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Abstract In this work, the dynamical analysis of carrier transportation in
a typical piezoelectric device working in ballistic regime is conducted. Based
on the quantum scatting theory, the Poisson and Schrodinger equations are
combined for calculating the dynamical transmission coefficient of the a metal-
piezoelectric ZnO-metal structure subject to sinusoidal and rectangular ex-
ternal stresses. The roles played by the spanning width of induced piezopo-
tential and incident electron energy in affecting transmission probability are
further discussed and clarified, respectively. The cut-off frequency of the piezo-
electric device is also studied. Moreover, MEMS/NEMS hybrids specified by
double/single-clamped ZnO quantum wire micro/nano-electromechanical res-
onator hybrids are proposed. Through a comprehensive numerical simulation,
it is revealed that the rich nonlinear dynamics of the resonator can be sub-
tly transferred to the piezoelectric device, and the chaotic transmission in the
piezoelectric device can arise in two-dimensional parameter space regarding
time and incident electron energy. The hybrids, therefore, are endowed with
the ability to detect amplitude changes by measuring ultra-sensitive quantum
tunneling current. The study sheds light in developing quantum piezotronics
and its related MEMS/NEMS integrations.
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2 Leisheng Jin*1 et al.

1 Introduction

The piezotronics refers to the field that electronics use inner-crystal piezopo-
tential, which is commonly found in wurtzite structures such as ZnO, GaN, InN
and ZnS, as gate voltage to tune/control the charge transport behavior[1][2],
and it has found huge applications in self-powered sensors[3], electromechanical
memories[4], flexible electronics[5], human-machine interface[6], etc. Currently,
the piezotronics is gaining momentum for fabricating ultra-short and ultra-thin
devices[7]. This is of necessarily to fulfill the needs for integrating with existing
nanotechnologies. More importantly, the pursuit of extreme small piezoelec-
tric device may pave the foundation for developing quantum piezotronics[8],
a research branch the piezotronics is rarely but desire to touch. So far, the
piezoelectricity in single layer MoS2 that represents the thinnest piezoelectric
device have been reported[9]. The out of plane polarization in graphene-like
ZnO nanosheet is revealed by conducting molecular dynamics simulations[10].
The effects brought by piezocharge distribution and Schottky barrier height in
a short Ag-ZnO-Ag piezoelectric transistor that spans only dozens of atomic
layers are investigated[11]. Flexible phototransistors and gas sensors based on
single-layer MoS2, characterized by fast response and ultrahigh sensitivity, are
both experimentally realized[12][13]. ZnO piezotronic transistors with an ultra-
short channel length (2 nm) is demonstrated[14], trying to be an alternative to
conventional silicon technologies. Heterojunctions made of p-Si/n-CdS (ZnO)
ultrashort nanowires are developed successfully as near-infrared photodetec-
tors[15], which performs orders higher of photoresponsivity and detectivity
than traditional ones. These works have witnessed the filed of piezotronics for
continuous miniaturization and developing novel applications in a wide range
of areas. Nevertheless, Challenges arise along the road to realize the quantum
piezotronics and make the peizoelectric devices more compatible with state-
of-the-art technologies.[7][8]. First, most of the existing works are restricted
for studying low-frequency and static cases that the piezopotential induced is
seen monotonously as a constant change of Schottky barrier at the interface
between electrodes and wurtzite materials, and the classical Schottky theory
is heavily dependent for analyzing the carrier transportation[16][17]. This is
though reasonable as the external applied stress with low-frequency hardly
bring effect to the ultra-fast electron transporting process. However, when the
strains induced are with a high frequency the dynamical analysis are still miss-
ing and highly demanded. Second, piezoelectric devices are prone to be studied
in circumstances that external strains come deliberately[9][14]. This somehow
hampers for the development of integrable piezoelectric devices. Given that
the piezotronics is of desire to merge into the current advanced technologies
such as MEMS/NEMS, CMOS[7], etc, the induced strains in charge of gener-
ating piezopotential to ”gate” the carries transportation should ideally find its
sources from the platforms they are integrated with, and therefore issues on
how to couple the piezoelectric devices with the existing electronic platforms
should be addressed.
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Title Suppressed Due to Excessive Length 3

Here, we focus on the ballistic transport regime of the piezotronics, which
represents one of the ultimate targets in developing ultra-small piezoelectric
device. Particularly, we study the dynamical characteristics of a typical two-
terminal piezoelectric device. The traditional Schottky barrier models widely
taken for calculating the current-voltage relations in piezotronics are left aside.
Alternatively, a Poisson equation and Schrodinger equation coupled model is
employed, by which the piezopotential varies according to the dynamical exter-
nal stresses rather than taking as a constant value, and the Schottky barrier
gates the wave-like carriers’ transportation in dynamical form. The roles of
the spanning width of induced piezopotential and cutoff frequency of the two-
terminal piezoelectric device are discussed and clarified in depth. Moreover,
we conceive the scenarios of which the piezoelectric device working in ballistic
regime integrates with two general types of MEMS/NEMS resonators. The
resonators can work with high frequency, and that the piezoelectric device re-
ceives dynamical stress from the resonator instantly, which can exhibit a rich
nonlinear dynamics such as chaos. By conducting comprehensive numerical
analysis, the nonlinear dynamics of the electron transportation in quantum
piezoelectric device is for the first time characterized. The proposed hybrids
can shed light in developing MEMS/NEMS-piezotronics integration technol-
ogy, and has potential applications in sensing areas.

2 Theoretical Model

The studied Metal-ZnO-Metal structure is shown in Fig. 1 (a). Here, the met-
als, working as electrodes, can be taken as different materials (e.g., Ag, Cu)
so that the two contacts between metals and semiconductor may form ohmic
or Schottky type[18], and in this work we focus on the general case that the
left contact is Schottky type and the right contact is ohmic. The energy band
diagram of the Schottky contact is given in Fig.1 (b), in which the Schottky
barrier, closely related to the induced piezopotential, changes up and down
(indicated by the red arrow) according to external strains that might be ap-
plied in any forms of varying functions with low or high frequency. The ZnO
nanowire is assumed to be ultra-short for satisfying the ballistic transport
regime, and that the current flowing in the ballistic ZnO nanowire is given by
Landauer theory[19]:

I =
2q

h

∫
T (E)M(E)(f1(E)− f2(E))dE (1)

where the h is Plank constant, q is the elementary charge, T represents the
transmission probability of an electron incident from the left electrode to the
right electrode, M(E) is the number of transport channels, and in our one-
dimensional ZnO model the M(E) is always 1. f1 and f2 are Fermi functions
in the left and right terminal. When there is an external voltage applied to
the left and right electrodes, the ”fermi window” (f1(E)-f2(E)) opens, and
electrons with energy states belonging to this window are likely to tunnel
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4 Leisheng Jin*1 et al.

Fig. 1 (a) Schematic diagram of the studied metal-ZnO-metal structure. (b) Band diagram
of metal-Zno interface with dynamically changing Schottky barrier shown. (c) and (d) are
schematic diagrams of single/double clamped nano-electromechanical resonator and Zno
nanowire hybrid, respectively.

through the short ZnO nanowire. It is obvious that, based on the Eq. (1), the
transmission T is the core parameter if one wants to calculate the current. In
this work, we adopt a method that can be used to calculate the transmission
coefficient with arbitrary potential barrier[20]. Specifically, the ZnO nanowire
is treated as potential barrier for the electrons ready to tunnel through, where
the potential energy distribution depends on the voltage applied between the
left and right electrode and the piezopotential generated by external strains.
The transmission T can be calculated by dividing the potential barrier into
N small rectangles, as shown in Fig. 2. The potential energy of jth segment
is given by U(zj) = V [(zj−1 + zj)/2], where j = (1, 2, 3, ..., N,N + 1) is the
number of the segment. One can see that if N is large enough, the potential
function in the nanowire can be recovered. In a single rectangular potential
barrier j, the time independent wave function of an electron can be described
by the Schrödinger equation:

EΨzj +
h̄2

2m

d2Ψ(zj)

dx2
− U(zj)Ψ(zj) = 0 (2)

where E is the overall energy of an indecent electron. m is the rest mass of an
electron. The wave function Ψj of the jth segment is derived straightforwardly,
as:

Ψ(j) = Aje
ikjz +Bje

−ikjz (3)

where kj =
√

[2m(E − U(zj))]/h̄. According to the theory of quantum me-
chanics, the Ψ and dΨj/dz should be continuous at boundaries between divided
segments, from which the amplitudes Aj and Bj can be determined by:

(
Aj
Bj

)
=

j=1∏
l=0

Ml

(
A0

B0

)
(4)
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Fig. 2 Potential energy distribution over the metal-ZnO-metal structure when external
voltage applied. The potential energy function can be seen as N rectangular barriers which
are partially drawn. A0, Aj and AN+1 represent amplitudes of incident wave that is before
injecting the interface of M-ZnO, inside of ZnO and at the right ZnO-M interface.

where Ml is given by:

Ml =

[
(1 + sl)e

[−i(kl+1−kl)zl] (1− sl)e[−i(kl+1+kl)zl]

(1− sl)e[i(kl+1+kl)zl] (1 + sl)e
[i(kl+1−kl)zl]

]
(5)

In Eq. (5), Sl = kl/kl+1. The scatting matrix M can then be obtained as:

M =

[
M11 M12

M21 M22

]
=

N∏
l=0

Ml (6)

Finally, the transmission T can be calculated as follows: T = kN+1/k0|k0/(kN+1)M22|,
provided by setting A0 = 1 and BN+1 = 0. Next, the potential energy function
in the ZnO nanowire needs to be further clarified. We take the parallel plate
capacitor model for calculating the potential energy inside the ZnO when there
is external voltage applied to the source and drain electrodes, i.e., the potential
energy in the nanowire is given by Vw(z)− qVeCD(z)/CES(z), where Ve is the
voltage applied to the ZnO nanowire, CES = CD+CS is the total electrostatic
capacitance at point z, and CD (CS) is the capacitances linking the point at
z to drain (source). Vw0 is the initial potential energy in the quantum wire
calculated from reference point of zero potential energy. Ignoring the charging
effect in nanowire, the Vw(z) can be explicitly expressed as:

Vw(z) = Vw0 − qVe
1/Cs(z)

1/CD(z) + 1/Cs(z)
= Vw0 − qVe

z

Lz
(7)

During the derivation of Eq. (7), the relations Cs(z) = εA/z and CD(z) =
εA/(Lz − z) have been used, where ε and A represents the permittivity and
cross-section area of the nanowire, respectively.
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6 Leisheng Jin*1 et al.

3 Numerical Simulation

In the following numerical simulations, the source and right drain electrodes
of the device are assumed to be reservoirs of electrons, i.e., the electrons are
keeping presumably in equilibrium state, even under a given applied voltage.
The potential inside of the electrodes is approximately constant all the time
while the potential at the boundaries is higher which confines the electrons.
The electrons in the electrode tunneling through the ZnO nanowire are always
supposed to have the fermi energy EF unless specific incident electron energy
assumed.

3.1 Sinusoidal and Rectangular Changing Stress Applied

Here, we consider the cases in which the ZnO nanowire is dynamically com-
pressed and stretched, and there are strains generated accordingly. Due to the
piezoelectric property of the ZnO nanowire, equivalent positive and negative
piezoelectric charges are induced at each interface of the metal-nanowire. As-
suming that the induced piezoelectric charge has density ρp and spans over
width zpl and zpr at left and right interface, the piezopotential can be obtained
by using the Poisson equation:

−d
2Vp(z)

dz2
= q

ρp(z)

εs
, zl ≤ z ≤ zpl; zpr ≤ z ≤ zr (8)

Generally, the zpl and zpr is in reality very narrow, i.e., zpl � Lz and zpr � Lz,
which makes the piezopotential variation over the width zpl and zpr negligible.
In specific calculations, we take the parameters as follows[16]. The piezoelec-
tric constant e31 = −0.51 C/m2, e33 = 1.22 C/m2 and e15 = −0.45 C/m2.
The relative dielectric constant εs = 8.91. the material of the left and right
electrode are taken as Ag and Cu, respectively. The donor density of Nd in the
ZnO is 1 × 1016/cm3. The built-in potential of the Schottky barrier φb = 0.3
eV.

First, we suppose that the strain induced on the nanowire has the sinusoidal
changing: S33 = S330sin(ωt), with the amplitude S330 = 0.4/100 and ω = 100
Hz. The transmission probability of an electron incident from the left electrode,
when the applied voltage to source and drain varies in the range of [0 1] V,
is calculated by combining Eqs. 2-8. We can see from the Fig. 3 (a) that the
generated piezopotential varies according to the sinusoidal changing strains,
with amplitude about 0.1 V. In Fig. 3 (b), a typical result of transmission
probability vs applied voltage Ve at t = 0.249 s is presented, in which it is
seen that as the Ve goes up the transmission probability becomes nonzero at
approximately V = 0.2 V, and gradually increases to nearly 1 after going
through a short fluctuating interval in [0.2 0.21] V. In addition, one can see
that there are a few quantum resonances appearing after the Ve get larger than
about 0.518 V, in which the lower part of quantum resonances has a larger Q
factor. This is consistent with the theory of the quantum resonance. To further
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Fig. 3 (a) The generated piezopotential vs time when sinusoidal changing external strain
applied. (b) Typical result of transmission probability vs applied voltage Ve at t = 0.249.
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Fig. 4 Dynamical transmissions vs time at certain applied voltages. (a) Ve = 0.1 V; Ve = 0.2
V in (b); Ve = 0.5 V in (c) and Ve = 0.9 V in (d).

illustrate the dynamical processes of how the transmission probability changes
with the time-varied external strains, we calculate the dynamical transmission
when Ve = 0.1 V, 0.2 V, 0.5 V and 0.9 V, as shown in Fig. 4 (a), (b), (c)
and (d). In Fig. 4 (a), some transmission peaks with extreme low probabilities
around 2×10−226 appear at points where the largest piezopotential is induced.
When Ve is increased to 0.2 V and 0.5 V, respectively, there are more points
around the peak of the induced piezopotential appear but with a much more
high probabilities. In Fig. 4 (d), when the Ve = 0.9 V, corresponding to the
range where quantum resonances occurring, it is shown that nearly all the
points during the dynamical time interval are with comparable transmission
probabilities, and the transmission curve shows ups and downs surrounding to
the peaks of the induced piezopotential, which is because of the double periodic
effect originating from quantum resonances and external induced strains (or
piezopotentials).

Likewise, the case of induced external strains changing dynamically in rect-
angular shape is also investigated, and the results of generated piezopotential
and a typical transmission calculation vs applied voltage Ve at t = 0.27 s
are presented in Fig. 5 (a) and (b), respectively. In Fig. 5 (a), the gener-
ated piezopotential are in accordance with induced external strains on ZnO
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8 Leisheng Jin*1 et al.
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Fig. 5 (a) The generated piezopotential vs time when rectangular changing external strain
applied. (b) Typical transmission calculation vs applied voltage Ve at t = 0.27.
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Fig. 6 Dynamical transmission calculations of Zno nanowire subjected by rectangular
changing external strains. (a) Ve = 0.1 V; (b) Ve = 0.4 V; (c) Ve = 0.8 V; (d) Ve = 1
V.

nanowire characterized by duty ratio: 50/100 and amplitude: S330 = 0.4/100,
and the transition probability versus Ve shows a more fluctuating quantum
resonances, compared with the above sinusoidal case (see the result shown in
Fig. 3 (b)), after the threshold of nonzero transmission probability at about
Ve = 0.62 V. We further conduct the investigation of dynamical transmission
subjected by the rectangular changing strains. The results of dynamical trans-
mission calculations at Ve = 0.1 V, 0.4 V, 0.8 V and 1 V are given in Fig. 6
(a), (b), (c) and (d). We can see apart from the phenomenon that more and
more points around the top of the square wave get with large transmission
probabilities, the nonzero probabilities are in axis symmetry that the fluctu-
ating probabilities on two sides of the symmetry axis are exactly the same.

3.2 Piezopotential Width Dependant Transmission

In the last section, the dynamical transmission probability of an incident elec-
tron with fermi energy under the sinusoidal and rectangular changing strains
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Fig. 7 (a) Transmission probabilities vs applied voltage under different piezopotential width
spanning. (b) Piezopotential width Wp dependant transmissions with Ve setting at certain
values in range of [0 1]V.

are investigated. It is worthy to mention that a constant spanninig width Wp

(Wp = ∆L = Lz/N,N = 1000) of the induced piezopotential is assumed. Here,
we study of how the width of piezopotential spanning affect the transmission
coefficients. Specifically, a static external strain (S330 = 0.5/100) is applied,
then the transmission probability is calculated by setting the piezopotential
width spanning over ∆L, 2∆L, 3∆L, ..., 100∆L, all with Ve varying in [0 1]
V. The results of Wp = ∆L, 20∆L, 60∆L, 80∆L are given in Fig. 7 (a). It
can be seen that the thresholds for having nonzero transmission probability is
delayed for Wp = 20∆L ∼ 80∆L compared with Wp = ∆L, and there is an
oblivious quantum resonance shift in the latter part of Ve ∈ [0.72 1] V between
Wp = ∆L and the rest curves. To further understand this point, we calculate
the Wp dependant transmission by fixing the Ve at a few certain values in [0 1]
V, and the results are shown in Fig. 7 (b). We can see that the transmission
probabilities are with fluctuations at smaller Wp, and as the Wp gets wider,
e.g., Wp ∈ [3 4] nm, the transmission probabilities get flatter. However, this
may not work for higher values of Ve which always has neat ups and downs as
shown in the upper part of the Fig. 7 (b). Combining both Fig.7 (a) and Fig.
7 (b), it is concluded that the spanning width of piezopotential plays a more
important role when itself is small as well as the peizoelectric device is applied
with a low bias. In addition, the consequence brought by the width changing
is not linear.

3.3 Transmission Probability vs Incident Electron Energy

The dynamical transmission calculation of the incident electron with different
energy is conducted in this section. In the simulation, we set the Ve = 0.5
V, the electron energy Ex varying in [4 6] eV, and the external inducted
strains varying in sinusoidal function: S33 = S330sin(ωt) with S330 = 0.7/100
and ω = 1 KHz. The result is shown in Fig. 8 and Fig. 9, respectively. In
Fig. 8 (a), (b) and (c), we plot the transmission coefficients versus time when
Ex = 4.7 eV, Ex = 4.9 eV and Ex = 5.2 eV, where it can be seen that the
transmission starts with a few spikes with very low probabilities at Ex = 4.7
eV, followed by more spikes with larger probabilities occurring as Ex increased
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Fig. 8 Dynamical transmission calculations of incident electron with different energy when
inducted strains varying sinusoidally. (a) Ex = 4.7 eV; (b) Ex = 4.9 eV; (c) Ex = 5.2 eV.
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Fig. 9 Transmission probabilities versus incident electron energy Ex at t = 0.25.

to 4.9 eV, and finally when Ex = 5.2 eV the transmission of the incoming
electron fluctuate like in chaotic state, even though the induced strains at the
moment on ZnO nanowire in periodic. This can be explained by that: when
the energy of the incident electron is relatively large, the transmission might
be fluctuating. In the numerical simulation, the induced strains of sinusoidal
changing are taken discretely in each period, and the tiny differences between
adjacent taken points are amplified in calculating transmission probabilities.
In Fig. 9, the transmission at t = 0.25 s versus incident electron energy Ex
is plotted, in which quantum resonances are shown but with no oblivious
differences from the result in Fig. 3 (b).
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Fig. 10 The changing cut-off frequency when induced strains varying sinusoidally at Ve =
0.9 V.

3.4 Analysis of Frequency Limitation on External stress

The cutoff frequency of the ballistic ZnO nanowire indicates the largest fre-
quency an dynamical external strain can be applied. It is defined by:

fcutoff =
1

2πTavg
(9)

where Tavg = Lz/
∑N
i=1(kih̄/m0)/N represents the average time of tunneling

events, and the ki represents the wave number of the ith segment divided
while calculating the transmission. m0 is the rest mass of an electron. We
calculate the cutoff frequency when there is dynamical induced strains (S33 =
S330sin(ωt), S330 = 0.4/100 and ω = 100 Hz.). The result of the Ve = 0.9 V is
shown in Fig. 10. It is seen that under sinusoidal changing strains the cutoff
frequency shows two valleys in each period valued around 2.6625 THz.

3.5 ZnO-Micro/Nano Electromechanical Resonator Hybrid

Various kinds of nano-electromechanical resonators have been experimentally
realized in previous works[21][22][23]. Here, we take the one constructed by
a suspended doubly clamped beam as the first example of piezo-resonator
hybrid. The schematic diagram is shown in Fig. 1 (d). The resonator is driven
by electrostatic force and can work with frequency as high as GHz. Its in-plane
displacement y(t) can be described by a well-established model, which gives:

ÿ(t) + ω2
0y(t) + δẏ(t) + αy3(t) = 2F0cos(ωdt) (10)

where δ = −f1
ρS denotes the damping ratio, f1 = πpT/(4vt) and vt =

√
kbTm.

α = 8Eπ4/(9ρL4) is Duffing coefficient and F0 =
√

2/3f0/(ρS) is external
driving amplitude with f0 = πεVdcVac/(h(ln(4h/d)2)). The ω0 and ωd are
natural frequency and driving frequency, respectively. The length, thickness
and width of the resonator are taken to be 3 µm, 50 nm and 150 nm. The
material is taken to be silicon. Detailed description of the model can be found
in[24]. The resonator exhibits dynamics with certain periodicity under different
driving strengths achieved by applying appropriate Vdc and Vac. In this case,
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Table 1 Parameters for the nano-electromechanical resonator

Symbols Values Units

T , W , L 50, 150, 3000 nm
ρ 2322 kg/m3

E 169 Gpa
Vdc, Vac 5,5 V
h, d 1000, 50 nm
ε 8.85× 10−12 F/m
T 300 K
p 1.01325× 105 Pa
m 5.6× 10−26 kg
kb 1.38× 10−23 J/K

we only focus on period-1 variation by setting Vdc = 5 V and Vac = 5 V.
During the vibration, the ballistic ZnO nanowire attached closely on the top
surface of the resonator beam is stretched and compressed accordingly, and
there are dynamical strains together with peizopotential being induced. The
inducing z-axis strains εz are given by:

εz = − M

(EpIp + EbIb)

(
yn −

Tp
2

)
(11)

where Ep,(b) and Ip,(b) are Young’s modulus and inertia moment of the nanowire
(resonator beam), respectively. M is the moment generated during the vibra-
tion of resonator and yn is distance to the neutral axis, and they can be
calculated by:

M = EbIbκ (12)

yn =

Tp

2 Tp
Ep

Eb
+
(
Tp + Tb

2

)
Tb

Tp
Ep

Eb
+ Tb

(13)

where Tp,(b) is the thickness of the nanowire and resonator beam, respectively.
κ is the curvature, which is dynamically related to the displacement of the
resonator. By taking the boundary conditions that y(t)z=0 = y(t)z=Lb

= 0,
the curvature is given by:

κ = sign(y(t))
8

((L2
b + 4y(t)2)2/y(t)2)1/2

(14)

Combining Eqs. (2-8) and Eqs. (9-13), the dynamical y(t) and transmissions
are calculated when the energy Ex of the incident electron varying in the
range of [4 6] eV and Ve = 0.5 V, as shown in Fig. 11. In Fig. 11 (a), the
displacement y(t) is oscillating in period-1 state as we expect. The dynamical
transmission probabilities at Ex = 4.75 eV, Ex = 5 eV, Ex = 5.5 eV and
Ex = 6.25 eV are presented in Fig. 11 (b), (c), (d) and (e). Interestingly,
it is seen that at different energy Ex the transmission probabilities in one
period exhibit different periodicity. This is attributed to that there are different

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
43

04
2



Title Suppressed Due to Excessive Length 13

Fig. 11 Transmission studies of double-clamped piezo-resonator hybrid. (a) Time series of
displacement y(t) in period-1. (b) Transmission probabilities vs time at Ex = 4.75 eV; (c)
Transmission probabilities vs time at Ex = 5 eV; (d) Transmission probabilities vs time
at Ex = 5.5 eV; (e) Transmission probabilities vs time at Ex = 6.25 eV; (f) Dynamical
Transmission over a certain time interval with Ex ∈ [5 6.5] eV.

quantum resonances existing at different Ex , and the quantum resonances can
modulate the transmission periodically, during which the larger strains induced
in one time-period could possibly lead smaller transmission probabilities. To
have a whole picture of the transmission in a continuous range of Ex ∈ [5 6.5]
eV, we present the contour of the transmission over a certain time interval in
Fig. 11 (f). It can be seen that as the periodicity evolves into period-1 as Ex
goes up, the transmission probabilities reach about 1 (light yellow color at the
top).

The hybrid of ballistic ZnO nanowire with a single-clamped electromechan-
ical resonator is also conceived and investigated. As shown in Fig. 1 (c), the
nanowire is fabricated on the free end of the resonator. When the resonator vi-
brates, the nanowire is subjected to stretched and compressed stresses which
bring z-axis dynamical strains and piezopotentials. To be general, we, here,
put a well-known model for describing the dynamics of the resonator[25]. The
model is given by:

ÿ + δẏ + βy + αy3 = γcosωt (15)

where δ is damping ratio, β and α are linear and cubic spring constant, re-
spectively. γ is the amplitude of external driving with frequency ω. It should
be noted that all these parameters are dimensionless. Detailed arguments on
the parameter can be found in quite a few references[25]. In the following sim-
ulation, the parameters are taken as: δ = 0.2, α = 1, γ = 0.3 and ω = 1.
Particularly, the β is taken as negative, i.e., β = −1. It is known that when
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14 Leisheng Jin*1 et al.

Fig. 12 Dynamical transmission in hybrid of ballistic ZnO nanowire with single-clamped
electromechanical resonator. (a) The chaotic time series of the hybrid in time interval [9.978
10]s; (b) The transmission calculation of ZnO nanowire in the hybrid with incident energy
Ex = 6.7; (c) Typical transmission with quantum resonances versus Ex. (d) Contour di-
agrams of transmissions with Ex varying in [6.6 6.9] eV in time range of [9.978 10]s; (e)
Partial plotting of (d) with Nt in [1 200]; (f) Partial plotting of (c) with Nt in [750 1000].

the spring constant is negative the resonator can exhibit rich nonlinear dy-
namics such as chaos, which also happens to be our focus in this part. For
single-clamped resonators, the induced strains on the ZnO nanowire is with
linear relation with the displacement of the resonator, i.e., εz = Cy(t). When
the energy of the incident electron Ex varying in the range [5 6.9] eV, the
transmission probabilities under the chaotic state of the resonator are calcu-
lated based on the Eqs. 2-8 and Eq. 15, and the results are presented in Fig.
12. The chaotic time series in time interval [9.978 10]s is plotted in Fig. 12
(a) and the transmission calculation of Ex = 6.7 eV in the same time inter-
val is given in Fig. 12 (b). Seeing from these two plots, one can find some
correlations in between by comparing the trajectories. For example, in time
interval [9.99 9.995]s the displacement trajectories can be divided in to four
similar shapes, and that in the same time interval there are four correspond-
ing transmission appeared in Fig. 12 (b). In Fig. 12 (c), a typical transmission
with quantum resonances versus Ex is presented, which illustrates that the
dynamical transmission is also modulated by quantum resonances. Further-
more, we calculate the two-dimensional contour diagrams of transmissions in
the same time range of [9.978 10]s, which is divided into 1500 small time in-
tervals, with Ex varying in [6.6 6.9] eV. The overall result is shown in Fig.
12 (d), with partial plotting of Nt in [1 200] and Nt in [750 1000] given in
Fig. 12 (e) and (f) as indicated by the arrows, respectively, where Nt is the
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Fig. 13 The tunneling current I vs amplitude of double-clamped piezo-resonator hybrid.

number location in the 1500 small time intervals. It can be seen in the Fig.
12 (d) that both spatiotemporal chaotic and periodical states appear. This is
essentially consist with the result shown in Fig. 12 (b) that in the fist part of
time range of [9.978 10]s (i.e., Nt in [1 200]) the chaotic displacements corre-
sponds to chaotic transmissions, and wherever the rest part of the same time
range the chaotic displacements lead to periodical-like transmissions, which is
distinguished with the double-clamped piezo-resonator hybrid studied above
that periodical displacement can only lead to periodical transmissions. The
reason for this is that the chaotic state, essentially, is with many unstable pe-
riodical states embedded, and the displacements of unstable periodical states
have different frequencies, which together with the existing quantum reso-
nances co-modulate the strains and piezopotentials in the ZnO nanowire that
can directly shift the transmissions in and out the chaotic state.

Last but not the least, we investigate how the changing amplitudes af-
fect the tunneled current in ballistic ZnO nanowire. In practical view, this is
actually related to the sensing applications, e.g., mass sensors, based on nano-
electromechanical resonators. Supposing that there is a tiny mass adhered to
the resonator beam, the amplitude of the resonator changes, so is the tunneled
current. Here, we calculate the tunneling current versus varying amplitudes of
the doubly clamped resonator studied above. The tunneling current is given
by: I = −q2Ve/(πh̄)T . By combining Eqs. (1-8, 10-14), the tunneling cur-
rent I when amplitude varying in [3.8 4.3]nm is calculated, and the result is
presented in Fig. 13. It can be seen that the there is linear relation between
the amplitude and tunneling current, further proving that the piezo-resonator
hybrid has the potential in developing high sensitivity sensors.

4 Conclusion and Discussion

The dynamical electron transmission in an ultra-short two-terminal piezoelec-
tronic device working in ballistic regime is analyzed. An universal model that
can be used for calculating the transmission coefficient of the piezoelectronic
device subject to arbitrary eternal dynamical stresses is developed. Both the
spanning width of induced piezopotential and incident electron energy are
confirmed for playing an important role in affecting the quantum transmis-
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sion of the device. The cut-off frequency of the piezoelectronic device is also
discussed. Hybrids which integrate MEMS/NEMS resonators with the piezo-
electronic device in ballistic regime are proposed and studied. Numerical sim-
ulations show that the coupled device is of capability for transferring the rich
nonlinear dynamics, particularly the chaos, of the resonator to the piezoelec-
tronic device. There are a few merits of the work worthy to mention. First,
the study paves the way for developing quantum piezotronics working in bal-
listic regime, a research branch the piezotronics is not yet well developed in
the sense of dynamical models and theories. This work provides insight on
how the extreme small piezoelectronic device perform in arbitrary dynamical
environment, which could further inspire the novel applications exploration
based on quantum piezoelectric devices. Second, the proposed hybrids can
shed light in realizing MEMS/NEMS integrated piezotronics. In practical, the
MEMS/NEMS resonators are widely used for sensing. Integrating the peizo-
electric device in ballistic regime with the resonator can facilitate the resonator
to receive electrical signal more directly and sensitively. Third, the work es-
tablishes an approach for exploring/utilizing complex dynamics in piezotron-
ics[26]. Traditionally, the piezoelectronic devices are often studied when only
static external stresses applied, and it seems there are no nonlinear dynamics
in piezotronics reported so far. The hybrids proposed here can be served as a
controllable and effective mean for providing diversified external strain/stress
to fabricated piezoelectronic devices, which will stimulate the cross-research
of piezotronics and nonlinear dynamics, such as chaos, both in theories and
applications.
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