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Abstract

Motivated by the new opportunities that gravitational wave detections of-
fer in both cosmology and astrophysics, in this thesis we study potentially
detectable physical phenomena related with black hole physics, with partic-
ular interest to systems of black holes interacting with cosmological scalar
fields.

First of all, we study a charged, rotating black hole solution in a Gener-
alised Proca theory of gravity, obtained through a disformal transformation
of the Einstein-Maxwell action. Due to the breaking of gauge symmetry,
the gauge freedom of the components of the gauge vector is lost; thus, for a
particular choice of the gauge vector, we are able to find an exact, charged,
rotating black hole solution, with event horizon and ergosphere parametri-
cally different from the General Relativity solution. For such solution, the
Innermost Stable Circular Orbits (ISCOs) are studied. Subsequently, we
consider the effects of an external, ultralight scalar field interacting with
an electromagnetic Kerr-Newman black hole. Depending on the frequen-
cies of the scalar’s modes and on the angular velocity of the black hole,
the scalar waves scattering off the event horizon may trigger superradiance;
for some scalar field’s modes, a stationary scalar cloud is developed in the
black hole’s surroundings, and the frequencies of the scalar’s modes in the
cloud correspond to the resonant frequencies of the superradiant gain fac-
tor. Moreover, we investigate the effects of a massless scalar field coupled to
an electromagnetic rotating black hole through Chern-Simons couplings; in
particular, we consider both scalar-vector and scalar-tensor couplings. Us-
ing both a slow rotation and small couplings approximation scheme, we are
able to find an hairy black hole solution up to second order in the approxi-
mation parameters. Such solution carries a secondary scalar charge, and it
satisfies the Smarr formula for black hole thermodynamics. Furthermore,
we propose a possible revealing effect for such hairy configuration, based on
the polarization dependent angular deflection to which photons are subject
to when interacting with the scalar field. At the end, we study the linear
perturbation theory for a static, electromagnetic black hole, also including
a Chern-Simons scalar-vector coupling to an external, massless axion field.
We find that due to the presence of the magnetic charge the decoupling be-
tween axial and polar perturbations is broken, leading to a Regge-Wheeler
perturbation equation containing terms with different parity.
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Chapter 1

Introduction and theory review

1.1 Introduction

In 2015, exactly one hundred years after its publication, Einstein’s General Rela-
tivity (GR) [4] had one more outstanding confirmation of its predictions: for the
first time, we were able to directly detect gravitational waves coming from a binary
black hole system, namely a couple of black holes rapidly spinning one around the
other and finally merging into a single one [5]. This gravitational wave event, now
known as GW150914 (Gravitational-Waves-15-09-14, since the detection was on
the 14th of September), marked the beginning of a new era of both cosmology
and astrophysics; in fact, for the first time we had direct access to strong grav-
ity regime observations, with the opportunity to test once more what Einstein’s
gravitational theory had predicted one century ago. But if it was just for tests of
General Relativity, GW150914 would have been just one of the many confirma-
tions of Einstein’s theory in the last years. The reason why GW150914 must be
considered a milestone event is due to the fact that it has opened the doors to
direct tests of strong gravity regime; in particular, since detectable gravitational
waves are likely to come from black holes, such detections provide a tool to test
both black holes existence and the viability of gravity theories alternative to Gen-
eral Relativity. In fact, during the last 30 years, most research in cosmology has
focused on the necessity of solving the two biggest cosmological problems we still
have, namely dark energy and dark matter [6, 7]; the former describes the mys-
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1. INTRODUCTION AND THEORY REVIEW

terious and unpredicted accelerated expansion of the Universe, while the latter is
related with the amount of matter we are not directly observing in the Universe.
Since dark matter and dark energy together constitute more than the 95% of the
composition of the Universe, they currently are absolute priorities in the cosmolog-
ical research. About the dark energy problem, in the last decades much effort has
been put in trying to find some gravity theories alternative to General Relativity
which could be able to both predict Einstein’s confirmed predictions and at the
same time to solve the dark energy problem. Thus, such modified gravity theories
[8, 9] must somehow agree with General Relativity predictions at low energy scale
(for example the Solar System one), where gravity is in a weak field regime; there-
fore, the strong gravity regime represents the border between General Relativity
and the modified gravity theories, namely it is the regime where different theories
manifest distinctive features and predictions. For this reason, GW150914 can be
considered a referee of modified gravity theories, since it directly provides physical
constraints to test the validity of such theories. Remarkably, in the last five years
many gravitational wave detections have been confirmed, making them a reliable
and efficient tool to test theories with experiments. In particular, although gravi-
tational waves have been detected also coming from the merger of neutron stars,
black holes are the best candidates for the emission of detectable gravitational
waves, making them excellent open sky laboratories to test gravity theories. For
this reason, it is important to study black holes in alternative theories of gravity,
and how gravitational waves are generated and propagate. Moreover, it is also
important to study physical systems which could produce distinctive phenomena
to be tested with observations, in order to set some constraints on the parameters
of the theory.
This is exactly the main goal of this thesis. In particular, we have focused our
research on physical systems where black holes interact with scalar fields, since
they are well motivated by string theory and particle physics and they are good
candidates for solving both the dark energy and the dark matter problems.

This thesis is organised as follows. The first chapter, which includes this intro-
duction, contains the basic theory review necessary for understanding the topics
to come. The theory sections are thought to be as self consistent as possible, and
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1.1 Introduction

for more exhaustive discussions external references are provided. The remaining
chapters constitute the core of this thesis, since they contain the results on which
my PhD research has been based on and the authentic and original results we have
achieved; in both cases, references are provided.

In chapter 2, we study possible black hole solutions in a Generalised Proca the-
ory of gravity [10, 11], obtained with an ad hoc disformal transformation [12, 13] of
the Einstein-Maxwell action, using as disformal vector the U(1) Maxwell one. The
disformed action is not manifestly gauge invariant: due to the breaking of gauge
symmetry, the gauge freedom of the components of the Maxwell gauge vector is
lost; thus, depending on the components of the gauge vector, regular or singular
solutions appear. For a particular choice of the gauge vector, we are able to find
an exact, charged, rotating black hole solution, with event horizon and ergosphere
parametrically different from the General Relativity (Kerr-Newman) solution. For
such solution, we study the Innermost Stable Circular Orbits (ISCOs), which man-
ifest different binding energies compared to the GR ones.

In chapter 3, we consider the effects of an external, ultralight scalar field in-
teracting with an electromagnetic Kerr-Newman black hole. As we will see, the
presence of both electric and magnetic charges can lead to interesting effects. De-
pending on the frequencies of the scalar’s modes and on the angular velocity of
the black hole, the scalar waves scattering off the event horizon may trigger super-
radiance, namely being enhanced due to scattering and therefore being reflected
with more energy than the incident one. The "boost" of energy is extracted from
the black hole: in this case, rotational energy is extracted, and the black hole
slows down. Interestingly, for some scalar field’s modes a stationary scalar cloud is
developed in the black hole’s surroundings; such modes are quasi normal, namely
their frequencies are almost purely real, and thus they are extremely long lived.
As it happens in the electric case, the frequencies associated to the scalar cloud’s
modes are completely determined by the black holes parameters (mass, angular
momentum, charge) and by the scalar field’s mass.

3



1. INTRODUCTION AND THEORY REVIEW

In chapter 4, we analyze the effects of a massless scalar field coupled to an
electromagnetic static/rotating black hole. In particular, we consider both scalar-
vector [14] and scalar-tensor Chern-Simons couplings [15, 16]. In the static case,
the scalar-tensor Chern-Simons coupling vanishes, but if both the electric and the
magnetic charges are on, then a scalar hair is naturally developed, being completely
determined by the Chern-Simons coupling constant and the black hole’s param-
eters; in this sense, such scalar hair is called "secondary". Moreover, using both
a slow rotation and small couplings approximation scheme we study the rotating
case, with both scalar-vector and scalar-tensor Chern-Simons couplings being on;
up to second order in the approximation parameters, we find an hairy black hole
solution depending on both the Chern-Simons couplings; again, the scalar charge
is secondary. For such solutions we verify that they satisfy the thermodynamics
Smarr formula [17]. Furthermore, due to the coupling between the scalar field
and the electromagnetic vector, we propose a possible revealing and detectable
effect for such hairy configuration, based on the polarization dependent angular
deflection to which photons are subject to when interacting with the scalar field
around the black hole. Moreover, we briefly discuss about hairy black holes in
Active Galactic Nuclei (AGNs).

In chapter 5, we study the linear perturbation theory for an electromagnetic,
static black hole, since we are interested in studying perturbations arising from
both electric and magnetic charges. Working in the Regge-Wheleer gauge [18] and
decomposing the perturbations on a tensor spherical harmonics basis, according to
their angular behaviour we can divide perturbations into two sectors: odd parity
(axial) perturbations and even parity (polar) ones. Interestingly, unlike what hap-
pens in the Schwarzschild and in the electric Reissner-Nordström case, we find that
in the magnetic Reissner-Nordström case it is not possible to completely decouple
axial and polar perturbations. In fact, focussing on the axial part and writing the
Regge-Wheleer equation for the metric’s and the vector’s perturbations, we find
the presence of both parity odd and parity even terms. Moreover, we also study
the linear perturbations theory for an electromagnetic, static black hole coupled
to an external, massless scalar field through a Chern-Simons scalar-vector term.
Again, we find that due to the presence of the magnetic charge the decoupling

4



1.2 Black holes part 1: a minimal review

between axial and polar perturbations is broken, leading to Regge-Wheeler equa-
tions involving terms with different parity.

Finally, chapter 6 contains a brief summary of the main results discussed and
some ideas for further investigations.

1.2 Black holes part 1: a minimal review

In this section, we introduce some basic but necessary concepts about black hole
physics we will need in the following chapters: for more details, see exhaustive re-
views [1, 19–21] or textbooks [22–27]. Throughout this work, we use a mostly
plus (1, 3) metric signature, and all quantities are expressed in natural units
c = ℏ = G = 1, with the additional choice 4πϵ0 = 1.

In 1915, Einstein published one of the most outstanding theoretical result in
modern physics, i.e. the theory of General Relativity (GR) [4, 28]. GR is not
merely an upgrade or generalisation of the previous gravitation theory belonging
to Newton, but it is rather a completely new approach to gravity. In fact, gravity
in GR is treated as a geometrical theory, with the related complex but powerful
formalism. Being the spacetime described by a manifold, the basic object of GR
is the metric tensor gµν , namely a covariant, second-degree, non degenerate, sym-
metric tensor with signature (1, 3), which encodes and describes the geometric and
causal structure of the spacetime; for more details or more accurate formalism, the
reader can refer to [1, 19–27] . Given a generic vector Aα and a set of coordinate xβ

on the manifold, on each metric there is a naturally defined covariant derivative

∇αAβ =
∂Aβ
∂xα

− ΓλαβAλ, ∇αA
β =

∂Aβ

∂xα
+ ΓβαλA

λ, (1.1)

with Γλαβ being the Christoffel symbols defined as

Γλαβ =
1

2
gρλ
(
∂gαρ
∂xβ

+
∂gβρ
∂xα

− ∂gαβ
∂xρ

)
. (1.2)

5



1. INTRODUCTION AND THEORY REVIEW

The easiest example of spacetime is the flat one, known as Minkowski spacetime,
which is described by the diagonal metric

gµν = diag(−1, 1, 1, 1), (1.3)

whose associated covariant derivative is simply the usual derivative.
One of the key concept of GR is the spacetime curvature, describing how and
how much the spacetime is curved compared with the flat one. Formally, we define
the Riemann curvature tensor as

Rα
βγδ = ∂γΓ

α
βδ − ∂δΓ

α
βγ + ΓµβδΓ

α
µγ − ΓµβγΓ

α
µδ, (1.4)

and we furthermore define the Ricci tensor

Rµν = Rλ
µλν (1.5)

and the Ricci scalar
R = gµνRµν . (1.6)

For a flat spacetime, we have
R = 0. (1.7)

However, as we will see, R = 0 is not a sufficient condition to have a flat spacetime,
since the condition is satisfied even for curved but "Ricci traceless" spacetimes.
Up to now, we have just been giving a geometric description of spacetimes, defining
geometrical objects to describe geometric features of the spacetime itself. However,
what makes GR such a remarkable theory is what is encoded in its most famous
and powerful result, Einstein’s equation:

Rµν −
1

2
gµν R = Tµν , (1.8)

where Rµν and R are the Ricci tensor and the Ricci scalar respectively and Tµν is
the energy-momentum tensor (or stress-energy tensor), which describes the
content and the behaviour of energy and matter in the spacetime.1 The extraordi-

1Remember that we are using natural units; in physical units, Einstein’s equations reads:
Rµν − 1

2gµν R = 8πG
c4 Tµν .
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1.2 Black holes part 1: a minimal review

nariness of the Einstein’s Equation (1.8) is based on the fact that its left-hand side
(LHS) only contains geometrical objects, while on the right-hand side (RHS) there
is an object encoding informations on the energy/matter content of the space-
time; hence, the equality implies that the spacetime geometry depends on the
matter/energy content, but at the same time the behaviour of such energy/matter
depends on the geometry. Quoting A. Wheeler: "Space tells matter how to move,
matter tells space how to curve".

Solving the Einstein’s Equation (1.8) means finding the 10 components of the
metric tensor gµν which satisfies the equation and subject to covariant conserva-
tion constraints; technically, this problem consists in solving a set of 10 non-linear,
partial differential equations, which in most cases is impossible. However, for some
particular highly symmetric cases, it happens that the Einstein’s Equation is fully
analytically solvable.

1.2.1 The Schwarzschild solution

To start, we choose to solve the equation (1.8) in vacuum, namely Tµν = 0, which
leads to

Rµν −
1

2
gµνR = 0. (1.9)

As one would expect, the Minkowski spacetime is a solution of (1.9); in addition,
under specific assumptions, it is possible to find other interesting solutions. One
of the most common choices is to assume spherical symmetry, since (to a good ap-
proximation) that is the case for many astrophysical systems like the gravitational
field of celestial bodies. In GR, as stated in the Birkhoff theorem (see for ex-
ample [22] for more details), the unique spherically symmetric vacuum solution of
the Einstein’s Equation is the Schwarzschild metric [29], named after the Ger-
man physicist Karl Schwarzschild who derived it in 1916. Using a Boyer-Lindquist
spherical coordinate system {t, r, θ, φ}, the Schwarzschild metric reads:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2, (1.10)

7



1. INTRODUCTION AND THEORY REVIEW

where the constant M is interpreted as the gravitational mass1 of the gravitating
object. The Schwarzschild metric is a static, asymptotically flat and spherically
symmetric solution of the Einstein’s Equation.
Roughly speaking, being static means that the metric does not explicitly depend
on time and that it is invariant under time reversal (t→ −t) transformation. With
a bit more formalism, a metric is called static if it admits a Killing vector which
is timelike at spatial infinity and orthogonal to t = const hypersurfaces.
Asymptotically flatness implies that at spatial infinity the metric reduces to the
Minkowsky one, since at infinitely large distances from the sourceM , the spacetime
curvature is negligible (for a more formal definition, see for example [26]). Finally,
spherical symmetry is satisfied if and only if the following commutation relations
are satisfied:

[R, S] = T, [S, T ] = R, [T, R] = S, (1.11)

with (R, S, T ) being the Killing vectors of the 2-sphere S2 given in coordinate
basis (θ, φ) by:

R = ∂φ

S = cosφ∂θ − cot θ sinφ∂φ
T = − sinφ∂θ − cot θ cosφ∂φ.

(1.12)

What makes the Schwarzschild metric really remarkable and fascinating are its
simplicity and depth. In fact, despite being described by a simple expression, the
metric (1.10) hides some intriguing features and phenomena which still have the
attention of physicists from very different research areas.
If we look at (1.10), we notice that the metric becomes singular at two points:

r = 0, 1− 2M

r
= 0 =⇒ rS = 2M. (1.13)

However, even though they both lead to divergences of the metric (1.10), they
have a completely different nature.

1We do not motivated it in this chapter, since a quick derivation is shown in the appendix
at the end of the next chapter.
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1.2 Black holes part 1: a minimal review

In fact, as we will show soon, only r = 0 is a physical singularity, while rS, known
as Schwarzschild radius, is just a coordinate singularity, which can be therefore
removed by a suitable change of coordinates. To understand it, let’s first focus on
the r = 0 singularity.
In GR, a singularity could be simply1 defined as a set of points (or even a single
one) where the spacetime curvature tends to infinity. Hence, to check if a geometry
has any singularity, it is necessary to study the curvature invariants (R, RµνRµν ,
RµναβRµναβ). For the Schwarzschild metric, we get:

R = 0, RµνRµν = 0, RµναβRµναβ =
48M2

r6
. (1.14)

First of all, we notice that both the Ricci scalar and the contracted Ricci ten-
sor (RµνRµν) are everywhere null; however, since the Kretschmann scalar (K =

RµναβRµναβ) does not vanish, the geometry is not flat. From the Kretschmann
scalar, we notice that it diverges at locus r = 0, which is therefore a singularity
by definition, while there is no divergence at point r = rS.
So, what happens at r = rS? From the expression of the Schwarzschild metric, we
notice that at rS the metric component grr diverges, which implies that the inverse
metric component grr vanishes at that point. In particular, we have grr > 0 for
r > rS and grr < 0 for r < rS. This means that the vector ∂µr changes from being
spacelike to be timelike at surface rS (where it is a null vector), since by definition
we have

grr = gµν∂µr∂νr. (1.15)

In addition, since we have

gtt = 0 if r = rS, gtt < 0 if r > rS, gtt > 0 if r < rS, (1.16)

we observe that inside the Schwarzschild radius the time coordinate "t" and the
radial coordinate "r" swap their sign, and hence their nature. So, if we consider a
a photon travelling with velocity purely along the radial direction, once it crosses
the Schwarzschild radius it cannot reverse its motion and crossing it back, since

1Again, we want to be as simpler as we can, using intuitive definition for geometrical objects
which could be rather defined with much more formality.

9



1. INTRODUCTION AND THEORY REVIEW

its future lightcone is now oriented towards the singularity [24], having both the
time coordinate and the radial one changed their signs. Therefore, any photon in-
side the Schwarzschild horizon cannot escape from it, and consequently no signal
can be transmitted from the region inside the Schwarzschild radius. We define the
surface rS to be an event horizon, since it is the boundary of two causally discon-
nected spacetime regions where events outside the horizon cannot be influenced by
anything from the inside. (For a more rigorous and formal definition, see for exam-
ple [25–27]). The event horizon and the inner singularity make the Schwarzschild
solution a black hole solution, to indicate that there exists a spacetime region
from where signals (and hence light) cannot escape. Remarkably, it has been con-
jectured by Penrose [30] that singularities cannot be "naked", i.e. they must be
contained and protected by a horizon: so, if a spacetime has any singularity, it
necessary has a horizon as well.

Other interesting features of the Schwarzschild black hole solution are its sta-
ble orbits. In fact, we can imagine a photon or a test mass orbiting around a
Schwarzschild black hole: for specific values of energy/mass or angular momen-
tum, it is possible to have the test particle orbiting around the black hole in a
stable orbit, with the gravitational attraction acting as a centripetal force. These
orbits are quite important for astrophysical systems since they are the last close
orbits where particle can stably rotate.
In the case of photons, the last stable orbit represents the photon circle, which
due to spherical symmetry is actually a photon sphere: if we consider an as-
trophysical black hole surrounded by gas and plasma, the photon sphere together
with gravitational lensing are responsible of the black hole shadow at the center of
the observable bright disk, as remarkably captured and shown in [31–36] for the
supermassive black hole on the center of galaxy M87.
For a massive particle, instead, the Innermost Stable Circular Orbit (ISCO)
is the closest, stable orbit for a binary gravitating system, such as binary black
holes: so, if we consider a binary system of merging black holes like the ones ob-
served with gravitational waves detection [37], the ISCO determines the frequency
of the emitted gravitational waves before the merger happens.

10



1.2 Black holes part 1: a minimal review

Since we will use it in the next chapters, let’s now quickly see how the ISCO

trajectories are computed.

In a spherically symmetric spacetime, it is convenient to choose the equatorial

plane (θ = π/2 in a Boyer-Lindquist coordinate system) as the reference one; on

that plane, the Schwarzschild metric reads

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + dϕ2). (1.17)

Considering a generic particle approaching the black hole on the equatorial plane,

its 4-velocity is

uµ =
{
ut, ur, uθ, uϕ

}
=

{
dt

dτ
,
dr

dτ
,
dθ

dτ
,
dϕ

dτ

}
(1.18)

with τ being the proper time. However, since the motion is restrained on the

plane, the velocity’s component along the θ direction is set to zero:

uθ = 0. (1.19)

Considering massive/massless particles respectively, the 4-velocity satisfies the con-

dition

uµu
µ = −1, uµu

µ = 0. (1.20)

With the 4-velocity, using the metric (1.17) we can also define the conserved

energy E and the conserved angular momentum L respectively as

E = −(gtt u
t + gtϕ u

ϕ),

L = gϕt u
t + gϕϕ u

ϕ.
(1.21)

Using the definitions above, considering a massive particle the relation (1.20) reads

(
dr

dτ

)2

− E2 +

(
1− 2M

r

)(
1 +

L2

r2

)
= 0, (1.22)

11
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which can be recast as

1

2

(
dr

dτ

)2

+ Veff =
E2 − 1

2
(1.23)

where we have introduced the effective potential

Veff = −M
r

+
L2

2r2
− ML2

r3
. (1.24)

We are now interested to find the explicit trajectory of the ISCO; first of all, being
the trajectory circular the radial velocity must vanish:

dr

dτ
= 0 → Veff =

E2 − 1

2
. (1.25)

Moreover, for the motion to be circular the acceleration must vanish as well:

d2r

dτ 2
= 0 → ∂Veff

∂r
= 0. (1.26)

Finally, for the trajectory to be stable the effective potential has to be at a local
minimum:

∂2Veff
∂r2

= 0. (1.27)

Equations (1.25,1.26, 1.27) can be solved to get the values for E,L, rISCO which
determine the innermost stable circular orbit for the Schwarzschild geometry.
For a massive particle, the ISCO is located at

rISCO = 6M = 3rS, (1.28)

while for massless particles the ISCO is located at

rISCO = 3M =
3

2
rS. (1.29)

1.2.2 Charged case: the Reissner-Nordström solution

As we have seen, the Schwarzschild black hole solution describes the vacuum space-
time around a gravitating mass M , where nothing else than the mass itself gener-
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1.2 Black holes part 1: a minimal review

ates the geometry: so, at this point, it could be interesting to see what happens if

extra matter/radiation is taken into account. In particular, to keep things simple

but interesting, we now consider the case of a gravitating mass M together with

an electromagnetic field, neglecting the presence of extra matter. In natural units,

such system can be described by the following action

S =

∫
d4x

√
−g
[
R

4
− 1

4
F µνFµν

]
, (1.30)

with Fµν being the electromagnetic field strength given by

Fµν = ∂µAν − ∂νAµ. (1.31)

Since the action (1.30) involves the Ricci scalar and the standard electromagnetic

field strength only, it is usually referred to as the Einstein-Maxwell action.

Now, due to the presence of the electromagnetic field strength in the action, we

have to solve two different equations of motion, one for the metric tensor and one

for the gauge vector, respectively. Hence we have:

Rµν −
1

2
Rgµν = 2Tµν ,

∇µF
µ
ν = 0,

(1.32)

where the electromagnetic energy-stress tensor takes the form

Tµν = Fα
µ Fνα −

1

4
gµνF

αβFαβ. (1.33)

Without any further assumption or simplification, solving the above set of equa-

tions can be very hard, or even (as it often happens to be) impossible. However, as

in the Schwarzschild case, an incredibly simple but no less interesting solution can

be found if we make the assumption of spherical symmetry, where the spacetime

metric can be written as

ds2 = A(t, r) dt2 +B(t, r) dr2 + dΩ2, (1.34)

13
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with dΩ2 being the 2-sphere metric

dΩ2 = r2 dθ2 + r2 sin2 θ dφ2. (1.35)

Moreover, we also assume the background to be static, which leads to

A(t, r) → A(r), B(t, r) → B(r). (1.36)

Furthermore, we are interested in asymptotically flat solutions, i.e. solutions which

approach the vacuum Minkowski solution as the distance from the body approaches

infinity.

The first "black hole solution" to this problem was found back in the years 1916-

1918 thanks to the work done by Hans Reissner [38] and Gunnar Nordström [39];

for this reason, the solution has taken the name Reissner-Nordström metric,

and it can be written as

ds2 = −FRN(r) dt2 + FRN(r)
−1 dr2 + r2 dθ2 + r2 sin2 dφ2 (1.37)

with the function FRN defined as

FRN = 1− 2M

r
+
Q2

r2
, (1.38)

with M being the black hole mass and Q the electric charge. Together with the

Reissner-Nordström metric (1.37), the electromagnetic potential which satisfies

the equations of motion (5.61) has the form

Aµ =

{
−Q
r
, 0, 0, 0

}
. (1.39)

The Reissner-Nordström solution describes a static, spherically symmetric, asymp-

totically flat, charged spacetime with an event horizon located at

grr = 0 : rRN =M +
√
M2 −Q2 (1.40)
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1.2 Black holes part 1: a minimal review

and an inner horizon located at

rIH =M −
√
M2 −Q2. (1.41)

Hence, the Reissner-Nordström solution describes a static, spherically symmetric,
charged black hole, and it can be therefore considered the charged generalisation
of the Schwarzschild one, which is recovered in the limit Q → 0. Interestingly,
the Reissner-Nordström solution (1.37) admits a magnetic counterpart, with the
electric charge Q replaced by the magnetic charge P and with the electromagnetic
potential

Aµ = {0, 0, 0, −P cos θ} . (1.42)

In the last century, the Reissner-Nordström spacetime has been studied in
depth, and many interestingly features have been discovered: for more details and
aspects of the Reissner-Nordström solution, the reader can refer to [26].

1.2.3 Rotating case: Kerr and Kerr-Newman solution

We now proceed with a further generalisation of the Schwarzschild solution, con-
sidering a non-static spacetime. In fact, from an astrophysical point of view, the
assumption of the geometry being static is quite unphysical and simplistic, due
to the large amount of angular momentum carried by celestial bodies. Indeed,
if we consider a black hole originated from stellar collapse or even more from
BH-BH merger, it is reasonable to think that the final black hole still carries at
least a fraction of the prior total angular momentum, rather than having it com-
pletely dissipated or ejected. For this reason, it is natural to wonder whether black
hole solutions carrying angular momentum actually exist. Therefore, in order to
generalise the Schwarzschild solution while keeping the equations of motion fully
analytically solvable, we give up the static assumption in favor of the stationary
one. Namely, we require the spacetime (and hence the metric) to be explicitly
time independent (i.e. it does not change in time), but it can rotate. Considering
for simplicity a vacuum spacetime, we again assume asymptotically flatness and,
moreover, we also assume the system to be axisymmetric, with the rotational axis
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being the symmetry axis. With these assumptions and simplifications, the Ein-
stein’s equations are now analytically solvable, and they lead to the background
metric

ds2 =−
(
1− 2Mr

ρ2

)
dt2 − 4Mra sin2 θ

ρ2
dt dφ+

ρ2

∆
dr2

+ ρ2 dθ2 +

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θ dφ2

(1.43)

with
∆ = r2 + a2 − 2Mr, ρ2 = r2 + a2 cos2 θ, (1.44)

and where M is the mass of the gravitating object and a = J
M

its rotation pa-
rameter, being J the total angular momentum.
The metric’s solution (1.43) is known as Kerr metric, from the mathematician
Roy Kerr who first derived its analytical expression in the 1963 [40]. To be pre-
cise, the solution (1.43) is the Kerr metric written in the Boyer-Lindquist coor-
dinates frame, since the original solution found by Kerr in 1963 was written in a
Eddington-Finkelstein coordinates frame (v, r, θ, φ). The Kerr metric describes an
asymptotically flat, axisymmetric, rotating black hole with mass M and rotation
parameter a, and in the limit a→ 0 the Kerr solution reduces to the Schwarzschild
one. As a rotating generalisation of the Schwarzschild metric, the Kerr solution
can be derived from the Schwarzschild one using the Newman-Penrose formal-
ism: more details can be found in [21].
Being a black hole, the Kerr spacetime possesses an event horizon; remarkably,
that is not the only interesting "exotic" surface the Kerr metric has! As it happens
for the Schwarzschild solution, from the metric (1.43) we observe that the surfaces
such that

grr = 0 (1.45)

appears to be singularities. However, as in the static case, those are not real space-
time singularities, but rather coordinate singularities, which could be removed by
opportune coordinates redefinitions. In fact, the only real spacetime time singu-
larity is located at the point r = 0, which at first sight can be described by a
ring (remember, the spacetime is not spherically symmetric, and the point r = 0

corresponds to the set of points such that x2 + y2 = a2 in the cartesian plane,
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which describes a circle of radius a). Anyway, solving grr = 0 one finds the two
hypersurfaces:

r+ =M +
√
M2 − a2, r− =M −

√
M2 − a2. (1.46)

If a ̸= 0, they describe ellipsoids in the cartesian space (again, remember that
the spacetime is not spherical symmetric, thus hypersurface described by constant
radial coordinate are not spheres). The surface with radius r+ is the black hole’s
event horizon, separating causally disconnected regions of the spacetime. In-
stead, the surface with radius r− is known as Cauchy horizon, and it is always
located inside the event horizon. From (1.46), in order to have "real" horizons we
notice that the following condition is required:

0 ≤ a ≤M. (1.47)

If a = 0, the Cauchy horizon disappears and the event horizon is simply r =

2M = rS, as the Kerr solution reduces to the Schwarzschild one. If the rotation
parameter assumes its largest value a =M , the black hole is said to be extremal:
in this case, the event and the Cauchy horizons coincide at r = M . Remarkably,
in the Kerr spacetime there are also other significant surfaces: in fact, by looking
at (1.43), we notice that the metric appears to not be regular also at points where
gtt = 0. This should not look too odd, since it also happens in the Schwarzschild/
Reissner-Nordström case; however, in the static, spherically symmetric cases it is
gtt = grr, hence this condition is nothing more than the event horizon condition.
On the contrary, in the rotating case gtt ̸= grr and the conditions gtt = 0, grr = 0

lead to different physical surfaces.
From gtt = 0 we get

rE =M +
√
M2 − a2 cos2 θ, rI =M −

√
M2 − a2 cos2 θ, (1.48)

which are usually referred to as the ergosurface and the inner ergosurface,
respectively. Interestingly, we notice that the ergosurface is located outside the
event horizon, while it does not happen for the inner one.
Inside the ergosuface (in the region called ergosphere), since gtt < 0 the world
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lines are space-like; although these considerations are coordinate dependent, they
describe a physical, coordinate independent phenomenon known as frame-dragging
(or Lense-Thirring effect). In fact, around a rotating black hole the spacetime
is forced to rotate with the black hole itself, being dragged by the black hole’s
rotation; thus, in the ergoregion it is not possible for any object to stay stationary
with respect to a distant observer, since it would imply the object being moving
faster than light [19, 20]. As we will see later on, the existence of an ergoregion
around rotating black holes is crucial for energy extraction processes like the Pen-
rose process [41].

For completeness, we also write the asymptotically flat, stationary, axisym-
metric, charged black hole solution of the Einstein-Maxwell action (1.30). Such
solution, known as Kerr-Newman metric (from Roy Kerr and Ezra Newman),
is the rotating generalisation of the Reissner-Nordström black hole, and it is the
charged generalisation of the Kerr metric.
The Kerr-Newman metric reads

ds2 =−
(
1− 2Mr −Q2

ρ2

)
dt2 − 2(2Mr −Q2)a sin2 θ

ρ2
dt dφ+

ρ2

∆
dr2

+ ρ2 dθ2 +

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θ dφ2

(1.49)

with

∆ = r2 + a2 − 2Mr +Q2, ρ2 = r2 + a2 cos2 θ, (1.50)

where M is the black hole’s mass, a is the rotation parameter and Q is the electric
charge. The electromagnetic potential which satisfies the equations of motion has
the form

Aµ =

{
−Qr
ρ2

, 0, 0,
Q a r sin2 θ

ρ2

}
. (1.51)

Interestingly, as it happens for the Reissner-Nordström solution, it is easy to write
the Kerr-Newman solution including both electric and magnetic charges; in the
metric (1.49) it is sufficient to replace Q2 with Q2 + P 2, being P the magnetic
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charge, while the electromagnetic potential becomes

Aµ =

{
−Qr + P a cos θ

ρ2
, 0, 0,

Q a r sin2 θ − P (r2 + a2) cos θ
ρ2

}
. (1.52)

In the following chapters, we will often refer to the electromagnetic Reissner-
Nordström or Kerr-Newman solution as the "dyonic" solutions, meaning that we
consider solutions with both electric and magnetic charges.

Figure 1.1: Horizons, ergosurfaces and singularity for a Kerr black hole, with
a < M . Picture from "Schwarzschild and Kerr Solutions of Einsteins Field
Equation: an introduction", by C. Heinicke and F. W. Hehl [1].

Figure 1.2: Horizons, ergosurfaces and singularity for an extremal Kerr black hole,
with a = M . Picture from "Schwarzschild and Kerr Solutions of Einsteins
Field Equation: an introduction", by C. Heinicke and F. W. Hehl [1].
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1.2.4 Black hole thermodynamics

Starting from the Sixties, thanks to the discoveries by Kerr and Newman the black
hole physics regained much popularity among the scientific community. Many au-
thors, both mathematicians and physicists, focused their researches on a deeper
comprehension of black holes nature and their properties; in particular, authors
like Smarr, Virbhadra, Christodoulou, Ruffini, Bekenstein, Hawking, Penrose and
others, made game changing discoveries on what concerns the black holes structure
and energy. Remarkably, they have been the pioneers of the black hole thermo-
dynamics era, which is still a fascinating and intensively studied topic in modern
theoretical physics [42–44].
For the purpose of this work, this section will contain only the basic concepts
concerning the black hole energy and thermodynamics, since they will turn out to
be useful in the next chapters. For more detailed reviews or notes, the reader can
look at [21, 44–46].

Considering as the most generic case a Kerr-Newman black hole, the energy
contained in a sphere of radius r such that r is larger than some finite R > r+ is
given by [47]

E =M − Q2

R

(
a2

3R2
+

1

2

)
. (1.53)

The result above shows how the energy of an uncharged (Q = 0) black hole is
entirely contained within the event horizon and it is precisely its mass; on the
contrary, for charged black holes there is a contribution to the total energy coming
from the exterior region, and such contribution is larger for rotating black holes
(a ̸= 0). In the case of rotating black holes, through the existence of an ergosphere
Penrose [41] showed how it is possible to extract rotational energy from a black
hole; thus, one could ask if it is possible to totally extract rotational energy from a
spinning black hole, causing it to stop the rotation. On this topic, Christodoulou
and Ruffini [48] showed that there is a threshold amount of energy which cannot
be extracted in any way; this quantity, usually named irreducible mass, is given
by

M2
irr =

r2+ + a2

4
, (1.54)
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and it cannot be decreased by any process, reversible or irreversible:

dMirr ≥ 0. (1.55)

The condition above turns out to be the first step towards the black hole thermo-
dynamics. In fact, thanks to the intuitions of Bekenstein [49], Penrose [41] and
Hawking [50], an easy relationship between the black hole’s entropy SBH and its
horizon’s area AH has been found:

SBH ∝ AH , (1.56)

where the horizon’s area is given by

AH = r2+ + a2. (1.57)

Using the result (1.54), we can write

dSBH = 8αMirr dMirr ≥ 0 (1.58)

which is exactly the second law of thermodynamics1.

In general, it is possible to write the four laws of black hole thermody-
namics [45] in the following way:

• Zeroth Law: the black hole’s TBH temperature is constant over the event
horizon.

• First Law: the total energy is always conserved.

• Second Law: the entropy of an isolated black hole never decreases, dSBH ≥ 0.

• Third Law: TBH can never be reduced to zero in a finite number of steps.

1The proportionality constant α has been computed by Hawking to be α = c6

4Gℏ
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In particular, the first law can be compactly written with the following equation,
known as Smarr formula [17]:

δM =
κ

2
δAH + ΩHδJH + ΦBHδQ, (1.59)

where κ is the horizon’s surface gravity, ΩH is the horizon’s angular velocity and
ΦBH is the electric potential on the horizon.

1.3 Modified Gravity: introduction

In this section we briefly discuss testing General Relativity and other modified
gravity theories. Since a detailed and exhaustive discussion about such a huge
research area is far beyond the possibilities and the aims of this work, we will
introduce and illustrate the main aspects of this topic to provide the reader a basic
knowledge about the motivations and the opportunities of modifying Einstein’s
theory of gravity. In particular, we will focus our attention on aspects regarding
the possibility of testing General Relativity and other theories of gravity through
black hole physics and related phenomena.
So, this section is structured as follows: in the first part we will motivate the need
to test General Relativity and alternative gravity theories; in the second section, we
will provide a picture of the many possibilities to modify General Relativity, with
particular interest in theories involving scalar fields; finally, in the last section we
will shortly discuss testing gravity theories with strong gravity regime observations
(such as gravitational waves), and the impact of the recent GWs detections on the
plethora of modified gravity theories. However, since this section cannot be an
exhaustive review on modified gravity and related observations, we have decided
to focus our attention on those aspects which will be crucial for the results discussed
in the next chapters. For exhaustive reviews, the reader can refer to [2, 8, 51].

1.3.1 Beyond General Relativity

Since its publication in 1915, it was immediately clear that the theory of General
Relativity would have completely changed the approach to gravity and to exper-
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iments. Moreover, some of General Relativity’s predictions were tested and con-
firmed with extraordinary precision only a few years after 1915 (in 1919 the light
bending was tested, and in 1925 a group of scientists claimed to have measured the
gravitational redshift), giving great credibility to GR and fueling the enthusiasm
for this revolutionary theory. In addition, during the last century many tests of
GR have been made, again providing results in incredible accordance with the the-
ory predictions (Shapiro delay, binary pulsars timing, etc.). However, despite of
the elegance and the outstanding precision of its predictions, since its publication
GR had some compatibility issues with cosmology, leading Einstein himself to add
and then remove the cosmological constant in his equations trying to motivate
the stationarity/dynamicity of the Universe:

Rµν −
1

2
Rgµν + Λ gµν = 2Tµν (1.60)

with Tµν being the stress-energy tensor and Λ being the cosmological constant.
Initially, Einstein added the constant term to the equation to prevent the predic-
tion of a collapsing or expanding Universe; however, after the astronomer Edwin
Hubble discovered in 1929 that the Universe is actually expanding, Einstein re-
moved the constant term from the field equations. Nowadays, we have evidence
that the Universe is accelerating its expansion rate, and thus we need a source fu-
eling such acceleration in contrast with the effect of gravity, which on the contrary
tends to slow down the expansion. Such mysterious and still unobserved source
of energy has been named1 dark energy, and current observations indicate that
is roughly 72% of the content of the Universe [52]. Although unknown, a simple
way to model the effects of dark energy is through the introduction of a constant
term in the Einstein’s equation, acting like a repulsive force which causes the Uni-
verse to accelerate its expansion (paradoxically, Einstein added the cosmological
constant to keep the Universe stationary, while we need it to explain the Universe
expansion!). However, to be consistent with the current observations the value
of the cosmological constant must be incredibly small (in Planck units): this is
a deep fine tuning problem, and currently it cannot be motivated by any theory
prediction (the vacuum energy predicted by quantum field theory is 120 orders of

1By the cosmologist Michael Turner in 1998.

23



1. INTRODUCTION AND THEORY REVIEW

magnitude bigger than the needed value of the cosmological constant, making it
"The worst theoretical prediction in the history of physics!" [53]).
Besides dark energy, the remaining part of the content of the Universe is com-
posed by "ordinary matter" (elementary particles and the complex particles they
form) for the 4.6% and by dark matter for the remaining 23% (see Fig.1.3 below).

Figure 1.3: Picture "Content of the Universe Pie Chart", from Wilkinson Mi-
crowave Anisotropy Probe (WMAP) , National Aeronautics and Space Administra-
tion. Since the WMAP data is accurate to two digits, the total of these numbers is
not 100%.

Dark matter roughly accounts for 82% of the total matter in the Universe. It is
called "dark" because it does not interact with light, and thus it is almost un-
detectable with the majority of current astronomical telescopes and detectors.
Therefore, we can infer the existence of this form of matter by indirect observa-
tions, such as the galaxies rotation curves or in the Cosmic Microwave Back-
ground (CMB): for a modern theory of dark matter and its possible effects, the
reader can refer to [7].

At the moment, the main cosmological model including both dark energy and
dark matter is the so called ΛCDM model, where Λ refers to the cosmological
constant associated with dark energy and "CDM" stands for Cold-Dark-Matter,
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meaning that its speed is small compared to the speed of light. However, since
the presence of such a small cosmological constant term in the Einstein’s equation
cannot be motivated by any quantum field theory, in the last decades many at-
tempts to modify the Einstein’s theory of gravity without the introduction of the
cosmological constant have been proposed.
Moreover, the lack of a renormalizable quantum theory of gravity has motivated
the attempts to formulate theories of gravity which could be consistent with quan-
tum field theory, providing predictions on how GR should be modified at high
energies. Such theories, commonly referred to as modified gravity theories, must
be considered extensions of the General Relativity theory, in the sense that they
must agree with observations and GR predictions at well tested energy scales (the
weak-field regime, 10−6m ≤ l ≤ 1011m), while being able to explain high and
low energy (cosmological) phenomena which cannot be explained with GR. In
other words, modified gravity theories are attempts to modify General Relativity
at both low and high energy scales, while being consistent with GR in the weak-
field gravity regime, where GR has been largely and successfully tested. Being
black holes and other compact objects, such as neutron stars and pulsars, the best
natural laboratories to test strong-field gravity, it is therefore important to study
such objects in alternative theories of gravity, since theories which differ from GR
generically predict different dynamics (such as gravitational waves formation and
propagation).

1.3.2 Modified gravity theories: a roadmap

In the past years, there has been a plethora of attempts to modify GR to find al-
ternative theories of gravity (see [8] for a review). In order to determine whether a
theory of gravity is valid or not, it must satisfy some requirements; however, there
is nothing like a validity paradigm, and the final decision about the reliability of
a given theory is reasonably arbitrary.
From our point of view, some reasonable criteria to check the validity of an alter-
native theory of gravity are:

• compatibility with intermediate energy tests, thus being consistent with GR
at those scales;
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• compatibility with cosmological evidence;

• compatibility with the existence of compact objects, thus describing their
structure and predicting their formation;

• compatibility with the detected gravitational wave signals;

• derivation from an action principle.

In particular, in order to satisfy the intermediate energies compatibility require-
ment, many modified gravity theories introduce some screening effects to hide
some extra degrees of freedom which are predicted at higher/lower energy scales
but they do not appear at intermediate scales. Among these screening mecha-
nisms, we mention the Vainshtein mechanism [54, 55], chameleons [56, 57] and
MOND dynamics [58–62].

Due to the lack1 of stringent tests and constraints, in the last 40-50 years the
number of proposed alternative theories of gravity has been very rapidly increasing.
To move in such a vast space and to avoid being lost, we will use the Lovelock’s
theorem [63, 64] as guiding principle. As written in [2], the Lovelock’s theorem
states that in four spacetime dimensions the only divergence-free symmetric rank-2
tensor constructed solely from the metric and its derivatives up to second differen-
tial order, and preserving diffeomorphism invariance, is the Einstein tensor plus a
cosmological term:

Rµν −
1

2
Rgµν + Λ gµν = 2Tµν . (1.61)

Moreover, if we assume that the Einstein’s equation (1.61) comes from an action
principle, we single out the Einstein-Hilbert action

S =

∫
d4x

√
−g R

4
+ SM [ψM , gµν ], (1.62)

where SM denotes the matter sector with ψM denoting the matter fields.
Thus, according to the Lovelock’s theorem, there is not much space left to modify

1We will discuss in more details about the constraints coming from gravitational waves
detection and in particular GW170817 in the following subsections.
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Einstein theory of gravity. However, like all theorems do, Lovelock’s theorem holds
since its assumptions do; thus, relaxing any of its assumptions, it is possible to
circumvent the theorem and to end up with a different and a priori viable theory
of gravity. The main four possibilities to circumvent the Lovelock’s theorem and
hence generating gravity theories alternative to GR are:

• Additional fields: since the Lovelock’s theorem assumes the metric and
its connection being the only dynamical field on the LHS of the Einstein’s
equation, the easiest and most common way to circumvent the theorem is by
adding extra degrees of freedom, namely extra fields (scalar, vector or tensor)
coupled to the metric tensor; however, introducing additional degrees of free-
dom non minimally coupled to gravity usually leads to instabilities (see Os-
trogadski’s theorem [65] for more details). Some examples of gravity theories
obtained by introducing additional fields are scalar-tensor theories (including
Galileons), f(R) gravity, Quadratic gravity, Einstein-Aether-Horava-Lifshitz,
Bimetric gravity, Generalised Proca.

• Diffeomorphism invariance violation: the first way to violate diffeo-
morphism invariance is by violating Lorentz invariance at high energy scales,
hence assuming that such invariance is an emergent symmetry appearing just
at low and intermediate energy scales, where it is very well tested. In addi-
tion, another possibility to violate diffeomorphism invariance is by assuming
the graviton being a slightly massive spin-2 field rather than a massless one,
although the mechanism through the graviton can acquire mass is not clear
yet.

• Higher dimensions: another possibility to circumvent the Lovelock’s the-
orem is by assuming the existence of more than four spacetime dimensions,
as it happens in string theory scenarios. With this assumption, the higher
dimensional theory of gravity naturally exhibits additional fields when re-
duced to four dimensions [66, 67], hence motivating possible deviations from
GR at high energy scales.

• Weak Equivalence Principle (WEP) violation: at the end, another
option to circumvent the Lovelock’s theorem is by dropping the assumption
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of having a divergence-free Einstein tensor and energy-stress tensor, conse-
quently violating the Weak Equivalence Principle.

Since an exhaustive review of so many alternative theories of gravity is beyond the
aim of this work, we schematically summarize the different paths to circumvent
the Lovelock’s theorem and generate alternative theories of gravity in Fig.(1.4).
For an up-to-date and detailed review, the reader can refer to [2].

Figure 1.4: The diagram, taken from [2], illustrates the different ways to cir-
cumvent the Lovelock’s theorem by relaxing any of its assumptions, ending up with
different alternative theories of gravity.

As far as this work is concerned, to motivate the backgrounds we will consider in
the next chapters, we now very briefly show the basic features of some modified
gravity theories; in particular, we focus our attention on scalar-tensor gravity [68]
and quadratic gravity [69].
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Scalar-tensor gravity

As we have previously discussed, a possible way to try to extend GR is by adding
additional fields non-minimally coupled to the metric tensor. If we consider a
single scalar field ϕ coupled to the metric, the most general action of scalar-tensor
gravity can be written in the following way:

S =

∫
d4x

√
−g
[
ϕR− ω(ϕ)

ϕ
gµν(∂µϕ)(∂νϕ)− V (ϕ)

]
+ SM [ψM , gµν ], (1.63)

where ω and V are generic functions of the scalar field and with SM denoting the
matter action, which is function both of the metric tensor gµν and the collective
matter fields ψM . In the form (1.63), the scalar field is non minimally coupled to
the metric tensor (the Ricci scalar is directly coupled to the the scalar field); in
this form, the scalar-tensor action is said to be in the Jordan frame.
If we perform a redefinition of the scalar field

φ = φ(ϕ), (1.64)

and a conformal transformation of the metric

gµν → g̃µν = A−2gµν , (1.65)

with the particular choice
A(φ) = ϕ−1/2 (1.66)

we can recast the action (1.63) in the so-called Einstein frame, where it takes
the form

S =

∫
d4x
√

−g̃
[
R̃− 2g̃µν(∂µφ)(∂νφ)−W (φ)

]
+ SM [ψM , A

2(φ)g̃µν ], (1.67)

where the potential is W (φ) = A4(φ)V (ϕ(φ)). In the Einstein frame, the scalar
field is minimally coupled in the gravitational sector but not in the matter one,
with the matter fields being directly coupled to the scalar field. The Jordan and
the Einstein frames provide two different representations of the same theory; thus,
the meaningful, physical quantities obtained through an experiment do not depend
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on the chosen frame, provided that their physical units are scaled by the appro-
priate conformal factors. This aspect should not be considered a technicality or a
quibble: since in the Einstein frame the scalar field is non minimally coupled to
the matter sector, to study a non vacuum system we need to exactly know how the
scalar field is coupled to matter, to consequently rescale the measured/computed
quantities (for example, a test particle follows the Jordan-frame geodesics, not the
Einstein-frame ones). For a more detailed discussion on the equivalence between
Jordan/Einstein frames, the reader can refer to [70, 71].
In the Jordan frame, the field equations of scalar-tensor gravity are

Gµν =
2

ϕ
Tµν +

ω(ϕ)

ϕ2

(
∂µϕ∂νϕ− 1

2
gµν∂γϕ∂

γϕ

)
+

1

ϕ
(∇µ∇νϕ− gµν□ϕ)−

V (ϕ)

2ϕ
gµν ,

□ϕ =
1

3 + 2ω(ϕ)

(
2T − 4ϕ

∂T

∂ϕ
− dω

dϕ
∂σϕ∂

σϕ+ ϕ
dV

dϕ
− 2V (ϕ)

)
,

(1.68)
with the energy-stress tensor defined as

T µν = −2(−g)−1/2 δSM(ψM , gµν)

δgµν
. (1.69)

Instead, in the Einstein frame the field equations simply read

G̃µν = 2

(
∂µφ∂νφ− 1

2
g̃µν∂ρφ∂

ρφ

)
− 1

2
g̃µνV (φ) + 2T̃µν

□̃φ = −a(φ)T̃ +
1

4

dW

dφ
,

(1.70)

with
a(φ) =

d [lnA(φ)]
dφ

(1.71)

and with the energy-stress tensor defined as

T̃ µν = −2(−g)−1/2 δSM(ψ,A2g̃µν)

δg̃µν
. (1.72)

Remarkably, there are some phenomena predicted by scalar-tensor gravity and not
occurring in GR which could lead to detectable effects. Among these, we mention
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the emission of dipolar gravitational radiation from compact binaries (rather
than the quadrupolar radiation predicted by GR) [72], the spontaneous scalar-
ization phenomenon [73] for extreme compact objects and the superradiance
effect for black holes. For what concerns this work, we are particularly interested
in the superradiance phenomenon, and therefore we will dedicate to it a detailed
discussion in the next sections.

In four spacetime dimensions, the fundamental scalar-tensor gravity theory
leading to second-order field equations is Horndeski gravity [74, 75], whose
action can be written in the form:

S =

∫
d4x

√
−g
{
K(ϕ,X)−G3(ϕ,X)□ϕ

+G4(ϕ,X)R +G4,X(ϕ,X)
[
(□ϕ)2 − (∇ν∇νϕ)(∇µ∇νϕ)

]
+G5(ϕ,X)Gµν∇µ∇νϕ− G5,X(ϕ,X)

6

[
(□ϕ)3 − 3□ϕ(∇µ∇νϕ)(∇µ∇νϕ)

+ 2 (∇µ∇νϕ) (∇µ∇ρϕ) (∇ν∇ρϕ)
]}
.

(1.73)
with X = 1

2
∂µϕ∂µϕ being the kinetic term of the scalar field and Gi,X denoting

the derivative of the Gi functions with respect to X.
Thus, depending on the particular choices for the functions Gi,X , it is possible to
recover many other scalar-tensor theories, such as Brans-Dicke [76], Chameleons
[56, 57] and, obviously, General Relativity. Remarkably, it has been recently shown
that it is possible to further generalise the Horndeski action to a larger class of
gravity theories (known as DHOST [77]) without propagating ghost modes.

For completeness, we conclude by writing the general scalar-tensor theory ac-
tion when gravity is coupled to more than one scalar field:

S =

∫
d4x

√
−g
[
F (ϕ)R− γab(ϕ)g

µν∂µϕ
a∂νϕ

b − V (ϕ)
]
+ SM [ψM , gµν ], (1.74)

with γab being the metric of the target space defined by the scalar fields.
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Quadratic gravity

From a quantum field theory point of view, Einstein’s theory of gravity is not
renormalizable, and therefore it cannot be considered a viable option for a quan-
tum theory of gravity. However, things change if we consider the Einstein-Hilbert
term being the first term in an expansion containing all possible curvature in-
variants: at small energy scales, the theory can be truncated and the Einstein-
Hilbert action is a valid "representation" of the theory (decoupling limit), while
at higher-energy scales the full general theory is required. Remarkably, it has been
shown that the gravity theory becomes renormalizable when quadratic curvature
terms are included in the action [78], without the need of higher curvature terms
contributions. However, including quadratic curvature terms in the action yields
to higher-derivative terms appearing in the field equations, which usually lead to
ghosts and Ostrogradski’s instabilities.
At second order in the curvature, there exist only few independent algebraic cur-
vature invariants:

R2, R2
µν = RµνRµν , R2

µνσρ = RµνσρR
µνσρ,

R̃µνσρRµνσρ =
1

2
ϵµναβRµνσρR

ρσ
αβ,

(1.75)

with ϵµναβ being the Levi-Civita tensor and R̃µνσρRµνσρ the Chern-Simons (or Pon-
tryagin) scalar (we will discuss in more details about the Levi-Civita tensor and
the Chern-Simons scalar in chapter 4) .
Another important curvature scalar, known as Gauss-Bonnet scalar, can be con-
structed as a combination of the curvature invariants in the following way:

RGB = R2 − 4R2
µν +R2

µνσρ. (1.76)

In particular, both the Gauss-Bonnet scalar and the Chern-Simons one have been
largely studied in gravity theories, since they naturally emerge in low-energy re-
ductions of string theory, being respectively coupled with the dilaton and the axion
fields [79, 80]. Since both terms are topological-invariants in four spacetime di-
mensions, they do not lead to modifications of the field equations; however, when
coupled to extra dynamical fields (such as scalar ones), their contributions to field
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equations become relevant, leading to deviations from Einstein’s gravity.
Including a single scalar field coupled to all the possible quadratic curvature in-
variants, the most generic action can be written as

S =
1

4

∫
d4x

√
−g
[
R− 2∇µϕ∇µϕ− V (ϕ) + f1(ϕ)R

2 + f2(ϕ)RµνR
µν

+ f3(ϕ)RµνσρR
µνσρ + f4(ϕ)R̃

µνσρRµνσρ

]
+ SM [ψM , γ(ϕ)gµν ],

(1.77)

with V (ϕ) being the scalar self-potential and fi(ϕ) being the coupling functions.
Due to the presence of the quadratic curvature terms, the theory (1.77) is gener-
ically unstable, namely it manifests ghosts and instabilities; however, if the cur-
vature invariants enter in the action precisely in the Gauss-Bonnet combination
(1.76), the field equations are free of such ghosts and instabilities.
Apart from Gauss-Bonnet gravity theory [81], another way to prevent instabilities
is to consider the action (1.77) as an effective action of an effective field theory
(EFT), namely a truncation of a more general theory (for an introductory review
to EFTs, the reader can look at [82]). Using the EFT approach, we can study the
particular case of Chern-Simons gravity theory [15, 16] by setting f1 = f2 = f3 = 0

in the action (1.77). The Chern-Simons gravity action reads:

S =
1

4

∫ √
−g d4x

[
R− 2∇µϕ∇µϕ− V (ϕ) + gCS ϕ R̃

µνσρRµνσρ

]
(1.78)

with gCS being the coupling constant. To be precise, the action (1.78) describes
the so-called dynamical Chern-Simons gravity (dCS), being ϕ a dynamical field
with its own kinetic term and eventually with a potential V (ϕ). In fact, a dif-
ferent version of Chern-Simons gravity action also exists: such theory, called non
dynamical Chern-Simons gravity (ndCS), does not consider the scalar field ϕ being
dynamical, and therefore no kinetic term appears in the action. Although they
could appear similar, the two theories are actually very different: for what concerns
this work, we are much more interested in the dynamical theory, since it predicts
non standard black hole solutions and parity-breaking deviations from GR [16, 83].
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1.3.3 Tests of gravity theories

To conclude this brief overview of modified gravity, we spend some few words on
possible effects and observations which could constrain the theories we have dis-
cussed above. First of all, it should be clear at this point that eventual deviations
from GR should be especially investigated at strong gravity regime. Therefore,
since we are still very far from being able to recreate in laboratory strong grav-
ity environments, we need observations of phenomena occurring at those energy
scales. As we have already mentioned, Solar System scale provides extraordinary
accurate tests for GR, and thus we have to push the gravity regime even higher
if we want to observe any deviation from Einstein’s theory. Luckily, Einstein’s
theory provides the perfect candidates to observe gravity in a strong regime: black
holes. For one century they have been elegant and fascinating speculations, asso-
ciated with phenomena like gravitational lensing and AGNs, but with GW150914
and later on with the Event Horizon Telescope "picture" they have finally become
detectable objects [31–36]. So, at the time we are writing, they are by far the best
laboratories we have access to for testing GR and other modified gravity theories.
First, their very existence can be considered a preliminary test: in fact, given a
generic theory of gravity, it is not trivial to predict the existence of extreme com-
pact objects like black holes, and therefore their predictability can be considered
a first requirement for alternative theories of gravity. Furthermore, black holes
predicted by General Relativity are remarkably simple since they are described by
only few parameters, while in alternative theories of gravity such simplicity is not
granted (more details in the next sections). For these reasons, in the last decades
much effort has been dedicated to the study of black holes in modified gravity
theories, looking for similarities or distinctive differences between GR and other
black hole solutions.
However, the game changer in both gravity and astronomy/astrophysics scientific
community was the detection in 2015 of the gravitational wave event GW150914
[3, 5], generated by a binary black holes system merging. After GW150914, other
gravitational waves events have been detected (at the time we are writing, a dozen
of GWs detection have been confirmed, including GW170817 coming from a bi-
nary neutron stars system [37]): in all cases, the GR predictions (dipole radiation,

34



1.4 Axion cosmology: the basics

waveform, etc..) show great agreement with the observations [84, 85]. Thus, any
viable alternative theory of gravity must predict the formation and propagation
of gravitational waves, and their physical properties (amplitude, energy carried,
speed, etc..) must be in accordance with observations. In particular, the detection
GW170817 had great impact on setting constraints on the space parameters of
gravity theories. In fact, coming from a binary neutron stars system, the GW
signal was much longer than the previous BH-BH ones; moreover, in GW170817
the GW signal was followed by an electromagnetic one (a short gamma ray burst),
with roughly 1.74 seconds delay [86]. Such electromagnetic counterpart sets very
stringent constraints on the speed of propagation of the GWs, with deviations
from the speed of light smaller than one part on 1015. We stress the importance
of this result because it finally shed light on the GWs propagation velocity, which
previously to GW170817 had not stringent constraints and it was therefore very
debated and uncertain, with very different predictions from different theories of
gravity: with GW170817, many modified gravity theories predicting a speed of
propagation of GWs different from the speed of light have been strongly con-
strained or even almost completely ruled out (see [87–90] for technical analysis of
the constraints on the GWs propagation velocity in alternative gravity theories set
by GW170817). Moreover, GW170817 also provided tests to the GWs dispersion
relation, the number of spacetime dimensions and the waves polarization: see [85]
for details.

Since this section is meant to provide the basic background needed for a con-
textualization of the results discussed in the next chapters, as far as this work is
concerned we conclude this brief overview on the main aspects of modified gravity.

1.4 Axion cosmology: the basics

In this section we introduce the basic ideas of axion cosmology, providing a schematic,
minimal review of the basic concepts of this large topic. In particular, since for
the purposes of this work we are interested in motivating the existence of axions
and other light scalar fields and their implications for cosmology and black hole
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physics, in this short review we will focus our attention on the different possibili-
ties to motivate the existence of such boson fields. As we will see, axions and light
scalar fields can provide good candidates for solving important cosmological open
questions, such as the cosmological constant, dark energy, dark matter and even
inflation. For a detailed and exhaustive review on axion cosmology, the reader can
refer to [91].

Nowadays, the word axion can refer to a large class of pseudoscalar fields
(namely scalar fields changing sign under parity transformation), appearing in
several different contexts and with different origins and motivations. Originally,
the term was used in the late Seventies [92] referring to the light scalar parti-
cle solving the strong-CP problem according to the Peccei-Quinn mechanism
[93, 94] and, in this context, the term indicates how such scalar field is associated
with the axial QCD anomaly. However, in the following years the word axion has
been applied to many different scalar fields: in quantum field theory, the term can
refer to pseudoscalar Goldstone bosons arising from spontaneously broken global
symmetries [95]; in string theory, the term is used referring to scalar fields arising
from compactified dimensions [96, 97]; in astrophysics and cosmology, the term
refers to generic light pseudoscalar fields.

Let’s start from its original meaning.
The strong-CP problem in QCD1 [14, 98] is a challenging and intricate open ques-
tion, which has seen many different attempts of solution in the last 50 years.
With our convention c = ℏ = G = 4π = 1, the QCD lagrangian (including the
axion field a and the topological θ-vacua term [95]) reads

LQCD = −1

4
G b
µνG

b,µν +
∑
q

q̄ (iγµDµ −mq) q +
g2s
8
θ G b

µνG̃
b,µν (1.79)

with Gµν being the gluon field strength, Dµ the gauge covariant derivative, q being
the quarks with their respective massmq and gs being the strong coupling constant.

1The strong-CP problem is based on the fact that, according to the experiments, QCD
preserves the CP-symmetry, although such symmetry is not protected and a CP violating terms
naturally appear in the action.
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The CP-violating term
Lθ
QCD = g2s

θ

8
GµνG̃

µν (1.80)

induces an electric dipole moment for the neutron given by [99]:

dN = 3.6 · 10−18 θ em. (1.81)

However, the observed, constrained electric dipole moment is [100]:

|dN | < 2.9 · 10−28 em, (1.82)

which implies a value for the θ angle close to zero:

θ ≲ 10−10. (1.83)

This is a fine tuning problem, since there is apparently no explicit reason to mo-
tivate an approximately zero CP violating term. A mechanism to motivate such
small value for the θ angle was proposed by Peccei and Quinn [93]: the idea is
to promote θ to a field and to introduce a new global, chiral U(1)PQ symmetry,
spontaneously broken at some scale fa and with an associated pseudo-Nambu-
Goldstone boson1, known as the axion. This axion, that we will denote with "a",
enjoys a shift symmetry

a = a+ const, (1.84)

and it couples with the GG̃ in the QCD lagrangian, which reads

LQCD+a = −1

4
G b
µνG

b,µν+
1

2
∂µa ∂

µa+
∑
q

q̄ (iγµDµ −mq) q+
g2s
8

(
θ +

Ca

fa

)
G b
µνG̃

b,µν

(1.85)
with C being the colour anomaly [95].
As showed in [93], due to the periodicity of the expectation value < GG̃ > the
axion is forced to take the vev

< a >= −fa
C
θ, (1.86)

1Due to instantons effects, the axion acquires a small mass, thus ceasing to be an authentic
massless Nambu-Goldstone boson and therefore gaining the appellative "pseudo".
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which therefore cancels out the CP violating term in the lagrangian (1.85) and
solves the CP problem.
Due to QCD instantons effects [91], the axion acquires a mass

ma ≃ 6 · 10−6eV

(
1012GeV

fa/C

)
, (1.87)

and its potential is given by

V (a) = muΛ
3
QCD

[
1− cos

(
a

fa/C

)]
, (1.88)

with mu being the up-quark mass and ΛQCD being the QCD characteristic scale
(see [98] for a review about axions in particle physics and [101] about the effects
of QCD axions and other pseudoscalar fields in cosmology).
Depending on the decay constant fa, the axion mass1 can be very light and stable,
thus being an excellent candidate for dark matter [106–108]. Nowadays, a reliable
mass range for ALPs (Axion-Like-Particles) is [91]

10−33eV ≤ ma ≤ 10−18eV, (1.89)

where the lower bound comes from the Hubble constant and reflects constraints
on axion dark energy, while the upper bound is related to cosmological structure
formation. In fact, QCD axions are not the only axion-like fields which can be
motivated by high energy physics, and different ALPs with very different masses
and decaying constants exist, motivating the large range (1.89) and therefore the
possibility to relate axions with different physical phenomena, such as dark energy,
dark matter and inflation.

In addition to the QCD axions, it is important to mention the String Axiverse
[97], namely the large class of pseudoscalar fields associated with compactified spa-
tial dimensions in supergravity/string theory: for excellent reference books about

1The Peccei-Quinn mechanism we have described is the basic model to introduce an axion
field solving the CP problem. However, when extra fields (quarks, Higgs) are taken into account,
more specific axion models are required; among these, we only mention KSVZ [102, 103] and
DFSZ [104, 105]

38



1.4 Axion cosmology: the basics

strings, superstrings and M-theory, see [109–113]. Without entering into details,
such axion fields arise as the Kaluza-Klein zero modes [66, 67] of the antisymmet-
ric tensors contained in the supergravity description of string theory [114, 115],
namely they are originated by the low energy limit of a higher-dimensional the-
ory with compactified dimensions. As Kaluza-Klein zero modes, such axions are
massless, but they can acquire mass through non-perturbative effects (such as in-
stantons) as it happens for the QCD axion. However, "stringy" axions can have
very different masses compared with the QCD ones, thus being associated with
different physical phenomena. For more details about axions in string theory, the
reader can refer to [96, 97].

Remarkably, axions can also play a crucial roll during inflation ([116–118]),
a period of exponentially accelerated expansion of the Universe during its earliest
phase. During the inflationary epoch, axions can both act as spectator fields (as
cold dark matter candidates) or as the unstable, slow-rolling field driving inflation.
In fact, in the simplest scenario, inflation is driven by a single, decaying field called
inflaton (ϕ) which slowly rolls in the minimum of its potential V (ϕ). Once the
minimum is reached, the inflaton begins to oscillate around the stable position,
and it decays into radiation in a process known as reheating, which ends the
inflationary epoch. If axions are stable fields (like the QCD ones and all the dark
matter candidates), they cannot act as the inflaton, but they rather are spectator
fields which populate the background and interact during the reheating phase. On
the other hand, if we consider an unstable axion, that could act as the inflaton,
being the rolling field driving the accelerated expansion of the Universe. In this
scenario, the inflaton potential must be very flat compared to the other physical
scales in play, in order to have the expansion and the size of the Universe at the
end of the inflation compatible with observations and particle physics evidences.
Such flat potential determines the slow rolling of the inflaton towards its minimum,
and it determines the so-called slow roll parameters:

ϵ =
M2

Pl

2

(
V ′

V

)2

, η =M2
Pl

V ′′

V
, (1.90)
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which have to be very much smaller than unity. As an example, one of the simplest
scenario of inflation driven by an axion is the so-called Natural Inflation, where
the inflaton/axion potential is

V (a) = Λ4
a

[
1± cos

(
a

fa

)]
. (1.91)

However, the details of axion inflation are beyond the purpose of this work: for
further examples and for a more exhaustive discussion about axions during infla-
tion, the reader can refer to [91].

To recap, we have seen how axions are produced and motivated by many high
energy physics theories, such as QCD and string theory, and how such axions can
have very different masses and decaying constants depending on the parameters
of the theory they are originated by. Consequently, axions can be related with
many different physical systems and phenomena; in particular, in cosmology, we
have mentioned how axions can be good candidates for cold dark matter mod-
els and dark energy, and under some specific assumptions even for inflation. For
what concerns this work, we are interested in investigating how axions (or generic
scalar/pseudoscalar fields) can interact with black holes, looking for specific phe-
nomena and which could lead to distinctive and detectable effects. For a review
about the interactions of QCD axions with black hole physics the reader can refer
to [119, 120], while we mention [121] for an exhaustive review about the axiverse
and black holes physics. At the end, we mention [122] for a detailed analysis about
the possibilities to reveal ultralight bosons through gravitational wave detections
with LIGO and LISA detectors.

1.5 Superradiance in a nutshell

Superradiance is a quite old and generic concept, which occurs in very different
physical systems. In this section, we will provide a minimal introduction to the
superradiance process from a general point of view, while we will discuss specifi-
cally about black holes superradiance in the next section. For clear and exhaustive
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reviews on superradiance, the reader can refer to [123–125].

In physics, superradiance refers to the radiation enhancement effects which oc-
cur in different contexts and physical systems, such as quantum optics, classical
and quantum mechanics, astrophysics and relativity.
The first idea of superradiance can be found back in the 1929, when Klein showed
how quantum mechanics predicts the transmission of particles in classically forbid-
den regions [126]. In 1946, Ginzburg and Franck studied transition radiation [127],
which lead to the discovery of an anomalous Doppler effect causing an excitation
of the emitted radiation. Few years later, in 1954 Dicke firstly introduced the con-
cept of superradiance, meant as a collective phenomena of radiation-enhancement
processes allowed by coherence of emitters [128]. Moreover, in 1971 Zel’dovich
found that it is possible to have an amplification of reflected radiation caused by
radiation scattering off rotating absorbing surfaces [129]. This fact is nowadays
known as rotational superradiance, and it is triggered when the incident radiation
(assumed monochromatic with frequency ω) satisfies the condition

ω < mΩ, (1.92)

with m being the azimuthal number with respect to the rotational axis and Ω

being the angular velocity of the rotating body.

For an insight of the superradiance effect, let’s consider the following example.
In (1 + 1) dimensions, let’s consider a massless scalar field with charge q coupled
to an electromagnetic potential Aµ. The equations of motion are simply described
by the Klein-Gordon equation

□Φ = 0, (1.93)

where the gauge covariant derivative is defined as

∇µ = (∂µ − iqAµ) . (1.94)
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Let’s consider a potential of the form Aµ = {A0(x), 0} such that

A0 → 0 when x→ −∞, A0 → W when x→ +∞. (1.95)

For the scalar field, we use the ansatz

Φ(t, x) = e−iωtf(x), (1.96)

which makes the Klein-Gordon equation separable and leads to the following equa-
tion of motion along the spatial direction:

d2f

dx2
+ (ω − qA0)

2f = 0. (1.97)

If we consider a flux of particles coming from −∞ and scattering off the poten-
tial barrier W with incident, transmission and reflection amplitudes I, T and R

respectively, we find a solution fS(x) with asymptotic behaviour such that

fin(x) = Ieiωx + Re−iωx, x→ −∞

fout(x) = Teikx, x→ +∞
(1.98)

where we have defined
k = ±(ω − qW ). (1.99)

The transmission and reflection coefficients depend on the specific form of the
potential A0, but together with the incident coefficient I they satisfy the following
condition [125]:

|R|2 = |I|2 − ω − qW

ω
|T|2. (1.100)

From the last expression, it is clear that if the frequency ω satisfies the condition

0 < ω < qV, (1.101)

the reflected amplitude is greater than the incident one:

|R| > |I|, (1.102)
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which means that the incident radiation has been amplified through the scattering
with the potential A0: this fact is precisely what we call superradiant amplifi-
cation, or just superradiance.
In 1971, Zel’dovich [129] showed that an analogous phenomenon happens when
radiation is scattered off rotating absorbing surfaces, and the superradiance con-
dition (1.101) becomes

ω < mΩ. (1.103)

Interestingly, the latter scenario is quite a common one when dealing with rotat-
ing black holes. In fact, the event horizon acts as a perfect dissipative membrane
[130], and the ergosphere contributes to the amplification of the scattered radia-
tion through the extraction of rotational energy from the black hole.

In the next section, we will see in more details how superradiance is related with
black hole physics, and why it has become a very hot topic in modern astrophysics.

1.6 Black holes part 2: no-hair theorem

In modern astrophysics, one of the most interesting and still mysterious phenom-
ena is the emission of relativistic jets from astrophysical objects, such as active
galactic nuclei (AGNs). Although a clear and full comprehension of such mech-
anisms has not been achieved yet, they are commonly believed to be the result
of some energy extraction mechanism. In this sense, superradiant enhancement
could be one of the possible origins of some relativistic jets, and for this reason
it has become a very popular and studied topic among the astrophysical scientific
community. In particular, since the most powerful jets are seen in AGNs, great
interest has been aroused in black hole superradiance. Based on the work done by
Zel’dovich on rotational superradiance [129], starting from the Seventies many au-
thors (Hawking, Teukolski, Press, Unruh, Blandford and Znajek, etc.) intensively
worked on superradiance dealing with rotating black holes.
Nowadays, black holes superradiance can naturally be derived from thermodynam-
ics arguments. As we have already seen, the first law of black holes thermodynam-
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ics is encoded in the Smarr formula

δM =
κ

2
δAH + ΩHδJ + ψQH δQ+ ψPH δP (1.104)

where M is the ADM mass, κ the surface gravity, ΩH the angular velocity of the
black hole, J the angular momentum, Q and P are the electric and the magnetic
charges respectively and ψQ,PH are the electric and magnetic potentials respectively,
with all quantities evaluated at the horizon.
For simplicity, let’s start discussing the case of a rotating, neutral (Q = P = 0)
black hole. If we consider a wave with frequency ω and azimuthal number m, the
ratio of angular momentum to energy is [125]

L

E
=
m

ω
, (1.105)

and after scattering with the black hole the variation of angular momentum is

δJ

δM
=
m

ω
. (1.106)

Plugging it into the Smarr formula we get

(ω −mΩH)δM =
ωκ

2
δAH (1.107)

or equivalently
δM =

ωκ

2

δAH
(ω −mΩH)

. (1.108)

Extracting energy from the black hole means δM < 0; recalling that the second
law of black hole thermodynamics states that δAH > 0, the condition to extract
energy from the black hole and hence to have superradiance is

ω −mΩH < 0. (1.109)

In this case, rotational energy is extracted from the black hole and transferred to
the reflected wave. However, as we will now show, it is also possible to extract
energy from charged, non rotating black hole.
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Let’s now consider the case of an electrically charged and non rotating black hole
(J = P = 0) interacting with a monochromatic wave of frequency ω and charge
q. Analogously to the rotating case, the ratio of charge to energy of the wave is
given by

Q

E
=
q

ω
, (1.110)

and hence the interaction with the black hole causes a variation of the black hole
charge

δQ

δM
=
q

ω
. (1.111)

Again, after plugging it into the Smarr formula we obtain

δM =
ωκ

2

δAH

(ω − q ψQH)
, (1.112)

and from the fact that δAH > 0 we get the condition for superradiance for a
charged black hole,

ω − q ψQH < 0, (1.113)

where the energy extracted is the black hole charge.
Generalising to the case of a rotating and charged black hole, the critical superra-
diance frequency is

ωc = mΩH + q ψqH , (1.114)

where q is a generic charge and ψqH is the black hole’s corresponding potential.

An interesting phenomenon related with black holes superradiant amplifica-
tion is the so-called superradiant instability, which eventually leads to black
hole bombs [131–133]. Such instability is caused by the confinement of an expo-
nentially increasing amount of energy in the black hole’s surroundings; when the
confined energy reaches the threshold level, a large amount of the confined energy
is rapidly released: thus the evocative name "black hole bomb". Although at first
sight it seems a simplistic or even idealistic problem, physical configurations com-
parable to the one just described can be actually achieved in the surroundings of
rotating black holes [134–136].
To understand it, let’s consider the case of a scalar wave scattering off a rotating
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(Kerr) black hole. As we have described in the previous paragraph, depending on
the black hole’s angular velocity and on the scalar’s frequency the superradiance
regime can be achieved (1.109), resulting in an amplification of the reflected energy
at the expense of a reduction of the black hole’s rotational energy.
So, let’s now assume the superradiance is triggered. If we also assume the existence
of a perfectly reflecting screen (like a mirror) around the black hole and outside
the ergosphere, a wave reflected and enhanced by scattering off the event horizon
is then again totally reflected by the surrounding screen, causing the wave to be
trapped between the horizon and the screen: in such a region, the scalar’s energy
density is therefore confined. Furthermore, since the "natural mirror" surrounding
the black hole causes a total reflection of the superradiant waves back to the event
horizon, these waves will be reflected and enhanced again, in a loop process. In
such a loop, superradiant waves are trapped between the black hole’s horizon and
the mirror, being amplified after each scattering with the horizon; in this way,
the confined energy exponentially increases, finally leading to an instability which
causes a violent burst of energy which could be in principle observable [131–133].
Moreover, the superradiant instability and the extraction of rotational energy from
a spinning black hole can be related to the black holes populations in the Regge
plane [121], namely a black holes mass-spin diagram. In fact, since superradiance
is triggered above a certain threshold mass (depending on the black hole and the
scalar field masses) which is usually reached through accretion mechanisms, once
the superradiant regime is achieved and rotational energy is extracted the black
hole slows down, until the superradiance is exhausted (namely the superradiant
regime is no longer satisfied). At this point, the black hole can accrete new mass,
eventually undergoing to a new superradiant phase, then losing rotational energy
and slowing down again and so on and so forth. Consequently, black holes super-
radiance affects the population in the Regge plane, since supermassive, extremely
fast rotating black holes are predicted to not exist (for a more exhaustive discussion
about superradiance predictions in the Regge plane, see chapter 6 of [125]). Thus,
the natural arising question is: do black hole bombs and screening mirrors exist
in nature? Interestingly, for massive scalar fields surrounding rotating black holes
a "natural mirror" mechanism is provided by the Yukawa potential of the scalar
field, which naturally acts like a perfect mirror reflecting the low frequency modes
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[137, 138]. On the other hand, black hole bombs can also develop for massless
scalar fields, and it is therefore necessary to consider other mechanisms to provide
the mirror reflection, such as high-density matter in the black hole’s surroundings
[134, 139, 140]. Remarkably, since superradiance can be triggered even in the case
of non rotating but charged black holes, charged black holes bombs can detonate
as well, providing the existence of a confining, screening mechanism close to black
hole’s horizon. Without going into details about the physical nature of the sur-
rounding screen, on the base of the work done in [141, 142] we will soon show how
the superradiant instability for a charged black hole can end in a stable, static,
hairy configuration.

It is important to have a closer look at this physical system because, as we
will see soon, it can naturally provide an example of black hole with scalar hair,
in contrast to the no-hair theorem originally established by Israel [143] for the
Schwarzschild black hole and subsequently refined and extended to the case of
rotating and charged black holes. As simple as it sounds, the no-hair theorem
states that, in General Relativity, all the black hole solutions of the Einstein-
Maxwell action are described by only three observable classical parameters: mass,
electromagnetic charge and angular momentum, and all the other parameters (in-
formation) describing the matter and the energy of the black hole are lost inside
the event horizon [144]. In this sense, the black holes have no-hair, namely they
do not have any physical parameter observable at infinity (other than their mass,
charge and angular momentum). However, since all theorems are valid as long as
their assumptions are, the validity of such a strong theorem is based on two cru-
cial hypotheses/assumptions: the General Relativity gravitation theory and the
Einstein-Maxwell action. Thus, since the late Eighties a lot of counterexamples
have been proposed, showing the possibility of existence of black holes with hair
when some of the no-hair theorem hypotheses are relaxed; in particular, the very
first hairy black holes solutions were found in the context of the Skyrme model
[145] and Yang-Mills theory [146, 147]. Following these, several examples of black
holes with hair have been found; among these, we mention [148–152]; for a brief
summary of some important hairy black hole solutions found in the past years look
at [153, 154].
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As far as we are concerned in this work, in the context of modified gravity theories
with extra fields non-minimally coupled with gravity and/or electromagnetism,
several "not bald" black holes (i.e. they carry observable charge other than their
mass, electromagnetic charge and angular momentum ) have been found [155–162].

Let’s now go back to our example of static, charged black hole coupled with a
charged scalar field. The gravity-electromagnetic-scalar field system is described
by the action

S =

∫
d4x

√
−g
[
R

4
− 1

4
FµνF

µν − 1

2
gµνD∗

(µψ
∗Dν)ψ

]
(1.115)

where Dµ = ∇µ − iqAµ is the gauge derivative, ∇µ is the covariant derivative and
the symmetric/antisymmetric combinations are defined as

v(µν) =
1

2
(vµν + vνµ), v[µν] =

1

2
(vµν − vνµ). (1.116)

The gravity, electromagnetic and scalar field equations obtained from the action
(1.115) can be neatly written as:

Gµν = 2(T Fµν + Tψµν),

∇µF
µν = Jν ,

DµD
µψ = 0,

(1.117)

with
T Fµν = FµαF

α
ν − 1

4
gµνF

αβFαβ,

Tψµν = D∗
(µψ

∗Dν)ψ − 1

2
gµν
[
gαβD∗

(αψ
∗Dβ)ψ

]
,

Jν =
i q

2
[ψ∗Dνψ − ψ(Dµψ)∗] .

(1.118)

If we consider a small-amplitude scalar field with negligible backreaction on the
background geometry, in Boyer-Lindquist coordinates the spacetime is described
by the standard Reissner-Nordström metric:

ds2 = −fRN dt2 + f−1
RN dr

2 + r2 dθ2 + r2 sin2 θ dφ2, (1.119)
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where
fRN = 1− 2M

r
+
Q2

r2
(1.120)

and the electromagnetic potential is

Aµ = {−Q
r
, 0, 0, 0}, (1.121)

with Q being the electric charge.
For the scalar field, let’s assume a small-amplitude perturbation, monochromatic
with frequency ω and spherically-symmetric:

ψ(t, r) =
ϕ(r)

r
e−iωt. (1.122)

Introducing for convenience the tortoise coordinate r∗, the equation of motion of
the scalar field becomes

d2ϕ

dr2∗
+

[(
ω − q Q

r

)2

− fRN
r

dfRN
dr

]
ϕ = 0. (1.123)

At this point, we have to impose adequate boundary conditions. In this case,
we require that the scalar field is purely in-going on the event horizon; moreover,
assuming the existence of a perfectly reflecting mirror located at r = rM , we also
require a vanishing scalar field at the mirror’s location:

ϕ(−∞) ∼ e−iωr∗ , ϕ(rM) = 0. (1.124)

These boundary conditions determine a discrete spectrum of states with frequen-
cies ωn. In general, the eigenvalues ωn are complex: a positive imaginary part
corresponds to an exponentially growing mode, while a negative imaginary part
corresponds to an exponentially decaying one. The index n denotes the number
of nodes of the corresponding mode in the region r < rM ; thus, the n = 0 mode
has the mirror located at the first zero of the scalar field, the n = 1 one at the
second zero, the n = 2 mode at the third one and so on and so forth [132, 141].
In [141], it has been found that configurations with the mirror placed close to the
black hole horizon admit only n = 0 decaying modes, while configurations with the
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mirror placed far from the horizon admit exponentially growing n = 0 modes, thus
leading to a superradiant instability.1. To investigate if any hairy configuration
exist, the following ansatz for the metric is used:

ds2 = −f(r)h(r) dt2 + f−1(r) dr2 + r2 dθ2 + r2 sin2 θ dφ2, (1.125)

with
f(r) = 1− 2m(r)

r
(1.126)

and where m(r) is the effective mass within the sphere of radius r.
The scalar field is assumed to be real and, thanks to gauge freedom, it can be
chosen time independent: ψ(t, r) = ϕ(r). Similarly, exploiting the gauge freedom
the electromagnetic potential can be chosen in the form: Aµ = {A0(r), 0, 0, 0}.
The equations of motion for {f, h, A0, ϕ} now read

h′ = 2r

[(
qA0ϕ

f

)2

+ h(ϕ′)2

]
,

2(A′
0)

2 = −2

r

[
f ′h+

1

2
fh′ +

h

r
(f − 1)

]
,

0 = fA′′
0 +

(
2f

r
− fh′

2h

)
A′

0 − q2ϕ2A0,

0 = fϕ′′ +

(
2f

r
+ f ′ +

fh′

2h

)
ϕ′ +

(qA0)
2

fh
ϕ,

(1.127)

where the prime ′ denotes a variation with respect to r.
Again, we have to impose adequate boundary conditions on the horizon (see [141]
for a discussion on the following boundary conditions):

f(rH) = 0, f ′(rH) > 0, A0(rH) = 0, h(rH) = 1, (1.128)

in addition with the boundary condition at the mirror location

ϕ(rM) = 0. (1.129)

1It has been found that superradiant instability happens for both massless and lightly massive
scalar fields.
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The set of equations (1.127) together with the corresponding boundary conditions
can be analytically solved with a Taylor series expansion near the black hole hori-
zon [141], with all the functions depending just on a family of three parameters:
the scalar charge q, the scalar field magnitude on the horizon ϕ(rH) and the electric
field on the horizon A′

0(rH). Such results are also confirmed by numerical inte-
grations, which show that hairy configurations are supported depending on the
parameters {q, ϕ(rH), A′

0(rH)} [141]. Solutions with ϕ(rH) = 0 correspond to the
GR Reissner-Nordström ones, while uncharged solutions (A′

0 = 0 or q = 0) cannot
exist, since the scalar field does not develop nodes and do not vanish on the mirror.

To study the stability of such hairy configurations, it is necessary to consider
a linear perturbation of a non-vacuum hairy solution.
Denoting with {f̄(r), h̄(r), Ā0(r), ϕ̄(r)} the static, equilibrium functions which
satisfy the equations (1.127), we write the following time-dependent perturbations:

f =f̄(r) + δf(t, r),

h =h̄(r) + δh(t, r),

A0 =Ā0(r) + δA0(t, r),

ψ =ψ̄(r) + δψ(t, r),

(1.130)

where the only complex quantity is the scalar field perturbation δψ(t, r) with cor-
responding complex frequency ω. Similarly to (1.128), after imposing boundary
conditions at both the event horizon and the mirror location all the perturbations
(tensor, vector and scalar) appear to decay, making the solution stable [141].

Although we did not enter into much detail, in addition to being a clear ex-
ample of hairy black hole with a non trivial scalar hair supported, the procedure
described above to find the black hole solution and stability is very similar to the
one we will use in the next sections. At this point, it should be clear that hairy
black holes are actually plausible physical configurations, which can naturally de-
velop even from simple physical systems. In particular, concerning this work we are
interested in studying black hole configurations with scalar hair, since scalar fields
non minimally coupled with gravity and matter are currently valid candidates for
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both dark energy and dark matter. Thus, let’s now have a closer look to black
holes with scalar hair. As we have already discussed, the surprisingly simplicity of
black holes structure in GR is described by the No-hair theorem; however, as we
have pointed out, the validity and the strength of the theorem relies on the validity
of the assumptions, and relaxing any of them results in a natural circumvention
of the theorem. In particular, being based on the uniqueness of the Schwarzschild
and the Kerr families of black holes, the no-hair theorem is consequently based
on the assumptions of stationarity and asymptotic flatness of the geometry. Thus,
it could be interesting to investigate whether the theorem could be extended to a
larger class of black hole solutions (satisfying stationarity and asymptotic flatness)
coming from gravity theories different from GR (look for example at [163] for non
spinning black holes). Among these, we are particularly interested in scalar-tensor
ones. For such theories, ulterior assumptions on the scalar field symmetries and
on the matter sector are often required, which therefore leads to the possibility
of avoiding the theorem by breaking any of its assumptions. [164]. For example,
as it happens for stars and compact objects, in the presence of external matter
the black hole can develop a scalarization, namely a spontaneous accretion of a
non trivial scalar field profile around the black hole which ends to be stationary,
and hence a possible final, stable, hairy black hole geometry [135]. In their paper
[135], the authors show how the final state of the black hole depends on the nature
of the scalar field it is coupled with; in particular, depending on the scalar field’s
potential, its effective mass can be positive or negative, affecting the stability of
the configuration. If the effective mass is negative, the system is affected by a
tachyonic instability which leads to a spontaneous scalarization, resulting in a sta-
ble hairy configuration; on the other hand, if the effective mass is positive and
the geometry admits an ergoregion, depending on the matter configuration and
on the specific parameters of the theory it is possible to trigger the superradiant
instability. Then, depending on the frequency of the scalar field modes and on the
black hole mass and angular velocity, the superradiant instability can lead to a
black hole bomb or to long lived stationary scalar field configurations - known as
scalar clouds - around the black hole [135, 165].
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Following the work done in [135], we now show how the spontaneous scalarization

or the superradiant/scalar cloud configurations are developed. The results we will

provide in the following are therefore well known in the literature, but we believe

it is a useful, didactic introduction for a reader unfamiliar with such topic. On the

other hand, if the reader is already familiar or they are not interested into more

technical details, they can directly move to the next chapter.

As we have already discussed in the modified gravity section, scalar-tensor

theories of gravity can be described, in the Jordan frame, by the following generic

action [68]:

S =
1

4

∫
d4x

√
−g [F (Φ)R− Z(Φ)gµν∂µΦ∂νΦ− V (Φ)] + S(ψm; gµν) (1.131)

where gµν is the spacetime metric, R is the associated Ricci scalar, Φ is the scalar

field and S(ψm; gµν) is the matter action, with ψm denoting the matter fields

minimally coupled to the background metric gµν . The specific shape of functions

F (Φ), Z(Φ) and V (Φ) determine the specific theory within the family of theories.

Performing the following transformations

g̃µν = F (Φ)gµν , ϕ(Φ) =

∫
dΦ

[
3

4

F ′(Φ)2

F 2(Φ)
+

1

2

(Φ)

F (Φ)

]1/2
(1.132)

and defining

A(ϕ) =
1

F 1/2(Φ)
, W (ϕ) =

V (Φ)

F 2(Φ)
, (1.133)

we can recast the action 1.131 in the Einstein frame

S =

∫
d4x

√
−g̃

[
R̃

4
− 1

2
g̃µν∂

µϕ∂νϕ− W (ϕ)

4

]
+ S(ψm;A

2(ϕ)g̃µν). (1.134)

Assuming a regular behaviour of the potentials A(ϕ) and W (ϕ) around ϕ ∼ ϕ0
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and expanding the fields equations to first order in ψ = ϕ− ϕ0, we get [135]

G̃µν =+ 2

(
T̃µν + ∂µϕ0∂νϕ0 −

g̃µν
2
∂µϕ0∂

µϕ0

)
− g̃µν

2
W0

+ 2

(
∂µϕ0∂νψ + ∂µψ∂νϕ0 −

g̃µν
2
∂µϕ0∂

µψ

)
− ψ

g̃µν
2
W1,

□̃ϕ0 + □̃ψ =− A1

A0

T̃ +
W1

4
+ ψ

W2

2
+ ψ T̃

(
A2

1

A2
0

− 2
A2

A0

) (1.135)

with
T̃µν = − 2√

−g̃
δS

δg̃µν
(1.136)

and where Ai and Wi are the ith-coefficient of the Taylor expansions around ψ for
A(ϕ) and W (ϕ), respectively.Since we are interested in asymptotic flat solutions,
we can set W0 = W1 = 0. Looking at equations (1.135), it is clear that in
the presence of matter the GR solution ϕ0 = const is not a solution of the field
equations, unless A1 = 0. Thus, if A1 ̸= 0, the black hole solution necessary
develops a scalar hair, since the constant (trivial) scalar field configuration (which
is a GR solution) is not a solution anymore and the scalar field must acquire a non
trivial profile. On the other hand, if A1 = 0 any solution with constant scalar field
satisfies the field equations (1.135): anyway, it is possible that perturbative effects
due to the surrounding matter allow the formation of a supported non trivial scalar
hair around the black hole. To show this, let’s assume A1 = 0 and we are left with
the following Klein-Gordon equation (1.135):[

□̃− W2

2
+

2A2

A0

T̃

]
ψ = 0. (1.137)

From the last equation, we can define an effective mass

µ2
e(r) =

W2

2
− 2A2

A0

T̃ , (1.138)

and simply rewrite equation (1.137) as Klein-Gordon equation with mass term:

[
□̃− µ2

e(r)
]
ψ = 0. (1.139)
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1.6 Black holes part 2: no-hair theorem

By definition, the coefficient W2 is the coefficient of the quadratic term in the
Taylor expansion of the potential W (ϕ), and it is therefore associated with the
standard mass of the scalar field; since we are interested in ultralight scalar field
with Compton length much larger than the black hole’s Schwarzschild radius, we
can effectively consider the scalar field as massless, and hence setting W2 = 0

without loosing too much of generality. Thus, from the expression of the effective
mass µ2

e(r) we see that depending on the sign of A2/A0 and T̃ , the effective mass
could either be positive or negative. As we will now show, depending on the
positivity/negativity of the effective mass the black hole could trigger two very
different and interesting phenomena: spontaneous scalarization (when the mass
is negative) or superradiant instability (when the mass is positive), which can
eventually lead to the formation of stationary scalar clouds around the black hole.
In any case, the presence of the scalar field really affects the final configuration,
leading to qualitatively different configurations from GR.

Spontaneous scalarization

Let’s start with the case of a negative effective mass µe, which as we will now show
leads to a spontaneous scalarization.
We consider a spherically symmetric background described by the Schwarzschild
metric in Boyer-Lindquist coordinates; for the scalar field, assuming the separa-
bility of the variables we use the following ansatz:

ψ(t, r, θ, φ) =
∑
lm

ψlm(r)

r
Ylm(θ, ψ)e

−iωt (1.140)

which plugged into the equation (1.137) gives the equation of motion of the radial
component:

d2ψlm
dr2∗

+
[
ω2 − V(r)

]
ψ(r) = 0, (1.141)

where we have introduced the tortoise coordinate r∗

dr =

(
1− 2M

r

)
dr∗ (1.142)
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and we have defined the effective potential

V(r) =

(
1− 2M

r

)[
l(l + 1)

r2
+

2M

r3
+ µ2

e(r)

]
. (1.143)

As boundary conditions, as usual we impose the scalar field to be in-going on the
horizon and purely out-going at spatial infinity:

ψH ∼ e−iωr∗ , ψ∞ ∼ e+iωr∗ . (1.144)

Such boundary conditions determine a discrete set of eigenvalues for the com-
plex frequency ω; stable, decaying modes have a negative imaginary component
Im(ω) < 0, while eigenmodes with a positive imaginary component Im(ω) > 0 are
exponentially growing and hence unstable; given the potential V(r), a sufficient
condition to get unstable modes is [166]

∫ ∞

2M

V

f
dr < 0 (1.145)

which can be written in terms of the energy-stress momentum tensor using (1.143)
and (1.138):

2
A2

A0

∫ ∞

2M

T̃ dr >
2l(l + 1) + 1

4M
. (1.146)

At this point, to find the eigenvalues spectrum one should specify the matter
configuration T̃µν ; in [135] two explicit solutions for appropriate, simple choices
of T̃µν have been found, to show that spontaneous scalarization occurs above a
threshold effective mass µT . Remarkably, the presence of spontaneous scalarization
above a certain threshold mass seems to be a quite generic phenomenon shared by
many different physical systems. In particular, it has been shown that these results
hold for spherically symmetric background more general than the Schwarzschild
one, making this approach available for a larger class of black holes surrounded
by matter configurations. In addition, in [135] has been determined the final,
stationary, spherically symmetric solution for a thin matter shell configuration
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around a Schwarzschild black hole:

ds2 = −
(
1− 2M

r
+ F (r)

)
dt2 +

dr2

1− 2M/r +G(r)
+ r2 dθ2 + r2 sin2 θ dφ2,

(1.147)
where ψ(r), F (r) and G(r) are such that inside the shell we have

ψ = const, F (r) = G(r) =
const
r

, (1.148)

while outside the shell we have

ψ′(r) =
Σ

r(r − 2M)
,

F = − Σ2

2M2 r

[
2M + (r −M) log

(
1− 2M

r

)]
,

G =
Σ2

2M r
log
(
1− 2M

r

)
.

(1.149)

This is a black hole solution carrying an extra independent charge, namely a
primary1 scalar hair; in fact, at large distances the scalar field goes like

ψ ∼ Σ

r
, (1.150)

with Σ being the scalar charge completely determined by the matter content.
Interestingly, for theories such that A1 ̸= 0, the scalar charge also contributes to
the black hole total mass:

−gtt = 1− 2M − A1Σ

r
+
A2

1Σ
2 − 2A1MΣ + 2A2Σ

2

r2
. (1.151)

and therefore also the event horizon radius depends on the scalar field charge Σ.

1We will discuss about the difference among primary and secondary scalar hair in the next
chapters.
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To summarize, spherically symmetric black hole backgrounds in scalar-tensor
theories with matter content can naturally develop and support scalar hair, which
is consequently fully determined by the specific matter configuration and not by
the black hole parameters, being in this sense a primary hair. Since this is a generic
effect which also occurs for theory admitting GR solutions, it could be in principle
used as a smoking gun to detect non GR solutions.

Superradiant instability

In a different scenario, when the effective mass µe defined as in (1.138) is positive,
the scalar field can spontaneously trigger a superradiant instability and eventually
settle down into stable, stationary scalar clouds surrounding the black hole. As in
the case of massive scalar fields around rotating black hole with an ergosphere (or
even static charged black holes), superradiant enhancement can extract rotational
energy (or charge) from the black hole and end in a final state with possible
supported hair ([141],[142],[157]). For the scalar field ψ and the effective mass µe
we use the following ansatze:

ψ = e−iωt+imφ ψ(r)S(θ)

µ2
e(r) = µ2

0 +
h(θ) + k(r)

r2 + a2 cos2 θ
(1.152)

where µ0 is the canonical mass of the scalar field and a is the rotational parameter
a = J/M . Thus, it is possible to separate the radial and the angular equations,
and we get [167]:

d

dr

(
∆
dψ(r)

dr

)
+

[
ω2(r2 + a2)2 − 4aMrmω + a2m2

∆
− k(r)− r2µ20 − λlm − a2ω2

]
ψ(r) = 0,

1

sin θ
d

dθ

(
sin θdS(θ)

dθ

)
+

[
a2(ω2 − µ20) cos2 θ − m2

sin2 θ
− h(θ) + λlm

]
S(θ) = 0,

(1.153)

where
∆ = r2 + a2 − 2Mr (1.154)
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and with λlm being the separation constant coming from the regularity conditions
imposed on the angular function S(θ). Obviously, to different choices of h(θ) and
k(r) correspond different models, which could in principle behave very different one
from the other. However, even if a systematic and general study is still required,
some common features appear to be shared by many different configurations [135].
For example, as in the case of a massive scalar field around a rotating black hole
screened by a perfect mirror, the unstable modes (ωI > 0) trigger superradiance
when the condition ω < mΩH is satisfied, with ΩH being the black hole angular
velocity. Moreover, an incident wave which satisfies superradiance condition and
which therefore admits the following asymptotic behaviours

Te−i(ω−mΩH)r∗ r∗ → +∞

e−iωr∗ + R eiωr∗ r∗ → −∞
(1.155)

where T and R are the renormalized transmission and reflection coefficients re-
spectively, usually admits resonant frequencies in the amplification factor, i.e. fre-
quencies such that R(ωr) → ∞. As pointed out in [135], the existence of modes
such that ωR → ωres suggests the existence of very long-lived stationary modes,
such that ωI ≪ ωR, analogous to the resonant stationary modes for massive scalar
perturbations of Kerr black holes [168]. In fact, when ωR ∼ ωres, the wave at in-
finity is almost purely outgoing, and since ωI ∼ 0 the mode is stationary, namely
it is not decaying or growing; thus, in the surrounding of the black hole, there
exist a "cloud" of non vanishing, stationary scalar field modes, whose frequencies
correspond to the resonant frequencies of the superradiant gain factor.

1.7 Summary

To summarize, in this chapter we have introduced the basic aspects of black hole
physics, modified gravity and axion cosmology necessary to understand the results
discussed in the next chapters. Moreover, in section 1.6 we have seen how the
presence of scalar fields (and matter) in the surrounding of static/rotating and
neutral/charged black holes can lead to configurations with a non trivial scalar
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profile supported. Depending on the mass and frequency of the scalar field, the
black hole can trigger superradiance, eventually developing an instability and det-
onating a black hole bomb leading to a final hairy configuration or accreting a sta-
tionary scalar cloud in the black hole surroundings. Interestingly, in any scenario
the presence of the scalar field leads to final configurations different and poten-
tially distinguishable from the GR ones. On this basis, in the following chapters
we will focus our attention on different systems with black holes in non standard
GR theories, looking for potentially distinctive traits of the resulting black hole
configurations.
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Chapter 2

A new rotating black hole
solution

In this chapter, based on [169], we find an exact rotating black hole solution in
a Generalised Proca theory of gravity. Exact solutions describing rotating black
holes can offer important tests for alternative theories of gravity, motivated by
the dark energy and dark matter problems. We present an analytic rotating black
hole solution for a class of vector-tensor theories of modified gravity, valid for
arbitrary values of the rotation parameter. The new configuration is characterised
by parametrically large deviations from the Kerr-Newman geometry, controlled
by non-minimal couplings between vectors and gravity. It has an oblate horizon
in Boyer-Lindquist coordinates, and it can rotate more rapidly and have a larger
ergosphere than black holes in General Relativity (GR) with the same asymptotic
properties. We analytically investigate the features of the innermost stable circular
orbits for massive objects on the equatorial plane, and show that stable orbits lie
further away from the black hole’s horizon with respect to rotating black holes in
GR. We also comment on possible applications of our findings for the extraction
of rotational energy from the black hole.

2.1 Motivations and introduction

The new era of gravitational wave astronomy opens new opportunities for investi-
gating with great precision the physics and dynamics of extreme compact objects,
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2. A NEW ROTATING BLACK HOLE SOLUTION

such as black holes and neutron stars (see e.g. [170]), and it will allow us to
study for the first time the properties of fundamental interactions in a strong
gravity regime, and to test theories of gravity that are alternative to Einstein’s
General Relativity (GR) [8]. Moreover, the lack of a fully understood and con-
sistent theory of cosmological dark energy and dark matter keeps motivating the
attempts to modify GR to extend it to a broader gravity theory. For example,
it is important to explore the possibility to find theories admitting accelerating
cosmological solutions with no need of a small positive cosmological constant (see
e.g. [171]). The theoretically most interesting frameworks include scenarios auto-
matically equipped with screening features, as chameleon [56] or Vainshtein [54]
mechanisms. Screening mechanisms are able to locally hide the effects of additional
light degrees of freedom besides GR’s spin-2 field, and reproduce the predictions
of Einstein’s theory of gravity in a weak-field, spherically symmetric regime: see
[172] for a review. The study of the properties of black hole solutions in these
scenarios can provide new strong gravity tests for these theories, possibly man-
ifesting sizeable deviations from GR. In this chapter, based on [169], we focus
on theories with additional degrees of freedom non-minimally coupled to gravity
through derivative interactions, which are essential for an implementation of Vain-
shtein screening mechanism. In the scalar-tensor case, the prototypes for such
set-up are Galileons [173] and Horndeski [174] theories. The study of spherically
symmetric black hole solutions in these scenarios have lead to various interesting
results, reviewed e.g. in [158]. Here we focus on vector-tensor versions of these
theories, dubbed vector Galileons, or Generalised Proca [10, 175, 176]. Various ex-
amples of static, spherically symmetric black hole configurations have been found,
while the study of compact objects as neutron stars have been recently developed
[161, 177–184]. Moreover, GWs detections [37] have confirmed that the majority
of astrophysical black holes are spinning, setting the need of rotating black hole
solutions in the contest of modified gravity theories, with the possibility to find
new ways to test GR and other modified gravity theories.

In this work, we present and study examples of rotating black hole solutions
with regular horizons for vector Galileons. Rotating black hole configurations
which deviate from the Kerr family are hard to obtain in any theory of gravity,
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and only few examples of exact solutions are known in modified gravity frame-
works. Solutions are known for scalar-tensor theories [185, 186], also with a com-
plex scalar [157], and in the context of Einstein dilaton Gauss-Bonnet theories
[187, 188]. Moreover, slowly rotating solutions in Horndeski theories are discussed
in [189]: see [2] for a comprehensive review, and [190, 191] for useful parameter-
isations of possible deviations from the Kerr family of black holes in the context
of arbitrary theories of gravity. Yet, given the fact that most astrophysical black
holes are spinning, it is important to pursue the effort to determine and analyze
explicit rotating black hole configurations in theories alternative to General Rela-
tivity. An additional theoretical reason to study rotating configurations is the fact
that these objects break spherical symmetry (being at most axially symmetric).
Hence they are an ideal set-up to start investigating screening mechanisms – as
for example the Vainsthein mechanism – that are well studied and are known to
be efficient only for spherically symmetric systems.

In this chapter, we determine exact solutions describing rotating black holes,
by applying a disformal transformation [13, 192] on a version of the Kerr-Newman
(KN) solution of the Einstein-Maxwell theory of gravity. The resulting configu-
ration solves the equations of motion associated to a particular vector Galileon
action, and it is parametrically different from a KN system. Having exact solu-
tions allows us to analytically investigate distinctive properties of spinning black
holes in our theory; first, we show that our configurations are characterized by
three asymptotic charges, namely the black hole’s mass, angular momentum, and
vector charge. We then show that for a particular choice of the disformal transfor-
mation the black hole’s horizon is oblate in Boyer-Lindquist coordinates, since its
radial position depends on the polar angle. This is a feature that can make such
black hole configuration distinguishable from KN solutions, whose horizon lies at
constant value of the radius in such coordinate system. Moreover, the black hole’s
maximal spin can be parametrically larger than KN configurations, for the same
values of the asymptotic charges. This solution also admits a ‘massless’ limit of
black hole with zero mass, but with a vector charge which ensures the existence
of a regular horizon. The study of equatorial circular trajectories admits an ana-
lytical treatment, and we show that probe massive objects can rotate faster than
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in the KN family of solutions. Quite remarkably, innermost stable circular orbits
(ISCOs) lie further away from the black hole’s horizon with respect to rotating
black holes in GR, with possible applications for the extraction of rotational en-
ergy from the black hole.

This chapter is structured as follows. In section 2.2 we discuss the set-up of
the modified gravity theory we study: we apply a disformal transformation to a
KN black hole in order to generate a different black hole solution in an effective
vector-tensor theory. In section 2.3 we go through a brief but necessary review of
basic geometrical concepts such as singularities, killing vectors and horizons. In
section 2.4 we discuss our results, i.e. an exact, rotating black hole solution in a
vector-tensor theory. In particular, as it will be explained, this regular black hole
solution comes from a particular choice for the applied disformal transformation,
specifically discussed in subsection 2.4.2: for such solution, we also study the ISCO
trajectories, since they could provide distinctive physical features distinguishable
from GR. At the end, in section 2.5 we conclude with a short recap of the main
results we found and we briefly discuss about possible applications and future
developments for such results. Throughout the chapter, we use a mostly plus
metric signature, and Weinberg’s conventions for the Riemann and derived tensors:
our results are expressed in natural units, setting c = ℏ = G = 1 and also 4πϵ0 = 1.

2.2 Set-up: disformal transformation of a Kerr-
Newman black hole

We build a modification of Einstein gravity which includes additional vector de-
grees of freedom, belonging to the class of theories dubbed vector-tensor Galileons
[10, 175, 176]. Such vector degrees of freedom can be associated with dark forces
motivated by dark matter or dark energy model building [193]. Our aim will be to
investigate new rotating black hole solutions for the theory we consider. In order
to construct a modified gravity action, our starting point is a standard Einstein-
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Maxwell system, described by an action

SEM =

∫
d4x
√

−g̃

[
R̃

4
− 1

4
F̃ µνF̃µν

]
, (2.1)

where R̃ is the Ricci scalar and F̃ the electromagnetic field strength, and the
corresponding Einstein’s equation is

R̃µν −
1

2
g̃µνR̃ = T̃µν , (2.2)

with
T̃µν = F̃ µαF̃ ν

α − 1

4
g̃µνF̃αβF̃

αβ (2.3)

being the usual electromagnetic stress-energy tensor. Although we call the pre-
vious action an ‘Einstein-Maxwell’ system, as we are going to discuss the vector
fields appearing in equation (2.1) should not be identified with standard electro-
magnetism, but with additional dark vector forces, namely hidden U(1) gauge
vectors related with dark energy and/or dark matter models. The theory enjoys
an Abelian gauge invariance Aµ → Aµ + ∂µξ for any arbitrary function ξ, and
it propagates four degrees of freedom, two in the transverse traceless tensor sec-
tor, and two in the transverse vector sector. Exact black hole solutions for the
equations of motion associated for this theory are well studied, and include static
Reissner-Nordström and rotating Kerr-Newman (KN) configurations, reviewed in
chapter 1. As static/stationary solutions of Einstein-Maxwell theory, they satisfy
no-hair theorems, and they are therefore uniquely defined in terms of their mass,
angular momentum, and charge.

To generate new solutions, we act on this action with a disformal transforma-
tion [12, 13, 194, 195] involving vector fields and parameterized by a real constant
β, which plays a key role in what follows:

g̃µν(x) = gµν(x)− β2Aµ(x)Aν(x) , (2.4)

Ãµ(x) = Aµ(x) + ∂µα(x) , (2.5)
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for any arbitrary function α(x) (the transformation of the vector simply reflects the
gauge freedom of the original theory, and α does not appear in the final formulae).
Firstly discussed in [12] as causal preserving transformations, disformal transfor-
mations have been largely studied in the last decade in the context of scalar-tensor
theories of gravity, since they appear to transform such theories of gravity without
adding any extra degree of freedom [13]. In general, a disformal transformation of
a metric gµν reads

gµν → C(vαv
α)gµν +D(vαv

α)vµvν (2.6)

with vµ being the disformal vector and C(vαv
α) and D(vαv

α) the conformal and
disformal coefficient, respectively. Although more general disformal/conformal
transformations can be considered (see for example [194]), the transformation (2.4)
is sufficient for our purposes. The disformed metric is invertible, with inverse given
by

g̃µν = gµν + β2γ20A
µAν with γ20 =

1

1− β2AµAµ
. (2.7)

Up to total derivatives, the disformed action reads

Sdisf = SEH + Smatt =

∫
d4x

√
−g(LEH + Lmatt) , (2.8)

with Lagrangian densities

LEH =
1

4γ0

[
R− β2

4
γ20
(
SµνS

µν − S2
)
+
β2

4
FµνF

µν +
β4

2
γ20FµρF

ρ
ν A

µAν
]

(2.9)

and

Lmatt = − 1

4γ0
[F µνFµν + 2β2γ20FµρF

ρ
ν A

µAν ], (2.10)

with
Fµν = ∇µAν −∇νAµ ,

Sµν = ∇µAν +∇νAµ,

S = Sµνg
µν .

(2.11)
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In a compact notation, the full disformal Lagrangian reads:

Ldisf =
1

4γ0

[
R− β2

4
γ20
(
SµνS

µν − S2
)
− 4− β2

4
FµνF

µν +
β4 − 4β2

2
γ20FµρF

ρ
ν A

µAν
]
.

(2.12)
The system after the disformal transformation describes a vector-tensor theory of
gravity which deviates from the usual Einstein-Maxwell case (2.1) by quantities
depending on the disformal parameter β2. The action (2.12) will be our modified
gravity theory of reference in the following. It contains non-minimal couplings
of the vector to gravity, and derivative self-interactions of the form that usually
characterize Horndeski systems. Moreover, the theory is free of Ostrogradsky’s
instabilities. In fact, this system belongs to the class of theories dubbed vector-
tensor Galileons or Generalised Proca, which have been investigated at length for
their distinctive properties for cosmology [11, 196–202], field theory [203–213], and
black holes [161, 177–184]. Disformal transformations are known to preserve the
causality properties of the theory one starts with [12]: thus, since the Einstein-
Maxwell theory is causally well behaved, one does not expect instabilities or causal
pathologies in the theory described by equation (2.12).

Although the two actions (2.1) and (2.12) are related by a disformal trans-
formation, they are not equivalent when additional matter, minimally coupled to
gravity, is included into the system. Hence, interpreting the system of (2.12) as
part of a more general action including matter fields, we can expect that its physical
consequences can be different from an Einstein-Maxwell set-up (we will elaborate
more on these points in the next sections). Action (2.12) breaks an Abelian gauge
invariance, since the Lagrangian depends explicitly on the gauge potential Aµ. On
the other hand, it inherits some memory of the original gauge symmetry of action
(2.1); in fact, the final action is invariant, up to total derivatives, under the more
general gauge transformation

gµν → gµν − β2 ∂µχAν − β2 ∂νχAµ − β2∂µχ∂νχ , (2.13)

Aµ → Aµ + ∂µχ , (2.14)

with χ being an arbitrary scalar function. It is easy to check that the quanti-
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ties g̃µν and Ãµ (equations (2.4) and (2.5)) are invariant under the simultaneous
transformations (2.13), (2.14). Hence the final action, which can be expressed in
terms of the combinations g̃µν and Ãµ, is invariant under this symmetry. Notice
that the limit β → 0 reduces, as expected, to standard Abelian gauge symmetry.
Such symmetry ensures that the final action propagates four dynamical modes.
The absence of a fifth, scalar degree of freedom is a welcoming feature for phe-
nomenology, since it can automatically avoid stringent constraints on the existence
of long range scalar fifth forces. In our analysis, we focus on studying new regular
rotating black holes for the theory (2.12), equipped with the new gauge symme-
try (2.13), (2.14), obtained by a disformal transformation of the Einstein-Maxwell
action. Since the metric g̃µν is solution of the Einstein-Maxwell action (2.1), we
assume the following:

• in the static, spherically symmetric case, g̃µν is the the Reissner-Nordström
metric gRN with corresponding gauge vector ARNµ ;

• in the stationary, axisymmetric case, g̃µν is the Kerr-Newman metric gKN

with corresponding gauge vector AKNµ .

Moreover, as we have already mentioned, the Einstein-Maxwell action (2.1) does
not simply describe electromagnetism, but it could be rather describe dark forces
models. However, for simplicity and to not be pedantic, throughout the chapter
we use the notation and terminology of the electromagnetic case, but the reader
is aware that is just a convenience choice. Since the Kerr-Newman solution is the
rotating generalisation of the static Reissner-Nordström one in the limit a→ 0, we
now focus our attention on the more generic rotating case, being able to recover
the static one when a→ 0. For an electrically charged rotating black hole, using a
Boyer-Lindquist coordinate system the corresponding electromagnetic vector reads

AKNµ = {At(r, θ), 0, 0, Aφ(r, θ)} (2.15)

with
At(r, θ) =

−Qr
r2 + a2 cos2 θ , Aφ(r, θ) =

aQ sin2 θ

r2 + a2 cos2 θ . (2.16)
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Again, the static Reissner-Nordström case is recovered setting a = 0, and we get:

ARNµ = {−Q
r
, 0, 0, 0}. (2.17)

Both in the static and in the stationary case, the components Ar and Aθ do not
affect the geometry, and using the Abelian gauge symmetry and the equation of
motion we can gauge them away and set them equal to zero. However, if we want
to be completely generic (and this will be reveal itself useful in the following), the
Kerr-Newman gauge vector is

AKNµ = {At(r, θ), Ar(r, θ), Aθ(r, θ), Aφ(r, θ)}, (2.18)

with At, Aφ given by (2.16) and Ar, Aθ being the radial and the polar profiles, re-
spectively. In particular, from the Einstein’s equation (2.2) we obtain the following
condition on the radial and polar components:

F̃rθ = ∂rAθ(r, θ)− ∂θAr(r, θ) = 0. (2.19)

It is important to notice that the disformed action mixes metric and vector degrees
of freedom, breaking Abelian gauge invariance. Therefore, it is not possible to
simply gauge away the radial and polar profiles, and they consequently affect the
geometry. So, the choice of both Ar(r, θ) and Aθ(r, θ) is crucial for the resulting
geometry: it has to be consistent with (2.19) and in the limit β2 → 0 (when
the disformal transformation is off and the action (2.12) simply reduces to the
Einstein-Maxwell one (2.1)) the gauge vector has to reduce to (2.16). To have
(2.19) satisfied, we have 4 different possibilities:

• both Ar and Aθ vanish:

{Ar(r, θ) = Aθ(r, θ) = 0}; (2.20)

• Aθ vanishes, while Ar is a function of the radial coordinate only (or vicev-
ersa):

{Ar(r), Aθ(r, θ) = 0}; (2.21)
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• Aθ is a function just of the angular variable θ, while Ar is a function of the
radial coordinate only:

{Ar(r), Aθ(θ)}; (2.22)

• both Ar and Aθ are generic functions of r and θ:

{Ar(r, θ), Aθ(r, θ)}. (2.23)

In the following sections, we study each case separately, since, as we will show,
they lead to very different results.

2.3 Singularities, Killing vectors and horizons

Before moving to the study of the different scenarios corresponding to different
choices of the gauge vector Aµ, a very brief review on some basic geometrical ob-
jects is necessary for sections to come. For each of the different cases (2.20, 2.21,
2.22, 2.23), we have to check the regularity of the geometry and the position of
the horizons if any singularity eventually appears. By definition, a singularity is
a region of spacetime where the curvature tends to infinity. From this definition,
since singularities are located at those points where the curvature invariants di-
verge, we have to be sure that eventual divergences of the curvature scalars are
screened by an event horizon, avoiding the appearing of naked singularities.

To try to formally and intuitively define what an event horizon is, we first need
some preliminary definitions. In General Relativity and more in general in pseudo-
Riemannian geometry, a null hypersurface is a hypersurface (namely a (n −
1)-dimensional submanifold Σ embedded in a n-dimensional manifold M) whose
normal vector is a null vector, and therefore it is both tangent and orthogonal to
Σ. Specifying the hypersurface through a scalar function f as

f(x) = const, (2.24)
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the vector field
ξµ = gµν∇νf (2.25)

is manifestly normal to the hypersuface. Moreover, since we are considering a null
hypersurface, on Σ it is also true that

ξµξµ = 0, (2.26)

which together with (2.25) leads to

ξν∇νξ
µ = 0. (2.27)

To be precise, the previous condition is satisfied if the geodesic corresponding to
the tangent vector is affinely parametrised1: otherwise, the geodesics equation
reads

ξµ∇µξν = F (τ)ξν , (2.28)

where the scalar function F is null if the parameter τ is the affine one: the affinely
parametrised null geodesics xµ(τ) are known as the generators of the hypersur-
face Σ.
Instead, a Killing vector is an infinitesimal generator of an isometry on a man-
ifold; given a metric g, a Killing vector vµ represents a direction along which
the metric is preserved, namely it corresponds to a quantity which is conserved
along geodesics. Geometrically, the Lie derivative of the metric with respect to
the Killing vector is null:

Lv g = 0, (2.29)

which in local coordinates can be written as

∇(µvν) = 0. (2.30)

Therefore, a Killing horizon is defined as a null hypersurface on which the norm
of a Killing vector vanishes. As already discussed in the previous chapter, we can
naively but intuitively define an event horizon as a hypersurface separating those

1Indeed, the curves x(τ) such that ξµ = dx(τ)
dτ are actually geodesics.

71



2. A NEW ROTATING BLACK HOLE SOLUTION

spacetime points which cannot affect any observer and event in the outside region.
Equivalently, the event horizon can be intuitively defined as the boundary of the
spacetime region from where light rays cannot totally escape. From the second
definition, it is clear why the event horizon is a null hypersurface, and hence the
relations (2.25) and (2.27) must hold on the horizon.
For stationary, asymptotically flat spacetimes, there are convenient coordinate
systems in which it is easy to find the event horizon position by observing the
light cones "tilting over" as it happens in the Schwarzschild case [22, 25], in such
a way that (inside the horizon) future oriented light rays propagate towards the
singularity, with no chance to cross the horizon and escape. Since a stationary
spacetime admits an asymptotically timelike Killing vector, on hypersurfaces t =
const we can choose a 3-dimensional coordinate system in which the metric at
infinity is just the Minkowski one in a spherical coordinate system. So, at infinity,
r = const are timelike hypersurfaces; to find where they become null, it is sufficient
to consider the normal vector to such hypersurfaces, namely:

∂µr, (2.31)

and to find where its norm becomes null:

gµν∂µr∂νr = grr = 0. (2.32)

Thus, the event horizon is defined by r = rH such that

grr(rH) = 0. (2.33)

For static black holes like Schwarzschild and Reissner-Nordström ones, the event
horizon coincides with the Killing horizon associated with the time translation
Killing vector

kµ = {1, 0, 0, 0}, (2.34)

since it happens that

kµkµ|r=rH = ∂µr ∂
µr|r=rH = 0. (2.35)
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Instead, for stationary black holes like Kerr and Kerr-Newmann ones, the event
horizon coincides with the KiIlling horizon associated with the Killing vector χµ

defined as
χµ = kµ + ωrµ, (2.36)

with kµ being the time translation Killing vector and rµ the φ-rotation Killing
vector

rµ = {0, 0, 0, 1}. (2.37)

From the definition, we have

χµχµ|r=rH = ∂µr ∂
µr|r=rH = 0. (2.38)

In general, for stationary geometries, the hypersurface where kµkµ = 0 is the er-
gosurface1, being the external boundary of the spacetime region (ergosphere)
where no observer can remain stationary with respect to the black hole, since the
spacetime is dragged by the black hole’s rotation.

2.4 New rotating solutions in vector-tensor the-
ories of gravity

In this section we show that a disformal transformation acting on an appropriate
solution of the original field equations may lead to a new regular, rotating black
hole solution for action (2.12), with a non-trivial profile for the vector field. One
might expect that the non-linearity of the field equations and the fact that we
renounce spherical symmetry imply that rotating configurations in this theory are
different from GR solutions. We confirm this expectation, showing that rotating
configurations with non-trivial vector profiles have specific properties that make
them distinguishable from their GR counterparts. This fact can lead to qualita-
tively new ways to test modified gravity models, by investigating the properties of

1Another common name in literature is infinite redshift surface, since the redshift of a sta-
tionary observer diverges on such hypersuface.
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their black hole solutions.

We start from a Kerr-Newman solution of the Einstein-Maxwell action (2.1),
which can be expressed in Boyer-Lindquist coordinates as

ds2 =

(
dr2

∆
+ dθ2

)
ρ2 −

(
dt− a sin2 θ dφ

)2 ∆
ρ2

+
[
(r2 + a2) dφ− a dt

]2 sin2 θ

ρ2
,

(2.39)
together with the gauge vector

Aµ =

{
−Qr
ρ2
, Ar(r, θ), Aθ(r, θ),

aQ r sin2 θ

ρ2

}
, (2.40)

where we have defined:

∆ = a2 + r2 − 2Mr +Q2, ρ2 = r2 + a2 cos2 θ. (2.41)

As already discussed in chapter 1, the KN configuration describes a rotating
charged black hole: see e.g. [20, 21] for comprehensive reviews on rotating black
hole solutions in GR. The constants M , Q, and a are associated with the black
hole’s mass, charge, and angular momentum, and they are the three Komar
charges associated with Komar integrals of kµ, rµ and Aµ: see the appendix 2.6
at the end of this chapter for more details. As we have already explained in the
previous section, exploiting the Abelian gauge symmetry of the Einstein-Maxwell
action we can set the radial and the polar components of the Kerr-Newman gauge
vector to zero:

Ar = Aθ = 0. (2.42)

However, since the disformal transformation mixes metric and vector degrees of
freedom, the standard Abelian symmetry is broken, and the radial and polar com-
ponents of the gauge vector become crucial for the geometry. In the following, we
will study 4 different choices for the radial and polar components, corresponding
to the 4 cases (2.20, 2.21, 2.22, 2.23).

74



2.4 New rotating solutions in vector-tensor theories of gravity

2.4.1 Case 1: Ar(r, θ) = Aθ(r, θ) = 0

We apply the disformal transformation of eq (2.4) to equation (2.39), with disfor-
mal vector Aµ taking the form:

Aµ =

{
−Qr
ρ2
, 0, 0,

aQ r sin2 θ

ρ2

}
. (2.43)

The resulting configuration is a solution of the vector-tensor equations of motion
coming from the action (2.12), describing a stationary, axisymmetric system.
Using a Boyer-Lindquist coordinate system, the disformed metric reads

ds2 = gtt dt
2 + grr dr

2 + gθθ dθ
2 + gφφ dφ

2 + 2 gtφ dt dφ, (2.44)

with components

gtt = − 1− (Q2 − 2Mr) (r2 + a2 cos2 θ)− β2Q2r2

(r2 + a2 cos2 θ)2
,

gtφ = a sin2 θ
(Q2 − 2Mr) (r2 + a2 cos2 θ)− β2Q2r2

(r2 + a2 cos2 θ)2 ,

grr =
r2 + a2 cos2 θ

a2 + r2 − 2Mr +Q2
,

gθθ = r2 + a2 cos2 θ,

gφφ = sin2 θ

{
r2 + a2 − a2 sin2 θ [(Q2 − 2Mr) (r2 + a2 cos2 θ)− β2Q2r2]

(r2 + a2 cos2 θ)2
}
.

(2.45)
Since the disformal vector (2.43) is exactly the Kerr-Newman gauge vector, the dis-
formed metric has no additional components compared to the Kerr-Newman one.
In particular, the metric is still stationary, axisymmetric and asymptotically flat,
with only one non diagonal component gtφ corresponding with rotations around
the symmetry axis. This geometry describes a rotating black hole with regular
horizon, charged under the vector field Aµ, where the dimensionless quantity β2

parametrically controls deviations from the Kerr-Newman geometry in eq (2.68).
Similarly to the Kerr-Newman solution, the geometry depends on three integra-
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tion constants (M , a, Q) corresponding as usual at mass, spinning parameter and
charge, respectively; moreover, the geometry also depends on the parameter β2

associated the non-minimal couplings of vector to gravity in action (2.12). Besides
mass and spin, the geometry is charged under the vector degrees of freedom that
control our modification of gravity (and should not be simply identified with elec-
tromagnetism). Using the Mathematica package xAct [214], we explicitly checked
that equations (2.68),(2.69) are a solution of all the equations of motion associ-
ated with the disformed vector-tensor action. It is important to emphasise that
although this configuration is disformally related to Kerr-Newman, it is a new
solution for the vector-tensor modified gravity theory we are considering.

2.4.1.1 Horizons and singularities

At this point, we have to study the position of the event horizon, the ergosur-
face and the spacetime singularity, to check whether the solution is everywhere
regular outside the event horizon. As we will show soon, the event horizon is not
affected by the disformal transformation, while both the ergosurface and the singu-
larity depend on the parameter β, and therefore they are affected by the disformal
transformation. Given a spherical coordinate system {t, r, θ, φ}, the event horizon
corresponds to points where the hypersurfaces of constant r become null, given by
the condition

grr = 0 . (2.46)

For the spacetime described by the metric (2.44) with (2.45), we find that the
event horizon coincides with the Kerr-Newman one, namely

rH =M +
√
M2 − a2 −Q2. (2.47)

This fact was quite expected, since the disformal transformation does not affect
the radial components of the metric. However, since the disformal transformation
affects the time component, it is not surprisingly that the ergosphere is different
compared with the Kerr-Newman one. In fact, keeping in mind that the ergosur-
face is given by the condition

kµkµ = 0 (2.48)
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with kµ being the killing vector associated with stationarity (2.34), the disformed

ergosurface ΣE is defined by

ΣE ≡
(
a2 cos2 θ + r2 − 2Mr +Q2

) (
a2 cos2 θ + r2

)
− β2Q2r2 = 0, (2.49)

to be compared with the Kerr-Newman one

ΣKN
E ≡

(
a2 cos2 θ + r2 − 2Mr +Q2

) (
a2 cos2 θ + r2

)
= 0, (2.50)

which leads to

rKNE = M +
√
M2 − a2 cos2 θ −Q2. (2.51)

From (2.49), it is clear that the Kerr-Newman case is recovered in the limit β2 → 0,

as expected. At this point, we have to compare the position of the event horizon

with the ergosurface. As it can be seen from (2.49), the ergosphere has the shape

of an ellipsoid, with maximum radius on the equatorial plane (θ = π
2
):

r
π
2
E =M2 +

√
M2 −Q2(1− β2) (2.52)

while at poles (θ = 0, π) the radius takes its minimum value.

Assuming β real and therefore β2 ≥ 0, we have

r
π
2
E ≥ r0,πE ≥ rH , (2.53)

since for a spinning black hole we have

β2Q2 > −a2 (2.54)

and therefore

ΣE(rH) < 0, (2.55)

which prove both the inequalities in (2.53); thus, the ergosurface is totally located

outside the event horizon. At this point, we have to be sure that singularities are
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enclosed within the horizon. The expression for the Ricci scalar is

R =
β2ζ(r, θ)

(a2 cos2 θ + r2)4 [(a2 + r2 − 2Mr +Q2) (a2 cos2 θ + r2)− β2Q2r2]2
, (2.56)

with ζ(r, θ) being a everywhere regular function which does not affect the regularity
of the geometry; thus, the Ricci scalar is divergent both on the Kerr ring

r2 + a2 cos2 θ = 0 (2.57)

and on the hypersurface ΣS such that

ΣS ≡
(
a2 + r2 − 2Mr +Q2

) (
a2 cos2 θ + r2

)
− β2Q2r2 = 0. (2.58)

Therefore, in order to avoid naked singularities, we have to check whether the
hypersurface ΣS is entirely inside the event horizon. Similarly to the ergosurface,
ΣS is an ellipsoid with maximum radius on the equatorial plane, where it takes
the value

r
π
2
S =M +

√
M2 − a2 −Q2(1− β2), (2.59)

and so we have
r

π
2
S ≥ r

π
2
E , (2.60)

where the equality is satisfied in the static limit a = 0.
Moreover, from (2.58) we observe that on the poles it happens

Σ0,π
S = Σ0,π

E , (2.61)

which shows that the hypersurface ΣS lies outside the ergosurface but they coincide
at poles. Since we have already seen that the ergosurface is totally located outside
the event horizon, with a little abuse of notation we can write

ΣS ≥ ΣE > rH . (2.62)

As one would expect, we recover the GR results in the limit β → 0, when the
geometry is everywhere outside the event horizon since the spacetime singularity
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appears at the Kerr ring

r2 + a2 cos2 θ, (2.63)

completely inside the event horizon.

So, for β ̸= 0 it is clear that the geometry admits a naked singularity, with no

horizon to screen it. From these considerations, the geometry (2.44) with (2.45)

cannot be considered a regular black hole, and so the choice Ar = Aθ = 0 for the

disformal transformation (2.4) does not lead to a physical solution.

2.4.2 Case 2: Ar(r), Aθ(r, θ) = 0

As second case, we apply the disformal transformation (2.4) to (2.39), assuming a

disformal vector with radial and polar components such that:.

Ar(r), Aθ = 0. (2.64)

The resulting configuration is a axisymmetric, stationary solution of the vector-

tensor theory with action (2.12). As we have seen in the previous case, the specific

shape of the disformal vector affects the geometry; in this case, requiring regularity

on both the horizon and the ergosurface, we found the following specific profile for

the radial vector component Ar which leads to a regular, asymptotically flat black

hole configuration:
Ar(r) =

Qr

∆
. (2.65)

It would be interesting to understand whether other radial vector profiles give

regular solutions, although it seems that (2.65) is the only one which ensures both

a disformal horizon and regularity everywhere outside it. With this choice for the

radial vector component, the disformed metric contains off-diagonal components

dr dt and dr dφ, and the final metric reads

ds2 = gtt dt
2+grr dr

2+gθθ dθ
2+gφφ dφ

2+2 gtr dt dr+2 gtφ dt dφ+2 grφ dr dφ, (2.66)
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with

gtt = − 1− (Q2 − 2Mr) (r2 + a2 cos2 θ)− β2Q2r2

(r2 + a2 cos2 θ)2
,

gtr =
−β2Q2r2

(a2 + r2 − 2Mr +Q2) (r2 + a2 cos2 θ) ,

gtφ = a sin2 θ
(Q2 − 2Mr) (r2 + a2 cos2 θ)− β2Q2r2

(r2 + a2 cos2 θ)2 ,

grr =
(a2 + r2 − 2Mr +Q2) (r2 + a2 cos θ2) + β2Q2r2

(a2 + r2 − 2Mr +Q2)2
,

grφ =
β2 aQ2r2 sin2 θ

(a2 + r2 − 2Mr +Q2) (r2 + a2 cos2 θ) ,

gθθ = r2 + a2 cos2 θ,

gφφ = sin2 θ

{
r2 + a2 − a2 sin2 θ [(Q2 − 2Mr) (r2 + a2 cos2 θ)− β2Q2r2]

(r2 + a2 cos2 θ)2
}
.

(2.67)
In a more compact notation, we can write

ds2 =

[
−1−

(
Q2 − 2Mr

)
ρ2 − β2Q2r2

ρ4

]
dt2 +

∆ ρ2 + β2Q2r2

∆2
dr2 + ρ2 dθ2

+ sin2 θ

[
r2 + a2 −

a2 sin2 θ
[
(Q2 − 2Mr)ρ2 − β2Q2r2

]
ρ4

]
dφ2

− β2Q2r2

∆ρ2
dt dr + a sin2 θ

(Q2 − 2Mr)ρ2 − β2Q2r2

ρ4
dtdφ − β2 a sin2 θQ2r2

∆ρ2
drdφ,

(2.68)

with ∆, ρ2 given as in (2.41) and the gauge field being

Aµ = (At , Ar , Aθ , Aφ) =

(
−Qr
ρ2

,
Q r

∆
, 0 ,

Q r a sin2 θ

ρ2

)
. (2.69)

This geometry describes a rotating black hole with regular horizon, charged under
the vector field Aµ:
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• the dimensionless quantity β2 parametrically controls deviations from the
Kerr-Newman geometry in equation (2.68). Again, the geometry depends
on three integration constants, M , a, and Q (see the appendix 2.6), and on
the parameter β2. As we will see in more detail in the next sections, the
contributions coming from β modify the structure of the black hole horizons,
also affecting the geodesics of particles moving close to the black hole;

• the vector field profile (2.69) has three physical components turned on,
against the two of the Kerr-Newman configuration. In this case, the radial
component of the gauge vector is physical, and it cannot be gauged away
without simultaneously changing the geometrical properties of the system.

Again, we emphasise that although this configuration is disformally related to
Kerr-Newman, it is a new solution for the vector-tensor modified gravity theory
we are considering; in fact, the systems (2.1) and (2.12) can have distinct physical
properties when additional matter coupled with gravity is included (as an exam-
ple, in section 2.4.2.3 we will show how time-like geodesics around such "disformal
black hole" are different with respect to rotating black holes in GR).

An important, distinctive difference from the Kerr-Newman GR solution are
the curvature invariants. The Ricci scalar associated with the geometry described
by (2.68) and (2.69) is

R = 2 β2 a2Q2 cos2 θ (3r
2 − a2 cos2 θ)

(r2 + a2 cos2 θ)4
; (2.70)

since the Ricci scalar is non-vanishing, this configuration is different from the
original KN solution, where this quantity is equal to zero. However, similarly to
GR, the unique geometrical singularity associated with our new disformed solution
(2.68) is the Kerr singularity at the locus

r2 + a2 cos2 θ = 0, (2.71)

since all the curvature invariants are everywhere regular except for the ring located
at (2.71). Since at asymptotic infinity the metric components approach flat space
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and the curvature invariants asymptotically tend to zero, the disformal solution is
asymptotically flat. Before discussing in some detail the non-linear features of this
disformed configuration, it is interesting to analyse the limit of small rotation: at
first order in an expansion on the rotation parameter a, the geometry reads

ds2 =

(
−1 +

2M

r
− (1− β2)Q2

r2

)
dt2 +

r4

∆2

(
1− 2M

r
+
Q2(1 + β2)

r2

)
dr2 + r2 sin2 θdφ2

+ r2dθ2 − 2β2Q2

∆
dtdr + 2a sin2 θ

[
−2M

r
+
Q2(1− β2)

r2

]
dtdφ+

2β2aQ2 sin2 θ

∆
drdφ,

(2.72)
where ∆ is obtained from (2.41) with a2 = 0, and in the static limit a → 0 the
metric becomes

ds2 =

(
−1 +

2M

r
− (1− β2)Q2

r2

)
dt2 +

r4

∆2

(
1− 2M

r
+
Q2(1 + β2)

r2

)
dr2

+ r2 dθ2 + r2 sin2 θ dφ2 − 2β2Q2

∆
dt dr,

(2.73)

which can be considered the disformal Reissner-Nordström solution.

2.4.2.1 Structure and properties of horizons

In this section we study the horizons structure, emphasizing deviations from the
Kerr geometry. The vector Lagrangian (2.12) is non-minimally coupled to gravity,
and the non-linear derivative interactions induce qualitative deviations from GR
rotating solutions (for example, we will learn that our black holes can rotate faster
than their GR counterparts, for the same mass and charge). Given a spherical
coordinate system {t, r, θ, φ}, the event horizon corresponds to points where the
hypersurfaces of constant r become null, namely

grr = 0. (2.74)

For stationary geometries as our configuration, the ergosphere corresponds to the
Killing horizon of the time translation Killing vector kµ = {1, 0, 0, 0}. A priori,
ergosphere and event horizon are distinct hypersurfaces: see [23] for details. For
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the standard KN black hole (obtained from solution (2.68) setting β2 = 0), the
exterior event horizon and the ergosphere are respectively located at

rKNhor = M +
√
M2 − a2 −Q2 ,

rKNerg = M +
√
M2 − a2 cos2 θ −Q2 .

(2.75)

Using Boyer-Lindquist coordinates, the Kerr event horizon is spherical, being lo-
cated to a radial position independent on the angular coordinates (although the
intrinsic horizon geometry is actually squashed, as manifest using appropriate co-
ordinate systems [23]). Instead, the Kerr ergosphere is an ellipsoid, as it can be
noticed from the angular dependence of the "radius" rKNerg . In the vector-tensor
theory of gravity we are studying, the event horizon and the ergospheres are hy-
persurfaces of revolution around the azymuthal coordinate. Their positions is
given by the real positive solutions of equations1

Hor: grr = 0 ⇒ fh ≡
(
r2 + a2 cos2 θ

) (
r2 − 2Mr + a2 +Q2

)
− β2Q2r2 = 0, (2.76)

Erg: kµkµ = 0 ⇒ fe ≡
(
r2 + a2 cos2 θ

) (
r2 − 2Mr + a2 cos2 θ +Q2

)
− β2Q2r2 = 0.

(2.77)
Equations fh, e = 0 are algebraic equations of fourth order in the coordinate r:
they can be solved analytically, but their solutions are complicated. Depending on
the sign of the discriminant, they can have four, two or no real roots; we denote
their maximal real roots with rh and re respectively, corresponding to the horizon
and the ergosurface position, respectively. The external horizon of the black hole
is located at rh(r, θ); since such expression depends on the polar angle θ, in this
configuration neither the ergosurface nor the horizons have spherical shape in
Boyer-Lindquist coordinates. This is a major qualitative difference with respect
to Kerr-Newman black holes, which have spherical horizons in Boyer-Lindquist

1We are aware that, in order to have a null hypersurface and hence a horizon, the null
norm condition is not sufficient, since tangency condition (2.27) is also required. In our case,
the tangency condition is not satisfied on the horizon. For this reason, technically it is not an
absolute horizon, but it could be rather considered an apparent one. However, with a bit of
abuse of language we will consider and refer to this hypersurface as a proper horizon, in order
to see if there is any interesting and peculiar feature arising from this geometry.
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coordinates. For consistency, we checked that substituting the value re in the
expression for fh (2.76) we get fh ≥ 0, hence the position of the ergosurface is
outside the horizon: re ≥ rh. The equality is satisfied at poles (θ = 0, π), where
the horizon and the ergosurface coincide: fe = fh. The only value of the polar
angle where an expression for rh, e can be analytically obtained is on the equatorial
plane (θ = π/2), where we get

r
π/2
h =M +

√
M2 − a2 −Q2(1− β2) ,

rπ/2e =M +
√
M2 −Q2(1− β2).

(2.78)

It is simple to show that the external horizon of Kerr-Newman black hole is always
in the interior of the horizon of our disformal black hole configuration, for the same
values of mass, charge and angular momentum. Substituting the value rKNh for
the position of the Kerr-Newman horizon in the expression (2.76) for fh, we find
that this quantity is negative, hence it lies inside the disformal black hole horizon.
Figure 2.1 in the next page shows the shape of black hole horizons and ergosphere
for our systems, using Boyer-Lindquist coordinates.

At this point it is interesting to look at the event horizon’s angular velocity.
Let’s consider a photon emitted along the φ direction at radial distance r; thus,
there are no components of the velocity along the θ and r directions, and the
metric simply reads

ds2 = gtt dt
2 + 2 gtφ dt dφ+ gφφ dφ

2 = 0, (2.79)

which can be solved to obtain

dφ

dt
= − gtφ

gφφ
±

√(
gtφ
gφφ

)2

− gtt
gφφ

. (2.80)

Evaluating this expression on the event horizon

fh = 0, (2.81)
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the term in the square root term vanishes and we are left with

dφ

dt
|rh = Ωh =

a

a2 + r2h
, (2.82)

which is the angular velocity of the event horizon. Notice that since the position
of the horizon depends on the angular coordinate θ, the angular velocity is not
constant on the horizon.
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Figure 2.1: Pictorial representation of the shape of horizon and ergosphere for
the disformal black hole using Boyer-Lindquist coordinates, as discussed in the main
text.

2.4.2.2 Maximal black hole spin and horizon oblateness

The modifications of the geometry proportional to the parameter β can deform
the horizon, making it oblate also in Boyer-Lindquist coordinates. Interestingly,
they can also allow for ultra spinning black holes, i.e. black hole configurations
that rotate faster than Kerr. It is not easy to analytically study these properties
of the geometry, except two special cases that we are going to investigate in this
subsection.
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The limit of large value of β2

The size of the disformal horizon increases with the polar angular coordinate:

its smallest value is at the poles (θ = 0, π), while its maximal value is on the

equatorial plane (θ = π/2). The existence of a regular horizon depends on the value

of the black hole spin parameter a: beyond an extremal value amax, an horizon

ceases to exist. Such value of amax can be found by studying the equation which

gives the radial position of the horizon at the poles in Boyer-Lindquist coordinates.

We focus on the poles because at this position we get the most stringent condition

on amax. The radial horizon equation at the poles can be expressed as

r4 − 2M r3 +
(
2a2 + qM2

)
r2 − 2a2M r + a4 +

a2M2 q

1− β2
= 0 , (2.83)

where we define the combination

q ≡ Q2

M2

(
1− β2

)
, (2.84)

which can be positive or negative, depending on the size of β. Analytic solutions for

equation (2.83) are cumbersome, but a great simplification occurs in the limit |β| ≫

1. So, we study this regime maintaining a fixed value for the parameter q defined

in equation (2.84). This implies that we simultaneously take a limit in which black

hole charge Q becomes smaller and smaller, so to maintain q finite. Such limit

physically corresponds to a regime of strong non-minimal coupling between vector

and gravity in the action (2.12). In this regime, the last term in equation (2.83)

can be neglected, and the equation admits a simple expression for its real roots:

the external horizon is located at

rpolh =
M

2

(
1 +

√
1− q +

√
2− q + 2

√
1− q − 4

a2

M2

)
. (2.85)

Requiring a positive argument for the last square root in the previous expression

gives us an upper bound on the rotation parameter a, and we find that its largest
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allowed value is given by

amax =
M

2

√
2− q + 2

√
1− q (2.86)

=
M

2

√
2 +

Q2

M2
(β2 − 1) + 2

√
1 +

Q2

M2
(β2 − 1) , (2.87)

where in the second line we used the definition (2.84).
When β2 > 1, then amax ≥M (with equality saturated for Q = 0), with M being
the maximal value of the spin a for a Kerr black hole (while for Kerr-Newman the
maximal spin is

√
M2 −Q2 < M). Thus, when β2 is large our disformed rotating

black hole can have angular momentum parametrically larger than in Einstein
gravity (ultraspinning black holes are however possible in theories with more than
3 + 1 dimensions [215] or in modified gravity theories including a complex scalar
[157] or EdGB [188]). We obtained this result in the extremal limit of very large
|β|: it is possible to check numerically that for smaller values of |β|, the value of
amax reduces its size with respect to (2.87), by a quantity that is proportional to
1/|β|. In any case, we will use amax of (2.87) as reference for our discussion. We
also checked that the conditions on the parameter a for having a regular horizon
are most stringent at the poles, and less restrictive at other angular positions. In
other words, the horizon at the equator could in principle rotate faster than amax

of (2.86), but the requirement of having a regular horizon everywhere does not
allow for this.
When the spin parameter attains the value amax, the ratio between the radial size
of the horizon at the poles versus the size of the horizon at the equator quantifies
the oblateness ω of the black hole in Boyer-Lindquist coordinates:

ω = 1− rpolh

reqh
= 1− 1 +

√
1− q

2 +
√
2− 3q − 2

√
1− q

. (2.88)

In the limit of large, negative values of q, oblateness approaches the extremal value
ωmax = 1− 1/

√
3: hence in this limit the radial size of the horizon at the poles is

1/
√
3 ≃ 0.57 times smaller than the size of the horizon at the equator, as measured

in Boyer-Lindquist coordinates.
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We can interpret these horizon properties we determined as due to our non minimal
vector-tensor interactions, which are able to contrast strong centrifugal forces, and
maintain a regular horizon even for large spins, at the price of deforming the
horizon shape. As we will discuss in more details in the next sections, the shape of
the event horizon is very important, since it could be an observable and therefore
distinctive feature of some astrophysical black hole.

Massless black holes

Interestingly, if β2 > 1, our black hole configuration (2.68) admits a regular horizon
even in the massless limit M → 0. In this limit, the solution has two horizons:
the radial position of the external one depends on the polar angle and is given by
the following expression (valid if β2 > 1):

r2h =
1

2

[
Q2
(
β2 − 1

)
− a2

(
1 + cos2 θ

)
+

√
[Q2 (β2 − 1)− a2 (1 + cos2 θ)]2 − 4a2 (a2 +Q2) cos2 θ

]
.

(2.89)

The radial size of the black hole is maximal at the equator (θ = π/2) and minimal
at the poles (θ = 0, π). The condition of having a regular horizon at the poles
imposes an upper bound on the black hole’s spin parameter, given by

a2max = Q2 (β
2 − 1)

2

4β2
. (2.90)

It is also simple to compute the black hole’s oblateness for extremal values of the
black hole’s spin, as done in the previous paragraph around equation (2.88). In
this case we obtain

ω = 1−

√
1 + β2

1 + 3β2
. (2.91)

Similarly to the previous case (large β limit), the maximal oblateness is still 1 −
1/
√
3, showing that for large β the radial size of the horizon at the poles is 1/

√
3 ≃

0.57 times smaller than the size of the horizon at the equator.
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2.4.2.3 Equatorial orbits

The dynamics of massive and massless fields orbiting around rotating black holes
is a broad subject with several ramifications and applications to astrophysics and
cosmology, and it is the first step towards the study of black hole accretion disks,
or of the extraction of rotational energy from spinning black holes: see [20] for
an enlightening review, and [216] for the original paper studying this family of
orbits in Kerr configurations. Here we focus our attention to circular orbits for
massive particles in the equatorial plane, examining features that are peculiar of
the disformed rotating black hole (2.68). We make the hypothesis that the particles
are only minimally coupled to gravity. Since the geometry is axially symmetric,
stable orbits exist which remain confined on the equatorial plane. Having an
exact form for the metric allows us to point out distinctive properties of equatorial
orbits by simple, analytical considerations, which are a natural generalization of
arguments developed for the Kerr/Newman geometry [216].
On the equatorial plane (θ = π/2), the disformal metric (2.68) reads:

ds2 = gtt dt
2+grr dr

2+gθθ dθ
2+gφφ dφ

2+2 gtr dt dr+2 gtφ dt dφ+2 grφ dr dφ, (2.92)

with components

gtt = − r(r − 2M) + (1− β2)Q2

r2
,

grr =
r2 [a2 + r(r − 2M) + (1 + β2)Q2]

∆2
,

gθθ = r2,

gφφ = r2 +
a2 [r(2M + r)− (1− β2)Q2]

r2
,

gtr = − β2Q2

∆
,

gtφ =
a [(1− β2)Q2 − 2Mr]

r2
,

grφ =
β2 aQ2

∆
.

(2.93)
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Such metric is independent from t and φ, hence we can define the conserved energy
per unit mass E and the conserved angular momentum per unit mass L along the
symmetry axis:

E ≡ −kµ uν gµν ,

L ≡ rµ uν gµν ,
(2.94)

where uµ is the 4-velocity vector, and kµ and rµ are the Killing vectors associated
with time translations and φ-rotations, as defined in (2.34) and (2.37), respectively.
Using the metric (2.92), the previous equations can be expressed in the following
way:

E = −(gtt u
t + gtφ u

φ) ,

L = gφt u
t + gφφ u

φ ,
(2.95)

with (τ being proper time)

uµ = {ut, ur, uθ, uφ} =

{
dt

dτ
,
dr

dτ
,
dθ

dτ
,
dφ

dτ

}
. (2.96)

Inverting the previous relations, one obtains the angular velocity at fixed radial
distance from the equator,

uφ

ut
= Ω =

L [r(r − 2M) + (1− β2)Q2]− aE [(1− β2)Q2 − 2Mr]

E r4 + a2E [r(2M + r)− (1− β2)Q2] + aL [(1− β2)Q2 − 2Mr]
.

(2.97)

Time-like geodesics associated with massive particles satisfy the condition

uµ uν gµν = −1 . (2.98)

To compute the radial position of stable, circular time-like trajectories on the
equatorial plane, we assume that uθ = 0, and we can combine equations (2.95)
and (2.98) to obtain the following expression for derivatives of the radial position
of a massive particle along the proper time:

r4

∆2

[
∆2 − β4Q4

](dr
dτ

)2

− 2 β2 r2Q2

∆

(
a2E − aL+ Er2

)(dr
dτ

)
−
(
a2E − aL+ Er2

)2
+
(
∆− β2Q2

)(
1 +

(aE − L)2

r2

)
= 0.

(2.99)
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The previous equation can be recast as

[∆2 − β4Q4]

2∆2

(
dr

dτ

)2

− β2Q2

r2∆

(
a2E − aL+ Er2

)(dr
dτ

)
+ Veff(r,E,L) =

E2 − 1

2
(2.100)

where we have define an effective potential

Veff = −M
r

+
a2
(
1− E2

)
+ L2 + (1− β2)Q2

2r2
− M(L− aE)2

r3
+

(1− β2)Q2(L− aE)2

2r4
.

(2.101)
The effective potential above depends on both energy and angular momentum.
Equations (2.100) and (2.101) are what we need to analyse corotating (L > 0) and
counterrotating (L < 0) circular trajectories, associated with objects having angu-
lar momentum parallel or antiparallel to the black hole’s one. Before continuing, it
is important to notice that the expression for the potential (2.101) has a structure
identical to the KN case, which is recovered in the limit β2 → 0. Interestingly,
new opportunities arise for our case with non-linear vector-tensor interactions. In
the regime β2 > 1, the relative sign among different contributions to the effective
potential (2.101) changes with respect to standard KN black holes (in that case,
this regime would correspond to an unphysical negative square charge). Hence
this regime is interesting since it can lead to qualitatively new features for circular
orbits. As a concrete example, a straightforward computation starting from equa-
tion (2.97) leads to the following expression for the angular velocity of massive
particles on circular orbits

Ω =
M

aM ± r2M√
rM+Q2 (β2−1)

, (2.102)

with ± indicating orbits corotating/counterrotating with the black hole. If β2 > 1,
corotating orbits spin faster than the corresponding Kerr-Newman case, for iden-
tical values of the asymptotic charges (M , Q, a).

We now proceed examining the existence and properties of marginally stable
innermost circular orbits for test particles moving on the equatorial plane of our
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geometry, lying on a fixed radial position r̄ in Boyer-Lindquist coordinates. Such
trajectories are commonly referred to as simply ISCOs (Innermost Stable Circular
Orbits) [23]. To move on a circular orbit of radius r̄, both the initial radial velocity
and the radial acceleration must vanish, and hence we have t impose:

Veff (r̄, E, L) =
E2 − 1

2
,

∂Veff (r, E, L)

∂r

∣∣∣
r=r̄

= 0 .

(2.103)

Furthermore, the condition of stability implies that the particle must be at a
minimum point of the potential, namely

∂2Veff (r, E, L)

∂r2

∣∣∣
r=r̄

≥ 0 , (2.104)

where equality holds for the marginally stable circular trajectories that we are in-
vestigating. The previous three conditions lead to three equations which determine
the three quantities (E, L, r̄) characterizing marginally stable innermost trajecto-
ries. In order to express formulae in the simplest possible way, it is convenient to
rescale our quantities as follows:

x =
r̄

M
, â =

a

M
, q =

Q2

M2

(
1− β2

)
. (2.105)

Notice that q can be negative, if β2 > 1: a negative q can not be obtained in
a Kerr-Newman-like configuration, and is distinctive of our disformed black hole
geometry. We can now re-express and solve the three equations (2.103)-(2.104)
(with inequality saturated) in terms of the three unknown quantities (E, L, x).
After various algebraic manipulations, we get the following expressions for E and
L in terms of x:

E2 =
q(3− 4x) + x(3x− 2)

x(3x− 4q)
, (2.106)

L2

M2
=

â2(3q − 2x) + x (4q2 − 9qx+ 6x2)

x(3x− 4q)
. (2.107)
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Only the angular momentum of the particle depends on the black hole’s spin â:
there are two possibilities to consider, positive or negative L – corresponding to
trajectories corotating or counterrotating with respect to the black hole. The
equation determining the radial position x = r̄/M of the ISCO is an algebraic
equation of sixth degree:

x6 − 12x5 − 6
(
â2 − 3q − 6

)
x4 − 4

(
−2â2q + 7â2 + 2q2 + 27q

)
x3

+3
(
3â4 + 10â2q + 43q2

)
x2 − 24

(
â4q + 4â2q2 + 3q3

)
x+ 16q2(â2 + q) = 0 .

(2.108)
Depending on the values of (â, q), there are up to six real solutions to the previ-
ous equation, but their analytical expressions are in general unavailable. We are
interested to examine the case q ≤ 0, distinctive of our black hole configuration,
and we demand that the ISCOs lie outside the position of the external black hole
horizon, located at

xhor = 1 +
√
1− â2 − q .

In the remaining of this section, we study corotating and counterrotating con-
figurations for representative choices of q, starting from a brief review of ISCOs
for Kerr black holes (q = 0).

▶ Case q = 0: the Kerr black hole. The case q = 0 reduces the system
to a Kerr black hole. Equation (2.108) simplifies considerably, and leads
to two branches of physical solutions, corresponding to a corotating and a
counterrotating orbit: see the textbook [23] for an excellent account. We
plot in Figure 2.2 the radial position of the orbit x = r̄/M versus black hole
spin a/M : corotating orbits become closer and closer to the horizon as we
increase the spin of the black hole (see black curve on the left panel), while
counterrotating orbits become more and more distant. Corotating orbits
can touch the horizon for the extremal value of the spinning parameter a.
The binding energy of the object per unit rest mass – given by the quantity
(1−E) – versus black hole spin have opposite behaviour: the binding energies
of corotating objects on ISCOs increase as the black hole spin increases,
while the same quantity decreases for counterrotating objects. The maximal
binding energy for an object in a corotating orbit around an extremal black
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hole (a = M) reaches the value 1 − E = 0.42, which corresponds to the
maximum amount of extractable gravitational energy.

▶ Case q = −0.2: When q is small and negative, the properties of ISCO
trajectories are qualitatively similar to the case of Kerr. An important dif-
ference is that corotating stable orbits can never touch the horizon, not even
for extremal values of the spinning parameter, which is amax = 1.05M for
q = −0.2. The binding energy for corotating ISCO never exceed values of
order 20 per cent in this case. Notice that, as discussed in section 2.4.2.1, the
equatorial region of the black hole could rotate faster than amax, and still be
well defined: we represent with dashed red curve the additional interval of
black hole spin that would be allowed at the equator. On the other hand, the
requirement of having a regular horizon everywhere, including at the poles,
restricts the value of a to be smaller than amax.

▶ Case q = −5: When q becomes more negative, the features we noticed for
small q become more accentuated. For q = −5, the maximal value of the
rotation parameter is amax = 1.72M . Corotating ISCOs are far from the
black hole horizon, even for extremal values of amax. The maximal value of
the binding energy on a corotating ISCO is of few per cent.
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Figure 2.2: Panel on the left: Innermost circular orbits for a Kerr black hole:
radial position of the orbit x = r̄/M versus black hole’s spin a/M . There are two
branches of solutions, corresponding to corotating (black) and counterrotating (blue)
ISCOs. The red line corresponds to the horizon, and the shaded part the forbidden
region inside the black hole horizon. The green line is the boundary of the ergosphere.
Panel on the right: binding energy 1− E versus black hole spin a/M .
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Figure 2.3: Innermost circular orbits (panel on the left) and binding energy versus
black hole’s spin (panel on the right) for a black hole with q = −0.2. Color codes as
in Figure 2.2. The corotating ISCO does not touch the black hole’s horizon, even
for extremal values of the black hole spin.
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Figure 2.4: ISCOs (left) and binding energies (right) versus black hole’s spin, for a
black hole with q = −5. Color codes as in Figure 2.2. The corotating ISCO neither
touches the black hole’s horizon nor the ergosphere, even for extremal values of the
black hole’s spin.
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In conclusion, we think that our findings might be relevant for studying extrac-
tion of rotational energy from the disformal black hole but that would require a
long and technical analysis for an exhaustive treatment, which is beyond the scope
of this work (see for example [125] for further discussions about energy extraction
mechanisms). However, from what we have already studied, we can make some
qualitatively basics considerations. For large values of |β|, the size of the ergore-
gion can be greater than for Kerr black holes: at the equator, the radial size of
the ergosphere is

rerg = M

(
1 +

√
1 +

Q2

M2
(β2 − 1)

)
, (2.109)

hence it can be well larger than 2M for |β| ≫ 1. Massive particles in the ergosphere
can have negative energy [23]. This implies that a Penrose process [30, 41] can be
in principle devised: a massive object – e.g. a star – can break into two fragments
through tidal effects within the ergosphere. One part – with negative energy –
falls into the black hole; the other part escapes, carrying away more energy than
the initial object, and slowing down the black hole rotation. Since the ergosphere
region can be large in our set-up, it might be easier to extract energy through
this process 1. Other mechanisms for energy extraction can be applied in our
context, as black hole superradiance [129] or some version of the Blandford-Znajek
mechanism [217], possibly using our vector interactions. In fact, it is known that
the efficiency of energy extraction can be increased for charged black holes [218].
Moreover, as we have learned around equation (2.102), for our configurations the
angular velocity of massive particles on circular orbits can be parametrically larger
than in Kerr, possibly making more efficient the mechanism behind the idea of
black hole colliders [219]. As said, these are just qualitatively considerations, and
it would be interesting to explore them in more details with future further studies.

1Although it might be not too efficient since only unstable circular orbits are contained in
the ergoregion, and the falling objects might not find the correct orbital configurations to make
the mechanism feasible.
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2.4.3 Case 3: Ar(r), Aθ(θ)

For this case, we consider a gauge vector Aµ with both non-vanishing radial and
polar components; to satisfy the condition (2.19), we choose Ar to be a function
of r only, while Aθ is chosen to be a function of θ only:

Ar(r), Aθ(θ). (2.110)

As we have already seen in the previous case, the radial and the polar profiles play
a crucial role in the spacetime geometry, since they affect the position of both the
horizon and the singularity. With the choice (2.110), the metric reads

ds2 = gtt dt
2 + grr dr

2 + gθθ dθ
2 + gφφ dφ

2

+ 2 (gtr dt dr + gtθ dt dθ + gtφ dt dφ+ grθ dr dθ + grφ dr dφ+ gθφ dθ dφ) ,
(2.111)

with components

gtt = − 1 +
β2Q2r2 − ρ2 (Q2 − 2Mr)

ρ4
,

grr =
ρ2

∆
+ β2Ar(r)

2,

gθθ = ρ2 + β2Aθ(θ)
2,

gφφ = sin2 θ

[
a2 + r2 − a2 sin2 θ (Q2 − 2Mr)

ρ2
+
β2 a2 sin2 θ Q2r2

ρ4

]
,

gtr = − β2QrAr(r)

ρ2
,

gtθ = − β2QrAθ(θ)

ρ2
,

gtφ =
a sin2 θ [ρ2 (Q2 − 2Mr)− β2Q2r2]

ρ4
,

grθ = β2Ar(r)Aθ(θ),

grφ =
β2a sin2 θ Q r Ar(r)

ρ2
,

gθφ =
β2a sin2 θ Q r Aθ(θ)

ρ2
.

(2.112)
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As we did in the previous cases, we try to determine the event horizon position by
looking at the hypersurface such that

grr = 0. (2.113)

Moreover, to be sure of the regularity of the geometry, we have also to check that
spacetime singularities (if any exist) are within the event horizon; so, we fix both
Ar and Aθ to have a disformal1 horizon and a geometry everywhere regular on its
exterior, and we find

Ar =
i
√
(r2 − 1) (a2 + r(r − 2M) +Q2) + β2Q2r2

β∆
,

Aθ =
i a cos2 θ

β2
.

(2.114)

With these particular choices, we get a spherical (in Boyer-Linquist coordinates)
event horizon with radius

rH =M +
√
M2 − a2 −Q2(1− β2). (2.115)

Compared with the GR result

rKN =M +
√
M2 − a2 −Q2, (2.116)

we notice that the disformal transformation acts like a "distortion" of the charge Q,
without really modifying the structure and the shape of the horizon. Consequently,
every physical result related with the event horizon radius still holds, with just a
modification of the charge Q with the disformed one Qβ = Q(1 − β2). As in
the Kerr geometry, the geometry (2.112) together with (2.114) also admits an
ergosphere, bounded by the ergosurface located at

kµkµ = 0 : (r2 + a2 cos2 θ)
(
r2 + a2 cos2 θ − 2Mr +Q2

)
− β2Q2 r2 = 0. (2.117)

1Interestingly, we found that there are no possible choices for Ar and Aθ but the trivial one
(Ar = Aθ = 0) such that the event horizon coincides with the GR one.
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It should be noticed that the above expression for the ergosurface coincides with
the ones found in the two previous cases (2.4.1), (2.4.2); this was expected, since
the ergosurface location only depends on the time component of the gauge vector,
which is the same in all the cases studied up to now. On the contrary, the radial
and the angular components both affect the position of singularities; with the
choice (2.114), we find that the as in the GR case the geometry has a singularity
inside the event horizon located at

r2 + a2 cos2 θ = 0. (2.118)

Compared with the two cases studied in the previous sections, both the radial
and the polar component of the gauge vector look deeply different, since (in this
case) they are both imaginary and proportional to 1/β. The fact that the disfor-
mal parameter β appears at the denominator in the equations (2.114) and hence
it makes the two components divergent in the limit β2 → 0 may be look odd:
however, we have checked that all the geometric quantities recover the GR results
when β approaches zero, and since in that limit the Abelian U(1) gauge symmetry
is restored we can use gauge freedom to "absorb" the divergences appearing in both
the radial and the polar vector profiles Ar and Aθ.
However, from (2.114) we noticed that both Ar and Aθ profiles are imaginary. In
the Einstein-Maxwell case, since the theory is gauge invariant and Aµ is not a
physical observable, there is no need to require that Aµ is real, but the physical
observable quantities (such has the magnetic field) have to be. In our case, after
the disformal transformation is applied, the radial and polar profile of the gauge
vector Aµ become crucial for the spacetime structure, so it is reasonable to think
that they lead to some observable quantities. Furthermore, we have checked that
the associated magnetic field is not real. Following these considerations, we think
it is reasonable to reject the metric solution associated with (2.114), even though
it could be interesting to be studied for some speculative purposes.

2.4.4 Case 4: Ar(r, θ), Aθ(r, θ)

At the end, let’s study the most general case with both Ar(r, θ) and Aθ(r, θ) being
functions of both r and θ and satisfying the condition (2.19). With generic radial
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and polar gauge vector components, the metric reads

ds2 = gtt dt
2 + grr dr

2 + gθθ dθ
2 + gφφ dφ

2

+ 2 (gtr dt dr + gtθ dt dθ + gtφ dt dφ+ grθ dr dθ + grφ dr dφ+ gθφ dθ dφ)
(2.119)

with components

gtt = − 1 +
β2Q2r2 − ρ2 (Q2 − 2Mr)

ρ4
,

grr =
ρ2

∆
+ β2Ar(r, θ)

2,

gθθ = ρ2 + β2Aθ(r, θ)
2,

gφφ = sin2 θ

[
a2 + r2 − a2 sin2 θ (Q2 − 2Mr)

ρ2
+
β2 a2 sin2 θQ2r2

ρ4

]
,

gtr = − β2QrAr(r, θ)

ρ2
,

gtθ = − β2QrAθ(r, θ)

ρ2
,

gtφ =
a sin2 θ [ρ2 (Q2 − 2Mr)− β2Q2r2]

ρ4
,

grθ = β2Ar(r, θ)Aθ(r, θ),

grφ =
β2a sin2 θ Q r Ar(r, θ)

ρ2
,

gθφ =
β2a sin2 θ Q r Aθ(r, θ)

ρ2
.

(2.120)

Again, we determine the horizon position by looking at the grr metric component:

grr =
∆

ρ2
ρ2∆− β2

[
Q2r2 − 4∆ sin2 θ cos2 θAθ(r, θ)2

]
ρ2∆− β2

[
Q2r2 − 4∆ sin2 θ cos2 θAθ(r, θ)2 −∆2Ar(r, θ)2

] (2.121)

From the above expression, it is therefore clear that the choice of both Ar and
Aθ is crucial for the resulting geometry; moreover, it easy to recover the different
special cases we have already studied in the previous sections. For example, the
choice Ar = Aθ = 0 leads to

grr =
∆

ρ2
, (2.122)
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which is the GR result and hence it admits the Kerr-Newman horizon, as shown
in (2.4.1): however, we now know it is not a physical solution, since it has a naked
singularity. Instead, with Aθ = 0 and Ar(r) we are left with

grr =
∆

ρ2
ρ2∆− β2Q2r2

ρ2∆− β2 [Q2r2 −∆2Ar(r)2]
, (2.123)

which motivates the particular solution

Ar =
Qr

∆
(2.124)

we studied in (2.4.2), in order to have

grr =
ρ2∆− β2Q2r2

ρ4
, (2.125)

which admits a non spherical event horizon (2.76).
To have a physical black hole solution, together with the existence of an event
horizon we have already discussed about the necessity of avoiding naked singulari-
ties. To be sure of the regularity of the geometry, we have to check that spacetime
singularities are within the event horizon; since the singularities arise where the
metric determinant vanishes, it is useful to compute it:

g =
ρ2

∆

−β2∆
[
Ar(r, θ)

2∆+ 4 sin2 θ cos2 θAθ(r, θ)2
]
+ β2Q2r2 − ρ2∆

4 cos2 θ . (2.126)

Again, it is evident how the radial and the polar components of the gauge vector Aµ
determine the spacetime structure, shaping both the horizon and the singularity.
So, we can use (2.121) and (2.126) to find particular choices for both Ar and
Aθ in order to obtain regular black hole solutions different from the GR ones.
However, it seems that for the radial and polar vector components there are no
other simple and interesting choices more than the ones we have already discussed.
In fact, in our understanding, there are no choices with a non vanishing, real Aθ
profile leading to regular black hole solutions which recover the GR ones when the
disformal coupling is turned off. In most cases, the Ar and Aθ profiles necessary
to make the geometry regular do not satisfy the condition (2.19).
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2.5 Discussion

In this chapter we obtained and studied exact solutions for rotating black holes
in a specific example of vector Galileons, a theory of modified gravity motivated
by the dark energy problem, that involves additional vector degrees of freedom
besides a spin-2 graviton. The set-up has many features in common with several
modified gravity models, including derivative self-couplings and non-minimal cou-
plings with gravity. We determined a new family of black hole solutions applying
an appropriate disformal transformation to a system related to the Kerr-Newman
solution of Einstein-Maxwell gravity, and discussed various physical implications
that differentiate this system from known rotating solutions in General Relativity.
In particular, we used the U(1) gauge vector of Einstein-Maxwell gravity as the
disformal vector of the disformal transformation. Interestingly, we found that reg-
ular black hole solutions are generated only for particular choices of the disformal
vector. In fact, the existence of regular geometries depends on the specific choice
of the radial and polar components of the gauge vector, since the gauge symmetry
is manifestly broken after the disformal transformation is applied. Remarkably,
we have been able to find a particular choice for the gauge vector which gener-
ates a family of regular black holes with disformal horizons, namely event horizons
whose deviations from the GR ones are parametrically controlled by the disformal
coupling.

The rotating black hole configurations we determined are valid also for large
values of the black hole’s spin parameter. Their deviation from a Kerr-Newman
solution is parametrically controlled by a dimensionless quantity associated with
non-minimal couplings between vectors and gravity. The black holes are charac-
terised by three asymptotic conserved quantities: mass, spin, and vector charge.
The black hole’s horizon is oblate in Boyer-Lindquist coordinates, since its radial
position depends on the polar coordinates: this makes a difference with Kerr-
Newman solutions, whose horizon is at fixed radius in Boyer-Lindquist coordinates.
We showed that the maximal value for the black hole’s spin can be parametrically
larger than in the Kerr-Newman family of solutions, for the same value of asymp-
totic charges. We then studied equatorial circular trajectories around our solutions,
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which admit an analytical treatment, and we showed that probe massive objects
can rotate faster than around Kerr-Newman configurations. Moreover, innermost
stable circular orbits (ISCOs) lie far away from the black hole horizon with respect
to rotating black holes in GR. It will be also interesting to determine whether there
exists an analogue of the Carter constant [220], which allows us to integrate the
equations for time-like geodesics also beyond the case of circular equatorial orbits
we studied here.

Another possible interesting development about the oblate horizon and the
ISCOs of the black hole solution we got, concerns black hole shadows due to the
lensing of photons travelling nearby the horizon, with an impact parameter close to
the critical one [221, 222]. Remarkably, the recent results from the Event Horizon
Telescope [31–36] confirmed that predicted black hole shadows are actually ob-
servable and measurable, and possible deviation from predictions could therefore
reveal new features of astrophysical black holes. Consequently, a new interest for
black hole shadows in modified gravity [186, 223] has recently come out, hoping
to get more black hole "pictures" like the one in [31], to be used as a testing tool
for gravity theories. As an example, we mention [224] as an attempt to investigate
the shadow of the disformal black hole solutions we have studied.

Further, the analysis of possible mechanisms for extracting rotational energy
from the black hole, possibly exploiting vector interactions, could reveal new inter-
esting features of such non-GR black hole solutions. Finally, the issue of stability
of our configurations is an open issue that will need to be addressed for under-
standing the physical relevance of these objects.

In general, we stress the importance of disformal transformations as a tool
to "generate" gravity theories qualitatively different from the ones on which the
transformation has been applied, leading to the possibility of analytically studying
black hole solutions in a larger family of gravity theories [225–227], thus opening
new opportunities for finding ways to test these theories against astrophysical or
cosmological observations.
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2.6 Appendix: mass, angular momentum and
charge

In this appendix, we give a short derivation of the three fundamental quantities
(M, a, Q) which characterise the black hole solution we have studied. The black
hole mass M , the rotation parameter a and the charge Q can be formally obtained
as Komar charges, namely conserved quantities (at infinity) which arise from sym-
metries of the system; for more details, see [23]. For stationary geometries, that is
spacetimes with a timelike Killing vector at spatial infinity, it is possible to define
a spacetime energy as the Komar integral associate with the timelike Killing vector
kµ = {1, 0, 0, 0}. Given the Ricci tensor Rµν , we define a current

Jµt = kνR
µν , (2.127)

which is conserved by means of the Killing condition ∇[µkν] = 0 and of the Bianchi
identity. We can use the current Jµ to define a conserved quantity at spatial infinity
as:

EBH =

∫
Σ

d3x
√
γ(3) nµJ

µ
M , (2.128)

where Σ is a space-like hypersurface with induced metric γ(3)ij and nµ is the unit
normal vector to Σ. Using Stokes theorem, and the properties of Killing vectors,
we can rewrite this quantity as

EBH =

∫
∂Σ

d2x
√
γ(2) nµ σν∇µkν , (2.129)

where the boundary ∂Σ has metric γ(2)ij and an outward-pointing normal vector
σµ. For GR black holes (Schwarzschild, RN, Kerr, KN), the energy EBH cor-
responds to the intrinsic gravitational energy of the spacetime, namely the black
hole’s mass; in our case, a computation of (2.129) for the black hole solution (2.68)
gives EM = M , and hence the parameter M entering in the geometry corresponds
to the gravitational mass of the object, as it happens in GR.

Similarly, starting from the Killing vector rµ = {0, 0, 0, 1} associated with
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rotational symmetry around the coordinate φ, we can define the current

Jµϕ = rνR
µν . (2.130)

As we did for the black hole mass, by the Stokes theorem we can define an asymp-
totic charge

JBH = −1

2

∫
∂Σ

d2x
√
γ(2) nµ σν∇µrν , (2.131)

which we evaluated for the black hole configuration (2.68) to find JBH = aM , as
in GR. Therefore, JBH is the black hole conserved angular momentum, and a is
the spinning parameter defined as

a =
JBH
M

. (2.132)

Finally, using the 4-vector electric current

JµQ = ∇νF
µν (2.133)

with Fµν being the electromagnetic field strength, we can define a conserved electric
charge

QBH = −
∫
∂Σ

d2x
√
γ(2) nµ σνF

µν (2.134)

which in our case gives, as in GR, QBH = Q, which can be interpreted as the
black hole electric charge. Again, we have been referring to the electric case, but
we could have been more generic considering generic U(1) symmetries with the
corresponding vector charges.

To sum up, we find three conserved asymptotic quantities with a clear physical
interpretation, which can be associated with the physical parameters describing
the geometry. Moreover, these results confirm that the geometry is not affected
by the disformal transformation at spatial infinity, being the conserved charges
identical to the GR ones, as one would expect considering that the additional con-
tribution from the disformal transformation goes to infinity faster than the GR one.
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Chapter 3

Scalar Clouds

Black hole superradiance is a fascinating and largely studied topic in modern as-
trophysics and General Relativity. When coupled to rotating black holes, scalar
fields can trigger superradiance, extracting rotational energy from the black hole
and slowing it down. Under some particular circumstances, the superradiant insta-
bility may form scalar clouds in the black hole’s surroundings, namely stationary
configurations of the scalar field whose frequencies correspond to the resonant fre-
quencies of the superradiant gain factor. In this chapter, we extend the work done
in [228] to the case of an electromagnetic Kerr-Newman black hole with both elec-
tric and magnetic charge coupled to a massive scalar field. We find a stationary
scalar cloud in the black hole’s surroundings, whose resonant frequencies depend
on the black hole’s mass, the rotational parameter, both the electric and magnetic
charges and on the scalar field’s mass.

3.1 Introduction and motivations

Since the first Gravitational Wave detection GW150914 [3], black holes are no
longer simply fascinating theoretical objects predicted one century ago by one of
the most elegant and revolutionary physical theories ever published, but they have
rather become outstanding "open sky" laboratories to test physical phenomena,
and eventually to reveal unexpected ones [2, 5, 51, 84, 170]. In particular, the
Gravitational Wave detection from a binary system of two rotating black holes,
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spiralling and finally merging into a single new black hole, has opened the doors
to a new era in studying gravity, allowing us to directly have access to strong
regime gravity for the first time [229, 230]. Without any doubt, this remarkable
step has completely changed our approach to gravity tests and, in future, it could
eventually lead to even more outstanding results. In fact, although the General
Relativity theory has already passed a large number of incredibly accurate tests at
Solar System physical scale, strong gravity effects not detectable at Solar System
scale could instead be detected in the context of black hole physics, giving us even
more confirmations on GR or leading us to insights into other compatible strong
gravity theories [2, 84, 231–233]. Thus, in the last years the study of black holes
and their related astrophysical phenomena has gained much attention and pop-
ularity, strongly encouraged and supported by an extraordinary improvement of
experimental sensitivity and accuracy. Moreover, the large number of projects and
proposal for future interferometers and telescopes (LISA [234], KAGRA [235–237],
Einstein-Telescope [238, 239]) and the announced upgrade of the already existing
ones (Advanced LIGO [240], Advanced VIRGO [241]) gives fuel to a more than
ever active scientific community.
As we said, this golden era of gravitational waves detection [37] and multimessen-
ger astronomy [86, 242] gives us the possibility to explore a previously unacces-
sible region of high energy physics; therefore, it comes the need of studying and
understanding high energy phenomena related with black hole physics and other
relativistic compact objects. In particular, black holes could be used to test cos-
mological theories alternative to GR, proposed to solve important open questions
about the CMB radiation, dark energy and dark matter; specifically, the dark
energy and dark matter problems appear to be quite good candidates to find an-
swers for, since they could both suggest the existence of ultralight scalar particles
outside the standard model which, as we will see soon, have interesting interac-
tions with black holes. In fact, in the last decades a large number of theories and
proposals about GR modifications has come out [8], with the aim of reproducing
GR’s already tested effects and solving (or at least improving) the current limits
and weaknesses of Einstein’s theory. [243]
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In the plethora of modified gravity theories, a large and well studied family is rep-
resented by scalar-tensor theories, where an extra scalar field (massive or massless,
real or complex, dynamical or not: there are plenty of options!) is non minimally
coupled to gravity [87, 244]. As already discussed in section 1.3, such scalar fields
can either be motivated with cosmology [91, 245], particle physics [14] or string
theory [96, 97]. Thus, even though the particular features of each theory depend
on the scalar field’s nature and on the specific model, the study of scalar fields in
strong gravity scenarios has attracted the attention of the scientific community.
In particular, a lot of work has been done on the interaction of scalar fields with
black holes, leading to interesting and sometimes quite unexpected results. Among
these, we have already discussed about black hole superradiance in chapter 1. As it
should be clear at this point, superradiance is both a classical and quantum effect
which causes an energy enhancement of a reflected wave/particle after a scattering
event in the presence of a dissipative mechanism. The energy enhancement of the
reflected wave is usually provided by an energy reduction of the target body, where
the energy is transferred to the scattered wave during the collisions and due to the
presence of dissipative mechanism. Therefore, after the collision the reflected wave
has more energy than it had before the scattering, and that is superradiance. As
already explained, superradiance naturally manifests when a scalar field impinges
on a black hole, provided that the black hole has available energy to be trans-
ferred to the reflected scalar wave/particle. From thermodynamics considerations,
we know that the simplest black hole configuration, namely the Schwarzschild one,
has an irreducible total energy (neglecting quantum effects like Hawking’s evapo-
ration) which corresponds with the total mass of the black hole itself (see [246] for
a review). This means that the black hole mass represents the total gravitational
energy, and in this case it cannot be reduced: hence, Schwarzschild black holes
cannot support superradiant effects.
However, if the black hole rotates or if it has an intrinsic charge (such as the elec-
tromagnetic one), the total black hole energy is given by both the gravitational
energy coming from the mass and the energy contribution coming from the rota-
tion and/or charge. In this case, the irreducible energy does not correspond to
the total black hole energy, and it is therefore possible to extract part of the total
energy: the first and simplest mechanism found to extract the black hole energy
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is the Penrose process [41]. Thus, a scalar field scattering off a rotating or charge
black hole can trigger the superradiance (which is sometimes described like a wave
version of the Penrose process), and the reflected scalar wave effectively extracts
energy from the black hole.
Considering an incident scalar wave with frequency ω and angular azimuthal num-
ber m upon a rotating black hole with angular velocity ΩH , the superradiance is
achieved in the regime ω > mΩH [125]. Moreover, as it has been already shown in
[131, 133, 247], in the case of a massive scalar field scattering off a rotating black
hole it is possible to trigger an instability, namely an exponentially increasing
scalar density around the black hole which eventually ends in a violent emission
of energy commonly known as black hole bomb.
As already discussed, the condition to develop an instability and a black hole bomb
is the presence of a screening mechanism surrounding the back hole, causing the
waves reflected by the horizon to be trapped in between the horizon and the mirror,
bouncing back and forth from the one to the other. In the superradiant regime,
every time the wave is reflected by the horizon its energy increases: therefore, if
the surrounding mirror is close enough, in the journey from the horizon to the
mirror there is no energy decay of the wave, resulting in a exponential increase of
the scalar field energy density. When the energy density can no longer be confined,
a violent release of energy is developed and hence the name "black hole bomb",
which partially depletes the scalar cloud around the black hole: during this pro-
cess, the black hole loses part of its rotational energy due to superradiance. Quite
remarkably, this scenario is not simply a totally unphysical toy model. In fact, an
effective surrounding mirror can be obtained when matter is taken into account
[135, 141, 248]; moreover, a massive scalar field can naturally provide a screening
mechanism, since the mass term generates a Yukawa potential which screens the
low frequencies such that ω < µ, where µ is the scalar field’s mass. In particular,
both analytical and numerical [247, 249] studies have shown that the instability
most effective regime is

a ≃M, Mµ ≃ 1

2
, ω ≃ µ, ω ≃ mΩH , (3.1)

where a and M are respectively the black hole’s spinning parameter and the mass.
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Remarkably, these instabilities can end up in a stable, stationary scalar field con-
figuration around the black hole, usually referred to as scalar cloud [247].

As it has been already explained in the theory review chapter, there is a quite
large zoo of admissible "hair" or "clouds" around either rotating or static, charged
or neutral black holes, and hence the predicted existence of such scalar field con-
figurations should not be considered as a pure unphysical speculation. On the
contrary, since no-hair-like theorems usually hold for GR-like black hole solutions,
the prediction of supported stable scalar field configurations around a black hole
gives us the opportunity to eventually test such theories against GR, since the
detectable black hole signatures (gravitational waves, shadows, ecc.) could be af-
fected by the presence of scalar fields surrounding the black hole, and therefore we
would be - at least in principle - be able to eventually detect deviations from GR
predictions.
Considering all these motivations, the prediction of scalar hairy black holes or even
simply scalar clouds should be considered an interesting opportunity in the study
and comprehension of gravity in strong regime. Related with black hole superradi-
ance, in addition to the scalar hair formation as result of black hole bombs, other
possible interesting cloud configurations has been found [165, 249, 250].
In particular, in [165, 250] a massive scalar field is coupled to a rotating Kerr black
hole; for a completely analytical study, the author shows that it is convenient to
consider a nearly extremal Kerr black hole, namely a ≃M . Considering the scalar
field as a test field and therefore neglecting its backreaction on the background
spacetime, the scalar field’s equation of motion is the homogenous Klein-Gordon
equation with a mass term included:

(
□− µ2

)
ϕ = 0, (3.2)

with □ = ∇ν∇ν being the D’Alembert operator and µ being the scalar field’s
mass. As we will see in details in the next section, assuming a spherical coordinate
system (t, r, θ, φ) on the Kerr background the scalar field equation is separable in
its radial and angular variables [168, 251].
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Using the following ansatz for the scalar field

ϕ(t, r, θ, φ) = Z(r)S(θ) e−iωt eimφ, (3.3)

it is possible to end up with the following equations for the angular and radial
functions S(θ) and Z(r), respectively:

1

sin θ
∂

∂θ

(
sin θ∂S

∂θ

)
+

[
K +M2(µ2 − ω2) sin2 θ − m2

sin2 θ

]
S = 0,

∆
d

dr

(
∆
dZ

dr

)
+
{
H2 +∆

[
2mMω −K − µ2

(
r2 +M2

)] }
= 0,

(3.4)

with
∆ = (r −M)2 , H =

(
r2 +M2

)
ω −mM, (3.5)

since we have chosen a ≃ M and with K being the separation constant arising
from the separation of (r, θ) variables.
To find physical solutions, it is necessary to impose appropriate boundary condi-
tions both on the angular and on the radial function.
On the angular one, one requires regularity conditions at the boundaries: S(0), S(π).
On the radial one, depending on the kind of solutions we are looking for, one needs
the appropriate requirements. In this case, since we are interested in asymptoti-
cally flat configurations, we require that the scalar field vanishes at spatial infinity,
i.e. we have to require a decaying behaviour far from the horizon. Moreover, we
require that the field on the event horizon is purely ingoing. These boundary
conditions set up an eigenvalue problem for the scalar field frequency ω, which is
generically a complex quantity. Depending on the sign of the imaginary part of
the frequency, the scalar wave can be exponentially increasing (Im(ω) > 0) or ex-
ponentially decaying (Im(ω) < 0) in time. A third option is the case Im(ω) = 0,
which corresponds to a pure real frequency and hence to a stationary behaviour
of the scalar wave in time domain. This is the case studied in [165, 250], where
infinitely long-lived quasibounded scalar field configurations surrounding the ro-
tating black hole have been found. In particular, in [165, 250] the author studied
the specific case ω ≃ mΩH , which is fully analytically solvable and leads to remark-
able solutions. It is interesting noticing that, being the superradiance condition
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ω < mΩH , the resonant solutions in [165, 250] live on the edge of the superra-
diant regime. So, the following scenario is plausible: considering a rotating Kerr
black hole interacting with a massive scalar test-field, the high frequency modes
such that ω > mΩH do not trigger superradiance, hence they can survive without
causing instabilities or extracting energy from the black hole. On the other hand,
low frequency modes with ω < mΩH effectively trigger superradiance, extracting
rotational energy from the black hole and eventually leading to instabilities and to
black hole bombs, leaving the black hole with a residual scalar hair [247]. At the
end, modes such that ω = mΩH may survive in stationary configurations, creating
a scalar cloud surrounding the black hole.
So, even for different scenarios the black hole seems to be likely to support and
develop a surrounding hair or cloud, making the existence (and hopefully the de-
tection) of scalar fields around rotating black holes an interesting and promising
eventuality to investigate.

In the next section, we will analytically extend the results found in [165, 228,
249, 250] to the case of a dyonic, rotating black hole interacting with a massive,
neutral, scalar test-field. At the end, in the conclusions section, we will discuss
about possible ways to detect such scalar field effects.

3.2 Scalar field clouds

As already discussed, dyonic black holes can be motivated with string theory ar-
guments [150, 252]. Moreover, hidden U(1) gauge vectors have been proposed as
possible candidates for dark matter [7, 253], and the recent results about the un-
likely contribution to dark matter by primordial black holes have increased the
hidden fields viability [254]. In addition, recent investigations [378] have showed
that black hole solutions in gravity theories including a U(1) hidden sector are for-
mally described by the same Kerr-Newman solution of Einstein-Maxwell theory.
So, as in the Einstein-Maxwell theory the U(1) gauge theory is the electromag-
netism and the two chargesQ and P are considered as the electric and the magnetic
charge respectively, it is possible to associate a generic U(1) gauge field to a generic
U(1) theory with generic charges Q1 and Q2. However, to keep things as simple as
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possible, in this section we will consider the gravito-electromagnetic Kerr-Newman
solution, but we are aware that a generalisation with a generic U(1) gauge theory
should not be considered a speculative exercise.

The system we consider in this chapter consists in a rotating dyonic Kerr-
Newman black hole coupled to a real, massive, neutral scalar field. Such problem
can be considered a generalisation of the following works:

• [249]: real, massive, neutral scalar field coupled to a Schwarzschild black hole;

• [165, 250]: real, massive, neutral scalar field coupled to a Kerr black hole;

• [228]: real, massive, charged scalar field coupled to an electric Kerr-Newman
black hole.

The action describing the system we are considering is

S =

∫
d4x

√
−g
[
R

4
− 1

4
FµνF

µν − 1

2
∂µϕ∂

µϕ− µ2ϕ2 + V (ϕ)

]
. (3.6)

Since we are interested in the effects of an external scalar field which interacts
with a fixed background, we neglect the backreaction of the scalar field with the
background metric, and hence we consider the scalar field only as an external field.
Moreover, we neglect further contribution to the scalar field except from the mass
µ, and we set V (ϕ) = 0. The scalar field’s equation of motion is the homogeneous,
massive Klein-Gordon equation:

(□− µ2)ϕ = 0 (3.7)

where □ is the D’Alambertian operator defined as □ = 1√
−g∂µ(

√
−g gµν ∂ν).

From Carter’s and Teukolsky’s arguments [220, 251, 255], we know that the ho-
mogeneous equation on a Kerr-like spacetime is separable in its variables. Using a
Boyer-Lindquist coordinate system (t, r, θ, φ), on a dyonic Kerr-Newman spacetime
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the equation (3.7) reads

∂

∂r

(
∆
∂ϕ

∂r

)
+ a2 sin2 θ

∂2ϕ

∂t2
− (r2 + a2)2

∆

∂2ϕ

∂t2
− 2a(P 2 +Q2 − 2Mr)

∆

∂ϕ2

∂t ∂φ

+
1

sin θ
∂

∂θ

(
sin θ∂ϕ

∂θ

)
+

1

sin2 θ

∂2ϕ

∂φ2
− a2

∆

∂2ϕ

∂φ2
− µ2(r2 − a2 cos2 θ)ϕ = 0

(3.8)

with ∆ = r2 + a2 − 2Mr +Q2 + P 2.

Moreover, we use the following ansatz for the scalar field:

ϕ(t, r, θ, φ) =
∑
m

∫
ω

R(r)S(θ) eimφe−i ω tdω (3.9)

where m is the azimuthal number and ω is the scalar field frequency. This explicit

dependence by the time and the angular coordinate φ comes from the fact that

the background metric is stationary and axisymmetric, i.e. there is no explicit

dependence on the coordinates t and φ. To avoid pedantry and to keep the notation

simple, from now on we will omit the integration over the frequency spectrum and

the summation on the angular modes. Inserting the ansatz (3.9) in the Klein-

Gordon equation (3.8), on the Left-Hand-Side (LHS) we get

ei(mφ−ω t)R(r)S(θ)

[
∆R′′(r) + 2(−M + r)R′(r)

R(r)
+
p(r)

∆
+
S′′(θ) + cot θ S′(θ)

S(θ)
+ q(θ)

]
(3.10)

with

p(r) = +
1

2

{
2a2m2 + ω2

[
a4 + a2

(
2Mr − (P 2 +Q2) + 3r2

)
+ 2r4

]
+ 4 amω

(
P 2 +Q2 − 2Mr

)}
− µ2 r2∆

(3.11)

and

q(θ) =
1

2

(
a2ω2 cos 2θ − 2m2

sin2 θ

)
− µ2a2 cos2 θ. (3.12)

In order to have equation (3.10) not trivially solved, the quantity into the square

brackets must vanish; since the radial and the angular part are independent, it is

possible to solve the equation through separation of variables, and with a bit of
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algebra we can rewrite both the radial and the angular equation separately:

1

sin θ
∂

∂θ

(
sin θ∂S

∂θ

)
+

[
Λ + a2(µ2 − ω2) sin2 θ − m2

sin2 θ

]
S = 0, (3.13)

∆
∂

∂r

(
∆
∂R

∂r

)
+
{
a2m2 + 2amω

(
P 2 +Q2 − 2Mr

)
+ ω2

(
a2 + r2

)2 − [µ2(r2 + a2) + Λ
]
∆
}
R = 0,

(3.14)

where Λ is the separation constant arising from the separation of variables [167,
251]. Imposing regularity boundary conditions (at θ = 0 and θ = π) on the angular
equation, a discrete set {λlm} of eigenvalues for the separation constant is picked
up, described by integer indices l and m.
The eigenfunctions of the angular equation are the spheroidal harmonics [167, 255–
258]

Slm(γ, cos θ), (3.15)

which are an axisymmetric generalisation of the spherical harmonics Ylm(θ). In
this case, the spheroidal parameter γ has the form

γ2 = a2(ω2 − µ2), (3.16)

and it parametrizes the deviation from the spherical case, which is recovered in
the limit γ = 0:

Slm(γ = 0, θ) = Ylm(θ) (3.17)

and it is achieved (for each frequency ω) when a = 0, corresponding to a spherically
symmetric Schwarzschild (or Reisnner-Nordström) spacetime.
Hence, in the case

a2(ω2 − µ2) ≪ 1, (3.18)

the eigenvalues λlm can be approximated to spherical harmonics ones [165, 168,
256], namely

λlm ∼ l(l + 1). (3.19)

Consequently, both the angular and the radial equation depend on (l,m) indices,
and we should therefore denote with Slm(θ) and Rlm(r) the angular and the radial
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solutions, respectively. However, as we did for the summation, in order to avoid
pedantic notation we will omit to write the indices, unless necessary.

To solve the radial equation, it is useful to introduce the tortoise coordinate r∗

r∗ = r+
2M r+ − (P 2 +Q2)

r+ − r−
log
(
r

r+
− 1

)
− 2M r− − (P 2 +Q2)

r+ − r−
log
(
r

r−
− 1

)
,

(3.20)
such that

d r∗ =
r2 + a2

∆
d r, (3.21)

and we define the following radial function

f(r∗) =
√
r2 + a2R(r). (3.22)

With these redefinitions, we can rewrite the radial equation as a time-independent
Schrödinger-like equation [249]:

−d
2f(r∗)

d r∗2
+W (r) f(r∗) = ω2f(r∗), (3.23)

where the effective potential W (r) is defined as

W (r) = +
µ2∆+ 2amω

a2 + r2
− a2m2 + (2amω − λlm)∆

(a2 + r2)2

+
(a2 − 4Mr + P 2 +Q2 + 3r2)∆

(a2 + r2)3
− 3r2∆2

(a2 + r2)4
.

(3.24)

Depending on the black hole’s rotation parameter and on the scalar field’s mass
and frequency, the effective potential W (r) can act as a barrier for low frequency
modes. (As an example, in the following Figure 3.1 and Figure 3.2 the effective
potentials for Schwarzschild and Kerr black holes are shown for different values of
the scalar field’s frequencies.)
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Figure 3.1: Effective potential for a Schwarzschild black hole in the case M µ = 0.5,
with M and µ being the black hole’s mass and scalar field’s mass respectively. On
the plot, the radial coordinate r/M = 2 corresponds to the Schwarzschild radius
r = 2M , where the event horizon is located.

2 4 6 8 10

r

M

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

W

Ω = Μ

Ω = 0.8 Μ

Ω = 0.6 Μ

Ω = 0.4 Μ

Ω = 1.5 Μ

Figure 3.2: Effective potential for a Kerr black hole in the case M µ = 0.5, with M
and µ being the black hole’s mass and scalar field’s mass respectively. On the radial
axis, the plot is truncated at the event horizon’s location.
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In order to analytically solve the radial equation (3.23), we have to study separately
the near horizon and the far horizon regions, looking for solutions which fit well
in both regions (technically, we will match the near horizon solution with the far
horizon one).

3.2.1 Asymptotic region

Far from the horizon, from the tortoise coordinate definition (3.20) we can assume
r∗ ∼ r, and in the asymptotic limit r∗ → ∞ the radial equation simply reads

d2f(r∗)

d r∗2
+ (ω2 − µ2) f(r∗) = 0. (3.25)

The solution is given by

f(r∗) = C1 e
√
µ2−ω2 r∗ + C2 e

−
√
µ2−ω2 r∗ , (3.26)

and since at large distances we have

r∗ ∼ r, R(r) ∼ f(r)

r
, (3.27)

in the original radial coordinate the solution (3.26) reads

R(r) = C1
1

r
ei k∞ r + C2

1

r
e−ik∞ r, (3.28)

where we have defined
k∞ =

√
ω2 − µ2. (3.29)

Since we are interested in decaying (bounded) solutions at spatial infinity, assuming
ω2 < µ2 we can neglect1 the exponentially growing term in (3.28) and therefore
we set C2 = 0; now, the radial solution at infinity reads

R(r) = C1
1

r
ei k∞ r, (3.30)

1Moreover, as explained in details in [249], in the regime 0 < ω2 < µ2 it is possible to
have the potential W (r) in equation (3.23) with a local minimum lying below µ2, allowing for
resonance modes which tunnel through the potential barrier.
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which is an exponentially decaying term provided that ω2 < µ2 and it decays as 1/r
in the case ω = µ. This result reflects the fact that the scalar field’s mass behaves
like a natural screen for low frequencies modes, stopping them from propagating
to infinity.

3.2.2 Near region

Now we study the radial solution in the proximity of the black hole’s event horizon.
In the near horizon region, namely r∗ → −∞ or equivalentely r → r+, it is useful
to once again define a new radial coordinate:

x =
r − r+
r+

, (3.31)

and we also define the extremality parameter as

τ =
r+ − r−
r+

. (3.32)

With these definitions, the horizon is located at x = 0 and the extremal black hole
configuration r+ = r− corresponds to the choice τ = 0. Using the x coordinate
and the τ parameter we can rewrite the radial equation (3.14) as:

x(x+ τ)R′′(x) + (2x+ τ)R′(x) + V (x)R(x) = 0, (3.33)

where

V (x) =

[
a2ω − am+ r2+(x+ 1)2ω

]2
x(τ + x)r2+

−µ2
[
a2 + r2+(x+ 1)2

]
+2amω−λlm. (3.34)

Equations (3.33) and (3.34) coupled with opportune boundary conditions set up
an eigenvalues problem for the field’s frequencies ω, which are in principle complex:

ω = ωR + i ωI . (3.35)

Depending on the sign of the imaginary part, the modes could be exponentially
decaying (ωI < 0) or exponentially growing (ω > 0); the first scenario corresponds
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3.2 Scalar field clouds

to the black hole’s Quasi Normal Modes (QNMs), namely the damped oscilla-
tion frequencies of the black hole itself, while the exponentially growing scenario
corresponds to the superradiant instability we have already discussed.
In our problem, we are interested in finding stationary solutions of the scalar field,
namely long-lived modes supported by the black hole. This class of solution
corresponds to the choice ωI = 0, leaving us with purely real frequencies. The
problem could be fully solved using numerical techniques (in [249] it has been
solved for the spherically symmetric uncharged case): however, we are interested
in finding completely analytical solutions, and so we need a further requirement.
As it has been shown in [228] for a charged scalar field in an electric Kerr-Newman
spacetime, for frequencies ω close to the critical superradiance frequency

ωc = mΩ = m
a

r2+ + a2
(3.36)

the problem is fully analytically solvable and, as expected, it admits stationary
(ωI = 0), quasibounded (regular on the horizon and exponentially decaying at
infinity), resonant (ω ∼ ωc) solutions for the scalar field. Using the same termi-
nology as in [228, 249], we will refer to these solutions as scalar clouds around
rotating black holes. In fact, since we are considering a test scalar field with neg-
ligible backreaction on the spacetime, the scalar field configuration around the
black hole cannot be considered an actual scalar hair (see [164] for a brief review
of black holes with scalar hair); so, the scalar cloud is a stationary configuration
for an external massive scalar field around a rotating black hole, rather than a full
backreacting gravito-scalar spacetime. Since we are looking for stationary quasi-
bounded resonance solutions for the scalar field around a dyonic black hole, from
now on we will assume

ω ≃ ωc, (3.37)

and with this assumption the potential V (x) in equation (3.33) simplifies at

Vc(x) = −λlm − µ2
[
a2 + r2+(x+ 1)2

]
+ 2amω +

r2+ (x2 + 2x)
2
ω2

x(τ + x)
, (3.38)
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and the radial equation becomes

x(x+ τ)R′′(x) + (2x+ τ)R′(x) + Vc(x)R(x) = 0. (3.39)

To analytically solve the last equation it is useful to study the extremal τ = 0 and
the non extremal τ ̸= 0 cases separately, since the latter is quite more complicated
than the former and to solve it we will use some results of the extremal case.

3.2.2.1 Extremal case: τ = 0

In the extremal case τ = 0, the radial equation (3.33) simply becomes

x2R′′(x) + 2xR′(x) + V 0
c (x)R(x) = 0, (3.40)

with

V 0
c (x) = −λlm − [a2 + (r2+(1 + x)2)]µ2 + 2 amω + r2+(x+ 2)2ω2. (3.41)

Equation (3.40) is analytically solved for all x-values, and the solution is a super-
position of confluent hypergeometric functions of first type [256]:

R(x) = + c̃1 e
−ϵxx−

1
2
+β

1F1[
1

2
+ β − η, 1 + 2β, 2ϵx]

+ c̃2 e
−ϵxx−

1
2
−β

1F1[
1

2
− β − η, 1− 2β, 2ϵx],

(3.42)

where 1F1[a, b, z] is the hypergeometric confluent function and we have defined

β =

√
1

4
+ λlm + µ2(a2 + r2+)− 2 amω − 4r2+ω

2,

η = − (µ2 − 2ω2)r+√
µ2 − ω2

,

ϵ = r+
√
µ2 − ω2,

c̃1 = c1
−2β

Γ(1
2
− β − η)

+ c2

1
2
+ β + η

Γ(1
2
− β + η)Γ(1 + 2β)

,

c̃2 = c2 2
−2β Γ(2β)

Γ(1
2
− η + β)

,

(3.43)
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with c1 and c2 integration constants.
In the near horizon region x ∼ 0, we can take the limits

e−ϵx ∼ 1, 1F1[a, b, x] ∼ 1 (3.44)

and the radial equation simplifies at

R(x) = c̃1x
− 1

2
+β + c̃2 2

−2β x−
1
2
−β. (3.45)

Since we are interested in solutions regular on the horizon, we impose

c̃2 = c2 = 0, , Re(β) > 1

2
(3.46)

and we are left with
R(x) = c̃1x

− 1
2
+β. (3.47)

To consistency, we now have to check the behaviour of the field far from the hori-
zon, matching the asymptotic result (3.30) with the near horizon one (3.47).
Imposing conditions (3.46) on the equation (3.42) and taking the asymptotic be-
havior of the 1F1 function

1F1[
1

2
+β−η, 1+2β, 2ϵx] ∼ Γ(1+2β)

[
e2ϵx(2ϵx)−

1
2
−β−η

Γ(1
2
+ β − η)

+
(−2ϵx)−

1
2
−β+η

Γ(1
2
+ β + η)

]
, (3.48)

we arrive at

R(x) =
c1

Γ(12 − β + η)

[
Γ(12 + β + η)

Γ(12 + β − η)
(2ϵ)−

1
2
−β−η eϵx x−1−η + (−2ϵ)−

1
2
−β+η e−ϵx x−1+η

]
.

(3.49)

Since the near horizon solution has to match the asymptotic quasibounded solution
which goes to zero at spatial infinity, we have to make the growing term in the
previous equation vanishing.
Thus, since the Gamma functions has no zeros [256], we have to set

1

Γ(1
2
+ β − η)

= 0. (3.50)
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The previous condition is satisfied at the Gamma’s poles, which appear when

1

2
+ β − η = n, (3.51)

with n being an integer, non-negative number.
Finally, the radial equation reads

R(x) = C1 e
−ϵ x x−

1
2
+β

1F1[
1

2
+ β − η, 1 + 2β, 2ϵx], (3.52)

and using the resonance condition (3.51) we can write it in terms of the generalized
Laguerre Polynomials Lba(z) [256] as

R(x) = C e−ϵ x x−
1
2
+β L2β

n (2ϵx), (3.53)

where we have used the relation

1F1[a, b z] ∝ Lb−1
−a (z). (3.54)

The resonance condition (3.51) can be rewritten as

η =
1

2
+ β + n, (3.55)

and reminding that Re(β) > 1
2

we obtain

η > 0. (3.56)

Hence, from the definition of η we have

−(µ2 − 2ω2)r+√
µ2 − ω2

> 0, (3.57)

and together with the condition ω2 − µ2 < 0 it leads to

ω < µ <
√
2ω. (3.58)

The last relation implies that for a massive scalar field there does not exist any
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static (ω = 0), quasibounded, resonant solution around a dyonic KN black hole,
and it shows that in the massless case (µ = 0) no resonance solutions are supported.

The resonance condition (3.55) can be analytically solved in the regime

ϵ≪ 1, (3.59)

which corresponds to the case µ ∼ ω. In this regime, neglecting terms of order
O(ϵ3) or higher, we have

µ(ϵ) =

√
ω2 +

ϵ2

r2+
,

η(ϵ) =
r2+ ω

2

ϵ
− ϵ,

β2(ϵ) =

(
l +

1

2

)2

− amω − 4r2+ω
2 +

am

r2+ω
ϵ2,

(3.60)

where we have used the approximation

λlm ∼ l(l + 1). (3.61)

So, the resonance condition leads to a polynomial equation for the variable ϵ:

−r2+ω2 +

n+
1

2
+

√(
l +

1

2

)2

− amω − 4r2+ω
2

 ϵ+ ϵ2 + O(ϵ3) = 0, (3.62)

where, depending on the black hole parameters and on the indices (n, l,m), an
infinite family of solutions there exist:

ϵ̃nlm(M,a, P,Q). (3.63)

Finally, the field’s masses corresponding to the resonance frequencies are given by

µnlm(M,a, P,Q) = ω

(
1 +

1

2
ϵ̃2 + O(ϵ̃4)

)
, (3.64)
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with

ϵ̃ =
{
1 + 2n+

√
(2l + 1)2 − 4ω (am+ 4r2+ω)

+

√(
1 + 2n+

√
(2l + 1)2 − 4ω (am+ 4r2+ω)

)2

+ 16r2+ω
2
}
(4r+ω)

−1.

(3.65)

3.2.2.2 General case: τ ̸= 0

In the general case, it is not possible to find an analytic solution (for each x-value)
of the radial equation

x(x+ τ)R′′(x) + (2x+ τ)R′(x) + Vc(x)R(x) = 0. (3.66)

So, we try to solve it in the limit

x≪ 1, (3.67)

where the potential reads

V 0
c (x) = −λlm − µ2(a2 + r2+) + 2 amω + k2

x

x+ τ
, (3.68)

where we have defined
k = 2ω r+. (3.69)

After performing the following redefinitions of functions and variables

R(x) = α(x) g(x),

z = −x
τ
,

(3.70)

the radial equation becomes

− α(z)
{
z(1− z)g′′(z) +

[
2α′(z)

α(z)
z(1− z) + (1− 2z)

]
g′(z)

+

[
α′′(z)

α(z)
z(1− z) +

α′(z)

α(z)
(1− 2z) + k2

z

1− z
− Ṽ

]
g(z)

}
= 0,

(3.71)
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where the effective potential Ṽ is given by:

Ṽ = −λlm − µ2(a2 + r2+) + 2 amω. (3.72)

Reminding the generic hypergeometric differential equation [256, 259],

y(1− y)t′′(y) + [c− (a+ b+ 1)y] t′(y)− a b t(y) = 0, (3.73)

from equation (3.71) we have to impose the following conditions:

2α′(z)

α(z)
z(1− z) + (1− 2z) = c− (a+ b+ 1)z

α′′(z)

α(z)
z(1− z) +

α′(z)

α(z)
(1− 2z) + k2

z

1− z
− Ṽ = −a b ,

(3.74)

which lead to
α(z) = (1− z)

1
2
(a+b+c) z

1
2
(c−1) (3.75)

with
a =

1

2
+ β − ik,

b =
1

2
− β − ik,

c = 1,

(3.76)

and with β and k defined as in (3.43) and in (3.69), respectively. So, using (3.70)
together with (3.75) we can write the complete solution to the radial equation in
the near horizon region:

R(x) =

(
x+ τ

τ

)
2F1[

1

2
+ β − ik,

1

2
− β − ik, 1,−x

τ
], (3.77)

with 2F1[a, b, c, z] the hypergeometric function of the second type [256].

Far from the horizon, we have to solve the radial equation (3.66) in the limit

x≫ τ. (3.78)

In this limit, the radial equation is equal to the one we solved in the extremal case,
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x2R′′(x) + 2xR′(x) + Vc(x)R(x) = 0, (3.79)

which has solution

R(x) = + C̃1 e
−ϵxx−

1
2
+β

1F1[
1

2
+ β − η, 1 + 2β, 2ϵx]

+ C̃2 e
−ϵxx−

1
2
−β

1F1[
1

2
− β − η, 1− 2β, 2ϵx].

(3.80)

Following the Hod’s approach [165, 250], now we have to match the near and far
horizon solutions in the overlapping region

τ ≪ x≪ 1. (3.81)

To do it, we have to compare and match the Gamma functions coefficients resulting
from expanding the hypergeometric functions in the far horizon region with the
ones in the near horizon one; skipping some long algebraic steps (look at [228, 250]
for an explicit similar calculation), after imposing regularity conditions on the
horizon and decay at spatial infinity, as we did in the extremal case we can find
the resonance condition from the gamma function’s poles

η =
1

2
+ β + n > 0. (3.82)

Again, we find that for a massive scalar field any static, quasibounded, resonant
configuration around a rotating dyonic black hole is not supported. This result is
consistent with the one obtained in the extremal case, since for τ = 0 the overlap-
ping condition τ ≪ x ≪ 1 is satisfied and the far horizon region can be extended
to spatial infinity. So, the condition (3.82) holds for generically fast or slow rotat-
ing black holes, and the results obtained in the extremal case are extended to the
generic non extremal regime.
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3.3 Conclusions

In this chapter it has been shown how a rotating dyonic black hole admits station-
ary, quasi-bounded configurations for a massive, scalar test-field surrounding the
black hole. Such configurations, known as scalar (boson) clouds, are composed of
the resonant modes of the scalar field interacting with the background black hole.
Interestingly, assuming a coupling between the scalar field and the electromagnetic
sector [260], the scalar cloud surrounding the black hole could deflect the radiation
travelling near the black hole: as we will see in more details in the next chapter,
this could lead to the detection of right/left polarised radiation [261]. Moreover,
bosonic clouds surrounding black holes (or eventually other astrophysical com-
pact objects which allow surrounding clouds [262, 263]) can affect the dynamics
of a binary system, affecting the motion of small compact objects in the closeness
[162, 264] and hence inducing potentially detectable signatures in the Gravitational
Waves waveforms coming from EMRIs (extremal mass-ratio inspirals). In the case
of a binary system, tidal perturbations can induce resonant transitions between
different modes [119, 265, 266] of the cloud, with summation rules similar to the
hydrogen atom system [247, 265], leading to a cloud depletion of the cloud through
GWs emission [265, 266]. Quite remarkably, the superradiant configurations offer
even more chances to be detected: in fact, since superradiant instabilities could
lead to a lack of highly spinning black holes, an indirect observation of bosonic
clouds could be given by gaps in the Regge plane [121, 125]. Moreover, non station-
ary clouds would slowly decay through the emission of Gravitational Waves, with
detectable frequencies both in the continuous and in the stochastic background
area [119, 120, 267–269].

In conclusion, the existence of bosonic clouds surrounding rotating black holes
(or even other compact objects) could be detected in several different ways; in par-
ticular, continuous/stochastic GWs emission from isolated objects or GWs emission
from binary systems would give us a strong evidence of ultralight bosonic fields in
the strong gravity regime, opening new frontiers in axion cosmology and particle
physics and on the scalar-tensor gravity sector.
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Chapter 4

Black hole hair

Black hole physics can suggest new ways to test the existence of axions. In par-
ticular, in the last decades much work has been done to analyse the phenomenon
of superradiance associated with axions in the ergoregion surrounding rotating
black holes. In this chapter, based on the work [270], we instead investigate how
Chern-Simons axion couplings of the form ϕF F̃ and ϕR R̃, well motivated by
particle physics and string theory, can induce long-range profiles for light ax-
ion fields around charged black holes, with or without spin. We extend known
solutions describing axion hair around spherically symmetric, asymptotically flat
dyonic black hole configurations, charged under U(1) gauge symmetries, by includ-
ing non-minimal couplings with gravity. The axion acquires a profile controlled by
the black hole’s conserved charges, and we analytically determine how it affects
the black hole’s horizon and its properties. Moreover, we find a Smarr formula
applying to our configurations, and we then generalise known solutions describing
axion hair around slowly rotating black hole configurations with charge. To make
contact with phenomenology, we briefly study how long-range axion profiles induce
a polarization dependent deflection of light rays, and the properties of ISCOs for
the black hole configurations we investigate.

4.1 Introduction

Axions can be considered among the most well motivated candidates for physics
beyond the Standard Model. Introduced in order to solve the strong CP problem
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[92–94, 271] (see the review [14]), it was soon realised they have relevant impli-
cations for cosmology, as dark matter [106–108] or dark energy candidates [245]
(see the review [91]). Moreover, axion fields arise naturally in string theory con-
structions (see e.g. [96]) with a broad variety of couplings and masses, motivating
the string axiverse scenario of [97]. The quest of their experimental detection is
currently an active research field, see e.g. [272] for a recent pedagogical review.
Very light axion fields are specially interesting dark matter candidates [273–281],
and their specific properties can lead to distinctive observational consequences. In
this chapter, based on [270], we investigate the relation between the physics of
axions and black holes, encouraged by the great development and opportunities
given us by Gravitational Waves detectors (LIGO, VIRGO, LISA, KAGRA, etc.)
and telescopes (EHT, Spektr-R, etc.). Light axions, whose Compton wavelength is
of the order of a black hole’s Schwarzschild radius, can deposit on the ergosphere
of a rotating black hole, and cause instabilities associated with the phenomenon
of black hole superradiance [30, 132, 251]. Such instabilities can have observable
implications, since axions can extract rotational energy from spinning black holes
[121, 168, 247, 282] (see [125] for a comprehensive review), and lead to a distinctive
emission of detectable gravitational waves1 (see e.g. [119, 268]).
In chapter 3 we discussed the case of a massive scalar field in a cloud configuration
surrounding a rotating, charged black hole, with frequency close to the superra-
diance threshold frequency ωc = mΩ. Here we focus on the situation where the
axion Compton wavelength is much larger than a black hole’s Schwarzschild ra-
dius. In this regime, the axion ϕ can be considered effectively massless, and the
axion Lagrangian enjoys a shift symmetry ϕ → ϕ + const. It is then natural to
ask whether ϕ can develop an extended radial profile, leading to long-range axion
hair around a black hole. As already discussed in section 1.6, there are several
no-hair arguments to overcome, starting from Bekenstein results [285, 286]; on
the other hand, a key property of axion fields we can exploit is the fact that they
are characterised by Chern-Simons couplings to gauge fields and gravity,

ϕF F̃ , ϕR R̃ (4.1)
1Possible ways to probe properties of axions with neutron stars are also being investigated,

see e.g. [262, 283, 284].
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with F̃ and R̃ respectively the Hodge dual of the gauge field strength and Riemann
tensor. While the gauge Chern-Simons coupling naturally appears when dealing
with anomalous symmetries of the QCD axion (see the reviews [14, 272]), the
gravitational Chern-Simons coupling arises in explicit calculations in string the-
ory constructions, see e.g. [96]. The linear Chern-Simons axion couplings in (4.1)
source a non-vanishing asymptotic value for the axion fields for charged and/or ro-
tating black holes, and allow one to avoid black hole no-hair theorems, somewhat
analogously to what happens in Horndeski theories, where linear couplings with
the Gauss-Bonnet invariant were found in [156, 287] to be an important ingredient
for overcoming the no-hair theorem of [288].

This chapter proceeds as follows:

• In section 4.2 we set the stage presenting the shift symmetric axion system we
consider. We include additional derivative couplings of the axion field with
curvature, allowed by the symmetries of the system, which can be motivated
by high energy constructions. We explain in detail why the Chern-Simons
couplings (4.1) are expected to induce regular axion hair around regular
spherically symmetric charged black holes, and around rotating black holes
(with or without charge).

• In section 4.3 we study spherically symmetric dyonic black holes, with electric
and magnetic charges, equipped by a long range axion hair. We generalise
known solutions [149, 150, 289] to cases where the axion has derivative cou-
plings with the Ricci tensor, motivated in section 4.2, showing that Chern-
Simons couplings can be effective in generating axion hair also in theories
with non-minimal derivative couplings of axions to curvature. The axion
profile has a secondary charge, i.e. it depends on the black hole’s conserved
charges. We work at leading order in an expansion of the relevant coupling
constants, finding analytical solutions and discussing how the properties of
the black hole’s horizon and the basic black hole thermodynamics are mod-
ified by the axion hair.
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• In section 4.4 we consider slowly rotating charged black holes, finding new
configurations with axion hair, which generalize and interpolate between
known solutions [155, 290]. Interestingly, we find that the gauge and gravi-
tational Chern-Simons couplings simultaneously play a role in characterising
the axion hair and the geometry, leading to mixed contributions depending
on both these parameters.

• In section 4.5 we study phenomenological applications of our findings, show-
ing how long-range black hole axion hair can bend differently the two po-
larizations of light crossing in proximity of the black hole (elaborating on
the methods of [261]), and by studying properties of the innermost stable
circular orbits (ISCOs) for our configurations. Moreover, we briefly discuss
how these configurations fit in the contest of astrophysical Active Galactic
Nuclei (AGNs).

4.2 System under consideration

4.2.1 The action

We consider the following action describing gravity coupled with a U(1) gauge field
Aµ (with Fµν = ∂µAν − ∂νAµ its field strength) and a pseudoscalar axion field ϕ

S =

∫
d4x

√
−g

[
R

4
− 1

4
F µνFµν − Lϕ (ϕ, ∂ϕ) + LI(ϕ, Fµν , gµν)

]
, (4.2)

where from now on we have set units such that c = ℏ = GN = 1 and 4πϵ0 = 1.
This action describes Einstein gravity coupled to a U(1) Maxwell field, and a
pseudoscalar axion described by the Lagrangian density Lϕ (to be specified in
what follows). Moreover, the axion is non-minimally coupled to the gauge and
the metric fields: such interaction terms are all included in the Lagrangian density
LI , which will be soon specified. The axion can be identified with the Nambu-
Goldstone boson of a spontaneously broken Peccei-Quinn symmetry, or with the
Hodge dual of a three-form field strength which appears in string theory scenarios.
In both cases, Chern-Simons couplings arise naturally; so, we consider a real,
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neutral, axion field ϕ coupled to a gauge field through a Chern-Simons interaction
term, namely

Lcs
f = gf ϕ fαβ f̃

αβ, (4.3)

where gf is the coupling constant and f̃αβ are the components of the generic 2-
form f̃ , defined as the Hodge dual of the 2-form f = fµν dx

µ ∧ dxν . Explicitly, the
components of the dual tensor are

f̃αβ =
1

2
ϵλδαβfλδ, (4.4)

where ϵλδαβ is the Levi-Civita antisymmetric tensor defined from

ϵλδαβ =
1√
−g

ελδαβ, (4.5)

with ελδαβ being the antisymmetric Levi-Civita symbol defined as

ελδαβ =


+1 if λδαβ is an even permutation of 1234
−1 if λδαβ is an odd permutation of 1234
0 otherwise.

(4.6)

In this work, we are interested in studying an axion field non-minimally coupled
to the gauge field strength and gravity through Chern-Simons interaction terms:

Lcs
F = gF ϕ F̃

αβ Fαβ,

Lcs
R = gR ϕ R̃

αβγδ Rαβγδ,
(4.7)

where the field strength’s and the Riemann tensor’s dual are respectively defined
as

F̃ µν =
1

2
ϵµνρσ Fρσ, R̃µνρσ =

1

2
ϵµναβRρσ

αβ (4.8)

and with gF and gR being the respective coupling constants.
The coupling constants of the Chern-Simons terms can be associated with the ax-
ion decay constants: for our purposes we appropriately weight those operators with
powers of some fundamental mass scale (for example the Planck mass) and con-
sider the quantities gF and gR as dimensionless free constant parameters, affecting
the geometry of the spacetime we consider. Additionally, higher order operators
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coupling the axion to curvature and gauge fields could in principle be included,
but since they are suppressed by higher powers of the fundamental mass scale we
neglect them for simplicity (see however [291]). At the perturbative level, axion
fields typically enjoy a shift symmetry

ϕ→ ϕ + const, (4.9)

which can be broken by non-perturbative effects giving a mass to the axion. For
cosmological purposes – as dark energy or dark matter candidates – axions are
typically very light. For the aim of this work, we consider axions whose Compton
wavelength is much larger than the size of the black hole. Being the Compton
wavelength λCompton of an axion field of mass mϕ given by

λCompton ≃
(
10−10 eV
mϕ

) (
MBH

M⊙

)
rsun

Schw , (4.10)

we can assume that the axion masses are much smaller than 10−10 eV when con-
sidering stellar black holes, or much smaller than 10−16 eV when investigating
supermassive black holes sitting in the centre of galaxies, such that λCompton is
well larger than the corresponding black hole’s Schwarzschild radius. As a con-
sequence, we will neglect shift symmetry-breaking effects, and consider the axion
field as effectively massless. The shift-symmetric axion Lagrangian Lϕ we consider
is quadratic in the axion field, so to respect the pseudoscalar properties of the
axion. It contains the standard axion kinetic terms, plus non-minimal derivative
couplings with gravity:

Lϕ =
1

2
∇µϕ∇µϕ− λGµν ∇µϕ∇νϕ, (4.11)

with Gµν being the Einstein tensor. This is the most general shift-symmetric
quadratic action for the pseudoscalar axion field, which is invariant under the
parity symmetry properties of the pseudoscalar axion, and leads to second order
equations of motion. The second contribution in (4.11) is a dimension-six operator
belonging to the Horndeski action. We weight it with appropriate powers of the
Planck mass, and consider the parameter λ as dimensionless. We include the
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operator controlled by λ for the following reasons:

i) it is allowed by the symmetries of the axion – shift symmetry and parity
invariance – hence it can be expected from an effective field theory point of
view, being induced by perturbative loop corrections to the tree-level action.
Although derivative couplings of axions with curvature are rarely consid-
ered (see however [292] for an example), they can be motivated by string
theory constructions. For example, [293] computed α′ and loop corrections
in heterotic string systems including the 3-form antisymmetric tensor field
Hµνρ, finding various couplings of the latter with Riemann and Ricci ten-
sors. Once the three form field is Hodge-dualised to a pseudoscalar, such
couplings can lead to derivative couplings of the axion to curvature tensors1,
as in Lagrangian (4.11).

ii) Non-minimal couplings of scalar fields with curvature have a long history in
models of dark energy (see e.g. [8] for a review) and cosmological inflation
(as in Starobinsky [294] or Higgs inflation [295, 296]). Although they are
typically suppressed by some high energy scale, they can have important
implications when the scalar acquires a non-trivial vacuum-expectation-value
(vev). Since their consequences for black hole physics and the existence of
scalar hair evading strong no-hair theorems are well studied topics, it is then
natural to investigate this topic for the case of pseudoscalar axions, and to
explore the role of Chern-Simons couplings in allowing for black hole axion
hair, including derivative couplings with gravity.

So, the complete action reads

S =

∫
d4x

√
−g
[R
4
− 1

4
FαβFαβ −

1

2
∂αϕ∂αϕ

− λGµν ∂µϕ∂νϕ− gF
4
ϕFαβF̃

αβ +
gR
4
ϕR̃αβγδRαβγδ

]
,

(4.12)

1These are heuristic, preliminary considerations that would be interesting to further develop
in a proper string theory setting; on the other hand, this goes beyond the scope of this work.
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and the equation of motion for the metric, the gauge vector and the axion are:

Rµν − 1
2
Rgµν = 2

(
T ϕµν + T Fµν + T csµν + T λµν

)
, (4.13)

∇α (∂
αAµ − ∂µA

α)− gF ϵµραβ ∂
αϕ ∂βAρ = 0, (4.14)

□ϕ = 1
4

(
gF FαβF̃

αβ − gR R̃
αβγδRαβγδ − 2λGαβ∇β∂αϕ

)
, (4.15)

where the stress-energy tensors are defined as:

T ϕµν =∂µϕ ∂νϕ− 1

2
gµν∂

αϕ ∂αϕ,

T Fµν =F
α

µ Fνα −
1

4
gµνF

αβFαβ,

T csµν =− 2 gR

[
∂αϕ ϵαβγ(µ∇γR β

ν) +∇α∂βϕ R̃β(µν)α

]
,

T λµν =λ
{
gµν
[
(□ϕ)2 − ∂αϕ ∂βϕGαβ + ∂αϕ∇α□ϕ− ∂αϕ∇β∇β∂αϕ−∇α∂

βϕ∇α∂βϕ
]

+ 2∂µϕ∂
αϕGνα + ∂µϕ∂νϕR + 2∇α∂µϕ∇α∂νϕ− 2□ϕ∇ν∂µϕ−□ϕRµν

+ 2∂αϕ (∇µ∇α∂νϕ+∇ν∇α∂µϕ+Gµα∂νϕ−∇α∇ν∂µϕ)
}
.

(4.16)
In the next subsection, we explain why the gauge and Chern-Simons couplings
play an essential role in allowing axion hair on charged and rotating black holes.

4.2.2 Long range axion hair and black holes

Cosmological considerations motivate the investigation of light axion fields with
Compton wavelengths well larger than the typical sizes of astrophysical black holes.
In this context, the axion field can be considered as massless; it might acquire a
long-range profile, affecting spherically symmetric configurations. But can a regu-
lar, asymptotically flat black hole with extended axion hair exist? There is a long
list of no-hair theorems to overcome, starting from Bekenstein results [285, 286],
which forbid configurations with a long-range (pseudo)scalar ϕ; no-hair arguments
are particularly powerful in the case of shift-symmetric Lagrangians [288] like ours
(see e.g. [154, 158, 164] for reviews). It is then interesting, both theoretically and
phenomenologically, to assess whether long-range axion hair exist around black
holes. The no-hair theorem discussed in [288] makes use of the properties of the
conserved current Jµ associated with the shift symmetry: in fact, [288] shows that
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– for systems that do not contain linear terms in ϕ – regularity of the current at
the horizon constrains a trivial radial profile for ϕ. On the other hand, in the con-
text of Horndeski theories, a way out has been found in [156] by noticing that the
quintic Horndeski Lagrangian contains contributions linear in ϕ (coupling the field
with the Gauss-Bonnet combination), hence evading the theorem and allowing for
black hole hair in asymptotically flat configurations (exact solutions in related sys-
tems were found in [81]).

In our shift-symmetric context described by action (4.12), we do as well have
linear couplings of the axion field with gauge and gravitational Chern-Simons
terms 1, thus we could in principle find black holes with long-range axion hair. The
aim of this work is indeed to demonstrate that these couplings offer new opportu-
nities to find regular, asymptotically flat black hole solutions with long-range pseu-
doscalar fields. Examples of black hole solutions with axion hair, with and without
charge and spin, have indeed been determined in the past [149, 150, 155, 289, 297–
300], and the subject has been particularly developed in the context of Chern-
Simons gravity [15] (see e.g. [83] and the review [16]).
In our work, we further generalise these solutions at the light of these consider-
ations, and extend them to the case of further derivative couplings of the axion
with gravity, described by Lagrangian (4.11), and by considering the simultaneous
presence of gF , gR defined as in equations (4.7). The presence of Chern-Simons
terms leads to sources for the axion field which are non-vanishing at spatial infin-
ity, inevitably inducing long-range axion profiles around black holes. In particular,
the FF̃ coupling provides a source for spherically symmetric dyonic black holes
(with electric (Q) and magnetic (P ) charges), since asymptotically far from the
black hole it acquires the following profile:

FF̃ ∼ P Q

r4
. (4.17)

On the other hand, the gravitational RR̃ coupling sources an axion radial profile
when the black hole geometry is axisymmetric, for example when it is rotating
with rotation parameter a = J/M , (J being the angular momentum and M the

1Shift symmetry is ensured by the fact that FF̃ and RR̃ are by themselves total derivatives.
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black hole mass). In the uncharged case, and in the small rotation limit (a ≪ 1),
one finds

RR̃ ∼ aM2

r7
cos θ . (4.18)

Thus, the resulting axion field induced by the sources (4.17) and (4.18) backreacts
on the geometry and affects the physical properties of the black hole at the posi-
tion of the horizon.

In the next sections, we initially study charged spherically symmetric black hole
configurations for this system; then we generalise to the study of slowly rotating
charged solutions, and at the end we discuss phenomenological consequences of
our results.

4.3 Spherically symmetric configurations

In this section, we discuss asymptotically flat, spherically symmetric configura-
tions with axion hair around dyonic black holes, characterised by both magnetic
and electric charges associated with the U(1) gauge field Aµ. This gauge field can
be associated with some gauge symmetry beyond the Standard Model – for exam-
ple associated with dark gauge bosons for dark matter interactions [6, 301, 302],
or some additional gauge group motivated by string theory – or with standard
electromagnetism: our discussion applies to both cases1. The Chern-Simons gauge
coupling FF̃ sources an axion profile that scales as 1/r asymptotically far from
the object (while the gravitational Chern-Simons term RR̃ vanishes for spherically
symmetric solutions). Its backreaction on the geometry and the gauge field can be
analytically computed in a perturbative expansion in the dimensionless coupling
constants gF and λ, appearing in action (4.12) and scalar Lagrangian (4.11). We
work at leading order in a perturbative expansion on these parameters to main-
tain our expressions relatively simple, and since interesting physical phenomena

1The configurations we consider differ from string theory configurations found in dilaton–
Maxwell-gravity systems and dilaton-axion-Maxwell-gravity systems (see e.g. respectively [303],
[304] and the comprehensive review [305]), since in our case we do not have any scalar dilaton
in our system, but only a pseudoscalar axion.
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already appear at leading order in such expansion. For completeness, in subsec-
tion 4.3.2 we also discuss an exact solution for a specific, potentially large value
of the coupling constant λ. The axion profile affects the electric field, but not the
magnetic one. Our solution generalises the spherically symmetric configurations
studied by Campbell et al [150, 289] and by Lee and Weinberg [149] (see also [297])
by including non-minimal couplings between axion and metric, described by the
Horndeski coupling λ in the Lagrangian density (4.11). As we will discuss, the
properties of our configurations are different from other black hole solutions in
theories with non-minimal couplings with gravity.

The axion profile

In a perturbative expansion of both gF and λ parameters, from the equations of
motion (5.8, 5.9, 5.9) we observe that at leading order in the gF , λ couplings only
the axion field’s equation of motion gets a contribution. In fact, if we compare
(5.9) with (5.8) and (5.9), we notice that a leading order contribution at the axion
field implies a higher order contribution in both the metric and the gauge field.
Therefore, we can initially solve the scalar field equation (5.9) at leading order in gF
and λ on a order zero background, and subsequently using the scalar field solution
to solve the higher order metric and gauge field equations of motion. If we consider
an electromagnetic field with vector potential Aµ, the static, asymptotically flat,
charged and spherically symmetric solution which satisfies the Einstein-Maxwell
equations is the dyonic Reissner-Nordström (RN) metric

ds2 =

(
−1 +

2M

r
− P 2 +Q2

r2

)
dt2 +

(
1− 2M

r
+
P 2 +Q2

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2,

(4.19)

where Q and P are the electric and the magnetic charge1 respectively, and where
r± correspond to the outer/inner horizons of the RN black hole:

r± =M ±
√
M2 − (P 2 +Q2). (4.20)

1As explained in the motivations, the inclusion of the magnetic charge comes from the full
electromagnetic dualism, as predicted by string theory.
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The U(1) gauge field associated with the Reissner-Nordström metric is

Aµ =

{
±Q
r
, 0, 0,±P cos θ

}
, (4.21)

where the A0 component
A0 = ±Q

r
(4.22)

is defined up to a constant in accordance with gauge invariance. Since the geometry
is static, the gravity Chern-Simons term R̃αβγδ R

αβγδ is everywhere null, since the
Riemann tensor is everywhere vanishing. Instead, the electromagnetic Chern-
Simons term F̃αβ F

αβ is not flat if both the electric and the magnetic charges are
on, thus we have:

F̃αβ Fαβ = −gF
P Q

r4
, R̃αβγδ Rαβγδ = 0. (4.23)

Explicitly, the equation of motion for the axion ϕ(t, r, θ, φ) at leading order in gF

and λ reads

∆ [2λ (P 2 +Q2) + r4]

r6
∂2ϕ

∂r2
+

[
4λ
(
P 2 +Q2

) (∆−Mr + P 2 +Q2)

r7
+

2(r −M)

r2

]
∂ϕ

∂r

+
1

sin θ
∂

∂θ

(
sin θ∂ϕ

∂θ

)
2λ (P 2 +Q2) + r4

r6
+
gFPQ

r4
= 0,

(4.24)
where as in the RN case we have ∆ = r2 − 2Mr+P 2 +Q2. Since the source term
on the RHS of equation (4.24) does not depend on the coordinates (t, θ, φ), we
expect and therefore assume that any supported scalar field configuration has to
be static and spherically symmetric and it only depends on the radial coordinate:

ϕ(t, r, θ, φ) = ϕ(r). (4.25)

With this assumption, the axion equation simply reduces to[
4λ (P 2 +Q2) (∆−Mr + P 2 +Q2)

r7
+

2(r −M)

r2

]
ϕ′

+
∆

r2

[
1− 2λ (P 2 +Q2)

r6

]
ϕ′′ = −gFPQ

r4
.

(4.26)
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Integrating the above equation, we find the radial scalar field solution up to two
integration constant (C1, C2):

ϕ(r;C1, C2). (4.27)

Since we are interested in quasi-bounded scalar field configurations, i.e. solutions
which are regular on the outer horizon and decay to zero at spatial infinity, we
impose quasi-bounded boundary conditions fixing both C1 and C2 integration con-
stants. At leading order in an expansion in both gF and λ, the unique solution for
the scalar field’s equation of motion that is regular at the black hole’s horizon and
decays at spatial infinity is

ϕ(r) = −gF P Q

{
log
(
1− r−

r

)
r−r+

− λ

r4−

[
2 r−
r

+
r2−
r2

+
2 r3−
3r3

+
r4−
2r4

+ 2 log
(
1− r−

r

)]}
,

(4.28)
where we could have added to this expression a constant ϕ0, which however has
no physical consequences due to shift-symmetry.
The axion profile (4.28) describes a secondary hair, since there is no independent
pseudoscalar charge but it is fully controlled by the black hole’s charges (M, P, Q);
on the other hand, as we will see, the axion affects some properties of the black
hole’s horizon. Interestingly, we notice that the axion profile is regular at the
position r+ of the outer horizon, while it diverges at the inner horizon r− (more
on this later). Expanding for large values of r, one finds 1

ϕ ∼
(
gF P Q

r+

)
1

r
+ O

(
1

r2

)
. (4.29)

Interestingly, we find that the pseudoscalar axion profile decays as 1/r, thus
charged black holes with gauge couplings ϕFF̃ support monopolar axion con-
figurations. This is a difference with respect to what happens with gravitational
Chern-Simons couplings ϕRR̃, as we will discuss in section 4.4, where the axion
radial profile decays as 1/r2 [155]. Such axion profile has newsworthy consequences
for the physics of the horizon and for the phenomenology of the system. In fact,

1It is straightforward to verify that this asymptotic, large r profile for the scalar field remains
valid also beyond a leading order expansion in the coupling constants (gF , λ). We will use this
fact in section 4.5.1.
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although the axion scales with the radial coordinate as 1/r, it can more easily
circumvent fifth force constraints [245, 306], since being a pseudoscalar it does
not directly couple to the trace of stress-energy tensor. Moreover, one can check
that the corrections weighted by λ, associated with derivative couplings with the
metric, appear in the axion profile at order 1/r4: this is probably a manifestation
of Vainshtein screening in this context (see e.g. [55] for a review).

Gauge field solution

The vector potential associated to this configuration has both electric and magnetic
components

Aµ = {At(r), 0, 0, Aφ(θ)} (4.30)

where, at leading order in a (gF , λ) expansion, we find the solution

At(r) = −Q
r
+
g2F P

2Q

r

[
a(r) + λ b(r)

]
,

a(r) =
r− (r−r+ − 2Q2) + [Q2(r− − 2r) + r+r−(r − r−)] log

(
1− r−

r

)
r3−r

2
+

,

b(r) =
1

30r5r2−

{
r−r+

[
60r4(r− + 4r+) + 30r3r−(r− − 4r+) + 20r2r2−(r− − 2r+)

+ 5rr3−(3r− − 4r+)− 12r4−r+

]
− 5P 2

[
12r4(r− + 5r+) + 6r3r−(r− − 5r+)

+ 2r2r2−(2r− − 5r+) + rr3−(3r− − 5r+)− 3r4−r+

]
− 60

r4

r−
log
(
1− r−

r

)[
Q2 (5r−r+ − rr− − 5r+r) + r−r+ (rr+ − r−r+)

]}
,

Aφ(θ) = −P cos θ,
(4.31)

with r± being the outer and inner horizon’s radii, respectively. Such vector config-
uration corresponds to a magnetic monopole configuration with magnetic charge
P , additionally charged under an electric field Er = ∂r At(r) whose profile is mod-
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ulated by the axion field, and by the presence of the magnetic charge P . This fact
resembles, in curved space-times, a phenomenon called Witten effect [307, 308],
where an axion configuration switches on an electric field in a magnetic monopole
background in the presence of a Chern-Simons coupling ϕFF̃ .

Metric solution

Given the scalar hair solution (4.28), we now calculate the background metric’s
corrections due to the backreaction of the scalar field.
At leading order in a (gF , λ) expansion, the metric line element reads as follows:

ds2 = −F (r) dt2 +
dr2

h(r)F (r)
+ r2 dθ2 + r2 sin2 θ dφ2 , (4.32)

with

F (r) =
(
1− r−

r

)(
1− r+

r

)
+ g2F

(
P Q

r−r+

)2
{
−2r−

r
+
r+r−
r2

− 2r − r+ − r−
r

log
(
1− r−

r

)

+
λ

30r4−r+

[
600

r
− 60(4r− + 9r+)

r2
− 70r−(r− − 3r+)

r3
−

30r2−(r− − 2r+)

r4

−
5r3−(3r− − 5r+)

r5
+

12r4−r+
r6

+
60
(
10r2 − 9r(r− + r+) + 8r−r+

)
log
(
1− r−

r

)
r2r−

]}
(4.33)

and

h(r) = + 1 +
2 g2FP

2Q2

r2−r
2
+

{
r−

r − r−
+ log

(
1− r−

r

)
− λ

10 r+
r2− (r − r−)

[
1− r−

2 r
−

r2−
6 r2

−
r3−(5r+ − 12r−)

60 r+ r3
−

r4−
4 r4

− (1− r

r−
) log

(
1− r−

r

)]}
.

(4.34)

Setting gF = 0, one finds the standard Reissner-Nordström solution with magnetic
and electric charges. Instead, setting only λ = 0 one finds the solution of [149].
The axion profile backreacts on the metric, with corrections starting only at order
1/r3 in a 1/r expansion. Interestingly, the axion profile changes the position of
the outer horizon of the charged black hole: at leading order in an expansion in
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the dimensionless couplings (gF , λ), the position of the outer horizon is

rH = r+ + g2F rS, (4.35)

where we have defined

rS =+
P 2Q2

r+r2−

[
log
(
1− r−

r+

)
+

r−
r+ − r−

+ λ
r−
(
3r4− + 5r3−r+ + 10r2−r

2
+ + 30r−r

3
+ − 60r4+

)
− 60r4+(r+ − r−) log

(
1− r−

r+

)
30 r3−r

3
+ (r+ − r−)

]
.

(4.36)
The geometry is regular at the outer horizon, and we find (in our approximations
scheme) that the presence of the axion hair increases the size of the outer horizon.
Curvature invariants diverge at the position of the inner horizon r−, hence the
axion profile makes singular the inner horizon of the charged black hole. This fact
was already found in [149, 289] for the case with minimal couplings with gravity,
and it remains true also in our set-up with derivative couplings to gravity described
by Lagrangian (4.11). So, as anticipated in subsection 4.2.2, Chern-Simons gauge
couplings ϕFF̃ provide qualitatively new opportunities to find new black hole so-
lutions with axion hair, also in the case of non-minimal couplings of the axion with
gravity. Our analytic formulas – valid for small values of the coupling constants –
describe how the black hole geometry is affected by the long-range axion configu-
rations.

To conclude this subsection, we qualitatively compare some aspects of our
findings with some of the regular black hole solutions in Horndeski theories. In
[156, 287], asymptotically flat, hairy solutions have been found in systems with a
linear coupling between the scalar field and the Gauss-Bonnet combination (hence
avoiding the no-hair theorem [288], see our section 4.2.2), weighted by a dimen-
sionless quantity that we call gGB. Moreover, [287] determines analytical solutions
for the system in a perturbative expansion for small gGB, finding that the geome-
try is affected only at next to leading order in such expansion, requiring a control
of the theory up to next-to-leading level in the small parameter gGB. Instead, in
our case, differences with respect to the standard Reissner-Nordström configura-
tion are already visible at leading order in our parameter expansion. Moreover,
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4.3 Spherically symmetric configurations

the works [309–311] determine regular black hole solutions with non-minimal cou-
plings to gravity like ours, but in order to avoid the no-hair theorem [288] the
solutions are not asymptotically flat. A more comprehensive discussion of black
holes in theories non-minimally coupled with gravity can be found in the review
[312].

4.3.1 A Smarr formula for our configurations

Since we analytically determined – at leading order in a perturbative expansion in
the parameters (gF , λ) – how the axion profile modifies the location of black hole’s
horizon, we can enquire whether classical black hole thermodynamics formulas
remain valid in our system (see also [313] for a general discussion on black hole
thermodynamics in theories containing non-minimal couplings with gravity and
higher derivative interactions). The Smarr formula [17] is associated with the
first law of thermodynamics, and relates the black hole entropy with conserved
asymptotic charges. In the context of spherically symmetric geometries it reads:

M =
κ

2π
S + J ΩH +QΦE

H + P ΦM
H (4.37)

where M is the ADM mass, κ is the surface gravity, S is the black hole’s entropy,
J is the angular momentum, ΩH is the black hole’s angular velocity, Q and P are
the electric and the magnetic charges respectively and ΦE,M

H respectively are the
electric and magnetic potentials evaluated at the horizon. As already discussed
in the theory review in section 1.2.4, the differential version of the Smarr formula
(4.37) can be regarded as the first law of black hole thermodynamics, with κ

playing the same role of the temperature:

TH =
κ

2π
⇒ TH =

∂E

∂S
=
∂M

∂S
(4.38)

Exploiting this analogy, we can relate the black hole entropy with the event horizon
area through the relation

S =
AH
4
, (4.39)
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and hence we can rewrite the differential Smarr formula as

dM =
κ

8π
dAH + ΩH dJ + ΦE

H dQ+ ΦM
H dP. (4.40)

The event horizon area AH is given by the integral of the 2-dimensional induced
volume element [23]

AH =

∫ √
|ΩS2| dθdφ, (4.41)

with |ΩS2| being the determinant of the induced 2-dimensional metric on the hori-
zon of the complete 4-dimensional metric gµν .
The horizon’s angular velocity is defined as

ΩH =
dφ

dt

∣∣∣
r+

=
a

r2+ + a2
, (4.42)

and the electric potential is given by

ΦE
H = −At + ΩH Aφ, (4.43)

whereAt andAφ are respectively the t-component and the φ-component of the elec-
tromagnetic gauge vector Aµ in the Boyer-Lindquist coordinate system (t, r, θ, φ).
For a static dyonic Reissner-Nordström black hole we have

ΩH = 0, (4.44)

and the electric and the magnetic potential on the horizon are ([314], [315])

ΦE
H =

Q

r+
, ΦM

H =
P

r+
, (4.45)

and the differential Smarr formula (4.37) reads:

dM =
κ

8π
dAH + ΦE

H dQ+ ΦM
H dP, (4.46)

with surface gravity and event horizon area given by

κ =
r+ − r−
2 r2+

, AH = 4πr2+. (4.47)
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For our configurations (4.28), at leading order in (gF , λ) we find:

κ = +
r+ − r−
2r2+

−
g2FP

2Q2

r2−r
4
+

[r−(r+ − 2r−) + (r+ − r−)
2 log

(
1− r−

r+

)
r+ − r−

− λ kλ

]

kλ =

(
r5− − 2r4−r+ − 5r3−r

2
+ − 20r2−r

3
+ + 90r−r

4
+ − 60r5+

)
− 60 r4+ r−(1−

r+
r−

)2 log
(
1− r−

r+

)
10 r2− r

3
+ (r+ − r−)

,

(4.48)

AH = 4π
(
r2+ + 2 g2F rS r+

)
,

ΩH = 0,

ΦE
H = −At(r),

ΦM
H = ΦE

H(P ↔ Q),

(4.49)

where At is given in equation (4.31), rS in (4.36), and the magnetic potential can
be computed using the procedure explained in [22], which in our case is simply
related with the electric potential interchanging P with Q. Substituting these
quantities in (4.37), we find that the Smarr formula is satisfied for our black hole
solutions: hence the first law of thermodynamics applies also to dyonic black holes
with axion fields non-minimally coupled with gravity.
In [316], it has been shown that the scalar field contribution to the black hole
thermodynamics is described by the additional term in the Smarr formula(

∂M

∂ϕ

)
dϕ, (4.50)

where (
∂M

∂ϕ

)
= Σ (4.51)

and with Σ being the scalar charge at infinity, namely

ϕ =
Σ

r
+ O(

1

r2
). (4.52)

Surprisingly, for our black hole configuration the Smarr formula is satisfied without
the extra term coming from the scalar charge: a possible reason is that the axion
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4. BLACK HOLE HAIR

profile does not modify the asymptotic conserved charges of our configuration
(M,P, Q), since it only affects metric and gauge fields with higher order corrections
in a 1/r expansion. In fact, the asymptotic black hole’s mass and charges do not
receive any contribution from the axion, which consequently does not affect the
overall energetic balance controlled by the Smarr formula.

4.3.2 An exact solution for large values of λ

In the previous section, we discussed a solution for a spherically symmetric dy-
onic black hole configuration at leading order in a perturbative expansion in the
coupling constant λ, affecting derivative couplings of the axion to the curvature,
introduced in equation (4.11). Solutions for arbitrary values of λ can be found
in general, but their expressions are very cumbersome. On the other hand, for
special values of this parameter, their expression simplifies. For example, with the
particular choice

λ = −
r3−
2 r+

(4.53)

the solution for the axion configuration is relatively simple, and reads

ϕ(r) =
gF P Q

8r−r+

[
2 r−
r − r−

+ log
(
r2 + r2−

)
+ log(r + r−)− 3 log(r − r−) + 2 tan−1

(r−
r

)]
.

(4.54)

Notice that the choice (4.53) allows for tuning large values of λ, by choosing r+

and r− appropriately. Assuming a generic metric line element

ds2 = −F (r) dt2 + dr2

h(r)F (r)
+ r2 dθ2 + r2 sin2 θ dφ2, (4.55)

choosing λ as in eq (4.53), at leading order in the coupling gF we find

F (r) =
(
1− r+

r

)(
1− r−

r

)
+
g2F P

2Q2

4r2− r
2
+

f(r)

f(r) =
r− (4r+ − 3r)

r2
+

(2r − r− − 3r+)

r
tan−1

(r−
r

)
+

(
r2 − 2rr+ − r−r+

)
2r2

log(r + r−)

−
(
r2 + 2rr− − 5r−r+

)
2r2

log(r − r−) +
(rr− + rr+ − 2r−r+)

2r2
log
(
r2 + r2−

)
(4.56)
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h(r) = + 1−
g2F P

2Q2

2r2+

[
3r8r+ + r7r−r+ + r6r2−r+ + r5r3−(8r− + r+)− 13r4r4−r+

2r−r+(r − r−)3(r + r−)2
(
r2 + r2−

)2
+

−r3r5−r+ − r2r6−r+ − rr7−r+ + 2r8−r+

2r−r+(r − r−)3(r + r−)2
(
r2 + r2−

)2 +
2 tan−1

( r−
r

)
+ tanh−1

( r−
r

)
r2−

]
.

(4.57)

As in the small coupling approximation λ ≪ 1 (see section 4.2.2), the Reissner-

Nordström case is recovered setting gF = 0, while metric corrections due to axion’s

backreaction begin to appear only at order 1/r3 in a 1/r expansion. At leading

order in a gF expansion, the outer horizon is located at

rH = r+ + g2F rS, (4.58)

with

rS =
P 2Q2

8r2−r+

[
− 2r−

(r+ − r−)
− log

(
r2− + r2+

)
+

(r+ − 3r−)

(r+ − r−)
log(r+ − r−)

+
(r− + r+)

(r+ − r−)
log(r− + r+) +

2(r− + r+)

(r+ − r−)
tan−1

(
r−
r+

)]
.

(4.59)

With the particular choice (4.53), compared with the Reissner-Nordström case the

axion’s backreaction increases the size of the outer horizon. It would be interesting

to understand if there is any choice of the coupling λ which could lead to a reduction

of the size of the outer horizon, but we leave it to future works. The geometry

is regular on the outer horizon rH and everywhere outside it, while there is a

singularity located on the inner horizon r−, which cannot be removed by any choice

of the coupling parameter λ. Moreover, the axion’s backreaction also modifies the

gauge potential

Aµ = {At(r), 0, 0, −P cos θ}, (4.60)

and at leading order in a gF expansion we find
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At(r) = −Q
r
+ g2F Q

{[
r5(3r− + r+) + (r+ − r−)(r

4r− + r3r2− + r2r3−) + 4rr5− − 8r5−r+

4rr+(r − r−)2(r + r−)
(
r2 + r2−

)
−

(r− − 5r+) log
(
r2 + r2−

)
4r−r+

+
(5rr− − 13rr+ + 4r−r+) log(r − r−)

8rr−r+

− (rr− + 7rr+ + 4r−r+) log(r + r−)

8rr−r+
+

tan−1
(
r
r−

)
r−

]
P 2Q2

8r2−r
2
+

+
P 2

4 r2−r+

[
(r− − r) log

(
r2 + r2−

)
2r

+
(r − 3r−) log(r − r−)

2r

+
(r + r−) log(r + r−)

2r
−
r tan−1

(
r
r−

)
+ r−

r
+
P 2

r+

tan−1
( r−
r

)
r

]}
.

(4.61)

As it happens for the perturbative solution (4.31) in the previous section, the
magnetic potential is the same as in Einstein-Maxwell theory, while the electric
potential is modified by the presence of the axion field.

4.4 Slowly rotating charged configurations

When considering rotating black holes, besides the gauge Chern-Simons coupling,
also the gravitational Chern-Simons coupling ϕRR̃ acquires a non-zero value – see
equation (4.18) – and it can source a non-trivial axion profile. This fact is related
with the well-developed topic of rotating black hole solutions in Chern-Simons
gravity, see e.g. [83, 317–323] and the review [16]. In this section, we investigate
for the first time how the simultaneous presence of gauge and gravitational Chern-
Simons couplings affects the geometry of rotating charged black holes with a long-
range axion hair. To stress the role of the gravitational Chern-Simons couplings,
we consider only black holes with a magnetic monopole charge (no electric charge),
and we work in the limit of small rotation, a = J/M ≪ 1. For simplicity, we
also turn off the non-minimal coupling with gravity, setting λ = 0 in Lagrangian
(4.11). Notice that this situation is different from Wald configuration of a black
hole immersed in an external magnetic field [324], since in our case the black hole
sources the magnetic field and it is therefore charged.
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4.4 Slowly rotating charged configurations

The action describing the system we are considering reads

S =

∫
d4x

√
g

[
R

4
− 1

4
FµνF

µν − 1

2
∂µϕ ∂

µϕ− gF
8
ϕ F̃ µνFµν +

gR
8
ϕ R̃µναβ Rµναβ

]
,

(4.62)

where gF and gR denote the coupling constants of the gauge and the gravity Chern-

Simons couplings, respectively.

For analytical solutions, we work in a perturbative expansion scheme of the param-

eters (a, gF , gR); as explained in the spherically symmetric case, the scalar field

backreaction on the background metric and gauge field appears at higher orders

than the leading one, namely the leading order of the scalar field solution. There-

fore, as we did for the spherical case, we can solve the leading order scalar field

equation on a fixed "lower order" background. However, in this case we cannot

use the order zero (on both the rotation parameter and couplings) background; in

fact, since the Chern-Simons source term ϕRR̃ acquires a non-zero value only if the

rotation parameter a is not vanishing, the scalar field solution has leading order

(a, gi). Thus, to solve the scalar field’s equation of motion we have to consider the

(a, 0) order background metric and gauge field, and then using the leading order

scalar field solution to compute higher orders corrections at both the metric and

the gauge field. So, neglecting terms of order O(a2) or greater, the background

metric is the linearised magnetic Kerr-Newman one:

ds2 =−
(
1− 2M

r
+
P 2

r2

)
dt2 +

(
1− 2M

r
+
P 2

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2

+ a sin2 θ

(
−2M

r
+
P 2

r2

)
dt dφ+ O(a2)

(4.63)

and the gauge vector is

Aµ =
{aP cos θ

r2
, 0, 0,

−P r cos θ
r

}
+ O(a2). (4.64)

153



4. BLACK HOLE HAIR

At leading order, the gravity Chern-Simons source term and the electromagnetic

one are

R̃µναβ Rµναβ = − 24 a [2P 2 − 3M r] (P 2 −M r) cos θ
r9

+ O(a2)

F̃ µνFµν =
2 aP 2 cos θ

r5
+ O(a2).

(4.65)

Solving the Klein-Gordon equation

□ϕ = gF F̃
µνFµν − gR R̃

µναβ Rµναβ (4.66)

on the background (4.63) and (4.65), after imposing a quasi-bounded behaviour of

the solution by fixing the integration constants, we find that the associated profile

for the pseudoscalar axion field has a dipolar structure (i.e. it decays as 1/r2) and

it results

ϕ(r, θ) = a gF
P 6

(r+r−)
4

[
2(M − r) log

(
r − r−
r

)
+r+r−

r
− 2 r−

]
cos θ

− 8 a gR
5

{
10M4 − 21M2 (r+r−)+6 (r+r−)

2

2 r (r+r−)
3 − 29M (r+r−)− 15M3

12 r2 (r+r−)
2

− 18 (r+r−)− 5M2

12 r3 (r+r−)
− 5M

4 r4
+(r+r−)

r5

+
10M4 − 21M2 (r+r−)+6 (r+r−)

2

(r+r−)
4

[
(M − r) log

(
r − r−
r

)
− r−

]}
cos θ.

(4.67)

Interestingly, it includes contributions from both the gauge and gravitational

Chern-Simons terms, weighted by the (small) rotation parameter a. We can now

use the solution (4.67) to find the backreaction contributions to the metric and

the gauge field. The Ansatz we adopt for the metric is

ds2 = −F (r) dt2 +
dr2

F (r)
+ r2 dθ2+ r2 sin2 θ dφ2+2 aw(r) r2 sin2 θ dt dφ, (4.68)
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where the quantity w(r) in the off-diagonal component controls the effects of black

hole’s rotation, and the gauge vector has the structure

Aµ =
{
At(r, θ) 0 , 0 , Aφ(r, θ)

}
. (4.69)

At leading order in the coupling constants gF and gR, we find the solution

F (r) = 1− 2M

r
+
P 2

r2

w(r) = − 2M

r3
+
P 2

r4
− gF gR

2
P 2

(
3

8M2r4
+

1

5Mr5
+

21

10r6

)
+ g2R

[
5

2r6
+

30M

7r7
+

27M2

4r8

− P 2

(
3

16M4r4
+

9

40M3r5
+

3

10M2r6
+

41M

4r9
+

18

7Mr7
+

21

4r8

)]
(4.70)

and the gauge components

At(r, θ) =
aP cos θ

r2

[
1 + gF gR

(
− 3

16M2
+

1

8Mr
+

11

40r2
+

9M

20r3

)

− g2R

(
3

16M4
+

3

16M3r
+

9

40M2r2
+

3

10Mr3
+

1

4r4
+

9M

56r5

)]
,

Aφ(r, θ) = −P cos θ.
(4.71)

At our level of approximations, the position of the black hole horizon and conse-

quently the black hole thermodynamics are not modified with respect to the RN

magnetised solution. On the other hand, the geometry and the gauge field receive

non-trivial corrections in the metric coefficient w(r) and in the gauge component

At(r, θ), which acquire new "mixed" contributions proportional to gF gR due to

the simultaneous presence of gauge and gravitational Chern-Simons terms. As far

as we are aware, this is the first time that such mixed contributions have been

found in this context, showing there is an interplay between gauge and gravita-

tional Chern-Simons terms for determining the black hole geometry with axion

hair. Thanks to this contribution, our solution generalises to a rotating, charged

setting similar to configurations discussed in the works [155], [290].
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4.5 Phenomenological considerations

4.5.1 Black hole axion hair and light polarisation

In the previous sections, we have seen that charged black holes can develop long-
range axion hair, thanks to the gauge and gravitational Chern-Simons couplings
contained in action (4.12). The Abelian charges carried by the black holes are not
necessarily electromagnetic, and they can be associated with some additional gauge
group motivated by string theory constructions, or dark forces associated with
dark matter interactions. Even if the black hole configurations are charged under
extra Abelian gauge groups that do not correspond to the electromagnetic U(1)
symmetry, we make the hypothesis that axions additionally couple with photons
through a coupling term of the form:

gEM ϕFµν F̃
µν , (4.72)

with Fµν being the electromagnetic U(1) field strength and gEM the coupling con-
stant controlling the axion-photon interaction. The previous formula denotes a
dimension five operator, that we weight with appropriate powers of the Planck
mass (as in the previous sections) and regard gEM as a dimensionless coupling.
In case the black holes are electromagnetically charged, then gEM = gF with gF

being the gauge coupling we discussed in the previous sections.
A possible way to detect a pseudoscalar black hole hair is to measure the bending
of polarised light travelling in the black hole’s surroundings. In fact, the parity vi-
olating coupling (4.72) differently deviates left-handed and right-handed photons,
with a magnitude depending also on the values of (gEM , gF , gR): thus, quantifying
this effect could help in probing the magnitude of the Chern-Simons couplings
characterising the theory. This effect has been studied in detail in the recent work
[261] for the case of photons travelling through the cloud of light axions depositing
on a rotating black hole ergosphere. Instead, here we study such bending effect
in the case of light rays travelling through the long-range axion profile studied in
the previous sections. We use the same approach and methods of [261], hence we
refer the reader to [261] for more details on the derivations. We study two cases,
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spherically symmetric and slowly rotating black holes, which can probe different
sets of parameters.

VLBI (Very Long Baseline Interferometry)

Before presenting our results, we now briefly discuss how it is possible to detect
polarised light from astrophysical sources. As it happens for radiation coming from
AGNs, light coming from astrophysical radio sources is usually linearly polarised,
since it is due to synchrotron emission; so, the possible detection of circularly
polarised light could be the smoke gun for some exotic phenomena, like the ones
discussed in this chapter. To detect circularly polarised waves we therefore need
a dual-polarisation receiver with sufficiently high angular resolution.
According to the Rayleigh criterion, the angular separation through a circular
aperture in the Fraunhofer limit1 is given by [325]

δθ = 1.22
λ

D
rad, (4.73)

where λ is the wavelength of the detected ray and D is the diameter of the aper-
ture/telescope. Recalling that

1 rad = 2 · 106 arcsec, (4.74)

the angular resolution expressed in arcsec becomes

δθ = 2.5 · 105 λ
D

arcsec. (4.75)

To have an idea, if we take the reference value2

Eγ = 1GHz → λ = 0.3m

1far from the diffraction object and on the focal plane of the lens.
2from now on, we will always consider a reference wavelength λ = 0.3m.
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and we consider an average telescope of diameter

D = 20m,

we get a resulting angular resolution of

δθ = 3.7 · 103 arcsec, (4.76)

which is clearly not enough accurate for detection on galactic distances.
For astrophysical measurements, it is therefore needed to drastically increase the
angular resolution.
With the interferometry technique, multiple telescopes are disposed on an array
and they are used at the same time, in order to greatly increase the angular
resolution. In fact, the array acts as an effective single telescope, with diameter as
large as the distance between the two farthest telescope in the array. For astronomy
radio interferometry, the Very Long Baseline Interferometry (VLBI) consists
in an array of telescopes on Earth with a resulting effective diameter of D ≈
5 · 103 km. Hence, the resulting, effective angular resolution is

δθ ≈ 10−3 arcsec. (4.77)

For radioastronomy, an ulterior enhancement of the interferometry technique is
the space VLBI (SVLBI), in which a ground based VLBI array is supported by
orbiting telescopes and antennas, combined to create an effective telescope with
a diameter bigger than the Earth’s diameter. This is the case of Spektr-R ([326],
[327]), a 10m radio telescope orbiting around the Earth with perigee of 57.000 km
and apogee of 320.000 km, and which together with some other ground-based
radio telescopes acts as an effective telescope up to 3 · 105 km of diameter, with a
corresponding angular resolution of

δθ ≈ 2 · 10−4 arcsec. (4.78)

With such resolution, angular deflection caused by photons-axion interactions
would be measurable, and that’s why we believe this is a promising way for testing
possible effects of cosmological ultralight scalar fields.
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• Spherically symmetric black hole configurations

We study the bending of light passing in proximity of spherically symmetric,

dyonic black hole configurations with long-range axion hair, discussed in

section 4.3. At large distances from the black hole’s horizon, the black hole’s

geometry can be described by the Schwarzschild metric (since the corrections

associated with the axion hair backreaction appears only at order 1/r3 in a

large r expansion), with a long-range axion hair profile, that scales with

radius as in equation (4.29):

Φdyon(r) =
gF P Q

r+

1

r
+ O

(
1

r2

)
, (4.79)

with r+ being the position of the external horizon of a dyonic Reissner-

Nordström black hole (see equation (4.20)). We assume that light travels

sufficiently far from the black hole, so that the Schwarzschild metric is a

good approximation for the geometry. For simplicity, we also assume that the

trajectory of photons lies in the equatorial plane of the black hole. Therefore,

the system we are studying is described by the action:

S =

∫
d4x

√
g

[
1

4
FµνF

µν − gEM
8

ϕH F̃µνF
µν

]
, (4.80)

where FµνF
µν is the photons propagation term, Fµν is the standard elec-

tromagnetic field strength ( Fµν = ∇[µAν]), ϕH is the scalar hair solution

around the black hole (in this case ϕH = Φdyon as in equation (4.79)) and

gEM is the coupling constant between the photon and the axion.

The Aµ equation of motion obtained from (4.80) gives us the following dis-

persion relation [261, 328]:

k4 + g2EM∂µϕ ∂
µϕ kνkν = g2EM [kµ∂

µϕ]2 , (4.81)

with kµ = (Eγ, k
α) being the 4-momentum of the propagating photon.
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At first order in the coupling parameter, the dispersion relation becomes

r
[
E2
γ − k2r + r

(
k2θ + k2φ

)
(2M − r)

]
(2M − r)

= ±gEM
(
kr
∂ϕ(r, θ)

∂r
+ kθ

∂ϕ(r, θ)

∂θ

)
.

(4.82)
If we introduce the conserved angular momentum L

kφ =
dφ

dλ
=
L

r2
(4.83)

and we notice that on the equatorial plane we also have

kr =
dr

dλ
= ṙ, kθ =

dθ

dλ
= 0, (4.84)

we get

r3
(
E2
γ − ṙ2

)
+ 4L2(2M − r)

r2
= ± gEM (2M − r) ṙ

∂ϕ(r, θ)

∂r
. (4.85)

Solving for ṙ we obtain:

dr

dλ
=± gEM(2M − r)

2r

∂ϕ(r, θ)

∂r

±

√
E2
γ +

L2(2M − r)

r3
+
g2EM(2M − r)2

4r2

(
∂ϕ(r, θ)

∂r

)2
(4.86)

and taking the "+" root we get the orbit equation

dφ±

dr
=

1

r2

[
±gEM

2L

(
1− 2M

r

)
Φ′

dyon(r)

+

√
E2
γ

L2
+

2M − r

r3
+
g2EM
4L2

(2M − r)2

r2
Φ′ 2

dyon(r)

]−1

,

(4.87)

where ± refer to the two photon polarisations, while Φdyon is the axion
profile given in equation (4.79). The contributions proportional to gEM are
associated with the axion-photon interactions: remarkably, in the presence
of a long-range axion profile they can "distinguish" among the two different
photon polarisations.
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The distance of closest approach r0 of the light orbit to the black hole is
given by the ratio of the energy and the angular momentum:

Eγ
L

=
1

r0

√
r0 − 2M

r0
, (4.88)

and substituting it back into the orbit equation (4.87) we obtain

dφ

dr
=

1

r2

{
± gEM

2Eγ

(
1− 2M

r

)√
1− 2M

r0

r20
Φ′

dyon(r)

+

√
−
1− 2M

r

r2
+

1− 2M
r0

r20

[
1 +

g2EM
4E2

γ

(r − 2M)2

r2
Φ′ 2

dyon(r)

]}−1

.

(4.89)
At this point, we use the explicit axion solution (4.79) and, for simplicity,
we make the following variable redefinitions:

x =
r

M
, x0 =

r0
M
, (4.90)

to obtain

dφ

dx
=

2EγM
2 xx

3/2
0

∓γΦ +
√

4E2
γM

4x3 [x3(x0 − 2)− xx30 + 2x30] + γ2Φ

, (4.91)

with
γΦ = gF gEM

PQ

r+
(x− 2)

√
x0 − 2. (4.92)

To obtain the deflection angle, it is necessary to integrate the differential
orbit equation (4.91) between the spatial infinity and the distance of closest
approach, namely

xi = ∞, xend = x0. (4.93)

However, we are especially interested in the difference ∆φ± of angular deflec-
tion between right and left polarised photons: thus, we evaluate the quantity
∆φ±:

|∂φ+ − ∂φ−| =
γΦ x

3/2
0

EγM2 x2 [x3(x0 − 2)− xx30 + 2x30]
, (4.94)
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and assuming x≫ x0 (i.e. the radial distance is much bigger than the closest
approach distance) we are simply left with

|∂φ+ − ∂φ−| =
γΦ x

3/2
0

EγM2 x5 (x0 − 2)
. (4.95)

Finally, integrating the above expression from xi to xend and replacing γΦ by
its definition we arrive to the following simple formula

|∆φcharged
± | = (2x0 − 3)

x
5/2
0

√
x0 − 2

gF gEM

6EγM2

P Q

r+
. (4.96)

Thus, a measurement of such quantity could probe and constrain the elec-
tromagnetic coupling of the axion to photons.

• Slowly rotating black hole configurations

We now study polarised light deflection around the slowly rotating config-
urations examined in section 4.4. Since we are especially interested in the
effects of the gravitational Chern-Simons coupling, for the following calcula-
tions we consider neutral, slowly rotating black holes (P = Q = 0). At large
distances from the black hole’s horizon, the geometry (at leading order in a
1/r expansion) is still well described by the Schwarzschild metric, and the
axion field corresponds to a dipolar configuration given by

Φrot(r, θ) =
5

8

a

M

gR
r2

cos θ + O

(
1

r3

)
. (4.97)

As we did in the previous case, we now study the trajectories of photons
close to the black hole; however, since in this case the axion field has a dipole
structure, we do not consider trajectories lying on the equatorial plane, but
rather on the more convenient plane (θ = π/6). Proceeding as we explained
in the spherically symmetric case, we find that the angular deflection of
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polarised photons is governed by the following equation

dφ±

dr
=

2

r20

[
± α

(
1− 2M

r

)√
1− 2M

r0

r20

+

√
−
1− 2M

r

r2
+

1− 2M
r0

r20

(
1 +

α2(r − 2M)2

r2

)]−1

,

(4.98)

where r0 is the closest approach distance of the photon to the black hole –
see equation (4.88) – and the parameter α is defined as

α =
gEM

2Eγ

∂Φrot(r, π/6)

∂r
. (4.99)

From the previous expressions, we see that different photon polarisations
are bent to different angles by interactions with the axion field. Integrating
over the radial distance, the difference ∆φ± of the angular deflection for
left-handed and right-handed photons now reads

|∆φrot
± | =

√
3

16

(5x0 − 8)

x
7/2
0

√
x0 − 2

a gR gEM

EγM4
. (4.100)

Interestingly, comparing with its analogous (4.96) in the previous case, equa-
tion (4.100) can probe a different set of parameters, potentially providing
constrains also on the axion-gravity Chern-Simons coupling gR.

To summarise, we find compact formulas, equations (4.96) and (4.100), for the
difference of angular deviation of right-handed and left-handed photons travelling
through a region containing black hole’s axion hair, as described in sections 4.3 and
4.4. These formulas can probe different parameters: while in the spherically sym-
metric case the polarised light bending can probe couplings between axions and
gauge Chern-Simons terms, in the slowly rotating case we can also probe gravita-
tional Chern-Simons interactions – a coupling that as far as we are aware is not
probed by direct axion experiments. As far as we are aware, future astronomical
observations based on radio astronomy can achieve an angular resolution of order
∆ϕ ∼ 10−4 [261], and it therefore would be interesting to quantitatively estimate
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at what extent these precise measurements can test the existence and properties
of black hole axionic hair, and their couplings with photons and/or gravity as sug-
gested in the previous discussion.

4.5.2 ISCOs

As a second application of our findings, we now compute the ISCOs (Innermost
Stable Circular Orbits) of the dyonic black hole configuration with axion hair we
derived and discussed in section 4.3, including the effects of non-minimal couplings
of axions with gravity (see Lagrangian (4.11)). The properties of ISCOs can be
interesting for a phenomenological characterization of the geometrical features
of the system under investigation. Since they depend on the properties of the
configuration relatively near the black hole’s horizon, they can be sensitive to the
effects of Chern-Simons couplings, or of the derivative non-minimal couplings with
gravity. For an asymptotically flat, spherically symmetric background we have the
general line element

ds2 = −ef(r) dt2 + es(r) dr2 + r2 dθ2 + r2 sin2 θ dφ2. (4.101)

Thanks to spherical symmetry, we can choose to calculate the ISCOs trajectories
on the convenient equatorial plane (θ = π/2).
We introduce the 4-velocity vector

uµ =
{
ut, ut, uθ, uφ

}
(4.102)

and we can therefore define the conserved energy E and the angular momentum
L as

E = ef(r)ut, L = r2uφ. (4.103)

From the normalisation condition

uµuµ = −1, (4.104)
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using the relations (4.103) and the fact that on the ISCOs the radial velocity
vanishes, we get the following equation

e−[f(r)+s(r)]E2 − e−s(r)(L2 +R2)

r2
= 0, (4.105)

which can be simplified and rewritten as

E2 = ef(r)
L2 + r2

r2
. (4.106)

At this point, we define the effective potential V (r) as

V (r) = ef(r)
L2 + r2

r2
, (4.107)

and its first and second derivatives read:

dV

dr
=
[
r(L2 + r2)f ′(r)− 2L2

] ef(r)
r3

,

d2V

dr2
=
{
r
[
r
(
L2 + r2

)
f ′′(r) + r

(
L2 + r2

)
f ′(r)2 − 4L2f ′(r)

]
+ 6L2

} ef(r)
r4

.

(4.108)
As we have already seen in the theory review in chapter 1 and in the case of the
disformal black hole solution in chapter 2, on the ISCO trajectory both the first
and the second derivative of the effective potential vanish. From the first condition,
we get

r(L2 + r2)f ′(r)− 2L2 = 0, (4.109)

which leads us to the conserved angular momentum on the ISCO:

LI =
r

3
2

√
f ′(r)√

2− rf ′(r)

∣∣∣rISCO
. (4.110)

Inserting the last expression back into the equation (4.106), we get the Energy of
the ISCO:

EI = e
f(r)
2

√
2

2− rf ′(r)

∣∣∣rISCO
. (4.111)
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Setting the second derivative of the potential to zero and using the above results

we get

3 f ′(r)− r f ′(r)2 + r f ′′(r)2 = 0, (4.112)

which can be solved with respect to the variable r to obtain the ISCO’s radius.

Finally, an expression for the angular frequency

ω =
uφ

ut
(4.113)

of the ISCO is given by

ωI =
LI
r2
eA(r)

EI
= e

A(r)
2

√
A′(r)

2r

∣∣∣rISCO
. (4.114)

Comparing (4.101) with (4.33), we have

f(r) = log[F (r)], (4.115)

and hence we can solve (4.112) to get the ISCO radius; for an analytical solution,

we need to perform an expansion for small magnetic and electric charge P and Q,

and therefore we define the following expansion parameter:

q2 = P 2 +Q2. (4.116)

So, the quantity P 2Q2 is an O(q4) term, and looking at (4.33) we notice that we

have to push our perturbative expansion up to order O(ϵ6) to glimpse the effects of

the Chern-Simons coupling gF and the ones from the non-minimal couplings with

gravity λ. Moreover, to solve the ISCO equation we use the following ansatz:

rISCO = rS + q2r 2 + q4 r4 + q6 r6 + O(q8) , (4.117)

where rS is the radius of the Schwarzschild ISCO

rS = 6M (4.118)
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and r2,4,6 are the corrections at order O(q2), O(q4) and O(q6), respectively. With
these approximations, the ISCO radius results

rISCO = 6M − P 2 +Q2

2M
− 19 (P 2 +Q2)

2

72M3
− 5 (P 2 +Q2)

3

48M5

+g2FP
2Q2

[
19

144
+
(
P 2 +Q2

) (49410M2 − 193λ)

466560M7

]
. (4.119)

The first line contains the General Relativity expression for the ISCO radius: the
Schwarzschild result (6M) and the first corrections in small values of the charges
associated with a dyonic Reissner-Nordström configuration. Instead, the second
line contains the contributions associated with the presence of black hole’s axion
hair, the Chern-Simons terms, and non-minimal coupling with gravity. For small
values of the charges, these contributions appear only at order O(q4), thus it can
be difficult to use the properties of ISCO to reveal the existence of axion hair. To
conclude, we report the angular frequency associated with the ISCO trajectory

ωISCO =+
1

6
√
6M

+
7
(
P 2 +Q2

)2
144

√
6M3

+
49
(
P 2 +Q2

)4
2304

√
6M5

+
5489

(
P 2 +Q2

)6
497664

√
6M7

+ g2FP
2Q2

[
− 1

216
√
6M5

+
(
P 2 +Q2

)2( 11λ

699840
√
6M9

− 47

7776
√
6M7

)]
.

(4.120)
Again, the first term corresponds to the Schwarzschild result, while the contribu-
tions from the scalar field appear at order O(q4).

4.5.3 Scalar hair in Active Galactic Nuclei

To conclude this chapter, we now give a very short insight on some possible con-
nections and implications with astrophysical systems of the results we have derived
and discussed in the previous sections.
Astrophysical black holes are not isolated, static objects which live in vacuum, but
rather they are dynamical systems which interact with the surrounding matter
and radiation, as we know that supermassive black holes sit at the center of most
(or even all) galaxies. Active Galactic Nuclei (AGNs) are well known and
observed highly dynamical systems where electromagnetic radiation is presumably
emitted due to the accretion of matter by a supermassive black hole in the center
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of the host galaxy [329, 330]. The matter accretion is caused by the gravitational
attraction of the black hole on the surrounding area; in a AGN, the black hole
in the center of the host galaxy acquires surrounding matter "either by pulling
interstellar plasma into its vicinity, or by disrupting passing stars and smearing
their matter out around itself " [130].
Since in both cases the gas has a huge angular momentum, the black hole does not
radially and directly "swallow" it, rather the gas starts fluctuating and orbiting
forming a disk around the hole. At large distances (r > 100M) the inclination of
the disk depends on the direction of the original angular momentum of the gas;
however, at closer distances (r < 100M ) the hole exerts such a strong attraction
that the disk is forced to lay on the equatorial plane [139]. Near the hole, gravita-
tional energy is continually converted into thermal energy, making the surrounding
plasma highly ionized. For this reason, it can be well approximated and modeled
as a perfect conductor, where electric charges can freely travel and the magnetic
lines are frozen into it. The geometry of the magnetic field lines around the black
hole is generically called magnetosphere: a detailed discussion on the magne-
tosphere dynamics is beyond the scopes of this work, so for a more exhaustive
discussion on the magnetic field lines dynamics see [130].
Remarkably, the presence and origin of strong magnetic fields around black holes
and other compact objects are not fully understood yet. In the last decades, many
explanations have been proposed; however, it is commonly accepted that despite
of the unclear origin and nature of such magnetic fields, they are involved in the
emission of high energy jets from compact objects.
On the basis of the model proposed by Goldreich and Julian [331] in 1969 for the ax-
isymetric magnetosphere surrounding a pulsar, in 1977 Blandford and Znajek [217]
argued that a rotating black hole surrounded by ionized plasma and threaded by
a sufficiently strong magnetic field could efficiently extract electromagnetic energy
from the magnetic field lines, through the emission of jets. The model proposed
by Blandford and Znajek is based on a relativistic force-free magnetosphere con-
figuration, where the plasma pressure is assumed to be small compared to the
magnetic pressure (see [332–334] for more details about the force-free condition).
On the basis of this argument, in the last 20 years a lot of work has been done in
the understanding and modeling of the force-free magnetosphere dynamics, with
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both analytical results and numerical simulations [134, 335–338].
However, although a definitive and completely exhaustive model does not exist yet,
the relativistic force-free magnetohydrodynamics has been largely accepted
to explain the energy extraction from a Kerr black hole and powering AGNs, rel-
ativistic jets in X-ray binaries and gamma-ray bursts [334].
Without motivating the origin and the nature of the magnetic field, we now con-
sider a rotating Kerr black hole immersed in an external magnetic field, whose lines
are frozen into the plasma surrounding the black hole. Using a 3 + 1 spacetime
decomposition [130, 139], for a Zero Angular Momentum Observer (ZAMO)
we choose a spatial local coordinate basis B = {e⃗r, e⃗θ, e⃗φ}. By definition, the cho-
sen observer is at rest in the rotating space around the black hole. However, since
the magnetic field lines do not rotate at the same angular velocity of the observer,
they will feel an effective electric field induced by the rotating magnetic field. On
the chosen basis, we can decompose the electric and the magnetic fields into a
toroidal (denoted with T) and poloidal (denoted with P) components:

E⃗ = E⃗T + E⃗P , E⃗T = Eφe⃗φ, E⃗P = Ere⃗r + Eθe⃗θ;

B⃗ = B⃗T + B⃗P , B⃗T = Bφe⃗φ, B⃗P = Bre⃗r +Bθe⃗θ.
(4.121)

Since the vector e⃗φ is orthogonal to the field lines angular velocity, we have

E⃗T = 0, (4.122)

and hence the electric field is purely poloidal and it is given by

E⃗P = −v⃗F × B⃗P . (4.123)

Denoting with ω and Ω the angular velocity of the ZAMO and the field lines
respectively, we have

v⃗F =
1

α
(Ω− ω)ω̃ e⃗φ, (4.124)

with

α =

√
ρ∆

Σ
, ω̃ =

√
Σ

ρ
sin θ, Σ = (r2 + a2)2 − a2∆ sin2 θ. (4.125)

So, from the expression of the poloidal electric field (4.123) we get
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E⃗ · B⃗ = 0, (4.126)

which means that there is no Lorentz force carrying charges along the magnetic
field lines (thus the name force-free). Macroscopically, the surrounding plasma
is acting as a perfect conductor around the hole, rearranging the interior charge
distribution to completely screen the electric field:

E⃗tot = E⃗ + v⃗ × B⃗ = 0, (4.127)

which is the same result of (4.123).
Thus, inside the plasma, the electromagnetic Chern-Simons term

FµνF̃
µν = −E⃗ · B⃗, (4.128)

vanishes, since the electric field does. Consequently, in order to preserve and mo-
tivate a scalar hair arising from a Chern-Simons term like (4.128), we have three
different possible scenarios.

In the simplest case, the Chern-Simons term which sources the axion hair
(4.28) and (4.67) is not the electromagnetic one, namely Fµν ̸= FEM

µν , and hence
the force-free magnetosphere screening does not affect the scalar hair.

A second possibility consists in having the force-free plasma screening the elec-
tric field and the Chern-Simons term only in the black hole’s nearby area. The
screening is effective as long as the force-free condition is satisfied, i.e. so long as
the plasma is sufficiently highly ionized to be considered a perfect conductor and
its pressure is negligible when compared to the magnetic one. Thus, it is reason-
able to expect that these conditions are satisfied in the neighborhood of the black
hole, where the gravitational attraction is very intense and the magnetic fields are
extremely strong. On the other hand, far from the black hole the force-free condi-
tion could no longer be satisfied; in that case, the electric field may be unscreened,
hence having a non vanishing Chern-Simons coupling term and consequently a
scalar hair surrounding the black hole (a pictorial and schematic representation of
this scenario is given in figure 4.1).
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Figure 4.1: Force-Free plasma (grey area) surrounding the black hole (black area):
inside the force-free area, the electric field is screened by the plasma, which acts as
a perfect conductor. Thus, inside the force-free area there is no source for the scalar
field (blue line), and no hair is developed. Instead, outside the grey area there is an
unscreened, non vanishing electric field which can act as a source for the scalar field
through a Chern-Simons coupling term. So, the black hole develops a scalar hair
outside the force-free area.

The third possible scenario consists in having the force-free plasma screening
the electric field and consequentely the axion hair from a radial effective screen-
ing distance re such that re > r+. In this case, the black hole would develop
a scalar hair in the region between the event horizon and the effective screening
distance re (a pictorial and schematic representation of this scenario is given in
figure 4.2. It is interesting to notice that this configuration naturally provides the
black hole bomb scenario conditions, since the force-free plasma acts as a perfect
screen for the scalar field at distances re > r+; thus, as future investigations it
would be interesting to study a non static scalar field, in order to see whether and
how superradiance and eventually superradiant instability are triggered.
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Figure 4.2: The force-free plasma (grey area) is effective from an effective screen-
ing distance re. In the region enclosed between the event horizon and the force-free
area (rH ≤ r ≤ re) the electric field is non vanishing, hence sourcing a scalar hair
(blue line) surrounding the black hole (black area). Inside the force-free region, the
plasma totally screens the electric field, and consequently the Chern-Simons term
proportional to E⃗ · B⃗ vanishes, screening the black hole’s scalar hair.

4.6 Conclusions

In this chapter, we studied spherically symmetric and slowly rotating charged black
hole configurations with long-range axion hair. We focused on Einstein-Maxwell
theories equipped with an axion Lagrangian that preserves a shift symmetry for
the axion field. Gauge and gravitational Chern-Simons couplings (equation (4.1))
are essential for evading no-hair theorems, and lead to long-range axion profiles.
We extended known black hole solutions to cases where additional derivative cou-
plings of axion to curvature appear (4.3), and to situations in which both gauge
and gravitational Chern-Simons couplings are simultaneously present (4.67). In
all cases, we determined analytical solutions at leading order in the coupling con-
stants involved, determining how the axion profile backreacts on the metric and the
gauge field. The metric remains regular outside the outer horizon, and the position
of such horizon is increased with respect to dyonic solutions in Einstein-Maxwell
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gravity with the same asymptotic conserved charges. Moreover, the solution for
the electric potential is modified with respect to the standard case due to the effect
of the gauge Chern-Simons couplings. Furthermore, for the spherically symmet-
ric configurations we analysed, we showed that the black hole thermodynamics
Smarr formula holds even with contributions from the axion backreaction appear-
ing at leading order in the coupling constants. Furthermore, to make contact with
phenomenology, we studied two possible consequences of our findings. First, we
studied how axion hair can induced a polarization dependent deviation of photons
travelling within the range of the axion profile around a black hole. Then, we
investigated the properties of ISCOs around the spherically symmetric configura-
tions we studied. At the end, we gave a brief and intuitive suggestion (4.5.3) of the
possible consequences and interactions of the black hole configurations we studied
in the contest of astrophysical scenarios like AGNs.

For further investigations, it would be interesting in the future to study the sta-
bility of the considered systems under small perturbations of the fields involved,
and investigate possible parity breaking effects – induced by the Chern-Simons
couplings – in the dynamics of fluctuations around these geometries.

In conclusions, this chapter provides examples of black holes with surrounding
long-range scalar hair, proposing possible detectable effects to test such axion
fields. As already largely discussed, these axions appear in both particle physics
and string theory, and they could have great impact on cosmology: thus, the
importance of finding way to test their existence and nature, with black holes
being the best candidates to spot them.
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Chapter 5

Black hole perturbations

Quasi Normal Modes (QNMs) are a detectable, distinctive feature of black holes
which can provide a strong tool to identify and test gravity theories through grav-
itational waves detection. In particular, for binary systems merging into a single
black hole the ringdown phase is characterized by the emission of Quasi Normal
Modes. Thus, for any black hole solution to be tested with gravitational waves
it is important to study its perturbation theory, looking for possible distinctive
effects from General Relativity. In this chapter, we study the linear perturba-
tion theory of an electromagnetic Reissner-Nordström black hole solution with an
external scalar field, also including a Chern-Simons coupling between the scalar
field and the gauge vector. Interestingly, differently to the Schwarzschild case, we
find that axial (odd) and polar (even) perturbations are not decoupled, leading to
a Regge-Wheeler perturbation equation involving terms with different behaviour
under parity transformation.

5.1 Introduction and motivations

To conclude this work, we now briefly touch on a currently very popular and fasci-
nating topic for both high energy physics and astrophysics: the black holes Quasi
Normal Modes (QNMs). Originally studied to investigate black holes stability,
QNMs have recently become a largely studied research area in high energy physics
as well, due to the gauge-gravity dualities and the developments of condensed

175



5. BLACK HOLE PERTURBATIONS

matter physics. With a simplistic definition, QNMs are the energy dissipation’s
modes of a perturbed object or field. When perturbed, objects/fields begin to
vibrate with their proper (normal) vibration frequencies, which are hamiltonian
eigenstates and therefore infinitely long-lived solutions; so, if the system was iso-
late and no dissipation occurred, the object would vibrate forever. However, in
many physical systems dissipative effects are usually unavoidable, and the vi-
bration modes are not infinitely long-lived but they rather decay in time, being
therefore called quasi-normal. As it happens in everyday life with glasses and bells
(whose normal frequencies are usually in the audible spectrum) and other objects,
the same physical behaviour is manifested by black holes and quantum fields. As
the glass QNMs depend on the glass structure only, in the same way the black
holes QNMs depend only on the structure of the black hole they have been orig-
inated from. For this reason, black hole QNMs can be considered a recognition
sign of the ringing black hole. And here it comes the great news: since black
holes are usually (at least in General Relativity!) described by quite few param-
eters, hence the black holes QNMs are described by the same few parameters as
well! According to the already largely discussed no-hair theorem, astrophysical
black holes are usually described by 3 parameters: mass, angular momentum and
charge1; consequently, black holes QNMs have to be fully described by these three
quantities. However, as we have seen in the previous chapters, if we considered
gravity theories different from GR where extra fields are taken into account in the
action, the corresponding black hole solutions could carry additional degrees of
freedom, which would therefore be carried by the QNMs as well.
So, it is now clear how black holes QNMs are a distinctive and authentic "footprint"
of the black holes, and their direct detections would therefore give us information
on the nature of the "ringing" black hole. But how are astrophysical black holes
dissipative systems? Why are the vibration modes quasi-normal and not nor-
mal? An exhaustive answer to this question is beyond the aim of this chapter,
but a quick and intuitively answer can be found if we think at the screening na-
ture of the black hole event horizon, sometimes described as perfect dissipative

1In Einstein-Maxwell theory, the black hole charge is the electromagnetic one. However, we
could generalise it to a generic charge associated with the corresponding symmetry of the action
whose the black hole is solution.
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membrane (membrane paradigm [130]) surrounding the causally inaccessible
inner region. From this point of view, the event horizon can be regarded as a to-
tally dissipative surface, which allows no energy/information to escape from it; in
this sense, black holes are extremely dissipative systems, hence supporting quasi-
normal modes rather than normal.

In this chapter, we will show how the physical system described in the previous
chapter has interesting features related with black hole perturbations, and conse-
quently with the black hole’s QNMs. So, before discussing our results, we want
to give a very brief overview of this huge research area, focussing our attention on
possible connections with detectable strong gravity phenomena and in particular
with gravitational waves detections. In fact, as confirmed by GW150914 and the
other GWs detections, immediately after the merger/collapse of a binary system
and the formation of a single black hole, the system undergoes to a phase called
ringdown, where the newly formed black hole settles down through the propa-
gation of its QNMs. Thus, from the last moments of the detected GW signals
from binary systems merging into a single black hole, we can extract the QNMs
spectrum and consequently the physical parameters describing the new black hole.
As shown in Figure 5.1, immediately after the merger of the two black holes there
is a sharp decay of the strain’s amplitude. After the merger, the ringdown phase
begins: during this phase the black hole vibrates according to its QNMs, which
are the damped, sinusoidal modes shown in the red area in Figure 5.2. Again,
we stress the fact that since the QNMs depend only on the black hole’s physical
parameters, a specific data analysis of a ringdown signal such the one in Figure
5.1 can give us accurate informations about the newly formed black hole. For this
reason, it is important to investigate whether in modified gravity theories black
hole solutions exist and how their QNMs spectra look like. In this way, using the
GWs data we could be able to test these theories against GR, looking for any hint
of unexplored physics.
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Figure 5.1: The gravitational wave signal of GW150914. Image from [3].

Figure 5.2: The picture shows how the theoretical Gravitational Wave signal is ob-
tained for the different stages of the collapse of two rotating black holes into a single
one: PN (Post-Newtonian) theory for the inspiral phase (blue region), numerical
relativity for the merger phase (green region), black hole perturbation theory for the
ringdown (red area). Image from the talk Gravitational Waves: a new window
to explore the Universe by Philippe Jetzer at Joint annual meeting of the Swiss
and Austrian Physical society in 2017.
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Before going through the calculation and the main results of this chapter, we will
provide a very brief historical review of this vast topic, quoting the milestones
which have lead to the main developments in black holes QNMs research1 in the
last sixty years. However, since this is not meant to be an exhaustive review, many
important details and historically significant works will be omitted: for recent and
exhaustive literature reviews on the topic, see [339, 340], while for older compre-
hensive theory review on black holes QNMs see [341–343].
Based on [339], we report the following milestones:

• 1957: Regge and Wheeler [18] firstly study the gravitational perturbations
of Schwarzschild black holes. This is the beginning of the black hole pertur-
bation theory.

• 1961: Newman and Penrose [344] develop a new formalism to treat general
relativity in terms of spinor notation.

• 1963: Kerr finds an exact solution of Einstein’s equations describing a ro-
tating black hole [40].

• 1970: Zerilli extends the Regge-Wheeler analysis to generic perturbations
of Schwarzschild black holes [345, 346].

• 1970: Vishveshwara [347] numerically studies the scattering of gravitational
waves with a Schwarzschild black hole: at late times, the waveform is formed
by damped sinusoids. The term ringdown is introduced to describe such late
phase.

1In the following milestones list we have reported only achievements inherent with black
holes QNMs. For an accurate review on other important QNMs research areas, see [339].
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• 1971: Press shows that ringdown waves are the free oscillation modes of the
black hole [348].

• 1971: Davis et al firstly calculate (using black hole perturbation theory) the
gravitational waves emission due to a test particle falling into a Schwarzschild
black hole [349].

• 1972: Goebel describes black holes QNMs as gravitational waves [350].

• 1972: Teukolski [251] shows the separability of perturbations equations on
the Kerr geometry.

• 1974: Zerilli [351] studies perturbations of charged Reissner-Nordström
black hole.

• 1975: Moncrief [352] develops a gauge invariant perturbation formalism to
study electromagnetic perturbations.

• 1975: Chandrasekhar and Detweiler [353] numerically compute some QNMs
frequencies.

• 1983: Chandrasekhar publishes a comprehensive monograph on black hole
physics, containing an up-to-date review of black hole perturbation theory
[341].

• 1983: Ferrari and Mashhoon analitically compute QNMs from black holes
potentials [354].
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• 1985: Stark and Piran [355] use numerical relativity to obtain the gravita-
tional waves emission of a rotating system collapsing into a black hole.

• 1985: Leaver applies the continued fraction representations method to nu-
merically compute black holes QNMs [356, 357].

• 1989: Echeverria [358] estimates the accuracy of extrapolating the black
hole’s mass and angular momentum from QNMs detections.

• 1993: Anninos et al. firstly simulate the collision of black holes with QNMs
production during the ringdown phase [359].

• 1998: Flanagan and Hughes show the QNMs detection range in LIGO and
LISA sensibilities [360].

• 1999: Kokkotas and Schmidt [342] and Nollert [343] publish detailed reviews
on QNMs.

• 2003: Motl and Neitzke analytically compute highly damped QNMs using
a monodromy technique [361].

• 2003: Kodama and Ishibashi generalise the Regge-Wheeler formalism to
higher dimensional black holes [362].

• 2005: Pretorius fully simulates a stable evolution of a binary black hole sys-
tem merging into a single black hole, with QNMs emitted in the ringdown
phase [363].
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• 2009-2015: black holes QNMs have been explored in many different mod-
ified gravity theories, such as massive gravity [364], Chern-Simons gravity
[365] or with the addition of massive vector fields [366].

• 2015: GW150914 is the first gravitational waves detection event [3]. QNMs
detection in the ringdown phase is in agreement with numerical and theory
predictions.

As far as this work is concerned, the previous list was intentionally focused on
QNMs of astrophysical black holes and their connections with gravitational waves
astronomy. However, QNMs have also been largely investigated in other research
areas. For example, starting from the 80’s, many authors have been trying to clar-
ify the connection between QNMs and quantum gravity; on such topic, we mention
the work done by York [367], Hod [368], and Dreyer [369]. Moreover, in the last
twenty years, QNMs have been living a new great season of interest, fueled by the
development of the AdS/CFT correspondence. So, following the road opened by
Maldacena [370], a lot of work has been done to apply QNMs results to strongly
coupled quantum field theories [371–373], with a recent particular interest to con-
densed matter theories as well [374–376].

The fact that a sixty years old topic is still current and fashionable is really
remarkable. In this work, we are interested in QNMs for astrophysical black holes
in modified gravity theories. Since we now have direct access to the single black
hole gravitational waves emission (during the ringdown phase), it is possible to
test and falsify gravity theories according to their QNMs spectra, comparing the
predicted ones with the detections. With this in mind, we are interested in find-
ing any peculiar feature about black hole gravitational perturbations which could
potentially be tested with future observations and detections. In particular, in
this chapter we will focus our attention on parity violating effects. As we will
discuss, the Schwarzschild and Kerr backgrounds spontaneously decouple pertur-
bations with different parity, leading to two independent master equations (one
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for the parity even perturbations and one for the parity odd ones). For this rea-
son, it is interesting to investigate whether this "parity decoupling" happens also
in other backgrounds, when extra fields and extra couplings are taken into account.

In this work we will not explicitly compute the black holes QNMs, but we rather
investigate the master equations they are solution of. For a very brief review on
how QNMs are computed, see [339, 342].
In general, QNMs are solutions of an eigenvalue problem with opportune boundary
conditions. As we will see in the next sections, the study of black hole perturbations
at linear order can be reduced to a Schrödinger-like equation

d2Ψs

dr2∗
+
(
ω2 − Vs

)
Ψs = 0 , (5.1)

with s = 0, 1, 2 being the spin of the perturbed field and Vs being the charac-
teristic potential. For conveniency, the perturbation equation has been written
using the radial tortoise coordinate r∗ and in the Fourier space, with ω = −i∂t.
Remarkably, equation (5.1) has the same structure for scalar, vector and tensor
fields, making the study of the problem absolutely general. Equation (5.1) defines
an eigenvalue problem for frequencies ω: QNMs are eigenfunctions which satisfy
specific boundary conditions at spatial infinity (far zone) and on the black hole’s
horizon. In particular, QNMs are required to be decaying at infinity (r∗ → ∞)
and purely ingoing on the horizon (r∗ → −∞), in accordance with the perfectly
dissipative behaviour of the horizon (membrane paradigm). As we will show, af-
ter expanding field’s perturbations with an opportune spherical harmonics basis it
is possible to separate them into two sectors (even and odd) according to their
behaviour under parity transformations. In Schwarzschild background, the two
parity sectors are independent/decoupled, and it is therefore possible to reduce
the perturbations equations to a couple of independent Schrödinger-like master
equations (with the form of equation (5.1)): the parity odd equation is usually
named Regge-Wheeler equation, while the even one is usually referred to as the
Zerilli equation. Interestingly, in the far zone (where ωr ≫ 1) the Regge-Wheeler
and the Zerilli equations both decay as 1/r, and it can be shown (see [377]) that
they are isospectra, hence admitting the same QNMs. So, it is important to
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investigate whether "exotic" gravity theories can be reduced to the same couple
of master equations as in GR, and eventually compute their QNMs spectra to be
compared with the gravitational waves signal from black holes ringdown.

We are now ready to move to the next sections, where we have explicitly com-
puted the Regge-Wheeler master equation for various backgrounds, with particular
interest for the Reissner-Nordström geometry. We are aware that a large part of
the scientific community believes that charged black holes are not likely to be a
large population, since in astrophysical settlements they presumably undergo to a
neutralisation process. However, since the neutralisation time can be much longer
than the average life of a binary neutron star system, we think it is not cautious
to completely exclude them from investigations. Moreover, as clearly discussed in
[378], the Reissner-Nordström and the Kerr-Newman black holes families are also
the ones associated with a possible U(1) hidden sector, which is still one the most
promising candidates for dark matter and dark energy [7, 379, 380]. Therefore, we
believe that the study of charged black holes should not be merely considered a
speculative and unphysical investigation.

The remaining part of this chapter is structured as follows.
In section 5.2 we describe and discuss the global physical system we are consider-
ing, and we introduce the basis of black hole perturbation theory. In section 5.3 we
choose the convenient gauge "RW" (Regge-Wheleer) and we decompose the per-
turbations in tensorial spherical harmonics, defining parity even perturbations and
parity odd ones. In section 5.3.1 we review the Schwarzschild case, studying the
gravitational linear perturbation which lead to the independent Regge-Wheeler
and Zerilli equations. In sections 5.4 and 5.5 we respectively study the electric
and the magnetic Reissner-Nordström perturbations, deriving the Regge-Wheeler
equations for both the gravitational and the electromagnetic perturbations. As we
will see, the magnetic case reveals an interesting peculiar feature. Then, in sections
5.6 and 5.7 we study tensor, vector and scalar perturbations for electric and mag-
netic Reissner-Nordström backgrounds respectively, with an extra scalar-vector,
Chern-Simons coupling included in the action. Finally, in section 5.8 we conclude
with a brief discussion on possible implications and further developments.
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5.2 Set-up

5.2 Set-up

In this chapter, we study the fields perturbations of a spherically symmetric black
hole coupled to a vector field and a scalar (axion like) field. In particular, we
consider black hole solutions of the Einstein-Maxwell action

SEM =

∫
d4x

√
−g
[
R

4
− 1

4
F µνFµν

]
, (5.2)

where we use natural units c = G = ℏ such that 4πϵ0 = 1. Therefore, the scalar
field is a test field, whose backreaction on the spacetime is neglected. Moreover,
we consider a non-minimal coupling between the scalar and the vector field; in
particular, as in the previous chapter, we study a system with a gauge Chern-
Simons coupling

gF ϕ F̃
µνFµν , (5.3)

where gF is a dimensionless coupling constant (it has been weighted with appro-
priate powers of the Planck mass) and

F̃µν = ϵµναβF
αβ (5.4)

as usual. Being the geometry spherically symmetric, the gravity Chern-Simons
term

gR ϕ R̃µναβR
µναβ (5.5)

vanishes. Hence, the full action reads:

S =

∫
d4x

√
−g
[
R

4
− 1

4
F µνFµν −

1

2
∂µϕ∂

µϕ− gF
8
ϕF µνF̃µν

]
. (5.6)

The Einstein’s Equation, the vector’s equation and the scalar field’s equation re-
spectively are:

Rµν − 1
2
Rgµν = 2

(
T ϕµν + T Fµν

)
, (5.7)

∇α (∂
αAµ − ∂µA

α)− gF ϵµραβ ∂
αϕ ∂βAρ = 0, (5.8)

□ϕ = 1
4

(
gF FαβF̃

αβ
)
, (5.9)
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where the energy-stress-momentum tensors are defined as:

T ϕµν =∂µϕ ∂νϕ− 1

2
gµν∂

αϕ ∂αϕ,

T Fµν =F
α

µ Fνα −
1

4
gµνF

αβFαβ.
(5.10)

As it can be noticed from (5.8), the Chern-Simons coupling does not appear in the

Einstein’s equation. This fact was expected, since the Chern-Simons term (5.3)

is a total derivative with respect to the metric; on the contrary, both the vector

and the scalar equation depend on the Chern-Simons coupling. As discussed in

the previous section, motivated by GWs detections there is currently great interest

about black holes QNMs and surrounding scalar fields, whose QNMs could affect

the ringdown frequencies at the end of the merger phase. For this reason, we now

study the black hole perturbations, the vector and the scalar ones for the system

described by the action (5.6).

The linear perturbations of the gravity, the vector and the scalar field are

respectively defined as:
gµν → ḡµν + hµν ,

Aµ → Āµ + aµ,

ϕ→ ϕ̄+ δϕ,

(5.11)

where the barred quantities denote the background solutions.

In the scenario we are considering, since the scalar field is a test field and it does

not backreact with the geometry, the background axion field ϕ̄ vanishes. However,

to keep equations as more general as possible, we will keep the background fields

unspecified until the explicit solutions will be determined. In the following, to

avoid an unnecessary heavy notation, we will omit the bars, and we will denote

simply with g, A and ϕ the background solutions. At linear order in perturbations,
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the Einstein’s equation reads:

+ hµν

[
R− 2∇γϕ∇γϕ+ 2(∇γAδ −∇δAγ)∇δAγ

]
− 4hγδ

[
∇µA

γ∇µA
δ −∇µA

δ∇γAν +∇γAµ(−∇νA
δ +∇δAν)

]
+ 4 (∇νaµ −∇γaν) (∇µA

γ −∇γAµ) + 4 (∇µaγ −∇γaµ) (∇νA
γ −∇γAν)

+ 4∇µδϕ∇νϕ+ 4∇µϕ∇νδϕ+∇ν∇µh
γ
γ −∇γ∇µh

γ
ν −∇γ∇νh

γ
µ +∇γ∇γhµν

− gµν

{
hγδRγδ −∇δ∇γh

γδ +∇δ∇δhγγ + 2∇γϕ(2∇γδϕ− hγδ∇δϕ)

− 2∇δAγ [2∇γaδ − 2∇δaγ + hδη∇ηAγ + hγη(∇δA
η − 2∇ηAδ)]

}
= 0.

(5.12)

Instead, the vector equation (5.9) perturbed at linear order is:

hγγ(−∇ν∇µA
ν +∇ν∇νAµ)− (∇µA

ν −∇νAµ)(∇νh
γ
γ − 2∇γh

γ
ν)

− 2
{
∇ν∇µa

ν −∇ν∇νaµ −∇νhµγ∇γAν +∇γhµν∇γAν + hνγ(−∇γ∇µA
ν +∇γ∇νAµ)

+ gF

[
(ϵµγδηh

η
ν − ϵµνδηh

η
γ + ϵµνγηh

η
δ − ϵµνγδh

η
η)∇δϕ− ϵµνγδ∇γAν∇δδϕ

]}
= 0.

(5.13)
At the end, perturbing the scalar equation (5.9) up to linear order we get:

+∇µ∇µδϕ+∇µϕ(∇µh
ν
ν − 2∇νh

ν
µ)− 2hµν∇ν∇µϕ+ hµµ∇ν∇νϕ

+ gF∇νAµ
[
−2ϵνγδηh

η
µ∇δAγ + 2ϵµγδηh

η
ν∇δAγ − ϵµνγδ(h

η
η∇δAγ + 2∇δaγ)

]
= 0.

(5.14)

5.3 Regge-Wheeler gauge

Since we want to study perturbations around a spherically symmetric black hole so-
lution, we use the following generic ansatz for a spherically symmetric background
metric:

gµν =


−F (r) 0 0 0

0 G(r) 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 , (5.15)
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where the standard Schwarzschild case is obtained with

G(r) = F−1(r)

F (r) = 1− 2M

r
.

(5.16)

To explicitly compute the perturbations, we expand the metric, the gauge vector
and the scalar field perturbations in tensor spherical harmonics Saµν (see [377] or
[381] for more details), where the index a label each independent component of the
basis (before fixing the gauge, there are 10 independent basis components). As the
usual scalar spherical harmonics Ylm, each tensor spherical harmonic Saµν carries
the angular indices (l,m), and to be precise we should write the tensor spherical
harmonics as (Salm)µν . However, to keep the expressions as easily readable as
possible, from now on we will omit the (l,m) indices, with the exception for the
cases where the indices (l,m) have an impact on the results. At this point, we
exploit the gauge freedom to choose the convenient Regge-Wheeler gauge [377],
which reduces the basis tensor harmonics to 6 independent components denoted
by labels (tt, L0, Rt, T0, Bt, B1):

hµν =+
∞∑
l=2

l∑
m=−l

hBtSBtµν +
∞∑
l=1

l∑
m=−l

hB1SB1
µν +

∞∑
l=0

l∑
m=−l

[
httSttµν + hL0SL0µν

]
+

∞∑
l=1

l∑
m=−l

hRtSRtµν +
∞∑
l=2

l∑
m=−l

hT0ST0µν .
(5.17)

Adopting Maggiore’s notation [377], it is convenient to redefine the perturbation
functions ha in the following way:

htt(t, r) = F (r)H0(t, r)

hL0(t, r) = G(r)H2(t, r),

hT0(t, r) = r2K(t, r),

hRt(t, r) = H1(t, r),

hBt(t, r) = −h0(t, r),

hB1(t, r) = −h1(t, r).

(5.18)
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With these redefinitions, writing explicitly the angular terms the full metric’s
expansion reads:

hµν =


F (r)H0 H1 −h0 sin θ−1 ∂φ h0 sin θ ∂θ
H1 G(r)H2 −h1 sin θ−1 ∂φ h1 sin θ ∂θ

−h0 sin θ−1 ∂φ −h1 sin θ−1 ∂φ Kr2 0

h0 sin θ ∂θ h1 sin θ ∂θ 0 Kr2 sin2 θ

Y (θ, φ). (5.19)

where we have omitted the (t, r) dependence of the perturbation functions.
In the same way, we now need to expand the vector field Aµ in terms of vector
spherical harmonics (the full derivation can be found in [377]), and we get:

aµ =


a0(t, r)
aR(t, r)

aB(t, r) sin θ−1 ∂φ + aE(t, r)∂θ
aE(t, r)∂φ − aB(t, r) sin θ ∂θ

Y (θ, φ) (5.20)

Finally, we also have to expand the scalar field’s perturbations; since those are
scalar perturbations, the angular expansion in simply the usual one with scalar
spherical harmonics:

δϕ = δϕ(t, r)Y (θ, φ). (5.21)

Under a parity transformation

θ → π − θ, φ→ π + φ, (5.22)

tensor harmonics which transform as (−1)l are said to be even or polar, while
tensor harmonics transforming as (−1)l+1 are said to be odd or axial. Therefore,
we extend the definition of polar/axial to the scalar functions associated with the
tensor harmonics, thus we have the functions (H0, H1, H2, a0, aR, aE, δϕ) being po-
lar and the functions (h0, h1, aB) being axial. Since the Schwarzschild background
does not mix parity odd and parity even perturbations, it is convenient to split
the metric perturbations into an odd (axial) and an even (polar) sector:

hµν = haxµν + hpolµν , (5.23)
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with

haxµν =−
∞∑
l=2

l∑
m=−l

h0SBtµν −
∞∑
l=1

l∑
m=−l

h1SB1
µν ,

hpolµν =+
∞∑
l=0

l∑
m=−l

[
F (r)H0(t, r)Sttµν +G(r)H2(t, r)SL0µν

]
+

∞∑
l=1

l∑
m=−l

[
H1(t, r)SRtµν + r2K(t, r)ST0µν

]
.

(5.24)

In the same way, we also decompose the generic energy-stress-momentum tensor
Tµν :

Tµν = T axµν + T polµν , (5.25)

with

T axµν =+
∞∑
l=2

l∑
m=−l

sB2SB2
µν +

∞∑
l=1

l∑
m=−l

[
sBtSBtµν + sB1SB1

µν

]
,

T polµν =+
∞∑
l=0

l∑
m=−l

[
sttSttµν + sRtSRtµν + sL0SL0µν + sT0ST0µν

]
+

∞∑
l=1

l∑
m=−l

[
sEtSEtµν + sE1SE1

µν

]
+

∞∑
l=2

l∑
m=−l

sE2SE2
µν .

(5.26)

In the following, we will discuss Schwarzschild, Reissner-Nordström and Chern-
Simons perturbations in the RW gauge.
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5.3.1 Schwarzschild case

To have a reference point, we now discuss the metric’s perturbations equation for

the Schwarzschild case, where the metric is:

ds2 = −F (r)dt2 + 1

F (r)
dr2 + r2dθ2 + r2 sin2 θdφ2, (5.27)

with F (r) = 1− 2M
r

.

From the perturbed Einstein’s Equation (5.12), using the explicit expansion of the

perturbations we get:

(tφ):

{
F

[
2

r
∂th1 + ∂t∂rh1 − ∂2rh0

]
+ h0

[
F ′′ +

2F ′

r
+

2F − 2

r2

]}
sin θ∂θY (θ, φ)

− h0
r2

sin θ∂θ
[

1

sin2 θ
∂2θY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2φY (θ, φ)

]
+
{
F ′H1 + F∂rH1 − ∂tH2 − ∂tK

}
∂φY (θ, φ) = 0,

(5.28)

(rφ) :

{
1

F

[
∂2t h1 − ∂r∂th0 +

2

r
∂th0

]
+ h1

[
F ′′ +

2F ′

r
− 2

r2

]}
sin θ∂θY (θ, φ)

− h1
r2

sin θ∂θ
[

1

sin2 θ
∂2θY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2φY (θ, φ)

]
+

{
[H0 −H2] [rF

′ − 2F ] + 2F∂r [H0 −K]− 2r∂tH1

2rF

}
∂φY (θ, φ) = 0,

(5.29)

(θφ) :

∂th0 − FF ′h1 − F 2∂rh1
F

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
sin θ

+
[
H0 −H2

] [ 1

sin2 θ
∂φY (θ, φ)− ∂φ∂θY (θ, φ)

]
= 0,

(5.30)

(tt) :

{r2F ′

2F
∂rK +

K

F
− H0

F

[
−1 + F + rF ′]−H2 + r∂r(H2 − 3K)− r2∂2rK

}
Y (θ, φ)

+
1

2F
[H2 +K]

[
1

sin2 θ
∂2θY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2φY (θ, φ)

]
= 0,

(5.31)
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(rr) :

{
2 [H2 −K] + rF∂r [H0 −K]− r2F ′∂rK − 4∂tH1 +

2r2

F
∂2tK

}
Y (θ, φ)

+ [H0 −K]

[
1

sin2 θ
∂2θY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2φY (θ, φ)

]
= 0,

(5.32)

(θθ) :

+
2

F

[
FF ′h1 + F 2∂rh1 − ∂th0

] ∂φ
sin θ [Y (θ, φ)− ∂θY (θ, φ)]

− r
{
F
[
∂rH0 + ∂rH2 − 2∂rK + r∂2rH0 − r∂2rK

]
+
r

F

[
+∂2tH2 + ∂2tK − F ′∂tH1

]
−
[
(H2 −K)

(
2F ′ + rF ′′)+ rF ′

2
∂r (3H0 +H2 −K)− 2∂t (H1 − r∂rH1)

]}
Y (θ, φ)

+ [H2 −H0]

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ)

]
= 0,

(5.33)

(φφ) :

+
2

F

[
FF ′h1 + F 2∂rh1 − ∂th0

] ∂φ
sin θ [Y (θ, φ)− ∂θY (θ, φ)]

+ r
{
F
[
∂rH0 + ∂rH2 − 2∂rK + r∂2rH0 − r∂2rK

]
+ r

[
∂2tK − F ′∂tH1 + ∂2tH2

]
+
[
(H2 −K)

(
2F ′ + rF ′′)+ r

2
F ′∂r (3H0 +H2 − 2K)− 2∂t (H1 + r∂rH1)

]}
Y (θ, φ)

+ F [H0 −H2] ∂
2
θY (θ, φ) = 0,

(5.34)

(tr) :

{
FH1 + r2

F ′

2F
∂tK + rH2 − ∂tK − r2∂r∂tK − H1

2

[
−1 + rF ′]}Y (θ, φ)

− H1

2

[
1

sin2 θ
∂2θY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2φY (θ, φ)

]
= 0,

(5.35)

(tθ) :

{
F

[
∂2rh0 −

2

r
∂th1 − ∂t∂rh1

]
+ h0

[
2− 2F − ∂r

(
r2F ′)]} ∂φY (θ, φ)

+
h0
r2
∂φ

[
1

sin2 θ
∂2θY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2φY (θ, φ)

]
+
{
∂r [FH1]− ∂t [H2 +K]

}
sin θ∂θY (θ, φ) = 0,

(5.36)
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(rθ) :

{
Fh1

[
2− 2rF ′ − r2F ′′]− ∂2t h1 + ∂t∂rh0 −

2

r
∂th0

}
∂φY (θ, φ)

+ Fh1∂φ

[
1

sin2 θ
∂2θY +

cos θ
sin θ ∂θY (θ, φ) + ∂2φY (θ, φ)

]
+
rF ′ [H0 +H2] + 2F [H2 −H0 + r∂rH0 − r∂rK]− 2r∂tH1

2r
sin θ∂θY (θ, φ),

(5.37)

Looking at the previous equations, we notice that it is possible to separate each
equation into an axial and a polar part, namely into two equations containing only
axial/polar functions. In fact, from (5.28-5.37) we observe that the angular de-
pendence of the axial and the polar parts are mutually orthogonal (in the sense of
spherical harmonics orthonormality), and it is therefore possible to solve the two
equations (axial and polar) separately. So, this justifies the statement that the
Schwarzschild background decouples the axial and the polar perturbations, split-
ting the perturbations equations into two independent sets of equations, usually
referred to as sectors.

AXIAL SECTOR

We start looking at the axial sector of the metric’s perturbations. Since we can
split each equation into an axial and a polar part which must be independently
satisfied, here we work only on the axial parts.
From the equations (5.28-5.37), we notice that each axial equation can be divided
into a radial and an angular part, and we can therefore proceed with the standard
separation of variables (r, θ, φ).
The angular equation is

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
+ λY (θ, φ) = 0, (5.38)

which is a General Legendre Equation, whose solution are the spherical harmonics
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Ylm(θ, φ) and the separation constant is

λ = l(l + 1). (5.39)

For the axial sector, we can reduce the 10 equations to a set of 3 equations (see
[377]):

∂2rh0 −
(
∂r +

2

r

)
∂0h1 +

1

F

[
2

r

dF

dr
− l(l + 1)

r2

]
h0 = +4sBtlm,

∂20h1 −
(
∂r −

2

r

)
∂0h0 + F

(l − 1)(l + 2)

r2
h1 = −4FsB1

lm ,

1

F
∂0h0 − ∂r (Fh1) = −4sB2

lm ,

(5.40)

where the first two equations hold for l ≥ 1 and the last one holds for l ≥ 2.
For more generality, in (5.40) we have included on the RHSs the source terms
(sBtlm, sB1

lm , s
B2
lm ), although the equations (5.28-5.37) correspond to the vacuum case,

with the sources being: sBtlm = sB1
lm = sB2

lm = 0. Looking at (5.40), we have three
equations relating two metric functions (h0, h1), which means that the equations
are not independent and whose consistency is ensured by Bianchi identities and
by the stress-energy tensor conservation. Introducing the Regge-Wheeler function

Qlm(t, r) =
1

r
F (r)h1(t, r), (5.41)

it is possible to reduce (details can be found on [377]) the set (5.40) to a single
differential equation for the function Qlm(t, r). After introducing the radial tortoise
coordinate r∗ defined by

∂∗ =
∂

∂r∗
= F (r)

∂

∂r
= F (r)∂r, (5.42)

we arrive at a single differential equation:

(
∂2∗ − ∂20

)
Qlm(t, r)− V RW

l (r)Qlm(t, r) = Sax
lm(t, r), (5.43)

with potential

V RW
l (r) = F (r)

[
l(l + 1)

r2
− 6M

r3

]
(5.44)
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and source term

Sax
lm(t, r) = 4

F (r)

r

{
F (r)sB1

lm (t, r) +

(
∂r −

2

r

)[
F (r)sB2

lm (t, r)
]}

. (5.45)

The equation (5.43) is commonly known as Regge-Wheeler equation and the po-
tential V (r) is the Regge-Wheeler potential. Remarkably, the form of the Regge-
Wheeler potential remains almost identical in the cases of vector and scalar per-
turbations:

V RW
l (r) = F (r)

[
l(l + 1)

r2
+

3(1− s2)rS
r3

]
, (5.46)

where s = 2, 1, 0 for gravitational, electromagnetic and scalar perturbations re-
spectively and rS is the Schwarzschild radius: rS = 2M . Alternatively, after a
Fourier transform (∂t = −iω) we can recast the equation (5.43) as a Schrödinger-
like equation

∂2∗Q̃lm(ω, r) +
[
ω2 − V RW

l (r)
]
Q̃lm(ω, r) = S̃ax

lm(ω, r). (5.47)

POLAR SECTOR

In the polar sector, the Einstein’s Equations (5.28-5.37) lead to a set of 7 equations
[377]:

F 2∂2rK +
F

r

(
3− 5M

r

)
∂rK − F 2

r
∂rH2 +

F

r2
(K −H2)− F

l(l + 1)

2r2
(K +H2) = −stt,

∂t

[
∂rK +

1

r
(K −H2)−

M

r2F
K

]
− l(l + 1)

2r2
H1 = −sRt,

∂2tK

F 2
− r −M

r2F
∂rK − 2∂tH1

rF
+
∂rH0

r
− K −H2

r2F
+
l(l + 1)

2r2F
(K −H0) = −sL0,

F∂2r (K −H0)−
1

F
∂2t (K +H2) +

(
1− M

r

)
2

r
∂rK + 2∂r∂tH1 +

2

rF

(
1− M

r

)
∂tH1

− 1

r

(
1− M

r

)
∂rH2 −

1

r

(
1 +

M

r

)
∂rH0 −

l(l + 1)

2r2
(H2 −H0) =

4sT0

r2
,

(5.48)
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which are valid for l ≥ 0; then we have

∂r (FH1)− ∂t (K +H2) = 4sEt,

1

F
∂tH1 + ∂r (K −H0)−

2M

Fr2
H0 −

1−M/r

Fr
(H2 −H0) = −4sE1

(5.49)

which are valid for l ≥ 1; finally we also have

(H0 −H2) = 8sE2 (5.50)

which is valid for l ≥ 2 (we have included the sources silm for more generality).

As it happens in the axial sector, the equations above are not independent; after

some manipulations (again, details can be found on [377]), we can introduce the

Zerilli function Z̃lm:

Z̃lm(ω, r) =
r2

λr + 3M
K̃(ω, r) +

rF (r)

iω(λr + 3M)
H̃1(ω, r) (5.51)

with

λ =
(l − 1)(l + 2)

2
(5.52)

and where the tilded functions are the Fourier transforms of the correspondent

functions:

f̃(ω, r) =

∫
f(t, r)eiωtdt. (5.53)

With these redefinitions, after introducing the tortoise coordinate r∗ it is possible

to reduce the polar sector equations to a single differential equation for the Zerilli

function:

∂2∗Z̃lm(ω, r) +
[
ω2 − V Z

l (r)
]
Z̃lm(ω, r) = S̃pollm (ω, r), (5.54)
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where

V Z
l (r) = F (r)

2λ2(λ+ 1)r3 + 6λ2Mr2 + 18λM2r + 18M3

r3(λr + 3M)2
,

S̃pol
lm = F∂r (FJlm)−

4s̃Etlm
iω

F [λ(λ+ 1)r2 + 3Mrλ+ 6M2]

r(λr + 3M)2
− 2

s̃Rtlm
iω

λr2F 2

(λr + 3M)2

+ 2
(
rs̃L0lm + 2s̃E1

lm

) rF 2

λr + 3M
− 8F

r
s̃E2
lm

(5.55)
and with

Jlm =
r

iω(λr + 3M)

(
rs̃Rtlm + 2s̃Etlm

)
. (5.56)

In the next sections, we will study different scenarios including the electromag-
netic vector: first, we will study the perturbations of the electric and the magnetic
Reissner-Nordström black hole, and then we will investigate the case with a Chern-
Simons coupling on a Reissner-Nordström background.

5.4 Electric Reissner-Nordström case

A few years after the publication of the original Regge-Wheeler paper [18], many
authors generalised the purely gravitational perturbations formalism to the case of
gravito-electromagnetic ones. In the following, we report a very concise literature
review of the most significant works about black hole perturbations in Einstein-
Maxwell theory. In particular, we have focused our attention on the most influen-
tial results dealing with the Reissner-Nordström geometry, since we are specifically
interested in charged, static and spherically symmetric black hole configurations.

• 1974: Zerilli [351] studies gravitational and electromagnetic perturbations
of the Reissner-Nordström spacetime. Performing an expansion in tensor
and vector spherical harmonics, according to their parity the perturbations
can be decoupled into two separate second order Schrödinger equations.
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• 1974: Moncrief [382, 383] studies both even and odd perturbations of the
Reissner-Nordström spacetime, investigating whether the geometry admits
unstable modes.

• 1975: Moncrief [352] introduces a gauge invariant approach to study gravi-
tational and electromagnetic perturbations.

• 1981: Xanthopoulos [384] studies the Reissner-Nordström perturbations
with an alternative approach, avoiding the traditional distinction between
even and odd perturbations.

• 1983: Chandrasekhar [341] publishes a comprehensive monograph on black
holes QNMs, with great attention on the charged case.

In the majority of the cited works, the Reissner-Nordström geometry has been
considered with solely electric charge, namely with only one non vanishing com-
ponent of the gauge vector. In this case, authors have found that gravitational
and electromagnetic perturbations can be decoupled into an odd and even sector,
as it happens in the Schwarzschild case. Moreover, when both the electric and
the magnetic charge have been taken into account (such as in [352]), the parity
even and the parity odd sectors have been separately studied. In this way, an
eventual mixing of parity sectors cannot be spotted, and both gravitational and
electromagnetic perturbations lead to Schrödinger-like equations "well contained"
into the proper sector, without contributions from opposite parity terms.
Continuing our brief chronological literature review, we mention:

• 1988: Kokkotas and Schutz [385] apply WKB techniques to calculate com-
plex frequencies of the Reissner-Nordström QNMs, comparing the results
with the numerical integration proposed by Chandrasekhar and Detweiler in
[353].
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• 1990: Leaver [386] introduces a matrix-eigenvalue algorithm based on con-
tinued fraction representations method to numerically compute the QNMs
of a static, charged black hole.

• 1996: Andersson and Onozawa [387] compute for both slowly and rapidly
damped modes the nearly-extremal Reissner-Nordström QNMs .

• 1999: Kokkotas and Schmidt publish an exhaustive review [342] on QNMs
including static, rotating, neutral, charged black holes and relativistic stars.

• 2004: Kodama and Ishibashi extend the higher dimensional analysis pro-
posed in [362] to the case of charged black holes [388]; assuming the existence
of an electric charge and an electric field surrounding the black hole, the per-
turbation equations are reduced to two decoupled Schrödinger equations of
second order.

• 2005: Natario and Schiappa [389] systematically study and classify the
QNMs frequencies found in [362, 388], finding that the Reissner-Nordström
QNMs frequencies are dimensional dependent.

• 2016: Cardoso et al. [378] show how viable models of minicharged dark
matter black holes are described by Reissner-Nordström or Kerr-Newman
spacetimes, with an hidden U(1) symmetry playing the role of the usual
electromagnetic U(1). Moreover, the authors show that GWs detections can
put constraints to the black hole charges, regardless of their nature.

• 2018: Brito and Pacilio [390] study the QNMs spectrum of static/slowly ro-
tating black holes with weakly charged Einstein-Maxwell-dilaton coupling. It
is found that the system is stable under gravitational, electromagnetic and
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scalar perturbations, with the electromagnetic modes exhibiting "dilaton-
dependent breaking of isospectrality between the axial and polar sectors".

• 2019: Myung and Zou [391] analyse the stability of scalarised, charged black
holes in the Einstein-Maxwell-scalar theory. Moreover, in [392] the authors
also include a mass term for the scalar field, leading to mass-dependent con-
straints for the stability of the Reissner-Nordström spacetime.

• 2019: Dotti and Fernandez [393, 394] study the nonmodal linear stability
of the outer region of a Reissner-Nordström (A)dS spacetime.

After this short literature review, we can now proceed with a more technical
analysis, and we start by studying the metric and the vector perturbations of an
electrically charged Reissner-Nordström black hole. As already said, the results
we present in this section are known from the Seventies [351, 382], but it is anyway
useful to discuss them in order to have a model to be compared to in the next
sections.
The electric Reissner-Nordström spacetime is described by the metric

hµν =


−F (r) 0 0 0

0 F (r)−1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (5.57)

with

F (r) = 1− 2M

r
+
Q2

r2
, (5.58)

and where the gauge vector reads

Aµ = {−Q
r
, 0, 0, 0}, (5.59)

with Q being the electric charge.
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Since we are now interested in the black hole’s perturbations only, we do not
consider any external field, and we therefore neglect both the scalar kinetic term
and the Chern-Simons coupling in the action (5.6). So, in this scenario we have

ϕ = 0, δϕ = 0. (5.60)

As we have discussed in the previous section, in the Schwarzschild case it is possible
to decouple the metric’s equation into disconnected axial and polar sectors, and it
is therefore possible to separately solve the axial and the polar equations. In the
electric Reissner-Nordström case, this separability still holds (see for example the
original works [351, 382, 383]), and hence we can choose to focus our attention on
the axial sector only. As in the Schwarzschild case, from the components (tφ), (rφ)
and (θφ) of the perturbed Einstein’s Equations we can obtain the axial equations:

(tφ) :
{
F

[
2

r
∂th1 + ∂t∂rh1 − ∂2rh0

]
+ h0

[
F ′′ +

2F ′

r
+

2F − 2

r2

]
+ 4FA′

0∂raB

− 2(A′
0)

2h0

}
SθY (θ, φ)− h0

r2
Sθ

[
1

sin2 θ
∂2θY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2φY (θ, φ)

]
+
{
F ′H1 + F∂rH1 − ∂tH0 − ∂tK + 4FA′

0 [aR − ∂raE ]
}
∂φY (θ, φ) = 0,

(rφ) :
{ 1

F

[
∂2t h1 − ∂r∂th0 +

2

r
∂th0

]
+ h1

[
F ′′ + 2∂r

F

r

]
+ 4

A′
0

F
∂taB

− 2(A′
0)

2h1

}
SθY (θ, φ)− h1

r2
Sθ

[
1

sin2 θ
∂2θY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2φY (θ, φ)

]
+

1

F

{
F ′H0 + F∂rH0 − F∂rK − ∂tH1 + 4A′

0 [a0 − ∂taE ]
}
∂φY (θ, φ) = 0,

(θφ) :
∂th0 − FF ′h1 − F 2∂rh1

F

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
sin θ

+
[
H0 −H2

] [ 1

sin2 θ
∂φY (θ, φ)− ∂φ∂θY (θ, φ)

]
= 0.

(5.61)

where we have written Sθ = sin θ∂θ for brevity.
From these equations, we notice that the axial sector (h0, h1, aB) is orthogonal (in
the sense of the spherical harmonics orthonormality) to the polar one, as expected.
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Moreover, from the θ component of the perturbed vector equation (5.13) we get:

Aθ : F 2r2∂2raB − r2∂2t aB − F
[
−r2F ′∂raB

]
− Fr2A′

0

[
−2

r
h0 + ∂rh0 − ∂th1

]
+FaB

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
= 0.

(5.62)

Again, due to spherical harmonics orthonormality we can decouple the previous
equation into an axial and a polar one, which can be solved separately. Due
to this, it is evident that axial functions are decoupled from the polar ones, and
therefore there is no parity mixing. Looking at the axial equation, after performing
a separation of variables we have to solve the angular equation. With a bit of
further manipulation, introducing the tortoise derivative

∂∗ = F (r)∂r (5.63)

to reduce the set (5.61) to a single master equation, and then moving to the
Fourier space (∂t = −iω) to recast the axial equations in the in terms of just 2
axial functions W̃ (ω, r) and ãB(ω, r) we arrive at:

∂2∗W̃ (ω, r) + ω2W̃ (ω, r)− F

[
l(l + 1)

r2
− 6M

r3
+

4Q2

r4

]
W̃ (ω, r) = −4iω

FA′
0

r
ãB(ω, r),

∂2∗ ãB(ω, r) + ω2ãB(ω, r)− F

[
l(l + 1)

r2
+

4Q2

r4

]
ãB(ω, r) = −FA′

0

(l + 2)(l − 1)

iω r
W̃ (ω, r),

(5.64)
with W̃ (ω, r) being the Fourier transform of the time dependent function

W (t, r) =
F (r)

r
h1(t, r). (5.65)

Equations (5.64) are both in the Regge-Wheeler form, and they agree with both
Chandrasekhar and Zerilli results; as it can be seen, in the limits A0(r) → 0 and
aB(t, r) → 0 the Schwarzschild case is recovered. When the gauge vector is on, the
vector perturbation works as a source for the metric’s equation, and on the other
hand the metric perturbations act as a source for the vector equation. However,
it is important to notice that equations (5.64) contain only axial functions, and
hence in this case there is no parity mixing, as it happens in the Schwarzschild case.
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5.5 Magnetic Reissner-Nordström case

In this case, the line element describing the background spacetime is

ds2 = −F (r)dt2 + F (r)−1dr2 + r2dθ2 + r2 sin2 θ dφ2 (5.66)

with F (r) = 1− 2M/r + P 2/r2 and with background gauge vector

Aµ = {0, 0, 0, −P cos θ}, (5.67)

being P the magnetic charge. As in the electric case, there is no scalar field
supported (ϕ = 0, δϕ = 0) and no contribution from the Chern-Simons term
(ϕ F̃ µνFµν = 0). Since in the Schwarzschild and in the electric Reissner-Nordström
case the {(tφ), (rφ), (θφ)} components of the Einstein’s Equations are separable
in axial and polar equations due to the orthogonality properties of the spherical
harmonics, let’s study these components:

(tφ) :
{
F

[
2

r
∂th1 + ∂t∂rh1 − ∂2rh0

]
+ h0

[
F ′′ +

2F ′

r
+

2F − 2

r2

]
+

4P

r2
[∂taE − a0]

+
2P 2h0
r4

}
SθY (θ, φ)− h0

r2
Sθ

[
1

sin2 θ
∂2θY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2φY (θ, φ)

]
+

[
F ′H1 + F∂rH1 − ∂tH0 − ∂tK +

4P

r2
∂taB

]
∂φY (θ, φ) = 0

(rφ) :
{ 1

F

[
∂2t h1 − ∂r∂th0 +

2

r
∂th0

]
+ h1

[
F ′′ + 2∂r

F

r

]
+

4P

r2
[∂raE − aR]

+
2P 2h1
r4

}
SθY (θ, φ)− h1

r2
Sθ

[
1

sin2 θ
∂2θY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2φY (θ, φ)

]
+

[
F ′H0 + F∂rH0 − F∂rK − ∂tH1

F
+

4P

r2
∂raB

]
∂φY (θ, φ) = 0

(θφ) :
∂th0 − FF ′h1 − F 2∂rh1

F

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
sin θ

+
[
H0 −H2

] [ 1

sin2 θ
∂φY (θ, φ)− ∂φ∂θY (θ, φ)

]
= 0

(5.68)
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where we have written Sθ = sin θ∂θ for brevity.

Remarkably, since the angular part of the axial sector is no longer orthogonal to

the polar one, we notice that the gauge component Aφ ∝ P mixes the axial and

the polar sectors. Specifically, Aφ couples the vector axial function aB(t, r) to the

polar sector of the metric, and the polar functions {a0(t, r), aR(t, r), aE(t, r)} to

the axial metric’s sector.

From the previous three equations, introducing the tortoise radial derivative ∂∗

and the Fourier transform function

W̃ (ω, r) =

∫
eiωtW (t, r) dt (5.69)

of the time dependent function

W (t, r) =
F (r)

r
h1(t, r), (5.70)

with a bit of calculation we arrive at a single Regge-Wheeler equation:

(∂2∗ + ω2)W̃ (ω, r)− F (r)

[
l(l + 1)

r2
− 6M

r3
+

8P 2

r4

]
W̃ (ω, r) = sP (ω, r). (5.71)

with source term

sP (ω, r) = −4P
F (r)2

r3
[ã0(ω, r) + iωãE(ω, r)] . (5.72)

Comparing (5.71) with the analogous equation (5.64.a) for the electric case, we

notice that although the structure of the two equations is identical (they are both

written in a Regge-Wheeler form), the last equation mixes functions with different

parity, while in the electric case only axial functions appeared. In particular, we

notice that in the magnetic case the source term of the axial metric function is a

polar term, specifically a function of two polar vector components (a0 and aE).
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Moreover, from the component Aθ of the vector equation we get:

Aθ :
{
r2
[
F 2∂2raB + F F ′∂raB − ∂2t aB

]
+ P F K

}
∂φY (θ, φ)

+ F aB∂φ

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
+ r2

{
F F ′ [∂raE − aR] + F 2

[
∂2raE − ∂raR

]
+ ∂ta0 − ∂2t aE

+ P

[
F 2∂rh1 − 2

F 2

r
h1 − ∂th0 + F F ′ h1

]}
sin θ ∂θY (t, r) = 0.

(5.73)

From the equation above, we notice that the gauge component Aφ ∝ P mixes the
axial and the polar sectors, as it happens in the metric’s equations, and therefore
it is not possible to decouple the equation (5.73) into two separate axial and
polar equations. Specifically, we notice that the Aϕ component couples the polar
function K(t, r) to the axial equation (first 2 lines of equation (5.73)), and the
axial functions h0(t, r) and h1(t, r) to the polar equation (last 2 lines of (5.73)).
Considering the axial part of equation (5.73), after solving the angular part and
introducing the tortoise derivative ∂∗ we arrive at

∂2∗ ãB(ω, r) + ω2ãB(ω, r)− F (r)

[
l(l + 1)

r2

]
ãB(ω, r) = −P F (r)

r2
K̃(ω, r), (5.74)

where for conveniency we moved into Fourier space.
The previous equation is written in a Regge-Wheeler form, but it is important
to notice that the source term, namely the RHS of the equation, is a polar term,
making the polarity mixing explicit.
We can try to make sense of these results if we look at the Einstein’s Equation
from a different prospective. At background level, we have

Rµν = T Fµν ∝ B2, (5.75)

where B⃗ is the magnetic field (axial vector) associated to the vector potential A⃗
such that Aµ = {Φ, A⃗}. Conceptually, perturbing at linear order the Einstein’s
equations means

δg = δT, (5.76)
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with g being the metric and with δ denoting the perturbation. Specifically, in the
magnetic case we are considering we have

δT ∝ δgB2 + g δB B, (5.77)

and therefore we have
δg ∝ δgB2 + g δB B. (5.78)

Since the background metric and the magnetic field are even and odd quantities
respectively, the previous equation formally reads

δg = δg · (EV EN) + δB · (ODD) (5.79)

and therefore it is clear that in order to guarantee the consistency of the previous
equation we need

δgoddeven ↔ δBeven
odd , (5.80)

which agrees with the results we have found. So, due to the presence of an axial
vector (B⃗) in the action, the metric’s perturbations couple to vector’s perturba-
tions with opposite parity, although the action is globally parity invariant.

5.6 Electric Chern-Simons case

We now study the case of an electric Reissner-Nordström background including
the perturbations of a scalar-vector Chern-Simons coupling of the form

ϕF̃ µνFµν . (5.81)

This configuration is identical to the electric Reissner-Nordström one for both the
background metric and the background gauge vector:
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hµν =


−F (r) 0 0 0

0 F (r)−1 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 , (5.82)

with
F (r) = 1− 2M

r
+
Q2

r2
, (5.83)

and where the gauge vector reads

Aµ = {−Q
r
, 0, 0, 0}, (5.84)

with Q being the electric charge. However, since the Chern-Simons coupling is
now on (gF ̸= 0), we have to take into account the perturbations of the scalar field
as well:

ϕ = 0, δϕ ̸= 0. (5.85)

Since the Chern-Simons does not contribute to the metric’s equations of motion,
they are formally identical to the electric Reissner-Nordström ones, even though
the background vector field perturbations are directly coupled to the scalar field’s
ones. Hence, the metric’s axial equation keeps the form

(
∂2∗ + ω2

)
W̃ (ω, r)− F (r)

[
l(l + 1)

r2
− 6M

r3
+

4Q2

r4

]
W̃ (ω, r) = −4iω

F (r)A′
0(r)

r
ãB(ω, r).

(5.86)
Therefore, although not explicitly, the metric perturbations have to couple with
the Chern-Simons term through the vector and scalar perturbations.
As a term of comparison, we remind that the electric Reissner-Nordström case
was parity decoupled, with the axial perturbations being decoupled from the polar
ones; on the contrary, the magnetic Reissner-Nordström case showed a mixing of
terms with different parity.
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Axial vector field’s equation

Instead, the vector equations get contributions from the Chern-Simons term, and
they read:

At : Fr
{
[K −H0]

[
2A′

0 + rA′′
0

]
+ r

[
A′

0∂rK + ∂2ra0 − ∂t∂raR
]
+ 2∂ra0 − 2∂taR

}
Y (θ, φ)

+ [a0 − ∂taE ]

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
= 0,

Ar :

{
r2

F

[
A′

0∂tK + ∂t∂ra0 − ∂2t aR
]
− rH1

[
2A′

0 + rA′′
0

]}
Y (θ, φ)

+ [aR − ∂raE ]

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
= 0,

Aθ :
{ [
F 2∂2r + FF ′∂r − ∂2t

]
aB + FA′

0

[
2
h0
r

+ ∂th1 − ∂rh0

]
+ 2 gFFδϕA

′
0

}
∂φY (θ, φ)

+
F

r2
aB ∂φ

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
+
{
FF ′ [∂raE − aR] + F 2

[
∂2raE − ∂raR

]
+ ∂ta0 − ∂2t aE

}
sin θ ∂θY (t, r) = 0,

Aφ :
{ [
∂2t − F∂r(F∂r)

]
aB − FA′

0

[
2h0
r

+ ∂th1 − ∂rh0

]
− 2 gF FδϕA

′
0

}
sin θ∂θY (θ, φ)

+
F

r2
aB sin θ∂θ

[
1

sin2 θ
∂2θY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2φY (θ, φ)

]
+
{
FF ′ [∂raE − aR] + F 2

[
∂2raE − ∂raR

]
+ ∂ta0 − ∂2t aE

}
∂φY (θ, φ) = 0.

(5.87)
We can notice that the equation for Aθ is just the corresponding electric Reissner-
Nordström equation with the addition of the gF term, which appears in the axial
part of the equation since it has the same angular dependence of the axial contri-
bution, which is orthogonal to the polar one. Hence, as we did in the Reissner-
Nordström case, we can write the equation of the axial vector component aB:

∂2∗ ãB(ω, r) + ω2ãB(ω, r)− F (r)

[
l(l + 1)

r2
+

4Q2

r4

]
ãB(ω, r) = s̃B(ω, r), (5.88)

with

s̃B(ω, r) = −F (r)A′
0(r)

(l + 2)(l − 1)

iω r
W̃ (ω, r)− 2 gF F (r)A

′
0(r) δ̃ϕ(ω, r), (5.89)
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where for convenience we used the Fourier transform functions ãB and δ̃ϕ.

Scalar field’s equation

The scalar field’s equation can be written as{
r2F ∂2r δϕ− r2

F
∂2t δϕ+ r [rF ′ + 2F ] ∂rδϕ

}
Y (θ, φ)

+ [δϕ− gF aB A
′
0]

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
= 0.

(5.90)

Again, we perform a separation of variables and we first solve the angular equation,

which is again the General Legendre Equation whose solution are the spherical

harmonics Ylm(θ, φ) and the separation constant is λ = l(l + 1). So, the radial

equation we are left to solve is

r2F ∂2r δϕ− r2

F
∂2t δϕ+ r [rF ′ + 2F ] ∂rδϕ− l(l + 1) [δϕ− gF aB A

′
0] = 0. (5.91)

From the previous equation, after some manipulations we finally arrive at:

∂2∗δϕ(t, r)− ∂2t δϕ(t, r)−
F

r2
[l(l + 1) + rF ′] δϕ(t, r) = −gF l(l + 1)

F A′
0

r
aB(t, r),

(5.92)

where we have defined

δϕ(t, r) =
1

r
δϕ(t, r) (5.93)

and the tortoise derivative

∂∗ = F (r)∂r. (5.94)

Even if it’s supposed to be a polar function, equation (5.92) satisfies a Regge-

Wheleer like equation, with potential given by

V (r) =
F (r)

r2
[l(l + 1)− rF ′(r)] . (5.95)
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To recap, we the three equations describing the axial sector are:

[
∂2∗ + ω2

]
W̃ (ω, r)− F

[
l(l + 1)

r2
− 6M

r3
+

4Q2

r4

]
W̃ (ω, r) = −4iω

FA′
0

r
ãB(ω, r),

∂2∗ ãB(ω, r) + ω2ãB(ω, r)− F

[
l(l + 1)

r2
+

4Q2

r4

]
ãB(ω, r) = s̃B(ω, r),

∂2∗Φ̃0(ω, r) + ω2Φ̃0(ω, r)−
F

r2
[
l(l + 1) + rF ′] Φ̃0(ω, r) = −gF l(l + 1)

F A′
0

r
ãB(ω, r),

(5.96)
with s̃B defined as

s̃B(ω, r) = −F A′
0

(l + 2)(l − 1)

iω r
W̃ (ω, r)− 2 gF

F A′
0

r
δ̃ϕ(ω, r). (5.97)

A schematic diagram of the connections between metric-vector-scalar perturba-
tions is given below in Figure 5.3.
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Figure 5.3: Schematic diagram of the axial sector for metric, vector and scalar
perturbations. The axial metric’s perturbations W (t, r) are sourced by the vector
ones aB(t, r), which are sourced by the scalar field perturbations δϕ(t, r). There-
fore, although the link is not explicitly manifested from the equations, the metric’s
perturbations implicitly depend on the scalar ones. In the picture, the solid black
lines denotes the "direct" dependencies, while the dashed one denotes the "implicit"
dependency metric/scalar.
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5.7 Magnetic Chern-Simons case

The last case we study is the one with a magnetic Reissner-Nordström background
with an additional scalar-vector Chern-Simons coupling, similarly to what we did
in the previous section for the electric case. Again, we consider a vanishing scalar
field on the background, hence enhancing only the perturbations of the scalar field
and consequently the Chern-Simons ones:

ϕ = 0, δϕ ̸= 0. (5.98)

Since the scalar field does not backreact with the geometry, the configuration we
are studying is identical to the magnetic Reissner-Nordström one for both the
background metric and the background gauge vector:

hµν =


−F (r) 0 0 0

0 F (r)−1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , (5.99)

with
F (r) = 1− 2M

r
+
P 2

r2
, (5.100)

and where the gauge vector reads

Aµ = {0, 0, 0,−P cos θ}, (5.101)

with P being the magnetic charge.
Given that in the magnetic Reissner-Nordström case we found a mixing of the
parity sectors, we now investigate if that still holds when an extra parity violating
term is taken into action. As in the previous case, since the Chern-Simons does
not contribute to the metric’s equations of motion they are formally identical to
the electric Reissner-Nordström ones, and the axial metric’s equation still reads

[
∂2∗ + ω2

]
W̃ (ω, r)− F

[
l(l + 1)

r2
− 6M

r3
+

8P 2

r4

]
W̃ (ω, r) = −4PF 2

r3
[ã0(ω, r) + iωãE(ω, r)] .

(5.102)
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However, as it happens in the electric Chern-Simons case, since the metric pertur-
bations are coupled to the vector ones and these are coupled to the scalar field’s
ones, the metric perturbations turn to be dependent on the scalar ones as well,
even though not explicitely.

Vector field’s equation

As it happens for the electric Chern-Simons case, the vector equations get contri-
butions from the Chern-Simons term, and they read:

At : + rF

[
2∂ra0 + r∂2ra0 − 2∂taR − r∂t∂raR + 2gFP

∂rδϕ

r

]
Y (θ, φ)

+

[
a0 − ∂taE − P

h0
r

] [
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
= 0

Ar : + r2
[
∂t∂ra0 − ∂2t aR + 2gFP

∂tδϕ

r2

]
Y (θ, φ)

+ F

[
aR − ∂raE − P

h1
r2

] [
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
= 0

Aθ :
{
r2
[
F 2∂2raB + FF ′∂raB − ∂2t aB

]
+ PFK

}
∂φY (θ, φ)

+ F aB∂φ

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
+ r2

{
FF ′ [∂raE − aR] + F 2

[
∂2raE − ∂raR

]
+ ∂ta0 − ∂2t aE

+ P

[
F 2∂rh1 − 2

F 2

r
h1 − ∂th0 + FF ′h1

]}
sin θ ∂θY (t, r) = 0

Aφ :
{
r2
[
∂2t aB − F 2∂2raB − FF ′∂raB

]
− PFK

}
sin θ ∂θY (θ, φ)

+ F aB sin θ∂θ
[

1

sin2 θ
∂2θY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
+ r2

{
FF ′ [∂raE − aR] + F 2

[
∂2raE − ∂raR

]
+ ∂ta0 − ∂2t aE

+ P

[
FF ′h1 + F 2∂rh1 − 2h1

F 2

r
− ∂th0

]}
∂φY (θ, φ) = 0

(5.103)
We notice that the Chern-Simons terms (recognizable by the coupling gF ) do not
enter in the equations of the axial vector component aB(t, r), which therefore still

212



5.7 Magnetic Chern-Simons case

satisfies the equation:

∂2∗ ãB(ω, r) + ω2ãB(ω, r)− F (r)

[
l(l + 1)

r2

]
ãB(ω, r) = −P F (r)

r2
K̃(ω, r), (5.104)

as in the magnetic Reissner-Nordström case we discussed in the previous section.
Apparently, the Chern-Simons coupling term does not interact with the axial gauge
vector components; however, from the equations (5.103.1) and (5.103.2), we notice
that the Chern-Simons coupling term interacts with the polar vector components
{a0(t, r), aR(t, r), aE(t, r)}. Therefore, taking cognizance of the axial metric equa-
tion (5.102), it is clear that the Chern-Simons contributions affect the axial metric
component, coupling the scalar field’s perturbations to the vector polar ones and
therefore to the metric as well.

Scalar field’s equation

The perturbations equation of the scalar field reads:{
r2F ∂2r δϕ− r2

F
∂2t δϕ+ r [rF ′ + 2F ] ∂rδϕ+ gFP [∂ra0 − ∂taE]

}
Y (θ, φ)

+ δϕ

[
1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
= 0,

(5.105)

where for simplicity we have already used the background solution

Aφ = −P cos θ. (5.106)

As in the previous case, we can perform a separation of variables and solve the
angular equation[

1

sin2 θ
∂2φY (θ, φ) +

cos θ
sin θ ∂θY (θ, φ) + ∂2θY (θ, φ)

]
+ λY (θ, φ) = 0, (5.107)

with separation constant λ given as usual by

λ = l(l + 1). (5.108)
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After redefining the scalar field as

δϕ(t, r) =
1

r
δϕ(t, r) (5.109)

and introducing the tortoise derivative ∂∗ = F (r)∂r, we finally arrive at the fol-
lowing equation for the scalar field’s perturbations:

∂2∗δϕ(t, r)− ∂2t δϕ(t, r)−
F

r2
[
l(l + 1) + rF ′] δϕ(t, r) = gFP

F∂taE(t, r)− ∂∗a0(t, r)

r
.

(5.110)
To recap, the equations we found are:

[∂2∗ + ω2]W̃ (ω, r)− F

[
l(l + 1)

r2
− 6M

r3
+

8P 2

r4

]
W̃ (ω, r) = −4PF 2

r3
[ã0(ω, r) + iωãE(ω, r)]

∂2∗ ãB(ω, r) + ω2ãB(ω, r)− F

[
l(l + 1)

r2

]
ãB(ω, r) = −P F

r2
K̃(ω, r)

∂2∗δϕ(t, r)− ∂2t δϕ(t, r)−
F

r2
[
l(l + 1) + rF ′] δϕ(t, r) = gFP

F∂taE(t, r)− ∂∗a0(t, r)

r
.

(5.111)
A schematic diagram of the connections between metric-vector-scalar perturba-
tions is given below in Figure 5.4.
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Figure 5.4: Schematic diagram of the mixed metric, vector and scalar perturba-
tions. The axial metric’s perturbations W (t, r) are sourced by the polar vector ones
a0(t, r), aR(t, r), aE(t, r), which are sourced by the scalar field perturbations δϕ(t, r).
Although not explicitly, the metric’s perturbations implicitly depend on the scalar
ones through the polar vector perturbations. The solid black lines denotes the "di-
rect" dependencies, while the dashed one denotes the "implicit" one.
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5.8 Conclusions

In this chapter we have studied the perturbations of Reissner-Nordström spacetime
in the presence of magnetic charge (5.5) and Chern-Simons scalar-vector couplings
(5.6, 5.7). In these cases, we have found a mixing of perturbations (gravitational,
electromagnetic and scalar) with opposite parity. Since the parity decoupling
usually leads to two independent Schrödinger equations with the same QNMs
spectrum, a parity mixing behaviour can be a distinguishable, distinctive feature
of such black hole systems. Moreover, an accurate QNMs analysis could eventually
reveal any detectable effect through Gravitational Waves emission, giving us an
ulterior tool to test alternative theories of gravity. Therefore, although an accurate
QNMs analysis is beyond the aim of this project, it should be still considered a
very interesting area to be further investigated.
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Chapter 6

Conclusions

In this thesis we studied various aspects of modern cosmology related with black
hole physics. In particular, encouraged by the great impact the GW150914 de-
tection and the subsequents ones have had, we investigated black holes physical
phenomena which could provide detectable effects in the context of testing General
Relativity or alternative theories of gravity, with particular interest to the case of
theories involving extra scalar (axion) fields. Before discussing possible further de-
velopments and future investigations, we now briefly summarize the main results
of this work.

In chapter 2, we studied an exact, rotating black hole solution arising from a
vector-tensor theory, obtained through a disformal transformation of the Einstein-
Maxwell solution. In particular, we used as disformal vector the gauge vector
satisfying the Einstein-Maxwell equations of motion. We found that such disfor-
mal transformation caused the gauge invariance to be explicitly broken, losing the
gauge freedom to arbitrarily remove some components of the gauge vector. In-
stead, depending on the particular choice of the radial and polar components of
the vector, the resulting geometry could be either a black hole or a naked singu-
larity. Thus, we determined a particular choice of the gauge vector which makes
the geometry a static/stationary black hole everywhere regular outside an event
horizon, with both the horizon and the ergosurface depending on the disformal
coupling. For such solution, we studied the ISCOs and the maximum amount of
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extractable binding energy.

In chapter 3, we considered the interaction between a rotating, charged black
hole and an external, ultralight scalar field. In particular, we studied the scalar
cloud formation around an extremal electromagnetic Kerr-Newman black hole, ex-
tending previous results obtained for an electric black hole to an electromagnetic
one. We found that depending on the frequency of the scalar modes the system
could trigger superradiance, leading to the formation of a long-lived (stationary)
scalar cloud surrounding the black hole. Interestingly, the frequencies of the modes
of the scalar cloud correspond to the resonant frequencies of the superradiant gain
factor, which is totally determined by the black hole’s and scalar’s parameters.

In chapter 4, we studied electromagnetic black holes non minimally coupled
with a massless scalar field through parity violating scalar-vector and scalar-tensor
Chern-Simons coupling terms, namely gF ϕFµνF

µν and gR ϕR
µναβRµναβ, with ϕ

being the scalar field and gF and gR being the coupling constants. We found
that in the static, electromagnetic case there is a contribution from the scalar-
vector coupling to the geometry, with a spontaneous formation of a secondary
scalar hair depending on the coupling gF . In the case of rotating black holes,
using a small couplings and a slow rotation approximation scheme we analytically
found the hairy black hole solution depending on both gF and gR. For such so-
lutions, we verified that the thermodynamics Smarr formula is satisfied. Looking
for detectable, distinctive phenomena, we calculated the ISCO trajectories and
frequencies; moreover, we studied how the light traveling through the scalar field
surrounding the black hole is subjected to a natural polarization splitting, arising
from the parity violating scalar-vector coupling.

At the end, in chapter 5 we investigated the linear perturbation theory of
an electromagnetic Reissner-Nordström black hole, also including a Chern-Simons
scalar-vector coupling. Working in the Regge-Wheleer gauge, expanding the ten-
sor, vector and scalar perturbations into axial/polar components we found that in
the Reissner-Nordström magnetic case the resulting Regge-Wheeler equation for
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parity odd perturbations contains both polar and axial terms, unlikely what hap-
pens in the electric case. Moreover, such parity mixing also appears when we take
into account the Chern-Simons scalar-vector coupling, leading to a Regge-Wheeler
gravitational perturbations equation involving both vector and scalar perturba-
tions with different parity.

The main idea behind this work was to study various physical systems involv-
ing black hole physics, in order to find detectable, distinctive effects which could
provide a tool to test and eventually falsify gravity theories. In doing this, we were
motivated by the fact that black holes are still the best candidates for gravitational
waves observable emissions, with current (LIGO, VIRGO, etc.) and next genera-
tions detectors (LISA, KAGRA, etc.). Thus, in this work we have provided some
examples of non standard General Relativity black hole configurations with their
distinctive, (maybe) observable traits. In particular, we focused our attention on
systems with scalar fields, since they continue to be good candidates for solving
relevant open questions, such as dark energy and dark matter. Therefore, we think
that further investigations are necessary to explore new scenarios, supported by
the observations from the current detectors and the ones which are to come. For
interesting further developments of the results discussed in this work, we propose
the following ideas.

• Since the black hole solution we found in chapter 2 comes from a very sim-
ple and ad hoc disformal transformation, it would be useful to investigate if
a more general approach is viable. In particular, we think that a rigorous
study of generic disformal transformations applied to known black hole solu-
tions could be a fascinating systematic way to find exact black hole solutions
in modified gravity theories, which is still an open and appealing question.
About this topic, we mention [226, 227] for recent developments.

• On the basis of the hairy solution found in chapter 4, it would be inter-
esting to try to extend such results to the case of arbitrarily fast rotating
black holes, with also arbitrarily large couplings with Chern-Simons terms.
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Furthermore, a perturbations and QNMs analysis could reveal some distinc-
tive feature of the Chern-Simons terms in the gravitational waves spectrum,
making it comparable with the observations.

• In chapter 5 we studied the linear perturbations for various black hole solu-
tions, finding a peculiar parity mixing in some of them. For such cases, it
would be interesting to undertake a full study of QNMs, looking for possible
detectable modes comparable with waveforms coming from ringdown phases
of binary systems. Moreover, it would be interesting to extend the analysis
we made to the case of rotating black holes (electromagnetic Kerr-Newman),
also including a Chern-Simons scalar-gravity coupling term.
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