
Pruning CNN Filters via Quantifying the
Importance of Deep Visual Representations

Ali Alqahtani1,2, Xianghua Xie1, Mark W Jones1, and Ehab Essa1,3

1 Department of Computer Science, Swansea University, Swansea, UK
2 Department of Computer Science, King Khalid University, Abha, Saudi Arabia

3 Department of Computer Science, Mansoura University, Mansoura, Egypt

Abstract. The achievement of convolutional neural networks (CNNs)
in a variety of applications is accompanied by a dramatic increase in
computational costs and memory requirements. In this paper, we pro-
pose a novel framework to measure the importance of individual hidden
units by computing a measure of relevance to identify the most critical
filters and prune them to compress and accelerate CNNs. Unlike exist-
ing methods, we introduce the use of the activation of feature maps to
detect valuable information and the essential semantic parts to evaluate
the importance of feature maps, inspired by novel neural network inter-
pretability. A majority voting technique based on the degree of alignment
between a semantic concept and individual hidden unit representations is
proposed to quantitatively evaluate the importance of feature maps. We
also propose a simple yet effective method to estimate new convolution
kernels based on the remaining, crucial channels to accomplish effective
CNN compression. Experimental results show the effectiveness of our
filter selection criteria, which outperforms the state-of-the-art baselines.
Furthermore, we evaluate our pruning method on CIFAR-10, CUB-200,
and ImageNet (ILSVRC 2012) datasets. The experimental results show
that the proposed method efficiently achieves a 50% FLOPs reduction
on CIFAR-10, with only 0.86% accuracy drop on the VGG-16 model.
Meanwhile, ResNet pruned on CIFAR-10 achieves a 30% reduction in
FLOPs with only 0.12% and 0.02% drops in accuracy on ResNet-20 and
ResNet-32 respectively. For ResNet-50 on ImageNet, our pruned model
achieves a 50% reduction in FLOPs with only a top-5 accuracy drop of
0.27%, which significantly outperforms state-of-the-art methods.

Keywords: Deep learning · convolutional neural networks · filter pruning ·
model compression

1 Introduction

Convolutional neural networks (CNNs) have attained extraordinary levels of
achievement in numerous recognition tasks, especially in computer vision (i.e.,
object detection ([13]), semantic segmentation, ([43]) and image classification
([25, 48, 17]), thereby becoming an indispensable method used for a variety of

2 Ali Alqahtani et al.

applications. CNNs have been shown to outperform all other techniques in image-
processing tasks ([27]), where convolutional layers extract spatially related fea-
tures, preserving the local structure of image data. The feature extractor benefits
from its ability to discover, learn and perform automatic representation learning
by transforming raw data into a more abstract representation. Their hierarchical
representation allows models to learn features at multiple levels of abstraction,
meaning complicated concepts can be learned from simpler ones. Units in the
earlier layers of a network learn low-level features while units in later layers learn
more complex concepts ([59]).

Due to greater quantities of data and advanced computing power, CNNs have
turned into wider and deeper architectures, driving state-of-the-art performances
in a wide range of applications. Despite their great success, however, CNNs have
an enormous number of parameters, and their significant redundancy in parame-
terization has become a widely-recognized property ([9]). The over-parametrized
and redundant nature of CNNs incur expensive computational costs and high
storage requirements. To classify a single image, the VGG-16 model ([48]), for
instance, requires more than 30 billion floating-point operations (FLOPs), and
contains about 138 million parameters with more than 500 MB of storage space.
This presents significant challenges and restricts many CNN applications. For ex-
ample, deploying sizeable deep learning models to a resource-limited device leads
to various constraints, as on-device memory is limited ([55]). Therefore, the ne-
cessity of reducing high computation costs and storage requirements becomes
critical to allow CNNs greater applicability in a broader range of applications
(e.g. mobile devices, autonomous agents, and embedded systems). Reducing the
complexity of models while maintaining their powerful performance is always
desirable. Recognizing the importance of networks units can help reduce model
complexity by discarding less essential units.

Network pruning focuses on discarding unnecessary parts of neural networks,
which reduces the massive computational costs and memory requirements as-
sociated with deep models. Pruning approaches can be applied to any part of
deep neural networks, including fully connected layers ([28, 16, 15, 18, 39, 56]) and
convolutional layers ([29, 56, 33, 41, 36, 21]). The idea of pruning has been stud-
ied since the early 1990s. Optimal Brain Damage (OBD) by [28] and Optimal
Brain Surgeon (OBS) by [16] are considered pioneering works in network prun-
ing, demonstrating that unnecessary weights can be eliminated from a trained
network with little accuracy loss. Due to expensive computation costs, these
methods are not applicable to today’s deep models. Obtaining a subnetwork
with far fewer parameters without compromising accuracy is the main goal of
pruning algorithms. As the pruned version, a subset of the whole model, can
represent the reference model at a smaller size or with fewer parameters. Thus,
overparameterized networks can be efficiently compressed while maintaining the
property of better generalization ([2]).

Recently, [15] introduced a simple pruning method to remove connections
based on a predefined threshold. Han’s framework relies on an iterative pruning
procedure to obtain a sparse model. Nonetheless, such an unstructured sparse

Pruning CNN Filters via Quantifying 3

model requires a particular software/hardware accelerator which is not sup-
ported by off-the-shelf libraries. Moreover, the reliance on a predefined thresh-
old is less practical and proves too inflexible for some applications. The random
connectivity of non-structured sparse models can also cause poor cache locality
and jumping memory access, which significantly limits the practical accelera-
tion ([53]). In an attempt to confront these challenges, we consider filter-level
pruning in our proposed method, whereby removing the unimportant filter in its
entirety does not change the network structure so the method can be used with
any off-the-shelf deep learning library, allowing for more compression and accel-
eration by other pruning techniques, such as the parameter quantization method
([55]). This procedure can also effectively reduce the memory requirements, as
model compression focuses on reducing not only model parameters but also the
intermediate activation; this has received little attention in previous works.

Most existing methods tend to focus on applying simple pruning techniques
(e.g. statistical approaches) to compress networks rather than on discovering in-
formative units for effective pruning. The fact that not all filters deliver essential
information for the final prediction of the model motivates us to fundamentally
rely on quantifying the importance of latent representations of CNNs by evalu-
ating the matching/alignment between semantic concepts and individual hidden
units to score the semantics of hidden feature maps at each convolutional layer.
Our core aim is to evaluate neuron importance, which provides meaningful in-
sight into the characteristics of the internal representations of neural networks.
For the purpose of providing a clear understanding of the internal operation and
work mechanisms of deep networks, several approaches have been developed to
visually understand convolutional layers ([59, 38, 47]), interpret deep visual rep-
resentations and quantify their interpretability ([4, 5]), as well as measure the
influence of hidden units on the final prediction ([10, 42, 3]). The main focus of
these methods is to understand the predictions of a model by analyzing the in-
dividual units and seeking an explanation for specific activation. Although these
methods provide an intuitive process to determine criteria for neuron selection
for effective pruning, most of the previously mentioned methods focus on gaining
a better understanding of the network’s behavior, with limited attention being
paid to pruning methods.

In this paper, we propose a novel framework to compute a measure of rel-
evance, identify the most critical filters and prune the unimportant filters to
compress and accelerate CNNs, with only a small drop in model accuracy. Our
proposed framework focuses on filter-level pruning based on evaluating the de-
gree of alignment between a semantic concept and individual hidden unit rep-
resentations. Quantifying the interpretability of deep visual representations of
CNNs ([4]) determines the function of individual CNN’s filters to deliver essential
information, where a filter’s feature map is more critical to the network when
it represents more information. This fact reflects the contribution of input to
deliver essential information for the final prediction of the model. Localization
maps help identify the critical regions in the image to predict the concept used to
explain individual network decisions ([46, 63, 61]). Motivated by this, we propose

4 Ali Alqahtani et al.

our pruning framework, where we evaluate the degree of alignment between a se-
mantic concept and individual hidden unit representations. We introduce feature
maps to detect valuable information and the essential semantic parts, which are
fundamental factors in evaluating the importance of feature maps and determin-
ing individual CNN filters’ function to deliver essential information with solid
discriminative power for the model. We visually demonstrate that non-pruned
channels are related to the concept of an object, closely matching the semantic
segmentation of an object, while selected channels to be pruned are less informa-
tive and not correlated to the region of an object class across different images,
which provide a convincing analysis of the motivation. Our work is considered
a pioneering one that attempts to use the quantification of interpretability for
more robust and effective CNN’s pruning.

We propose a more accurate importance measure, a majority voting tech-
nique, to compare the degree of alignment values among filters and assign a
voting score to evaluate their importance quantitatively. This mechanism helps
to effectively reduce model complexity by eliminating the less influential fil-
ters and aims to determine a subset of the whole model that can represent the
reference model with much fewer parameters. One significant advantage of filter-
level pruning is that it does not lead to model structure damage; therefore, other
pruning methods can be efficiently adopted for further compression.

To minimize the damage of the pruning procedure, we propose a simple yet
effective method to estimate new convolution kernels based on the remaining,
crucial channels. Our fundamental insight is that we introduce an optimization
problem based on which the kernels can be estimated depending on the remaining
feature maps inputs and the output of the pruned filter. This novel finding
differentiates our kernels estimation method from a fine-tuning procedure, which
is the most common technique applied by most of the existing methods to recover
damaged accuracy.

In order to gather conclusive evidence to evaluate the effectiveness of our
method, an experiment based on ablation analysis in trained models was carried
out. By comparing our importance method with several state-of-the-art methods,
we demonstrate that our approach substantially outperforms others in terms of
filters’ effective measurement, notably with larger compression ratios. We evalu-
ate our pruning method on CIFAR-10, CUB-200, and ImageNet (ILSVRC 2012)
datasets and two types of network architecture: plain CNN (VGG-16 ([48]))
and residual CNN (ResNet-20/32/50 ([17])). The experimental results show that
the proposed method efficiently achieves 50% FLOPs reduction on the VGG-16
model, with only 0.86% accuracy drop. Although ResNet is more compact and
has less redundancy than VGG models, it can still reduce 30% FLOPs, with
0.12% and 0.02% accuracy drop on ResNet-20 and ResNet-32 respectively. For
ResNet-50 on ImageNet, our proposed model is capable of reducing 30% FLOPs
with only a 0.24% reduction in the original model’s top-1 error and a 0.03%
reduction in the top-5 error.

The rest of this paper is organized as follows. In section 2, we present related
works, while we describe our proposed methodology in section 3. In section 4,

Pruning CNN Filters via Quantifying 5

we present our experimental results. Finally, concluding remarks are provided in
section 5.

2 Related Work

Pruning approaches have received considerable attention as a way to tackle over-
parameterization and redundancy. Consequently, overparameterized networks
can be efficiently compressed and allow for the acquisition of a small subset
of the whole model, representing the reference model with far fewer parameters
([8]). Pruning networks’ redundancy always requires a more careful approach.
There is no standard guidance for choosing the best network architecture; a
model may need a certain level of redundancy during model training to guaran-
tee excellent performance. There is therefore great necessity to decrease model
size after its training ([36]).

Several methods have been proposed to prune non-informative parts from
heavy, over-parameterized deep models while preserving reference model accu-
racy. [15] introduced a method to prune unimportant connections whose absolute
values are smaller than a predefined threshold value. The threshold is calculated
using the standard deviation of a layer’s weights. The network is, thereafter, re-
trained to recover the dropped accuracy. However, a non-structured sparse model
requires a particular software/hardware accelerator where additional sparse ma-
trix operation libraries are adopted. Moreover, the reliance on a predefined
threshold is less practical and proves too inflexible for many applications. Fur-
thermore, [40] replaced the fully-connected layers with sparsely-connected layers
by applying initial topology based on the Erdős–Rényi random graph. During
training, fractions of the smallest weights are iteratively removed and replaced
with the new random weights. Applying initial topology allows for the finding of
a sparse architecture before training; however, this requires expensive training
steps and obviously benefits from iterative random initialization. Random con-
nectivity causes cache and memory access issues so the acceleration of even high
sparsity models is very limited.

To overcome the weaknesses associated with the random connectivity of un-
structured pruning, some strategies corresponding to group-wise sparsity-based
network pruning were explored. [53] proposed the Structured Sparsity Learn-
ing (SSL) method, which imposes group-wise sparsity regularization on CNNs,
applying the sparsity at different levels of their structure (filters, channels, and
layers) to construct compressed networks. [26] also employed group-wise sparsity
regularization, which has the effect of shrinking individual weights towards zero,
meaning that they can be effectively ignored. [62] incorporated sparsity con-
straints on network weights during the training stage, aiming to build pruned
DNNs. Although this proved successful in such sparse solutions, it results in the
damage of the original network structure. The need therefore remains to adopt
special libraries or use particular sparse matrix multiplication to accelerate the
inference speed in real applications.

6 Ali Alqahtani et al.

Compressing a network via a training process may present effective solutions.
[12] presented an optimization method that enforces correlation among filters to
converge at the same values to create identical filters, the redundant of which are
safely eliminated during training. [19] proposed a filter pruning method which
prunes convolutional filters in the training phase. After each training epoch,
the method measures the importance of filters based on L2 norm, and the least
essential filters are set to zero. [20] later iteratively measured the importance
of the filter by calculating the distance between the convolution kernel and the
origin or the geometric mean based on which redundant kernels are identified and
pruned during training. [35] trained an auxiliary network to predict the weights
of the pruned networks and estimate the performance of the remaining filters.
[58] applied a training objective to compress the model as a task of learning
a scaling factor associated with each filter and estimating its importance by
evaluating the change in the loss function. AutoPruner ([37]) embedded the
pruning phase into an end-to-end trainable framework. After each activation, an
extra layer is added to estimate a similar scaling effect of activation, which is
then binarized for pruning. [51] also used a training phase to learn scaling factors
to help discover redundancy, where filters are pruned based on the learnable
scaling factors. Furthermore, [51] used a training phase to learn scaling factors
to help discover redundancy, where filters are pruned based on the learnable
scaling factors’ values. A significant drawback of iteratively optimized pruning
is the extensive computational cost, as modern GPUs do not benefit from sparse
convolutions. Pruning procedures based on iterative training often change the
optimization function and even introduce hyper-parameters, making the training
more challenging.

As in our work, filter-level pruning approaches have been widely studied in
the community ([21, 29, 21, 41, 33, 36, 30]). The aim of these strategies is to eval-
uate the importance of intermediate units, where pruning is conducted according
to the lowest scores. [21] evaluated the importance of filters based on the Av-
erage Percentage of Zero activations (APoZ) in their output feature maps. [29]
put forward a pruning method based on the absolute weighted sum, where prun-
ing is carried out according to the lowest scores. [33] also proposed a pruning
method based on the mean gradient of feature maps in each layer, which reflects
the importance of features extracted by convolutional kernels. Furthermore, [36]
proposed the ThiNet method, which applies a greedy strategy for channel se-
lection, pruning the target layer by greedily selecting the input channel that
has the least increase in reconstruction error. The least-squares approach is ap-
plied to indicate a subset of input channels which have the smallest impact to
approximate the output feature map. [30] recently introduced a filter pruning
method based on the rank of feature maps, where the low-rank feature maps
contain less information and can be safely pruned. [57] also computed nuclear-
norm derived from singular values decomposition to quantify the importance of
each filter. These methods tend to compress networks by adopting straightfor-
ward selection criteria based on statistical information. However, dealing with
an individual CNN filter requires an intuitive process to determine selective and

Pruning CNN Filters via Quantifying 7

semantically meaningful criteria for filter selection, where each convolution fil-
ter responds to a specific high-level concept associated with different semantic
parts. Most relevant to our current work is a CNN pruning method inspired
by neural network interpretability. [56] proposed such a method based on layer-
wise relevance propagation (LRP) by [3], where weights or filters are pruned
based on their relevance score, combining the two disconnected research lines of
interpretability and model compression.

Some works have utilized low-rank approximations for model compression
and acceleration to achieve further speedup and obtain small CNN models ([49,
31, 54, 11]). Although such approaches are computationally expensive and cannot
perform global parameter compression ([6]), they can be integrated with our
proposed method to obtain more compressed networks for further improvement.

Fig. 1: The overall pipeline of our proposed framework. A pre-trained CNN
model is pruned layer-by-layer through iteratively applying our proposed chan-
nels selection criteria, majority voting, and kernels estimation, followed by fur-
ther final fine-tuning to recover the dropped accuracy.

3 Proposed Method

The paper mainly studies a filter-level pruning method to reduce model com-
plexity and obtain a small subset of the whole model that can represent the
reference model without performance degradation. In this section, our overall
pruning framework is presented; our proposed method consists of three major
parts, the first two being scoring channel importance via quantifying the im-
portance of individual hidden representations section 3.2 and assigning their
voting scores section 3.3, on which we quantitatively evaluate the importance
of filters in a specific layer, eliminating the less influential filters accordingly.
Then, we introduce a kernels estimation method in section 3.4.

3.1 Overview of our Pruning Methodology

Our method prunes a pre-trained model layer-by-layer with a predefined com-
pression rate. Given a pre-trained CNN model, we proposed a novel method to

8 Ali Alqahtani et al.

compute a measure of relevance that identifies the most critical units. Based on
this, the less informative channels are pruned. Then, new convolution kernels are
estimated based on the surviving channels, and a final fine-tune for the whole
network is carried out. As we mainly concentrate on filter-level pruning, the
pruned version of our model can be further pruned into an even smaller model
by adopting other methods. The overall pipeline of our method is presented in
Fig. 1. Here, the proposed method consists of four iterative steps as follows:

1. Channels Selection Criteria. In contrast to previous methods which benefit
from the statistical information of layer i to lead the pruning of filters in the
same layer, we benefit from the output feature maps of the previous layer
i − 1 to prune filters in the existing layer i. Based on the proposed novel
method to score channels’ importance, we aim to carefully select a set of
channels in layer i − 1 that are the most influential in the output feature
map of layer i, as shown in Fig. 2.

2. Pruning. Unimportant channels and their corresponding filters in layer i are
pruned, keeping the structure of the original network the same. This means
that our pruning method assumes that only fewer informative filters and
channels can approximate an output feature map of layer i. This procedure
allows for unimportant filters to be neglected without harming the structure
of the original network.

3. Kernels Estimation. To minimize damage from the pruning procedure, we
introduce a method to estimate new convolution kernels based on part of
the remaining, unpruned channels. The target number of filters is obtained
by computing a partial convolution, which means that we only utilize the
remaining channels of the output feature maps of layer i − 1 to estimate
optimal kernels that approximate the output feature map of layer i.

4. We iterate to the first step to prune the next layer.
5. To achieve a more accurate model, further final fine-tuning is carried out

once all layers have been pruned.

3.2 Scoring Channel Importance Method

Our aim was to identify the most influential channels on CNNs based on which
the crucial filters are detected. Measuring the importance of every individual con-
volutional channel allows for the determination of a subset of the channels whose
patterns are the most substantial. Inspired by neural network interpretability,
we propose a novel pruning framework based on evaluating the degree of align-
ment between a semantic concept and individual hidden unit representations.
Network Dissection ([4]) was originally developed to quantify the interpretabil-
ity of latent representations of CNNs that reflect the contribution of an input to
deliver essential information for the final prediction of the model.

Every input image x is fed through a pre-trained model by applying forward
passing through an optimized model to find the output of each feature map.
Each layer has kernels that are convolved on an input example n or a feature

Pruning CNN Filters via Quantifying 9

Fig. 2: Our pruning method. The initial state of a CNN feature map in a fully
trained model. Green dotted boxes in the diagram indicate important channels.
We identify several unimportant channels and their corresponding filters (the
red dotted boxes), which contribute very little to the overall performance. These
filters can be safely pruned, leading to a pruned model.

map of the internal layers, x, to produce an output corresponding to the n-th
example. The activation at j-th feature map is then computed, where the output
of the j-th unit in the i-th layer of CNN is defined as:

t
(i)
j x(n) = σ

(
b
(i)
j +

∑
p

w(i)
p ∗ t(i−1)

p x(n)

)
, (1)

where x(n) denotes the n-th data example at the input, σ is the activation

function (e.g. sigmoid, ReLU), b
(i)
j denoting the corresponding bias for the j-th

unit in the i-th layer, w
(i−1)
p is the weights of the p-th kernel in the i-th layer

(existing layer), t
(i−1)
p x(n) is the output feature maps of the previous layer i− 1

and ∗ denotes the 2D convolution operation.

To measure a channel’s importance, the latent representation of every indi-
vidual feature map is evaluated as a solution to a binary segmentation task of
the visual concept in the input space. Determining the function of individual
filters in a CNN and their ability to localize the meaningful semantic part aid to
efficiently measure the importance of different feature maps, which is useful for

effective pruning. After this the activation matrix t
(i)
j x(n) is calculated by Eq.(1),

and the feature map of each internal convolutional channel j is obtained. Then,
the distributions of individual feature maps j are computed, and it is based on
this that the top quantile value is determined over every spatial location of the
feature map. The top quantile value is used as a threshold of T to produce a
binary matrix for each channel in the latent space. Here, the output feature map

t
(i)
j x(n) is thresholded into a binary segmentation M , where all regions that ex-

ceed the threshold are selected. If a channel in hidden layers has feature maps
that are smaller than the input resolution, they are scaled up to match the input
resolution using bilinear interpolation. The interpolating function assigns each
missing pixel by taking the weighted average of the nearest pixels. We evaluated

10 Ali Alqahtani et al.

the importance of every individual channel Mj(t
(i)
j x(n)) by computing intersec-

tion over union score between their binary segmented versions against semantic
segmentation of the input image I(x(n)). Fig.3 summarizes the method of scoring
channel importance by computing intersection over union (IOU) scores.

IoUj =

∣∣∣Mj(t
(i)
j x(n) > T) ∩ I(x(n))

∣∣∣∣∣∣Mj(t
(i)
j x(n) > T) ∪ I(x(n))

∣∣∣ . (2)

Fig. 3: Scoring Channel Importance Method. The activation matrix t(i)x(n) is
obtained by Eq.(1). The feature map of each internal convolutional channel j is
collected. For each channel j, we determined the top quantile value and used it

as a threshold T to produce a binary matrix for each channel Mj(t
(i)
j x(n) > T).

We evaluated the importance of every individual binary segmentation for each

channel Mj(t
(i)
j x(n) > T) against the semantic input segmentation I(x(n)) by

computing intersection over union scores (this figure is best viewed in color).

3.3 Majority voting (MV) Method

Feeding a set of the data through the network, each example is represented dif-
ferently and has individual activation throughout all channels in the network.
This can be viewed as random variables, and different input images can ob-
tain different IoU scores for different channels. Unlike existing methods that use
statistics, we propose a technique which utilizes a majority voting strategy to

Pruning CNN Filters via Quantifying 11

vote for crucial channels based on their IoU scores. The majority voting tech-
nique compares the IOU scores among all channels and assigns a voting score
to quantitatively evaluate the channels’ importance and gain more confidence
regarding how much each channel contributes to the refined features. Our pro-
posed method aims to compute a measure of relevance that identifies the most
critical channels, where it only votes for a channel when all the instances agree,
which is what majority voting refers to. After obtaining the IoU scores for each
channel j, which correspond to an input example n, by Eq.(2), our method votes
for l values with the highest IoU scores; this is defined as:

υ
(i)
j x(n) =

{
1 if argsort(IoU)[1 : l]
0 Otherwise

. (3)

As a result, a binary matrix is obtained with J ∗N dimension in the i-th layer,
where J is the number of channels and N the number of input examples. The
obtained matrix determines how important a channel is for a given example,
where 1 indicates the most influential and 0 indicates otherwise. Then, we sum
over columns (examples) to score the number of times that the j-th channel is
one of the top channels for given examples, voting for the crucial channels. This
is given by the following form:

y
(i)
j =

N∑
n=1

υ
(i)
j x(n). (4)

ψ
(i)
j = y

(i)
j =

{
1 if argsort (y

(i)
j)[1 : k ∗ J]

0 Otherwise
, (5)

where k is the compression rate, and J are the channels. We set a k percentage
of the J channels, which have the largest voting scores, to 1 and the remaining
to 0. Here, k denotes the percentage of the largest index of y. For every layer, we
determine a binary vector that indicates whether such channels are important
or not, where 1 denotes that the channel is important and 0 denotes otherwise.
The procedure of our majority voting (MV) method is summarized in Fig. 4.

3.4 Kernels Estimation Method

A binary vector by Eq.5 indicates k percent of the essential channels for every
layer, based on which the non-important channels are pruned. Here, a certain
number of channels with the lowest voting scores are pruned. This mechanism
helps effectively reduce model complexity by eliminating the less influential chan-
nels and aims to obtain a subset of the whole model that can represent the refer-
ence model with much fewer parameters, whilst preserving the reference model
accuracy.

Since there is no guarantee of preserving accuracy throughout the compres-
sion phase, a final fine-tuning or iterative layer-wise fine-tuning are the only
techniques applied by most of the existing methods to recover damaged accu-
racy. A simple compression approach benefits from such valuable steps, especially

12 Ali Alqahtani et al.

Fig. 4: Majority voting (MV) method. After obtaining IoU scores for each chan-
nel (Fig.3), we collect the IoU for each channel j and each input example n (A1).
Our method votes for l percentage of highest IoU scores, and as a result, a bi-
nary matrix is obtained (A2), which determines how important a channel is for a
given example, where 1 indicates the most influential and 0 indicates otherwise.
Then, we sum over columns (examples) to score the number of times that the
j-th channel is one of the top channels for the given examples, voting for the
crucial channels (A3). We set a k percentage of the J channels, which have the
largest voting scores, to 1 and the remaining to 0. Here, k denotes the percentage
of the largest index of y. For every layer, we determine a binary vector which
indicates whether such channels are important or not, where 1 denotes that the
channel is important and 0 denotes otherwise (B) (this figure is best viewed in
color).

when the selection criteria is straightforward and does not adequately measure
the importance, due to the adoption of less efficient measurement standards.

To minimize the damage of the pruning procedure, we propose a simple yet
effective method to estimate new convolution kernels based on the remaining
unpruned channels. The new kernels can be estimated with only a small number
of examples without further training, which is significantly faster to implement.
This procedure does not require a multi-step process, in contrast to the fine-
tuning procedure (e.g, building a new model, reloading the parameters of the
pruned model, and freezing/unfreezing some of the layers), allowing for a fast
and efficient process.

Here, we introduce a method to estimate a new convolution kernel based on
the remaining, crucial feature map. The new convolution kernel is computed by
partial convolution, which means that we will not convolve through all channel
in the input feature map, as a subset of channels is pruned already. The target
number of filters is obtained by utilizing the remaining channels of the output
feature maps of the previous layer to estimate optimal kernels that approximate
the output feature map of the existing layer. Therefore, we can prune the filter
channels while minimizing the pruning effect.

Using the output feature maps of the previous layer and the convolved version
of it, which is the output feature maps of the existing layer, we are able to cal-

Pruning CNN Filters via Quantifying 13

Fig. 5: Different settings to determine the top quantile level T in Eq.(2) at
different layers of VGG16 on CIFAR-10.

culate the convolution kernel. This problem is considered a simple optimization
problem in the spatial domain. Given an objective function as follows:

1

2
‖ h ∗ x− y ‖2, (6)

where h is the 2D convolution kernel, y is the convolution output feature maps,
x is a given output feature maps of the previous layer and ∗ forms the 2D
convolution operation. The gradient with respect to the convolution kernel h
would be:

d 1
2 ‖ h ∗ x− y ‖

2

dh
=

1

N

n∑
i=1

x⊗ (x ∗ h− y), (7)

where N denotes the number of samples used in our estimation method, ⊗
denotes the correlation operation and ∗ denotes the convolution operation.

14 Ali Alqahtani et al.

Algorithm 1 Channel pruning algorithm based on quantifying the importance
of deep visual representations.

Input: a pre-trained Model, training set (x, y), and compression rate r.
Output: a pruned model.
for each layer do

collect the receptive field of each feature map, Eq.(1).
compute the IOU score for each filter, Eq.(2).
vote for top lOU scores, Eq.(3).
compute how many times a filter has been voted, Eq.(4).
vote for k% of largest voting-score neurons, Eq.(5).
prune the non-important filters.
estimate new convolution kernels based on part of the remaining, unpruned chan-
nels, section. 3.4.

end
final fine-tuning of the pruned model

4 Experiments

In this section, we empirically study the performance of our proposed method.
Pruning channels with efficient selection criteria along with the majority vot-
ing technique indicates that channels with larger voting scores are more im-
portant in network performance. We first apply the proposed method to prune
two types of network architecture: plain networks (VGG-16 ([48])) and residual
networks (ResNet-20/32/50 ([17])) on three different datasets: The CIFAR-10
dataset ([24]), Caltech-UCSD Birds (CUB-200) dataset ([52]), and ImageNet
(ILSVRC 2012) dataset ([45]).The experimental results show that our method
adds substantial compression and further reduces model complexity, with little
reduction in model accuracy. In this section, we also compare our selection cri-
teria for filter-level pruning with several baselines, and evaluate the change in
loss caused by removing a set of filters. The experimental results show that our
method substantially outperforms all other baselines. Finally, we empirically ver-
ify the validity of our kernels estimation (KE) method and compare it with the
standard fine-tuning (FT) procedure. The proposed method was implemented
using Keras ([7]) and Tensorflow ([1]) in Python.

Experimental Datasets

We evaluated our filter-level pruning method on three different datasets.

– CIFAR-10 ([24]) : is an image dataset which consists of 60,000 images. Each
example is a 32 x 32 color image, and is associated with a label from 1 of 10
different classes. Each class contains 6,000 images. The CIFAR-10 consists
of 50,000 examples as a training set and 10,000 examples as a test set.

– CUB-200 ([52]) : is a bird subcategories image dataset which contains 200
species of birds; 11,788 images are associated with a label from 1 of 200

Pruning CNN Filters via Quantifying 15

classes, where each class has roughly 30 training images and 30 testing im-
ages. The CUB-200 contains 5,994 examples as a training set and 5,794
examples as a test set.

– ImageNet (ILSVRC 2012) ([45]) : is a large-scale dataset which consists
of over 14 million labelled images. Each example is associated with a label
from 1 of 1,000 different classes. The ImageNet consists of 1.28 million images
as a training set and 50,000 images as validation images.

For CUB-200 and ImageNet, each image is resized to 256 × 256, then a
224× 224 area is randomly cropped from each resized image. The classification
performance is reported on the test set for both CIFAR-10 and CUB-200 datasets
and on the standard validation set for the ImageNet dataset.

Fig. 6: Different images of the ImageNet and their segmentation results.

Inputs and Feature Maps Binary Segmentation

To collect instances for channel selection, we randomly selected ten images from
each class in the training set to form our evaluation set. These selected samples
were used to find the optimal channel subset via Algorithm 1. For semantic seg-
mentation, we used the PSPnet model by [60] to segment the input images of
CIFAR-10. For CUB-200, the segmentation masks were provided by Ryan Far-
rell4. We also used the segmentation masks provided by [14] for the ImageNet
dataset. Fig. 6 illustrates different images of the ImageNet and their segmenta-
tion results. The proposed method evaluates every individual convolutional unit
in a CNN as a solution to a binary segmentation task of the visual concept in
the input space (Fig. 3). Feeding the selected instances through the network,

4 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

16 Ali Alqahtani et al.

each example has an individual activation throughout all feature maps in the
network. Each collected feature map is converted into a binary matrix using the
top quantile value as a threshold T . An experiment based on different settings to
determine the top quantile level T in Eq.(2) was carried out in order to gather
conclusive evidence to carefully choose the top quantile value when producing
a binary matrix for each channel in the given feature map. The comparative
results are shown in Fig. 5. As a result, the top quantile value is determined

such that Mj(t
(i)
j x(n) > T) = 0.8 over every spatial location of the feature map.

Therefore, the output feature maps of the previous layer i − 1 are segmented
into binary segmentation.

Implementation Details

To measure channels’ importance, the feature maps’ binary segmentation are
evaluated against the semantic input segmentation by computing intersection
over union (IoU) score. Given IoU scores for each channel, our results show
that each example has different IoU scores, as each is represented differently
and has individual activation throughout all channels in the network. Therefore,
by using a set of data samples to find the optimal channel subset, the judgment
of the selection criteria becomes more accurate. Empirical evidence comes from
a comparison between a range of hyper-parameter settings of the l values in
Eq.(3). Fig. 7 presents valuable evidence for choosing 0.2 as an appropriate value
for the parameter l. The sensitivity of pruning channels for VGG-16 on CIFAR-
10 was examined with minimum MV values, summed IoU scores, and maximum
MV values. Fig. 8 shows the comparison of different IoU measured criteria and
a reduction in the accuracy of different convolution layers, differentiating all
three methods. Our proposed method (MV) votes for the highest IoU scores,
compares these scores among all examples, and assigns a voting score to compute
a measure of relevance that identifies the most critical channels. It only votes
for a channel when all instances agree. Fig. 8a shows how the minimum voting
scores indicate the most crucial channels. Pruning by smallest voting scores
yields better performance than pruning by largest voting scores. As shown in
Fig. 8c, pruning channels with the maximum MV values cause the accuracy
to drop quickly as the pruning compression rate increases. However, from the
comparison between pruning with minimum voting scores and the minimum IoU
scores summed values, we can see that the accuracy of a pruned network with
minimum MV scores adequately evaluates channel importance and demonstrates
the best performance.

In each convolutional layer, the filters’ channels with the smallest voting
scores are pruned; consequently, filters and their corresponding channels on a
batch normalization layer are also eliminated. After pruning the unimportant
filters, we were able to minimize the pruning impact by applying our kernel
estimation method. When unimportant filters are discarded, a new model with
thinner filters is created. The weights of the modified layers, as well as the
non-pruned layers, were transferred to the new model. After pruning all layers,
a final fine-tuning for the whole pruned model was performed to recover the

Pruning CNN Filters via Quantifying 17

Fig. 7: Different settings to determine the optimal l value in Eq.(3) at different
layers of VGG16 on CIFAR-10.

(a) Minimum MV values
(b) Minimum Summed
IOU scores

(c) Maximum MV values

Fig. 8: Comparison of IoU pruning selection criteria. (a) and (c) compare our
MV of IoU pruning selection criteria when pruning the lowest and highest MV
scores. (b) Pruning filters based on assuming IoU scores.

overall dropped accuracy. During fine-tuning, the stochastic gradient descent
optimizer was used, where each batch contained 32 randomly shuffled images.
A data augmentation technique was applied using simple transformations such
as flipping images horizontally. The entire network was pruned layer-by-layer.
For both CIFAR-10 and CUB-200 datasets, we fine-tuned the pruned models
for 40 epochs with a constant learning rate of 10−3 with a momentum of 0.9; a
weight decay of 0.0005 was used. This was performed at the last round. For the
ImageNet dataset, images were resized to 256 × 256, after which we randomly
cropped them to 224 × 224. The pruned models were fine-tuned for only 20
epochs to reduce training time, where the learning rate changes from 10−3 to
10−5. Other parameters were kept the same.

18 Ali Alqahtani et al.

Compression Ratio

Deciding the number of filters which must be pruned from each layer as well as
the best pruning ratios for different layers is a challenging task ([36]). It is also
challenging to determine layer importance due to the fact that the performance
of a CNN model is susceptible to specific layers and different layers have varying
degrees of filter-level redundancy. Thus, we applied a fixed compression ratio to
all layers in the pruned model for simplicity. In our experiment, we applied three
different compression ratios: pruned-70, pruned-50, and pruned-30, where 70%,
50%, 30% of filters are preserved in each convolutional layer respectively. Reduc-
ing the complexity of models with larger compression ratios while maintaining
their powerful performance is always desirable, as the inference speed is essential
for some real-world applications. For example, the model used for self-driving
vehicles must return fast predictions for safety purposes. Thus, the FLOPs of
this kind of model should be reduced to fulfil the standard requirements.

4.1 VGG16 on CIFAR-10

In this section, we evaluated the performance of the proposed method on the
most popular deep convolutional network: VGG-16 ([48]), a CNN architecture
for large-scale image recognition proposed by Simonyan et al., initially designed
for the ImageNet dataset. VGG-16 was modified by [34] to fit the CIFAR-10
dataset, achieving state-of-the-art results. VGG16 on CIFAR-10 consists of thir-
teen convolutional layers with a filter size of 3×3 with a stride of 1, and a pooling
region of 2 × 2 without overlap. This is followed by two fully-connected layers,
with the last layer consisting of 10 neurons. Due to the smaller input size, the
dimensions of the fully-connected layers are shrunk, significantly reducing the
number of parameters. Here, we adopted the model described in ([34]), adding
a batch normalization layer ([22]) as well as a dropout layer ([50]) after each
convolutional layer. The detailed architecture of the CNN model is presented in
Table 1.

Table 2 shows the results of the pruned models for VGG-16 on CIFAR-10,
VGG16-pruned-70, VGG16-pruned-50, and VGG16-pruned-30, in which 70%,
50%, and 30% of filters are preserved respectively in each convolutional layer.
This also means that we assigned constant compression ratios of 30%, 50%, and
70%, respectively, for all layers. Fig. 14a shows that the convolutional layers with
512 feature maps have less impact on the dropping of model accuracy, as they
can be pruned up to 70% without reducing the original accuracy. One definite
explanation is that small dimensions of feature maps do not indicate meaningful
spatial features for these convolutional layers. Our kernel estimation method can
recover the pruning effect and help us safely prune the majority of the filters
of such layers, see Fig. 14b. We observe that the first few layers have stronger
negative effects and more synergistic filters compared with higher hidden layers
due to hierarchically learned representations of deep networks. Therefore, an
effective pruning method, as well as the reduction of FLOPs, mostly relies on
the layer where pruning is applied within the network.

Pruning CNN Filters via Quantifying 19

Table 1: VGG-16 on CIFAR-10 and three different pruned models. The number
of remaining feature maps and the reduced percentage of FLOPs from each
pruned model are shown.

VGG-16 VGG-16-pruned-A VGG-16-pruned-50/B VGG-16-pruned-C ([29])

layer type wi x hi #Maps #FLOP #Params #Maps pruned% #Maps pruned% #Maps pruned%

Conv 2 32*32 64 3.80E+07 3.7E+04 38 40% 32 50% 32 50%
Conv 3 16*16 128 1.90E+07 7.4E+04 102 20% 64 50% 128 0%
Conv 4 16*16 128 3.80E+07 1.5E+05 102 20% 64 50% 128 0%
Conv 5 8*8 256 1.90E+07 2.9E+05 230 10% 128 50% 256 0%
Conv 6 8*8 256 3.80E+07 5.9E+05 205 20% 128 50% 256 0%
Conv 7 8*8 256 3.80E+07 5.9E+05 205 20% 128 50% 256 0%
Conv 8 4*4 512 1.90E+07 1.2E+06 410 20% 256 50% 256 50%
Conv 9 4*4 512 3.80E+07 2.4E+06 256 50% 256 50% 128 75%
Conv 10 4*4 512 3.80E+07 2.4E+06 205 60% 256 50% 128 75%
Conv 11 2*2 512 9.40E+06 2.4E+06 205 60% 256 50% 128 75%
Conv 12 2*2 512 9.40E+06 2.4E+06 205 60% 256 50% 128 75%
Conv 13 2*2 512 9.40E+06 2.4E+06 205 60% 256 50% 128 75%
FC 1 512 2.60E+05 2.6E+05 512 0% 512 0% 512 0%
FC 1 10 5.10E+03 5.1E+03 10 0% 10 0% 10 0%

Total 3.13E+08 1.47E+07 43.04% 50% 53.03%

Table 2: Performance of pruning VGG16 on CIFAR-10 using different pruning
rates. The test accuracy is reported.

Model Error(%) #FLOPs Pruned

VGG-16 ([48]) 6.41 3.13E+08 -
VGG-16-pruned-70 6.18 2.20E+08 30%
VGG-16-pruned-A 6.37 1.37E+08 43.04%
VGG-16-pruned-50/B 7.27 1.57E+08 50%
VGG-16-pruned-C 7.00 1.66E+08 53.03%
VGG-16-pruned-30 9.10 9.42E+07 70%
VGG-16-pruned-A scratch-train 8.57 1.37E+08 43.04%
VGG-16-pruned-50 scratch-train 9.79 1.57E+08 50%

(a) ResNet-20 (b) ResNet-32

Fig. 9: Layer-wise pruning of ResNet-20/32 on CIFAR-10.

This observation motivated us to assign different compression rates to dif-
ferent layers based on our ablation study; thus, if the layer shows more sensi-
tivity to pruning, the compression ratio decreases. The network pruning ratio
is 43.04% and 53.03% for VGG16-pruned-A and VGG16-pruned-C, respectively.

20 Ali Alqahtani et al.

Table 3: Performance of pruning ResNet-20/32 on CIFAR-10 using different
pruning rates. The test accuracy is reported.

Model Error(%) #FLOPs Pruned

ResNet-20 ([17]) 8.75 8.16E+07 -
ResNet-20-pruned-70 8.87 5.71E+07 30%
ResNet-20-pruned-50 10.98 4.08E+07 50%
ResNet-20-pruned-30 14.67 2.45E+07 70%

ResNet-32 ([17]) 7.51 1.38E+08 -
ResNet-32-pruned-70 7.53 9.68E+07 30%
ResNet-32-pruned-50 10.75 6.91E+07 50%
ResNet-32-pruned-30 13.73 4.15E+07 70%

The detail specification of such pruned models is presented in Table 1. Moreover,
for both VGG16-pruned-A and VGG16-pruned-70 pruned models, we achieved
43.04% and 30% FLOP reduction, respectively, with no drop in the original
model accuracy. We also trained a model from scratch with the same archi-
tecture as VGG-16-pruned-A and VGG-16-pruned-50, which allowed us to ob-
tain the baseline accuracies for such networks and differentiate between training
from scratch and pruning. Table 2 shows that VGG-16-pruned-A scratch-train
and VGG-16-pruned-50 scratch-train present considerably worse results than our
pruned models. Thus, a model may need a certain level of redundancy during
model training to guarantee excellent quality performance. Hence, decreasing a
model’s size after training can be an effective solution.

4.2 ResNet-20/ResNet-32 on CIFAR-10

The performance of our pruning method was also evaluated on the famous CNN
architecture ResNet ([17]). The ResNets for CIFAR-10 have three stages of resid-
ual blocks, where 32× 32, 16× 16, and 8× 8 are the sizes of their corresponding
output feature maps. Each stage has an equal number of residual blocks. Iden-
tity shortcuts are directly used when the input and output comprise the same
dimensions. When a feature map’s size is down-sampled, the shortcut performs
by 1 × 1 kernels. This procedure overcomes the issue which occurs when the
shortcuts go across feature maps of two different sizes. As the input and output
feature map sizes of this convolutional layer are different, we skipped those layers
and pruned the remaining layers at each stage.

To investigate the abilities of our proposed method, we chose ResNet-20 and
ResNet-32 to represent the ResNet family, which have the same designs, except
for the number of layers and the depth of the network. In the initial experiment,
we started with a trained Keras implementation with classification errors of
8.75% and 7.51% on the test set for ResNet-20 and ResNet-32, respectively.
Fig. 9 shows the classification accuracy of ResNet-20 (left) and ResNet-32 (right)
after pruning each layer using our proposed method. Unlike VGG-16, ResNet
is more compact, and due to its reduced redundancy, pruning a large number

Pruning CNN Filters via Quantifying 21

of channels appears to be more challenging. It can be seen that some layers
were more sensitive to pruning, such as layers 11 and 22 in ResNet-32 and 14
in ResNet-20. Similar to VGG-16, we found that deeper layers of the ResNet
architecture were less sensitive to pruning than those in the earlier layers of the
network.

Similar to VGG-16, we iteratively pruned ResNet-20/32 from the first block
to the last. In the batch normalization layer, the channels corresponding to the
pruned filters were also pruned. Within pruning iterations, we estimated new
kernels using our proposed method and then applied final fine-tuning with a
fixed learning rate of 10−3, which was performed at the last round. A horizontal
flip was applied for data augmentation. We pruned both models using three
different compression rates, pruned-70, pruned-50, and pruned-30, where 70%,
50%, 30% of filters were preserved respectively in each block. Due to reduced
redundancy and the more compact nature of the ResNet architecture, pruning
a large number of filters is more challenging and affects the overall accuracy.
However, we were able to prune 30% of both models with only 0.12% accuracy
decrease on ResNet-20 and 0.02% accuracy decrease on ResNet-32. The results
are presented in Table 3.

4.3 ResNet-20/ResNet-32 on CUB-200

(a) ResNet-20 (b) ResNet-32

Fig. 10: Layer-wise pruning of ResNet 20/32 on CUB-200.

We also evaluated the performance of the proposed method on the larger
data: the CUB-200 dataset on ResNet architecture. Our focus was to reduce the
number of convolutional channels in each filer and the approximated floating-
point operations (FLOPs). In the first experiment, we began with an ImageNet
pre-trained model to fine-tune the ResNet models, as fine-tuning is a common
approach adopted in many recognition tasks, and the CUB-200 examples are not
large enough to train such models from scratch; it seemed that the models overfit
the training data and had poor generalization performance. In our implementa-
tion, a horizontal flip was applied for data augmentation. The Adam optimizer
([23]) was used, where each batch contains 32 randomly shuffled images. For

22 Ali Alqahtani et al.

Table 4: Performance of pruning ResNet-20/32 on CUB-200 using different
pruning rates. The test accuracy is reported.

Model Error(%) #FLOPs Pruned

ResNet-20 ([17]) 27.67 2.95E + 08 -
ResNet-20-pruned-70 29.69 2.07E + 08 30%
ResNet-20-pruned-50 32.95 1.48E + 08 50%
ResNet-20-pruned-30 39.99 8.86E + 07 70%

ResNet-32 ([17]) 26.68 1.82E + 09 -
ResNet-32-pruned-70 29.08 1.27E + 09 30%
ResNet-32-pruned-50 35.48 9.08E + 08 50%
ResNet-32-pruned-30 41.63 5.45E + 08 70%

our experiment, we started with a learning rate of 0.001, a fixed momentum of
0.9, and a fixed weight decay of 0.0005. The learning rate was scheduled to be
reduced after every 40 epoch.

We used our proposed method to prune unimportant filters of both ResNet-20
and ResNet-32 and convert a large model into a smaller one with a minor drop in
model accuracy. Similar to CIFAR-10, we pruned both ResNet-20 and ResNet-32
models on CUB-200 using three different compression rates, pruned-70, pruned-
50, and pruned-30, where 70%, 50%, 30% of filters are preserved in each block
respectively. The results are shown in Table 4. Due to the small number of
training examples, the accuracy of the pruning model ultimately could not be
improved, and the final fine-tuning attains a limited contribution to completely
recovering the accuracy of the reference model. Another issue is that the ResNet
architecture has little redundancy, so pruning a large number of filters is more
challenging and affects the overall accuracy.

Fig. 10 shows the classification accuracy of both ResNet-20 and ResNet-32
on CUB-200 after pruning each layer using our proposed method. Despite the
compactness and reduced redundancy of ResNet models, our pruning method
was able to compute a measure of relevance that identifies the less critical filters
and prunes them accordingly, as illustrated in Fig. 10. In other words, it can be
observed that our pruning method removes the unimportant part which does not
appreciably contribute much to the final model performance. Fig. 10 also shows
that many layers were minimally affected by the pruning of their unnecessary
parts, especially when using a low compression rate. This also explains why
the overall accuracy was not recovered completely when a small set of training
examples was used for the final fine-tuning.

4.4 ResNet-50/ResNet-101 on ImageNet

To thoroughly validate our proposed method, we also evaluated its performance
on a large-scale dataset: the ImageNet data ([45]) with ResNet-50 and ResNet-
101 ([17]). In the initial experiment, we started with a pre-trained models in

Pruning CNN Filters via Quantifying 23

Table 5: Performance of pruning ResNet-50 on ImageNet using different prun-
ing rates. The classification errors (Top-1/5 Err.) are reported on the standard
validation set, using the single central crop.
Model Top-1 Err.(%) Top-5 Err.(%) #FLOPs Pruned

ResNet-50 ([17]) 25.1 7.9 3.86E+09 -
ResNet-50-pruned-70 25.34 7.93 2.44E+09 30%
ResNet-50-pruned-50 26.41 8.17 1.70E+09 50%
ResNet-50-pruned-30 30.95 10.99 1.10E+09 70%

ResNet-101 ([17]) 23.6 7.2 7.6E+09 -
ResNet-101-pruned-70 25.28 7.25 4.80E+09 30%
ResNet-101-pruned-50 25.91 8.06 3.35E+09 50%

Table 6: Comparison among several state-of-the-art pruning methods on
ResNet-50 and ImageNet. The Acc.↓ (%) denotes the accuracy drop between
the baseline model and the pruned model.
Model Top-1

Acc.↓ (%)
Top-5
Acc.↓ (%)

#Param. #FLOPs Pruned

C-SGD-70 ([12]) 0.06 0.1 16.94E+06 2.44E+09 30%
FPGM ([20]) 0.56 0.24 14.74E+06 2.55E+09 37.5%
SCOP ([51]) 0.20 0.08 13.57E+06 1.85E+09 45.3%
C-SGD-50 ([12]) 0.79 0.47 12.38E+06 1.70E+09 50%
AutoPruner ([37]) 1.39 0.72 12.38E+06 1.70E+09 50%
DCP ([64]) 1.06 0.61 12.38E+06 1.70E+09 50%

ThinNet-70 ([36]) 1.27 0.09 16.94E+06 2.44E+09 30%
HRank ([30]) 1.17 0.54 16.15E+06 2.30E+09 43.7%
ThinNet-50 ([36]) 3.27 1.21 12.38E+06 1.70E+09 50%
SSR-L2 ([32]) 3.65 2.11 12.38E+06 1.70E+09 50%
Weights Sum ([29]) 4.31 2.42 12.38E+06 1.70E+09 50%
APoZ ([21]) 4.25 2.41 12.38E+06 1.70E+09 50%

ResNet-50-pruned-70 0.24 0.03 16.94E+06 2.44E+09 30%
ResNet-50-pruned-50 1.31 0.27 12.38E+06 1.70E+09 50%

Keras Applications5, which achieved classification errors of 25.1% in top-1 error
and 7.9% in top-5 on ResNet-50 and 23.6% in top-1 error and 7.2% in top-5 on
ResNet-101. The classification errors are reported on the standard validation set
using the single central crop. The resized images are center-cropped to 224×224.
To prune the ResNet-50, we followed the setting of ThiNet ([36]), where the
first two layers of each residual block are pruned; this leaves the output block
and the projection shortcuts consistent. The entire network was pruned from
block 2a to 5c iteratively. The corresponding channels in the batch normalization
layer were also pruned. Within pruning iterations, new kernels were estimated
using the proposed method. After pruning, a final fine-tuning was performed

5 https://keras.io/api/applications/

24 Ali Alqahtani et al.

for 20 epochs at the last round. The model was pruned using three different
compression rates, pruned-70, pruned-50, and pruned-30, where 70%, 50%, 30%
of filters were preserved respectively in each targeted block. We were able to
prune 30% of ResNet-50 with a 0.24% reduction in the original model’s top-1
error and with only a 0.03% drop in the top-5 error. Similarly, we iteratively
pruned ResNet-101 from the first block to the last using two compression rates,
pruned-70 and pruned-50, where 70%, 50% of filters were preserved respectively
in each targeted block. We achieved a 30% FLOP reduction, with little drop
in the original model accuracy. The results are presented in Table 5, showing
that significant performance degradation arises with an increased pruning rate.
A much smaller model can be obtained at the cost of further accuracy reduction.

We compared our proposed approach with other state-of-the-art pruning
methods. Table 6 presents the comparison results on ResNet-50 and ImageNet.
For a fair comparison, most compared methods targeted the first and second
layers of each residual block and adopted the same compression ratio of 0.7 and
0.5, where 70% and 50% of filters were preserved in each targeted layer respec-
tively. In the first stage, we compared our proposed approach with other filter
level pruning methods including ThinNet ([36]), HRank ([30]), SSR-L2 ([32]),
Weights Sum ([29]), and APoZ ([21]). These methods evaluate the importance
of intermediate units and prune them accordingly. Because the pruning pipeline
of these filter level pruning methods is the same, it is a fair comparison, and
our proposed approach has achieved better results. In top-1 error, the proposed
approach surpasses the baseline methods ThinNet, SSR-L2, Weights Sum, and
APoZ by 1.96%, 2.34%, 3% and 2.94% respectively, representing significant im-
provements on the ImageNet with a compression ratio of 0.5. In top-5 error, our
method also outperforms ThinNet, SSR-L2, Weights Sum, and APoZ by 0.94%,
1.84%, 2.15% and 2.14% respectively, with the same compression ratio. Fur-
thermore, our pruned model has shown better performance than HRank ([30]),
reducing an extra 6.3% of its FLOPs. In other words, with more FLOPs reduc-
tion, our method surpasses the HRank by 0.27% in top-5 error. The relationship
between a semantic concept and individual hidden unit representations is di-
rectly considered in our proposed approach, which can adaptively determine the
function of individual CNN filters to deliver essential information and prune the
lower impact filters on the global output.

We also compared our proposed approach with several training-based prun-
ing methods including C-SGD ([12]), FPGM ([20]), SCOP ([51]), AutoPruner
([37]) and DCP ([64]). The results are summarized in Table 6. The pruning
procedure of these methods is considered a single end-to-end trainable system,
where evaluating channels’ importance, pruning channels, and fine-tuning are
performed jointly during an iterative training procedure. Although they achieve
remarkable accuracy, their computational costs and memory requirements are
increased as modern GPUs do not benefit from sparse convolutions. Pruning
procedures based on iterative training often change the optimization function
and even introduce many hyper-parameters, making the training more challeng-
ing. However, our pruned networks show a similar reduction in FLOPs with

Pruning CNN Filters via Quantifying 25

Fig. 11: Six different input images of ImageNet dataset and their semantic seg-
mentation and visualization of feature maps binary segmentation of ResNet-50
first block (i.e. res2a). Feature maps with red borders are the eliminated channels
in our pruned model (this figure is best viewed in color).

comparable accuracy. Note that we adopt the same compression ratios and tar-
get the same layer for ResNet-50. When comparing with AutoPruner ([37]), our
method achieves a 0.08% increase in the top-1 error and a 0.45% increase in the
top-5 error with similar FLOPs. Compared to the iteratively optimized prun-
ing methods, our approach has several advantages. It is capable of pruning any
CNN using a single forward pass without the need for a training process or
back-propagation. For the forward pass, we only select a few images from each
category to form our evaluation set used to find the optimal channel subset.
Consequently, the small number of instances are used to find the optimal filter
subset via Algorithm 1. After pruning all layers, we only fine-tune the pruned
models once for a reasonable number of epochs to reduce training time.

4.5 Feature Map Visualization

We carried out a visual assessment to provide a convincing analysis of the mo-
tivation to fundamentally rely on evaluating the alignment between a semantic
concept and individual hidden unit representations. Fig. 11 shows different ex-
amples from the ImageNet dataset with their semantic segmentation and visual-
ization of feature maps binary segmentation for the first layer of the ResNet-50
first block (i.e. res2a). The channels with red borders correspond to the chan-
nels selected to be eliminated in our pruned model when the compression rate
is set to 30%. Fig. 11 demonstrates that the selected channels are less informa-
tive (i.e. channels with title 2, 6, 23, 31, 35 and 56) compared to other channels
that highly correlated to the region of an object class across different images.
For instance, the channel’s visualization with title 62 reveals that this particular
feature map focuses on background rather than foreground objects. This demon-
strates that our proposed method determines individual CNN filters’ function

26 Ali Alqahtani et al.

to deliver essential information with strong discriminative power for the model.
It can also be observed that non-pruned channels are related to the concept of
an object, which closely matches the semantic segmentation of an object (e.g.,
pickup truck, spoonbill, and schooner). The apparent commonality among these
channels is that representations are object classes appropriate with diverse visual
appearances. Another remarkable appearance is that many channels represent
parts of the object.

4.6 Comparison with Filter Selection Criteria

Implementation Details Classification performance was used to evaluate the
impact of our filter selection criteria. An ablation study provides a scheme
to evaluate the effectiveness of measuring filters’ importance quantitatively.
This procedure typically refers to the removal of some parts of the model and
the study of its performance, as crucial filters capture meaningful information
and contribute substantially to the model’s final performance. We ablated non-
informative filters by forcing their activation to be zero and computed the clas-
sification accuracy on the test-set. Quantifying the influence of the ablation on
the classification performance allows for an impartial evaluation in order to dis-
tinguish the essential filters in a CNN and measure their importance, allowing
for layer-wise comparison. This method not only enables the evaluation of filters’
importance but can also detect the unimportant, redundant filters which can be
safely pruned.

Different Filter Selection Criteria Several criteria have been developed to
estimate the importance of a feature map or convolutional kernel in the CNNs.
To evaluate the effectiveness of our evaluation criterion, we compared our filter
selection method with several baseline methods, briefly explained as follows:

– Random. Filters are randomly ablated.
– Weights sum ([29]). Filters (i) with lowest absolute weights sum values

are ablated: ψi =
∑

i | ω(i, :, :, :) |.
– Activation mean ([29]). ψi = 1

N

∑
mean(τ(i, :, :)), where τ is the activa-

tion values for filter i, and N denotes the size of the data. The feature maps
with weak patterns and their corresponding filters and kernels are ablated.

– Mean gradient ([33]). ψi = 1
N

∑
mean(κ(i, :, :)), where κ is the calculated

gradient for each filter channel i, and N denotes the size of the data.
– LRP (Layer-wise Relevance Propagation) ([56]). The LRP of each

channel i is calculated as its importance score ψi = 1
N

∑∑
(LRP (i, :, :)),

where N denotes the size of the data; LRP calculates the summed relevance
quantity of each channel in the network to the overall classification score,
decomposing a classification decision into contributions for each channel.

All these baseline methods consider the higher scores as more critical, which is
driven by the intuition that unimportant activation and filters have no influential
outputs to the final prediction of a model.

Pruning CNN Filters via Quantifying 27

Fig. 12: The architecture of the CNN model.

(a) Proposed Method (b) Random (c) Mean-Mean ([29])

(d) Weights Sum ([29]) (e) Mean Gradient ([33]) (f) LRP ([56])

Fig. 13: Comparison of different pruning methods for VGG-16 on CIFAR-10.

Table 7: Overall results of layer-wise pruning utilizing different filter selection
criteria. The test accuracy is reported after ablating the unimportant filters.
The results were conducted on a NVIDIA GeForce GTX 1080 GPU to prune
the VGG-16 model on CIFAR-10 with a compression ratio of 0.5, where 50% of
filters were preserved after pruning. For conv 2, the running time of identifying
important filters is also reported (the model’s forward time is approximately 9s).

Conv 2 Conv 3 Conv 4 Conv 5 Conv 6 Conv 7 Conv 8 Conv 9 Conv 10 Conv 11 Conv 12 Conv 13

Random 0.8290 (0.073ms) 0.408 0.7776 0.8592 0.8824 0.895 0.8605 0.9194 0.9307 0.931 0.932 0.9341
Weights-sum ([29]) 0.8630 (2.015ms) 0.5333 0.2785 0.7558 0.8681 0.7834 0.8655 0.92 0.9218 0.9321 0.934 0.9343
Mean-mean ([29]) 0.8686 (4.5s) 0.1433 0.6995 0.795 0.8707 0.8157 0.8587 0.9198 0.9323 0.9314 0.932 0.9339

Mean Gradient ([33]) 0.5706 (11.1s) 0.4017 0.7448 0.7795 0.868 0.9052 0.821 0.9095 0.9313 0.9313 0.9331 0.9345
LRP ([56]) 0.9186 (13.2s) 0.88 0.8698 0.8675 0.9067 0.9005 0.8815 0.9234 0.9316 0.9328 0.9332 0.9342

Our method 0.9199 (10.9s) 0.864 0.8784 0.8686 0.915 0.9059 0.8907 0.9286 0.932 0.9347 0.9346 0.9349

Overall Performance Comparison Table 7 and Table 8 summarize the com-
parison results for two network architectures: our proposed CNN architecture
and VGG-16 with different pruning criteria on CIFAR-10. Our CNN architecture

28 Ali Alqahtani et al.

Table 8: Overall results of layer-wise pruning utilizing different filter selection
criteria. The results are reported on our small CNN model on CIFAR-10 with a
compression ratio of 0.5, where 50% of filters were preserved after pruning. The
test accuracy is reported after ablating the unimportant filters.

Conv 2 Conv 3 Conv 4 Conv 5 Conv 6

Random 0.7935 0.3556 0.6843 0.7096 0.7975
Weights-sum ([29]) 0.8027 0.4500 0.7091 0.6852 0.7645
Mean-mean ([29]) 0.7790 0.3761 0.7465 0.7133 0.7855

Mean Gradient ([33]) 0.8471 0.2673 0.6149 0.6214 0.7437
LRP ([56]) 0.8475 0.6122 0.7729 0.7466 0.8091

Our method (Sum-IoU) 0.8422 0.6709 0.7515 0.6988 0.8152
Our method (MV) 0.8599 0.6935 0.7858 0.7201 0.8239

consists of three convolutional blocks, where each block has two convolutional
layers with a filter size of 3 x 3 with 32 kernels in the first block, 64 kernels in
the second block, and 128 kernels in the third block. Each block ends with a
max-pooling layer followed by three fully-connected layers consisting of 2,000,
2,000, and 10 neurons respectively. A standard Relu activation function was uti-
lized. The detailed architecture of the CNN model is presented in Fig. 12. Using
the ablation approach, the importance of the filters was evaluated by employing
different selection criteria in a fully trained model. We compared our method
with such baselines, and the results are reported in Fig. 13, where different
compression rates are used. Table 7 and Table 8 also show different methods
to measure the importance of filters, using fixed compression ratio= 0.5, where
50% of channels are preserved after pruning. The tables show layer-wise results
for each layer, where we ablated layer-by-layer and calculated the accuracy for
each layer separately. For random selection criteria, the mean value of three runs
are reported.

(a) Pruning smallest value (b) Prune and re-estimate new kernels

Fig. 14: Layer-wise pruning of VGG-16 on CIFAR-10. (a) Pruning filters with
the lowest MV scores and their corresponding test accuracies on CIFAR-10. (b)
Prune and estimate new kernels for each single layer of VGG-16 on CIFAR-10.

Pruning CNN Filters via Quantifying 29

Table 9: Comparison of layer-by-layer pruning with fine-tuning (FT) and kernels
estimation (KE) using the VGG-16 model on CIFAR-10 using 200, 500, and 1000
training examples. These results were conducted on NVIDIA GeForce GTX 1080
GPU. The test accuracy is reported before and after performing fine-tuning
and kernels estimation. For conv13, the running time of both procedures is also
reported.

Conv 2 Conv 3 Conv 4 Conv 5 Conv 6 Conv 7 Conv 8 Conv 9 Conv 10 Conv 11 Conv 12 Conv 13

200 samples

Before KE 0.9173 0.8536 0.8151 0.8084 0.8482 0.8219 0.7546 0.7988 0.7839 0.7769 0.8028 0.7707
After KE 0.9338 0.9265 0.9195 0.8923 0.8746 0.8619 0.8151 0.8028 0.7971 0.7958 0.7954 0.7941 (5.86s)

Before FT 0.9173 0.8254 0.7362 0.705 0.6991 0.671 0.5714 0.6128 0.6163 0.5881 0.6001 0.6091
After FT 0.9203 0.8873 0.8499 0.7681 0.7401 0.6926 0.632 0.6317 0.6148 0.6034 0.6074 0.6044 (22.60s)

500 samples

Before KE 0.9173 0.8498 0.8232 0.82 0.8494 0.8279 0.7699 0.8077 0.8055 0.806 0.8171 0.7979
After KE 0.9332 0.9271 0.9196 0.8942 0.8771 0.8647 0.829 0.8195 0.8157 0.8161 0.8145 0.8138 (6.81s)

Before FT 0.9173 0.826 0.7395 0.7143 0.7102 0.7026 0.6341 0.6759 0.6765 0.6663 0.6609 0.6751
After FT 0.9239 0.8918 0.8559 0.7859 0.7647 0.7326 0.6817 0.6848 0.6808 0.6699 0.6725 0.6723 (22.74s)

1000 samples

Before KE 0.9173 0.851 0.8165 0.8203 0.8556 0.8369 0.7935 0.8177 0.8127 0.8147 0.8238 0.809
After KE 0.9331 0.9275 0.9202 0.8958 0.8811 0.8685 0.8404 0.8303 0.8247 0.8245 0.8243 0.8227 (8.81s)

Before FT 0.9173 0.8325 0.7507 0.7173 0.7499 0.7247 0.6506 0.6939 0.6963 0.6858 0.6888 0.6887
After FT 0.9235 0.8969 0.8622 0.8007 0.7777 0.7472 0.7011 0.709 0.6952 0.6915 0.6904 0.6948 (23.34s)

Our ablation study has shown that for both architectures, MV achieves higher
classification performance when compared with other baselines. This demon-
strates the robustness of our proposed method in identifying the essential filters.
With VGG16, as shown in Table 7, our pruning method achieved the best re-
sults when using a compression ratio of 0.5 for each layer of the reference model.
Fig. 13a demonstrates that the performance of the pruned model with our pro-
posed method is relatively consistent, as model FLOPs reduce, especially when
reaching a reduction of 60%. Our method delivers the best result among all base-
lines. On the other hand, it has less impact on the dropping of model accuracy
while reducing FLOPs compared with the LRP-based method, which is also in-
spired by neural network interpretability. These results indicate an interesting
potential research direction of combining the two fields of interpretability and
model compression research.

Interestingly, ablating filters with random selection showed that the first few
layers had stronger negative effects and more synergistic filters compared with
higher hidden layers. It was also observed that the higher hidden layers were
significantly redundant and more class-specific. This observation is consistent
with a previous theoretical proposal by [44]. One reasonable explanation is that
the neural networks hierarchically learn representations. Hence, the first layers
are not relevant to a specific object. Still, they build feature representations of all
input images that are joined to form more relevant object features in the later
layers. By ablating these fundamental features, deeper layers fail to produce
class-specific features and have a more negative impact on overall accuracy.

Although random selection is neither robust nor applicable in practice ([36]),
it offers insight and demonstrates that the detection of principal filters is a
critical approach when pruning redundant filters. The experiment empirically

30 Ali Alqahtani et al.

confirms that our importance method is sufficient, given that ablating filters
with low values in the layers had a negligible impact on the overall accuracy
compared to all baselines. As shown in Table 7 and Table 8, the experimen-
tal results for both networks show that the method substantially outperformed
the baselines. Our proposed method to measure filters’ importance helps not
only to remove redundant nodes and compress the neuron network, but also
to understand their inter-relationships and how said filters impact the model.
The experiment confirms that selecting the right criteria to evaluate filters’ im-
portance throughout all layers can guarantee a successful pruning approach. In
Table 7, we reported the running time of different filter selection approaches.
The running speed of data-driven methods relies on model inference speed and
dataset size. On a NVIDIA GeForce GTX 1080 GPU, it takes 9.186s to ap-
ply forward passing through the optimized VGG-16 model on CIFAR-10. Our
proposed approach takes 10.9s to identify the important filters, which is faster
than some competitive methods. For ResNet-50 on ImageNet, the time cost to
estimate IoU scores and MV values is 422.3s of ResNet-50 first block (i.e. res2a).

4.7 Comparison of Kernel Estimation (KE) vs. Fine-Tuning (FT)

In order to gather conclusive evidence to evaluate the effectiveness of our ker-
nels estimation (KE) method, an experiment based on the iterative layer-wise
pruning process was carried out using the VGG-16 model on CIFAR-10. Thus,
we were able to fairly compare our KE method with the standard fine-tuning
(FT) procedure that is performed to preserve the original accuracy or recover
the damage that might occur during the compression phase. After pruning each
layer with a fixed compression ratio of 0.5, our KE method, as well as the FT
procedure, were applied to improve the performance degradation. The experi-
ments were performed on the training set using three different numbers of trained
examples, i.e. 200, 500, and 1,000. We estimated new kernels and performed the
fine-tuning using these settings with the same amount of iteration. The com-
parative results are shown in Table 9, which demonstrates that with a small
number of examples, KE performed much better with lower run-time require-
ments. The approximate time needed to complete the process of each method
is shown in Table 9. KE achieved higher classification performance, especially
when the whole network was cumulatively pruned. Our experiment has shown
that both KE and FT improved the accuracy after pruning each layer. These
results demonstrate the necessity of adopting such steps to recover model ac-
curacy which has been iteratively damaged. However, even though the strategy
of iterative pruning with fine-tuning is the typical setting for CNN pruning, it
incurs expensive computation costs, significant inference time, and high storage
requirements. Such an iterative process requires considerable inference costs, in-
cluding those related to the creation of a new model, loading of parameters, and
retraining of the whole model.

Pruning CNN Filters via Quantifying 31

5 Conclusion

In this paper, we have proposed a novel framework based on an effective channel-
level pruning method, considering the power of novel neural network inter-
pretability in evaluating the importance of feature maps. Based on the discrim-
inative ability of interpretable latent representations, a majority voting tech-
nique is proposed to compare the degree of alignment values among filters and
assign a voting score to quantitatively evaluate the importance of feature maps.
The experimental results show the effectiveness of our filter selection criteria,
which outperforms all other pruning criteria. It also allows for the identification
of layers which are robust or sensitive to pruning, and this can be beneficial
for further improving and understanding the architectures. We also propose a
simple yet effective method to estimate new convolution kernels based on the
remaining, crucial channels to accomplish effective CNN compression. The exper-
imental results on CIFAR-10, CUB-200, and ImageNet (ILSVRC 2012) datasets
demonstrate the effectiveness of our pruning framework in maintaining or even
improving accuracy after removing unimportant filters. Our results also display
the excellent performance of our proposed method. Moreover, our pruned model
can be further pruned into even smaller models by adopting any existing model
compression method. Our potential future work is to extend this framework and
combine it with other pruning criteria to deeply explore the problem of CNN
pruning from an interpretable perspective, aiming to link model compression
and interpretability research.

Acknowledgement

This work is supported by EPSRC EP/N028139/1.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: Proceedings of the Symposium on Operating Systems Design and Im-
plementation. pp. 265–283 (2016)

2. Arora, S., Ge, R., Neyshabur, B., Zhang, Y.: Stronger generalization bounds for
deep nets via a compression approach. In: Proceedings of the International Con-
ference on Machine Learning. pp. 254–263 (2018)

3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Muller, K.R., Samek, W.: On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one 10(7) (2015)

4. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: Quan-
tifying interpretability of deep visual representations. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 6541–6549 (2017)

5. Bau, D., Zhu, J.Y., Strobelt, H., Zhou, B., Tenenbaum, J.B., Freeman, W.T., Tor-
ralba, A.: Gan dissection: Visualizing and understanding generative adversarial
networks. In: Proceedings of the International Conference on Learning Represen-
tations (2019)

32 Ali Alqahtani et al.

6. Cheng, Y., Wang, D., Zhou, P., Zhang, T.: Model compression and acceleration
for deep neural networks: The principles, progress, and challenges. IEEE Signal
Processing Magazine 35(1), 126–136 (2018)

7. Chollet, F., et al.: Keras (2015), https://github.com/fchollet/keras
8. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., De Freitas, N.: Predicting parameters

in deep learning. In: Proceedings of the Advances in Neural Information Processing
Systems. pp. 2148–2156 (2013)

9. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear
structure within convolutional networks for efficient evaluation. In: Proceedings of
the Advances in Neural Information Processing Systems. pp. 1269–1277 (2014)

10. Dhamdhere, K., Sundararajan, M., Yan, Q.: How important is a neuron? In: Pro-
ceedings of the International Conference on Learning Representations (2019)

11. Ding, H., Chen, K., Huo, Q.: Compressing cnn-dblstm models for ocr with teacher-
student learning and tucker decomposition. Pattern Recognition 96, 106957 (2019)

12. Ding, X., Ding, G., Guo, Y., Han, J.: Centripetal sgd for pruning very deep con-
volutional networks with complicated structure. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. pp. 4943–4953 (2019)

13. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 1440–1448 (2015)

14. Guillaumin, M., Küttel, D., Ferrari, V.: Imagenet auto-annotation with segmenta-
tion propagation. International Journal of Computer Vision 110, 328–348 (2014)

15. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Proceedings of the Advances in Neural Information
Processing Systems. pp. 1135–1143 (2015)

16. Hassibi, B., Stork, D.G.: Second order derivatives for network pruning: Optimal
brain surgeon. In: Proceedings of the Advances in Neural Information Processing
Systems. pp. 164–171 (1993)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778 (2016)

18. He, T., Fan, Y., Qian, Y., Tan, T., Yu, K.: Reshaping deep neural network for
fast decoding by node-pruning. In: Proceedings of the International Conference on
Acoustics, Speech and Signal Processing. pp. 245–249 (2014)

19. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerat-
ing deep convolutional neural networks. In: Proceedings of the International Joint
Conference on Artificial Intelligence. pp. 2234–2240 (2018)

20. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median
for deep convolutional neural networks acceleration. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 4340–4349 (2019)

21. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: A data-driven neuron
pruning approach towards efficient deep architectures. CoRR abs/1607.03250
(2016)

22. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the International Conference
on Machine Learning. pp. 448–456 (2015)

23. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proceedings
of the International Conference on Learning Representations (2015)

24. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny im-
ages. Technical report, University of Toronto (2009), https://www.cs.utoronto.
ca/~kriz/learning-features-2009-TR.pdf

Pruning CNN Filters via Quantifying 33

25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proceedings of the Advances in Neural Information
Processing Systems. pp. 1097–1105 (2012)

26. Lebedev, V., Lempitsky, V.: Fast convnets using group-wise brain damage. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 2554–2564 (2016)

27. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (Nov 1998)

28. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Proceedings of the
Advances in Neural Information Processing Systems. pp. 598–605 (1990)

29. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. In: Proceedings of the International Conference on Learning Represen-
tations (2017)

30. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: Hrank: Filter
pruning using high-rank feature map. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 1529–1538 (2020)

31. Lin, S., Ji, R., Chen, C., Tao, D., Luo, J.: Holistic cnn compression via low-rank
decomposition with knowledge transfer. IEEE Transactions on Pattern Analysis
and Machine Intelligence 41(12), 2889–2905 (2018)

32. Lin, S., Ji, R., Li, Y., Deng, C., Li, X.: Toward compact convnets via structure-
sparsity regularized filter pruning. IEEE Transactions on Neural Networks and
Learning Systems 31(2), 574–588 (2019)

33. Liu, C., Wu, H.: Channel pruning based on mean gradient for accelerating convo-
lutional neural networks. Signal Processing 156, 84–91 (2019)

34. Liu, S., Deng, W.: Very deep convolutional neural network based image classifica-
tion using small training sample size. In: Proceedings of the IAPR Asian Conference
on Pattern Recognition. pp. 730–734 (2015)

35. Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.T., Sun, J.: Metapruning:
Meta learning for automatic neural network channel pruning. In: Proceedings of
the IEEE International Conference on Computer Vision. pp. 3296–3305 (2019)

36. Luo, J., Zhang, H., Zhou, H., Xie, C., Wu, J., Lin, W.: Thinet: Pruning cnn filters
for a thinner net. IEEE Transactions on Pattern Analysis and Machine Intelligence
41(10), 2525–2538 (2019). https://doi.org/10.1109/TPAMI.2018.2858232

37. Luo, J.H., Wu, J.: Autopruner: An end-to-end trainable filter pruning method for
efficient deep model inference. Pattern Recognition p. 107461 (2020)

38. Mahendran, A., Vedaldi, A.: Understanding deep image representations by invert-
ing them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 5188–5196 (2015)

39. Mariet, Z., Sra, S.: Diversity networks: Neural network compression using determi-
nantal point processes. In: Proceedings of the International Conference on Learning
Representations (2016)

40. Mocanu, D.C., Mocanu, E., Stone, P., Nguyen, P.H., Gibescu, M., Liotta, A.: Scal-
able training of artificial neural networks with adaptive sparse connectivity inspired
by network science. Nature communications 9(1), 2383 (2018)

41. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient inference. In: Proceedings of the International
Conference on Learning Representations (2017)

42. Na, S., Choe, Y.J., Lee, D.H., Kim, G.: Discovery of natural language concepts
in individual units of cnns. In: Proceedings of the International Conference on
Learning Representations (2019)

34 Ali Alqahtani et al.

43. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-
tation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 1520–1528 (2015)

44. Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., Dickstein, J.S.: On the expressive
power of deep neural networks. In: Proceedings of the International Conference on
Machine Learning. pp. 2847–2854 (2017)

45. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision 115, 211–252 (2015)

46. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE International Conference on Computer Vision. pp. 618–
626 (2017)

47. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
Visualising image classification models and saliency maps. CoRR abs/1312.6034
(2013)

48. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proceedings of the International Conference on Learning
Representations (2015)

49. Sindhwani, V., Sainath, T., Kumar, S.: Structured transforms for small-footprint
deep learning. In: Proceedings of the Advances in Neural Information Processing
Systems. pp. 3088–3096 (2015)

50. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15(1), 1929–1958 (2014)

51. Tang, Y., Wang, Y., Xu, Y., Tao, D., Xu, C., Xu, C., Xu, C.: Scop: Scientific
control for reliable neural network pruning. In: Proceedings of the Advances in
Neural Information Processing Systems. pp. 10936–10947 (2020)

52. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-
UCSD Birds-200-2011 Dataset. Technical report, California Institute of Technology
(2011), http://www.vision.caltech.edu/visipedia/papers/CUB_200_2011.pdf

53. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. In: Proceedings of the Advances in Neural Information Processing
Systems. pp. 2074–2082 (2016)

54. Wen, W., Xu, C., Wu, C., Wang, Y., Chen, Y., Li, H.: Coordinating filters for
faster deep neural networks. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 658–666 (2017)

55. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural
networks for mobile devices. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 4820–4828 (2016)

56. Yeom, S.K., Seegerer, P., Lapuschkin, S., Wiedemann, S., Müller, K.R., Samek,
W.: Pruning by explaining: A novel criterion for deep neural network pruning.
Pattern Recognition p. 107899 (2021)

57. Yeom, S.K., Shim, K.H., Hwang, J.H.: Toward compact deep neural networks via
energy-aware pruning. CoRR abs/2103.10858 (2021)

58. You, Z., Yan, K., Ye, J., Ma, M., Wang, P.: Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. In: Proceedings of the
Advances in Neural Information Processing Systems. pp. 2133–2144 (2019)

59. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In:
Proceedings of the European Conference on Computer Vision. pp. 818–833 (2014)

Pruning CNN Filters via Quantifying 35

60. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 2881–2890 (2017)

61. Zhou, B., Sun, Y., Bau, D., Torralba, A.: Interpretable basis decomposition for vi-
sual explanation. In: Proceedings of the European Conference on Computer Vision.
pp. 119–134 (2018)

62. Zhou, H., Alvarez, J.M., Porikli, F.: Less is more: Towards compact cnns. In:
Proceedings of the European Conference on Computer Vision. pp. 662–677 (2016)

63. Zhu, J.Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipu-
lation on the natural image manifold. In: Proceedings of the European Conference
on Computer Vision. pp. 597–613 (2016)

64. Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., Zhu, J.:
Discrimination-aware channel pruning for deep neural networks. In: Proceedings
of the Advances in Neural Information Processing Systems. pp. 875–886 (2018)

