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Abstract

We study several matter Chern-Simons models at finite chemical
potential. In the SU(N) theory we discover a colour-flavour locked
Bose condensed ground state with vacuum expectation values for
both the scalar and gauge fields. We identify this ground state
with the non-commutative Chern-Simons description of the quan-
tum Hall effect. We compute the quadratic spectrum and discover
roton excitations. We find a self-consistent circularly symmetric
ansatz for topological non-abelian vortices. We examine vortices in
abelian Chern-Simons theory coupled to a relativistic scalar field
with a chemical potential for particle number or U(1) charge. The
Gauss constraint requires chemical potential for the local symme-
try to be accompanied by a constant background charge density/ma-
gnetic field. Focusing attention on power law scalar potentials |Φ |2s,
s ∈ Z, which do not support vortex configurations in vacuum but
do so at finite chemical potential, we numerically study classical
vortex solutions for a large winding number |n| � 1.
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Introduction

On the second day of my graduate studies, the Nobel prize in physics was

awarded to D. Thouless, M. Kosterlitz & D. Haldane for the discovery of topo-

logical phase transitions1. At the time I thought topology was a subject about

open neighbourhoods, Hausdorff spaces and counting holes on mugs and dough-

nuts. I could not fathom how these ideas could have anything to do with the

description of the real world. I had to understand how these concepts were

connected. This thesis follows my path of exploring the mystery of topological

physics from the perspective of high energy physics and quantum field theory

(QFT).

Today, topology has become ubiquitous in the study of physics. It provides

us with new models that give us insight into nature. In addition, topology pro-

vides the stability for new kinds of excitations in models whose initial purpose

had more to do with the study of particles (for example, topological degrees

of freedom were discovered in the Georgi-Glashow model [1] by ’t Hooft and

Polyakov in 1974 [2, 3]). Even very deep ideas such as the understanding of

confinement and the attempts to study strongly correlated gauge theories seem

to be intimately related to the study of continuous deformations. There are

hints that confinement might be related to instanton condensation [4]. Specif-

ically relevant to this work, we find that relating strongly and weakly coupled

theories through dualities maps the conserved current of a theory to the topo-

logical current of its dual. It was our hope that we could shed some more light

on the details of these dualities at finite matter density and, for this reason, this

thesis has been centered around the study of the grand canonical ensemble of

Chern-Simons matter theories, specifically scalar field theories.

1https://www.nobelprize.org/prizes/physics/2016/summary/
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INTRODUCTION

Before we proceed to list the results of this thesis, we take the time to track

down the history of the subject of dualities. In 1941, Kramers and Wannier [5]

found that the two dimensional Ising model is dual to itself, under a trans-

formation of the coupling, which allowed them to compute the critical point

of the theory, several years before it was solved exactly by Onsager [6]. Then,

in 1975, Coleman [7] showed an equivalence between the sine-Gordon model

[8] and the massive Thirring model [9] in two space-time dimensions, estab-

lishing the first known Fermi-Bose duality. Later on, this was generalised by

Witten [10] to non-abelian theories in 1+1 dimensions. Also concerning a

1+1 dimensional system, level-rank duality relates two different Wess-Zumino-

Witten models with different gauge groups and levels of their Kac-Moody alge-
bras [11, 12]. Adding an extra dimension, Naculich, Schnitzer, Riggs & Mlawer
[13, 14] showed that the same type of duality applies to pure Chern-Simons

theory, a topological quantum field theory (TQFT) in 2+1 dimensions.

Another example of a duality dates further back to Maxwell’s equations in

free space, which possess the property of being invariant under an exchange

of electric and magnetic fields

E→ B, B→−E, (1)

where E and B are the electric and magnetic fields, respectively. This duality

can be preserved in the presence of sources if we were to also allow for sources

of magnetic charge. Dirac [15] took the idea of a magnetic source (magnetic
monopole) seriously and showed that if one allows for a singularity (we shall

see later that a singularity is actually not necessary) in the vector potential,

a configuration with the property of a magnetic monopole can exist. Further

still, he proved that electric charge would be quantised if such a configuration

exists

eq = 2π~n, (2)

where e is the electric charge, q is the magnetic charge of the hypothetical

monopole and n ∈ Z. The idea that duality transforms elementary particles

into non-perturbative objects (here the point electron turns into a Dirac string)

2



INTRODUCTION

often plays a prominent role in the dual description of a theory. This is pre-

cisely what happens in the non-abelian generalisation of electromagnetic du-

ality.

In 1977, Olive & Montonen [16] proposed that, in the Georgi-Glashow model,

electromagnetic duality is preserved in the full quantum theory and that the

elementary excitations are exchanged with the monopoles discovered by ’t

Hooft and Polyakov [2, 3], and vice-versa. Today, this equivalence is known

as S-duality, also referred to as strong-weak duality. Many checks for this con-

jecture have been made for the supersymmetric (SUSY) version of this theory

[17–20]. In 1994, Seiberg [21, 22] and Seiberg & Witten [23] solved the N = 1

and N = 2 Super Yang-Mills (SYM) theories exactly, putting the duality on

solid ground for supersymmetric theories in 3+1 dimensions. This version of

S-duality became known as Seiberg duality.

It is a natural question to ask what happens to Seiberg duality in a different

number of dimensions, particularly of interest to us, in this work, would be

the case of two spatial dimensions and one time dimension. The first cases

of dualities that resemble Seiberg duality in 2+1 dimensions were found by

Aharony and Karch [24, 25]. These were later generalised to include a Chern-

Simons term by Giveon & Kutasov [26], generalising the level-rank dualities,

that we mentioned earlier, to include supersymmetric matter.

Dualities also played a major role in the second superstring revolution, when

several of the distinct self-consistent string theories were shown to be dual to

each other [27–30] and possibly dual to an 11-dimensional theory, known as

M-theory [31].

Another example of duality that comes from string theory is one inspired

by the study of black holes and the holographic principle [32, 33]. This is the

well-studied AdS/CFT correspondence [34, 35], which states that one can

identify operators on the Anti-de Sitter (AdS) space with operators on the

boundary of the AdS space, which is a conformal field theory (CFT). A spe-

cial duality of this type involves a peculiar 3+1 dimensional gravitational the-

ory on an AdS4 background with a matter content comprising of an infinite

tower of higher (> 2) spin fields. This higher spin theory is known as Vasiliev’s

gravity, named after its inventor [36]. It turns out that this theory is dual to

3



INTRODUCTION

free O(N ) and SU (N ) scalar and fermion theories in 2+1 dimensions in the

large N limit [37, 38]. This connection between bosonic and fermionic theo-

ries through holographic duality, was the main motivation for researchers to

consider the possibility that there is a duality connecting these bosonic and

fermionic theories directly.

The existence of such a duality was first speculated by Minwalla et al. [39].

The statement of the duality was made precise by Aharony [40]. It has been

shown that one can reach this duality through a renormalisation group (RG)

flow from one of the supersymmetric dualities we discussed above [41].

The first novelty that we stumbled upon in the work outlined in this the-

sis, was a ground state that had been overlooked since it only manifests itself

in the finite chemical potential regime. It is a ground state with non-zero ex-

pectation value for the gauge fields, seemingly breaking rotational symmetry.

In reality, colour-flavour locking remedies this and the rotational symmetry

is preserved. In order to confirm that the rotational symmetry is preserved,

we computed the quadratic spectrum of the theory, which showed no signs of

rotational asymmetry. We discovered further, owing to Goldstone’s theorem

and the broken U (1)B global symmetry, that the long wave-length dynamics

of the SU (2) theory behaved as a superfluid and predicts the existence of a ro-

ton excitation. What was even more surprising is that this non-trivial ground

state exists in the zero coupling free scalar theory coupled to Chern-Simons.

This is peculiar since we generally expect there to be a potential that drives the

symmetry breaking.

Correlation functions for the scalar Chern-Simons theory at chemical po-

tential µ = 0 have been computed exactly in the large N limit [42]. Since the

µ = 0 results cannot be extrapolated to finite µ, we would need to take the

ground state discussed in the previous paragraph into account. Further, Jain

et al. [43] have computed the partition function for all values of temperature

and chemical potential. However, this result again hinges on the assumption

that the ground state of the system is trivial. We show this is not the case.

A natural question that arises is, what do the correlation functions look like

in the presence of this new condensate at large N ? Answering this question

4
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was the ultimate aim that we had in commencing this work, i.e. solving this

theory in the large N limit. In order to pursue this direction, we set ourselves

the more conservative goal of computing the quadratic spectrum in the SU (N )

theory, for generalN . The ground state in the SU (N ) theory has the same alge-

braic structure as the non-commutative Chern-Simons theory used as a model

for the fractional quantum Hall effect (FQHE). The approach to diagonalising

the large N spectrum of fluctuations that we outlined involves translating the

problem to a non-commutative Chern-Simons theory and using the solutions

of that model to arrive at an exact result.

Aside from studying the ground state and the fundamental excitations of

finite density Chern-Simons models, we have also explored the existence and

properties of solitons (vortices) in these models. Our main results in this line

are the discovery and study of an approximate numerical Bogomol’nyi, Prasad

& Sommerfeld (BPS) state in the abelian theory. Additionally, we find a self-

consistent vortex ansatz for the SU (2) and U (2) theories. We have left the

numerical study of the resulting equations for future work.

This thesis is structured in the following way:

In Chapter (1), we cover the necessary background required to understand

the rest of the thesis and how it fits in the wider field of research. We present

a condensed introduction to the topics of Chern-Simons field theory [44–47],

the quantum Hall effect [48–55], vortices [56–69], particle-vortex duality [70–

77], Fermi-Bose duality [26, 39–41, 43, 78–81], the statistical grand canonical

ensemble in quantum field theory and non-commutative field theory [82–93].

Chapter (2) presents the analytical and numerical study of abelian vortex

solutions interpolating between a symmetric and asymmetric phase, where the

symmetry breaking is chemical potential driven.

Chapter (3) showcases the derivation of the peculiar ground state, which

we mentioned earlier, and the spectrum of fluctuations is analysed in the

SU (2) theory. This is followed by the SU (N ) ground state and the observa-

tion that it resembles non-commutative Chern-Simons theory. At the end of

the chapter, we switch gears back to vortices, except this time we consider the

possibility of topological solutions in the non-abelian theory. We show that

5
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there is a self-consistent circularly symmetric ansatz for a global vortex in the

SU (2) theory and a local vortex in the U (2) theory.

6



Chapter 1

Background

This chapter provides the necessary background information and technical

details required to understand the main results of this thesis and their impli-

cations to related fields of physics. This background material includes both the

theoretical framework used in this thesis and associated real-world phenom-

ena. As the title hints, in this text, we will concern ourselves with the study

of 2 + 1 dimensional systems at finite density. We will approach the study of

these systems through the framework of quantum field theory (QFT).

There are two important aspects of QFT that will play a major role for us.

One of them is the relation between the grand canonical statistical partition

function and QFT. The other aspect is the distinct way in which the gauge

principle manifests itself in 2+1 dimensional theories. The latter is addressed

in Section (1.1), where we review the basics of Chern-Simons theory (CS). The

former is discussed in Subsection (1.2.2), where we will spend time reminding

ourselves of some basic statistical mechanics.

After we have covered these, we will spend some time looking at the prob-

lems of the fractional and integer quantum Hall effects (FQHE/IQHE) in Section

(1.3) and emphasise their relation to Chern-Simons matter theories. This will

help us understand the applications and motivate the study of the models we

are concerned with in this text.

Then, we shall continue by reviewing the properties of vortices in Section

(1.4). Specifically, we look at vortices in the abelian Higgs model, pure abelian

7



1. BACKGROUND

Chern-Simons theory with scalar matter and the mixed case where both classi-

cal Maxwell dynamics and the topological Chern-Simons term play a role. We

emphasise the importance of a Bogomol’nyi-Prasad-Sommerfield (BPS) [68, 69]

bound for these systems. Finally, we discuss some subtleties relating to non-

abelian vortices.

We continue by addressing Fermi-Bose and particle-vortex dualities in Sec-

tion (1.5), which provided the primary motivation for this work. We outline

important aspects of the dualities in order to highlight where our work fits in

that context.

Finally, we include a section concerning the physics of non-commutative
field theory and its relation to the theory of fluids. In particular, we include the

description of the quantum Hall fluid in terms of a ’fuzzy’ underlying space,

in which the coordinates do not commute. We shall see that this description is

a Chern-Simons theory and it seems to arise naturally out of the ground state

in the finite density non-abelian model, studied in Chapter (3).

1.1 Chern-Simons Theory

Chern-Simons theory is a very unusual type of QFT both in its origin and its

applications. It is a testament to the power and universality of mathemat-

ics, first conceived of as an abstract tool in the theory of differential operators

and their connections to topology [94]. The theory has grown to encompass

many facets of modern physics and mathematics, from the computation of

knot invariants [47] to the prediction of non-abelian anyons [95], which are

the ingredients necessary for performing a topological quantum computation

[96]. This is currently one of the most promising approaches to fault tolerant

quantum computation [97], due to the topological stability of the qubits. CS

theory is an example of a topological quantum field theory (TQFT) of Schwarz
type [98], which means that it is independent of the metric and so any observ-

able is related to a topological invariant. The Einstein-Hilbert action in 2+1

dimensions can be written as the CS action [99]. This means that studying

CS theory also leads to insight into three dimensional gravity [100–102]. CS

theory also provides a field theoretic explanation for the quantum Hall effect

8



1.1 Chern-Simons Theory

and anyonic physics [48, 103], has been instrumental in the classification of

rational 2 dimensional conformal field theories (CFTs) [104], creates a bridge

between theoretical physics and knot theory [47] and, recently, it has uncov-

ered an equivalence between two types of matter, previously thought to have

been fundamentally different – namely, Fermi-Bose duality [26, 39, 40, 42, 105].

These are among the most noteworthy applications of CS theory. Therefore, in

this section we justly take the time to review essential aspects of CS theory.

Most of the results seen in this section can also be found in the excellent re-

view by Dunne [46].

In the study of fundamental physics, we should assume that any term in

the Lagrangian that is not forbidden by a basic principle (e.g. a symmetry or

gauge-invariance) should be included in order to account for all aspects of the

system at hand. From gauge theory we are familiar with the idea of introduc-

ing a gauge field to render a Lagrangian gauge invariant and then including

a gauge-invariant Yang-Mills term that is responsible for the dynamics of the

gauge potential. Modulo subtleties, this is true in any number of dimensions.

Taking these subtleties into account, it turns out that in 2+1 dimensions, the

Yang-Mills term is not the only gauge invariant term one can include. One

can write down a term in the action, which is the integral of a three-form, de-

pending solely on the gauge field Aµ. This term, whilst not manifestly gauge

invariant, leaves the partition function unchanged under gauge transforma-

tions. This three-form is the Chern-Simons Lagrangian, which we write down

here

LCS = κεµνρ T r
[
Aµ∂νAρ +

2
3
AµAνAρ

]
. (1.1)

Here the coupling constant1 κ is conventionally referred to as the Chern-Simons

level. This name hints at the discrete nature of this quantity and we shall

shortly see that, under certain conditions, one can derive a quantisation con-

straint for κ. The gauge field Aµ takes values in a finite dimensional repre-

sentation R of the (semi-simple) gauge Lie algebra G. The T r operation is the

1Why we are referring to it as a coupling constant will become apparent when we look at
the inclusion of matter in CS models

9



1. BACKGROUND

standard matrix trace for a dim(R) × dim(R) matrix. In an abelian theory, the

gauge fields Aµ commute, and so the trilinear term in (1.1) vanishes due to the

antisymmetry of the εµνρ tensor density. In the non-abelian case (just as in

Yang-Mills theory) we write

Aµ = AaµT
a, (1.2)

where the T a are the generators of G (for a = 1, . . . ,dim(G)), satisfying the com-

mutation relations

[T a,T b] = f abcT c, (1.3)

and the normalisation

T r(T aT b) = −1
2
δab. (1.4)

We can define the field strength tensor in the usual way for a non-abelian

gauge theory

Fµν = ∂µAν −∂νAµ + [Aµ,Aν]. (1.5)

Fµν transforms under a gauge transformation in such a way that any ex-

pression that is the trace of a string of Fµν is gauge invariant. More precisely,

under a gauge transformation g ∈ G = exp [G],

Fµν → F′µν = g−1Fµνg =⇒ T r
[
Fi1ji ...Finjn

]
= T r

[
F′i1ji ...F

′
injn

]
. (1.6)

Since the Lagrangian (1.1) is written in terms ofAµ as opposed to Fµν , gauge

invariance is not manifest.

Before we delve into the details of the gauge invariance of this Lagrangian,

it is helpful to venture into a quick digression about topology. Topological

invariants are such properties of spaces (and hence of field configurations de-

fined on those spaces) that do not change under continuous transformations.

And since most phenomena in the real world are continuous, we should expect

10



1.1 Chern-Simons Theory

that these invariants are important tools that we can use to better understand

the physical world. Indeed, we shall see that these expectations are justified.

One way topologists use to classify spaces is through homotopy groups. An

example is the first homotopy group π1 or the fundamental group. This group

is an indicator of the “connectivity” of a manifold. Its definition has to do

with whether a given loop can be contracted to a point. More precisely, one

can define a group at each point on a manifold, whose elements are equiv-

alency classes of loops that start and end at that point and are continuously

deformable into each other. For example, if all loops on a given space can be

contracted to a point, then the fundamental group π1 is trivial, since all ele-

ments of the group are the identity. The group operation on these loops is such

that we create a new loop, g1 ◦ g2, from g1 and g2 by going around g1 first and

then going around g2. It turns out that loops that encircle a singular point (or

a hole in the space) n times are not continuously deformable into loops that

encircle said point n′ times, if n , n′. This is an intuitive way of understanding

the fact that for each hole in the space-time manifold, the fundamental group

acquires a Cartesian factor of Z. This means that loops can wind around sin-

gular points arbitrarily many integer number of times and the number of loops

around one singular point is independent of the number around another such

singular point.

Such a classification is not restricted to loops but can also be applied to

higher dimensional spheres. For example, the classes of mappings from the

3-sphere to three dimensional Euclidean space-time are classified by π3. If π3

is non-trivial, this tells us that not all gauge transformations are connected to

the identity. Importantly, for the purposes of theoretical physics, we shall use

the fact that π3 (SU (N )) = Z for N ≥ 2 is non-trivial [106]. We shall now see

how this fact plays a role in the gauge invariance of Chern-Simons theory.

To convince ourselves of the gauge invariance, let us perform a gauge trans-

formation

Aµ→ A′µ ≡ g−1Aµg + g−1∂µg, g ∈ G, (1.7)

11



1. BACKGROUND

where G is a compact semi-simple Lie group. Under this transformation, the

Lagrangian changes in the following way

LCS→ LCS −κεµνρ∂µ T r
[
∂νgg

−1Aρ

]
− κ

3
εµνρ T r

[
g−1∂µgg

−1∂νgg
−1∂ρg

]
. (1.8)

The second term is just a boundary term. If we are either considering mani-

folds with no boundary or we insist that the gauge transformation approaches

0 at ∞, this term vanishes. This will be the case in this thesis. For an SU (2)

transformation, the third term turns out to be proportional to the winding

number density of the gauge transformation, whose integral is an integer n ho-

motopy invariant

w(g) =
1

24π2ε
µνρ T r

[
g−1∂µgg

−1∂νgg
−1∂ρg

]
,

∫
d3x w(g(x)) = n ∈Z. (1.9)

The integral of w(g) is also known as the Brouwer degree of a mapping. Here,

the factor of 24π2 is proportional to the volume of the SU(2) group and de-

pends only on the choice of gauge group and the convention we have chosen

for the Killing form (the trace of the product of two generators).

For the case of a mapping between one n-sphere and another n-sphere

(which is indeed the case for an SU (2) gauge transformation on S3), we are

guaranteed that this quantity is a homotopy invariant by Hopf’s theorem [107].

Hopf’s theorem states that two mappings f ,g : Sn → Sn are homotopic if and

only if they have the same winding number.

Another way of seeing that w(g) is a homotopy invariant is by varying g→
g + δg and showing that the integral of the first order variation of w(g), which

we define to be δw(g), vanishes. Using the fact that (g + δg)−1 = g−1 − g−1δgg−1

to first order, and the cyclicity of the trace, we can show that∫
d3xδw(g) =

1
24π2ε

µνρ
∫
d3x3∂µT r

[
(g−1δg)g−1∂νgg

−1∂ρg
]
. (1.10)

Using Stokes’ theorem and requiring that the variation δg vanishes at the

boundary (or equivalently, considering a manifold without a boundary, which

12



1.1 Chern-Simons Theory

is the case for Sn), we see that ∫
d3xδw(g) = 0. (1.11)

Thus we see that the winding number is unaffected by small variations of the

mapping.

Gauge transformations with a non-zero winding number are called large

gauge transformations. Another way of saying this is that they are mappings

that are not continuously connected to the identity transformation.

Here we take a break from Chern-Simons theory to give a simple example

to illustrate how these gauge transformations are different. Suppose we have a

complex scalar field ϕ defined on S1

ϕ : S1→C, (1.12)

such that ϕ = f (θ)eiα(θ), where f ∈ R and θ describes the position on the S1.

Here the eiα(θ) can be absorbed into a U (1) gauge transformation. Below (Fig

1.1) we have pictorially represented the phase of the scalar ϕ at a point on the

manifold (in this case S1) as a red arrow pointing in a direction on the plane.

In Fig (1.1a) we have α(θ) = π
2 . It is not hard to convince ourselves that we

can transform this configuration to α(θ) = 0 by making the same infinitesimal

changes at every point on S1. Thus α(θ) = π
2 is an example of the familiar kind

of “small gauge transformation”. One can go from (1.1a) to (1.1b) by setting

α = θ − π. However, in this case we see that there is no way to make small

transformations that are continuous. Configurations (1.1b) and (1.1c) are said

to be in a different homotopy class from (1.1a), but they are in the same gauge

equivalency class as (1.1a).

As a final remark to counter the point that “We do not live on a circle”,

I shall say that when studying a non-singular, circularly symmetric, planar

setup, we would require boundary conditions which identify the point at in-

finity with the same gauge field configuration. It turns out that the point at

infinity is an S1, so inevitably abelian gauge transformations would be sepa-

rated into distinct homotopy classes. A discussion of this fact can be found in

13



1. BACKGROUND

(a) (b) (c)

Figure 1.1: This figure provides a simple example that illustrates the idea behind
large gauge transformations. The phase of a scalar field (∈ (0,2π)) has been picto-
rially represented by arrows pointing in some direction on the plane. The three
configurations depicted can all be transformed into each other via a gauge trans-
formation. Transforming (a) into either (b) or (c) involves a gauge transformation
that is not connected to the identity, i.e. it cannot be represented as a sum of
infinitesimal, continuous transformations and, for this reason, it is called a large
gauge transformation. So we say that (a) is topologically distinct from the rest, yet
they are all gauge equivalent configurations.

a review of Yang-Mills theory by Jackiw [108].

This above passage illustrates the essence of large gauge transformations in

the simplest possible case, where we have a non-trivial homotopy group. The

situation is precisely the same with more complicated homotopy groups but

they just happen to be more difficult to visualise.

Going back to the Lagrangian transformation law, we pick g, such that∫
d3xw(g) = n. Therefore the action SCS =

∫
d3xLCS transforms as

SCS→ SCS + 8π2κn. (1.13)

Here we see that the action is not gauge invariant! However, keep in mind that

what plays a role in the path integral is eiS , which transforms as

eiSCS → ei8π
2κneiSCS . (1.14)

This implies that if we set κ = k
4π , where k ∈Z, we have restored gauge invari-

ance, which means that we ought to include this term in the study of planar

physics. This argument for the quantisation of the CS level is due to Deser,

Jackiw & Templeton [45].

The previous discussion can be easily generalised to gauge groups other

than SU (2), as long as they allow for non-trivial homotopies. This can be
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1.1 Chern-Simons Theory

achieved by simply adjusting the normalisation of the winding number. The

case of SU (N ) is identical, since one can consider an SU (2) � S3 subgroup in

SU (N ), which maps onto the space-time. Let us take the simplest example

that differs from SU (2), the case of SO(3) � SU (2)/Z2. The normalisation of

wSO(3)(g) is half that of SU (2), since vol[SO(3)] = 1
2vol[SU (2)]. If wSO(3)(g) = n,

then the shift of the action becomes

SCS→ SCS + 4π2κn. (1.15)

Setting κ = k
4π leads us to a quantisation condition which requires an even

Chern-Simons level k ∈ 2Z in the case of an SO(3) gauge group.

Next, we comment on the quantisation of the Chern-Simons level in the

case of a compact abelian gauge group. The same argument, where we com-

pactify R
3 → S3 and then perform gauge transformations with a non-trivial

winding number, no longer applies for an abelian group, since π1(S3) is triv-

ial. In fact, the level for an abelian CS theory is not in general quantised [109].

We can, however, derive a quantisation condition with a small set of additional

assumptions, more specifically these are

◦ Finite Temperature T .

Studying a QFT at finite temperature is equivalent to performing a Wick

rotation into Euclidean space and compactifying the time direction to an

S1. This leads to a space-time of the form S1 ×M, where M is a two

dimensional manifold. More information on the development of finite

temperature field theory can be found in Kadanoff et al. [110].

◦ Consistency of the theory in the presence of a magnetic monopole.

As we have already touched upon in the Introduction, in 1931, Paul

Dirac considered the possibility of the existence of a magnetic monopole

[15]. This consideration is contrary to the statement of Gauss’s law for

magnetism, which states that magnetic monopoles cannot exist (since for

such a configuration we would have ∇ · B , 0). Dirac’s construction re-

quired the existence of a singularity associated with itself. Later on, in

1975, Wu & Yang [111, 112] resolved the mystery of the Dirac string by
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showing how gauge fields are connected to the mathematical concept of

fibre bundles, thus showing that a proper definition of the vector poten-

tial of a monopole should be defined in patches, which are related by

gauge transformations on the intersections. Here we will consider the

monopole on a sphere S2. The presence of a monopole implies that

1
2π

∫
S2
F12 = 1. (1.16)

With this setup, we can now perform a large gauge transformation along the

time manifold S1, and study its effect on the Chern-Simons action. However,

this would lead us to a result that is incorrect. The reason for this is that

our definition of the Chern-Simons action is ambiguous for a non-trivial fibre

bundle (read for a gauge field that is not globally defined). The correct way of

approaching this problem is by defining the U (1) Chern-Simons action as the

boundary term of a 4-dimensional action [44]

S =
k

4π

∫
B
F ∧F, (1.17)

where B is a four manifold that bounds S1 ×S2. Here we shall take B =D ×S2,

where D is the disk with boundary S1. We know that the size of the S1 is

β = 1
T , as dictated by thermodynamics. This implies that the radius of the disk

is RD = β
2π . Since the total space-time is a direct product, we can write the field

strength as a sum of contributions to the separate parts of the manifold

F = FD +FS2 . (1.18)

Since the wedge product of 2-forms commutes, we have

S =
k

4π

∫
B
F ∧F =

k
2π

∫
B
FD ∧FS2 . (1.19)

Let us consider a large gauge transformation on S1. Let AD be the gauge field

defined on the diskD and let a position on that disk be described in polar coor-

dinates (r,α), where r is the radial position and α the polar angle. A candidate
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1.1 Chern-Simons Theory

for a non-single valued function on the boundary of D (S1) is a transformation

of the form

AD → AD +
r
RD

dα. (1.20)

This is not a gauge transformation onD, but it is a perfectly well-defined gauge

transformation on S1 and, as such, we expect the boundary theory to be invari-

ant under it. Since (1.20) is not a gauge transformation on D, FD changes

FD → FD + d(rdα) = FD + dr ∧ dα. (1.21)

This implies that the action changes accordingly

δS =
k

2π

∫
B

1
RD

dr ∧ dα ∧FS2 (1.22)

=
k

2π

∮
S1
dα

∫
S2
FS2 = 2πk, (1.23)

where we have used Stokes’ theorem, the monopole flux condition (1.16) and

the fact that on the S1, r = RD . Just as in the non-abelian case, we see that if we

would like the path integral over the boundary to remain invariant, we require

that

δS ∈ 2πZ =⇒ k ∈Z. (1.24)

We remark that if the local definition of the Chern-Simons action had been

used in this derivation, we would be off by a factor of 2, which would mean

that the level would be quantised to only even integers, leading to incorrect

physical predictions. Finally, it is important to note that even though the ar-

guments above are classical in nature, there is a result that guarantees the ab-

sence of radiative corrections of the Chern-Simons level beyond 1-loop. This

is known as the Coleman-Hill theorem [113, 114].
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Equations of Motion

Let us look at some physical properties that the action functional SCS pos-

sesses. Performing the functional variation, we get the equation of motion

Fµν = 0, implying only pure gauge solutions exist. This might make one won-

der, what could possibly be so interesting about CS theory if the classical equa-

tions of motion are trivial!? The reason that this theory is in fact interesting

and non-trivial, despite the fact that F = 0, is two-fold. Firstly, CS is a topologi-

cal field theory. It has trivial local properties in the sense that local observables

vanish. All of the physics is encoded in the topology of the manifold and in

the non-local observables such as Wilson loops that require us to study the full

quantum theory. This was done by Witten [115] in 1989, when he showed that

the expectation values of Wilson loops can be expressed in terms of their Jones

polynomial - a knot invariant that characterises the loop - thus establishing a

deep connection between QFT and knot theory.

Secondly, CS teaches us the old lesson that sometimes the whole is greater

than the sum of its parts. In this case, adding matter or a Maxwell term to

the Lagrangian alters the pure Maxwell/matter theories immensely. Let us see

how these alterations play out.

1.1.1 Chern-Simons-Maxwell theory

Here we consider the familiar Maxwell theory deformed by a Chern-Simons

term

SMCS =
∫
d3x

[
−1
4g2FµνF

µν +
k

4π
εµνρAµ∂νAρ

]
. (1.25)

This leads to the equation of motion

∂µF
µν +

k
4π
g2εναβFαβ = 0. (1.26)

If we rewrite this equation in terms of the dual field strength F̃µ = 1
2εµνρF

νρ

by contracting with an ε tensor density, followed by a ∂ contraction, and then

using the equations of motion again, and finally noting that ∂µF̃µ = 0 (Bianchi
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1.1 Chern-Simons Theory

identity), we arrive at ∂µ∂µ +
(
k

2π
g2

)2 F̃ν = 0. (1.27)

Observing that F̃µ is gauge-invariant, we deduce that this equation describes

a propagating wave with mass
(
k

2πg
2
)
. Even though in this work we shall

promptly be ignoring the Maxwell contribution to the planar physics, it is

important to note that despite the fact that the gauge bosons are heavy, we

still observe global effects. This provides us with a more general lesson about

CS. Namely, that we can have significant long-range global effects, such as the

anyonic phase change interaction, even in the case of a gapped phase (such as

the quantum Hall droplet). Next, we turn to the matter sector.

1.1.2 Chern-Simons-matter theory

We begin by coupling the Chern-Simons gauge field to a general conserved

matter current

S =
∫
d3x

k
4π
εµνρ T r

[
Aµ∂νAρ +

2
3
AµAνAρ

]
+ JµAµ. (1.28)

This action leads to a modified equation of motion

k
4π
εµνρFaνρ = Jµa, (1.29)

where a = 1, ...,dim(G) and Faµν = ∂µAaν − ∂νAaµ + [Aµ,Aν]a. Note that covariant

current conservation is equivalent to the non-abelian Bianchi identity

DµJ
µa =

k
4π
εµνρDµF

νρa = 0, (1.30)

where DµFνρ = ∂µFνρ + [Aµ,Fνρ].

Restricting ourselves to the abelian case, we examine the equations of mo-
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tion component by component. If Jµ = (ρ,J i) then

ρ =
k

2π
B, (1.31)

J i =
k

2π
εijEj , (1.32)

where B is the magnetic field perpendicular to the plane and Ej is the electric

field. The first equation (1.31) relates the charge density to the magnetic field.

So for a non-zero value of k, we find that anywhere there is charge, there is

also magnetic flux penetrating through it perpendicular to the plane. This is

something quite unlike Maxwell theory, where charge movement generates a

magnetic field, as opposed to charge presence. This is illustrated in Figure (1.2)

for a collection of localised charge distributions. The second equation (1.32)

ensures that this charge-flux relation is preserved under time evolution. If we

act with ∂ on (1.32) then we arrive at

∂iJ
i =

k
2π
εij∂iEj

=
k

2π
εij∂i(∂jA0 −∂0Aj)

= − k
2π
Ḃ = −ρ̇, (1.33)

which is just the continuity equation ρ̇+∂iJ i = 0.

The final aspect of Chern-Simons theory that we will use is the fact that it

is a topological quantum field theory (TQFT) of Schwarz type. This means that

the theory is independent of the metric. This consequently implies that the CS

term does not contribute to the energy-momentum tensor, since

T µν =
−2
√−g

δSCS

δgµν
= 0. (1.34)

One way to see that CS is a topological field theory is by writing it as an

integral of a differential form

SCS =
k

4π

∫
(A∧ dA+A∧A∧A) . (1.35)
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Figure 1.2: A collection of localised charge distributions, with magnetic flux lines
of strength 2πρ(x,y)

k tied to the charges. Here the charge density distribution is
denoted by ρ(x,y) and the magnetic field strength is denoted by B(x,y). Dark
shades of cyan depict a large charge density and large red vectors are associated
with a strong magnetic field perpendicular to the plane. The charge and flux
are tied together throughout the motion of the particles as a result of the Chern-
Simons equations (1.31) - (1.32).

This construction does not require the metric to be defined, unlike the Yang-

Mills term, which involves the Hodge star (a metric dependent construct) in

order to be defined through differential forms.

This concludes our review of CS theory. We now move on to a refresher of

statistical physics.

1.2 Statistical Physics

Here we motivate the study of QFT as a gateway into understanding phenom-

ena in many body physics. Physical phenomena at macro scale require micro

scale explanations. The transition between a microscopic theory and its ob-

servable large scale properties is facillitated by the use of techniques from

statistical mechanics. Here we review the connection between the microscopic

Lagrangian formulation and the statistical partition function through the for-

malism of the path integral. We follow through by accentuating the treatment
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of a chemical potential and the subtleties related to it in Subsection (1.2.2). We

build up to this with standard statistical physics material in Subsection (1.2.1).

1.2.1 Functional integral representation of the partition func-
tion

In this section we derive the functional integral representation of the partition

function for interacting, relativistic, non-gauge field theories. Good reviews

on the techniques we discuss here can be found in Feynman & Hibbs’s classic

work on the path integral formulation [116] and a set of excellent lecture notes

on thermal field theory by Laine & Vuorinen [117]. Let φ̂(x,0) be a Schrödinger

picture field operator at time t = 0. We define its conjugate momentum op-

erator to be π̂(x,0). The eigenstates of the field operator are labelled |φ〉 and

satisfy

φ̂(x,0)|φ〉 = φ(x)|φ〉, (1.36)

where φ(x) is the eigenvalue of |φ〉. This is complemented with the complete-

ness and orthogonality relation ∫
dφ(x)|φ〉〈φ| = 1, (1.37)

〈φa|φb〉 =
∏
x

δ(φa(x)−φb(x)). (1.38)

And similarly for the conjugate momentum

π̂(x,0)|π〉 = π(x)|π〉, (1.39)∫
dπ(x)|π〉〈π| = 1, (1.40)

〈πa|πb〉 =
∏
x

δ(πa(x)−πb(x)). (1.41)
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Suppose we have a Hamiltonian with no explicit time dependence

H =
∫
d2xH(φ̂, π̂). (1.42)

Assume that a system is in a state |φa〉 at time t = 0. After a time tf it evolves

to e−iHtf |φa〉, assuming that the Hamiltonian has no explicit time dependence.

The transition amplitude for going from state |φa〉 to state |φb〉 after a time tf

is 〈φb|e−iHtf |φa〉. In order to study a system at thermodynamic equilibrium, we

are interested in the amplitude for the system returning to the same state after

a time tf . To be able to compute this amplitude, we divide the time interval

(0, tf ) into ` equal time steps ∆t =
tf
` . Then at each time interval, we insert a

complete set of states, alternating between field operators and their conjugate

momenta

〈φa|e−iHtf |φa〉 = lim
`→∞

∫ ∏̀
i=1

dπidφi
2π


× 〈φa|π`〉〈π` |e−iH∆t |φ`〉〈φ` |π`−1〉

× 〈π`−1|e−iH∆t |φ`−1〉 . . .

× 〈φ2|π1〉〈π1|e−iH∆t |φ1〉〈φ1|φa〉. (1.43)

In order to evaluate this expression, we need to do several things. First of all,

from single particle quantum mechanics, we know that

〈x|p〉 = eip·x. (1.44)

So an appropriate generalisation of this inner product from phase space coor-

dinates to field operators is

〈φi+1|πi〉 = exp
(
i

∫
d2x πi(x)φi+1(x)

)
. (1.45)
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Since ∆t→ 0, we can expand as follows, keeping terms up to first order:

〈πi |e−iHi∆t |φi〉 ∼ 〈πi |(1− iHi∆t)|φi〉

= 〈πi |φi〉(1− iHi∆t)

= (1− iHi∆t) exp
(
−i

∫
d2xπi(x)φi(x)

)
, (1.46)

where

Hi =
∫
d2x H (πi(x)φi(x)) . (1.47)

In the end we arrive at

〈φa|e−iHtf |φa〉 = lim
`→∞

∫ ∏̀
i=1

dπidφi
2π

δ (φ1 −φa)

× exp

i∆t∑̀
j=1

∫
d2x

[
πj(φj+1 −φj)

∆t
−H(πj ,φj)

] . (1.48)

Taking the continuum limit we arrive at the path integral representation of the

partition function

〈φa|e−iHtf |φa〉 =
∫

Dπ

∫ φ(x,tf )=φa(x)

φ(x,0)=φa(x)
Dφ

× exp
[
i

∫ tf

0
dt

∫
d2x

(
π(x, t)

∂φ(x, t)
∂t

−H (φ(x, t),π(x, t))
)]
. (1.49)

For a Hamiltonian that is quadratic in the canonical momenta, we can just

complete the square, integrate out the momenta and arrive at the usual expres-

sion for a transition amplitude in terms of a path integral over eiS . Since our

purpose here is to illuminate the connection between the statistical partition

function and the path integral, we shall perform a few more manipulations.
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1.2.2 Grand canonical ensemble

With the background of the previous section in place, we are now prepared to

tackle the study of the grand canonical partition function in the path integral

formalism. First, we note that the grand canonical partition function is defined

as follows

Z = T r
[
e−β(H−µN )

]
, (1.50)

where β = 1
kBT

is the inverse temperature, µ is the chemical potential, and N is

the particle number. To see that N denotes particle number, we note that in a

QFT,N will be associated with a conserved charge. HenceN counts the charge

in the system, which, for particles with discrete charge, translates directly to

counting the number of particles. We can express the trace in (1.50) in the φ

basis

Z =
∫
dφa〈φa|e−β(H−µN )|φa〉. (1.51)

We see that this expression is very similar to 1.49. In order to match the two ex-

pressions, we need to do three things. First, we set t→−iτ , such that tf →−iβ.

Then we shift the Hamiltonian density in order to account for the inclusion of

a chemical potential

H (φ(x, t),π(x, t))→H (φ(x, t),π(x, t))−µ N (φ(x, t),π(x, t)) , (1.52)

where N is a number density. Finally, we include the trace operation, which

integrates over all possible boundary conditions. In the end we are left with

Z =
∫

Dπ

∫
periodic

Dφexp
[∫ β

0

∫
d2x

(
π
∂φ

∂t
−H(π,φ) +µN(π,φ)

)]
. (1.53)

This is the path integral representation of the partition function of the grand

canonical ensemble of a single real scalar field. This expression is readily gen-

eralisable to more fields by integrating over the extra fields and their respective

conjugate momenta.
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Here we shall make a few observations that will come in use frequently

for the rest of this thesis. For the purposes of presentation, we will elaborate

on these points in the context of a somewhat simpler model. This should not

alarm the reader, because the properties we are discussing are general and

model independent. With this in mind, we consider the Lagrangian descrip-

tion of a complex relativistic scalar in 2 + 1 dimensions with a potential U (φ)

L =
(
∂µφ

∗∂µφ−U
(
|φ|

))
. (1.54)

This system possesses a global symmetry

φ→ eiαφ, φ∗→ e−iαφ∗. (1.55)

This leads to a conserved Noether current and consequently a conserved charge

J0 = −i
∫
d2x

(
πφ−π†φ†

)
, (1.56)

where π = δL
δ(∂0φ) is the canonical momentum. Based on the assumption of

identical particles with discrete charges, we postulate that J0 = N. Next, we

perform the momentum integrals in (1.53). Since now we have a complex

field, we have to integrate over all of φ, φ†, π and π†

Z =
∫

DπDπ†
∫

periodic
DφDφ†

× exp
[∫ β

0

∫
d2x

(
π
∂φ

∂t
+π†

∂φ†

∂t
−H

(
π,π†,φ,φ†

)
− iµ

(
πφ−π†φ†

))]
=

∫
DπDπ†

∫
periodic

DφDφ†

× exp
[∫ β

0

∫
d2x

(
π

(
∂φ

∂t
− iµφ

)
+π†

(
∂φ†

∂t
+ iµφ†

)
−H(π,π†,φ,φ†)

)]
. (1.57)

Performing the path integral leaves us with

Z =
∫

periodic
DφDφ† exp

[∫ τ

0
dτ

∫
d2xL′

]
, (1.58)
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where L′ is the same as L except that the time derivatives acting on φ instead

act as covariant derivatives in the presence of a constant background gauge

field A0 = µ, i.e.

∂0→ ∂0 − iµ. (1.59)

This is a general result that we will be making use of numerous times.

Chemical potential for a local symmetry

Now, let us see how the grand canonical partition function changes when

we try to introduce a chemical potential for a gauged symmetry. First, we

modify the Lagrangian L by gauging the U (1) and adding a Maxwell term

− 1
4g2FµνF

µν . For simplicity, let us assume that the potential has the monomial

super-renormalisable form

U
(
|φ|

)
= λ|φ|4. (1.60)

Therefore the Lagrangian is

L = (Dµφ)∗Dµφ−λ|φ|4 − 1
4g2FµνF

µν , (1.61)

where Dµ = ∂µ − iAµ. According to the rule (1.59) that we established above,

L→ L′ = L
(
φ, D ′µφ, Aµ

)
, (1.62)

whereD ′µ =Dµ−iµδµ0. Let us also express φ in terms of a modulus and a phase

φ(x) = σ (x)eiα(x). (1.63)
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If we assume a homogenous, constant configuration, the equations of motion

tell us that

σ =

√
µ2

2λ
, (1.64)

1
g2∂µF

µ0 = µσ2. (1.65)

The first equation tells us that the scalars have condensed to the ground state.

The second equation states that we have a non-zero charge density in this

ground state. On the one hand, this makes sense, since the charged scalars

have condensed. On the other hand, this is contradictory, since we are study-

ing a system at equilibrium and a charged system cannot be in equilibrium

by definition. In order to fix this problem, we introduce a background charge

density, which guarantees that the system is neutral

L′→ L′ −A0J0, (1.66)

where J0 = µ3

2λ . This way of thinking about a chemical potential of a local sym-

metry was first suggested by Kapusta [118].

The statistical description of weakly interacting particles, for example in

a fluid, can be thought of as the same as that of a free gas of non-interacting

quasiparticles that are in one to one correspondence with the original inter-

acting excitations of the material [119]. We find that in order to explain some

of the surprising features of the charge carriers in a quantum Hall system,

we need to go beyond the weakly interacting description of a Landau-Fermi

liquid.

1.3 Fractional Quantum Hall Effect

Here we discuss what is perhaps the most applied aspect of TQFT in the real

world. But before we get to the point of discussing the highly non-trivial

physics of the various types of quantum Hall effects, we take a moment to

review the classical picture.
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1.3 Fractional Quantum Hall Effect

1.3.1 Classical Hall effect

In the year 1879, Edwin Hall [49] set up an experiment consisting of a con-

ductor plate with two electrodes attached at opposite ends of the plate and a

magnetic field perpendicularly penetrating the surface of the conductor. He

found that he could measure a non-zero potential across the conductor, or-

thogonal to the plane defined by the driving current and the magnetic field.

The generation of this potential difference has since been known as the Hall

effect. Despite this being an exciting discovery at the time, from our modern

perspective, this can all be explained through basic knowledge of conductors

and classical electrodynamics. In the presence of a magnetic field, the charge

carriers, which are responsible for the current in the conductor, get deflected

in a direction orthogonal to their motion due to the Lorentz force

F = q(E + v ×B), (1.67)

where q is the charge of the electrons, E is the electric field due to the potential

difference in the electrodes, v is the velocity of the charge carriers and B is the

magnetic field in the material. If we account for the possible collisions that

may occur within a sample of the conductor, which cause the charge carriers

(in this case electrons) to slow down, we arrive at a slightly modified equation

to the Lorentz law from above

mv̇ = qE + qv ×B − 1
τ
mv, (1.68)

where τ is the scattering time. It accounts for how frequently the electrons

scatter, hence a large scattering time makes the last term in (1.68) disappear

completely. This description of the charge carriers in a material, subject to

both electric and magnetic fields in the presence of impurities, is called the

Drude model, named after the German physicist Paul Drude who first proposed

it [120, 121]. Before we look at the general solution of this model, we make

several remarks about certain limiting cases.

First, assume that there are no collisions (i.e. the collision time diverges,
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τ→∞) and that there is no electric field. Then the system simplifies to

mv̇ = qv ×B. (1.69)

For a particle confined to the plane, the velocity vector is v = (ẋ, ẏ), which leads

to the system of two coupled linear ordinary differential equations (ODEs)

mẍ = qBẏ, mÿ = −qBẋ. (1.70)

The general solution to this system is

x(t) = x0 +Rsin(ωBt +ϕ) , (1.71)

y(t) = y0 +Rcos(ωBt +ϕ) , (1.72)

where x0, y0,R,ϕ are all integration constants and

ωB =
qB

m
(1.73)

is the cyclotron frequency. We see that the solution in the absence of collisions

and an electric potential represents circular motion with a fixed, magnetic

field dependent frequency ωB.

Let us go back to the full Drude model. We would like to find out what the

equilibrium of the system looks like. This implies that v̇ = 0. The equation of

motion becomes

v −
qτ

m
v ×B =

τq

m
E, (1.74)[

1 −qτBm
qτB
m 1

]
v =

τq

m
E. (1.75)

Subsituting J = qv and ωB = qB
m[
1 −ωBτ
ωBτ 1

]
J =

τq2

m
E. (1.76)
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1.3 Fractional Quantum Hall Effect

After inverting we arrive at Ohm’s law

J = σE, (1.77)

where

σ =
q2τ

m
(
τ2ω2

B + 1
) [ 1 τωB
−τωB 1

]
(1.78)

is the conductivity tensor. It is related to the resistivity tensor by inversion

ρ = σ−1 =
m

q2τ

[
1 −τωB
τωB 1

]
=

[
ρxx ρxy
ρyx ρyy

]
, (1.79)

where ρxx = ρyy and ρxy = −ρyx.

This equation tells us that in the presence of a constant magnetic field, the

charge carriers experience two types of resistivity. One is the usual type of re-

sistivity, that you can expect from a conductor, ρxx = m
q2τ

– it is independent of

the magnetic field and as the scattering time increases, i.e. the number of scat-

tering events decreases, the resistivity decreases. The other type of resistivity

is different. The off-diagonal component of the resistivity ρyx = mωB
q2 = B

q is in-

dependent of τ . So somehow the resistivity in the direction orthogonal to that

of the driving current does not depend on the impurities in the material. An-

other way in which ρyx is different from ρxx is that it depends on the magnetic

field. Surprisingly, as B→ 0 so does ρyx→ 0. It would be incorrect to assume

that the vanishing of ρxy implies that we achieve superconductivity, since σxy

also vanishes and therefore there is no current being generated perpendicular

to the generating electric field.

The Drude model is successful when compared to the classical experimen-

tal results obtained by Hall since it predicts correctly that the resistivity ρxy

would grow linearly with the magnetic field B.
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1.3.2 Quantum Hall effect

Now that we have an understanding of the classical Hall effect, we are ready to

delve into the physics of the quantum Hall effect. It is important to distinguish

two different types of quantum Hall effects, since they are qualitatively dif-

ferent, occur in different materials and seem to have fundamentally different

physical explanations. The first type is the integer quantum Hall effect (IQHE).

In 1980, von Klitzing et al. [50] performed the Hall experiment at ultralow

temperatures with strong magnetic fields and found that the above relation

between ρyx and B does not hold for large enough magnetic fields. They found

that beyond a certain magnetic field strength, plateaux started appearing in

the resistivity that could not be explained by the classical picture. Further,

they found that in the plateaux, where ρyx was constant, ρxx was vanishing.

The precise relation that they discovered was

ρyx =
2π~
e2

1
ν
, ν ∈Z. (1.80)

Thus the quantity 2π~
e2 is dubbed the quantum of resistivity. The explanation of

the integer quantum Hall effect is based on the quantum mechanics of non-

interacting particles confined to a plane. In the case of the fractional quantum

Hall effect (FQHE), where ν ∈Q, we need to study a highly interacting system,

which makes the FQHE a very interesting topic for theoretical physics.

1.3.3 Landau levels and the integer quantum Hall effect

Before we attempt to tackle the intricacies of the FQHE, we first acquaint our-

selves with the quantum mechanical analogue of the Drude model. Namely,

we will be interested in the quantum mechanics of a charged particle confined

to a plane, subjected to a magnetic field perpendicular to the plane (for now

we will consider the electric field to be vanishing). The physics of this system

can be described by a harmonic oscillator. The energy states of this system are

today referred to as Landau levels. The name comes from Landau’s descrip-

tion of diamagnetism in metals through the quantised orbits of free electrons

in metals [51]. Historically, there have been others who have independently
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1.3 Fractional Quantum Hall Effect

studied this system [122–124], but Landau’s name ended up being attached to

it.

For the purpose of quantisation, we consider a system, consisting of a parti-

cle in a magnetic field using the Hamiltonian formulation. The general Hamil-

tonian for a particle at position x in a vector potential A(x) is

H =
1

2m
(p+ eA)2 . (1.81)

Here we take the special case of a vector potential such that ∇×A = Bẑ.

In order to solve the quantum system, we perform the canonical quantisa-

tion procedure and we promote the positions and momenta to operators

[x̂i , p̂j] = i~δij , [x̂i , x̂j] = [p̂i , p̂j] = 0. (1.82)

Here we use Landau gauge

A = xBŷ. (1.83)

Now we can define raising and lowering operators

â† = p̂x + i(p̂y + eAy), â = p̂x − i(p̂y + eAy). (1.84)

Substituting the form of A in Landau gauge and using the canonical quantisa-

tion conditions, we get the usual ladder operator commutation relations

[â, â†] = 1. (1.85)

In terms of â and â†, the Hamiltonian takes the standard form

H = ~ωB

(
â†â+

1
2

)
, (1.86)
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where ωB = eB
m . This leads to a tower of energy eigenstates |n〉 with energies

En = ~ωB

(
n+

1
2

)
, n ∈N. (1.87)

Since we are studying the QHE, we expect the magnetic fields to be large,

hence the gap between the energy levels would consequently be very large too.

If the gap is, in addition, very large in comparison to the temperature of the

system, i.e. kBT � ~ωB, then we expect only the first few Landau levels to be

occupied. An important fact to take note of here, is that we are attempting

to study a system of a macroscopic number of electrons, yet we see that they

occupy only a few energy eigenstates. This tells us that these energy states are

extremely degenerate. This degeneracy is what is going to play a role in the

conductivity computation.

Let us extend this to include an electric field. We choose the electric field

to be in the x direction, which results in an electric potential φ = −Ex. With

this potential, the Hamiltonian becomes

H =
1

2m
(p+ eA)2 − eEx. (1.88)

The current of a particle is given by

I = −eẋ = e
(p + eA)
m

. (1.89)

Quantum mechanically, we need to average over the available charge carriers.

If we are working in the kbT � ~ωB limit, then only the first ν Landau levels

contribute to the current, so we have

〈I〉 = − e
m

ν∑
n=1

∑
k

〈ψ| − i~∇+ eA|ψ〉. (1.90)

The current in the x direction is

Ix = − e
m

ν∑
n=1

∑
k

〈ψ|px|ψ〉 = − e
m

ν∑
n=1

∑
k

〈ψ| â
† + â
2
|ψ〉 = 0, (1.91)
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where the last term vanishes, since we are summing over eigenstates. The

current in the y direction is

Iy = eν
∑
k

E
B
. (1.92)

Assuming that the Landau levels are completely filled, which is the case if the

Fermi energy is in the gap between the levels, the sum over k is the number of

electrons per Landau level. The number of electrons per Landau level can be

approximately derived by taking a unit area A and dividing it by the size of an

electron orbit 2πl2B ∑
k

1 =
ABe
2π~

. (1.93)

This leaves us with the current density

J =
(

0
−e2νE
2π~

)
. (1.94)

We can again use Ohm’s law (1.77) and infer the conductivity tensor

σ =

 0 −e2ν
2π~

−e2ν
2π~ 0

 . (1.95)

Inverting this expression and reading the off-diagonal terms, we find the Hall

resistivity

ρxy = −2π~
e2ν

. (1.96)

The above discussion shows that the IQHE effect comes out of simple quan-

tum mechanics. We have omitted a lot of details and intricacies relating to

impurities in the sample, edge states [125], the role of topology, the role of

extended states and the irrelevance of localised states [126] and much more.

We refer the reader to the following reviews [48, 52, 53] to learn more about

these details. The main point that we would like to make here is that the IQHE
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can be understood in terms of a non-interacting system of electrons. This is in

contrast to our current understanding of the FQHE, which requires strongly

interacting electrons.

1.3.4 Fractional quantum Hall effect

Despite the fact that a Nobel prize had already been awarded for the IQHE

in 19851, a second QHE Nobel prize2 was awarded to Laughlin, Störmer &

Tsui [54, 55] in 1998 for the discovery of the FQHE! This fact alone should

signal just how distinct and important the two effects are, despite arising from

a system that is classically indisinguishable. As we saw in the IQHE, there is a

certain, very large, value of the magnetic field B, for which we find the system

completely in the lowest Landau level, due to the large energy gap ∆E ∼ B.

Measuring the resistivity perpendicular to the external electric field, we find

it to be equal to

ρxy =
2π~
e2 , (1.97)

which corresponds to the case ν = 1. Decreasing the magnetic field, we find re-

sistances corresponding to ν = 2,3, ... etc. However, this pattern seems to break

down at ultralow temperatures, when the material has high mobility [52]. We

start seeing values of the resistance that are no longer in integer values, they

are, however, still quantised. More specifically, they are quantised in rational

fractional values of the basic unit of resistance 2π~
e2 , hence the name fractional

quantum Hall effect. This effect persists going the other direction, in increasing

values of the magnetic field, which leads to a fractionally filled lowest Landau

level. This is what Störmer, Tsui & Gossard [54] observed in 1982, when they

measured the resistance for a fractional filling of ν = 1
3 . It appears as though

the Landau levels are only fractionally filled, yet the resistance in the direction

along the electric field is still vanishing. What could be happening?

1https://www.nobelprize.org/prizes/physics/1985/summary/
2https://www.nobelprize.org/prizes/physics/1998/summary/
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It turns out that increasing the electron mobility, or equivalently, reduc-

ing the impurities in the material, allows the electrons to more freely inter-

act [127]. This means that our treatment from the previous section, where

the electrons were thought of as non-interacting particles, breaks down. In

order to understand what is actually happening, we need to solve the inter-

acting electron system. Unfortunately, this is extremely difficult, due to the

extremely large number of degrees of freedom. In fact, to this day, there is no

known model that can explain all of the fractional values that can be observed

in the FQHE. It is an unsolved problem in physics, and as such provides an

exciting playground for innovation.

It seems, however, that it is possible to write down a guess that captures

the correct qualitative physics and reproduces some of the filling fractions,

despite not being the exact solution to the highly interacting system. Such

a well-informed guess was first written down not long after the discovery of

the fractional states by Laughlin [55] and the distinct features of this guess

(such as fractional charge and anyonic statistcs, that we will get to soon) keep

informing a lot of the research that is being done both in condensed matter

physics and in high energy physics. The wavefunction that he proposed was

the following

ψm(z) =
∏
j<k

(
(zj − zk)m

)
exp

−1
4

∑
l

|zl |2
 , (1.98)

where zj = xj + iyj is the position of the jth electron and m is an odd natural

number m ∈ 2N + 1. The requirement that m is odd comes from the fact that

we are describing electrons, which are fermions, hence we expect the wave

function to be completely anti-symmetric under the exchange of any two elec-

trons. Since we have only made continuous changes to the system from the

case of the IQHE, we expect the number of states in the lowest Landau level

to remain the same. For a unit area A, we have A
2πl2B

states. If we pick out any

given zj from the polynomial prefactor of ψm(z), we see that it is taken to the

power of (N − 1)m. The exponent of zj is also the eigenvalue of the angular
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momentum operator

J = ~ (z∂z − z̄∂z̄) , Jψm(z) = ~(N − 1)mψm(z). (1.99)

This means that we expect a single electron to occupy an area of A = 2πR2 ≈
2πm(N − 1)l2B. Substituting this into our expression for the number of Landau

levels, we have

Degeneracy of lowest Landau levels =m(N − 1). (1.100)

If we take the total number of electrons in the Laughlin wavefunction, and

divide it by the number of occupied states, we get the filling fraction

ν =
N

m(N − 1)
N→∞−−−−−→ 1

m
. (1.101)

We see that the Laughlin wavefunction does indeed provide an explanation for

some of the filling fractions.

One can also consider excitations above the Laughlin ground state. These

excitations are one of the distinctive elements of the FQH liquid, since they

have very peculiar properties. They are quasi-particles in the same sense as

phonons, the excitations of an atomic lattice in the Debye model [128]. In the

spirit of Landau-Fermi liquid theory [119], one can think of the quasi-particles

as renormalised interacting electrons. The first of these peculiar properties

is that they have a fractional charge, which is quite surprising, given that the

fundamental particles underlying the system have a quantised integer charge.

These fractionally charged quasi-particles have been observed experimentally

in Hall systems by de Picciotto et al. and Saminadayar et al. [129, 130].

The second surprising feature of these excitations is that they provide an

example of an exotic type of particle, which only exists in systems confined

to two spatial dimensions. They are particles, whose phase under exchange

is neither 1 nor -1, but somewhere in between. Under an exchange the wave-

function changes as

ψ(x)→ eiπαψ(x), (1.102)
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where α ∈ (0,1) is a parameter which characterises the statistics of particles.

The value α = 0 corresponds to bosons, while α = 1 corresponds to fermions.

The quasiparticles in the Laughlin state have a statistics parameter α = 1
m . In

other words, in terms of their statistics, these particles are somewhere between

bosons and fermions. So the name given to them is anyons, since they can have

any statistics parameter. This property seems to follow from the fractional

charge, which we mentioned earlier [131–133]. The existence of particles with

statistics which is in between that of fermions and bosons was first speculated

by Leinaas & Myrheim [134] and, later on, by Wilczek [135].

The idea that anyonic statistics exist in 2+1 dimensions but not in 3+1 can

be understood mathematically through the Braid group [136, 137]. However,

going into the details of Braid group representations would take us too far

from the main subject of our study. It suffices to say that in 3+1 spatial dimen-

sions, the interchange of n particles is governed by the symmetric group Sn,

since any world-lines that lead to an exchange can be pulled through and un-

braided. This leaves us with either the trivial representation (bosons) of Sn or

the faithful representation (fermions). On the other hand, in 2+1 dimensions,

this is not the case. In order to exchange two particles, one must move them

through space-time. This movement can in general braid the world-lines of

particles. This braiding has the effect of leaving a non-trivial exchange phase

that is, in general, neither 1 nor −1.

1.3.5 Landau-Ginzburg and Chern-Simons theory

The Laughlin ground state describes a new phase of matter. One which we

refer to as the fractional quantum Hall liquid. This phase is stable for small

values of m and we know that for very large values of m (very high magnetic

fields and small temperature), the two dimensional electron liquid starts to

condense into a solid crystal, known as a Wigner crystal [138–140]. The frac-

tional Hall liquid is a very special type of state of matter for several reasons.

One of those reasons is that if we attempt to fit it into the accepted Landau-

Ginzburg paradigm in condensed matter physics, we find that we cannot ex-

plain some of the observed states [141]. Such attempts to describe the quan-
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tum Hall liquid were first made by Girvin & McDonald [142], who showed

that the Laughlin state contains an off-diagonal-long-range-order in a non-

local operator. Later on, three separate groups – Zhang, Hansson & Kivelsson,

Read and Ezawa & Iwazaki [143–145] showed that the effective field theory de-

scribing this state involves Chern-Simons theory. It seems that the fractional

quantum Hall liquid belongs to a whole new class of matter, that is not gov-

erned by the classification of its symmetries. Rather, it exhibits what is now

known as topological order [146, 147]. Topological order is physically char-

acterised by a ground state degeneracy, which depends on the topology of the

spatial manifold, quasiparticles with anyonic statistics and non-trivial edge

states [146]. All abelian quantum Hall states have been classified in terms of

emergent Chern-Simons gauge fields [148].

In 1982, Wilczek observed that a particle current coupled to a CS gauge

field produced states with fractional statistics through the binding of particles

to flux [132]. We will show how this takes place through the Aharonov-Bohm

effect [149, 150]. The existence of charge implies the attachment of flux to

charged particles, as we already observed in (1.31). Consider two particles of

charge 1 in some units. This means that each of them has a flux Φ = 2π
k at-

tached to them. Suppose we rotate one particle around the other by 180° and

then translate the configuration back to where it was. This action is clearly

equivalent to just exchanging the two particles. Whatever this does to the

wavefunction, it would have to tell us what type of statistics these particles

obey. Performing the aforementioned operation would lead to an Aharonov-

Bohm phase in the wave function proportional to

ei
1
2

∮
A·ds = ei

Φ
2 = ei

π
k , (1.103)

where the initial factor of 1
2 comes from the fact that we only went half way

around the second particle. For k = 0,∞ (the 0 case follows from there being

no flux in the first place), we have bosons and for k = 1 we have fermions. So

we see that we have found the anyons from Laughlin’s ground state for finite

values of the CS level k > 1!

Yet another feature of the quantum Hall effect pops out of Chern-Simons
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theory when we go back to the equation of motion (1.32) for the electric field

in the CS-matter section. We see the off-diagonal conductivity appearing yet

again

J i = σijE
j , (1.104)

where σxy = k
2π . Inverting this expression and resinstating the units of resis-

tance
(
~

e2

)
, we recover the IQHE conductivity for integer k

ρxy =
2π~
e2k

. (1.105)

But how does CS recover the fractional filling if we have said that k is fixed

to be an integer? In order to recover the fractional fillings of the Laughlin

state, we postulate the existence of emergent topological degrees of freedom

aµ, which we describe through CS theory. Since they emerge out of the collec-

tive motions of the interacting electron system, we also expect them to couple

to the familiar electromagnetic gauge fieldAµ. This leads to the effective action

Seff =
∫
d3x

k
4π
εµνρaµ∂νaρ +

1
2π
εµνρAµ∂νaρ +AµJ

µ. (1.106)

The equations of motion of this model lead to the relation

Jµ =
1

2π
εµνρ∂νaρ =

1
4π

1
k
εµνρFνρ (1.107)

=⇒ J i =
1

2π
1
k
εijEj . (1.108)

Again, inverting this equation and reinstating units, we get the resistivity of

the Laughlin states

ρxy = k
2π~
e2 , k ∈Z! (1.109)

One can obtain the resistivity of any abelian Hall system by adding more of

these emergent gauge fields, coupling them to each other and computing their

effect on the electromagnetic background gauge field. This is done through the
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K-matrix approach [148]. Despite our understanding of the abelian system,

there are still fractional fillings that remain unexplained, such as the ν = 5
2

state [151], for example. Finally, we mention that there are other approaches

to the understanding of the FQHE, such as Jain’s composite fermion [152].

The composite fermion is a bound state of a fermion and an even number of

vortices. The fact that such an excitation plays a role in the FQHE, gives us

one more reason to be interested in studying vortices, which is the topic that

we shall focus on in the next section.

Our exploration of the quantum Hall effect will stop here. We direct the

curious reader to a list of very insightful reviews for further exploration of

the world of the QHE [48, 52, 53, 103, 146]. What is important to take away

from this section is that the understanding of the FQHE is underlied by the

study of Chern-Simons theory. Thus studying the models, that are of interest

in the present work, might lead to a better understanding of the fascinating

problem that is the FQHE. A further connection to this problem is provided

by the non-commutative Chern-Simons theory that we explore at the end of

this chapter and at the end of Chapter (3). Next, we turn our attention to the

study of vortices.

1.4 Vortices

This section takes up the task of summarising basic aspects about vortices in

general and then more specifically in Chern-Simons-matter theories. Gener-

ally, the way we study a QFT is through perturbation theory. We take the free

field action and treat all non-linear terms as small perturbations. This leads

to predictions about the theory in terms a power series, where the coupling is

assumed to be small. Unfortunately, this approach is not sufficient to tell us

everything that we need to know about a theory. If one studies the classical

equation of motion, one finds that some models possess solutions that diverge

in the small coupling limit. Such solutions are referred to as non-perturbative,

since they are inaccessible via a perturbative expansion. Specifically, in field

theory, we are interested in localised, non-perturbative solutions. Such solu-

tions are called solitons. This name is a kind of portmanteau between a solitary
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wave and the suffix “-on”, generally used for naming particles. The name first

appeared in the literature in a paper by Zabusky & Kruskal [57], studying the

Korteweg-de Vries equation – an equation known to exhibit the phenomenon

of solitary waves.

Solitons are not just theoretical constructs that come out of our theories.

They have found numerous applications in fields such as optics, fluid me-

chanics, condensed matter physics, quantum field theory and string theory.

They are phenomena that are indispensible to our current understanding of

strongly coupled field theories. A conjecture of major importance to high en-

ergy physics is the idea of a “dual Meissner effect”, put forward independently

by Nambu, ‘t Hooft, Mandelstam for 3+1 dimensions and Polyakov for 2+1 di-

mensions [3, 153–155]. Their idea is that non-abelian flux tubes, similar to

their abelian counterparts that appear in superconductors, form between two

quarks. The energy of the non-perturbative flux tube is proportional to its

length, which leads to a confining potential for the quarks. This idea plays

a central role in the understanding of confinement, and has found a concrete

realisation in some supersymmetric models [23, 156], which hints at the pos-

sibility that the explanation of confinement in QCD is likely to be based on

similar principles.

Another important tool for our understanding of physics at strong cou-

pling are dualities. We shall get to discuss dualities in the next section. For

now it suffices to say that duality can sometimes allow us to study a strongly

coupled theory through a weakly coupled dual theory. As we hinted at in the

Introduction, non-perturbative phenomena play a crucial role in the subject of

dualities in any number of dimensions. Since our work is focused on 2+1 di-

mensional systems, we are most interested in topological solitons, which exist

in this number of dimensions. For more details about non-perturbative phe-

nomena in QFT and their applications, the reader may consult Shifman’s book

on advanced QFT [58].

Vortices are localised, topologically stable, exact solutions to the classi-

cal equations of motion in 2 dimensions, which interpolate between two dis-

tinct vacua. They may or may not be finite energy configurations. In 1957,

Abrikosov showed that if the surface tension between two phases of matter (in
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his case those were superconducting and non-superconducting phases) is neg-

ative, then a phase transition would be accompanied by the creation of a lattice

of regions, whose interiors reside in a phase different from their exteriors [59].

He also recognised the similarity that these regions of non-superconductivity

have with the vortices formed in superfluid helium. This similarity is due to

the winding of the phase of the order parameter wave function.

Later on, in 1973, Nielsen & Olesen [60] showed that a solution similar to

that of Abrikosov can come about through the study of a microscopic La-

grangian, as opposed to an effective Landau-Ginzburg description. This is

the Lagrangian of the abelian Higgs model with a quartic interaction. Similar

solutions have been found in the abelian Higgs model with a Chern-Simons

interaction by Paul-Khare [61] and in the absence of a Maxwell term by Hong-

Kim-Pac [62], Jackiw & Weinberg [63] and Jackiw, Lee & Weinberg [64].

1.4.1 Global U(1) vortex

Now we look at the properties of these solutions more closely. Before we look

at the gauge theory scenario, we focus on the simplest case of a complex mas-

sive scalar with a fourth order interaction, negative mass squared and a global

U (1) symmetry. This theory is described by the continuum version of the XY

model, which leads to the Berezinskii-Kosterlitz-Thouless phase transition [65–

67], which we hinted at in the Introduction. The action functional for this

model is

SXY =
∣∣∣∂µφ∣∣∣2 +m2|φ|2 −λ|φ|4, (1.110)

where m is the mass of the scalar and λ is the interaction coupling constant.

This action leads to the equations of motion

∂µ∂
µφ =m2φ− 2λ|φ|2φ. (1.111)

This system has an S1 vacuum manifold, parametrised by φ = veiθ, where

θ ∈ [0,2π) is the planar polar angular coordinate and v2 = m2

2λ . Even before

having solved the equations, we can already see the non-perturbative nature
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of the vortex, because a solution would have a size v ∼ 1√
λ

, which is large for

small coupling λ.

We may consider a field configuration that is φ = 0 at the origin but ap-

proaches a different point on the vacuum manifold at spatial infinity, where

the point depends on θ. More precisely, we are looking at a field φ such that

φ
r→∞−−−−→ veinθ, (1.112)

where n ∈ Z in order to guarantee that the physical configuration is single-

valued. We would like to compute the energy of such a static circularly sym-

metric configuration

E = 2π
∫ ∞

0
rdr

[
λ|φ|4 −m2|φ|2 + |φ′ |2 +

n2v2

r2

]
. (1.113)

Close to infinity, the potential term vanishes and so does φ′. In the end we are

left with

E = 2πn2v2
∫
dr
r

= 2πn2v2 logR, (1.114)

where R is the sample size on which our theory is defined. We see that the

global vortex, if it exists, would only have a finite energy for finite samples

and is not well-defined in the most general case. It turns out that once the

global symmetry is gauged, the divergence disappears and we have a vortex

configuration that is well-defined in the infinite volume limit.

1.4.2 Local U(1) vortex

The gauged U (1) vortex, also known as the Abrikosov-Nielsen-Olesen vortex, is

again a configuration that interpolates between two different vacua in a the-

ory, but this time we introduce a gauge field, whose dynamics is governed by

a Maxwell term and is minimally coupled to a U (1) scalar with a symmetry
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breaking potential. This is the familiar abelian Higgs model

SAH =
∫
d3x

[
−1

4
FµνF

µν + |Dµφ|2 −U (φ)
]
, (1.115)

where

U (φ) =
λ
2
|φ|4 −m2|φ|2. (1.116)

Again, we have a non-trivial manifold of ground states and we can repeat the

construction from above. This time the energy of the static radially symmetric

configuration ends up slightly different

E = 2π
∫ ∞

0
rdr

(1
2

(B2 +E2) + |Dµφ|2 +U (φ)
)
. (1.117)

This time we are aiming to eliminate the divergence that arose from the kinetic

term |∂µφ|. We do this by requiring that Aµ asymptotes to a value that cancels

said divergence, in such a way that this value can be arrived at through a gauge

transformation. This ensures that at r →∞, Aµ is pure gauge, thus yielding a

finite contribution to the energy from the electromagnetic field. Such a choice

for Aµ is

Aµ = n∂µα(x), (1.118)

where α(x) = θ. Hence

A0 = 0, Ar = 0, Aθ = n. (1.119)

This implies that ∫ ∞
0
rdr |Dµφ|2 = v2

∫ ∞
0
rdr

1
r2 |n−Aθ |

2 = 0. (1.120)

From here we see that the inclusion of a gauge field has cured the divergence

and we are left with a sensible infinite volume limit.

Now that we know that these boundary conditions do not lead to a diver-
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gence in the energy, let us see whether a solution with such boundary condi-

tions exists. We write down the equations of motion

1
g2∂ρ(rFµρ) = ir [φ∗ (Dµφ)− (Dµφ)∗φ] ,

∂µ (rDµφ)− iAµDµφ+
δU
δφ∗

= 0. (1.121)

After plugging in the ansatz

φ =

√
m2

λ
v(r)einθ, Aµ = na(r)δθµ, (1.122)

and rescaling r → r̂
m , we arrive at a system of equations for the dimensionless

functions v(r) and a(r)

1
r̂
d
dr̂

(
r̂
dv
dr̂

)
− n

2(a− 1)2v

r̂2 − v3 + v = 0, (1.123)

d
dr̂

(
1
r̂
d
dr̂
a

)
−

2g2

λr̂
(a− 1)v2 = 0. (1.124)

In these variables, the boundary conditions become

v(0) = 0, a(0) = 0, (1.125)

v(∞) = 1, a(∞) = 1. (1.126)

Proving the existence of a solution to non-linear boundary value problems is,

in general, not easy to do. One can show that this problem indeed has a so-

lution for all n ∈ Z. This was shown for the self-dual case (we explain what

this means later in this section) by Taubes [157, 158] and in the general case

by Plohr and Berger & Chen [159, 160]. In general, non-linear boundary value

problems are difficult to solve numerically. A common approach generally

used is the so-called shooting method. This method takes advantages of the rel-

ative simplicity of solving initial value problems to solve the ODE as a function

of the initial values. It then uses some form of algebraic solver (e.g. the Newton-

Raphson method) in order to find the value of the initial condition, which most
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closely reproduces the correct value for the boundary value problem. Unfor-

tunately, this method does not work well for a wide range of parameters, and

numerical solutions become too cumbersome. Instead, here, and in the next

chapter, we have employed a collocation method, which uses piece-wise con-

tinous cubic polynomials. This method is implemented in MATLAB as the

function bvp4c [161]. One can think of this method as a type of multiple shoot-

ing method, where a mesh is predefined and a shooting method is applied on

the individual intervals.

For small r, the solutions to the equations (1.123) and (1.124) look like

v(r) = Jn(r) ∼ rn

2nn!
, (1.127)

a(r) = Cr2. (1.128)

And asymptotically for large r we have

v(r) = K0

(√
2r

)
∼ 2−

3
4

√
π
r
e−
√

2r , (1.129)

a(r) = rK1

(√
2g
√
λ
r

)
∼ 2−

3
4

√
πr
√
λ

g
e
−
√

2 g√
λ
r
. (1.130)

The system is solved numerically and plotted in Figure 1.3 below. From the

asymptotic equations (1.129) and (1.130), we can recover the masses of the

Higgs field and gauge field mH and ma, respectively, in the Higgsed phase of

the theory

mH =
√

2m, ma =
√

2
g2

λ
m. (1.131)

From the form of the propagator for scalar and vector theories, we know that

scalar fields act attractively, whereas gauge fields act repulsively for like-charged

configurations. This tells us that when ma > mH , the scalar field decays slower

than the gauge field, so if we were to place two vortices on the plane, we will

observe an attractive force between them. Likewise, if ma < mH , we expect

the vortices to repel each other. This line of thought hints at us that there
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Figure 1.3: The profiles for the magnetic (left) and scalar (right) fields (B(r) and
v(r), respectively) are depicted for winding number n = 1, electromagnetic cou-
pling g = 1 and quartic interaction coupling λ = (10,1,0.1) × λc. Here, λc is the
critical coupling, for which the BPS equations (1.137) hold.

is a critical value of the couplings, where vortices are free (non-interacting).

Here we present a more precise argument for this. In order to do this, we use

Bogomol’nyi’s identity

|D1φ|2 + |D2φ|2 = |D1φ±D2φ|2 ±B|φ|2. (1.132)

Further, we re-express the potential by completing the square

U (φ) =
λ
2

(
|φ|2 − v2

)2
− m

2v2

2
. (1.133)

Here we can ignore the constant term m2v2

2 since the energy is defined up to

a constant (albeit an infinite one). Utilising (1.132) and (1.133) we reach the
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following expression for the energy of this configuration

E = 2π
∫
rdr

(
1

2g2B
2 ±B(|φ|2 − v2) +

λ
2

(
|φ|2 − v2

)2

+ |D1φ± iD2φ|2 ±Bv2
)

(1.134)

= 2π
∫
rdr

[
|D1φ± iD2φ|2 +

1
2

(
B
g
±λ

(
|φ|2 − v2

))2

±
(
1−
√
λ
g

)
B
(
|φ|2 − v2

)]
± 2πnv2. (1.135)

The step between (1.134) and (1.135) uses Stokes’ theorem

2π
∫
rdrB =

"
R

2
(∇×A) · dS =

∮
C
A · dθ = 2πn, (1.136)

where C is the circle at infinity and Aθ → n as r → ∞. In order to have no

interaction between the vortices, we need the energy of the n vortex, the bound

state of n vortices, to be the same as the energy of n separate vortices. This

implies that there is no potential energy, hence no force between them. This

condition is satisfied when

|D1φ± iD2φ|2 = 0,
B
g
±λ

(
|φ|2 − v2

)
= 0, (1.137)

λ = g2. (1.138)

The above equations ((1.137) and (1.138)) are known as the BPS equations of

the vortex, named after the people who first discovered a non-interacting limit

for solitonic solutions in field theory – Bogomol’nyi, Prasad & Sommerfield [68]

[69].

1.4.3 Particle-vortex duality

The considerations of this section up to now are more general and they ap-

ply to more than just systems in 2 + 1 dimensions, even though the details

differ. In a general QFT, we have roughly two different types of quantum exci-
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tations. One is the familiar type of elementary excitations that appear through

the standard procedure of canonical quantisation, where we introduce cre-

ation and annihilation operators that insert particles at given positions. The

other type is, as we have just seen from the previous section, of a solitonic na-

ture (such as vortices). In other words, a solution that we reach not through

expanding around the free field solution in a small coupling parameter, but

by solving the classical equations of motion associated with a stationary point

parametrically far from the free theory. The size and energy of these solutions

is inversely proportional to the coupling, so studying them in the quantum

regime becomes tricky. Luckily, because their masses become large at small

coupling, they decouple from the theory so one can study the quantum theory

of the elementary excitations on its own without worrying about the solitons.

Unfortunately, going in the other direction in terms of coupling strength, the

solitons become light and their importance grows but so do quantum correc-

tions for the elementary excitations and we reach a regime, where we do not

understand the theory. So how do we learn more about these strongly coupled

theories?

One approach that has become ever more popular in the past few decades

is the idea of a duality. Duality suggests that instead of having one model or

one Lagrangian that describes the physics of a system, we instead have two

dual theories. For example, a way in which duality can manifest itself is the

following:

Theory I has elementary excitations that we can study at weak coupling and

non-perturbative excitations which are inaccessible due their large masses. On

the other hand, theory II describes the solitons of theory I as its own elemen-

tary excitations at weak coupling (and a small mass) and the solitons present

in theory II are in fact the elementary states of theory I. If the non-perturbative

states in these systems are vortices in 2 + 1 dimensions, then we have a type of

strong-weak duality called a Particle-Vortex (PV) duality.

PV duality was first studied by Peskin [70] in 1977 and, a few years later, by

Dasgupta & Halperin [71]. The supersymmetric version of the duality is known

as mirror symmetry in three dimensions [72]. A non-abelian version of particle-

vortex duality has been proposed by Murugan & Nastase [73], which resembles
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the procedure of T-dualising in string theory (introducing a Lagrange multi-

plier and integrating out the original fields).

Since we now have a reasonable grasp of what vortices are, we are ready

to introduce particle-vortex duality. And what better place to start than the

abelian Higgs model from the last section (1.115). Earlier, we saw that non-

perturbative solutions exist in this theory. It turns out that a model exists

where the vortices of the abelian Higgs model appear as elementary excita-

tions. In other words, there is a duality between these two models

SAH←→ SXY, (1.139)

where

SXY =
∫
d3x |∂µφ̃|2 + m̃2|φ̃|2 − λ̃

2
|φ̃|4. (1.140)

SXY is the action for the so called XY model and SAH is defined as in Equation

(1.115). The matching of the physics in the different phases is summarised in

Table (1.1). The two models both flow to the same critical point, known as

the Wilson-Fisher fixed point [162]. When the parameters are tuned to spe-

cific values, we arrive at an interacting CFT. This fixed point coincides with the

Gaussian fixed point in 3+1 dimensions. This fact is one of the aspects that

make studying scalars in 2+1 dimensions interesting.

Moving away from this fixed point, we can consider a non-zero positive

mass for the XY model scalar field. This corresponds to an unbroken global

symmetry phase or a Coloumb phase. The excitations in this phase are all mas-

sive and the scalars repel each other with a logarithmic potential. This physics

is matched on the other side of the duality by a gauge symmetry broken phase.

The scalars acquire a vacuum expectation value (VEV), which makes the pho-

ton massive, so neither side has a massless excitation. Furthermore, the ex-

istence of a VEV allows for the formation of local vortices. These vortices

correspond to the elementary excitations φ̃.

Now we can change the parameters in the opposite direction away from

the fixed point, this time with a negative mass squared for the XY model. This
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m̃2 > 0 = 0 < 0
SB phase Wilson-Fisher Coulomb phase

SAH local ANO fixed point 2d logarithmic
vortices potential

Wilson-Fisher SB phase
SXY Massive excitations fixed point global vortices

E
V→∞−−−−−→∞

Table 1.1: This table shows the matching of the phases of the XY model and the
abelian Higgs (AH) model. The m̃ parameter corresponds to the mass in the XY
model. Deforming the XY model with a positive mass squared is matched by a
negative mass squared deformation on the side of the abelian Higgs model. At
m̃2 = 0, both models are at a critical point known as the Wilson Fisher fixed point.
Here, SB stands for “symmetry broken”, since the potential breaks the global (lo-
cal) symmetry of the XY (AH) model, when m̃2 > 0 (m̃2 < 0).

leads to a symmetry breaking of the global U (1) symmetry. Goldstone’s theo-

rem tells us that there is a massless mode. Further, the non-zero VEV implies

the existence of global vortices. This physics is matched in the abelian Higgs

model by the massless photon, which corresponds to the Goldstone boson of

the symmetry broken XY model. The elementary excitations of the abelian

Higgs model attract/repel each other with a logarithmic potential, which is

characteristic of two dimensional systems. The global vortices, which also

experience such a logarithmic potential, correspond to the elementary exci-

tations of the abelian Higgs model.

No first principle proof of this duality has been shown to this day. In 2016

Karch & Tong [74] showed that it can be derived if one assumes bosonisation

duality as somehow more fundamental. In 1999, Strassler & Kapustin [75]

showed that the supersymmetric version of this duality, which we referred

to earlier, can be derived via a “Fourier transform-like” operation on the path

integral. Despite there being no rigorous first principles proof of the non-

supersymmetric duality, we present here a similar type of transformation that

arrives at the correct result, if combined with some physical intuition. This ar-

gument is due to Dolan & Burgess [76] and was further extended by Murugan

et al. [77] .
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Our starting point would be the partition function for the abelian Higgs

model

Z =
∫

DaµDΦ0Dθ exp
[
i
2

∫
d3x|(∂µ − iaµ)Φ |2

]
(1.141)

=
∫

DaµDΦ0Dθ exp
[
i
2

∫
d3x

(
|∂µΦ0|2 +

(
∂µθ + aµ

)2
Φ2

0

)]
, (1.142)

where we have decomposed the complex scalar Φ into a magnitude and a

phase, Φ = Φ0e
iθ. Further, we can split up θ in terms of a smooth and vor-

tex part θ = θsmooth + θvortex. The reason for this is that the field θ can have

variations that are both homotopic and not homotopic to the identity. We de-

fine λ
µ
smooth/vortex = ∂µθsmooth/vortex and we change variables from θ to λµ. In

order for this operation to be self-consistent, we need to impose the constraint

ερνµ∂
νλ

µ
smooth = ερνµ∂ν∂µθsmooth = 0, since θ is a smooth function. We do this

by introducing a Lagrange multiplier field bµ, which leads to the form of the

partition function

Z =
∫

DaµDΦ0DλµDbµ exp
[
i

∫
d3x

(
1
2
|∂µΦ0|2 +

1
2

(
λµ,smooth +λµ,vortex + aµ

)2
Φ2

0

+ εµνρb
µ∂νλ

ρ
smooth

)]
. (1.143)

Integrating over bµ returns the original partition function. In order to pro-

ceed, we perform the integral over λµ first. Since the action is quadratic in λ,

integrating λ out is equivalent to substituting its equation of motion(
λ
µ
smooth +λ

µ
vortex + aµ

)
Φ2

0 = −εµνρ∂νbρ. (1.144)

Alternatively, one can complete the square, perform a Gaussian and arrive at

the following form for the partition function

Z =
∫

DaµDΦ0DλµDbµ exp
[
i

∫
d3x

(
1
2

(
∂µΦ0

)2
− 1

4Φ2
0

f bµνf
bµν

− εµνρbµ∂νaρ − εµνρbµ∂ν∂ρθvortex

)]
, (1.145)
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where f bµν = ∂µbν − ∂νbµ. The last term in the partition function above looks

like it should vanish, if θvortex is a smooth function. One can show that this is

not the case here using the non-single valuedness of θvortex"
ε0νρ∂ν∂ρθvortexd

2x =
"

S
(∇× (∇θvortex)) · dS

=
∮
∂S
∇θvortex · dr

= 2π
∑
a

Na,vortex, (1.146)

whereNvortex is the winding number of the field θ, which signifies the presence

of vortices in the system. This implies further that

ε0νρ∂ν∂ρθvortex =
∑
a

Na,vortexẏa(t)δ (x − ya(t)) . (1.147)

This shows us that ε0νρ∂ν∂ρθvortex is the 0th component of a topological cur-

rent. Hence we define

j
µ
vortex = εµνρ∂ν∂ρθvortex. (1.148)

With the above path integral transformation we have exchanged the variable

θsmooth, which is an elementary excitation, with the field bµ, which we have

shown to couple with a topological vortex current. This form of the duality is

indeed different from the one stated in Equation (1.139), since the dual field is

a vector boson. That should not alarm us though, because gauge bosons in 2+1

dimensions have the same number of degrees of freedom as scalar fields. More

precisely, a gauge field in 2+1 dimensions is equivalent to a compact scalar,

which, incidentally, is precisely what the spins in the XY model describe!

We now move on to a more recent development in the study of dualities in

2+1 dimensional theores – Fermi-Bose duality.
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1.5 Fermi-Bose Duality

We already met the idea of duality in the previous section. In general, they

tend to be an equivalence of two theories, two different ways in which we

can state the same physics. Some of them are functional integral analogues

of the Fourier transform (for functionals) – a phenomenon can be described

either in coordinate or momentum space, by one action or another. This can

be achieved by introducing a Lagrange multiplier field and integrating out the

original fields [75, 163–165]. Other dualities tend to arise in consequence of

the idea of universality. Two models that flow to the same CFT in the infrared

(IR) should be equivalent sufficiently close to the fixed point [21, 23]. This is

the case with the PV duality we encountered in the previous section. Yet other

types of dualities are inspired by the study of black hole thermodynamics and

the holographic principle, such as the AdS/CFT duality [35]. Still others seem

to be a consequence of deep mathematical ideas, such as the level-rank duality

[11, 13, 14, 166, 167].

Whatever the fundamental reasons for their existence are, dualities are in-

teresting because they give us another point of view that allows us to explore

and understand the world of fundamental physics in more depth. As Feynman

once said, “Every theoretical physicist who is any good knows six or seven dif-

ferent theoretical representations for exactly the same physics” [168]. And in

the spirit of his words, here duality is one more representation we wish to un-

derstand.

As pointed out above, dualities come in many flavours and the models we

are considering here play a role in more than one type. O(N )/U (N ) (scalar

or fermion) models are holographically dual to higher spin gravitational theo-

ries [38]. This duality seems to persist even after deforming the theories with

a Chern-Simons term in the large N limit [105]. Fermions in 2+1 dimensions

can be shown to be dual to vector fields via a Fourier transform-like functional

integral transformation that we described above [163, 164]. And pure Chern-

Simons theories are level-rank dual to each other [11, 13, 14, 166, 167]. In this

section, we will concentrate on a duality that has all of the above ingredients in

some form (SU (N )/U (N ) scalars/fermions and CS vector fields) that combine
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into what is believed to be an IR duality. More precisely, we are talking about

a set of dualities between 2+1 dimensional gauge theories that are collectively

known as Fermi-Bose duality.

The duality between fermions and bosons was first conjectured in the su-

persymmetric context [26, 78–80]. Evidence for the non-supersymmetric ver-

sion of these dualities comes from large N computations on both sides, both

at finite temperature [81] and at T = 0 [39]. Furthermore, there is compelling

evidence that the duality holds at finiteN from supersymmetric theories flow-

ing to their non-SUSY versions [41, 43].

SinceU (N ) = (SU (N )×U (1))/ZN , we can in principle have different Chern-

Simons levels for the SU (N ) and U (1) symmetries. We will denote a U (N )

Chern-Simons theory with levels k1 and k2 corresponding to the SU (N ) and

U (1) symmetries, respectively, as a U (N )k1,k2
theory. Prior to the inclusion of

matter in our model, we state an important fact about these theories. Namely,

that some choices of gauge groups and levels are dual to others. This is known

as level-rank duality. Generalising this duality to include matter is the duality

that we present below.

Before we proceed with the statement of the dualities, we need to make a

brief statement about regularisation schemes. In the study of QFTs, couplings

generally get renormalised and Chern-Simons theory is no exception. Differ-

ent regularisation procedures make different aspects clearer or make different

calculations simpler. The Fermi-Bose dualities are usually discussed in so-

called Yang-Mills regularisation. This procedure is performed by integrating

out the Yang-Mills dynamics, which leave a quantised level in the infrared

limit. For more details on this calculation, the reader may consult Pisarski &

Rao [169].

In this regularisation, the Fermi-Bose dualities are as follows [40]

SU (N )k + scalars←→ U (k)
−N+

Nf
2 ,−N+

Nf
2

+ f ermions, (1.149)

U (N )k,k + scalars←→ SU (k)
−N+

Nf
2

+ f ermions, (1.150)

U (N )k,k+N + scalars←→ U (k)
−N+

Nf
2 ,−N+

Nf
2 −k

+ f ermions. (1.151)
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The scalars on the LHS of these equations are assumed to be tuned to a critical

interacting point of the RG flow, known as the Wilson-Fisher (WF) fixed point

[162], which we elaborated on in the previous section. Similarly to Particle-

Vortex duality, which maps elementary excitations to non-perturbative vor-

tices, Fermi-Bose duality maps the fundamental perturbative states on one

side to monopole or baryon operators on the other side. A monopole opera-

tor M(x) is defined as inserting a unit of flux at a point x. This means that in

the path integral we integrate over configurations with a fixed flux emanating

from the point x

〈M(x)〉 =
∫

DAµe
iS
∣∣∣∣∣ 1

4π

∫
S2 d2Sµε

µνρFνρ=1
, (1.152)

where S2 is a sphere surrounding the monopole insertion point.

Understanding the details of this duality subject to the inclusion of a chem-

ical potential has been the formative motivation for this work. We believe that

some of the results of this thesis have sown the seed for this understanding.

More specifically, in Chapter (3) we discover a non-trivial ground state that

owes its existence to the non-zero value of the chemical potential. The role of

this ground state in the duality still remains mysterious. The resolution of this

mystery is left for future work. Thus we conclude our discussion of Fermi-Bose

duality and move on to the physics of non-commutative fluids.

1.6 Non-Commutative Fluids

In this section we will define important physical notions in a non-commutative

(NC) geometry and demonstrate how the non-commutative version of the Lan-

dau problem leads directly to the non-commutative Chern-Simons action. Fi-

nally, we discuss the connection of the Fock space of this action with the results

that will be presented in Chapter (3). For a good summary of this topic, we re-

fer the reader to this set of excellent reviews on physics on non-commutative

geometry [82–84].
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1.6 Non-Commutative Fluids

Non-commutative geometry can arise naturally from the quantisation of a

particle’s phase space coordinates. The simplest way to see this connection is

through the Heisenberg algebra of the canonical commutation relations

[x̂, p̂] = i~. (1.153)

As is well known, this quantisation condition leads to a “smearing out” of the

phase space structure of the theory. This smearing makes the notion of a point

in phase space non-sensical, since one can no longer measure both position

and momentum accurately.

However, there are more exotic cases, where it is the coordinate space that

becomes non-commutative or fuzzy, not the phase space. This is due to the

specific form of the Poisson brackets in the problem. In such a problem, the

notion of a point in space is no longer reasonable and one can no longer mea-

sure the position of a (quasi)particle to arbitrary accuracy on both axes at

once. An example of a problem, where the different momenta exhibit such

non-commutativity, is the problem of particles in a magnetic field that we dis-

cussed earlier. Similarly, we all know that angular momentum also behaves in

a non-commutative way, so the idea of the spatial coordinates having a non-

zero commutator comes naturally. Finally, in the study of fluids, one can define

a type of Poisson bracket that is restricted to the coordinate space, which leads

to a non-commutative space following a canonical quantisation [85].

The ideas of a non-commuting space-time were first explored by Snyder in

1947 [86, 87]. The subject of non-commutative geometry was first formalised

by Connes in 1994 [88]. The first consideration of non-commutative geometry

in the context of bosonic string theory and BRST1 quantisation was made by

Witten [89] for open strings. This was later extended to closed bosonic strings

by Sen & Holman [90]. Witten & Seiberg’s seminal paper on non-commutative

geometry in string theory shows that the motion of strings in a background

gauge field is equivalent to a non-commutative Yang-Mills theory [91]. The

presence of a background gauge field in this construction is reminiscent of the

1BRST stands for the names of the authors Becchi-Rouet-Stora-Tyutin who first came up
with this approach to quantising gauge theories. [170–172]

59
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Hall effect. It turns out that non-commutative field theories are intricately

linked with the physics of the Hall effect.

The first proposal that non-commutative Chern-Simons theory has some-

thing to do with the fractional quantum Hall effect came from Susskind [92].

He showed that abelian non-commutative Chern-Simons theory at level k = n

is exactly equivalent to the Laughlin theory at filling fraction 1
n . Note here

that the combination of adjectives “abelian” and “non-commutative” is not an

oxymoron, since it is the space-time coordinates that do not commute, not the

gauge fields. It can be shown that the level of non-commutative CS is also

quantised [173, 174]. Relations between string theory and the quantum Hall

effect have been established through non-commutative field theory [175–177].

A review on the applications of non-commutative field theory to physics has

been compiled by Banerjee et al. [178]. Now that we have established the rele-

vance of non-commutative geometry, we review some basic facts about it.

1.6.1 Review of non-commutative geometry

Let us see how to define a non-commutative space. Here we will be concerned

with a D dimensional space-time that has both a set of D − 2p commuting

{yi , i = 2p+1, ...,D} and 2p non-commuting {xα, α = 1, ...,2p} coordinates. More

precisely,

[yi , yj] = 0, (1.154)

[xα,xβ] = iθαβ , (1.155)

where θ is an anti-symmetric constant two-form. One can perform linear

transformations on the coordinates xα so that the matrix θ is in canonical block

form

θαβ = θ


iσ2 0

. . .

0 iσ2

 , (1.156)

60



1.6 Non-Commutative Fluids

where θ is called the non-commutativity parameter and

iσ2 =
[

0 1
−1 0

]
(1.157)

is the second Pauli spin matrix. This leaves us with p pairs of the Heisenberg

algebra

[x2α−1,x2α] = iθ, α = 1, ...,p. (1.158)

This quantisation of the spatial coordinates leads to the existence of a Hilbert

space. Since we can now think of the coordinates as operators, each operator

has a set of eigenstates with associated quantum numbers. To make this more

explicit, let us define the creation, annihilation and number operators

aα =
x2α−1 + ix2α√

2θ
, a†α =

x2α−1 − ix2α√
2θ

, (1.159)

nα = a†αaα. (1.160)

These operators allow us to build the familiar Fock space from QFT by acting

on a vacuum state

|n1, ...,np〉 = a†1
n1 ...a†p

np |0〉. (1.161)

Further, we define the derivative operators through the relations

∂µ · xν = [∂µ,xν] = δµν , µ,ν = 1, ...,D. (1.162)

Specifically for the non-commuting coordinates, the form of ∂α can be ex-

pressed as

∂α = −iωαβxβ , α,β = 1, ...,2p, (1.163)

where ωαβ =
(
θ−1

)
αβ

. From here it follows that

[∂α,∂β] = iωαβ . (1.164)
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We see that by promoting space-time coordinates into non-commuting vari-

ables, we can construct a Hilbert space of states and re-express concepts that

deal with space-time into concepts that have to do with the abstract space

of states. One can go further and define functions on this non-commutative

space. This would lead to fields defined on a non-commutative geometry.

1.6.2 Non-commutative field theory

Now that we understand some of the basic ideas of non-commutative geom-

etry, we would like to define a field theory on this non-commutative space.

More specifically, we would be interested in a gauge theory, since our main

subject of interest is Chern-Simons theory. The simplest possible gauge theory

contains just a gauge field Aµ. Further, the easiest way to construct a gauge in-

variant theory is by forming an action that is composed of a trace of covariant

derivatives

Dµ = −i∂µ +Aµ, (1.165)

since under a gauge transformation Dµ transforms as

Dµ→UDµU
−1. (1.166)

Restricting ourselves to the non-commuting submanifold (µ = α), we have

Dα = −i∂α +Aα =ωαβx
β +Aα =ωαβ

(
xβ +θβγAγ

)
≡ωαβXβ . (1.167)

Let us now see how non-commutative Chern-Simons theory arises as the action

of a massless particle confined to the plane in the presence of a magnetic field.

Here we show that the physics of charged particles, confined to a plane and

subject to a magnetic field, is linked to abelian Chern-Simons gauge theory

[179, 180]. Then we show that the non-commutative generalisation of this

model yields a lot of the distinct physical features of the FQHE [93] Let us

take a look at the action of a particle of charge q and mass m moving in an
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1.6 Non-Commutative Fluids

electromagnetic field generated by the four-potential Aµ = (−V (x, t), A(x, t))

S =
∫
dt

(1
2
m2v2 − qV (x, t) + qv ·A(x, t)

)
. (1.168)

Now, let us assume that the particle is massless and, in addition, it is in a

constant magnetic field and the electric potential is 0. Since ∇ ×A = B, this

implies that

Ai =
B
2
εijxj , (1.169)

up to a gauge transformation, where B = |B|. Substituting Equation (1.169)

into Equation (1.168), we arrive at the action

S =
∫
dt

(
q
B
2
εij ẋixj

)
. (1.170)

From here we proceed by making the identification

xi ↔ Xi . (1.171)

And since the Xi fields transform under gauge transformations, we ought to

make sure that the action remains invariant. To this end, we need to also gauge

the time derivative ∂0→D0 = ∂0 +A0 so that the action becomes

S =
∫
dt

[
q
B
2
εijT r

(
D0X

iXj
)]

=
∫
dt

[
q
B
2
εijT r

(
∂0X

iXj + [A0,X
i]Xj

)]
.

(1.172)

The introduction of the time component of the gauge field leads to a Gauss’s

law constraint

[X1,X2] = 0. (1.173)

It seems that this constraint has removed the non-commutativity that we tried

to introduce into our model. In order to bring it back, we add an extra term

to the action such that we get the Heisenberg algebra (1.155) that we explored
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earlier

S =
∫
dt

[
q
B
2
εijT r

(
∂0X

iXj + [A0,X
i]Xj + 2θA0

)]
. (1.174)

Thus we have arrived at the non-commutative abelian Chern-Simons model

by considering the movement of charged particles in a magnetic field confined

to a two-dimensional plane.

We shall see in Chapter (3) how this non-commutative theory arises out

of the ground state of a commutative non-abelian finite chemical potential

Chern-Simons-matter theory. More specifically, the ground state matrices in

our model form an algebra, which coincides with the algebra of the X1 and X2

coordinates, together with a Hamiltonian-like operator corresponding to the

system (1.174). We hope that this unexpected link between NC abelian field

theory and commutative non-abelian field theory would provide a bridge that

will allow us to solve the non-abelian theory.

We have now covered all of the essential background material so we are

ready to move on to our first set of results, which have to do with the physics

of vortices in Chern-Simons-matter theory. This is what the next chapter is be

about.
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Chapter 2

Abelian Chern-Simons Vortices at
Finite Chemical Potential

2.1 Introduction

Chern-Simons theory and the dynamics of vortices are both intimately con-

nected to the quantum Hall effect [143]. The Chern-Simons interaction has

the effect of attaching a magnetic flux to a charged particle, and endowing

magnetic flux carrying vortices with electric charge. Magnetic flux attachment

changes the statistics of particles, so that fermions can be described as bosons

with a Chern-Simons interaction. In particular, the effective theory of the

fractional quantum Hall state is a complex scalar interacting with an abelian

Chern-Simons gauge field [48, 143]. Vortex solitons in the relativistic abelian

Higgs model in 2+1 dimensions in the presence of a Chern-Simons action (with

or without a Maxwell term) have been extensively studied [46, 61–64, 181].

In this chapter we are interested in vortex solitons appearing in relativis-

tic scalar field theory coupled to an abelian Chern-Simons gauge field when

a chemical potential for particle number is turned on. Our motivation is to

investigate vortex configurations whose presence is triggered purely by finite

density effects in Chern-Simons-matter theories. The abelian Chern-Simons-

scalar system offers the simplest such setting. Eventually, we would like to

understand finite density vortex solutions in SU (N ) and U (N ) Chern-Simons-

scalar theories where finite chemical potential results in condensation of gauge
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fields, potentially breaking rotational invariance [182]1. A broader aim for ex-

ploring different aspects of finite density physics in Chern-Simons-matter the-

ories is to understand the implications of the associated web [74, 185, 186] of

particle-vortex and Bose-Fermi dualities in 2+1 dimensions [39, 40, 42, 43, 81,

105, 187–189].

A chemical potential µ for a gauged U (1) symmetry can only be turned

on provided a source term representing a classical (frozen out) uniform back-

ground charge density is simultaneously introduced. In Chern-Simons theory,

such a source can either be viewed as a distribution of heavy charges or as a

uniform magnetic field. We focus on the massless scalar field, whose interac-

tion potential is purely a power law

U =
g2s

s
|Φ |2s , s = 2,3, . . . , (2.1)

with no symmetry breaking minima in vacuum, and solve the equations of

motion, with non-zero µ, numerically. Chern-Simons vortices with symmetry

breaking potentials in vacuum have vanishing magnetic fields in the interior

and on the outside, with the flux being supported at the edges. The finite µ

vortex solutions are qualitatively different as the magnetic flux acquires sup-

port within the vortex interior, and depending on the sign of the quantised

flux (= 2πn), there are two qualitatively distinct types of solutions: (i) Those

with negative flux, given our choice of conventions (µ > 0 and Chern-Simons

level k > 0), where the majority of the flux resides in the vortex interior, and (ii)

positive flux solutions wherein most of the flux sits at the edge of the vortex.

The qualitatively different behaviour of configurations with winding numbers

n < 0 and n > 0 is expected due to the breaking of charge conjugation symmetry

when µ , 0. Positive flux solutions are energetically disfavoured, or more pre-

cisely the grand potential for the n-vortex with n > 0 is parametrically larger,

as a function of n, than that for the n < 0 vortex.

1An analogous situation in 3+1 dimensional Yang-Mills-Higgs system with SU (2) ×U (1)
gauge group was encountered by Miransky, Gusynin & Shovkovy [183] where the finite density
ground state breaks spatial isotropy due to condensation of vector fields. Vortex solutions in
the condensed phase were subsequently found Miransky, Gorbar & Jia [184].
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The negative flux solutions are the most interesting. We find these numeri-

cally for a wide range of winding numbers, 1 ≤ |n| . 105. Supported by simple

analytical arguments, we confirm that for large |n|, negative flux vortices for

power law potentials (2.1) with general s exhibit linear scaling of the grand

potential with |n|:
E(|n| � 1) =

s − 1
2s

kµ|n| . (2.2)

For a specific value of the dimensionless coupling, the solutions are “BPS” or

marginally bound:

E(|n|)
|n|E(1)

∣∣∣∣∣
α=s/(s−1)

→ 1 , α ≡ k
4π

(
g2s

µ3−s

)1/(s−1)

. (2.3)

This critical value of α works surprisingly well even for low n vortices. Below

this value individual vortices experience attractive interactions, and repulsive

interactions above it. At the critical coupling, we find numerically that the

vortex profiles closely (but not exactly) solve the first order Bogomolny’i type

equation. Finally, the radius of the n-vortex in all cases is given by

Rn||n|�1 =
√

2α|n|µ−1 , (2.4)

implying that the n-vortex behaves like a uniform incompressible droplet within

which individual vortices are as closely packed as possible. The physical prop-

erties we have described closely resemble the non-relativistic supersymmetric

Chern-Simons theory introduced in [190]. The scalings with n are in line with

the “MIT bag” model for solitons with large winding number, advocated in a

series of publications by Bolognesi et al. [191–193], in which the vortices are

thought of as a region of non-zero energy density separated from the outside

via a domain wall. This is similar to the original MIT bag model named after

the institution which the creators were associated with [194]. In this model

hadrons are thought of as a confining region of space with non-zero energy

density, within which the fermion and gluon fields are weakly interacting .

This chapter is organised as follows: In Sections (2.2) and (2.3), we re-

view the standard vortex equations of motion, but in the presence of chem-
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ical potential. We also point out some features of the finite density spectrum

and qualitative aspects of vortex profiles. In Section (2.4), we discuss the en-

ergy functional or the grand potential, and argue its expected scaling for large

winding numbers. In Section (2.5), we present several results of the numerical

analysis of the vortex equations of motion for different choices of potentials

and parameters.

2.2 The Abelian Theory at Finite Chemical Poten-

tial

Our starting point is the abelian Chern-Simons theory at level k coupled to

a relativistic scalar field in 2+1 dimensions. As is customary, we may regard

this system as the infrared limit of the abelian Higgs model with a Maxwell-

Chern-Simons gauge field, since the Maxwell action is irrelevant compared to

the Chern-Simons term. We want to consider the theory in the grand canonical

ensemble with a chemical potential for the U (1) charge. Turning on a chemi-

cal potential for a local symmetry is a subtle issue since the Gauss constraint

requires the total charge in the system to vanish. This putative obstacle can

be overcome by introducing a uniform external classical charge density which

can be viewed as a distribution of heavy charged species whose fluctuations

are frozen out [195, 196]. In the presence of a Chern-Simons density this can

also conveniently be viewed as a constant background magnetic field.

The U (1) chemical potential is introduced as usual via a constant temporal

background gauge field. Picking a (− + +) metric signature, the Lagrangian

density for the system is,

L = Lmatter + LCS − J0A0 , (2.5)

Lmatter = DνΦ
†DνΦ +U (Φ†Φ),

LCS =
k

4π
ενλσAν∂λAσ .
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The gauge-covariant derivatives on the complex scalarΦ include a background

value µ for A0, which is identified as a chemical potential for the U (1) charge:

Dν ≡ ∂ν − iAν − iµδν,0 , (2.6)

and J0 is the background classical charge density. We assume a simple power

law potential:

U (Φ†Φ) =
g2s

s
|Φ |2s , s ≥ 2 . (2.7)

The cases of quartic (s = 2) and sextic (s = 3) potentials are special since they

correspond to relevant and marginal interactions. Our main interest is in

monotonic potentials with a global minimum at Φ = 0 (in the absence of a

chemical potential), so that any stable vortex configurations only appear at fi-

nite density, i.e. they are driven by scalar condensation in the presence of the

chemical potential.

The quartic potential is of general interest because when µ vanishes, the

theory flows to the 2+1 dimensional Wilson-Fisher fixed point coupled to

a Chern-Simons gauge field. The critical scalar plays an important role in

particle-vortex and the related web of Bose-Fermi dualities in 2+1 dimensions

[40]. Semi-classical solutions are far removed from this critical point and only

reliable when µ/g4� 1.

The Lagrangian density expanded to show the µ-dependent terms is,

L = ∂νΦ
†∂νΦ + iAν

(
Φ†∂νΦ −∂νΦ†Φ

)
+ AνA

ν |Φ |2 +
g2s

s
|Φ |2s −µ2 |Φ |2

+ iµ
(
Φ†∂0Φ −∂0Φ†Φ

)
− 2µA0 |Φ |2 +

k
4π
ενλσAν∂λAσ − J0A0 . (2.8)

The background charge density J0 is fixed by requiring that the expectation

values of A0 and the magnetic field vanish in the ground state:

〈A0〉 = 0 =⇒ J0 = −2µ〈|Φ |〉2 , 〈|Φ |〉 = v =
(
µ2

g2s

) 1
2s−2

. (2.9)

The ground state conditions are also solved by a vanishing source J0 = 0, and

an A0 expectation value set by the chemical potential. This latter solution is
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equivalent to absorbing the chemical potential via a shift in the gauge field

leaving the partition function unchanged. This possibility is excluded by im-

posing a vanishing A0 at infinity as a boundary condition.

The classical source J0 can also be interpreted as a background magnetic

field. Defining

B = ε0ij∂iAj , (2.10)

and assuming a static configuration, the equation of motion for A0 yields,

J0 −
k

2π
〈B〉 + 2(µ + 〈A0〉)v2 = 0 . (2.11)

Therefore, even if the source J0 were not explicitly introduced, it is naturally

induced through a non-zero background value for B. We will treat this back-

ground value as distinct from the magnetic field carried by the vortex.

2.2.1 Perturbative spectrum

The vacuum expectation value forΦ Higgses the gauge group and since Chern-

Simons gauge fields do not propagate, the physical perturbative spectrum

consists of two gapped excitations. The dispersion relations can be found

by expanding the gauge-fixed action1 to quadratic order in fluctuations and

identifying the gauge-invariant zeros of the fluctuation determinant. Let the

quadratic fluctuations be defined as follows:

Φ = (v +ϕ1) + iϕ2, Aµ = δAµ. (2.12)

1We use anRξ gauge fixing term of the form Lgf =
(
∂µA

µ − i
(
ξ〈Φ〉δΦ† − ξδΦ〈Φ〉†

))2
/(2ξ)
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Then the quadratic Lagrangian of the fluctuations in phase space becomes

L(2) =
(
ϕ2

1 +ϕ2
2

)(
−ω2 + p2 −µ2

)
+ g2sv

2(s−1)
(
ϕ2

2 + (2s − 1)ϕ2
1

)
− 4iµωϕ1ϕ2 − 4vµδA0ϕ1 + v2δAµδA

µ

− ik
2π

(
δA0p1δA2 − δA0p2δA1 + δA1ωδA2

)
− 1

2ξ
pµpνδA

µδAν − 2ξv2ϕ2
2 . (2.13)

From this expression we can extract the following matrix, the zero eigenvalues

of which are the elementary excitations of the model,

D =



−ω2

2ξ − v
2 − ikpy4π −

pxω
2ξ

ikpx
4π −

pyω
2ξ −2µv 0

ikpy
4π −

pxω
2ξ v2 − p2

x
2ξ

ikω
4π −

pxpy
2ξ 0 0

− ikpx4π −
ωpy
2ξ − ikω4π −

pxpy
2ξ v2 − p2

y

2ξ 0 0
−2µv 0 0 2µ2(s − 1) + p2 −ω2 2iµω

0 0 0 −2iµω µ2 − 2ξv2 + p2 −ω2


,

where we have used g2s = µ2

v2(s−1) . Note that this is a 5x5 matrix, but we stated

earlier that the number of excitations in this model is only ddof = 2, where ddof

is the number of physical degrees of freedom. The reason for this mismatch

is that 3 out of the 5 solutions, that we get, are going to be gauge dependent.

Once we remove the gauge dependent solutions, we will be left with the two

physical excitations present in the spectrum of the theory.

One way of computing the elementary excitations is by finding all of the

eigenvalues explicitly. This is not trivial in the general case so here we will

illustrate an approach that can be used when symbolic computation of all the

eigenvalues is unfeasible. This approach is also utilised in Chapter (3), but we

outline it here since the calculation is simpler and more instructive. The way

we can find the physical eigenvalues is by picking out the highest order term in

ξ in the determinant. Let us see why this works. We know that without gauge

fixing, D is non-invertible. First we express D as the product of eigenvalues

det(D) = λ1...λr , (2.14)
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where r is the size of the square matrix. Suppose, without loss of generality,

that the physical eigenvalues are λ1 and λ2. Hence the dispersion relations

correspond to λ1 = 0 and λ2 = 0. Then the determinant can be expressed as

det(D) = λ1λ2


q1∑

i1=−p1

a
(1)
i1
ξ i1

 ...


qr−2∑
ir−2=−pr−2

a
(r−2)
ir−2

ξ ir−2

 , (2.15)

where p1,p2, ...,pr−2,q1,q2, ...,qr−2 ∈N. Multiplying out the ξ dependent sums

and setting the determinant to 0 we arrive at

det(D) = λ1λ2

q∑
i=−p

aiξ
i = 0, (2.16)

where p,q ∈N. Assuming ξ , 0, we divide by ξq and take the ξ→∞ limit

λ1λ2aq = 0. (2.17)

Solving (2.17) for the energy ω gives us a number of solutions. If this number

matches ddof exactly, then our job is done and we have found the correct dis-

persion relations. If, however, this number is larger than ddof that the system

has, it means that we have stumbled upon a gauge mode that needs to be re-

moved. We can plug in the solutions we have found into the next to leading

order term in ξ, namely

λ1λ2aq−1. (2.18)

If the number of common solutions to these two equations is ddof, we have

found the physical dispersion relations. In principle, one can continue this

procedure order by order in ξ for all of the coefficients. If the gauge procedure

is done properly, we are guaranteed to find the physical solutions, since if we

have more than ddof dispersion relations that are independent of ξ, this means

that there is a gauge mode that is independent of ξ, but that is impossible since

those modes would return an identically zero eigenvalue prior to gauge fixing.

The dispersion relations for the two physical modes can be expressed in
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terms of dimensionless frequency and momentum and a single dimensionless

coupling (assuming k > 0, µ > 0)

α ≡
kµ

4πv2 , ω̃ ≡ω/µ, p̃ ≡ p/µ . (2.19)

We find,

ω̃± =

√
p̃2 + (s+ 1) +

1
2α2 ±

√
4p̃2 +

(
s+ 1− 1

2α2

)2
. (2.20)

Both modes are gapped at p̃ = 0, as can be seen here

ω̃2
+ ' 2(s+ 1) + p̃2 2α2(s+ 3)− 1

2α2(s+ 1)− 1
. . . , (2.21)

ω̃2
− '

1
α2 + p̃2 2α2(s − 1)− 1

2α2(s+ 1)− 1
. . . , |p̃| � 1 .

When the Chern-Simons level is taken to be large the mode ω̃− is the lighter of

the two and becomes the phonon in the strict k→∞ limit. For the classically

marginal sextic potential with s = 3, this limit yields ω̃2
− ' p̃2/2 which implies

a speed of sound cs = 1/
√

2, expected from scale invariance in 2+1 dimensions.

As the level k is lowered, the gaps of the two branches coincide when α =

1/
√

2(s+ 1), and below this value of α, the roots exchange roles.
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Figure 2.1: The dispersion relations of the two branches of perturbative fluctua-
tions for the quartic potential (s = 2), with different values of the dimensionless
coupling α.

Depending on the value of α, the sign of ω̃′′±(0) can be negative which im-

plies a minimum in the dispersion relation away from p̃ = 0, also called a

magneto-roton minimum. One of the two branches will exhibit a magneto-

roton minimum for values of α in the range:

1√
2(s+ 3)

< α <
1√

2(s − 1)
. (2.22)

In the case of s = 2, the roton range becomes 1√
10
< α < 1√

2
, and as can be

seen from Fig (2.1), ω̃− has a roton minimum for α = 1
2 . This is not the case for

the other plotted values of α.

2.3 Vortex Equations

We want to solve the equations of motion in polar coordinates. Therefore,

allowing for a non-trivial spatial metric h, the static field equations are:

1√
h
∂j

(√
h∂jΦ

)
− i√

h
∂j

(√
hAjΦ

)
+ (µ+A0)2Φ − iAj∂jΦ −AjAjΦ = g2s|Φ |2s−2Φ ,

(2.23)
k

2π
εσνρ∂νAρ = −

√
h
[
i
(
∂σΦΦ† −Φ∂σΦ†

)
+ 2Aσ |Φ |2 − δ0σ

(
2µ |Φ |2 + J0

)]
.
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As usual, a static vortex configuration carrying n units of magnetic flux is de-

scribed by the rotationally symmetric ansatz in polar coordinates:

A0 = A0(r) , Ar = 0, Aθ = Aθ(r), Φ = f (r)einθ . (2.24)

This ansatz leads to the following system of equations1:

f ′′ +
f ′

r
− 1
r2 (Aθ −n)2 f + (A0 +µ)2f − g2sf

2s−1 = 0, (2.25)

−
f 2

r
(Aθ −n) +

k
4π
A′0 = 0, (2.26)

−f 2A0 −µf 2 +
k

4π

(
A′θ
r

)
=
J0
2
, J0 = −2µv2 . (2.27)

We are looking for a configuration which asymptotes at infinity to the ground

state with the fixed non-vanishing background value for J0, obeying the bound-

ary conditions:

Aθ(r)
r→∞−−−−→ n, A0(r)

r→∞−−−−→ 0, f (r)
r→∞−−−−→ v , f (0) = 0 . (2.28)

With the rotationally symmetric ansatz above, the magnetic field B only de-

pends on r, and the configuration carries n units of flux:

B(r) =
A′θ(r)
r

, ΦB = lim
r→∞

∫ 2π

0
Aθ(r)dθ = 2πn, (2.29)

assuming Aθ vanishes at the origin.

2.3.1 Qualitative features

The equation of motion (2.27) for A0, which implements the Gauss constraint,

fixes the value of the magnetic field at the core of the vortex where the scalar

field vanishes. Thus,

B(0) =
4π
k
J0 = −

µ2

α
, (2.30)

1We omit the equation of motion for Ar which is automatically satisfied.
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where α is the effective coupling defined in (2.19). For a given winding number

n, the value of α completely characterises the vortex solution when expressed

in terms of rescaled dimensionless variables. The effect of the Gauss constraint

is to induce a magnetic field B inside the vortex core to precisely cancel the

background source J0 which could also be viewed as a uniform background

magnetic field. Outside the vortex B vanishes,

lim
r→∞

B(r) = 0 . (2.31)

The sign of B(0) plays an important role in determining the properties of

the vortex solutions. Without loss of generality, we assume that the chemical

potential µ and the Chern-Simons level k are both positive:

µ > 0, k > 0 . (2.32)

With this choice B(0) is negative definite, independently of the sign of the

magnetic flux 2πn. However, this means that solutions with positive and neg-

ative flux will be qualitatively different. This breaking of charge conjugation

is precisely what we expect in the presence of the U (1) chemical potential.

Negative flux n < 0 : Assuming that the magnitude of the magnetic field

|B(r)| increases monotonically towards the vortex core, and given that the value

of the core magnetic field is independent of |n| (the number of units of flux) the

vortex core size should increase with |n| for negative n. Taking B to be uniform

within the core for large enough |n|, we can estimate the radius Rn of a vortex

solution with |n| � 1:

|B(0)|πR2
n ≈ 2π|n| =⇒ Rn ≈

√
2α|n|
µ

, |n| � 1 . (2.33)

The assumption of uniformity of the vortex core region is self-consistently jus-

tified by first noting that for small r,

f (r) = c0 r
|n| + . . . , c0 > 0 . (2.34)
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This is obtained by neglecting Aθ in comparison to n, and ignoring higher

order terms for small r in Equation (2.25). Therefore, for large flux, the scalar

profile is extremely flat near r = 0. With a uniform B field in the vortex interior,

the vector potential is determined as

Aθ ≈ −
1
2
|B(0)|r2 , (2.35)

and this approximation breaks down precisely when r ≈ Rn (see Equation

(2.33)) . We see numerically that the scalar field profile, inside the vortex,

closely follows the solution to the first order equation:

f ′(r) ≈ 1
r

(
|n| − 1

2 |B(0)|r2
)
f (r) (2.36)

=⇒ f (r) ≈ c0r
|n| e−|B(0)|r2/4 , r < Rn .

This feature of the solution is depicted in Figure 2.6.

The equation of motion (2.26) for Aθ determines the radial electric field

E(r) = A′0(r). The electrostatic potential A0 remains constant inside the core

region since f (r) is vanishingly small and therefore the electric field is also

vanishingly small. Outside the core region the electric and magnetic fields

decay exponentially to zero. Linearising about the asymptotic solution at large

r we find,

δf ≡ f (r)− v , δAθ = Aθ −n, (2.37)

δAθ =
α
µ
rA′0 ,

δf ′′ +
δf ′

r
− (2s − 2)µ2δf = −2A0µv ,

A′′0 +
A′0
r
−
µ2

α2A0 =
2µ3

vα2δf .

The solutions to the homogeneous equations for the fluctuations δf and A0
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are the Bessel functions K0

(√
2s − 2µr

)
and K0 (µr/α) respectively, and these

control the exponential decay of fluctuations at large r,

K0

(√
2s − 2µr

) ∣∣∣
µr→∞ ∼

e−
√

2s−2µr

√
µr

, K0 (µr/α)
∣∣∣
µr→∞ ∼

e−µr/α
√
µr

. (2.38)

The two exponents are related to masses of the gapped perturbative excitations

around the Higgsed ground state. Since Aθ(r) ' n outside the core region,

according to Equation (2.26) the electric field is only significant in a strip along

the edge of the vortex core. Numerically, we find that the width of this strip

does not scale with |n|, so that in the limit of large |n|, the contribution from

the transition region to the vortex energy is subleading in |n|.
We will see below that these qualitative aspects of the vortex solutions lead

to linear dependence of the vortex energy on |n| and BPS-like behaviour at a

critical value of the effective coupling α.

Positive flux n > 0: Positive flux solutions are qualitatively distinct from

the negative flux ones. This is because B(0) < 0 independently of n, so B(r)

must switch sign to yield a net positive flux. For large n > 0, most of this pos-

itive flux remains concentrated in a ring-like region at the edge of the vortex.

In this case the total flux can be written as a sum of two contributions, one that

scales with the area of the vortex and is negative, therefore must be sublead-

ing, and a positive dominant contribution which scales with the radius of the

configuration ,

2πn ∼ −πR2
n
µ2

α
+ 2πRn∆ring Bring . (2.39)

Here ∆ring is the width of the edge region which we take to be independent

of n, whilst Bring denotes the peak value of the magnetic field in the ring and

Rn is the radius of the vortex for large enough n. The negative area-dependent

contribution is a key difference from a similar situation discussed by Bolognesi

[193]. We cannot exclude the possibility that both the area and perimeter con-

tributions have faster than linear growth and a delicate cancellation yields the

correct flux. It is possible to suppress the area contribution by making α arbi-

trarily large. The large α limit makes the magnetic field inside the vortex van-

ishingly small and the system then closely resembles an abelian Chern-Simons
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vortex in vacuum. Conversely, a small value of α (or equivalently a large value

of µ and a fixed α) makes the magnetic field inside the vortex larger and forces

the transition between the two vacua to be steeper, effectively approaching a

step function domain wall solution, analogous to the MIT bag models discussed

earlier.

2.4 Vortex Energy and BPS-like Scaling

The “energy” functional appropriate for the grand canonical ensemble is the

grand potential. The Chern-Simons term does not contribute to it for static

configurations. The grand potential is obtained by using the Lagrangian den-

sity (2.8) with µ , 0 and passing to the Hamiltonian picture. Rewriting the

Hamiltonian in terms of the fields and their derivatives, the desired energy

functional is1,

E =
∫
d2x

(
|DiΦ |2 + A2

0 |Φ |
2 +

g2s

s
|Φ |2s −µ2 |Φ |2

)
, (2.41)

accompanied by the constraint which incorporates the effect of the Chern-

Simons term,
k

4π
B = A0|Φ |2 +µ

(
|Φ |2 − v2

)
. (2.42)

An interesting feature of the finite-µ vortices (with negative flux) is that

they appear to be marginally bound (or BPS-like) for a specific value of the

effective dimensionless parameter α. Recall that this parameter depends on

the Chern-Simons level, the chemical potential and the interaction strength:

α =
kµ

4πv2 =
k

4π

(
g2s

µ3−s

) 1
s−1

. (2.43)

1For static configurations, the grand potential can be quickly derived by retaining only the
spatial gradient and potential terms including the Chern-Simons density,

E =
∫
d2x

(
|DiΦ |2 − (A0 +µ)2 |Φ |2 +A0

(
k

2π
B− J0

)
+
g2s

s
|Φ |2s

)
, (2.40)

and then applying the constraint equation (2.42).
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Let us perform a rescaling of variables and fields so that the equations of mo-

tion can be written explicitly in terms of dimensionless quantities:

r̃ ≡ µr , f̃ ≡
f

v
, a ≡ 1

r̃
(Aθ −n) , Ã0 ≡

A0

µ
. (2.44)

The rescaled scalar profile vanishes at r̃ = 0 and approaches unity for large r̃:

f̃ (r̃→∞) = 1. The asymptotic behaviours of a(r̃) and Ã0 are,

lim
r̃→0

r̃a(r̃) = −n, lim
r̃→∞

r̃a(r̃) = 0 , lim
r̃→∞

Ã0(r̃) = 0 . (2.45)

The resulting dimensionless equations of motion (primes denote derivatives

with respect to r̃) are,

f̃ ′′ +
f̃ ′

r̃
− a2 f̃ +

(
Ã0 + 1

)2
f̃ − f̃ 2s−1 = 0, (2.46)

αÃ′0 = a f̃ 2, (2.47)

αB̃ =
(
f̃ 2 − 1

)
+ f̃ 2Ã0 . (2.48)

Therefore, for a fixed flux n, the solutions are only parametrised by the dimen-

sionless effective coupling α. Note that we have introduced the dimensionless

magnetic field,

B̃ =
1
r̃

(r̃a)′ =
A′θ
r̃
. (2.49)

We first rewrite the energy functional using the rescaled fields and variables,

E = 2πv2
∫ ∞

0
r̃ dr̃

[(
f̃ ′ − af̃

)2
+ a

d
dr̃

(
f̃ 2 − 1

)
+ Ã2

0f̃
2 +

f̃ 2s

s
− f̃ 2 +

s − 1
s

]
, (2.50)

where we have included a constant zero-point shift so that the energy density

is vanishing for the ground state at infinity. The second term in Equation (2.50)

when integrated by parts yields a non-vanishing surface contribution,∫ ∞
0
dr̃ (r̃a)

d
dr̃

(
f̃ 2 − 1

)
= |n| −

∫ ∞
0
r̃ dr̃B̃(f̃ 2 − 1) . (2.51)
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Employing the Gauss constraint to eliminate B̃ in favour of Ã0, we obtain an

expression for the energy functional which is suitable for subsequent approx-

imations and matching with numerical results,

E = 2πv2|n|+ 2πv2
∫ ∞

0
r̃dr̃

[(
f̃ ′ − af̃

)2
+
(
f̃ 2s

s
− f̃ 2 +

s − 1
s

)
− 1
α

(
1− f̃ 2

)2
+

(2.52)

Ã2
0 f̃

2 +
1
α
Ã0f̃

2(1− f̃ 2)
]
.

2.4.1 The quartic potential s = 2

Anticipating numerical results in the next section, we can make certain obser-

vations concerning the energetics of vortex solutions for large negative flux.

Our arguments rely on the fact that for n sufficiently large and negative,

all fields are uniform inside and outside the vortex. Moreover, the vortex has

a radius that scales as
√
|n|, and a thin transition region, whose width does not

scale with n. In the case of the quartic potential the energy functional is,

E(n,α)
∣∣∣
s=2

= 2πv2|n|+ 2πv2
∫ ∞

0
r̃dr̃

[(
f̃ ′ − af̃

)2
+
(

1
2 −

1
α

)(
1− f̃ 2

)2
+

(2.53)

+Ã2
0 f̃

2 + 1
α Ã0f̃

2(1− f̃ 2)
]
.

We know that f̃ vanishes inside the vortex, whilst Ã0 and a(r) vanish outside

it. Specifically when α = 2, the scalar potential is precisely cancelled, and

the integrand in the expression above has support only within the transition

region at the edge of the vortex. If we assume that this contribution does not

scale with n, we conclude that

E(n, α = 2)
∣∣∣
s=2,|n|�1

= 2πv2|n| . (2.54)

Our numerical solutions confirm (Figure 2.5) this conclusion which works re-

markably well even for low values of n, including |n| = 1,2 . . .. Another surpris-

ing feature of the solutions for α = 2 is that they appear to solve the first order
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equation f̃ ′ = af̃ to very high numerical accuracy (Figure 2.6)1.

It is easy to extend the arguments to other values of α. When α , 2, the

second term in the integrand in Equation (2.53) provides an approximately

constant energy density inside the vortex where f̃ = 0, while all other contri-

butions remain vanishingly small. We therefore find,

E(n, α)
∣∣∣
s=2,|n|�1

= 2πv2
(
|n| + 1

2µ
2R2

n

(
1
2 −

1
α

))
= απv2|n| . (2.55)

This behaviour is also confirmed numerically in Figure 2.5, albeit only for large

|n| as expected. Interestingly, although v and α each depend on the quartic

coupling constant g4, the large |n| vortex mass formula depends only on the

Chern-Simons level k and the chemical potential,

E(n, α)
∣∣∣
s=2,|n|�1

= απv2|n| =
kµ

4
|n| . (2.56)

2.4.2 General power law potential (s ≥ 2)

The energies of solutions for general power law potentials now work along

similar lines. The integrand for the energy density in Equation (2.52) is negli-

gible both inside and outside the vortex when α = αc,

αc =
s

s − 1
. (2.57)

At this critical α we expect solutions with large flux to have energies E(n) '
2πv2|n|. When α takes generic values away from αc, adapting the s = 2 argu-

ment to general power law potentials ∼ g2s|Φ |2s we obtain,

E(n, α;s)
∣∣∣|n|�1

= 2απv2|n|s − 1
s

=
s − 1
2s

kµ|n| . (2.58)

This result is confirmed by our numerical solutions for the sextic potential

below. As before the mass formula is independent of the interaction strength

1In this context, it is worth noting that if the terms proportional to Ã0 are omitted (or
assumed to be negligible) in Equations (2.46) and (2.48), then the resulting equations coincide,
for a particular value of α, with equations of motion for a BPS vortex in U (2) ×U (2) ABJM
theory [197] which solves an equivalent first order system [198].
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of the potential. We point out, however, that the radius of the vortex solution

Rn = 1
µ

√
2α|n| depends non-trivially on all parameters. From the definition of

α (Equation (2.43)), increasing the interaction strength (for fixed µ and k) has

the effect of increasing the vortex size.

2.4.3 Positive flux vortices

With our choice of conventions µ > 0 and k > 0, positive flux solutions are

energetically disfavoured. To see this, let us reconsider the energy functional

(2.50). As in the case of the flux in Equation (2.39), there are different types of

contributions to the energy, those that scale with the area of the vortex, those

that scale with the perimeter, and finally (gauge-covariant) gradient terms

which become important at the edge of the vortex. If we pick α to be suffi-

ciently large so that we can ignore the flux contribution from the vortex inte-

rior, then Bring ∼ n/Rn. Then the leading contributions to the energy take the

schematic form,

E(n) ∼ (2πv2)
(
n2

Rn
∆+ c0πR

2
n

)
, α� 1. (2.59)

Here the first term is a perimeter contribution from a covariant gradient while

the second term is a potential energy contribution from the interior. Extrem-

ising with respect to Rn, we obtain Rn ∼ n2/3 and E(n) ∼ n4/3. However this

argument will fail for finite α since B(0) = −µ2/α and the area scaling as n4/3

would violate the flux condition in Equation (2.39). We have not found a sat-

isfactory scaling argument for finite α and large n, but our numerical results

indicate a faster than quadratic growth of the energy as a function of n in this

situation.

2.5 Numerical Results

The vortex equations of motion are not analytically solvable. We numerically

solve the dimensionless equations of motion (2.46), (2.47) and (2.48) along

with the accompanying boundary conditions. Below we outline the results for
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the quartic potential (s = 2) first, and subsequently summarise the results for

the sextic (s = 3) case.

2.5.1 Quartic potential (s = 2)

Negative flux solutions: A well known feature of Chern-Simons-Higgs vor-

tices in vacuum is the ring-like profile of electric and magnetic fields [181].

The finite density vortices we have studied are qualitatively distinct and re-

tain this feature only partially. Figure (2.2) shows the (dimensionless) scalar

field f̃ (r̃) and magnetic field B̃(r̃) at α = 5 and different negative values of the

magnetic flux.

Figure 2.2: Left: The scalar field profile f̃ (r̃) for α = 5 and negative flux. Right:
The dimensionless magnetic field B̃(r̃) for the same values of α and magnetic flux.

Unlike Chern-Simons vortices in vacuum [181, 193] the magnetic field is

no longer expelled from the core of the vortex. Instead, the magnetic and the

scalar fields are both effectively constant inside and outside the vortex and

we observe a kink-like transition in between. The value of the dimensionless

magnetic field inside the vortex is B̃(0) = −1/α = −0.2 for α = 5.
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Figure 2.3: The electric field has support only at the edge of the vortex implying a
ring-like profile. The width of the transition region remains fixed as |n| is cranked
up.

The electric field, on the other hand, has support only at the edge or the

transition-region where the gradient of A0 is significant. This is illustrated in

Figure (2.3). Even for relatively low values of |n|, the location of the peak in

the magnitude of the electric field begins to track the large |n| estimate of the

vortex radius in Equation (2.33):

µRn =
√

2|n|α =


7.07 n = −5 ,α = 5,

15.81 n = −25 ,α = 5,
44.7 n = −200 ,α = 5 .

(2.60)

The width of the ring-like transition region remains fixed as |n| is increased. In

particular, both the width of the ring and the peak magnitude of the electric

field appear to be solely determined by α for large flux.
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Figure 2.4: The radii of large n vortex solutions follow very closely the curve
µRn =

√
2α|n|. We define the radius of the vortex as the position at which the

dimensionless energy density falls below a threshold ∼ 10−4.

A precise agreement between the above scaling formula for the radius is

obtained when the magnitude of the flux is significantly increased, as shown

in Figure (2.4).

The most interesting aspect of the negative flux vortex solutions is the scal-

ing of the energy with |n|. Using the energy functional (2.50), we compute the

two dimensionless ratios,

E(n,α)
|n|E(1,α)

and
E(n,α)
2πv2|n|

|n|�1
−−−−−→ α

2
. (2.61)

The first ratio measures the energy of the n-vortex relative to that of n vortices

each with unit (negative) flux. If this is less than unity, then the n-vortex has

lower energy than n separated (−1)-vortices, and therefore the interactions be-

tween them must be attractive (type I). Conversely, if E(n,α) > |n|E(1,α), the

vortex interaction is repulsive (type II).
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Figure 2.5: Left: This shows that α < 2 vortices are type I (attractive). They are
separated from type II (repulsive) solutions for α > 2 by the α = 2 line, where
the solutions have vanishing interaction energy. Right: The α-dependence of the
n-vortex mass formula agrees with analytical arguments at large |n|.

The second ratio in Equation (2.61) is the general formula for the α-dependence

of the n-vortex energy which was deduced from arguments for large |n|. Fig-

ure (2.5) shows, to significant numerical precision, that negative flux solutions

with α = 2 are effectively “BPS” for any value of |n|, separating α > 2 solutions,

which are type II (repulsive), from the solutions with α < 2, which are type I

or attractive. Furthermore the α-dependence of the energies of type I and type

II vortices for large flux matches the predicted behaviour in Equation (2.61).

A surprising feature of the numerical results is how closely the energies of

the vortices with α = 2 match the BPS result 2π|n|v2 even for low values of

|n|. This matching is corroborated by Figure (2.6), which shows that the vortex

profile for α = 2 almost solves the first order equation f̃ ′ = af̃ . This figure

also demonstrates that the vector potential inside the vortex closely follows

the result for a uniform magnetic field.
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Figure 2.6: The figure shows the three quantities: rf ′/f (red), (Aθ + |n|) (green),
and

(
−|B(0)|r2/2 + |n|

)
(purple) evaluated on the exact numerical solutions for α =

1 and α = 2.

The extent of the departure of the vortex profile from an exact solution to

the first order equation f̃ ′ = af is shown in Figure (2.7). Evaluated on the α = 2

solution, the quantity (f̃ ′ − af̃ ) deviates minimally from zero near the edge of

the vortex.

Figure 2.7: Left:
(
f̃ ′ − af̃

)
plotted for 3 values of α including the critical case α = 2.

Right: The value of Ã0 at the origin for different α as a function of |n|.

Yet another measure of the relevance of the first order equation f̃ ′ = af̃ for

the α = 2 solutions is given by the value of Ã0(0). The value of the electrostatic

potential at the origin is not fixed as a boundary condition, but an output of

the solution. Let us use the equation of motion for the electric field (2.47) in
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conjunction with the first order equation at α = 2,

Ã′0 =
1
2
af̃ 2 f̃ ′=af̃

−−−−−→ Ã0 =
1
4

(
f̃ 2 − 1

)
, (2.62)

where the integration constant on the right hand side is fixed by requiring that

Ã0 vanishes as r→∞. We therefore arrive at a prediction,

Ã0(0)
∣∣∣
α=2

= −1
4
. (2.63)

This is precisely what we see in Figure (2.7) for the α = 2 solution. However, we

also find the unexpected feature that Ã0(0), for other values of α, approaches

−1/4 at large |n|. This suggests that solutions with generic α and large |n| are

not approximate solutions to the first order equation1.

Positive flux solutions: We have explained how positive flux vortex solu-

tions are qualitatively distinct from negative n solutions. In certain limits

(large α) they closely resemble Chern-Simons vortex solutions in vacuum. The

majority of the flux resides in the ring region or edge of the solution as n is

increased (see Figure (2.8)).

Figure 2.8: Magnetic and electric fields for positive flux vortices have support
near the edge of the vortex and their peak values grow without bound as n is
increased.

1For generic α, Equation (2.47) along with the first order equation f̃ ′ = af̃ , would imply
Ã0(0) = − 1

2α .
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In Figure (2.9) we have depicted a comparison betweeen magnetic field pro-

files of the pure Chern-Simons vortex (also known as the Jackiw-Lee-Weinberg-

Hong-Kim-Pac (JLW-HKP) vortex [63, 64, 199]) and the finite density vortex

studied in this section, in order to highlight the similarity in the µ→ 0 limit.

This ring-like profile in both cases is in contrast to the abelian Higgs model’s

disk-like structure, which we observed in Figure (1.3) earlier. The transition

between these two types of behaviours (ring-like in CS and disk-like in abelian

Higgs) has been more extensively studied by Bolognesi & Gudnason [193].

Figure 2.9: Magnetic field profiles comparison for µ = 0 and µ , 0, in the case of
n = 1. Here the red line shows the µ , 0 vortex, while the blue line shows the
µ = 0 case. Strictly speaking, a vortex would not exist in such a limit, since the
symmetry breaking is driven by the chemical potential. However, here we have
depicted the vortex in a theory with a negative mass squared (m2) term in the
potential. Since we have excluded 6th order terms (unlike the original studies of
JLW-HKP) we may similarly describe the solutions using only one parameter. Due
to its similarity with them = 0,µ , 0 case, we have chosen to denote this parameter
as α = km

4πv2 , to emphasise the analogy.
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In Figure (2.10) the dependence of the n-vortex energy on |n|, is displayed

for the negative and positive flux solutions, and as expected, the latter are

more massive. It is surprising that E(n)/ |n| appears to grow faster than |n|.

Figure 2.10: This figure shows the energy of a vortex per unit of a flux, measured
in units of a flux 1 vortex. Positive flux vortices have higher energy than their
negative flux counterparts.

2.5.2 Sextic potential (s = 3)

Finally we turn to numerical results for the higher power law potentials, in

particular the s = 3 or sextic potential. We do not expect to see major qualita-

tive differences from the s = 2 case. One special feature of the quartic potential

(s = 2) is that when α = 2, there is a precise cancellation of the scalar potential

energy contribution to the energy functional. This is not the case for general

power laws. Nevertheless there is an approximate cancellation when evaluated

on the vortex background at the critical value of α = s
s−1 . The critical value for

the sextic potential is α = 3
2 . The profiles for the negative flux vortex with sex-

tic and quartic potentials are shown on the same plot in Figure (2.11). For the

same values of the dimensionless parameter α there is very little difference

between the two systems. The transition between the two phases is slightly

steeper for the sextic potential. The ratios of the energies of the n-vortex to

single vortex and the BPS value (2πv2n) are shown in Figure (2.12).
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Figure 2.11: Vortex profiles with negative winding number for quartic(solid) and
sextic(dashed) potentials. The figure shows the scalar, magnetic and electric fields
profiles, respectively.

Figure 2.12: The scaling of the energy of the n-vortex with |n| and α, with sextic
potential. The plots show two different normalisations. On the left we have nor-
malised the energy with respect to the value of a BPS vortex, whereas on the right
we have used the single flux vortex with its respective value of α as normalisation.

The dependence of the energy on |n| and α matches the prediction from

Equation (2.58), and we find a transition line between type I and type II vor-

tices at the critical coupling αc = 3
2 which represents the marginally bound

“BPS” case for the sextic potential. Again the value of Ã0(0) indicates that the

profiles almost satisfy the first order equation which would imply,

Ã0(0) = − 1
2αc

= −1
3
. (2.64)

This is indeed what we observe in Figure (2.13). All large n vortex profiles
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approach this value.

Figure 2.13: Value of Ã0 at the origin for different values of α, as a function of |n|,
with the sextic potential.

2.6 Discussion

We have studied abelian Chern-Simons vortices in the presence of a chemical

potential driving the theory into the Higgs phase. The numerical solutions re-

veal several features which are in line with the physical picture presented in

an analytically solvable (non-relativistic) supersymmetric model [190, 200].

The configurations with large (negative) flux show precise BPS-like scaling of

energy/grand potential and appear (numerically) to closely solve first order

equations. It would be interesting to make use of the large flux limit to under-

stand the edge excitations of the vortex droplet. We expect that some of the

lessons learnt from analysing this system will be of use in SU (N ) and U (N )

Chern-Simons-scalar theories with a particle number chemical potential. In

these theories the ground state putatively breaks rotational invariance due to

condensation of vector fields [182], and depending on whether we are in the

SU (N ) or U (N ) theory, particle number is ungauged or gauged, and we will

have superfluid or superconducting vortices.
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Chapter 3

Roton-Phonon Excitations in
Chern-Simons Matter Theory at
Finite Density

3.1 Introduction

Relativistic field theories in three dimensions consisting of Chern-Simons gauge

fields coupled to matter have been conjectured to enjoy a Bose-Fermi/level-

rank duality symmetry [39]. Mounting evidence for the conjecture has ap-

peared in various forms. These include detailed aspects of correlators [39,

42, 105, 201, 202] and S-matrices [203, 204] in large N vector models cou-

pled to Chern-Simons gauge fields in the ’t Hooft limit when the theory be-

comes exactly solvable. Further, the large N thermal partition functions have

been shown to exhibit Bose-Fermi duality as the ’t Hooft coupling is varied

[39, 43, 81, 187, 188]. A crucial role in this is played by the non-trivial eigen-

value distributions of the holonomy matrix around the Euclidean thermal cir-

cle, and the duality manifests itself in various phases characterised by the

large N eigenvalue distributions. The finite N versions of the duality can be

precisely formulated [40], and include an intricate web of abelian dualities

[74, 185, 186] with particle-vortex duality as one of its strands.

In this work, motivated by the goal of understanding the manifestations

of Bose-Fermi duality at finite density, we study the zero temperature ground
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states of a fundamental scalar coupled to Chern-Simons gauge fields in the

presence of a chemical potential for particle number. In particular, we will be

mainly interested in finite density ground states in the (semi-)classical limit

which spontaneously break the global U (1)B particle number symmetry. This

is a subtle issue in 2+1 dimensions, as any finite temperature will result in ther-

mal fluctuations that, by the Coleman-Mermin-Wagner theorem [205, 206],

can destroy long-range order. For this reason, in this thesis we limit ourselves

to the system at zero temperature. At non-zero temperature and finite den-

sity in the absence of condensates, exact results at large N for Chern-Simons

theory with a fundamental fermion [189, 207] show non-trivial agreement at

strong ’t Hooft coupling1 with its weakly interacting bosonic counterpart.

In our analysis of the Chern-Simons-scalar system we assume a classical

limit, i.e. the Chern-Simons level k is large (but finite), and any other scalar

self-couplings taken to be suitably weak so that the semi-classical description

applies. Our main findings are summarised below:

• We find that the theory with SU (N ) gauge group, Chern-Simons level

k and non-zero chemical potential for particle number, exhibits a zero

temperature ground state where the scalar field condenses and all gauge

fields acquire non-commuting background expectation values. This ground

state breaks the SU (N ) gauge symmetry completely and spontaneously

breaks the global U (1)B particle number symmetry. While spatial rota-

tions act non-trivially on the background gauge potentials, they can be

undone by a U (1)C subgroup of global SU (N ) transformations. Thus

gauge invariant operators acquire rotationally invariant expectation val-

ues. The scalar vacuum expectation value (VEV) itself is left invariant by

a combination of the flavour U (1)B and global colour U (1)C rotations.

• For the SU (2) theory, assuming k� 1, we obtain the spectrum of physical

fluctuations and their dispersion relations in the Bose condensed ground

state. The fluctuation spectrum exhibits a massless phonon mode with

1The ’t Hooft coupling λ is defined in the limit N,k → ∞ (k is the Chern-Simons level)
where λ ≡ N

k , ranging between 0 and 1.
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linear dispersion relation for the frequency ω ∼ cs|k|, for low spatial mo-

menta k, accompanied by a local maximum and a roton minimum at

some finite spatial momentum. Roton-maxon excitations are well known

within the context of superfluidity in 4He [208, 209] and explain various

physical characteristics such as heat capacity and the superfluid critical

velocity. The roton minimum, for instance, lowers the superfluid critical

velocity to below the speed of sound, as can be understood by apply-

ing the Landau criterion [208, 209]. In the context of this chapter, we

understand the appearance of the roton minimum as a consequence of

level crossing of states. In the strict limit k→∞ when the Chern-Simons

fields decouple, the interacting scalar theory has a Bose condensate with

two gapless excitations at zero momentum, one with quadratic and the

other with a linear dispersion relation. At large but finite k, the former

acquires a gap at zero momentum, and the putative intersection between

the linear and quadratic dispersion curves is replaced by a roton-maxon

pair in the diagonalised spectrum. The background VEVs for the gauge

fields are directly responsible for these features. Roton-like excitations

with very similar origin, i.e. constant background gauge fields, have been

identified in Yang-Mills-Higgs systems at finite density in 3+1 dimen-

sions [183].

We find that the roton minimum in the phonon dispersion relation per-

sists in the free scalar theory coupled to Chern-Simons gauge fields (at

large k). In this case the only dimensionful scale is provided by the chem-

ical potential which can be rescaled to unity and the resulting spectra

and dispersion relations acquire a universal form.

• For the general SU (N ) case an interesting picture emerges. The N ×N
matrices of VEVs for the Chern-Simons gauge fields provide finite di-

mensional versions of harmonic oscillator creation and annihilation op-

erators. In particular, they can be viewed as the non-commuting coordi-

nates ofN particles in a disc of fixed radius. The same matrices have been

used to describe the ground state of the quantum Hall droplet [92, 93].

Fluctuations about the finite density ground state may thus be viewed
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as fluctuations of this droplet (in configuration space), carrying spatial

momentum and frequency.

The zero temperature finite density properties of the Chern-Simons-scalar sys-

tem present a range of physical phenomena interesting in their own right. Im-

portantly, they provide predictions for the fermionic dual. The SU (N )k theory

with a fundamental scalar (and level k) is level-rank dual to the U (k −N )−k,−N
theory1 with a fundamental fermion [40]. In particular, the free scalar cou-

pled to Chern-Simons fields is dual to the Chern-Simons plus critical fermion

theory [210]. It is clearly of great interest to understand whether features of

the spectrum of the weakly coupled scalar system can be understood from the

conjectured fermionic dual at strong coupling.

This chapter is organised as follows. In Section (3.2) we study the Bose con-

densed ground state of the SU (2) system in the classical limit. In Section (3.3)

we find the spectrum of quadratic fluctuations after gauge fixing, and identify

the phonon-roton branch for different regimes of parameters. Section (3.4)

is devoted to the generalisation of the classical vacuum structure to general

N > 2. Finally we outline a number of questions for future study in Section

(3.7).

3.2 The SU (2)k Theory

We consider Chern-Simons theory with SU (2) gauge group and one scalar

flavour transforming in the fundamental representation. Working with an

anti-hermitean gauge potential Aµ,

Aµ = A
(a)
µ ta , ta ≡ i

2
σ a , a = 1,2,3 , (3.1)

1The two subscripts denote the Chern-Simons levels of the SU (k −N ) and U (1) factors of
the gauge group respectively.
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where {σ a} are the Pauli matrices and {A(a)
µ } are real valued fields, the Chern-

Simons action with (quantised) level k is then,

SCS =
k

4π

∫
d3xεµνρ T r

(
Aµ∂νAρ +

2
3
AµAνAρ

)
. (3.2)

This is the action for both Euclidean (+ + +) and Lorentzian (−+ +) signatures.

The Wick rotation from Lorentzian to Euclidean space-time is implemented by

the replacement t→−iτ and A0→ iA0, which together leave SCS invariant. In

Lorentzian signature, the complete action involving Chern-Simons and matter

fields has the general form,

S = Smatter + SCS , (3.3)

where, in Lorentzian signature (−+ +), for a scalar Φ transforming in the fun-

damental representation of SU (2),

Smatter = −
∫
d3x

((
DµΦ

)†
(DµΦ) + V (Φ†Φ)

)
, (3.4)

Dµ ≡ ∂µ + Aµ .

The theory possesses a global U (1) symmetry which we refer to as “baryon

number” or U (1)B,

U (1)B : Φ → eiϑΦ , (3.5)

generated by a phase rotation of Φ . The corresponding conserved current is

j
µ
B = i

[
(DµΦ)†Φ − Φ†DµΦ

]
. (3.6)

The chemical potential µB is a Lagrange multiplier for the U (1)B charge. In

Lorentzian signature, it therefore appears in the Lagrangian as a time compo-

nent for a background U (1)B gauge field:

Dν → Dν + iµBδν,0 . (3.7)
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3.2.1 Classical ground states with µB , 0

The coupling of the Chern-Simons fields to the matter sector is controlled by

1/
√
k 1. In the limit k→∞, the scalar field Φ with µB , 0 has the potential:

Vscalar(µB, k→∞) = V (Φ†Φ) − µ2
BΦ
†Φ . (3.8)

As usual, the effective negative mass squared due to the chemical potential

drives the system to form a Bose condensate for large enough µB. The tree

level three dimensional scalar potential (at µB = 0) can be taken to be of the

form,

V (Φ†Φ) = m2Φ†Φ + g4(Φ†Φ)2 + g6 (Φ†Φ)3 , (3.9)

where we have allowed for relevant and marginal operators in the scalar po-

tential. Assuming that the ground state of the theory with µB , 0 is static and

translation invariant, we look for vacuum solutions with all terms involving

derivatives being set to zero. Anticipating a scalar condensate at the classical

level2, we can always choose gauge rotations to take the VEV to be real and of

the form,

〈Φ〉 =
(
0
v

)
v ∈R . (3.10)

We then collectively view all non-derivative terms as potential energy contri-

butions:

VCS + Vscalar = − k
4π
εµνρA

(1)
µ A

(2)
ν A

(3)
ρ −

v2

4

[(
A

(1)
0

)2
+

(
A

(2)
0

)2
+

(
A

(3)
0 − 2µB

)2
]

(3.11)

+
v2

4

∑
i=1,2

[(
A

(1)
i

)2
+

(
A

(2)
i

)2
+

(
A

(3)
i

)2
]

+ m2 v2 + g4 v
4 + g6 v

6 .

One consistent extremum is given by v = 0, and all gauge fields also vanishing.

This is the trivial solution. However, this solution cannot dominate the grand

1This can be understood via the rescaling Aµ→ Aµ/
√
k, following which the Chern-Simons

action is order 1 in the large k limit.
2The analysis will remain purely classical and at zero temperature at this stage. At fi-

nite temperature, we know that quantum thermal fluctuations in 2+1 dimensions preclude
symmetry breaking of continuous global symmetries.
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canonical ensemble for generic values of the chemical potential. In particular,

the scalar field theory without Chern-Simons terms (k−1 → 0), and at weak

coupling (g4 � m,g6 � 1), develops a Bose condensate when |µB| > m. This

non-trivial phase with v , 0 must persist when the coupling to Chern-Simons

gauge fields is turned on. In order to arrive at a static and translationally in-

variant ground state, we need to find the minima of the potential energy func-

tion (3.11). We adopt a notation which is appropriate for SU (2) by introducing

three-vectors in the internal “isospin” directions:

Aµ ≡
(
〈A(1)

µ 〉, 〈A
(2)
µ 〉, 〈A

(3)
µ 〉

)T
, ea ≡

(
δa,1, δa,2, δa,3

)T
. (3.12)

In terms of these, the vacuum equations determining the ground state are (here

the ‘×’ and ‘·’ symbols denote cross- and dot-products in the internal space):

v2Ay =
k

2π
A0 ×Ax , v2Ax =

k
2π

Ay ×A0 , (3.13)

−v2
(
A0 − 2µBe3

)
=

k
2π

Ax ×Ay , (3.14)

v
2

[(
A0 − 2µBe3

)2
− (Ax)

2 −
(
Ay

)2
]

=
∂V
∂v

. (3.15)

The two equations in (3.13) together imply that A0,Ax and Ay are mutually

orthogonal in the internal isospin directions, and that

|Ax| =
∣∣∣Ay

∣∣∣ , |A0| =
2πv2

|k|
, sgn

[(
Ax ×Ay

)
·A0

]
= sgn(k) . (3.16)

Next, by taking the cross-product of Equation (3.14) with A0, we deduce that

A0 = 〈A(3)
0 〉e3:(

Ax ×Ay

)
×A0 = Ay

(
A0 ·Ax

)
− Ax

(
A0 ·Ay

)
=

k

2πv2

(
Ay

(
A0 ·

(
Ay ×A0

))
︸             ︷︷             ︸

=0

−Ax

(
A0 ·

(
A0 ×Ax

))
︸             ︷︷             ︸

=0

)
= 0

=⇒ A0 × e3 = 0 , (3.17)
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where we have used Equation (3.13) in the second line. Finally, combining

Equations (3.14) and (3.15), we obtain conditions on the magnitudes of the

background field expectation values:

|Ax|2 =
∣∣∣Ay

∣∣∣2 =
2πv2

|k|

∣∣∣∣〈A(3)
0 〉 − 2µB

∣∣∣∣ , (3.18)

(
〈A(3)

0 〉 − 2µB
)2
− 4πv2

|k|

∣∣∣∣〈A(3)
0 〉 − 2µB

∣∣∣∣ − 2
v
∂V
∂v

= 0 . (3.19)

To proceed further, it is useful to work with the (isospin) basis elements

A0 = η
2πv2

|k|
e3 , Ax = a1 e1 + a2 e2 , Ay = η sgn(k)

(
−a2 e1 + a1 e2

)
,

where η = ±1 and a1,2 ∈R. Using the equations of motion (3.13) and (3.14) we

then find that

η = sgn(µB) , (a1)2 + (a2)2 =
4πv2

|k|

(
|µB| −

v2π
|k|

)
, |µB| >

πv2

|k|
. (3.20)

The classical configuration is endowed with a non-zero U (1)B charge density,

〈j0
B〉 = sgn(µB)

2πv4

|k|
, (3.21)

with vanishing U (1)B currents. To calculate the scalar VEV we need the form

of the tree level potential. For simplicity we set g6 = 0. With a quartic potential

there exists a unique solution1 for the vacuum expectation value (3.19),

v2 =
|k|
3π

g4|k|
π

+ 2|µB| −

√(
g4|k|
π

+ 2|µB|
)2

− 3(µ2
B −m2)

 , (3.22)

which also satisfies the condition (3.20). As expected, the VEV is real only

when µ2
B > m

2. Further, in the large k limit, when the Chern-Simons gauge

fields decouple, the value of the VEV approaches v2 ' (µ2
B−m2)/2g4. This is, of

course, the scalar VEV in the pure scalar theory in the Bose condensed phase.
1The second root for v2 yields v2 > |µBk|/2π and violates the condition in Equation (3.20).
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In the massless theory, the scalar VEV is controlled by the dimensionless com-

bination |πµB/g4k|:

m = 0 : v2 =
|µBk|
2π

f (µ̃) , µ̃ ≡
π|µB|
g4|k|

, (3.23)

f (µ̃) =
2
3

(
µ̃−1 + 2−

√
(µ̃−1 + 2)2 − 3

)
,

where f (µ̃) is monotonically increasing with f (0) = 0 and f (∞) ' 2
3 . A notewor-

thy point here is that the scalar VEV exists even when g4 technically vanishes.

More generally, one may view the semi-classical limit in which the condensate

is well defined as (g4/µB)→ 0 and k→∞ such that g4k/µB is kept fixed.

Free energy: For static configurations we can compute the free energy den-

sity by evaluating the potential energy function on the ground state. In terms

of the VEV, the free energy is,

F = v2

g4v
2 +m2 −

(
|µB| −

πv2

k

)2 . (3.24)

It is easy to check that (assuming |µB| > m) the function is negative definite. In

the massless case, the free energy of the Bose condensed phase is determined

by the function f (µ̃):

F |m=0 =
|µ3
Bk|

4π
f (µ̃)
µ̃

[
f (µ̃)− µ̃2 (f (µ̃)− 2)2

]
, (3.25)

which is a negative definite, monotonically decreasing function of µ̃. There-

fore, in the semi-classical regime, the non-trivial vacuum dominates over the

trivial one which displays vanishing VEVs for all fields. For instance, in the

massless theory with g4 = 0, the free energy in the Higgsed phase is

F |m=0,g4=0 = −4
|µ3
Bk|

27π
, (3.26)
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valid in the semi-classical limit k � 1. Quantum corrections are parametri-

cally suppressed in this limit. In this case the theory enters the Higgsed phase

for any non-zero chemical potential, while the theory with vanishing chemical

potential is conformal. When the mass is non-zero and the chemical potential

is dialed past the classical threshold value µB = m, following a second order

phase transition, the theory enters a Bose condensed Higgs phase. The sym-

metric phase is unstable beyond this point. This interpretation is supported

by the plot (Figure (3.1)) of the free energy as a function of the VEV v (taking

g4 = 0 for simplicity).

0.5 1.0 1.5
v

-0.2

0.2
0.4
0.6
0.8
F

Figure 3.1: The effective potential (free energy density F) as a function of the VEV
v for µB = 1, m = 0.5 and g4 = 0.

The effect of quantum corrections at large k will be to renormalise the mass

in the symmetric phase and change the threshold value of the chemical po-

tential at which the (second order) phase transition from the symmetric to the

Higgsed phase occurs. This qualitative picture may change for finite k when

quantum corrections are large.

3.2.2 Colour-flavour locked symmetry

We have found a one-parameter family of gauge field solutions parametrised

by the variables (a1, a2), satisfying a constraint (3.20). Any given realisation

breaks the SU (2) gauge symmetry completely due to the scalar VEV which

also breaks U (1)B. However, the scalar VEV is left invariant by the diagonal

combination ofU (1)B and aU (1) subgroup of the global SU (2) colour rotations:

U (1)B : 〈Φ〉 → eiϑ/2〈Φ〉, U (1)C : Φ → U (ϑ)Φ , U (ϑ) ≡ eiϑσ3/2. (3.27)
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While the gauge fields do not transform underU (1)B, they do transform under

the global U (1)C . The transformation acts on the background gauge fields

〈Ai〉 = 〈A(a)
i 〉t

a exactly as a rotation (R) by a constant angle ϑ in the x-y plane:

U (1)C :
(
〈Ax〉
〈Ay〉

)
→


U (ϑ)〈Ax〉U†(ϑ)

U (ϑ)〈Ay〉U†(ϑ)

 =
(
cosϑ −sinϑ
sinϑ cosϑ

)(
〈Ax〉
〈Ay〉

)
. (3.28)

Therefore the vacuum gauge configuration is invariant under a globalU (1)B+C+R

symmetry which can be viewed as a linear combination of global colour, flavour

(or baryon number) and SO(2) rotations in the x-y plane.

The above observation has an important consequence. It implies that the

ground state does not actually break rotational invariance1, since the action

of rotations can be undone by a gauge transformation. This is naturally re-

flected in the expectation values of all gauge invariant operators built from

field strengths. In particular, the expectation values of single trace operators

built from the chromoelectric and chromomagnetic field strengths are inde-

pendent of the spatial direction or spatial component in question:

〈T r (F0i)
2〉 = −2π3v6

|k|3
(
µB − v

2π
|k|

)
, 〈T r

(
Fij

)2
〉 = −8π2v4

|k|3
(
µB − v

2π
|k|

)2
. (3.29)

3.3 Spectrum of Fluctuations

We now turn to the spectrum of quadratic fluctuations about the classical vac-

uum configuration. In the quantum theory this is reliable at weak coupling,

i.e. k � 1 and µB � g4. The masses and dispersion relations derived in this

section follow the technique described in Section (2.2.1) and so precise details

into the derivations will be omitted from here on.

1This will be corroborated by the spectrum of physical fluctuations which we extract sub-
sequently.
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3.3.1 The k→∞ theory

It is useful to first recall the situation when the Chern-Simons fields are decou-

pled in the limit k→∞. In this limit we have a pure scalar field theory with a

global O(4) ⊃ SU (2)×U (1)B symmetry. A large enough chemical potential for

U (1)B leads to Bose condensation via the scalar VEV,

k→∞ : v2 =
µ2
B −m2

2g4
, (3.30)

and the weak coupling spectrum is readily obtained after diagonalising the

matrix of quadratic fluctuations. There are four physical excitations corre-

sponding to the four real scalar degrees of freedom with the following disper-

sion relations for the frequency ω as a function of the spatial momentum p,

where we have set m = 0 for simplicity:

ω2
I (±) = p2 + 3µ2

B ±µB
√

4p2 + 9µ2
B , (3.31)

ω2
II (±) = p2 + 2µ2

B ± 2µB

√
p2 +µ2

B .

Two of these states are gapless1. Of the two, only one has a linear dispersion

relation at low momentum and corresponds to the phonon mode while the

other has a quadratic dependence on the spatial momentum,

ωI(−) =
|p|
√

3
+ . . . , ωII(−) =

p2

2µB
+ . . . (3.32)

The presence of the second gapless mode with quadratic dependence on mo-

mentum implies that the Bose condensed ground state cannot be viewed as a

superfluid, due to vanishing critical velocity according to the Landau criterion

[208, 209]. This picture undergoes a qualitative change for finite large k.

1The chemical potential picks out a U (1)B ' SO(2) ⊂ O(4) and breaks the symmetry to
SO(3) ' SU (2). The scalar condensate spontaneously breaks both the SU (2) and the U (1)B,
and the number of Goldstone bosons is fewer than the number of broken generators, as ex-
pected when relativistic invariance is absent [211, 212].
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3.3.2 Finite, large k

For any finite value of k, the Chern-Simons gauge fields couple to the scalars.

However, since the gauge fields are non-dynamical, the number of physical de-

grees of freedom remains unaltered and is given by the number of real scalars.

To calculate the semi-classical spectrum we expand in fluctuations about the

gauge and scalar VEVs,

Aµ = 〈Aµ〉 + Aµ , Φ = 〈Φ〉 + δΦ , δΦ ≡
(
ϕ1 + iϕ2
ϕ3 + iϕ4

)
, (3.33)

where Aµ and {ϕi} (i = 1, . . .4) are, respectively, the gauge field and matter

fluctuations. Substituting these into the original action (3.2) and (3.4), and

expanding to quadratic order in fluctuations,

L(2) = δΦ†DµD
µδΦ + 〈Φ†〉AµD

µδΦ −DµδΦ
†Aµ〈Φ〉+ 〈Φ†〉AµA

µ〈Φ〉

+
k

4π
εµνλT r

(
AµDνAλ

)
− 1

2
ϕjϕk

〈
∂2V

∂ϕj∂ϕk

〉
. (3.34)

Here Dµ denotes the covariant derivative with respect to the background gauge

field 〈Aµ〉:

DµδΦ ≡ ∂µδΦ +
(
〈Aµ〉 + iµBδµ,0

)
δΦ , DµAν ≡ ∂µAν + [〈Aµ〉,Aν] . (3.35)

The main point to note here is that, in the presence of the VEV for both scalars

and gauge fields, all the fluctuations (matter and gauge) couple to each other at

quadratic order. Due to the mixings, the physical degrees of freedom and their

dispersion relations are not immediately obvious. In order to extract these, we

first need to gauge-fix the action for the quadratic fluctuations. The gauge-

unfixed action would yield a degenerate matrix with vanishing determinant. In

the presence of background gauge fields and symmetry breaking scalar VEVs,

it is natural to adopt an Rξ gauge, which is covariant with respect to the non-

zero background gauge fields:

L(2) → L(2) + Lgf , Lgf =
1

2ξ
T r

(
DµA

µ − ξ〈Φ〉δΦ† + ξδΦ〈Φ†〉
)2
. (3.36)
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The Rξ gauge above removes the derivative couplings between the would-be

Goldstone modes and the gauge field fluctuations Aµ, and introduces a non-

trivial mass matrix for them.

The determinant of the gauge-fixed fluctuation matrix then exhibits zeroes

with both ξ-dependent and ξ-independent dispersion relations. The latter

correspond to the physical states of the theory. In fact, these can be isolated

by identifying the leading term in the large ξ expansion of the determinant of

fluctuations at fixed frequency and momentum.

3.3.2.1 Physical states

We have checked numerically that the physical states inferred from the pro-

cedure above are indeed ξ-independent. For the SU (2) theory there are pre-

cisely four physical states corresponding to the two complex components of

the scalar doublet, since the Chern-Simons gauge fields cannot contribute any

additional physical, propagating degrees of freedom. The dispersion relations

for these four physical states are given by the solutions to a quartic equation

in (ω2,p2),

ω8 + µ2
BC3ω

6 + µ4
BC2ω

4 + µ6
BC1ω

2 + µ8
BC0 = 0 , (3.37)

where the {Ci} (i = 0, . . .3) are functions of dimensionless variables,

Ci = Ci

(
p2

µ2
B

,
g4

µB
,
m2

µ2
B

, k

)
, (3.38)

whose explicit forms are given in the Appendix (A.2).

The phonon mode: We first recall that the U (1)B global symmetry is spon-

taneously broken and the corresponding Goldstone mode is the phonon. Since

the remaining broken symmetries are local, the phonon should be the only

massless state. This is confirmed by solving for the spectrum using Equation
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(3.37) at p = 0 which yields1

p = 0 : ωI(−) = 0, ωI(+) =

√
m2 + 6g4v2 −µ2

B +
(
2|µB| −

πv
|k|

)2
,

(3.39)

ωII(−) =
4π
|k|
v2, ωII(+) = 2|µB| .

As expected the gapless mode with a quadratic dispersion in the k =∞ theory

is lifted. It is then straightforward to find the velocity of the phonon mode. In

the limit of small ω and |p| we identify the coefficients of the terms quadratic

in ω and p in the polynomial (3.37). The resulting speed of sound is then,

cs =
dω
d|p|

∣∣∣∣∣
|p|→0

= (1− y)1/2
(
−15y2 + 12y + (m2 + 6g4v

2)µ−2
B − 1

y2 − 4y + (m2 + 6g4v2)µ−2
B − 3

)1/2

,

y ≡ πv2

|kµB|
. (3.40)

The scalar VEV is given in Equation (3.22). In the massless limit (m = 0), the

expression is purely a function of the dimensionless combination µ̃ = πµB/ |g4k|
introduced earlier. In particular, the two distinct regimes of large k (with g4

fixed) and small g4 (with k fixed), which correspond to small and large µ̃ re-

spectively, are distinguished by two different limiting values for the speed of

sound:

m = 0 , µ̃� 1 : cs =
1
√

3

(
1 +

5 µ̃
12
−

91 µ̃2

96
+ . . .

)
, (3.41)

m = 0 , µ̃� 1 : cs =
1
√

2

(
1 − 1

8 µ̃
+

11
128 µ̃2 + . . .

)
.

The limit of vanishing g4 yields the free scalar field coupled to Chern-Simons

gauge fields. In this limit the theory is conformal and therefore the speed of

1We follow the branches with the same nomenclature used for the k = ∞ theory. The
subscripts I(−) and II(−) refer to the gapless states in that theory with linear and quadratic
dispersion relations, respectively.
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sound is as expected for a scale-invariant theory in 2 + 1 dimensions. This is

a consistency check of the non-trivial Bose-condensed ground state we have

discussed, stabilised by gauge field expectation values. It is also a consistency

check on the dispersion relations for the semi-classical quadratic fluctuations.

For non-zero scalar masses the phonon velocity is a non-trivial function of

2 4 6 8 10
μ
˜

0.60

0.62

0.64

0.66

0.68

0.70

cs

Figure 3.2: The solid blue curve shows the slope of the phonon dispersion relation
at p = 0 as a function of µ̃ = π|µB/g4k| for the massless theory, It interpolates
between cs = 1/

√
3 at small µ̃ and the conformal value of cs = 1/

√
2 when g4 is

taken to zero.

both m and µB. For instance, at large values of k and all other parameters held

fixed, we obtain

c2
s =

µ2
B −m2

3µ2
B −m2

+
π
(
5µ2

B +m2
)
(m2 −µ2

B)2

2|kµB|g4(m2 −µ2
B)2

+O(1/k2) . (3.42)

The expression can be rewritten as a function of the two dimensionless param-

eters µ̃ = πµB/g4|k| and m̃ ≡ πm/g4|k|.

Level crossing: The perturbative spectrum in the regime of small ω and p

displays an interesting feature. This is a non-trivial consequence of crossing of

energy levels which occurs as we tune the Chern-Simons level from k =∞ to

finite (large) values. This unavoidable crossing is between the phonon (ωI(−)

branch) and the light state with energyωII(−) which happens to be gapless with

quadratic dispersion relation at k = ∞, but acquires a small gap ∼ 4πv2/k at
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large k. The crossing is accompanied by off-diagonal mixings between these

two fluctuations. In the low energy, long wavelength limit, where ω, |p| � µB
(where we are ignoring m for simplicity), it should suffice to focus attention

on the two-level system comprising of the two lightest excitations. In this

limit, the gapped modes only yield an overall multiplicative constant in the

fluctuation determinant which takes the approximate form,

(
ω2 − c2

sp2
)(
ω2 − p4

4µ2 − δ
)
− εp4 = 0 . (3.43)

The mixing term ε scales as the inverse of the CS level, ε ∼ k−1, whilst the

gap generated for the branch ωII(−) with quadratic dispersion scales as δ ∼ k−2,

both vanishing in the large k limit. The mixing must necessarily be momentum

dependent so that the gapless phonon mode persists as a Goldstone boson for

the broken U (1)B. At low momentum the leading such contribution scales as

p4 (using Equation (A.2)).
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Figure 3.3: Left: The k = ∞ theory displays two gapless excitations with lin-
ear and quadratic dispersion relations. Right: At finite large k, the two modes
potentially cross, and also mix. The diagonalised modes display a splitting and
“repulsion” resulting in a local maximum in the phonon branch.

The new solutions to Equation (3.43) provide a qualitative description of

the perturbed light spectrum at large, finite k. In particular, as shown in Fig-

ure (3.3), the two branches do not cross and the phonon branch displays a

“maxon” or a local maximum in its dispersion relation. For non-zero ε, the

two dispersion relations (viewed as functions of p2) have a branch-point in the

complex plane. For small enough ε, the location of the maximum in ωI(−) is
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close to the putative interesection point of the two curves. The presence of this

local maximum implies the existence of a “roton” minimum since all disper-

sion curves must eventually increase linearly at large |p| consistent with UV

relativistic invariance.

3.3.3 Roton minimum and complete spectrum

Our main observation regarding the spectrum of excitations is that, for any

(large) finite value of k that is consistent with being in the semi-classical regime,

the phonon branch always displays a roton minimum. At large k and fixed g4,

the position of the maximum can be estimated quite easily. It sits close to the

potential intersection point of the dispersion curves for ωII(−) and ωI(−). In the

large k regime, the former is flat, ωII(−) ≈ 4πv2/ |k|, while the latter is linear,

ωI(−) ≈ |p|/
√

3, and their putative intersection is at

k� 1, g4 fixed : (ωmax, |p|max) ≈
(

4πv2

|k|
,

4πv2
√

3
|k|

)
. (3.44)

On the other hand, the location of the roton minimum is more subtle. In the

0.0 0.5 1.0 1.5 2.0
p

0.5

1.0

1.5

2.0

2.5
ω

0 0.05 6π μ /k v 0.2 0.25
p

0.002

7 π v2

k

4π v2

k

0.02
ω

Figure 3.4: Left: The spectrum for m = 0 with µ̃ = πµB
g4k

= π/20. Right: The two
lightest states, including the phonon-roton branch (blue) with µ̃ = π/500. The
dotted lines indicate the large k limiting values of the roton maximum and mini-
mum.

large k theory we expect the minimum to be located at parametrically small
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values close to the origin. In fact, it turns out thatωrot ∼ k−1 whilst prot ∼ k−1/2.

This can be checked by first performing the scaling

ω =
1
k
$, p =

1
√
k
% , (3.45)

then substituting into the fluctuation determinant (A.2), and the expression

for ω′(p) by differentiating (A.2). Subsequently, setting the determinant and

ω′(p) to zero, and then taking the large k limit, we find (setting m = 0 for

simplicity):

3%4 − 24πµB%
2v2 + 4µ2

B

(
16π2v4 −$2

)
= 0, (3.46)

%4 − 12πµB%
2v2 + 4µ2

B

(
16π2v4 −$2

)
= 0 .

The solutions to these yield the roton minimum at large k for the massless

theory:

k� 1 : (ωrot, |p|rot) =

√7πv2

k
,

√
6πµ
k
v

 , (3.47)

where the VEV is given by Equation (3.22) with m = 0. The results for the

roton minimum and maximum agree perfectly with the numerical curves for

the phonon-roton branch at large k, displayed in Figure (3.4). The qualitative

nature of the dispersion relations persists for all values ofm, µB and g4k. Figure

(3.5) shows the relevant plots for one non-zero value of m.

Critical case with g4 = m = 0: A non-trivial aspect of the Bose condensed

ground state is that all generic features of the spectrum of fluctuations persist

even when g4 = m = 0 (and µB , 0) so that the classical theory is scale invari-

ant. The determinant of physical fluctuations (A.2) simplifies greatly, and the
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Figure 3.5: Left: The physical spectrum for the massive case. Right: In the scale
invariant situation, the dispersion relations have a universal form, independent
of k and µ. The dotted blue line with slope 1/

√
2 matches the phonon velocity at

low momentum.

relevant dispersion relations are obtained from its zeroes:

p̃ ≡ |p|
µB
, ω̃ ≡ ω

µB
, (3.48)

p̃8 − p̃6
(
4ω̃2 + 28

9

)
+ p̃4

(
6ω̃4 − 4

3ω̃
2 + 160

81

)
− p̃2

(
4ω̃6 − 12ω̃4 + 992

81 ω̃
2 − 512

81

)

+ ω̃8 − 68
9 ω̃

6 + 1408
81 ω̃4 − 1024

81 ω̃2 = 0 .

At zero momentum the energies of the four physical states are:

ωI(−) = 0 , ωI(+) =
4µB

3
, ωII(−) =

4µB
3
, ωII(+) = 2µB , (3.49)

so that two of the massive states become degenerate, whilst the roton maxi-

mum and minimum are at

(ωmax, |p|max) = (0.553µB, 0.937µB) , (ωrot, |p|rot) = (0.426µB, 1.487µB) .
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We expect these results to be stable against quantum corrections for large

enough k, since 1
k is the only small parameter in the system. It is interesting

and somewhat unexpected (given that the roton minimum is often attributed

to the presence of a new scale) that the roton persists in the theory where the

chemical potential is the only dimensionful scale.

3.3.4 Landau critical velocity

According to Landau’s criterion, for a nonrelativistic superfluid flowing with

velocity vs (with respect to a vessel or capillary), when the velocity exceeds a

critical value [209] given by

vcrit = min|p|

(
ω(p)
|p|

)
=⇒ ∂ω

∂|p|
=
ω
|p|
, (3.50)

the fluid loses energy through dissipation and the superfluid phase can be

wholly or partially destroyed e.g. by a condensate of rotons [213, 214]. In

particular, [213] argues for the appearance, within superfluid 4He flows, of

a one dimensional periodic structure at rest with respect to the walls so that

the superfluidity criterion is not violated. The Landau criterion is derived by

boosting the Bose condensate in the ground state along a particular direction

(say the +x-axis) with a velocity vs, and considering excitations that could re-

duce or dissipate the energy of the moving condensate. In the frame where

the condensate has velocity vs, the energy of a backscattered non-relativistic

excitation with momentum p, causing dissipation from the condensate, must

satisfy

ω(|p|) − vs|p| < 0, (3.51)

where the second term is the result of transformation under the Galilean boost.

The critical value of the superfluid velocity is then given as vcrit = min(ω/ |p|).
The arguments can also be carried out in the appropriate relativistic context

(e.g.[209, 214]). The critical velocity is inferred from the slope of the straight

line passing through the origin and tangent to the dispersion curve for the

phonon-roton branch (see dashed black line in Figure (3.5)).
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The behaviour of the critical velocity as a function of µB/g4k in the massless

theory is shown in Figure (3.6). At large k, the critical velocity vanishes as

0.5 1.0 1.5 2.0 2.5 3.0

π μB

g4 k

0.05

0.10

0.15

0.20

0.25

vcrit

Figure 3.6: The Landau critical velocity as a function of the dimensionless param-
eter πµB/g4k in the theory with m = 0.

1/
√
k, and approaches a constant value, vcrit ≈ 0.27, in the theory with g4 = 0.

3.3.5 The U (2)k theory

It is interesting to note the qualitative difference between SU (2) and U (2)

gauge groups. In the latter case the U (1)B symmetry is gauged and the chemi-

cal potential is synonymous with a fixed background expectation value for the

temporal component of the abelian gauge field. The classical vacuum equa-

tions are satisfied by the same configuration as in the SU (2) theory. The con-

densates of the scalar and gauge fields break both the SU (2) and U (1)B lo-

cal symmetries to a diagonal U (1). Since all symmetries are local we expect

only massive physical states. We obtain the physical fluctuations by employ-

ing Coulomb gauge for the abelian gauge field, and retaining the covariant

Rξ gauge-fixing for the SU (2) part. The situation with m = g4 = 0 suffices to

demonstrate the existence of the gap. In this case, the dispersion relations of

the four physical states can be obtained from the roots of the following poly-

116



3.4 The SU (N > 2) Case

nomial in (ω̃, p̃) = (ω/µB, |p|/µB):

p̃ ≡ |p|
µB
, ω̃ ≡ ω

µB
, (3.52)

p̃8 − p̃6
(
4ω̃2 + 224

81

)
+ p̃4

(
6ω̃4 − 64

27ω̃
2 + 512

243

)
− p̃2

(
4ω̃6 − 352

27 ω̃
4 + 3328

243 ω̃
2 − 4096

729

)
+ω̃8 − 640

81 ω̃
6 + 4544

243 ω̃
4 − 10240

729 ω̃2 + 16384
59049 .

Unlike the SU (2) theory (Equation (3.48)), we see that ω̃ = p̃ = 0 is no longer

a solution. All states are gapped at p = 0, with the energies given by ω̃2 =

16/9,16/9, (22±5
√

19)8/81. The dispersion relations for non-zero p are shown

in Figure (3.7).
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Figure 3.7: The semi-classical spectrum of the U (2) ' SU (2) ×U (1) theory. All
states are gapped. Nevertheless, the lightest state displays a roton-like minimum.
The dotted blue line passing through the origin with slope 1/

√
2 is shown to em-

phasise the absence of phonon-like linear dispersion.

3.4 The SU (N > 2) Case

We now generalise the above analysis for Chern-Simons scalar theory with

SU (N ) gauge group. We use lower case subscripts and superscripts, (p,q, r . . .)

to label fundamental and anti-fundamental representation indices. The gauge
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covariant derivative is defined to include the chemical potential as a timelike

background gauge field:

(Dµ) qp = δ
q
p ∂µ + (Aµ) qp + iµBδ

q
p δ

0
µ . (3.53)

For general N , it is useful to define the quartic coupling so that a consistent

large N limit can be taken if necessary. The potential contributions involving

both gauge and scalar fields can be put together so that,

VCS + Vscalar = − k
4π

2
3
T r

(
AµAνAρ

)
εµνρ − Φ†

(
Aµ + iµBη

µ0
)(
Aµ + iµBδ

0
µ

)
Φ

+m2Φ†Φ +
g4

N
(Φ†Φ)2 . (3.54)

Assuming that the scalar obtains a vacuum expectation value, we can always

use SU (N ) gauge rotations to place the VEV in the N -th component,

〈Φp〉 =
√
N vδp,N . (3.55)

We have scaled out a factor of
√
N in anticipation of the expected scaling in

the large N limit of vector models. In particular, the action for the matter

fields should be O(N ) in the large N limit. The choice of scalar VEV leaves a

residual SU (N − 1) gauge symmetry, which is then completely broken by the

gauge field backgrounds in the ground state. In order to obtain the correct

matrix equations of motion, we vary the action (3.54) subject to a tracelessness

condition for SU (N ) gauge fields, implemented by Lagrange multipliersΛ0,1,2:

VCS + Vscalar → VCS + Vscalar + ΛµT r(Aµ) . (3.56)

3.4.1 Vacuum configuration

The complete vacuum equations extremising the potential function are:

− k
4π

[Aµ,Aν]εµνλ −
{
ΦΦ†,

(
Aλ + iµBη

λ01
)}

+ Λλ1 = 0 , T rAµ = 0 ,

(3.57)

− (Aµ)pN (Aµ)Np + 2iµB(A0)NN + (m2 −µ2
B) + 2g4v

2 = 0 .
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The matrix ΦΦ† is a projector, and given that the scalar VEV can be rotated

into the lowest component, it has only one non-zero element,

(ΦΦ†) qp = N δp,N δ
q,N v2 . (3.58)

The Lagrange multipliers {Λλ} are determined by taking the trace of each of

the respective equations of motion so that,

Λλ = 2v2
[(
Aλ

) N
N

+ iµBη
λ0

]
. (3.59)

Following the hint provided by the SU (2) vacuum solution, we take A0 to be

diagonal (note that residual SU (N −1) rotations can be used to diagonalise an

(N −1)×(N −1) block of A0). It then follows that the commutator [Ax,Ay] must

be diagonal ∼ diag(1,1, . . . ,1 −N ). This is reminiscent of the N dimensional

representation of the SU (2) algebra, where the off-diagonal ladder operators

commute to yield a diagonal matrix. Motivated by this similarity, we find a

simple solution for the Chern-Simons equations of motion:

〈Ax〉
q

1 = iα δq,2 , 〈Ax〉
q
N = iα

√
N − 1δq,N−1, (3.60)

〈Ay〉
q

1 = αδq,2 , 〈Ay〉
q
N = −α

√
N − 1δq,N−1,

〈Ax〉
q
p = iα

(√
pδq,p+1 +

√
p − 1δq,p−1

)
, p = 2, . . .N − 1,

〈Ay〉
q
p = α

(√
pδq,p+1 −

√
p − 1δq,p−1

)
, p = 2, . . .N − 1,

〈A0〉
q
p = iβ

( 1
N
δ
q
p − δp,Nδq,N

)
, p,q = 1 . . .N ,

where the constants α and β are determined by the VEV and chemical poten-

tial as

α =
β
√
N

√
µB
β
− N − 1

N
, β =

v2

κ
, κ ≡ k

2πN
. (3.61)
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The equation of motion for the scalar VEV (discarding the trivial extremum)

is then given by

− 3
κ2

(
1 − 1

N

)2
v4 + v2

[
2g4 +

4µB
κ

(
1− 1

N

)]
−

(
µ2
B − m

2
)

= 0 . (3.62)

Solving as a quadratic in v2, only one solution is physical1 and matches smoothly

onto the semi-classical (κ� 1) limit:

v2 = Nκ
3(N−1)

 g4Nκ
(N−1) + 2µB −

√(
g4Nκ
N−1 + 2µB

)2
− 3(µ2

B −m2)

 . (3.63)

This agrees precisely with the result (3.22) for N = 2 after we perform the

rescalings, v→ v/
√
N and g4→ g4N , required to match the conventions adopted

in our analysis of the SU (2) theory. It is also worth remarking that the N →∞

limit, keeping κ and g4 fixed, can be readily taken and v remains finite in this

limit.

For the free massless scalar coupled to Chern-Simons fields (m = g4 = 0),

we obtain

v2 = κ
NµB

3(N − 1)
, α =

µB
3

√
2

N − 1
. (3.64)

3.4.2 Interpretation as quantum Hall droplet state

The vacuum configuration breaks the SU (N ) gauge symmetry completely. The

scalar field VEV also breaks the global U (1)B spontaneously and therefore the

spectrum must yield a massless phonon mode. As seen previously in the SU (2)

theory, the classical background is left invariant by a diagonal combination

of U (1)B, global colour and spatial rotations. An SO(2) rotation in the x-y

plane by an angle ϑ, as in Equation (3.28), can be undone by a global gauge

1The second root yields v2 > κµBN/(N − 1) which would render α imaginary. In addition,
this solution does not have a smooth k→∞ limit.
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transformation generated by the diagonal matrix J3:

U (1)C : 〈Aj〉 → eiϑJ3 〈Aj〉e−iϑJ3 , (3.65)

J3 ≡ diag
(
−N−1

2 ,−N−3
2 ,−N−5

2 . . . , N−3
2 , N−1

2

)
.

J3 is the N dimensional representation of one of the three generators of the

SU (2) algebra. The phase rotation of the scalar VEV generated by J3 can clearly

be compensated by a U (1)B transformation.

An interesting feature of the vacuum solution is that the hermitean ma-

trices i〈Ax〉 and i〈Ay〉 provide a matrix realisation of coordinates on the non-

commutative plane:

[
i〈Ax〉, i〈Ay〉

]
= 2iα2

 1(N−1)×(N−1) 0

0 1− N

 , (3.66)

where the non-commutativity parameter is 2α2, as defined in Equation (3.61),

and scales as α2 ∼ 1/N for large N 1. Furthermore, it appears that the coordi-

nates are restricted to within a disc or droplet:

(i〈Ax〉)2 +
(
i〈Ay〉

)2
= 2α2diag (1 , 3 ,5 , . . . , (2N − 3) , (N − 1)) . (3.67)

The radius of the droplet is bounded in the large N limit since α2 ∼ 1/N with

limiting value

Rdroplet |N→∞ = 2β
√
µB
β
− 1 . (3.68)

The algebra of matrices is closely related to that of harmonic oscillator creation

and annihilation operators, when written in terms of the ladder operators:

A± = i
(
〈Ax〉 ± i〈Ay〉

)
, (3.69)

1It is tempting to look for solutions to the vacuum equations which are reducible and
consist of irreducible lower dimensional blocks each satisfying the finite dimensional algebra
implied by the vacuum conditions. We have not succeeded in finding any solutions of this
type.
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which, for any finite N , satisfy (A+)N = (A−)N = 0. Precisely the same set of

matrices were introduced to describe the fractional quantum Hall droplet by

Polychronakos [93], building on the connection between abelian non-commutative

Chern-Simons theory on the plane and the quantum Hall fluid [92], which we

introduced in the Background chapter. The matrix model has also been shown

to describe the low energy dynamics of vortices in 2+1 dimensional Yang-

Mills-Higgs theory with a Chern-Simons term [190, 200]. In this picture, the

matrices i〈Ax〉 and i〈Ay〉 parametrise the (non-commuting) coordinates of N

particles in the droplet. As Equation (3.67) indicates, the particles are placed

in concentric circles of radius ∼
√

2n− 1 for n = 0,1,2, . . . ,N − 1. In the present

context, the two matrices appear to deconstruct two dimensions (at large N )

on top of the 2+1 space-time dimensions in which the field theory is originally

formulated.

Given the finite density “droplet” ground state for general N , we need to

calculate the spectrum of fluctuations around it. This could be addressed in

detail in future work. However, we can already make a few remarks. The spec-

trum must exhibit a massless state corresponding to the phonon arising from

the spontaneous breaking ofU (1)B. In the droplet picture, physical excitations

live only on the boundary of the quantum Hall droplet and are associated to

area preserving deformations of the droplet boundary, subject to a Gauss’ law

constraint following from the Chern-Simons equations of motion [93]. These

have a zero mode corresponding to rotations of the circular droplet ground

state, which could naturally be identified with the phonon. In the language

of the N ×N matrices comprising the gauge field fluctuations, in an appropri-

ate gauge (more precisely, unitary gauge), the excitations are encoded in the

entries of the N -th row and column of gauge field fluctuations of Ax and Ay ,

all other fluctuations correspond to pure gauge or “bulk” degrees of freedom

of the droplet. It would be extremely interesting to flesh out this picture in

detail and explore the implications of this interpretation for the spectrum of

the theory for generic N , and in particular its large N limit.
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3.5 Vortices in Non-Abelian Chern-Simons Scalar

Theories.

Before we conclude this chapter, we address the possibility of a vortex solution

in the background of the ground state we have seen above (Equations (3.20,

3.22)). If vortices exist in this model, we expect them to be quite different

from the ones we encountered in Chapter (2), since here we are considering a

non-abelian theory.

Non-abelian vortices have been studied in a number of occasions in the

past [215–218]. These are notably different to their abelian counterparts since

the scalars appearing in those models are in the adjoint representation. This

allows for the VEV to remain invariant under the center of the gauge group. If

z ∈ Z(G), where Z(G) is the center of G, then by definition z commutes with all

elements in the group. Thus, if an adjoint scalar Φ has a non-zero VEV, then

under a gauge transformation generated by z, we have Φ → zΦz† = Φzz† = Φ .

In the above cases, the gauge group is SU (N ) with center Z(SU (N )) = ZN .

This means that the action of the gauge group SU (N ) on the adjoint scalars

reduces to an SU (N )/Z(SU (N )) = SU (N )/ZN . This gives rise to the possibility

of a topological vortex, since π1(SU (N )/ZN ) = ZN , even though π1(SU (N )) is

trivial.

In contrast to these studies, we will be interested in fundamental scalars

so this argument does not apply directly to our subject matter. However, due

to the appearance of a non-zero chemical potential, we have found out that

non-zero VEVs in the gauge sector come to play a role. Since the gauge fields

are in the adjoint representation, this allows for the same type of argument for

topological stability to reappear in a theory with fundamental matter. In the

context of Yang-Mills theory, this type of vortex has been explored by Gorbar,
Jia & Miransky [184].

Similarly to the situation that we encountered in Chapter (2), in the non-

abelian case, we also observe a non-trivial ground state. This means that we

can expect that there will be a circularly symmetric classical solution that in-

terpolates between this ground state at infinity, and the zero fields configura-

tion at the centre. And just as we elaborated in the previous paragraph, we ex-
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pect to have two different types of topological vortices, depending on whether

we are interested in the U(2) or SU(2) system. First, we focus our attention on

the U (2) theory.

3.6 U(2) Theory

In the U (2) theory, we do not expect to find global vortices, since the global

U (1) symmetry in now gauged. In this model, we expect to find two types of

vortices. The first one will be associated to a winding in theU (1) and as such it

is classified by π1(U (1)) = Z. This leads to a charged, hence non-equilibrium,

configuration, exactly as was the case in Chapter (2). For this reason, we need

to introduce a background charge density in order to guarantee that the con-

figuration is charge neutral. The second type of vortex owes its existence to the

unusual form of the VEV (Equations (3.18) and (3.19)), namely the fact that the

adjoint vector boson acquires non-zero expectation values. This vortex will be

classified by

π1(SU (2)/Z(SU (2))) = π1(SU (2)/Z2) = Z2. (3.70)

The action for the U (2) theory can be written down as follows.

S = SSU(2)
CS + SU(1)

CS + Smatter, (3.71)

where

S
SU(2)
CS =

k
4π

∫
d3x εµνρ T r

[
Aµ∂νAρ +

2
3
AµAνAρ

]
, (3.72)

S
U(1)
CS =

k′

4π

∫
d3x εµνρBµ∂νBρ, (3.73)

Smatter = −
∫
d3x

[(
DµΦ

)†
(DµΦ) +V

(
Φ†Φ

)]
, (3.74)

Dµ = ∂µ +Aµ +Bµ + iµBδ
0
µ , (3.75)

where we have allowed for possibly different Chern-Simons levels for the abelian

and non-abelian levels k′ and k, respectively. This is consistent with the state-
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ments of duality that we saw in Chapter (1), Equations (1.149-1.151). We are

restricting the potential here to be quartic

V
(
Φ†Φ

)
=m2Φ†Φ + g4

(
Φ†Φ

)2
. (3.76)

Further, we require that the magnitude of the mass squared term is smaller

than the magnitude of the chemical potential squared m2 < µ2
B, in order to

guarantee symmetry breaking and the existence of the ground state that we

studied in the previous sections. A sixth order monomial can also be included

in the potential without changing the physics qualitatively, hence we choose

to omit it here for simplicity. This leads to the classical equations of motion

for the gauge sector

k
2π
Fµν = εµνλJ

λ, (3.77)

k′

2π
fµν = εµνλ

1
2
T r

[
Ĵλ

]
, (3.78)

where

Fµν = ∂µAν −∂νAµ + [Aµ,Aν], fµν = ∂µBν −∂νBµ, (3.79)

Ĵλ =
√−ggλν

(
Φ (DνΦ)† −DνΦΦ† − 2iµBδ

0
ν ΦΦ

†
)
, (3.80)

Jλ = Ĵλ − 1
2
T r

[
Ĵλ

]
I =⇒ T r

[
Jλ

]
= 0. (3.81)

The scalar equations arising from the action (3.71) are

(
Dµ + iµδ 0

µ

) [√−g (Dµ + iµgµ0
)]
Φ = −√−g δV

δΦ†
. (3.82)

Consider the ansatz

Aµ = i
(
a3
µσ3 + a+

µσ+ + a−µσ−
)
, (3.83)

Bµ = i
(
aµI

)
, (3.84)

Φ = einθ
(

0
ϕ(r)

)
, n ∈Z, ϕ(r)

r→∞−−−−→ v, (3.85)
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where the matrices

σ3 =
[
1 0
0 −1

]
, I =

[
1 0
0 1

]
, (3.86)

σ+ =
[
0 1
0 0

]
, σ− =

[
0 0
1 0

]
, (3.87)

are a basis of U (2) that allows us to think of a+
µ as the complex conjugate of

a−µ = (a+
µ)∗. Further, restricting to a static, circularly symmetric solution, the

ansatz becomes

a+
0/θ = g̃0/θ(r)e−iθ+iα , a−0/θ = g̃0/θ(r)e+iθ−iα, (3.88)

a+
r = g̃r(r)e

−iθ+i(α+π
2 ), a−r = g̃r(r)e

+iθ−i(α+π
2 ), (3.89)

a
(3)
µ = fµ(r), fr(r) = 0, (3.90)

aµ = aµ(r), ar(r) = 0, (3.91)

where all of g̃µ ∈ R. Note the π
2 shift of the phase of the gr component relative

to the rest of the functions. This is analogous to how the vacuum components

of Aθ and Ar relate to one another. The phase factor eiα has to do with the

remaining global colour-flavour locked U (1) symmetry in the system. Using

the form of the ansatz above we have

ΦΦ† = ϕ(r)2
(
0 0
0 1

)
= ϕ(r)2σ−σ+. (3.92)
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Thus, the system of differential equations simplifies to

k
2π

(
f ′θ − 2g̃r g̃θ

)
= −r (a0 +µ− f0)φ2, (3.93)

k
2π

(
g̃ ′θ + g̃r − 2g̃rfθ

)
= rg̃0φ

2, (3.94)

k′

2π
a′θ = r (a0 +µ− f0)φ2 − rJ0, (3.95)

k
2π

(f ′0 + 2g̃0g̃r) =
1
r

(aθ +n− fθ)φ2, (3.96)

k
2π

(g̃ ′0 + 2f0g̃r) =
1
r
g̃θφ

2, (3.97)

k′

2π
a′0 =

1
r

(aθ +n− fθ)φ2, (3.98)

k
2π

(g̃0 − 2(fθ g̃0 − g̃θf0)) = rg̃rφ
2, (3.99)

where J0 is determined by requiring that the system is neutral when evaluated

at the VEV. This implies that

J0 = −πv
2

k

(
µk

π
− v2

)
. (3.100)

Inserting the ansatz (3.83-3.85) and (3.88-3.91) into the scalar equation of mo-

tion (3.82) we arrive at

1
r
d
dr

(rϕ)+ϕ
(
(f0 − a0 −µ)2 + |g̃0|2 − (ar − fr)2 − |g̃r |2

)
+ϕ

(
− 1
r2 (fθ − aθ −n)2 + |g̃θ |2

)
= − δV

δΦ†
. (3.101)

We would like a solution that asymptotes to the ground state that we explored

in Chapter (3), Equations (3.20, 3.22). This implies the following boundary
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conditions

ϕ
r→∞−−−−→ v, ϕ

r→0−−−−→ 0, (3.102)

g̃θ
r→∞−−−−→ r

πv
k

√
µk

π
− v2, fθ

r→∞−−−−→ 0, (3.103)

g̃0
r→∞−−−−→ 0, f0

r→∞−−−−→ πv2

k
, (3.104)

a0
r→∞−−−−→ 0, aθ

r→∞−−−−→ 0, (3.105)

g̃r
r→∞−−−−→ πv

k

√
µk

π
− v2. (3.106)

We have shown that a self-consistent circularly symmetric ansatz exists. The

study of this boundary value problem has been left for future work. One can

also arrive at the the SU (2) equations of motion by requiring that the trace of

the U (2) equations of motion vanishes. This leads to a simplified system.

3.7 Summary and Future Directions

There are several immediate questions of interest that follow on from this

chapter. The Bose condensed vacuum should have semi-classical vortex solu-

tions, as we discussed in the preceeding section, and it would be interesting to

understand their explicit construction given the non-abelian nature of the vac-

uum configuration. The ground state has a U (1) colour-flavour locked global

symmetry. A vortex solution that breaks this global symmetry will have an

internal zero mode corresponding to a U (1) moduli space of solutions. Such

vortices in a (non-abelian) Higgs phase with non-commuting VEVs, carrying

internal zero modes, have been encountered previously in different contexts

[198, 219, 220]. The physical properties of such vortices and their role in the

Bose-Fermi duality would be extremely interesting to explore.

So far in this exploration, we have arrived at a few intermediate results. We

took the vacuum solutions in the SU(2) and U(2) theories found in this chapter

and postulated the existence of vortex solutions asymptoting to these vacua.

We found a consistent circularly symmetric ansatz and derived the equations
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of motion. Just as the ground state has an unbroken U (1) symmetry, the so-

lutions of the equations seem to also be parametrised by one real, compact

parameter. Since the SU (N ) solutions correspond to a winding in the global

symmetry, we expect that their energies will diverge in the infinite volume

limit. However, in the U (2) case the abelian symmetry is gauged so we expect

the vortices in this model to be of finite energy. Further, due to the non-trivial

vacuum structure, we expect these solutions to be topologically stable. We

leave the numerical analysis of these solutions for further work.

The origin of roton-like minima is often attributed to long range interac-

tions. The interpretation of the background VEVs as non-commuting “coor-

dinates” for a quantum Hall droplet could thus provide a natural route to

establish the existence of roton-like excitations1 for general N > 2. In general,

the computation of the spectrum of excitations and their dispersion relations

about the Bose condensed ground state should be facilitated by the connection

to the droplet picture of Polychronakos [93]. The goal would be to eventually

understand the putative matching between the spectra of the bosonic theory

at weak ’t Hooft coupling (λB� 1) and that of the dual critical fermion theory

(coupled to Chern-Simons) at strong ’t Hooft coupling (λF → 1). Perhaps the

most puzzling aspect of this is the interpretation of the Higgsed ground state.

When λF = 0, and a U (1)B chemical potential is switched on in the critical the-

ory, we do not expect fermion bilinears to condense (see e.g. Reference [222]).

As λF is increased from zero, it is conceivable that the effective potential for

charged fermion bilinears carrying U (1)B favours a condensate, either for any

non-zero λF or at some critical value. It would be extremely interesting to un-

derstand the behaviour of the large N effective potential for fermion bilinears

for non-zero λF and µB.

A related question has recently been explored by Choudhury et al. [223]

where Bose-Fermi duality at finite temperature and in the presence of scalar

condensate has been established in the largeN ’t Hooft limit. In order to recon-

cile their results with our ground state, we will need to understand the modifi-

cation of the zero temperature finite density state, and in particular the back-

1See e.g. Castorina et al. [221] for a discussion of the relation between non-commutative
field theory and roton excitations in bosonic and fermionic systems.
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ground gauge field VEVs, by any non-zero temperature. This is because the

Euclidean finite temperature theory is effectively two dimensional at long dis-

tances and thus fluctuations in the phase of the scalar VEV are unsuppressed,

which poses an unresolved puzzle.. It will be interesting to understand the

fate of the phonon-roton mode at finite temperature and non-zero ’t Hooft

coupling in the Chern-Simons-scalar theory.
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Conclusions

In this thesis we have presented the results of a series of investigations focused

around finite density Chern-Simons-matter theories. We found a symmetry

broken (SB) phase in the SU (2) theory that persists in the conformal phase of

quartic coupling going to zero. The ground state exists both in the Wilson-

Fisher fixed point and in the free scalar CS theory. This phase is interesting for

several reasons. It is important in the context of Fermi-Bose duality, because

up to date confirmations of the duality have not been made in the finite chem-

ical potential regime. Such checks would require that this condensate is taken

into account. Another reason why the symmetry broken phase is interesting is

that it teaches us that giving VEVs to gauge fields does not necessarily break

rotational invariance, since that can be mitigated by a colour-flavour locking

mechanism. Thirdly, field theoretic techniques in conjunction with this con-

figuration constitute a fundamental mechanism for the existence of roton exci-

tations. This is important since rotons were first postulated to explain the heat

capacity of superfluid helium [224] but no mechanism for their generation was

proposed. Finally, this SB phase in the SU (N ) theory coincides with the non-

commutative Chern-Simons description of the fractional quantum Hall effect.

We showed that vortex creation can be driven by chemical potential only.

In other words, we found vortex solutions that do not require a symmetry

breaking potential for their existence. Additionally, we found numerical ev-

idence for BPS vortices, for which an analytic bound cannot be found in the

traditional way, and derived an approximate corresponding bound. Finally,

we found a self-consistent ansatz for non-abelian topological Chern-Simons

vortices with fundamental matter that exist solely in the finite density regime.
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For future work, we wish to extend the computation of the quadratic spec-

trum of the SU(2) theory to the spectrum of the SU(N) theory. We suspect that

the non-commutative Chern-Simons description is the gateway to achieving

this and potentially solving the large N SU (N ) theory exactly. Additionally,

we expect that this non-commutativity is somehow intrinsically linked to the

fermionic description of the system. We would like to understand how this

condensate manifests itself on the fermionic side of the duality. Is a fermion

bilinear condensate ψ̄ψ responsible for the phase transition in the dual de-

scription? If yes, what is the precise mechanism? These are interesting ques-

tions, whose answers will help us gain a better understanding of Fermi-Bose

duality. Furthermore, we would like to understand the solutions of the non-

abelian equations of motion that we derived at the end of Chapter (3) and their

role in the duality.

In conclusion, I would like to say that the last few years’ contributions of

high energy physics to the theory of condensed matter have been very excit-

ing. I think that it is fascinating that ideas, models and theories that have

arisen from the study of particle collisions, string theory and quantum grav-

ity are now finding their place on the other extreme of the energy spectrum,

in the world of ultracold physics. I am happy to have had the opportunity to

contribute my infinitesimal share to this vast endeavour.

132



Appendix A

Determinant of fluctuation matrix
for SU (2)

The determinant for the physical fluctuations is given in terms of frequency ω

and momentum p as,

ω8 + µ2
BC3ω

6 + µ4
BC2ω

4 + µ6
BC1ω

2 + µ8
BC0 = 0 . (A.1)
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A. DETERMINANT OF FLUCTUATION MATRIX FOR SU (2)

Assuming k > 0,µB > 0 the coefficients {Ci} are (for general choice of signs, it is

understood that k and µB will be replaced by their absolute values below):

C0 =
(

p2

µ2
B

)4

+
(

p2

µ2
B

)3 (
m2

µ2
B

− 1 +
6g4v

2

µ2
B

+
17π2v4

k2µ2
B

− 12πv2

kµB

)
+

(
p2

µ2
B

)2

×

×
(

16π2m2v4

k2µ4
B

− 12πm2v2

kµ3
B

+
96π2g4v

6

k2µ4
B

−
72πg4v

4

kµ3
B

+
16π4v8

k4µ4
B

− 12π3v6

k3µ3
B

− 16π2v4

k2µ2
B

+
12πv2

kµB

)
+

(
p2

µ2
B

)(
−

384π3g4v
8

k3µ5
B

+
384π2g4v

6

k2µ4
B

+
960π5v10

k5µ5
B

− 1728π4v8

k4µ4
B

−64π3m2v6

k3µ5
B

+
832π3v6

k3µ3
B

+
64π2m2v4

k2µ4
B

− 64π2v4

k2µ2
B

)
(A.2)

C1 = −4
(

p2

µ2
B

)3

+
(

p2

µ2
B

)2 (
−5− 3m2

µ2
B

−
18g4v

2

µ2
B

− 51π2v4

k2µ2
B

+
28πv2

kµB

)
+

+
(

p2

µ2
B

)(
4− 4

m2

µ2
B

− 24
g4v

2

µ2
B

−
192π2g4v

6

k2µ4
B

+
72πg4v

4

kµ3
B

− 32π4v8

k4µ4
B

+
76π3v6

k3µ3
B

− 32π2m2v4

k2µ4
B

− 84π2v4

k2µ2
B

+
12πm2v2

kµ3
B

− 28πv2

kµB

)
−

384π2g4v
6

k2µ4
B

−64π4v8

k4µ4
B

+
256π3v6

k3µ3
B

− 64π2m2v4

k2µ4
B

− 192π2v4

k2µ2
B

C2 = 6
(

p2

µ2
B

)2

+
(

p2

µ2
B

)(
18g4v

2

µ2
B

+
51π2v4

k2µ2
B

− 20πv2

kµB
+

3m2

µ2
B

+ 13
)

+
96π2g4v

6

k2µ4
B

+
24g4v

2

µ2
B

+
16π4v8

k4µ4
B

− 64π3v6

k3µ3
B

+
16π2m2v4

k2µ4
B

+
116π2v4

k2µ2
B

− 16πv2

kµB
+

4m2

µ2
B

+ 12

C3 = −4
(

p2

µ2
B

)
−

6gBv2

µ2
B

− 17π2v4

k2µ2
B

+
4πv2

kµB
− m

2

µ2
B

− 7
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