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U(I; cge of Bngineeting, Swansea LNVEISILy. distribution for its parameters constructed through the use of a Bayesian approach.

This approach combines both physiological/geometrical constraints and the avail-
able measurements reported in the literature. A key contribution of this work is to
present a framework for including all such available information for the creation of
virtual patients (VPs). The Markov Chain Monte Carlo (MCMC) method is used to
sample random VPs from this posterior distribution, and the pressure and flow-rate
profiles associated with each VP computed through a physics based model of pulse
wave propagation. This combination of the arterial network parameters (represent-
ing a virtual patient) and the haemodynamics waveforms of pressure and flow-rates
at various locations (representing functional response and potential measurements
that can be acquired in the virtual patient) makes up the VPD. While 75,000 VPs are
sampled from the posterior distribution, 10,000 are discarded as the initial burn-in
period of the MCMC sampler. A further 12,857 VPs are subsequently removed due
to the presence of negative average flow-rate, reducing the VPD to 52,143. Due to
undesirable behaviour observed in some VPs—asymmetric under- and over-damped
pressure and flow-rate profiles in left and right sides of the arterial system—a filter
is proposed to remove VPs showing such behaviour. Post application of the fil-
ter, the VPD has 28,868 subjects. It is shown that the methodology is appropriate
by comparing the VPD statistics to those reported in literature across real popu-
lations. Generally, a good agreement between the two is found while respecting
physiological/geometrical constraints. The pre-filter database is made available at
https://doi.org/10.5281/zenodo0.4549764.
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1 | INTRODUCTION

Arterial disease refers to any disease affecting the arterial system. Two of the most common forms of arterial disease are stenosis
and aneurysm. These two forms of disease are estimated to affect between 1% and 20% of the population'?3%, Ruptured abdom-
inal aortic aneurysms alone are estimated to be the cause of between 6,000 and 8,000 deaths a year within the United Kingdom®.
Current methods for the detection of arterial disease are primarily based on imaging techniques which can be expensive and
thus unsuitable for mass screening. A potential solution is offered by the recent emergence of data-driven Machine Learning
(ML) algorithms which can be trained on easily acquirable pressure and flow-rate measurements. The key idea is that the pres-
ence of disease—both stenosis (a reduction in vessel area) and aneurysm (an increase in vessel area)—will create changes in
such measurements, which may be detectable by the ML algorithms. To explore this possibility, however, a large database of
both healthy and diseased subjects along with their respective measurements is necessary. This study presents a computational
method for the creation of such a physiologically realistic database.

As opposed to acquiring measurements from a real population, which may be impractical, a virtual patient database (VPD)
based on a well-known physics-based model is proposed. This idea of exploiting virtual patients (VPs) to gain meaningful
information has been previously explored in the context of human arterial networks®”8, and in the context of path clamp phys-
iology”. Willemet et al.© created a VPD of healthy subjects by varying seven parameters of a large 55-artery network to assess
the relation between foot-to-foot pulse wave velocities and aortic stiffness. Chakshu et al.” created a VPD of arterial networks
by considering the empirical relationships between the network parameters and patient characteristics such as weight, height,
and age. Jones et al.®, randomly varied nine parameters of a small network of the abdominal aortic bifurcation to create a VPD
and subsequently applied ML algorithms to detect the presence of stenosis. The limitations of these studies are that either not
all the parameters are varied in both healthy and diseased states, or a priori distributions are assumed for the parameters. Both
of these are important considerations for the creation of a general purpose realistic VPD which captures the variability as close
as possible to the real population. Furthermore, the VPD must account for known variation of the measurements reported in the
literature along with the physical constraints, while making minimal assumptions. This study presents a probabilistic framework
for creation of such a VPD based on a previously proposed, anatomically correct, 56-vessel and 77-segment arterial network V1L,
The proposed framework may also be useful for the novel and active research area of in-silico clinical trials''2, for which gen-
eration of realistic virtual patients is a key consideration. While not in the context of the subject area explored in this study,
Bayesian techniques have been widely used in biomedical engineering for network modelling''?, uncertainty quantification!41>,
parameter estimation & inference!lOI7HSIPRORIRZLIRAZS - o htimisation“®, and optimal designZ.

This article is organised as follows. First, a brief description of the physics-based pulse wave propagation model is presented.
This is followed by a description of the arterial network topology—vessels, locations of disease and potential measurements—
and its reduction. Next, parameterisation of the arterial network—geometry, vessel properties, and boundary conditions—is
presented, followed by the Bayesian framework for the VPD creation. Finally, the solution to the Bayesian problem through
Markov Chain Monte Carlo method is presented, before discussing the results and statistics of the VPD.

2 | PULSE WAVE PROPAGATION MODEL
A validated one dimensional model of pulse wave propagation?2” is adopted in this study. The model describes the arterial
vessels as one-dimensional compliant tubes, i.e. all the properties are described by a single coordinate x along the length of the
vessel. Blood flow is assumed to be Newtonian, laminar, incompressible, and axisymmetric. With the arterial cross-sectional
area represented as A, and considering the average lumen pressure P and the average velocity U to be the primary variables,
the mass and momentum conservation equations at any coordinate x can be, respectively, written as
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FIGURE 1 Configuration of a three-element Windkessel model. Q,, and P, represent the volumetric flow-rate and pressure
at the terminal boundary of the 1D system respectively.

where p represents blood density and f represents the frictional force per unit length. Depending on the assumption of velocity
profile across the arterial cross section, f can be written as

e t) = =2+ 2unU, 3

where { is a velocity-profile dependant constant, and y represents dynamic viscosity of blood. Throughout this study, a parabolic
profile assumption is used??, giving ¢ = 2. The system of equations is closed by specification of the mechanical behaviour of
the wall, commonly referred to as the “tube law”. A commonly used form?? is

P
P-P,, =P+ A—(\/Z— VA, )
d
with 4
p=3Ehz, )
where P, , represents the external pressure, P, represents the diastolic blood pressure, A, represents the diastolic area of the

vessel, E represents the vessel wall’s Young’s modules, and A represents the vessel wall’s thickness. This system of equations
has been widely employed, tested extensively, and validated against more complex three-dimensional models??2028131132135,
Since it is computationally impractical to model every single artery in the circulatory network, it is common to truncate the
1D network by only considering relatively large arteries which are of interest. The effect of all the vessels that come before and
after the network are then incorporated as appropriate boundary conditions. Typically, at the inlet of the network a volumetric
flow-rate is specified, and at the outlets Windkessel models=# are employed. A three-element Windkessel model, shown in Figure
[T} comprises of two resistors, R; and R,, which replicate the viscous resistance of large arteries and the micro-vascular system,
respectively, and a capacitor C, which replicate the compliance of large arteries.
The 1D model is solved numerically, including interfacing conditions between vessels and boundary conditions, by the subdo-
main collocation (SDC) scheme®9, often referred as the enhanced trapezoidal rule method (ETM). This scheme is chosen for
its computational efficiency. The SDC implementation is validated in-house against a discontinuous Galerkin (DCG) scheme'28,
which in turn has been successfully validated against a 3D model of blood-flow through stenosed arterial vessels=Z.

3 | ARTERIAL NETWORK AND BOUNDARY CONDITIONS

3.1 | Initial network

The arterial network used as a basis for the creation of VPs is based on a version of the ADAN network??, This network contains
56 vessels within the human arterial system, described by 77 arterial vessel segments. The topology of this network is shown in
Figure 2] and each vessel within the network is identified in the Supplementary Material Appendix A. The baseline properties
of this network can be found in Section 4.6 and Tables XII and XIII of Boileau et al“®. This network is described by:

o 38 vessel segments with constant reference radii () and vessel wall mechanical properties (f) along their lengths. The
description of each of these segments requires specification of three parameters: the length L, reference radius r,, and
mechanical property f of the segment.
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o 39 vessel segments with linearly varying r, and f along their lengths. The description of each of these segments requires
specification of five parameters: the length L; the reference radii r at the proximal and the distal ends of the segment;
and g at the proximal and distal ends.

e 31 Windkessel models. Every Windkessel model at the outlets requires specification of 2 resistances and a compliance.

e One inlet flow-rate profile. In this study, the inlet flow-rate is parameterised by a 5" order Fourier Series (see Section
and®). This requires specification of 11 coefficients.

Thus, to describe a VP through direct specification of all the above parameters results in the total dimensionality of 413 per VP.
This high dimensionality is problematic leading to increased complexity in creating VPs=8. In what follows, methods to reduce
the dimensionality of VP description are presented. These are primarily related to either reducing the network or employing a
parsimonious parameterisation. Since the primary purpose of the VPD is deployment of ML methods for screening of aneurysm
and stenosis through easily acquirable measurements, it is important that the reduction in dimensionality does not compromise
i) the locations where disease and measurements are possible, and ii) the precision and variability of measurements at such
locations.

3.2 | Important locations

A review of literature is carried out to understand both where disease is likely to occur and where measurements can be obtained.
The latter are restricted to locations at which continuous profiles can be recorded. While arterial disease can occur in a large
number of vessels, for this study vessels with only high prevalence of stenosis or aneurysm are considered. In this study, unhealthy
VPs (containing either a stenosis or an aneurysm) are not created. Instead, the purpose of understanding where disease is likely
to occur is to allow for re-parameterisation of the network and its reduction without compromising the pressure and flow-rate
profiles at these locations.

3.2.1 | Locations of measurements

Based on literature, the following locations where measurements can be taken are identified:

Pressure in the radial and common carotid arteries: Continuous non-invasive arterial blood pressure profiles can be obtained
in the radial and common carotid arteries using applanation tonometry3?“% Applanation tonometry is already clinically used“L.
The right and left radial and common carotid arteries are identified in Figure 2] as vessels 8 and 22; and 5 and 14, respectively.

Pressure in the brachial arteries: It is possible to estimate continuous blood pressure at the brachial arteries through recon-
struction of finger arterial pressure*?. Although the use of a model to estimate brachial pressure will introduce errors, these
recreated brachial pressure profiles have been shown to meet the requirements set by the Association for the Advancement of
Medical Instrumentation*2%3, The right and left brachial arteries are identified in Figure [2|as vessels 7c and 21c respectively.

Flow-rate in brachial, carotid, and femoral arteries: Using Doppler ultrasound techniques it is possible to measure blood
velocity in both the upper and lower extremities. Doppler ultrasound has been shown to work on the brachial**, common
carotid®, and femoral®® arteries. The first and second, right and left femoral arterial segments are identified in Figure |2 as
vessels 50b and 53a; and 56b and 59a respectively.

3.2.2 | Locations of disease

Four of the most common forms of arterial disease are subclavian artery stenosis (SAS), carotid artery stenosis (CAS), periph-
eral arterial disease (PAD), and abdominal aortic aneurysm (AAA).

SAS locations: The ADAN network splits the subclavian arteries into two segments. The right and left instances of the first
and second subclavian artery segments are identified in Figure[2]as vessels 4 and 7a; and 18 and 21a respectively.

CAS locations: The carotid arteries consist of the common carotid, external carotid, and internal carotid segments. While the
narrowing of an arterial vessel can occur within any of the three carotid segments®Z, it is chosen to limit its occurrence to the
common carotid arteries. The right and left instances of the common carotid arteries are identified in Figure[2]as vessels 5, and
14 respectively.
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PAD locations: The third frequent form of stenosis is PAD, referring to the stenosis of any peripheral vessel. Isolating arterial
vessels that are likely to experience stenosis at a high prevalence in patients with PAD is more difficult relative to SAS or CAS.
Both SS and carotid artery stenosis have short and relatively easy to define lists of possible vessels they can affect. PAD, on
the other hand, can cover a large range of different vessels depending on the definition prescribed. Studies into PAD primarily
focus on the lower extremities*®?% and thus it is assumed that VPs with PAD experience change in these vessels. Based on>"
and®?, PAD in VPs is restricted to the common iliacs, external iliacs, first and second femoral segments, and the first popliteal
segments. The right and left instances of each of these vessels are identified in Figure 2]as vessels 48 and 49; 50a and 56a; 50b
and 56b; 53a and 59a; and 53b and 59b, respectively.

AAA locations: The ADAN network splits the abdominal aorta into five segments. These five segments are identified in Figure
E] as vessels 35, 41, 43, 45, and 47 respectively.

3.3 | Network reduction

In this section, the reduction of the network by removing vessels while preserving the disease and measurement locations is
presented. It is important, however, to ensure that the removal of any vessels does not have a significant impact on the upstream
pressure and flow-rate profiles. Network reduction can be performed by removing terminal vessels and merging them into the
lumped parameter (Windkessel) boundary conditions®!. This process is adopted in this study and is summarised in Figure
The following three groups of vessels eligible for removal are identified:

e Group 1: The first and second splenic segments; the left gastric; and the common hepatic (identified in Figure[2]as vessels
37 and 39; 38; and 36).

e Group 2: The common interosseous, the posterior interosseous, and the second ulnar segment (identified within Figure
as vessels 10a and 24a; 10b and 24b; and 11 and 25).

e Group 3: The second popliteal segments; the anterior tibial; the tibiofibular trunk; and the posterior tibial (identified
within Figureg] as vessels 55a; 54; 55b; and 55¢ on the right side and 61a; 60; 61b; and 61c on the left side).

Three possible reduced networks are proposed, each with the removal of a single group of vessels (group 1, 2, or 3 in isolation).
The pressure and flow-rate profiles produced by each reduced network are compared against the full ADAN network at all the
measurement locations (see Section . The error metrics proposed in°! are used. If the maximum error is less than 2%, the
full group of vessels are omitted from the arterial network. Otherwise, the vessel segment at the proximal end of the group is
re-introduced into the reduced network. This process is iteratively repeated until the maximum number of vessels that can be
removed from each group individually are found. Finally, these vessels from the three groups are removed simultaneously.

It is found that the first and second splenic segments; left gastric; common hepatic; and the left and right posterior interosseous
vessels (identified within Figureas vessels 37 and 39; 38; 36; and 10b and 24b) can all be removed from the arterial network
without introducing errors larger than 2% relative to the full ADAN network. The pressure and flow-rate profiles produced by the
full and reduced networks are shown in Figured] and the errors are reported in Table[I] The reduced network is shown in Figure
[5]and has a dimensionality of 389, a reduction of 24 from the full network. This network and its associated parameters—either
directly taken from or computed based off of the ADAN network—forms the reference network for this study.

4 | NETWORK PARAMETERISATION

A parsimonious representation is sought for the aforementioned reference (reduced) network so that its dimensionality can be
further reduced. The reference network has 389 parameters. The vessels in this network can be split into the following three
categories, which are also indicated in Figure [5}

o Category 1: 33 vessel segments with varying f and r(, and continuous variation with respect to the prior and subsequent
vessels.

o Category 2: six vessel segments with varying § and r, , and discontinuous variation with respect to the prior and
subsequent vessels.
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Location Measurement | Average error [%]  Systolic error [%] Diastolic error [%]
. . Pressure 0.4380 0.114 0.316
Right common carotid
Flow-rate 0.250 -0.085 -0.271
. Pressure 0.438 0.157 0.318
Left common carotid
Flow-rate 0.246 -0.111 -0.186
. . Pressure 0.643 1.108 0.378
Right brachial
Flow-rate 0.875 -1.223 -1.833
. Pressure 0.644 1.179 0.380
Left brachial
Flow-rate 0.889 -1.131 -1.788
Right radial Pressure 0.654 1.236 0.383
Left radial Pressure 0.657 1.231 0.386
Right femoral I Flow-rate 0.256 -0.174 -0.114
Right femoral II Flow-rate 0.365 0.515 -0.463
Left femoral I Flow-rate 0.254 -0.166 -0.115
Left femoral II Flow-rate 0.363 0.514 -0.463

TABLE 1 Percentage discrepancy between the measurements taken from the full arterial network and the reduced network
produced by the removal of the first and second splenic segments; left gastric; common hepatic; and posterior interosseous.
Percentage errors have been computed using the error metrics presented in>Y,

o Category 3: 32 vessel where f and r, are constant along their lengths.

For Categories 1 and 2 with varying intra-vessel property profile, the reference network assumes a linear variation””. Thus any
property g(x) (reference radius r, or f) varies along length x as

X
T (6)
where g, and g, represent the properties at the proximal end x = 0 and the distal end x = L, respectively, and whose values are
prescribed from the reference arterial network??. A re-parameterisation of these properties to reduce the total dimensionality
is presented next. For all the aforementioned three categories of vessels, a unified parameterisation is proposed, which also
results in reduction in the dimensionality associated with the description of Category 1 vessels. This parameterisation includes
description of the mechanical properties (Section .1), geometric properties (Section [4.2), and boundary conditions (Section

@3).

g(x)=gp— (go - gL)

4.1 | Mechanical properties

As opposed to describing the property variations linearly and individually for every vessel segment, see Equation (), it pro-
posed to use exponential variations, which allows for a simultaneous description of many successive vessels, thus reducing the
total dimensionality. The re-parameterisation of mechanical property f for the three categories is as follows:

Category 1: These vessels have continuous variation in properties between successive vessels. Thus, successive vessels can be
lumped together into chains and a single parameterisation be adopted. The 33 vessel segments (Category 1 vessels described in
Section ] and labelled in Figure[5]as cat. 1), that meet this description can be lumped into the following five chains:

o The aortic chain. This chain of vessel segments includes the first to forth aortic arch segments; the first to sixth thoracic
aorta segments; and the first to fifth abdominal aorta segments.

e The right and left arm chains. These chains of vessels include the first and second subclavian segments; the axillary
artery; and the brachial artery.
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o The right and left leg chains. These chains of vessels include the external iliac; the first and second femoral segments;
and the first and second popliteal segments.

The p profiles for an entire vessel chain can now be described using a single function as opposed to separate functions (and
hence separate parameters) for each individual vessel. An appropriate choice for such intra-vessel variation is

P(x) = Py exp(=€,x), @)

where f(x) and f, represent the material properties of the chain at the spatial coordinate x and the proximal end of the chain
respectively; and €2, > O represents a decay parameter.

Category 2: These vessels do not form part of any chain but show an intra-vessel property variation. For consistency and
uniformity, their variation is also described by the exponential re-parameterisation of Equation (7). These vessels are labelled
in Figure 5] as cat. 2.

Category 3: These vessels are also not part of a chain and have constant intra-vessel properties. Again, for uniformity, the
re-parameterisation of Equation (/) is used, with the added explicit condition that £, = 0. These vessels are labelled in Figure
as cat. 3.

With the above unified description for the three vessel categories, f properties can be hierarchically assigned. It should be
re-iterated that the choice of exponential variations is adopted for parameter parsimony. Both linear and non-linear variations
in vessel stiffness and radii have been proposed in the past, and recently methods to select the best models based on evidence
provided by clinical data also been proposed-4.

4.1.1 | Hierarchical property assignment
Proximal-distal coherence dictates that the § properties at the distal end of a vessel segment must be greater than or equal to the
corresponding property at the proximal end of any subsequent daughter segments'. To ensure this a hierarchical procedure is
adopted. The p properties of the arterial network are initialised by explicitly assigning a value at the inlet of the first aortic arch
segment. The property profile of the aortic chain, and so consequently the vessel wall mechanical property at the proximal and
distal ends of each segment within the chain, is computed using Equation (7). The properties at the proximal end of any vessel
segments branching from the aorta are computed by applying a scaling term to the corresponding property at the distal end of
the parent aortic segment:

By = B; Q. ®)
where ﬂg represents the property at the proximal end of the daughter segment, ﬁip represents the property at the distal end of
the parent segment, and €, represents a daughter-parent scaling term, where:

0<Q <1 ©)

The intra-vessel or intra-chain property profiles of all daughter branches bifurcating from the aorta are computed using Equation
(7). This process is sequentially repeated through each generation of the arterial network until all terminal boundaries are reached.

4.2 | Geometric properties

Here, the re-parameterisation of geometric properties—reference radius and length—is presented.

4.2.1 | Arterial vessel reference radius

Since the variation of reference radius needs the same requirements as those for the variation of , the variation of r,, is described
exactly in the same manner as f, as presented in Section Lumping arterial vessels into chains, where appropriate, and
applying exponential functions to describe the properties § and r,, of all the vessels reduces the number of dimensions from 389
in the reference network to 269.
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4.2.2 | Arterial vessel length

Each arterial vessel requires specification of its length. To individually assign a length to every vessel requires 71 parameters,
accounting for a large proportion of the 269 remaining dimensions. It is thus proposed to reduce the dimensionality of the
network by applying a singular scaling term to the lengths of all the vessels. It is empirically found that behaviours, patterns, and
overall variability observed in the pressure and flow-rate profiles when allowing for maximum freedom to the length of vessels,
i.e. assigning independent lengths to each arterial vessel, are not lost when applying a singular vessel length scaling term to all
the vessels. This analysis justifies the use of a single scaling term and can be found in the Supplementary Material Appendix B.
With this assumption, the dimensionality reduces from 269 to 199.

4.3 | Boundary conditions

The boundary conditions consist of the inlet flow rate and the terminal lumped parameters. These are parameterised as follows:

4.3.1 | Inlet flow-rate

The volumetric inlet flow-rate to the network, vessel ‘a’ in Figure[5| is described using a Fourier series (FS)®:

N

Quniiow(t) = Y @, sin(newt) + b, cos(na), (10)

n=0
where and a, and b, represent the n™ sine and cosine FS coefficients, respectively; N = 5 represents the truncation order; and
® = 2x/T, with T as the time period of the cardiac cycle. Thus, the following 11 parameters are required to specify the inlet
flow-rate: {a, = 0, by, a;, by, ..., a5, bs}. An alternative method to describe the inlet flow-rate profiles, that could be adopted in
future studies, is to include a heart model that outputs inflow conditions for the network; see for example!l222234
case, the heart-model parameters will replace the FS coefficients in the network parameterisation.

. In such a

4.3.2 | Terminal lumped models

There are 29 terminal boundaries in the network. Each of these terminal boundaries is coupled to a Windkessel model. Each
Windkessel model requires three parameters: two resistances, and a compliance. These Windkessel models therefore require
specification of a total of 87 parameters.

The above description (presented in Sections 4.1} and[4.3) has 199 parameters. These represent 22 decay parameters Q,;,
78 daughter-parent scaling parameters Q_, 87 Windkessel parameters at the outlets, 11 FS coefficients describing the inlet flow-
rate, and 1 length scaling term. These 199 parameters represent a reduction of approximately 48% with respect to the original
description with 389 parameters. These parameters are denoted individually by ., for the i parameter, and collectively with the
vector Q = [Q,€,, -+, ,40]. The final step in parameterisation is to describe all these 199 parameters relative to the reference
network, and is described next.

4.4 | Scaling with respect to the reference network

Instead of describing the networks by directly stating values of the 199 parameters, they are specified relative to the reference
network.

Q=6"0Q_, (1)
where 0 = [0,,0,, -+, 0,49]" represents the scaling vector in relation to the reference network and Q. represents the vector of
reference network parameters. Random sampling from the distribution of @ will result in the VPD. This is described in the next
section.

S | STATISTICAL MODELLING

The pulse-wave propagation model, denoted as M, takes the parameters 0 as inputs and outputs the pressure and flow-rates,
collectively denoted as the vector y, at all the locations:

y = M(8), 12)
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The specific measurements are denoted by T, which are essentially transformations of y corrupted by measurement noise £:
T=H(y)+ &, (13)

where H represents the observation operator. Commonly, the observation operator H represents an identity transform of selected
components of y. The measurement error € is typically assumed to be a zero-mean multivariate normal:

E~N(O,Z (14)

error)’

where 0 is a zero-vector and X_,, . represents the error covariance matrix (diagonal when errors are independent).

error

To create the VPD, random samples of 0 from their joint probability distribution p(8) are required. This distribution p(0)
should satisfy two broad pieces of information: first, it should satisfy known physiological and geometric constraints, and second,
it should be consistent with what is known about the distributions of measurements T from literature. The latter ensures that the
when the physics-based model is run with the parameters distributed as p(0), the resulting distributions of the measurements are
close to those reported in real populations.

5.1 | Bayesian formulation

A Bayesian formulation is adopted to find the posterior distribution of the parameters 0. This is suitable because the geometric
and physiological constraints, in the form a prior, can be combined with the literature reported measurements, in the form of a
likelihood, to result in a posterior distribution that considers both the pieces of available information. The Bayes’ theorem allows

such a combination naturally:
likelihood  prior

0 0
(t[0) p@®)
p@| =LY PO (15)
—— p(®)
posterior v
evidence

The prior distributions p(8) are described in Section [5.2) and are chosen to be either uninformative or weakly informative. This
avoids imposition of strong prior beliefs which may influence the posterior. Their primary purpose is to impose appropriate
bounds on the supports of the distributions based on geometric and physiological constraints. For the computation of the likeli-
hood, the literature reported measurements are first represented as multivariate Normal distribution with mean p;, and covariance
X;.- Then, in the context of the statistical model, Equations (I2)—(T3)), it is assumed that T is measured to be equal to T = p;, and
the error covariance is X, = Zy;,. The likelihood for individual measurements is described in Section[5.3] Finally, in Equation
@]), the evidence term is a normalising constant, which is not of interest and need not be evaluated.

5.2 | Prior distributions

Note that the network parameterisation is relative to the reference network, see Equation (IT), and hence the distributions are
for the scaling terms 0. Since scarce information is available about the variations of the parameters, the prior distributions are
primarily constructed based on the bounds that should be observed in the parameters. In future studies, another approach which
may be employed to assign tighter prior distributions could be the use of empirical relationships between the parameters and
weight, age, height, etc., see for example”Z. Such empirical and morphological relationships may also be used to reduce the
number of independent parameters. The following three types of uninformative or weakly informative priors®> are employed:

1. Bounded parameters: A uniform prior distribution is chosen for all the scaling parameters which are supported on a bounded
interval. The daughter-parent ratio, see Equations (8)), is the only example of such a parameter. For the i'" pair of vessels with
reference parent-daughter ratio Q; ., it can be seen from Equations (9)) and (TT)) that the corresponding scaling term 6, is bounded
between 0 and 1/Q; ;. The prior probability density function (PDF) is thus:

ire

Q ¢ if 0,€(0,1/Q, ]
p@) =< " et

(16)
0 otherwise

and shown in the left plot of Figure|[6]
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2. Semi-bounded parameters: A log-normal prior distribution is chosen for all the scaling parameters with semi-infinite
support. These parameters with a lower bound of zero and no upper bound are:

e initial values of radii r;, and vessel wall mechanical properties § at the inlet of the aorta (see Sections .1 . 1.1} and [4.2);
e the decay terms used within all exponential property profiles (see Sections .1} and 4.2));

o the length of arterial vessels (see Section @]}; and

e the terminal boundary Windkessel model parameters (see Section[4.3.2)

The prior PDF of the i such parameter is thus described by the following log-normal distribution:

(ln 0) — ﬂi)2>

1
p6,) = ———exp| —
0,0,\/2n ( 207

where y; and o, represent the mean and standard deviation of the underlying Normal distribution, i.e. In (0,) ~ N (y;, 0'1.2). This
log-normal distribution is created with large variance, resulting in a weakly informative prior. For all the scaling parameters g,
is set to 0.5 and and aiz is set to 0.8, respectively. This PDF is shown in the middle plot of Figure @

a7

3. Unbounded parameters: A normal prior distribution is chosen for all the scaling parameters with infinite support. The only
such parameters are the inlet flow-rate FS coefficients (see Section [4.3.1). The prior PDF of the ith FS coefficient with mean g,
and standard deviation o; is thus described as:

0 —u \2
p(6) = —— exp —1(J—Jﬁ> . (18)
o;\V2rx 2 Oi

While the FS scaling parameters do have infinite support, they are expected to be within physiological range and hence within
several multiplications of the reference FS coefficients. Thus, y; = 1 and a standard deviation ; = 2 is set. This PDF is shown
in the right plot of Figure [f] It is assumed that all the priors are independent of each other, thus the joint prior PDF is:

N
p® =[] p@). (19)
i=1

where N = 199 is the total number of scaling parameters.

5.3 | Likelihood

The likelihood corresponds to the literature reported measurements. These measurements can be categorised as follows:

5.3.1 | Scalar pressure and flow-rate measurements

Pressure (diastolic and systolic) and flow-rate (average) measurements at locations (radial artery, ascending aorta, common
carotid, and femoral artery) reported in literature are incorporated into the likelihood. Their statistics and sources are shown
in Table 2] When multiple measurements are available for the same quantity, they are pooled together into a single mean and
variance®®. For such a measurement 7; that was measured (or pooled together) to be ; 4;; with standard deviation o, 4, the

likelihood is:
1 1 [ Higis — H;(M(9)) 2
P (7= 4is|8) = ———=exp (—5 <— : (20)
Gi,dis \% 2r O-i,dis

where H; represents the observation operator (see Section [5) that extracts the 7; component of the model output. Denoting all
such discrete measurements collectively with the vector T4, the combined likelihood with the assumption of independence is

P (Tais = Maisl0) = HP (7= Hiais19) - 2D
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Measurement Measurement No. of Measured Measured Sources
location type patients mean (pg,)  std. (og)
Diastolic pressure (mmH 65 12.84
Radial artery ) pressure ( &) 71 57l b8
Systolic pressure (mmHg) 123 22.75
Diastolic pressure (mmH 65 7.14
Ascending aorta ) P ( &) 69 57 59
Systolic pressure (mmHg) 103 8.24
Common carotid | Diastolic pressure (mmHg) 134 75.58 6.01 o0l lell
artery Systolic pressure (mmHg) 122.78 12.01 62
Femoral arter
) Y Average flow-rate (ml /sec) 63 5.84 2.11 63164
(left and right)

TABLE 2 The measurement of the discrete pressure and flow-rate taken from literature. When multiple source measurements
are available for the same quantity, they are pooled together into a single mean y;, and variance o >%.

5.3.2 | Time varying inlet flow-rate and cardiac output measurement
Some time-varying information about the behaviour of pressure and flow-rates over the cardiac cycle is necessary to obtain
a physiologically realistic posterior. Statistics on any such time-varying behaviour is not reported in literature to the authors’
knowledge. Thus, a time-varying pseudo-measurement is constructed by combining the reference (ADAN network?®) time
varying inlet flow-rate Q,.¢(f) and a measurement of average cardiac output®®, This pseudo-measurement Q,,,..,(?) is described
by a Gaussian Random Field (GRF, also referred to as a Gaussian Process)®/08 with the following mean Hpseudo(?) and standard
deviation o, (¥)

Himeas(t) = Qrer(D), (22)

(23)

o (1) = (1 + O,e(®) — IIllIl.(Qref) )5’
max(Q,.¢) — min(Q.)
where 6 is a positive scaling parameter. The scaling of o,,.,,(?) is to ensure that i) the standard deviation is positive, and ii) the
variance is proportional to the magnitude of the flow rate (i.e. the percentage variance with respect to the magnitude remains
fixed). The covariance between the pseudo-measurements at any two times #; and 7; is described through a periodic kernel &
2 sin? (z|t, —t,|/T
cov (Qmeas(ti)’ Qmeas(tj)) = Omeas (tl) Omeas (tZ) eXp ( ((v’l"l)Z jl/ ) >*
where T represents the cardiac period, and v represents the ratio of the correlation length to the cardiac period. Through a trial-
and-error analysis, this ratio is set to o = 0.5 to produce a physiologically realistic variation in the inlet flow-rate profile. The
scaling parameter 6 is tuned to the average cardiac output (CO) measurement: a mean of 98 ml/sec and standard deviation of
35.55 ml/sec®®, Through a sweep of &, an optimal value of 5 = 59.09 is found, when the GRF produces a mean CO of 97.8
ml/sec and a standard deviation of 34.84 ml/sec. This GRF for Q,.,.(?) is shown in Figure With the mean and + one standard
deviation profiles.

The GREF is evaluated at k = 12 time points, shown in Figure [/| for the computation of the likelihood. Denoting these
evaluation time points as {,,,, -, #; }, the vector of measurements at these times with T;,4,,, the mean GRF vector as P q,., =
[Mmeas 1)s Bmeast2)s *** » Hmeas(fx)] computed through Equation (22)), and the vector of inlet flow rates produced by the network
parameters through Equation (T0) as Qip0w = [Oiniow #1)s Qinfiow #2)s *** » Oinfiow #1)1 the likelihood for flow-rate can be written
as:

(24)

meas

- - -4 -1 _lere
p (tinﬂow - uinﬂowle) - (271-) Zdet(Z 2 €Xp 2& x § s (25)

where
é = Minflow — Qinﬂow’ (26)

" row and j" column element Z,; = cov (Qmeas(ti), O eas(t j)) can be computed

and X is the GRF covariance matrix whose i*
from Equation (24).
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5.3.3 | Vessel length measurement

As mentioned in Section f.2.7] the length of the vessels are parameterised by a single scaling term relative to the reference
network. Since statistics of any direct vessel length measurement are not available, it is assumed that the lengths of arterial
vessels are directly proportional to the height of a subject. A study of 25,945 twins from eight countries reported the mean
and standard deviation of the height of the full cohort to be 172.0 cm and 9.308 cm respectively®®. Since the reference arterial
network has a patient of height 170 cm, the measurement data corresponds to a mean of y;., = 1.0118 and the standard deviation
of )., = 0.0548 for the vessel length scaling term. Denoting this measurement as 7;.,,, the likelihood for the scaling parameters

0, 1s thus
2
1 1 Hien — 0 n
P (Tien = Hien®) = ———=exp <—§ <;> > : 7)
Olen V 2z Olen

Assuming all the measurements to be independent, the combined likelihood in Equation (I5) is:

p (T|O) =p (Tdis =udis|0) Xp (Tinﬂow =""inﬁow|0> Xp (Tlen =#len|0) ’ (28)

where the RHS terms can be computed from Equations @I)), (23)), and 7).

In summary, the prior distributions for the 199 network parameters are specified in Section[5.2] These priors will be modified
through the likelihood—specified by 7 scalar measurements of pressure and flow-rate, 1 time-varying flow-rate profile evaluated
at 12 time points in the cardiac cycle, and a measurement of vessel lengths—to yield the posterior distribution of the parameters
through Equation (I3). Random sampling from this posterior will result in the virtual patient database. The sampling procedure
is presented next.

6 | SAMPLING FROM THE POSTERIOR DISTRIBUTION

With the prior and the likelihood specified, the posterior distribution is given by Equation (I3), and can be evaluated at any
given 0 up to a normalising constant (the evidence term in the denominator of the equation). Sampling from this analytically
intractable posterior is achieved through the Markov-chain Monte Carlo method ™!’ which is a widely used method to sample
from unnormalised distributions.

6.1 | Markov-chain Monte Carlo

The particular MCMC method employed is the Metropolis-Hastings algorithm2, Starting from an initial sample, a chain of
samples is built sequentially. Denoting the k" sample as 8©), a candidate for the next sample is generated by a proposal distri-
bution which depends only on 8%, This candidate sample 0* is proposed by sampling from the following multivariate Normal
distribution:

0* ~ NOU,Z ), (29)
where X, is the covariance matrix, whose i row and j column element Zep,ij 18 given by
0 i=j
Zslep,ij = 2 P (30)
Gstep,i L=J
where Uszrep,i represents the marginal variance for the i™ element of 8*. This proposed candidate 0* is either accepted or rejected
based on the following ratio & of posterior probabilities at 8* and 0%
0=0%|17
L _PO=07 ah
PO =0011)
which, through the Bayes’ rule of Equation (I3) applied to both the numerator and the denominator, can be written as
|0 =0%)p(0=0"
p(t0 =6%)p (O = 6%) )

a= .
p (1|0 = o(k)) p (e = o(k))
The first term and the second term in both the numerator and the denominator are the likelihoods and priors at the candidate

and current point, respectively, and can be computed by Equations (28) and (T9). To accept or reject the proposed candidate «
is compared to a random number y drawn from a uniform distribution between 0 and 1. If « > y, the proposed candidate, 0* is
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accepted and the chain progress with 0%+ = @*. Otherwise, the proposed candidate is rejected and a new candidate is proposed
through Equation 9). This process is repeated until the chain is sufficiently long. After discarding the first few thousands of
samples from this chain, referred as the burn-in periodZ?, the remaining samples are independent samples from the posterior,
and form the virtual patient database.

The acceptance rate, i.e. the proportion of candidate sample points that are accepted, is tuned by varying aszlep’i. A high variance
results in the Markov chain exploring the posterior density quickly, with a high proportion of the candidate points being rejected.
A low variance results in slow movement of the chain moving but with a high proportion of candidate points being accepted. An
optimum acceptance rate to balance these two apposing behaviours is stated in literature to be 0.234"#, It is empirically found
that using a standard deviation of 0.0375, equivalent to 3.75% of the reference values, for the scaling terms applied to the inlet
flow-rate FS coefficients and that of 0.025, equivalent to 2.5% of the reference values, for all other scaling terms results in an
acceptance rate of approximately 0.2.

6.2 | Pre-fetching

The MCMC algorithm outlined above is inherently sequential—each subsequent sample depends on the previous sample and
hence the chain grows only one sample at a time. Generating a long chain this way thus leads to very high computational run
times, since computation of the likelihood requires running a pulse-wave propagation simulation at each step. To alleviate this
issue and achieve some level of parallelisation, the concept of pre-fetching”>7® is used. The central idea is to think of MCMC
accept-reject decisions in the form a of a decision tree. Figure [8|shows such a decision tree with a depth of # = 2. This results
in 27 leaf-nodes at the end of the tree. A careful consideration of the decision tree (see Figure [8) shows that the only unique
parameters in the entire decision tree correspond to those at the leaf-nodes. Thus, computational simulations for all the leaf-
node parameters can be run simultaneously in-parallel. Then, # steps of the MCMC algorithm can be taken together without
any computational overhead by walking the decision tree. A tree depth of # = 4 is used in this study. For the creation of 75,000
VPs, the estimated computational time without employing pre-fetching is 109 days (2,616 hours) on a machine with 2xIntel
Xeon E5-2620 v4 CPUs (each cpu has eight cores running at 2.10 GHz) and using only a single core (sequential MCMC).
When employing pre-fetching with # = 4 on an identical machine, the run times are approximately 28 days (672 hours) with
the utilisation of 16 cores in parallel.

7 | RESULTS AND DISCUSSION

The VPD is created by generating samples through the MCMC algorithm. The results for the MCMC method and the VPD are
presented and discussed here.

7.1 | Burn-in analysis and chain diagnostics

It is common for the initial iterations of an MCMC chain to be considered as the “burn-in” period, during which the chain
converges to an equilibrium distribution. This burn-in period is, therefore, discarded from the final sampled posterior distribution.
To estimate this burn-in, trace plots for every parameter at all the iterations of the MCMC are plotted. An example of a trace
plot is shown for the scaling terms applied to the length of VPs arterial vessels in Figure 0] and all other trace plots are shown
in the Supplementary Material. To aid visualisation, these plots are thinned out by plotting every 100" iteration of the chain.
These trace plots are visually assessed to determine burn-in. Essentially, if there is an initial period where a clear migration of
the chain is seen away from the sample used to start the chain, then the burn-in is selected to be until this initial migration is
complete. These trace plots also show good movement of the chain around the distribution, referred to as the “mixing” of the
chain. Figures in the Supplementary Material Appendix C show that most parameters are initialised in a region of high density
and hence no net migration is observed—the samples oscillate around a central mean value. Some interesting behaviours in the
trace plots, including features that deviate from such a general/desired behaviour, are:

e The scaling term applied to § at the inlet of the aortic chain are seen to centre around 5 (Figure 20-a in the Supplementary
Material). The maximum scaling term applied is approximately 7.5.
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e The scaling terms applied to the reference decay term of the left leg chain f profile initially oscillates around a value of
approximately 1 for 25,000 iterations, before migrating and oscillating around a value of approximately 7 (Figure 20-j in
the Supplementary Material). This may suggest that this distribution is multimodal.

o The scaling terms applied to the reference decay term of the brachiocephalic trunk f profile oscillates around a value of 1
for the first 40,000 iterations, before migrating and oscillating around a value of 9 (Figure21b in the Supplementary Mate-
rial). The scaling terms applied to the reference decay term of the brachiocephalic trunk r,, profile shows no complimentary
behaviour and remains within the region of 0—4 throughout. This may again suggest a multimodal distribution.

e A spike is seen in the scaling terms applied to the compliance of the right external carotid Windkessel model at approxi-
mately 55,000 iterations (Figure 35-e in the Supplementary Material). This behaviour is not seen within the scaling terms
applied to the compliance of the left external carotid Windkessel model which remains within the region of 0-3 throughout.

Even though most of the parameters do not show a clear migration, an initial burn-in period of 10,000 iterations is chosen as a
precautionary measure to minimise any effect the initial sample position may have. Once this burn-in period has been removed,
the VPD contains 65,000 VPs. Along with the burn-in period, all VPs with negative average flow-rate within any arterial vessel
are removed from the VPD. These VPs are removed from the VPD as it is physiologically unlikely for a patient to have negative
average flow-rate in any vessel. Of the 65,000 post burn-in VPs, 12,857 are removed due to the presence of negative average
flow-rate, reducing the VPD to 52,143. While low flow-rate is also unlikely in VPs, it is difficult to establish such a threshold
for exclusion based on a minimum value of flow-rate. If such information is available, it can be included through the likelihood
term or a post simulation filter (for example, see filter in Section @]}

For the assessment of convergence diagnostics, the measure of integrated auto-correlation time (IACT)?272% for the param-
eters and the measurements is employed. It is found that most of the parameters and the measurements shown an IACT of less
than 50, comparable to those reported in previous studies utilising 1D flow models2. For the parameter representing the scal-
ing term for the vessel lengths, and for the measurement of diastolic pressure in the ascending aorta, plots of autocorrelation
versus lag length??"778 are shown in Figure [10} For some parameters, even higher IACT (>200) was observed. While this does
not invalidate the VPD, it does imply that the chain efficiency can be improved by either (i) reducing the dimensionality of the
problem further; (i) further tuning individual step-sizes in equation [30} or (iii) by utilising more efficient MCMC samplers;
see, for example, the work by Paun and Husmeier?>. One reason for higher IACTs for some parameters may be the correlation
between the parameters in the posterior. Across the 19,701 pair combinations, a histogram of the correlation coefficients is shown
in Figure[IT] showing that most pairs show low to moderate correlations |r| < 5, with few combinations showing more extreme
correlations. Since the dimensionality is high, even moderate correlations can make the navigation of chain harder because of
the curse of dimensionality™.

7.2 | Posterior vs. literature reported measurements

The joint posterior distribution of the 199 parameters is difficult to visualise. Even if only pairwise slices of the joint distribu-
tion are considered, the number of pairs (19,701) is too high to be shown in this manuscript. To be consistent with the trace-plot
presented in the previous section for the vessel length scaling parameter (6,), its posterior distribution is shown in Figure [12]
(left). The remaining two plots (centre and right) show pairwise slices of the joint distribution of this parameter with two other
parameters—the right arm chain’s scaling factor for the § daughter/parent ratio (6,) and the brachiocephalic trunk’s scaling
factor for f decay (6,). Since the goal of this work is not to make inference about the parameters but to produce a VPD con-
sisting of realistic measurements, the posterior distribution of the measurements within the VPD is important to be considered.
As described in Section[5.1] the posterior distribution is a combination of the prior distribution and the likelihood term within
Bayes’ theorem. Since the chosen prior distributions are weakly informative or uninformative (see Section[5.2)), the distributions
of measurements within the VPD should be close to the literature based measurements incorporated through the likelihood.
These are not necessarily identical though, as the prior distribution corrects the posterior to account for the geometrical and phys-
iological constraints. Furthermore, since the incorporated measurements are taken from several different sources, the posterior
distribution resolves inconsistencies between such measurements, the physics of pulse-wave propagation, and the constraints
imposed by the prior. For example, if the prior distribution corresponds to lower valued outputs compared to the literature mea-
surements, the posterior distribution will underestimate the literature measurements, and vice versa. A comparison of the VPD
pressure and flow-rate distributions to the literature based measurements (see Table [2| and Section are shown in Figure
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Measurement Measurement Source Side @ Measured Measured
location type mean (ug,)  std. (og)
Literature  Both 65 12.84
Diastolic pressure (mmHg) . Right 6791 6.76
Posterior
. Left 67.69 6.29
Radial artery
Literature  Both 123 22.75
Systolic pressure (mmHg) . Right 108.07 15.48
Posterior
Left 114.60 13.66
. . Literature - 65 7.14
Diastolic pressure (mmHg)
. Posterior - 75.52 3.69
Ascending aorta
. Literature - 103 8.24
Systolic pressure (mmHg)
Posterior - 110.70 6.03
Literature  Both 75.58 6.01
Diastolic pressure (mmHg) . Right 74.43 3.72
Posterior
Common carotid Left 74.80 3.75
artery Literature  Both 122.78 12.01
Systolic pressure (mmHg) . Right 11191 6.25
Posterior
Left 111.45 6.19
Literature ~ Both 5.84 2.11
Femoral artery
) Average flow-rate (ml/sec) . Right 1.30 0.77
(left and right) Posterior
Left 1.08 0.81

TABLE 3 The measurement of the discrete pressure and flow-rate taken from literature and the corresponding posterior
distributions. See Table E] for details and sources of the literature measurements.

[[3]and Table[3] A similar comparison for the vessel length scaling term (see Section[5.3.3) is shown in Figure[T2](left). Finally,
the statistics of the time varying inlet flow-rate profiles in the VPD are compared to the GRF (see Section[5.3.2) in Figure[T3]

Generally, a good agreement between the scalar pressure and flow-rate measurements are seen in Figure[I3|and Table 3] given
that the posterior balances measurement inconsistencies, incomplete representation of reality by the model, and inconsistencies
introduced by the geometrical/physiological constraints. This agreement enforces confidence in the overall approach. However,
for the average flow-rates in the left and right femoral arteries, larger than expected differences are observed. This is likely due
to the following reasons:

o A large inconsistency between the femoral flow-rates measurement and the other pressure measurements. Note that they
are taken from different sources and hence not from the same population. Furthermore, there may be an inconsistency
between the cardiac output measurement used for generating the pseudo-measurement for the time varying inlet flow-rate
measurement (see section [5.3.2).

o The presence of more measurements for pressure as opposed to flow-rates. Since the likelihoods for all the measurements
are weighted equally, it may be possible that the chain is influenced weakly by the few flow-rate measurements. Such an
issue can be resolved in future studies by assigning variable weightings to the measurements.

e In the network the femoral arteries are split into the first (I) and second segments (II), shown in Figure [5|by ‘v’ and ‘v’,
respectively. The precise location at which the literature based femoral flow-rate measurement has been taken is unknown.
In this study, it is assumed that this measurement was acquired at the centre of the second segment ‘v’. Since the first
segment ‘u’ bifurcates into ‘v’ and another segment profunda femoris (Figure[3)), the flow-rate in ‘v’ is smaller than that
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in ‘w’. Thus, it is possible that the measured flow-rate was in ‘u’. A comparison of VPD flow-rate in this vessel ‘0’ against
the measurement is presented in Figure[T4] and shows a significantly better agreement.

Figure [T2] (left) shows a good agreement between the vessel length scaling term in the VPD and the literature based mea-
surement. The mean and standard deviation of this term in the VPD are 0.0551 and 0.9819, respectively, which compare well
to those reported in literature with values of 0.0548 and 1.0118, respectively.

Figure[I5]shows a good agreement between the statistics of the time varying inlet flow-rate profile in the VPD and the pseudo-
measurement constructed through the GRF (Section [5.3.2). The mean profile closely follows that of the GRF throughout the
cardiac cycle, with maximum difference of approximately at 10% peak systole. Figure[I5]also shows + one standard profiles for
both the VPD flow-rate and the GRF pseudo-measurement. Throughout the cardiac cycle, the agreement and the trend is well
captured in the VPD, with largest errors of approximately 10% magnitudes at peak systole.

7.3 | Evaluation of individual VPs

Random samples from the VPD are assessed to gain further insights on the VPs and the behaviour of pressure and flow-rate
profiles. Pressure profiles are examined at the ascending aorta; right and left radial arteries; and right and left common carotid
arteries. Flow-rate profiles are examined at the right and left second femoral segments. 15 VPs are randomly drawn from the VPD
(excluding the burn-in), and the pressure and flow-rate profiles associated with each are shown at all examination locations in the
Supplementary Material Appendix D. Five VPs of interest that show peculiar behaviour are extracted from the Supplementary
Material and shown in Figure

Figures in the Supplementary Material Appendix D show that pressure profiles in proximal vessels, i.e. the ascending aorta and
two common iliacs, show more consistency and similarity to the reference profiles compared to the pressure and flow-rate profiles
in distal vessels, i.e. the radial artery pressure and the femoral artery flow-rate. This suggests that the pseudo-measurement of
the time varying inlet flow-rate profile is sufficient to impose sufficient control over the shape of pressure and flow-rate profiles
in the proximal vessels. As the spatial distance from the inlet of the aorta increases, an increases in the variability of pressure and
flow-rate profiles is observed. This is expected as the measurements that guide the posterior are only available at few locations.
Thus, access to more measurements, distributed across the network in both space and time, will result in an even more realistic
database as the likelihood at several such locations will guide the posterior.

Figure [T6] shows a selection of undesirable behaviour in the VPD profiles. In the case of Patient-E, oscillatory behaviour is
seen within all the pressure and flow-rate profiles. This is caused by the shape of the inlet flow-rate profile prescribed for this
patient. While this behaviour is not very common in the database, if needed its occurrence can be further reduced by imposing
stronger correlations between inlet flow-rates at two time points through the parameter » in Equation in the GRF.

Highly oscillatory pressure profiles are observed in the left radial artery, shown in Figure [T6{c), of Patient-A and Patient-
E. In the case of VP Patient-A there is no significant oscillatory behaviour in any other profile, but the pressure waveform in
the right radial artery is featureless with no clear systolic and diastolic points. This apparent over- and under-damping of the
pressure profiles in the radial arteries may suggest an imbalance in the compliances or resistances of the right and left arms. This
hypothesis of left-right imbalance is further supported by Figures [T6(f) and (g) when the femoral flow-rates are observed for
Patient-I: the flow-rate in the right femoral artery shows a high-mean high-oscillation behaviour while in the left femoral artery
it is low-mean with significantly lower oscillations. Similar behaviour is seen within Patient-J and Patient-O. In future studies,
a symmetry metric that balances, while still allowing for some variability, the left and right side parameters for symmetric left
and right side vessels may be implemented. In this study, it is chosen to filter out vessels that show a high left-right imbalance
with an analysis that is described next.

7.4 | Filter for left-right imbalance

The left-right lower extremity imbalance is assessed by reducing the network (see Section [3.3] and Figure 3)) up to the second
bifurcation in the leg vessels, i.e up to the end of vessels labelled ‘u” in Figure [5] To assess the left-right imbalance, the ratio
of femoral pulse (maximum flow-rate minus the minimum flow-rate) on the left and right sides is considered. It is found that
this ratio shows highest correlation against the ratio of reduced network compliances on the left and right sides. A plot of
the femoral pulse ratio against the compliance ratio is shown in Figure The left-right imbalance is apparent in this figure
which shows that the ratio of left-to-right femoral pulses varies from 10~ and 10* across the VPD. To limit this, a filter on the
left-to-right compliance ratio between 0.2-5 is introduced. These limits are shown as vertical lines in Figure|I7|and constrains
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the the femoral ratio between 1072 and 10? across the dataset. With this filter, approximately 45% (23,275 patients) of the
patients are discarded, leaving with 28,868 physiologically realistic patients in the VPD.

This VPD reflects both prior beliefs/constraints and measurements from the population. Thus, it is suitable to study population
characteristics and behaviour. More importantly, disease can be virtually created in these patients and subsequent assessment of
machine learning be made on the database; for example, see our recent work®® which utilises such an approach. The pre-filter
VPD is publicly made available at Zenodo repository [f2L.

8 | CONCLUSIONS

A physiologically realistic virtual patient database is presented for the human arterial network. A methodology to create vir-
tual patients guided by prior beliefs, geometrical/physiological constraints, and literature reported measurements is presented.
Starting from a reference network describing the arterial network, the methodology includes 1) network reduction without
compromising relevant behaviour; ii) re-parameterisation to reduce dimensionality; iii) incorporation of geometrical and phys-
iological constraints in the form of a prior; iv) incorporation of literature reported clinical measurements in the form of the
likelihood; v) combination of the prior and likelihood to generate the posterior; and vi) sampling from the posterior with MCMC
to create the VPD. This generic methodology, given a mathematical description of a biological system, can be adopted to create
virtual patients for any biological system while accounting for all available information.

The key conclusion of this study is that despite computational challenges and dimensional complexity, the Bayesian approach
to creating virtual patients is viable and yields a realistic database of patients consistent with the expected behaviour in terms of
the range of outputs expected in a population. The study also shows that appropriate incorporation of priors and measurements
(distributed both spatially and in time) is necessary for the generation of physiologically realistic virtual patients. In the absence
of these, the virtual patients may be physiologically unrealistic while still statistically reproducing the literature measurements.
In this study this phenomenon was observed as no likelihood or prior term incorporating left-right symmetry was included.
While such issues can be fixed by incorporation of a filter, the end result is wasted effort in the generation of virtual patients
which are subsequently discarded. Nevertheless, the Bayesian approach and the framework presented is an attractive framework
that is capable of incorporating such expectations in the methodology so that such issues are avoided.

A realistic database of 28,868 patients representing human arterial network is presented and made available. This database
is created with a view that it is useful in subsequent studies which exploit the advances in machine learning methods for the
detection of arterial disease. This forms the primary area of future investigation with this database.
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FIGURE 2 The connectivity of the reference arterial network, taken from?. At the inlet (free end) of vessel 1, a volumetric
flow-rate is specified and at all the outlets (free ends of the terminal vessels), a Windkessel model is specified. Locations at

which pressure and flow-rates can be measured; and disease is likely to occur are also highlighted, see Section
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FIGURE 3 The process of incorporating peripheral 1D vessels into the OD terminal boundary Windkessel model parameters=L.
0O, and P, represent the flow-rate and pressure at the proximal end of the vessel that is being removed; O, and P, represent the
flow-rate and pressure at the distal end of the vessel that is being removed; Q; and P; represent the the flow-rate and pressure
at the outlet of the system; R;, R, and C represent the resistances and compliance of the original terminal Windkessel model;
R,, and C,, represent the viscous resistance and compliance of the vessel being removed; R, ., and C,.,, represent the resistance

new

and compliance of the new 2 element Windkessel model after the incorporation of the 1D vessel; and R oy» R ey and Cey,
represent the resistances and compliance of the final 3 element Windkessel model. Details on computation of R, and C, and
then R, and C,.,, can be found in®!. R, ., is assumed to be equal to the characteristic impedance of the connecting vessel
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FIGURE 4 Comparison of pressure or flow-rate profiles at all the measurement locations taken from the full ADAN network
and the reduced network produced by the removal of the first and second splenic segments, left gastric, common hepatic, and

posterior interosseous.
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FIGURE 5 The reduced network and grouping of vessels. The aortic chain is shown in red and consists of: the first to forth aortic
arch segments denoted by ‘a’ through to ‘d’, the first to sixth thoracic aorta segments denoted by ‘e’ through to ‘j’, and the first
to fifth abdominal aorta segments denoted by ‘k’ through to ‘o’. The right and left arm chains are shown in blue and consist of:
the first and second subclavian segments denoted by ‘p’ and ‘q’ respectively, the axillary artery denoted by ‘r’, and the brachial
artery denoted by °s’. The right and left leg chains are shown in purple and consist of: the external iliac denoted by ‘t’, the first
and second femoral segments denoted by ‘u” and ‘v’ respectively, and the first and second popliteal segments denoted by ‘w’
and ‘x’ respectively. Vessels which have variable properties but are not part of a chain are shown in green. Finally, vessels with
constant properties are shown in yellow.
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which the likelihood is evaluated is shown in red circles.



Jones ET AL 27

@3)
| )
b
\
B _p®
/ 0 =6,
o)
3)
9
0 =01 -
B Accept T~ 08; = Bg; -y
Bl Reject

FIGURE 8 An example of an MCMC decision tree across two iterations of a chain. 08))

of the arterial network parameter scaling terms at the i step of the chain. Green branches denote the path of the chain taken if
a candidate is accepted, while red branches show the path of the chain if a candidate is rejected.

represents the j possible set (candidates)

1.15 1

1.10

1.05 4

1.00 -

0.95 A

Scaling term

0.90 -

0.85 -

0.80 -

T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000 80000
Iteration

€

FIGURE 9 MCMC trace plot of the scaling term applied to the length of the arterial vessels at every 100" iteration. In this
case, not net migration of the chain is observed.



28 Jones ET AL

1.0 1.0
0.8 7 0.8
5 0.6 - 2 0.6 1
§ IACT = 41 § IACT = 27
= 0.4 = 0.4 -
< < 0
0.2 7 0.2 -
0.0 1 0.0 -
010° 10* 10% 10® 10* 10° 010° 10' 10% 10® 10* 10°
Lag length Lag length

FIGURE 10 Autocorrelation as a function of lag-length in the MCMC chain for the vessel length scaling parameter (left), and
for the diastolic pressure in the ascending aorta (right). IACT denotes the integrated autocorrelation time/2278,

3.0 A

2.5 1

2.0 A

1.5 1

1.0 1

Probability density

0.5 1

0-0 T T T
—0.5 0.0 0.5
Correlation coefficient ()

FIGURE 11 Histogram of correlation coefficient (r) between the 19,701 pairs of parameters in the posterior.



29

Jones ET AL

=~ ()]
1 1
Oy,

Probability

[\
1

0 T T 1
0.8 1.0 1.2
Vessel length scaling term (6,)

[ MCMC distribution

—— Literature measurement

FIGURE 12 Posterior marginal distribution for the vessel length scaling term, denoted as 6, (left); joint distribution between
6, and the right arm chain’s scaling factor for the f daughter/parent ratio denoted as 8, (mid); and joint distribution between 6,
and the brachiocephalic trunk’s scaling factor for § decay denoted as 6, (right). While 6, and 8, show a largely uniform joint
distribution, 8, and 6, show a potentially multimodal distribution with local peaks at 6, ~ 1.0 and 6, =~ 3.2.



30

Jones ET AL

(a) Diastolic right radial (b) Systolic right radial

z Z

< o]

S 0.00 : — S 0.000 . . .
A 50 100 & 50 100 150 200
= (c) Diastolic left radial > (d) Systolic left radial

2 0.05 A Z 0.025 )‘\\

< <

S 0.00 : — 5 0.000 : . .
A~ 50 100 & 50 100 150 200

(e) Diastolic ascending aorta (f) Systolic ascending aorta

80 100 120

I
o

Probability

(a=)
—

1

Probability

o o
o o
o o

1

=~
[an}
(=)
e}
Qo
(e}

(h) Systolic right comm. carotid

ity

(g) Diastolic right comm. carotid
Nl

0

60 80

Probability
o
o
Probabilit
o o
o O
o Ot
1

75 100 125 150

(i) Diastolic left comm. carotid (j) Systolic left comm. carotid

I
100 12 150
Pressure (mmHg)
(1) Average left femoral II

<
-3
ot

Probability
(an)
s} —
1
Probability
o o
o o
[eniN @]
1 1

60 80
Pressure (mmHg)
(k) Average right femoral 1T

%

Probability

o Ot

0 5 10
Flow-rate (ml/sec)

o e

5 10
Flow-rate (ml/sec)
— Literature measurement [ MCMC distribution

Probability
o o

o

FIGURE 13 Histograms of the MCMC distributions of the pressure and flow-rate measurements at all measurement locations.
The literature based measurements and associated error distribution at each location are overlaid in black (see Table[2). Diastolic
and systolic pressure in the right radial artery shown in (a) and (b) respectively; the diastolic and systolic pressure in the left
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