fluctuations.
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This expression reflects the equivalence of the interpretation of the results in both
frames. In the Einstein frame, the power spectrum of tensor fluctuations also appears
to be increasing during the transient collapsing2 phase as â→ 0.

The equivalence of the results in both frames also extends to the observables
such as the tensor non-Gaussianity. In the following, we prove that the calculation
of the bispectrum is equivalent in both frames. For this purpose, we first realize from
(6.5.2) and (6.5.3) that the canonical variable vij = zThij with zT = â/2 satisfies the
same equation in Fourier space (i.e. see (6.3.1)) similar to the case during the non-
attractor phase. Therefore, in the Einstein frame, the mode functions that reduce
to the Bunch-Davies vacuum, are given by

h(k, y) =
−iĤ√

2k3
(1 + iky) e−iky. (6.5.6)

Notice that using the relation (6.5.4), the mode functions appear to have the same
form as the one in the non-attractor phase, namely

h(k, y) =
i
√

2H√
cTFTk3

(1 + iky) e−iky, (6.5.7)

where FT = F (end)
T (y/yend)6. In order to establish the equivalence of the in-in

calculation in both frames we therefore, only need to focus on the time-dependence
of the interaction Hamiltonian in the Einstein frame, which is given by

Hint(y) = −
∫

d3x

[
Qnew(y)

12
h′ijh

′
jkh
′
ki +

â2(y)

4

(
hikhjl −

1

2
hijhkl

)
∂k∂lhij

]
, (6.5.8)

where prime denotes a time derivative with respect to y and we have defined the
time dependent pre-factor of the new interaction as

Qnew =
âF3/4

T

G5/4
T

Xφ̇G5X . (6.5.9)

We proceed to the in-in calculation in the Einstein frame by defining analogues of the
functions I(new) and I(GR), that we defined earlier in the Jordan frame. Following
the same steps as we before, these functions in the Einstein frame, are given by

Î(GR) = h(k1, yend)h(k2, yend)h(k3, yend)

∫ yend

−∞
dy
â2(y)

4
h∗(k1, y)h∗(k2, y)h∗(k3, y),

(6.5.10)

2Note that similar to the time span y0 < y < yend of the non-attractor era in the Jordan frame,
the collapsing phase in the Einstein frame will last for a finite time.
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6.6 Conclusions

Î(new) = −h(k1, yend)h(k2, yend)h(k3, yend)

∫ yend

−∞
dy
Qnew(y)

2
h∗(k1, y)h∗(k2, y)h∗(k3, y),

(6.5.11)

where yend denotes the end of the collapsing phase. Noting â ∝ y2 and Qnew ∝ â5/2 ∝
y5 and the mode functions in (6.5.7), we see that we need to deal with identical
integrals, to the ones we solved earlier in the Jordan frame, in the calculation of the
bispectrum amplitude in the Einstein frame.

6.6 Conclusions

We investigated the consequences of a non-attractor phase of cosmological evolution
for the dynamics of primordial tensor modes, focussing on the properties of primor-
dial tensor non-Gaussianity in scenarios with non-minimal couplings of gravity to
the scalar sector. Thanks to a tensor duality, we have been able to analytically com-
pute the properties of the tensor bispectrum during this phase. We have shown that
the tensor bispectrum is enhanced in the squeezed limit with respect to standard
slow-roll scenarios and can parametrically violate Maldacena’s consistency relations.
Moreover, tensor non-Gaussianity exhibits a scale dependence characteristic of our
set-up, that can help to distinguish our model from other scenarios with large tensor
non-Gaussianity.

Much work is left for the future. It would be interesting to apply our approach to
more general scenarios then the ones considered so far, including theories of beyond
Horndeski or DHOST [130, 131, 266–268]. This would also allow one to study in
more general terms the transition phase between attractor and non-attractor and
related possible instabilities associated with violations of energy conditions (see the
discussion in the Appendix of [8]). We plan to return on these topics soon.
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A. Appendix

A.1 Covariant energy-momentum conservation law

The generalized stress-tensor describes the coupling of matter and radiation to the
gravitational field through the Einstein’s field equations [269]. The variation of the
action for the matter fields SM with respect to variations in the metric gµν(x) leads
to the covariant energy-momentum conservation law. We start with an infinitesimal
coordinate transformation of spacetime xµ → x′µ = xµ − εµ(x) and take gµν(x) to
transform as

gµν(x)→ g′µν(x
′) =

∂xλ

∂x′µ
∂xσ

∂x′ν
gλσ(x), (A.1.1)

where x and x′ refer to the same event in spacetime and εµ(x) is an infinitesimal
quantity. Under this variation the metric becomes, see (Appendix A.3)

δgµν(x)→ g′µν(x
′)− gµν(x) = (∇µεν +∇νεµ)δgµν(x) = Lεδgµν(x), (A.1.2)

where Lε = ∇µεν + ∇νεµ is the Lie derivative. In the following we will drop the
index M from the matter action.

Consider variation of the matter action with respect to a variation in the metric.
Then, using the formulas above, we have

δS =

∫
dnx

δS

δgµν(x)
gµν(x) =

∫
dvx|g|−

1
2

δS

δgµν(x)
gµν(x)

=

∫
dvx|g|−

1
2

δS

δgµν(x)
(∇µεν +∇νεµ) = 2

∫
dvx|g|−

1
2

δS

δgµν(x)
∇µεν

= −
∫

dvxT
µν∇µεν = 0,

(A.1.3)

where we have used that ∂µε
ν vanish at the boundaries of the region R and required

that δS = 0. Now, using the product rule for covariant differentiation one can write

∇µ(Tµνεν) = (∇µT
µν)εν + T µν(∇µεν)⇔ T µν(∇µεν) = ∇µ(T µνεν)− (∇µT

µν)εν .
(A.1.4)

Then, the variation of the action becomes
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A.2 Variation of the inverse metric

δS = −
∫

dvx∇µ(T µνεν) +

∫
dvx(∇µT

µν)εν =

∫
dvx(∇µT

µν)εν = 0, (A.1.5)

where the surface integral
∫

dvx∇µ(T µνεν) vanishes, as εν is taken to be zero at the
boundary. As εν(x) is just an arbitrary term, then for the last equation to hold, one
requires that

∇µT
µν = 0. (A.1.6)

That is, the generalized energy momentum tensor is conserved, i.e. this is the
covariant generalization of ∂µT

µν = 0. Finally, lowering the indices of the generalized
EMT, will give

Tµν ≡
2

|g|
1
2

δSM
δgµν(x)

, (A.1.7)

where the variation of the inverse metric relates to δgµν by δgµν = −gµρgνσδgρσ i.e.
one cannot use the unperturbed metric to raise and lower indices of the perturbed
metric (see Appendix A.2).

A.2 Variation of the inverse metric

The variation of the inverse metric is most easily achieved by noting that

gµρgρν = δµν , (A.2.1)

and using the fact that the tensor δµν is constant and it does not change under a
variation, i.e. δδµν = 0. Using the product rule and performing the variation to
first-order, this becomes

δ(gµρgρν) = (δgµρ)gρν + gµρ(δgρν) = 0. (A.2.2)

Multiplying by gνσ, relabelling indices and rearranging gives

⇔ gρσgρνδg
µν + gµρgνσδgρν = 0

⇔ δσνδg
µν = −gµρgνσδgρν

⇔ δgµν = −gµρgνσδgρσ.
(A.2.3)

A.3 Coordinate transformation

Consider a coordinate transformation of spacetime

gµν(x)→ g′µν(x
′) =

∂xλ

∂x′µ
∂xσ

∂x′ν
gλσ(x). (A.3.1)
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This is solved by using an infinitesimal coordinate transformation, of the form

xµ → x′µ = xµ − εµ(x), (A.3.2)

where x and x′ refer to the same event in spacetime and εµ(x) is an infinitesimal
quantity. To first-order in powers of ε, this becomes

∂xλ

∂x′µ
=
∂x′λ

∂x′µ
+
∂ελ

∂x′µ
= δλµ +

∂ελ

∂xµ
+O(ε)2, (A.3.3)

where

∂ελ

∂x′µ
=
∂ελ

∂xβ
∂xβ

∂x′µ
=
∂ελ

∂xβ
∂(x′β + εβ)

∂x′µ
= δβµ

∂ελ

∂xβ
+O(ε)2 =

∂ελ

∂xµ
+O(ε)2, (A.3.4)

and where ∂ν′x
σ = δσν + ∂νε

σ. Here we switched to condensed notation where the
index carries the prime of the coordinate for convenience. Finally, we Taylor expand
gλσ(x+ ε) = gλσ(x) + εα∂αgλσ(x), which yields the variation

δgµν(x) = g′µν(x
′)− gµν(x)

= (δλµ + ∂µε
λ)(δσν + ∂νε

σ)(gλσ + εα∂αgλσ(x))− gµν
= (δλµδ

σ
ν + δλµ∂νε

σ + ∂µε
λδσν + δλµδ

σ
νε
α∂α)gλσ − gµν

= (∂νε
σ)gµσ + (∂µε

λ)gλν + εα(∂αgµν)

= ∂ν(ε
σgµσ)− εσ(∂νgµσ) + ∂µ(ελgλν)− ελ(∂µgλν) + εα(∂αgµν),

(A.3.5)

where we have neglected terms of order ε2 and in the last step we used the product
rule.

Next, we rewrite the contravariant components in terms of covariant components.
For example, the first term becomes ∂ν(ε

σgµσ) = ∂ν(εβgµσg
σβ) = ∂ν(εβδ

β
µ) = ∂νεµ

and similar for the rest terms. Finally, after relabelling indices this becomes

= ∂νεµ + ∂µεν − εαgρα(∂µgρν + ∂νgρµ − ∂ρgµν)
= ∂νεµ + ∂µεν − 2εαg

ραΓρµν

= ∂νεµ + ∂µεν − 2εαΓαµν

= ∂µεν − εαΓαµν + ∂νεµ − εαΓανµ

= ∇µεν +∇νεµ

= Lεgµν ,

(A.3.6)

where the Christoffel symbols were defined earlier in the text. Here, Lε denotes the
Lie derivative.

A.4 Friedmann Equations

To evaluate the EFE (1.1.25) in terms of the FRW metric (1.2.6) one first needs to
produce the following Christoffel symbols. Using (1.1.3) then we find that
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A.4 Friedmann Equations

Γ0
rr =

aȧ

1−Kr2
, Γ0

θθ = aȧr2, Γ0
φφ = aȧ sin2 θr2, Γφφθ =

1

tan θ
,

Γr0r = Γθ0θ = Γφ0φ =
ȧ

a
, Γθrθ = Γφrφ =

1

r
, Γθφφ = − cos θ sin θ,

Γrrr =
Kr

1−Kr2
, Γrθθ = −r(1−Kr2), Γrφφ = −r sin2 θ(1−Kr2),

Γ0
00 = Γθθθ = Γφφφ = Γr00 = Γθrr = Γφrr = Γrθr = Γrφr = 0,

(A.4.1)

where Christoffel symbols containing more than two different indices also vanish,
i.e. Γrφ0 = 0 and so on. The time-component of the Ricci tensor (1.1.6) is evaluated
to be

R00 = Rr
0r0 +Rθ

0θ0 +Rφ
0φ0 = −3

ä

a
, (A.4.2)

and the spatial-components become

3Rrr = 3
(
R0
r0r +Rθ

rθr +Rφ
rφr

)
= 3

[
aä

1−Kr2
+ 2

(ȧ)2

1−Kr2
+ 2

K
1−Kr2

]
. (A.4.3)

Then the Ricci scalar (1.1.7) is evaluated to be

R = gβδRβδ = g00R00 + gijRij = 3
ä

a
+ 3

[
ä

a
+ 2

(
ȧ

a

)2

+ 2
K
a2

]

= 6

[
ä

a
+

(
ȧ

a

)2

+
K
a2

]
,

(A.4.4)

where we only had to calculate the radial component of the Ricci tensor and mutiply
it by 3, as the FRW metric describes a homogeneous and isotropic universe and
therefore it does not distinguish between the r, θ, and φ directions. Here, we are
working from the frame where galaxies are at rest therefore, we set uµ = (1, 0, 0, 0),
and the EMT has components Tµν = diag(ρ, pgrr, pgθθ, pgφφ) and trace gµνTµν =
T = diag(−ρ, p, p, p). The time-component of the EFE becomes

R00 −
1

2
Rg00 + Λg00 = 8πGT00 ⇒ −3

ä

a
+

1

2
6

[
ä

a
+

(
ȧ

a

)2

+
K
a2

]
− Λ = 8πGρ

⇒
(
ȧ

a

)2

+
K
a2
− Λ

3
− 8πG

3
ρ = 0,

(A.4.5)

which is the first Friedmann equation. The spatial-components of the EFE evaluate
to (i.e. consider the radial component as the factors of 3 drops at the end of the
calculation)
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Rrr −
1

2
Rgrr + Λgrr = 8πGTrr

⇒ grr
a2

(
aä+ 2(ȧ)2 + 2K

)
− 1

2
Rgrr + Λgrr = 8πGTrr

⇒ −2
ä

a
−
(
ȧ

a

)2

− K
a2

+ Λ = 8πGgrrTrr

⇒ ä

a
+

1

2

(
ȧ

a

)2

+
1

2

K
a2
− 1

2
Λ + 4πGp = 0,

(A.4.6)

where we expressed the radial component of the metric as (1 − Kr2)−1 = grra
−2.

This is the second Friedmann equation. Subtracting the second from the first Fried-
mann equation gets rid of the factor (ȧa−1)

2
, giving the more familiar form of the

Friedmann equation

ä

a
+ 4πG

(
p+

ρ

3

)
− Λ

3
= 0. (A.4.7)

A.5 Scalar field equations of motion

Here we consider the Lagrangian density

L =
√
−gL =

√
−g
[

1

2
gµν∂µφ∂νφ+ U(φ)

]
. (A.5.1)

The Euler-Lagrange equations read

∂µ
[

∂L
∂(∂µφ)

]
= �φ− ∂U(φ)

∂φ
, (A.5.2)

where �φ = gµν∇µ∇νφ. Using that

∇µ∇νφ ≡
1√
−g

∂µ
(√
−ggµν∂νφ

)
, (A.5.3)

for a homogeneous scalar field φ = φ(t) in FRW spacetime
√
−g = a3, we find

φ̈+ 3Hφ̇+
∂U(φ)

∂φ
= 0, (A.5.4)

where an overdot indicates a derivative with respect to time t and the Hubble
parameter is defined by H = ȧ/a.
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A.6 Perturbations in de Sitter spacetime

The leading order term is given by the Einstein-Hilbert action with a cosmological
constant, which in de Sitter it is defined as Λ = 3H2a−2, where H = aH. Therefore,
we have

SEH =

∫
d4x
√
−g

M2
pl

2

(
R− 6

H2

a2

)
. (A.6.1)

Expanding the first term to second-order in perturbations of the metric, over an
FRW background, gives

M2
pl

2

√
−gR = a2

M2
pl

4

[
− 3(hij)

′(hij)′ − 4(hij)(hij)
′′ − 12H(hij)(hij)

′

− 6H2(hij)(h
ij)− 6H′(hij)(hij) + 4(hij)(∂r∂

rhij)− 2(∂jhir)(∂
rhij)

+ 3(∂rhij)(∂
rhij)

]
,

(A.6.2)

where primes denote differentiation with respect to time. Next, we perform partial
integrations and drop the total derivatives. The first and the last term stay as they
are. The second term is partially integrated to give contributions that will be added
to the first and the third term

−4a2(hij)(hij)
′′ = 4a2(hij)

′(hij)′ + 8aa′(hij)
′(hij). (A.6.3)

The sixth term is partially integrated to give contributions to the last term

4a2(hij)(∂r∂
rhij) = −4a2(∂rh

ij)(∂rhij). (A.6.4)

The seventh term is partially integrated and removed by using TT-gauge i.e. ∂jh
ij =

0. Adding terms gives

M2
pl

2

√
−gR =

M2
pl

4

[
a2(hij)

′(hij)′ − a2(∂rhij)(∂
rhij)

− 4a2H(hij)
′(hij)− 6a2(H2 +H′)(hij)(hij)

]
,

(A.6.5)

where we have used that aa′ = a2H. The third term in the above expression is
partially integrated again, to give contributions to the last term
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−4a2H(hij)(hij)
′ = 4aa′H(hij)(h

ij) + 2a2H′(hij)(hij). (A.6.6)

The expression becomes

M2
pl

2

√
−gR = a2

M2
pl

4

[
(hij)

′(hij)′ − (∂rhij)(∂
rhij)

− 2(H2 + 2H′)(hij)(hij)

]
,

(A.6.7)

where aa′H = (a′)2 = a2H2. Next, we expand the second term in (A.6.1) where√
−g =

√
−ḡ(1− 1

4
δγγh

µνhµν) =
√
−ḡ(1− hµνhµν) to get

−
M2

pl

2

√
−g6
H2

a2
= −a2

M2
pl

4

(
−hijhij

)
6H2 = a2

M2
pl

4
6H2

(
hijh

ij
)

(A.6.8)

S
(2)
EH =

∫
d4xa2

M2
pl

4

[
(hij)

′(hij)′ − (∂rhij)(∂
rhij)

]
. (A.6.9)

where (−2H2 + 6H2 − 4H′)(hijhij) = 0 in de Sitter, because for a = −(Hη)−1, we
get H2 = H′ = η−2. From this we get that the leading order equations of motion
are given by

h′′ij + 2
a′

a
h′ij − ∂k∂khij = 0. (A.6.10)

A.7 Weyl tensor squared

At the background level the Weyl squared tensor is given by

S
(0)

W 2 =
M2

Pl

2

∫
d4x
√
−g f9

M2
W µνρσWµνρσ. (A.7.1)

We expand to second-order in metric perturbations, around an FRW background.
In conformal time we get,

S
(2)

W 2 =
M2

Pl

2

∫
d4xa4 f9

M2

{
2

[
h′′ij
a2

+
∇2

a2
hij

]2

+ 8(hij)′
∇2

a4
(hij)

′

}
. (A.7.2)

We expand the square
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S
(2)

W 2 =
M2

Pl

2

∫
d4x

f9

M2

{
2
[
(h′′ij)

2 + 2h′′ij∇2hij + (∇2hij)
2
]

+ 8(hij)′∇2(hij)
′

}
.

(A.7.3)

The leading order equations of motion for tensors, read

h′′ij + 2Hh′ij −∇2hij = 0, (A.7.4)

where H(τ) = a′(τ)
a(τ)

is the Hubble parameter in conformal time. We can use it to
reduce the order of time derivatives, as long as the contributions coming from the
Weyl squared term are treated perturbatively. We find

S
(2)

W 2 =
M2

Pl

2

∫
d4x

f9

M2

{
2
[
(∇2hij − 2Hh′ij)2 + 2(∇2hij − 2Hh′ij)∇2hij

+ (∇2hij)
2
]

+ 8(hij)′∇2(hij)
′

}
.

(A.7.5)

This simplifies to

S
(2)

W 2 =
M2

Pl

2

∫
d4x

f9

M2

{
8H2(h′ij)

2 − 16Hh′ij∇2hij

+ 8(hij)′∇2(hij)
′ + 8(∇2hij)

2

}
.

(A.7.6)

Integrating the second term by parts, gives

S
(2)

W 2 =
M2

Pl

2

∫
d4x

[
8f9

M2
H2(h′ij)

2 − 8

(
f ′9
M2
H +

f9

M2
H′
)

(∇hij)2

+
8f9

M2
h′ij∇2h′ij +

8f9

M2
(∇2hij)

2

]
,

(A.7.7)

Finally, taking a factor of 1/4 out, this can be written as

S
(2)

W 2 =
M2

Pl

8

∫
d4x

[
32f9

M2
H2(h′ij)

2 − 32

(
f ′9
M2
H +

f9

M2
H′
)

(∇hij)2

+
32f9

M2
h′ij∇2h′ij +

32f9

M2
(∇2hij)

2

]
.

(A.7.8)
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A.8 Weyl tilde squared

Let us consider the following parity breaking operator as given in [80]

S
(2)

W̃W
=
M2

Pl

2

∫
d4x

f10

M2
εµνρσgκηgλζW

(1)
µνηζW

(1)
ρσκλ

=
M2

Pl

2

∫
d4x

f10

M2
εijk0a−4

[
4W

(1)
lmijW

(1)
lmk0 − 8W

(1)
l0ijW

(1)
l0k0

]
.

(A.8.1)

The Weyl tensor components as given in [137], relations (A.15 - A.17), are

W
(1)
l0k0 = −a

2
(ah′lk)

′
, (A.8.2)

W
(1)
l0ij = −a2h′l[i,j] = −a

2

2

(
h′li;j − h′lj;i

)
, (A.8.3)

W
(1)
lmk0 = −a2h′l[k,m] = −a

2

2

(
h′lk;m − h′lm;k

)
, (A.8.4)

W
(1)
lmij = a

[
−δi[l

(
ah′m]j

)′
+ δj[l

(
ah′m]i

)′]
=
a

2

[
−δil

(
ah′mj

)′
+ δim

(
ah′lj

)′
+ δjl(ah

′
mi)
′ − δjm(ah′li)

′
]
,

(A.8.5)

where we relabelled and placed all the indices down so that they match the notation
in [80]. Then, at second-order in metric perturbations, we find that (A.8.1) becomes

S
(2)

W 2 =
M2

Pl

2

∫
d4x

f10

M2
εijk0

[
4a−1h′mj;i(ah

′
mk)

′
+ 4a−1h′lj;i(ah

′
lk)
′]

=
M2

Pl

2

∫
d4x

f10

M2
8εijk0a−1h′lj;i(ah

′
lk)
′
.

(A.8.6)

Using the equation of motion for tensor fluctuations in conformal spacetime as de-
fined in (A.7.4). Then we can approximate (A.8.6) as

S
(2)

W 2 =
M2

Pl

2

∫
d4x

f10

M2
8εijk0h′lj;i(Hh′lk + h′′lk)

=
M2

Pl

2

∫
d4x

f10

M2
4εijk0h′lj,i

(
h′′lk +∇2hlk

)
=
M2

Pl

2

∫
d4x

f10

M2
2εijk0∂η

[(
h′lj;ih

′
lk

)
+
(
hli∇2hlk;j

)]
.

(A.8.7)
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Integrating by parts once with respect to conformal time and then integrating by
parts the second term with respect to the spatial index r , gives the expression for
the parity breaking term in [110], relation (3)

S
(2)

W 2 = −M
2
Pl

2

∫
d4x

f ′10

M2
2εijk0f

[
h′qj;ih

′
qk + hqi∇2hqk;j

]
= −M

2
Pl

2

∫
d4x

f ′10

M2
2εijk0

[
h′qj;ih

′
qk − hqi;rhqk;jr

]
.

(A.8.8)

Finally, taking a factor of 1/4 out, this can be written as

S
(2)

W 2 = −M
2
Pl

8

∫
d4x

f ′10

M2
8εijk0

[
h′qj;ih

′
qk − hqi;rhqk;jr

]
. (A.8.9)

Another approximation to (A.8.6) is to choose to integrate the h′′ij term by parts,
instead of using the leading-order equations of motion. In that case one gets

S
(2)

W 2 =
M2

Pl

2

∫
d4x

f10

M2
8εijk0a−1h′lj;i(ah

′
lk)
′

M2
Pl

2

∫
d4x

f10

M2
8εijk0h′lj;i(Hh′lk + h′′lk)

=
M2

Pl

2

∫
d4x

1

M2
(8f10Hh′lj;ih′lk − 4f ′10h

′
lj;ih

′
lk)

=
M2

Pl

2

∫
d4x

1

M2
εijk0(8f10H− 4f ′10)h′lj;ih

′
lk.

(A.8.10)

In this case there is only one contribution coming from the parity violating term.

A.9 Disformal transformation of linearised (NLO)

operators

Our starting point is the, most familiar to us, extension to Einstein’s gravity as
discussed in [80]. At the background level the action is given by

S =
M2

Pl

2

∫
d4x
√
−g
[
R +

f1

Λ2
W µνρσWµνρσ +

f2

Λ2
εµνρσgκβgλζWµνβζWρσκλ

]
. (A.9.1)

This is expanded around an FRW background to second-order in perturbations of the
metric (see Appendices (A.6) and (A.7), (A.8)). We choose to express the linearised
action in term of barred parameters. The action reads
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S(2) =

∫
d3x dη̄

{
M2

Pl

8
ā2
[
(∂η̄hij)

2 − (∂khij)
2
]

+
M2

Pl

4Λ2
f̄1

[(
∂η̄(∂η̄hij) +∇2hij

)2 − 4(∂k∂η̄hij)
2
]

− M2
Pl

2Λ2
8f̄2ε

ijk(∂η̄∂ihlj)
[
H̄(∂η̄hlk) + ∂η̄(∂η̄hlk)

]}
,

(A.9.2)

where f̄1 and f̄2 are dimensionless functions of time. We introduce modifications to
gravity by performing an inverse disformal transformation following the prescription
in [133,135,136].

When dealing with only (NLO) operators one can employ a suitable field redef-
inition to ensure second-order equations of motion. There are two ways to do this
here. One is to first transform the action and then use the equations of motion of
the leading order contributions to the quadratic action in the new frame to reduce
the order of the time derivatives. Equivalently one can use the leading order equa-
tions of motion in the barred frame to reduce the order of the time derivatives and
then transform the action to the new frame. The result will be the same. In this
Appendix we choose the latter. Therefore, using the equations of motion for the
quadratic action in the Einstein frame, namely

∂η̄(∂η̄hij) + 2H̄∂η̄hij −∇2hij = 0, (A.9.3)

the action reduces to

S(2) =

∫
d3x dη̄

{
M2

Pl

8
ā2
[
(∂η̄hij)

2 − (∂khij)
2
]

+
M2

Pl

Λ2

[
f̄1H̄2(∂η̄hij)

2 −
[
(∂η̄f̄1)H̄ + f̄1(∂η̄H̄)

]
(∇hij)2 − f̄1(∂η̄∇hij)2 + f̄1(∇2hij)

2
]

− M2
Pl

ΛCS

(∂η̄f̄2)εijk
[
(∂η̄hqi)(∂η̄∂jhkq) + (∇2hqi)∂jhkq

]}
.

(A.9.4)

We choose the following redefinition of the time-coordinate and the scale factor

dη̄ = cT dη , ā = c
− 1

2
T F

1
2a, (A.9.5)

where cT = FG−1 and with the parameters F ,G being functions of time. We find
the Hubble parameter transforms as

H̄ = c−1
T

(
H− 1

2

c′T
cT

+
1

2

F ′

F

)
. (A.9.6)
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In the new frame the action becomes

S(2) =
M2

Pl

8

∫
d3x dη a2

{(
G +

8f̄1A
c3
Ta

2Λ2

)
(h′ij)

2 −

[
F +

8
(
f̄ ′1B1 + f̄1B2

)
cTa2Λ2

]
(∇hij)2

− 8f̄1

cTa2Λ2

(
∇h′ij

)2
+

8f̄1cT
a2Λ2

(
∇2hij

)2

− 8f̄ ′2
a2Λ2

εijk
[

1

c2
T

h′qi∂jh
′
kq − (∂rhqi)∂j∂rhkq

]}
,

(A.9.7)

where we denote derivatives with respect to the conformal as ′ = ∂η and have defined
the following parameters

A = H2 +H
(
F ′

F
− c′T
cT

)
+

(
1

2

F ′

F
− 1

2

c′T
cT

)2

,

B1 = H +
1

2

F ′

F
− 1

2

c′T
cT
, B2 = H′ −Hc

′
T

cT
− 1

2

c′T
cT

F ′

F
+

(
c′T
cT

)2

− 1

2

(
F ′

F

)2

+
1

2

F ′′

F
− 1

2

c′′T
cT
.

(A.9.8)

We do not know yet how the functions f̄1 and f̄2 transform. At the limit of constant
parameter cT the parameters A,B1 and B2 reduce to

A = H2 +HF
′

F
+

1

4

(
F ′

F

)2

, B1 = H +
1

2

F ′

F
, B2 = H′ − 1

2

(
F ′

F

)2

+
1

2

F ′′

F
.

(A.9.9)

In the case where F ,G are constants we simply have

A = H2, B1 = H, B2 = H′, (A.9.10)

i.e. the Hubble parameter simply transforms as a derivative H̄ = c−1
T H. We proceed

to produce the equations of motion. The Fourier transform for tensor perturbations
is given by

hij(x, η) =
1

(2π)
3
2

∫
dk

∑
s=R,L

psij(k)hs(k, η)eik · x, (A.9.11)

where the tensor polarizations are defined in a circular basis as

pRij ≡
1√
2

(p+
ij + ip×ij), and pLij ≡

1√
2

(p+
ij − ip×ij) = (pRij)

∗, (A.9.12)
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where p+
ij, p

×
ij are the two linear polarization tensors and pRij, p

L
ij are polarizations that

rotate in the right (R) and left (L) handed directions, respectively. These satisfy
the following transversality and traceless conditions

psijkj = 0, and (pii)
s = 0, s = L,R, (A.9.13)

where k = ki are momenta in the spatial directions. In momentum space the Euler-
Lagrange equations read1

(hs)′′
(

1 +
8f̄1A

c3
TGa2Λ2

− 8k2f̄1

cTGa2Λ2
− 8kλsf̄ ′2
c2
TGa2Λ2

)
+ (hs)′

(
2H +

8f̄1A′

c3
TGa2Λ2

− 24f̄1Ac′T
c4
TGa2Λ2

+
G ′

G
+

8f̄ ′1A
c3
TGa2Λ2

− 8k2f̄ ′1
cTGa2Λ2

+
8k2f̄1c

′
T

c2
TGa2Λ2

− 8kλsf̄ ′′2
c2
TGa2Λ2

+
16kλsf̄ ′2c

′
T

c3
TGa2Λ2

)
+ k2hs

(
c2
T +

8f̄ ′1B1

cTGa2Λ2
+

8f̄1B2

cTGa2Λ2
− 8k2f̄1cT
Ga2Λ2

− 8kλsf̄ ′2
Ga2Λ2

)
= 0,

(A.9.14)

where we have used the following identity to simplify the result

i
kp
k
εpjkpik = −λs(pji )s, λs = ±1, (A.9.15)

and have omitted summation over left and right modes. Next, for simplicity we
consider the case where cT = const. and F ,G are functions of time as in (A.9.9).
We can obtain the evolution equations for tensor fluctuations in momentum space
in terms of the canonically normalized amplitudes

µs =
MPl

2
hszs. (A.9.16)

We find

(µs)′′ +

k2

(
c2
T +

8(f̄1B2+f̄ ′1B1)

cTGa2Λ2 − 8cT k
2f̄1

Ga2Λ2 − 8λskf̄ ′2
Ga2Λ2

)
(

1 + 8f̄1A
c3TGa2Λ2 − 8k2f̄1

cTGa2Λ2 − 8λskf̄ ′2
c2TGa2Λ2

) − (zs)′′

zs

µs = 0, (A.9.17)

where the effective potential is defined in terms of

zs = z1(τ)

√
1 +

8f̄1A
c3
TGa2Λ2

− 8k2f̄1

cTGa2Λ2
− 8λskf̄ ′2
c2
TGa2Λ2

, z1(τ) = z0a
√

2Gc3
TΛ,

(A.9.18)

1We have dropped, for brevity, the k, η dependencies.
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and it is given by

(zs)′′

zs
=
z′′1
z1

+
z′1
z1


(

8f̄1A
c3TGa2Λ2

)′
− k2

(
8f̄1

cTGa2Λ2

)′
− kλs

(
8f̄ ′2

c2TGa2Λ2

)′
1 + 8f̄1A

c3TGa2Λ2 − 8k2f̄1
cTGa2Λ2 − 8λskf̄ ′2

c2TGa2Λ2


+

1

2


(

8f̄1A
c3TGa2Λ2

)′′
− k2

(
8f̄1

cTGa2Λ2

)′′
− kλs

(
8f̄ ′2

c2TGa2Λ2

)′′
1 + 8f̄1A

c3TGa2Λ2 − 8k2f̄1
cTGa2Λ2 − 8λskf̄ ′2

c2TGa2Λ2


− 1

4


(

8f̄1A
c3TGa2Λ2

)′
− k2

(
8f̄1

cTGa2Λ2

)′
− kλs

(
8f̄ ′2

c2TGa2Λ2

)′
1 + 8f̄1A

c3TGa2Λ2 − 8k2f̄1
cTGa2Λ2 − 8λskf̄ ′2

c2TGa2Λ2


2

,

(A.9.19)

with

z′′1
z1

=
a′′

a
+

1

2

G ′′

G
+
a′

a

G ′

G
− 1

4

(
G ′

G

)2

,
z′1
z1

=
a′

a
+

1

2

G ′

G
. (A.9.20)

To ensure correct signs for the kinetic term and a healthy speed for gravitons we
define the following constraints

(zs)2 > 0⇒ 1 +
8f̄1A

c3
TGa2Λ2

− 8k2f̄1

cTGa2Λ2
− 8λskf̄ ′2
c2
TGa2Λ2

> 0,

and c2
T +

8(f̄1B2 + f̄ ′1B1)

cTGa2Λ2
− 8cTk

2f̄1

Ga2Λ2
− 8λskf̄ ′2
Ga2Λ2

> 0.

(A.9.21)

A.10 The equations of motion

The equation to solve is

(µs)′′ +

[
−1

4
+
ig10λ

s

2cTχ
+

(−2)

χ2

]
µs = 0, (A.10.1)

where

χ = 2icTkη, (A.10.2)

and µ = µ(k, η). Solutions are in terms of Whittaker functions. Here we keep the
Whittaker W function which has a growing solution for left modes and a negative
decaying solution for right modes. The Whittaker W solution is expressed as [270]
(page 1024, relation 9.220, 2)
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Wν,µ(χ) = χµ+ 1
2 e−

χ
2U

(
µ− ν +

1

2
, 2µ+ 1;χ

)
, (A.10.3)

where U is the confluent hypergeometric function. In our case we have that

ν =
ig10λ

s

2cT
, (A.10.4)

and µ is found to be 1
4
− µ2 = −2⇒ µ2 = (2 + 1

4
) = 9

4
⇒ µ = ±3

2
. Any root works,

therefore, we choose

µ =
3

2
. (A.10.5)

The full solution is given by

µs = B1(k)Wν,µ(χ) = B1(k)e−icT kη(2icTkη)2U

(
2− ig10λ

s

2cT
, 4; 2icTkη

)
, (A.10.6)

which is normalized against the Bunch-Davies vacuum as follows. The asymptotic
representation for the Whittaker function for large values of |χ| is given by (see [270]
page 1026, relation 9.227)

lim
|χ|→∞

Wν,µ(χ) ∼ e−
χ
2χν . (A.10.7)

Therefore, taking the small scale limit of the Whittaker function gives

lim
|kη|→∞

µs = B1(k) lim
|kη|→∞

Wν,µ(χ) = B1(k)e−icTkη(icTkη)

ig10λ
s

2cT

= B1(k)e−icTkηe

[
ig10λ

s

2cT
ln (2icTkη)

]

= B1(k)e−icTkηe

{
ig10λ

s

2cT

[
ln (2cT |kη|)− i

π

2

]}

= B1(k)e−icTkηe

(
πg10λ

s

4cT

)
,

(A.10.8)

up to a phase. To correctly normalize the solutions we need to compare the above
to the Bunch-Davies vacuum solution (4.5.12). We have
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lim
|kη|→∞

µs = −e
−icTkη
√

2cTk
= B1(k)e−icTkηe

(
πg10λ

s

4cT

)
.

(A.10.9)

Finally, the normalization is

B1(k) = − 1√
2cTk

e

(
−πg10λ

s

4cT

)
.

(A.10.10)

Substituting for B1(k) into (A.10.6) we find that the correctly normalized Whittaker
solutions are given by

µs = (−2cTkη)
3
2
√
−ηe−

πλsg10
4cT U

(
2− iλsg10

2cT
, 4, 2icTkη

)
. (A.10.11)

To find the form of the solution at large scales we use (see [271], page 508, relation

13.5.6) limz→0 U(a, b, z) = Γ(b−1)
Γ(a)

z1−b,Rb ≥ 2, b 6= 2, giving

lim
|kη|→0

µs =

√
−η

2(−cTkη)3

1

Γ
(

2− ig10λs

2cT

)e−πλsg104cT . (A.10.12)

We need to find the power spectrum in terms of hs = 2µs(zsMPl)
−1. We first need

to solve for

(zs)′′

zs
=

2

η2
+
g10kλ

s

η
, (A.10.13)

which has the general form (see [272], relation 2.8.24)

W ′′

W
=
u2

4ξ
+

(ν2 − 1)

4ξ2
+
ψ(ξ)

ξ
, (A.10.14)

with ν = ±3, ψ(ξ) = 0. We pick the growing solution (for the left modes) to be

zs = 2z0

√
g10λskηK3(2

√
g10λskη). (A.10.15)

We use limz→0Kn(z) = 1
2
Γ(n)(1

2
z)−n to take the large scale limit giving

lim
|kη|→0

zs = z02
√
g10λskη(

√
g10λskη)−3 = −(Hη)−1. (A.10.16)

The tensor power spectrum, per polarization, is found to be

P s
h(k) =

1

π2

H2

M2
Plc

3
T

∣∣∣∣Γ(2− ig10λ
s

2cT

)∣∣∣∣−2

e
−πλ

sg10
2cT , (A.10.17)

where for λ = −1 the left modes are enhanced.
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A.11 Disformal transformation of covariant (NLO)

operators

We consider a pure disformal transformation of the higher-curvature operators in
[80]. Here we follow the procedure in the Appendix of [130]. Using the following
field redefinition

π =

∫
dφ
√
B(φ), (A.11.1)

the barred metric can be expressed in terms of the following pure disformal relations

ḡµν = gµν + π,µπ,ν , ḡµν = gµν − γ2
0π

,µπ,ν , (A.11.2)

with

γ2
0 =

1

1− 2Xπ

, ∇µγ0 = −γ3
0π

,απ;αµ, X = −1

2
πµπ

,µ, (A.11.3)

where we use the notation π,µ = ∂µπ and π;µ
µ = ∇µ∇µπ. The action to transform

was given in (4.3.1). The transformation of the Einstein-Hilbert term was already
considered in [130]. Next we consider the transformation of the Weyl squared tensor
which we express as

W̄µνρσW̄
µνρσ = R̄µνρσR̄

µνρσ − 2R̄µνR̄
µν +

1

3
R̄2. (A.11.4)

We find the following contributions, where we denote the Weyl squared tensor as
W 2 for short
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W̄ 2 = WαβδεW
αβδε

+ 4γ2
0

{
RαδβεΠ

βαΠεδ − 〈R δεζ
α Rβδεζ〉+ 〈RδεRαδβε〉+RαβΠδβΠδ

α

+ 〈R δ
α Rβδ〉 −

1

3
R〈Rαβ〉 − [Π]RαβΠ +

1

6
R
(
[Π]2 − [Π2]

)}
+ 4γ4

0

{
1

2
〈〈R ζ η

α β Rδζεη〉〉 − 〈RαεβζΠ
εδΠζ

δ〉+ 〈RαεβζΠ
ζε〉

− 4〈RβεδζΠ
δ
αΠζε〉 − 2〈R δ

α ΠεδΠ
εβ〉+

1

3
〈Rαβ〉

(
[Π2]− [Π]2

)
+ 2〈R δ

α Πδβ〉[Π]− 〈RδεΠδαΠεβ〉+ 〈Π〉RεδΠ− 1

6
〈〈RαβRδε〉〉

+
1

3
R
(
〈Π2〉 − 〈Π〉[Π]

)
+

1

12
[Π]4 − 2

3
[Π]2[Π2] +

7

12
[Π2]2 + [Π][Π3]− [Π4]

}
+ 4γ6

0

{
〈Π〉〈RδζεηΠ

ηζ〉 − 〈〈RδζεηΠ
ζ
αΠη

β〉〉+
1

3
〈Rαβ〉

(
〈Π〉2 − 〈Π〉[Π]

)
+ 4〈Π4〉 − 3〈Π3〉[Π] +

4

3
〈Π2〉[Π]2 − 1

3
〈Π〉[Π]3 − 7

3
〈Π2〉[Π2]

+
4

3
〈Π〉[Π][Π2]− 〈Π〉[Π3]

}
+ γ8

0

{
4

3

(
〈Π2〉2 + 〈Π〉〈Π2〉[Π]

)
− 2

3
〈Π〉2[Π]2 − 4〈Π〉〈Π3〉+ 2〈Π〉2[Π2]

}
.

(A.11.5)

Here we have condensed our expressions by using the Galileon notation in [130].
The Chern Simons gravitational term WW̃ can be expressed as

¯WW̃ = −ε̄µνρσR̄λ
κρσR̄

κ
λµν − 4ε̄λµνρR̄κλR̄

κ
µνρ +

2

3
ε̄κλµνR̄R̄κλµν , (A.11.6)

where ε̄µνρσ = εµνρσ/
√
|ḡ| is the Levi-Civita tensor density. The above transforms

as
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¯WW̃ = ε̄µνρσWµνκλW
κλ
ρσ

+ 4γ2
0

{
1

6
ε̄µνρσRµνρσ

(
[Π]2 − [Π2]

)
− 1

2
〈ε̄νρσαRκµνρR

λµ
σα〉

+ 〈ε̄µνρσRκµRλνρσ〉+ 〈ε̄νρσαRκµλνR
µ
ρσα〉 −

1

3
〈ε̄µνρσRκλRµνρσ〉

+ ε̄µνρσRλνρσΠλκΠµκ − [Π]ε̄µνρσRλνρσΠ λ
µ + ε̄λνρσRκµρσΠ κ

λ Π µ
ν

}
+ 4γ4

0

{
1

3
ε̄νρσαRνρσα

(
〈Π2〉 − 〈Π〉[Π]

)
+ [Π]〈ε̄µρσαRλρσαΠµκ〉

− 〈ε̄νρσαRµρσαΠµ
κΠνλ〉 − 〈ε̄νρσαRλρσαΠµ

κΠνµ〉

+ 〈Π〉ε̄νρσαRµρσαΠ µ
ν − 2〈ε̄µρσαRλνσαΠµκΠ

ν
ρ〉
}
.

(A.11.7)

From the above it is evident that the disformal transformation contributes extra
pieces to the higher-curvature terms which results in altering the effective descrip-
tion. In the case of a general disformal transformation we would have to include
several extra contributions. It is evident that these expressions can quickly grow to
be very large. Here we focus on the transformation of linearised operators, which
are simpler, and leave such considerations for future work.

A.12 Next-to-next-to leading order operators

Six-derivative parity preserving operators to scalar-tensor gravity were discussed
in [126] while six-derivative parity-violating operators for scalar-tensor chiral theories
were discussed in [128], where alongside the gravitational Chern Simons term they
included first- and second-derivatives of the scalar field.

The usual prescription when working with EFTs is to write down the most
general set of operators consistent with the symmetries of the full theory and use the
background equations of motion to eliminate redundant ones as prescribed in [80].
At (NNLO) one may also have to use the first Bianchi identity to relate terms.
So far, to our knowledge no one has produced the full set of non-redundant six-
derivative corrections to gravity, in the context of single field inflation. Here we
only tentatively look at some (NNLO) operators. As an example, let us briefly
consider the following six-derivative operators

S
(0)
NNLO =

M2
Pl

2

∫
d4x
√
−g

{
b1

Λ4
WµνρσR

νσφ,µφ,ρ +
b2

Λ4
Wµνρσφ

;µρφ;νσ

+ εµνρσ
d1

Λ4
WρσκλR

λ
νφ

,κφ,µ

}
.

(A.12.1)
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Following the prescription in Section (4.3.1) and Appendix A.9 we disformally trans-
form these operators, after we have expanded them to second-order in perturbations
of the metric, to find the following contributions

S
(2)
NNLO =

M2
Pl

2

∫
d4x

{
b1

a2Λ4

[
− (φ′)2

8c6
T

(
h′′ij
)2 − H(φ′)2

4c6
T

h′ijh
′′
ij −
H(φ′)2

4c5
T

h′ij∇2hij

+
(φ′)2

8c2
T

(∇2hij)
2

]
+

b2

a2Λ4

[(
φ′φ′′

4c6
T

− H(φ′)2

2c6
T

)
h′ijh

′′
ij +

(
φ′φ′′

4c5
T

− H(φ′)2

2c5
T

)
h′ij∇2hij

]

+
2d1

a2Λ4

[
(φ′)2∂ih

′
ljh
′′
lk

c5
T

+
2H(φ′)2∂ih

′
ljh
′
lk

c5
T

−
(φ′)2∂ih

′
lj∇2hlk

c3
T

]}
.

(A.12.2)

The order of the energy expansion is E4/Λ4
∗ where, using the arguments in Section

(4.3.2), we can deduce that the effective mass scale is given by Λ4
∗ = c6

TΛ4. It is
easy to see that at the non-relativistic limit cT � 1 these operators can pick up
enhancements that could stand them relevant to the calculation. Therefore, it may
become necessary to consider (NLO) and (NNLO) corrections to gravity. Suppose,
we extend the action in (4.3.6) by including the contributions in (A.12.2). As we’ve
already discussed in Section (4.3.3), when working with a combinations of (NLO)
and (NNLO) terms, it is not entirely straightforward to find a field redefinition that
can ensure second-order equations of motion.

Here we take a much more modest approach. At second-order in perturbations of
the metric we expect the disformally transformed action to contain, schematically,
the contributions shown in (4.3.17). We recall that this form of the action guarantees
second-order equations of motion.

In the absence of a suitable field redefinition one may produce a theory that leads
to at most second-order equations of motion by suitably choosing the free functions
characterizing the higher derivative contributions. Of course, as these operators
are motivated by a quantum mechanical description of gravity one would expect
that such tuning may seem unnatural except if it is protected by some underlying
symmetry. While this is true, we believe that there is no great loss of generality
in doing things in the way indicated here as long as we maintain the form of the
action shown in (4.3.17). Therefore, what follows should be understood as a naive
approximation to a much more difficult problem.

The (NNLO) contributions have been chosen in such way so that the operator
coupled to b1 can be used to cancel the contribution (h′′ij)

2 in the Weyl squared tensor
while the operators coupled to b2 can be used to cancel the contribution h′ijh

′′
ij in the

operators coupled to b1. Similarly, the operators coupled to d1 can be used to cancel
the contribution proportional to Hh′ij in the gravitational Chern Simons term and
introduce to the action a contribution proportional to ∇2hlk. Therefore, with the
following definitions
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b1 =
4f1Λ2a2c3

T

(φ′)2
, b2 = − b1Hφ′

2Hφ′ − φ′′
= − 4f1Λ2Ha2c3

T

φ′(2Hφ′ − φ′′)
, and d1 = −2f2Λ2a2c3

T

(φ′)2
,

(A.12.3)

the extended action reduces to

S(2) =
M2

Pl

8

∫
d3x dη a2

{
(h′ij)

2 − c2
T (∇hij)2 − ω1

a2Λ2
(∇h′ij)2 +

ω2

a2Λ2
(∇2hij)

2

− εijk
[
g′1
a2Λ2

(hqi)
′(∂jhkq)

′ − g′2
a2Λ2

(∂rhqi)∂j∂rhkq

]}
.

(A.12.4)

In terms of (4.3.17) we can identify α = β = 0, γ = ω1(aΛ)−2, δ = ω2(aΛ)−2, ε =
g′1(aΛ)−2, ζ = g′2(aΛ)−2, ensuring second-order equations of motion.

Note, here we do not consider operators of the form∇αWµνρσ∇αW µνρσ which can
have up to three derivatives acting on the metric. Such operators carry contributions
to the equations motion with very high momenta which, for the sake of simplicity, we
choose to ignore these terms in this work and only partially extend our low-energy
action to the higher-derivative regime.

A.13 Disformal transformation of the tensor ac-

tion

In [135] it was shown that a combination of conformal and disformal transformations
allows one to recast the quadratic tensorial action into a form identical to the action
of tensor modes in standard slow-roll inflation. See also [133] for an analysis of the
consequences of disformal transformation for cosmological fluctuations. We discuss
the implications of such transformations for our set-up.

The action for generalized G-inflation [36], MPl = 1, can be written as

S =
1

8

∫
d3x dt a3FT

c2
T

[
(∂thij)

2 − c2
T

a2
(∇hij)2

]
, (A.13.1)

with c2
T = FT

GT
. Here we consider a disformal transformation of the form

gµν → gµν + (1− c2
T )nµnν . (A.13.2)

In [133] it was shown that a cosmological disformal transformation is equivalent to a
rescaling of the time-coordinate. Under the disformal transformation (A.13.2), the
FRW line-element becomes
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dŝ2 = −c2
T dt2 + a2 dx2 . (A.13.3)

We see that the spatial part of the metric is left unaffected therefore, we can recover
the form of the FRW line-element by simply transforming the time coordinate by
dt = c−1

T dt̂. This way the action becomes

S =
1

8

∫
d3x dt̂ a3FT

cT

[
(∂thij)

2 − 1

a2
(∇hij)2

]
. (A.13.4)

A conformal transformation of the form

gµν → c−1
T FTgµν , (A.13.5)

can bring the action into the standard Einstein-Hilbert form. It is convenient here
to follow the prescription given in [135] and redefine the time-coordinate and the
scale factor. Under the disformal and conformal transformations (A.13.2), (A.13.5)
the FRW line-element reads dŝ2 = c−1

T FT (−c2
T dt2 + a2 dx2). Therefore, as before,

we can recover the form of the FRW line-element, by defining the following

dt = c
− 1

2
T FT

− 1
2 dt̂ , a = c

1
2
TFT

− 1
2 â. (A.13.6)

With these redefinitions, the tensor perturbations are invariant under this transfor-
mation. The action now reads

S =
1

8

∫
d3x dt̂ â3

[
(∂t̂hij)

2 − (∇hij)2
]
. (A.13.7)

The Hubble parameter transforms as

Ĥ =
1

â

dâ

dt̂
= c

− 1
2

T FT
− 1

2

[
H +

1

2

(
ḞT
FT
− ċT
cT

)]
, (A.13.8)

for time-dependent parameters FT ,GT . Here we use a dot to denote derivative with
respect to the coordinate time t. From this we see that at leading order in the

slow-roll parameters the Hubble parameter transforms as Ĥ ∼ c
− 1

2
T F

− 1
2

T H.
We then use relations (5.5.23) and (5.5.24) to evaluate the right hand side of

(A.13.8). When focussing on a slow-roll regime, we find, as expected, that the new
Hubble parameter Ĥ is proportional to the original one. But when evaluated in the
non-attractor phase, using the fact that φ̇ = φ0/a

3 for a constant φ0, we find the
following expression for the Hubble parameter in the Einstein frame
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Ĥ = −
2
√
gt2Ha

3

3ft2|φ0|
= −

√√√√4Hφ0g
5
4
t2

f
3
4
t2

â−
3
2 , (A.13.9)

where in the second line we used the second relation in (A.13.6) between the scale
factors in the two frames. Hence, in the Einstein frame where the tensor fluc-
tuations are controlled by the action in (A.13.7), the background geometry in the
non-attractor regime is described in terms of a dust dominated contracting Universe.

This implies that, within the Einstein frame description developed in this Ap-
pendix, the Universe undergoes a short phase of contraction - lasting a few e-folds -
during which the amplitude of tensor fluctuations can grow. This perspective offers
another point of view for the results in the main text, within a frame where the ac-
tion for quadratic tensor fluctuations is standard. It would be interesting to embed
our scenario in a set-up with smooth transition between expanding and contract-
ing phases, and study in detail the matching and stability issues for fluctuations.
Possible instabilities in the bouncing transition phase can be tamed in sufficiently
rich scalar-tensor systems related to the set-up we use in this work. A detailed
analysis of this subject is beyond the scope of this article and we leave it for future
investigations.

A.14 The ”GR” contribution

Below we show the computation of the ”GR” contribution. Here we evaluate the var-
ious parameters that appear throughout our arguments, explicitly. We can express
the solution in (6.3.5) as

h(k, y) =
e−iky

(
1− i

ky

)
y2

0
√

2kz0y2
, (A.14.1)

where we express (5.6.3), in terms of the parameter y, as

z̃T = z0

(
y

y0

)2

, (A.14.2)

with

z0 = − H0α1

6(−ρ1 + δ1 + β1 + σ1)
(gtft)

1
4 and y0 = − cT

H0

. (A.14.3)

The leading order contribution at large scales is

lim
y→0

h(k, y) = − iy2
0√

2k
3
2 z0y3

. (A.14.4)
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We find that, to leading order, the power spectrum for each polarization is given by

Ph =
y4

0

2k3z2
0y

6
. (A.14.5)

Alternatively, this can be expressed directly in terms of (6.3.7), as

Ph =
2

π2

H2

FT cT
=

18

π2

(−ρ1 + δ1 + β1 + σ1)2

α2
1H

6
0

c5
T

ft
y−6. (A.14.6)

It is best to express these results in terms of the conformal time τ = yc−1
T so that we

can, later on, easily compare results with those in the Einstein frame. The solution
in (A.14.1) becomes

h(k, τ) =
e−ikcT τ

(
1− i

kcT τ

)
y2

0
√

2kz0c2
T τ

2
= e−icT kτ (i− cTkτ)

y2
0√

2k
3
2 |z0|c3

T

τ−3, (A.14.7)

and its conjugate

h∗s(k, τ) = −eicT kτ (i+ cTkτ)
y2

0√
2k

3
2 |z0|c3

T

τ−3. (A.14.8)

It is useful to also include the time-derivative of the conjugate which is

∂τh
∗
s(k, τ) = eicT kτ

y2
0√

2k
3
2 |z0|c3

T

(3i+ 3cTkτ − ic2
Tk

2τ 2)τ−4, (A.14.9)

where we have used that z0 < 0⇒ z0 = −|z0|. Then at large scales we have

lim
τ→0

h(k, τ) =
iy2

0√
2k

3
2 |z0|c3

T τ
3
, (A.14.10)

where

y2
0

|z0|c3
T

=

(
gt
f 3
t

)1
4 6

A1H3
0

. (A.14.11)

The power spectrum for each polarization, in conformal time, is evaluated to be

Ph =

(
gt
f 3
t

)1
2 18

A2
1k

3H6
0τ

6
, (A.14.12)
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where A1 = α1

(−ρ1+δ1+β1+σ1)
.

Next, we calculate the three-point function for the GR term. Relation (2.5.6)
becomes

〈h3(τe)〉 = 2 Re

{
−ihtm(k1, τe)hnr(k2, τe)hpv(k3, τe)

×
∫ τe

−∞(1−iε)
dτ

∫
d3x

(
−1

4
a2FT

)[
hjl(x, τ)hik(x, τ)

− 1

2
hkl(x, τ)hij(x, τ)

]
∂k∂lhij(x, τ)

}
,

(A.14.13)

where the initial time τ0 is taken to be some early time in the far past when per-
turbations are still within the horizon t0 → −∞. The upper limit τe = τend denotes
the end of the second part of the evolution (in the usual case of slow-roll inflation,
it would denote the end of inflation and therefore τe → 0).

Next, the tensor fluctuations hij(x, τ) are decomposed into positive and negative
frequency parts using (2.3.5), while the tensor fluctuations hij(k, τe) are decomposed
using (2.3.10). The modes inside the integral are contracted with the modes outside
the integral. Only those that contain an even number of positive and negative
modes survive. All other contractions (those that contain odd number of positive
and negative modes) are vacuum expectation values and vanish (once we normal
order them and apply (2.3.9)). We find the following contractions contribute to the
first integral

[h+
tm(k1, τe), h

−
jl(−q1, τ)eiq1·x], [h+

nr(k2, τe), h
−
ik(−q2, τ)eiq2·x],

[h+
pv(k3, τe), ∂k∂lh

−
ij(−q3, τ)eiq3·x],

(A.14.14)

plus five more terms that deal with the remaining permutations of the momenta.
Similarly, for the second integral we have

[h+
tm(k1, τe), h

−
kl(−q1, τ)eiq1·x], [h+

nr(k2, τe), h
−
ij(−q2, τ)eiq2·x]

[h+
pv(k3, τe), ∂k∂l(h

−
ij(−q3, τ)eiq3·x)]

(A.14.15)

plus five more terms that deal with the remaining permutations of the momenta. We
evaluate the contractions by using (2.3.11) and the notation introduced in (2.3.12).
We get
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〈h3(τe)〉 = 2 Re

{
−ih(k1, τe)h(k2, τe)h(k3, τe)

∫ τe

−∞(1−iε)
dτ

∫
d3x

×
∫

dq1

(2π)3

dq2

(2π)3

dq3

(2π)3

(
−1

4
a2FT

)
×
[
h∗(−q1, τ)h∗(−q2, τ)

× pstm(k1)ps∗jl (−q1)psnr(k2)ps∗ik(−q2)− 1

2
h∗(−q1, τ)h∗(−q2, τ)

× pstm(k1)ps∗kl (−q1)psnr(k2)ps∗ij (−q2)
]
ei(q1+q2)·x∂k∂lh

∗(−q3, τ)

pspv(k3)ps∗ij (−q3)eiq3·xδ(k1 + q1)δ(k2 + q2)δ(k3 + q3)

}
,

(A.14.16)

where we have applied s = s′ throughout. Next, we integrate over the momenta and
use the properties of delta functions to set k1 = −q1,k2 = −q2,k3 = −q3. Finally
we differentiate the exponential (∂k∂l exp[−ik3 · x] = i2k3l · k3k exp[ik3 · x]) and
integrate over the spatial part of the integral using

∫
d3x exp[−i(k1 + k2 + k3) · x] =

δ(k1 + k2 + k3). We get

〈h3(τe)〉 = 2 Re

{
−ih(k1, τe)h(k2, τe)h(k3, τe)

∫ τe

−∞(1−iε)
dτ

1

4

ftH
6
0A

2
1

9
τ 4(k3l · k3k)

×
[
h∗(k1, τ)h∗(k2, τ)Πtm,jl(k1)Πnr,ik(k2)− 1

2
h∗(k1, τ)h∗(k2, τ)

× Πtm,kl(k1)Πnr,ij(k2)
]
h∗(k3, τ)Πpv,ij(k3)(2π)3δ(k1 + k2 + k3)

}
,

(A.14.17)

where the minus sign in the brackets was cancelled by the i2 factor from the differen-
tiation of the exponential, giving an overall minus sign, and we used the expression
for FT during the second part of the evolution (5.5.24) and the expression for the
field velocity (5.5.12), to write

1

4
a2F = a2ft

H2
0

9
A2

1a
−4 =

1

4

ftH
6
0A

2
1

9
τ 4. (A.14.18)

Using the solution in (A.14.7) and its conjugate in (A.14.8), the three point function
becomes

〈h3(τe)〉 = (2π)3δ(k1 + k2 + k3)T (GR)
tmnrpv

(
2 Re[I(GR)(τ)]

)
, (A.14.19)

where

T (GR)
tmnrpv =

{
(k3l · k3k)

[
Πtm,jl(k1)Πnr,ik(k2)− 1

2
Πtm,kl(k1)Πnr,ij(k2)

]
× Πpv,ij(k3) + 5 perms of 1, 2, 3

}
,

(A.14.20)

127



A. APPENDIX

and

I(GR) = i
y12

0

23(k1k2k3)3z6
0c

18
T

1

4

ftH
6
0A

2
1

9

× (i− cTk1τe)(i− cTk2τe)(i− cTk3τe)τ
−9
e e−icT (k1+k2+k3)τ0

×
∫ τe

−∞(1−iε)
dτ (i+ cTk1τ)(i+ cTk2τ)(i+ cTk3τ)τ−5eicT (k1+k2+k3)τ ,

(A.14.21)

which can be written as

I(GR) = i
y12

0

23(k1k2k3)3z6
0c

18
T

1

4

ftH
6
0A

2
1

9

×
[
−c

3
Tk1k2k3

τ 6
+
ic2
T (k1k2 + k1k3 + k2k3)

τ 7
+
cTK

τ 8
− i

τ 9

]
e−icTKτe

×
∫ τe

−∞(1−iε)
dτ

[
c3
Tk1k2k3

τ 2
+
ic2
T (k1k2 + k1k3 + k2k3)

τ 3
− cTK

τ 4

− i

τ 5

]
eicTKτ ,

(A.14.22)

where K = k1 + k2 + k3. The integrals to solve are

I =

∫ τe

−∞(1−iε)
dτ (i+ cTk1τ)(i+ cTk2τ)(i+ cTk3τ)τ−5eicT (k1+k2+k3)τ

=

∫ τe

−∞(1−iε)
dτ

[
c3
Tk1k2k3

τ 2
+
ic2
T (k1k2 + k1k3 + k2k3)

τ 3
− cTK

τ 4

− i

τ 5

]
eicTKτ ,

(A.14.23)

where we have defined K =
∑

i ki and |ki| = ki. We find the following contributions

I1 =

∫ τe

−∞(1−iε)
dτ

c3
Tk1k2k3

τ 2
eicTKτ = eicTKτ

[
−c

3
Tk1k2k3

τ

]∣∣∣∣τe
−∞

+ ic4
TKk1k2k3Ei[icTKτ ]

∣∣∣∣τe
−∞

,

(A.14.24)

I2 =

∫ τe

−∞(1−iε)
dτ

ic2
T (k1k2 + k1k3 + k2k3)

τ 3
eicTKτ = eicTKτ

×
[
−ic

2
T (k1k2 + k1k3 + k2k3)

2τ 2
+
c3
TK(k1k2 + k1k3 + k2k3)

2τ

]∣∣∣∣τe
−∞

− i

2
c4
TK

2(k1k2 + k1k3 + k2k3)Ei[icTKτ ]

∣∣∣∣τe
−∞

,

(A.14.25)

128



A.14 The ”GR” contribution

I3 = −
∫ τe
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I4 = −
∫ τe

−∞(1−iε)
dτ

i

τ 5
eicTKτ = ieicTKτ
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1

τ 4
− cTK

12τ 3
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TK
2

24τ 2
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24τ
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4Ei[icTKτ ]
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,

(A.14.27)

where Ei denotes the Exponential Integral of imaginary argument Ei(ix), x ∈ R,
whose properties are given in Appendix (A.15).

Our results diverge for τe → 0 and they are valid only as long as we are away
from the origin τe = 0. From this it follows that, we can express our results for small
but non-zero value of the upper limit te � 1.

Next we evaluate the integrals. From (A.15.6) we can see that the lower limit of
the Exponential Integrals gives constant multiples of iπ, while the rest terms give
oscillatory contributions. These can be remedied by employing the iε prescription
so that they decay. Either way, these terms do not concern us, as we are only
interested to find the dominant contributions to the bispectrum. We find these by
taking the upper limit of the integral for small argument te � 1. It can be seen from
(A.15.5) that the contributions from the Exponential Integral are also subdominant.
Therefore, the leading-order contributions to the integral for small argument te � 1,
are

I =
i

4τ 4
e

+
ic2
T [K2 − 2(k1k2 + k1k3 + k2k3)]

4τ 2
e

+
3c3
TK(k1k2 + k1k3 + k2k3)− c3

TK
3 − 3c3

Tk1k2k3)

3τe
+ · · · .

(A.14.28)

Similarly we Taylor expand the contributions to the three-point function coming
from outside the integral in (A.14.22), for small argument te � 1, and keep the
leading order-contributions. These are

= − i

τ 9
e

− ic2
T [K2 − 2(k1k2 + k1k3 + k2k3)]

2τ 7
e

− c3
T [K3 + 6k1k2k3 − 6K(k1k2 + k1k3 + k2k3)]

6τ 6
e

+ · · · .
(A.14.29)
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Next, we simply multiply (A.14.28) with (A.14.29) and then we multiply the result
with the overall imaginary factor in (A.14.22). Finally we take the real part, to find
the following leading-order contribution to the three-point function

Re
[
I(GR)

]
=

y12
0

23(k1k2k3)3z6
0c

18
T

1

4

ftH
6
0A

2
1

9

(
−c

3
T

4
(k3

1 + k3
2 + k3

3)τ−10
e

)
. (A.14.30)

In order to compare our results with the literature, we re-express −(k3
1 + k3

2 + k3
3),

by using the identity for (k1 + k2 + k3)3. Therefore, we get
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(A.14.31)

Evaluating the constant overall coefficient gives
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Therefore, this contribution becomes
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(A.14.33)

This can be written in terms of the power spectrum squared, per polarization, in
the non-attractor era, given in (A.14.12), as

2 Re
[
I(GR)

]
=
c2
T

64
P 2
h (2π)4

(∏
i

ki

)−3

× τ 2
eK

3

(
−1 +

3
∑

i 6=j k
2
i kj

K3
+

6
∏

i ki
K3

)
.

(A.14.34)

Finally, we define cT τe = yend to get
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A.15 The Exponential Integral

The Exponential Integral of imaginary argument Ei(ix), x ∈ R can be expressed in
terms of the real functions Si(x) and Ci(x), known as the Sine and Cosine integrals,
respectively [273] (page 33 onwards)

Ei(ix) = Ci(x)− i
[π

2
− Si(x)

]
, x > 0,

Ei(−ix) = Ci(x) + i
[π

2
− Si(x)

]
, x > 0,

(A.15.1)

where Si(−x) = −Si(|x|). These have the following convergent series, with z com-
plex,

Si(z) =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)(2n+ 1)!
= z − z3

3!3
+ · · · , |z| <∞,

Ci(z) = γ + ln z +
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n=1

(−1)nz2n

2n(2n)!
= γ + log z − z2

2!2
+ · · · , |arg z| < π,

(A.15.2)

and limiting behaviour

Si(∞) =
π

2
, Ci(∞) = 0,

Si(0) = 0, Ci(+0) = −∞.
(A.15.3)

Asymptotic behaviour for small argument

Using (A.15.2), the leading order behaviour for small real argument x, is

lim
z→0

Si(x) ' x,

lim
z→0

Ci(x) ' γ + log(x) + iπ, x > 0,

lim
z→0

Ci(−x) ' γ + log(x)− iπ, x > 0.

(A.15.4)

where Ci(z) is determined by analytic continuation (see (3.3.9) in [273]). Therefore,
the asymptotic behaviour for the exponential integral for imaginary argument for
x→ 0, can be approximated to be

lim
x→0

Ei(ix) = γ + log(x) +
iπ

2
+ ix, x > 0,

lim
x→0

Ei(−ix) = γ + log(x)− iπ

2
− ix, x > 0.

(A.15.5)

Asymptotic behaviour for large argument
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Using (3.3.9) in [273]) and the limiting behaviour for x→∞ in (A.15.3), we find
that (A.15.1) can be approximated to be

lim
x→∞

Ei(−ix) = −iπ, x > 0. (A.15.6)
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