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Immunofluorescence microscopy is an essential tool for tissue-based research, yet data
reporting is almost always qualitative. Quantification of images, at the per-cell level,
enables “flow cytometry-type” analyses with intact locational data but achieving this is
complex. Gastrointestinal tissue, for example, is highly diverse: from mixed-cell epithe-
lial layers through to discrete lymphoid patches. Moreover, different species (e.g., rat,
mouse, and humans) and tissue preparations (paraffin/frozen) are all commonly stud-
ied. Here, using field-relevant examples, we develop open, user-friendly methodology
that can encompass these variables to provide quantitative tissue microscopy for the
field. Antibody-independent cell labeling approaches, compatible across preparation
types and species, were optimized. Per-cell data were extracted from routine confocal
micrographs, with semantic machine learning employed to tackle densely packed lym-
phoid tissues. Data analysis was achieved by flow cytometry-type analyses alongside
visualization and statistical definition of cell locations, interactions and established
microenvironments. First, quantification of Escherichia coli passage into human small
bowel tissue, following Ussing chamber incubations exemplified objective quantifica-
tion of rare events in the context of lumen-tissue crosstalk. Second, in rat jejenum, pre-
cise histological context revealed distinct populations of intraepithelial lymphocytes
between and directly below enterocytes enabling quantification in context of total epi-
thelial cell numbers. Finally, mouse mononuclear phagocyte—T cell interactions, cell
expression and significant spatial cell congregations were mapped to shed light on
cell-cell communication in lymphoid Peyer’s patch. Accessible, quantitative tissue
microscopy provides a new window-of-insight to diverse questions in gastroenterology.
It can also help combat some of the data reproducibility crisis associated with antibody
technologies and over-reliance on qualitative microscopy.  © 2020 The Authors. Cytometry
Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.

Key terms
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TISSUE microscopy provides powerful insights into biological processes across dif-
fering scales from subcellular to the macroscopic. For example, it enables distinct
structural and substructural tissue regions to be defined as well as cell-cell spatial
relationships to be observed (1-6). Indeed, in situ tissue-based research in gastroen-
terology is generally about scale, with compartment-specific analyses often desirable
due to the specific physiology that occurs region-by-region. For example, crosstalk
between intestinal tissue and the luminal environment, cell differentiation along the
crypt-villus axis and immune cell maps of gut lymphoid tissues are all active
research areas which are, or could be, facilitated by quantitative, in situ mea-
sures (7-11).

In terms of in situ microscopy-based bioclinical research, immunofluorescence
labeling and confocal imaging is the current mainstay, as it permits sensitive,
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quantifiable detection of multiple targets with subcellular
localization (12). Automated imaging has become standard,
while new advances in artificial intelligence promise increased
throughput through restoration of noisy images obtained at
higher scan speeds (13). Yet, despite substantial advances in
hardware and software, the majority of reported tissue
microscopy “data” remains qualitative and exemplified by the
representative image. Typically, for tissue-based research, flow
cytometry delivers the quantitative data and confocal micros-
copy is the visual means by which the spatial relationships
and mechanics of biological processes are then conceptual-
ized. There is, however, a clear advantage in combining these
outputs to deliver quantification of cell types, their contents
and their location, simultaneously. Indeed, the power of data
mining from regular chromogen-based histology exemplifies
such an approach even though the image data are lower reso-
lution and less amenable to multilabel, per-cell quantifica-
tion (4,5,12).

In fact, quantitative methodologies for the analysis of
confocal microscope-derived tissue images have existed for at
least 15 years (1) and yet there remains a huge disconnect
between what is possible and what has translated through to
the biomedical community for everyday usage. Reasons for
this have not been formally established, but interdisciplinary
capability is a chief suspect (14). Currently, joined-up
approaches to deal with everything from optimal biological
experimentation, through sample preparation and imaging, to
the programming skills generally required for successful
image analysis seldom reside under one roof within the bio-
medical community. There are also a number of philosophies
as to what constitutes quantitative immunofluorescence
microscopy, ranging from basic summation of fluorescence
data across a given area, through integration within approxi-
mated cell-objects, to accurate per-cell identification and
quantification (termed “cell segmentation”) (1,2,15). The lat-
ter has marked advantage as, within the limits of a micro-
scope’s resolution, it permits per-cell quantification of
information in a manner amenable to familiar, flow
cytometry-type gated analyses (1-3,16,17). It also allows dis-
tances to be established accurately, meaning that not only can
cells be counted, but their content and spatial relationship to
other cells or histological features can also be quantified (6).

Despite these advantages, accurate cell segmentation in
tissues is complex, surprisingly sample-specific and time con-
suming for the nonexpert (1,18). Much work to date has
grown out of approaches established for cultured cells (19) as
sample homogeneity facilitates image analysis. Generally,
however, tissues are not at all homogenous. In the intestine,
for example, a multicell epithelial layer with diffuse lymphoid
tissue beneath (the lamina propria) may be juxtaposed to a
dense B-cell dominant follicle with a different overlying epi-
thelial layer (e.g., the Peyer’s patch). For these reasons, accu-
rate, quantitative, cell-based image analysis, compatible with
such varying structure and delivered in a manner that is
accessible to bioclinical scientists has not yet been developed
in gastroenterology.
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Here, we demonstrate pragmatic methodology to enable
per-cell immunofluorescence quantification from confocal
microscopy-derived images of diverse gastrointestinal tissues,
and we exemplify the approach with analyses of general inter-
est to the field. We show how image-based cell profiling can
take gastrointestinal tissue microscopy beyond representative
images with quantification of (a) common or rare cellular
events alongside; (b) their cell content; and (c) location,
coupled with visualization and statistical definition of cell-cell
interactions and tissue microenvironments. Importantly, we
use open-source, user-friendly software platforms to carry out
the work, and to construct quantitative pipelines, which simi-
larly we provide here in open-access formats.

MATERIALS AND METHODS

Animal Tissue Collection

Mouse (9-12 week-old) and rat (13 week old) tissues were
collected from surplus healthy animals sacrificed for hus-
bandry purposes by CO, asphyxiation and cervical disloca-
tion. Ileal draining mesenteric lymph nodes were removed
alongside jejunal/ileal intestinal samples (the latter containing
Peyer’s patches) in ~2 cm lengths. Upon excision, tissue sam-
ples were immediately plunge frozen into isopentane preco-
oled on melting dry ice, transferred to labeled cryovials, and
stored in liquid nitrogen until use. Tissue samples for paraffin
embedding were fixed in neutral buffered formalin (>4 h),
before transfer to tissue cassette, and automatic processing by
standard hospital protocol (dehydration by ethanol series,
three changes of 100% xylene (at 30°C), then three changes
of paraffin wax (at 62°C).

Human Tissue Collection and Ethics

Following informed consent and with approval from the
Regional Ethical Review Board, Linkoping, Sweden, speci-
mens from the neo-terminal ileum next to the ileo-caecal
valve were collected during surgery from one inflammatory
bowel disease (IBD) patient with Crohn’s disease (49 years,
female) and one patient with colonic cancer (68 years,
female), as a noninflammatory bowel disease (non-IBD) con-
trol. The Crohn’s disease patient had no anti-inflammatory
medication and indication of surgery was ileitis. The tissue
was macroscopically noninflamed. The tissue from the colon
cancer patient was free from cancer; the patient had no gener-
alized disease and had not received preoperative chemo- or
radiotherapy. Studies using human tissue were also approved
by the UK NHS Health Research Authority, North West—
Greater Manchester East Research Ethics Committee, REC
reference 18/N'W/0690.

Ussing Chamber Experiments

Human ex vivo tissue ileal samples were transported directly
from the operating theater to the laboratory in Krebs buffer.
Three tissue segments per individual were mounted in modi-
fied Ussing chambers (Harvard Apparatus) as previously
described (20). Transepithelial resistance and potential differ-
ence was used to assess tissue viability. Crohn’s disease
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associated adherent invasive Escherichia (E.) coli strain LF82
were transformed with a plasmid (pEGFP, BD Biosciences)
for expression of enhance green fluorescence protein (EGFP)
as described previously (21). Live LF82 were then added to
the mucosal side of the tissues at a final concentration of
1 x 10® CFU/ml. After 20 min, tissues were fixed in chambers
with 4% PBS-buffered paraformaldehyde for 12 h at 4°C. The
tissue samples were then immersed in 30% sucrose until
embedded in optimal cutting temperature compound (OCT)
for cryostat sectioning according to the protocol outlined
below.

Tissue Labeling and General Immunofluorescence
Protocol

For cryostat sectioning, frozen tissue samples were trans-
ported on ice and transferred into the cryostat chamber (—
20°C) to acclimatize for 30 min. Samples were trimmed
with a safety razor and transferred to molds containing pre-
chilled OCT (VWR, 00411243). Sections were cut at 12 pm
thickness, picked up on superfrost plus coated slides
(ThermoFisher, JI800AMNT) and rested at room tempera-
ture for at least 2 h prior to immunofluorescence labeling.
Formalin fixed paraffin embedded (FFPE) sections were cut
at 5 pm thickness, then fully dewaxed and rehydrated by
baking at 60°C for 1 h, changing twice through xylene, a
reverse ethanol series (100%, 70%, 50%, 10%), followed by
1 min in water. All sections were then ringed with hydro-
phobic barrier pen (Vector Laboratories, H-4000) and
unfixed cryostat sections were additionally fixed in 4%
0.1 M phosphate buffered (pH 7.4) paraformaldehyde for
10 min. All sections were transferred to block buffer (10%
goat serum (ThermoFisher, 16210064), 2% bovine serum
albumin (Biosera, PM-T1726) diluted in 25 mM Tris-
buffered (pH 7.4) saline (TBS) containing 25 mM glycine)
for at least 1 h. The block buffer was removed, and 100 pl
of the necessary primary antibodies in block buffer were
added to each section (concentrations and manufacturer’s
codes specified, Table S1). Sections were incubated for 1 h
at room temperature under gentle agitation on a rocking
platform. Each section was then washed thoroughly with
three, 100 pl changes of TBS. Nuclei were counterstained
using a 1:2,500 dilution of Hoechst 33342 (ThermoFisher,
H3570) in TBS. Sections were washed once with 100 pl
TBS, prior to addition of the secondary antibodies (concen-
trations, manufacturer’s codes and conjugated fluorophores
shown in Table S1). In with the secondary antibodies,
phalloidin-AlexaFluor 647 (ThermoFisher, A22287) was
included at ~660 nM to label cell membranes in frozen sec-
tions, or, 20 pg/ml wheat-germ agglutinin (WGA)-
AlexaFluor 647 (ThermoFisher, W32466) was used to label
membranes in the FFPE sections. Secondary antibody and
cell outlines stains were incubated with the tissue sections
for 1 h on a rocking platform. Each section was then
washed with three changes of TBS prior drying carefully
around each section with absorbent paper and mounting
with #1.5 coverslips in Prolong Diamond mountant
(ThermoFisher, P36965).
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General Microscopy

2D images (typically 2,048 X 2,048 pixels per tile) were col-
lected using sequential scanning on a Leica SP8 confocal
microscope equipped with 405, 488, 562, and 633 nm lasers
using plan-apochromat 63X/1.4 or 40X/1.3 oil immersion
objectives. Tilescans were collected with 10% edge overlap
using focus mapping to maximize throughput.

Immunofluorescence Controls

For each study, image data were obtained in a single run
under identical settings, with supporting secondary-only,
isotype and leave-one-out antibody controls included in
tissue-matched serial sections to assess background fluores-
cence, nonspecific binding and spectral crosstalk, respectively.
For the Ussing’s chamber work involving E. coli exposures to
ex-vivo human tissues, a Dbiological negative control
(i.e., images for tissue exposed to Krebs buffer alone without
E. coli) was also included.

Tilescan Processing Code

Tilescans were stitched together using the “Mosaic Merge”
function in the Leica LASX software. The registered images
were then cut up into ~4,000 X 4,000 pixel tiles with edge
overlaps for processing with the open source and freely avail-
able CellProfiler (15) (www.CellProfiler.org) software using a
custom function called “TilescanToCellProfiler.” This func-
tion structures the image data for input, and also stores user
choices in a side-car information file for subsequent auto-
mated reassembly. After extracting per-cell data using Cel-
IProfiler, a second function called “CellProfilerToTilescan”
was written to reassemble the data. This reassembles the seg-
mented cell masks (22) while removing “double-hits” on
overlap edges. It also extracts and spatially reassembles all of
the cell feature data, while assigning a unique, master cell
identity number and the correct global cell position coordi-
nates for every cell. These functions are provided for
MATLAB and Python alongside example data and full
instructions (screen-cast videos) at the BioStudies database
(http://www.ebi.ac.uk/biostudies) under accession number S-
BSST305.

Single-Cell Segmentation and Immunofluorescence
Quantification

Cell segmentation results were obtained using CellProfiler and
Hastik (23) (www.ilastik.org) softwares. Example image data
and analysis pipelines (built using CellProfiler version 3.1.9
and Ilastik 1.3.3) and accompanied by screen-cast video
walkthroughs are available for download at the BioStudies
database (http://www.ebi.ac.uk/biostudies) under accession
number S-BSST305. Details of the section-type, species and
tissue-type, objective lens and numerical aperture, image pixel
density and the cell segmentation strategy used in every analy-
sis are summarized in Table S2. In brief, villus mucosal tissues
were segmented using a marker-controlled watershed
approach, wherein nuclei were defined as primary objects
before the actin (cryostat sections) or WGA (FFPE sections)
delineated cell outlines were classified into cell-objects using a
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“IdentifySecondaryObjects” module. As lymphoid tissues seg-
mented poorly using this watershed approach, these images
(i.e., Peyer’s patches, mesenteric lymph nodes [MLNs]) were
first classified into “cell outline,” “intracellular environment” or
“other/background” probability maps using pixel classification
machine learning in the Ilastik software (feature selection
shown, Fig. S1, method exemplified, Fig. S2). The resultant
probability maps of each cell were then segmented to yield
cell-objects via an “IdentifyPrimaryObjects” module in Cel-
IProfiler. Immunofluorescence channels were preprocessed by
two-class Otsu thresholding with a manual lower threshold set
(independently for each analysis) at the level required to
remove > ~ 95% of fluorescence in tissue-matched, secondary
antibody-only control images. Fluorescence intensity values per
cell, alongside per-cell size and shape features were then mea-
sured for all channels by integration in each cell-object using
the “MeasureObjectSizeShape” and “MeasureObjectIntensity”
modules in CellProfiler. In the same way, integration of
thresholded images outputted as binaries was used to measure
the fluorescence area per-cell. Cell features were written to both
text files (i.e., accessible via Excel spreadsheet), and MATLAB
objects for subsequent analysis.

Scoring Segmentation Accuracies

The pixel overlap agreement between manually and automati-
cally segmented cell-objects was scored using the widely used
intersection over union metric (Jaccard index) (24,25).

_|PNG|_ |PNG]

P,G)= =
.6 = 150G " B+ 6= [PAG]

(1)

where P and G are two sets containing pixel positions for the
prediction (P) and ground truth (G), respectively. A score of
0 represents no overlap (ie., false negative) whereas 1 is a
perfect, per-pixel overlap. With this approach, it is acknowl-
edged that a value of ~0.7 is a good segmentation result, and
values of ~0.9 lie close to human annotation accuracy (26).
This benchmarking was carried out without first removing
mis-segmented cells.

Single Cell Data: Preprocessing

To remove mis-segmented cells, plots of each cell-object’s
integrated nuclei and cell outline (i.e., actin or WGA) scores
were plotted according to data density using “dscatter” (27).
A cell population for analysis was then gated manually from
these scatterplots using the inbuilt MATLAB function
“inpolygon” to trace the contour surrounding the main cell
population. This selection was then held the same when
processing all image-sets associated with an experiment
(i.e., experimental data and tissue matched controls).

Intraepithelial Lymphocytes: Image Analysis

Pixel classification machine learning in the Ilastik software
was used to project masks for the epithelium, lamina propria
and lumen “tissue compartments” directly from the actin
channel. In MATLAB, the epithelial mask was refined by fill-
ing isolated interior pixels using the inbuilt function
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“bwmorph,” prior to performing an erosion followed by a
dilation using disk structuring elements (5 and 10 pixels,
respectively) to bridge gaps. To find the different intra-
epithelial lymphocyte (IEL) subclasses, the resulting epithelial
mask was skeletonized using “bwskel,” with spurs less than
500 pixels removed. Expanding the skeleton using “imdilate”
with a disk-structuring element of 32 pixels then created a
central path mask through each “loop” of epithelium. The
IEL subclassifications IEL*"® and IEL™ were subsequently
defined as CD3" cells with centroids either inside the epithe-
lial region, or inside this central path mask, respectively. The
width of the central path was defined manually, by visually
checking that TEL™ events were consistently caught within
the mask, while IEL*" events were excluded outside.

Statistical Analyses

Nonparametric differences between data from different
groups were analyzed by Wilcoxon Rank Sum test. Statisti-
cally significant congregations of cells (i.e., indicative of cellu-
lar zonation) were identified relative to what would be
expected by random chance given the frequencies of different
cell types present using the Getis-Ord GI* statistical approach
(28). This measures the spatial concentration of values x;
associated with j values within a distance d of the value x;.
The ratio Gi* is defined as:

6 (@)= =L @
j=1

where w;i(d) defines the contribution to the numerator of the
ratio depending on the distance d, for example using, that is,
wi(d) = 1if dij < d else; w(d) = 0 if d;; > d. The Getis-Ord
statistic is then given by:

(G (d) —E(G/"(d))]

Z[Gix (@)= var Gi* (d)

(3)

where E(G;(d)) represents the expected fraction of items
within d, assuming a completely random distribution calcu-
lated as:

E(Gi*(d)) = 1 ——

p— (4)

The value Z[G;(d)] now describes the difference in the
fraction of values within the distance d from location i from
the random expected value relative to the standard deviation.
In our example, we discretize the field of view into a grid and
value x; is defined as the number of cells of a certain pheno-
type in the grid position i.

RESULTS

With a specific focus on intestinal tissues, this works aims to
develop and demonstrate open, user-friendly methodologies
that enable per-cell immunofluorescence quantification in situ
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using routine, confocal microscopy-derived images. Here, we
focus on analysis of 2D images, as qualitative display in this
format is the current standard in the bioclinical sciences.

Labeling Gastrointestinal Tissues for Cell
Segmentation

First, we sought simple fluorescence labeling strategies com-
patible across species (i.e., antibody independent) for the pur-
pose of delineating individual nuclei and cell outlines for
subsequent cell segmentation. For both human and murine
ileal sections, cut from either regular paraffin-embedded
(i.e., FFPE) or snap-frozen and OCT embedded tissues, the
fluorescent nuclear dye, Hoechst 33342, provided a straight-
forward, reliable means to label cell nuclei (Fig. 1A-L). Differ-
ent strategies were required, however, to clearly delineate cell
outlines in the two different section-types. Frozen sections
exhibited artifacts when cell membranes were directly labeled
using phospholipid labeling with wheat germ agglutinin
(WGA) conjugates. This was especially notable at goblet cell
sites, and is likely explained by nonspecific binding to mucins
(Fig. S3). To avoid this, actin cytoskeletal staining via fluores-
cent phalloidin conjugates was used, and provided good
demarcation of cell outlines (Fig. 1A-D). In contrast, for
FFPE sections the situation was reversed. The cell actin fila-
ments labeled by phalloidin conjugates were destroyed by
alcohol exposure during the formalin fixation process and
thus could not be labeled for cell outline determination
(Fig. S3). However, in FFPE sections, direct cell membrane
labeling with WGA was a successful strategy (Fig. 1E-H)
probably because mucins were cleared when exposed to the
solvents during processing.

Cell Segmentation Strategies Using Open Source
Tools

With approaches for per-cell labeling established, we next
considered cell segmentation strategies. Once again, dual
strategies were necessary but, this time, dependent upon tis-
sue region rather than tissue processing. For villus regions
where cells are not tightly packed but cell types vary greatly
in shape, and cell outlines are not always clear, a routine
seeded watershed approach, readily deployed in CellProfiler
appeared best. With this, the nucleus of each cell is first seg-
mented and then used as an anchor point from which to
define each cell’s outline (Fig. 1A-D). In densely packed, pure
lymphoid tissue (e.g., MLN or Peyer’s patch), however, there
were difficulties in accurately resolving individual nuclei and
the resulting watershed approach performed poorly (Fig. S4).
To resolve this, pixel classification machine learning in the
Tlastik software was used to convert these images into proba-
bility maps of “cell outlines,” “intracellular environments” or
“background/other” (shown, Fig. S2). The intracellular
probability map was then directly segmented into cell objects
in CellProfiler using a IdentifyPrimaryObjects module
(Fig. 1E-L). Of note, this latter approach (a) only required
cell outline information (i.e., actin or WGA) for effective seg-
mentation, freeing up the nuclear channel for other targets,
and (b) was compatible with lower-resolution input images
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(e.g., Fig. 1I-L), as results depend not upon contrast bound-
aries in the source image but upon derived probability maps.
Thus, in conjunction with the antibody independent, tissue
labeling strategies outlined above, these strategies permit cell
segmentation across diverse intestinal tissues and are readily
transferable between species and section-types (e.g., mouse,
rat, human; villus mucosa, Peyer’s patch, MLN; frozen and
paraffin embedded are demonstrated, Fig. 1). For all analyses,
histological information alongside imaging specifics and the
cell segmentation strategy used are summarized in Table S2.

Accuracy of Cell Segmentation

The automated cell segmentations presented in Figure 1,
which are derived across varying species and tissue prepara-
tions, were benchmarked—cell-by-cell—against hand-drawn
manual segmentations using the commonly employed inter-
section over union approach (Jaccard index) (24-26) (>1,000
cells scored; Fig. S5). This benchmarking was carried out
without first removing mis-segmented cells. Median scores in
terms of pixel overlap were consistently between 0.80 and
0.83, with scores of ~0.9 recognized as the maximum realisti-
cally feasible with this approach due to the inherent accuracy
limits of the manual segmentation itself (i.e., due to line
thickness, outline smoothing, etc.), and 0.8-0.9 considered
strong agreement (26) (exemplified, Fig. S5).

Open Source Image Analysis

The source images and the complete CellProfiler/Ilastik image
analysis pipelines, which are necessary to enable the segmen-
tation strategies shown in Figure 1, are provided at the
BioStudies database (http://www.ebi.ac.uk/biostudies) under
accession number S-BSST305. Both the CellProfiler and
Ilastik softwares are freely available, and no programming is
required for implementation of the image analysis routines
described. Results, for example, per-cell shape and immuno-
fluorescence quantifications can be outputted as text files eas-
ily openable as Excel sheets, or saved as MATLAB or HDF5
objects.

Immunofluorescence Quantification and Exclusion of
Debris

Following cell segmentation, per-cell immunofluorescence
quantification was implemented by CellProfiler pipeline using
Otsu thresholding and the “MeasureObjectIntensity” and
“MeasureObjectSizeShape” modules—as described in the
Methods. Here, we subsequently chose to process the output-
ted tables of per-cell measurements using MATLAB. One
aspect in tissues that required a different approach from
in vitro cells was the determination of mis-segmented cell-
objects that should be discarded prior to analysis (ie., the
debris equivalent of flow cytometry). For cultured cells, a rec-
ommended approach involves discarding objects that lie out-
side of the 5% or 95% percentiles by size (19). In tissue,
however, this approach is less effective due to the diversity of
cross sectional cell shapes and sizes including the occurrence
of infrequent cell types of irregular size. Instead, simple den-
sity plots (e.g., insets, Fig. 1B,F]J) of each cell-object’s

Image-Based Cell Profiling in Gastroenterology
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Fig 1. Open-source cell segmentation strategies for diverse intestinal tissues. (A-D) mouse villus mucosa frozen section. Here, we used a
simple, marker-controlled watershed approach that first defines the nucleus (gold, Hoechst 33342) of each cell, and then uses this as an
anchor point from which to find each cell’s actin-delineated boundary (gray, actin-AF633). (E-H) human Peyer’s patch lymphoid tissue;
formalin fixed paraffin embedded (FFPE) section. Exposure to alcohol during the FFPE process destroys the actin microfilaments (see
Fig. S3) so, instead, cell membranes were labeled using wheat germ agglutinin (WGA-AF633, blue). The marker-controlled watershed
algorithm performed poorly in such densely packed tissue types (shown, Fig. S4), and so machine learning via the llastik software was
instead used to produce probability maps of the cell outlines to enable segmentation (training shown in E, inset/process fully described,
Fig. S2). (I-L) rat mesenteric lymph node frozen section. Despite lower magnification and image resolution, the same machine learning
based, llastik-CellProfiler process enables accurate cell segmentation. B, F, and J—insets, density plotting each cell’'s nuclear and cell
outline fluorescence provides a straightforward approach to “gate out” incorrectly segmented cell objects with abnormally high
(e.g., doublets) or low (e.g., debris) signals. Example discarded events that lie outside of the indicated “single-cell population” are
indicated with gray squares on the tissue images. For all examples, segmentation accuracy scores are provided in Figure S5. Scale
bars = 20 um. [Color figure can be viewed at wileyonlinelibrary.com]
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integrated nuclear and cell outline fluorescence (i.e., WGA or
actin) provided a route to gate out poorly segmented cells.
Events that fell outside of the main population due to abnor-
mally high (e.g., doublets) or low (e.g., true debris) signals
were excluded (discarded events exemplified, Fig. 1—gray
squares). A further advantage of this approach is that cells
just partially clipped by the optical section tend to get
removed, providing more consistent sampling of cells’ cross-
sectional immunofluorescence data.

Rare Events: E. coli Passage into lleal Tissue

To demonstrate how image-based cell profiling can tackle
rare event analysis of intestinal tissue, the passage of GFP-
labeled E. coli strain LF82 into human ileum was considered
(Fig. 2). Three tissue samples taken from one non-IBD
patient with colon cancer, and one IBD patient with macro-
scopically noninflamed Crohn’s disease, were investigated. A
fourth tissue sample from the Crohn’s patient was exposed to
Krebs buffer alone (i.e., without E. coli) as a biological nega-
tive immunofluorescence control (Fig. 2A-C).

Images were collected from villus tissue regions across
~6-8 tissue sections taken at random intervals throughout
each biopsy. This approach enabled rapid sampling from
across the full dimensions of each tissue sample. As expected,
no punctate spots of anti-GFP fluorescence were observed in
the tissue biopsies exposed to Krebs buffer only (Fig. 2A). In
each of the three cancer control non-IBD tissue biopsies, the
few E. coli that were observed were bound to the apical side
of the epithelium (indicated, Fig. 2B). Contrastingly, in all
three tissue biopsies from the patient with Crohn’s disease,
transmucosal E. coli were identified within both the epithelial
layer and lamina propria (Fig. 2C).

The aim of this work, however, was to move beyond
careful qualitative observation—as described above—to objec-
tive quantification. To this end, the watershed approach
developed for mucosal tissue rapidly allowed per-cell assess-
ment of ~5,000 cells per tissue sample. The background fluo-
rescence distribution was then established on the tissue
sample exposed to Krebs buffer alone by plotting a cell-
number normalized histogram of the signal in the anti-GFP
channel (total cells analyzed = 5,475). When this step was
repeated for the non-IBD tissue samples that had been
exposed to E. coli, virtually no signal—above the established
background—was observed (Fig. 2D, 14,671 cells analyzed).
This demonstrated that the E. coli were not readily able to
achieve transmucosal passage within the exposure timeframe
in the non-IBD tissues. In contrast, when this was repeated in
the Crohn’s disease tissue samples, a positive increase in the
per-cell fluorescence distribution was observed (Fig. 2D,
15,226 cells analyzed). Comparison of this increase relative to
the non-IBD group showed significance at the P < 0.001 level
(Wilcoxon rank sum, Fig. 2E).

Oftentimes it is convenient to call a cell as simply “posi-
tive” or “negative”—in this case meaning cells with anti-GFP
fluorescence indicative of 21 E. coli event or none. As with
flow cytometry, gating is required to determine this cut off
and, again as for flow cytometry, there is a degree of
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subjectivity relating to the stringency of specificity versus sen-
sitivity. Here, when a gate was applied above the defined
background fluorescence (indicated in Fig. 2D), then the
number of anti-GFP positive cells in the Crohn’s disease tis-
sue was just 282 or 1.85%. The data therefore demonstrate
how the image-based cell profiling approach can quantify rare
events objectively, substantiating the representative images
shown.

Processing Large Unbroken Image-Fields: Working
with Tilescans

Working with sets of individual images, obtained randomly
across multiple tissue sections, as above, is one approach in
image-based cell profiling. However, under other circum-
stances it may be desirable to work with high resolution,
unbroken fields (i.e., tilescans) in which per-cell immunofluo-
rescence analyses can be augmented by histological context
(tissue mapping). CellProfiler does not currently possess dedi-
cated modules for processing tilescans, and it is often not pos-
sible to directly process input images much larger than
~4,000 X 4,000 pixels due to memory limitations on the local
machine. For this reason, here we developed two software
functions specifically aimed at processing immunofluores-
cence  tilescans. = The  first, ~ which  we  «call
“TilescanToCellProfiler,” takes stitched tilescans directly in
most proprietary microscopy formats and cuts them into a
series of user-defined, manageably-sized tiles for CellProfiler
input. After processing, a
“CellProfilerToTilescan” seamlessly reassembles the cell seg-
mentation and spatial positions of the extracted, per-cell data.
These functions can be deployed with a single line of code in
the programming environments MATLAB or Python. Exam-
ple images, code and full instructions (screen-cast videos) for
the nonexpert are provided at the BioStudies database (http://
www.ebi.ac.uk/biostudies) under accession number S-
BSST305.

second function called

Machine-Learning Tissue Compartments: The
Intestinal Epithelium

The highly convoluted shape of the gastrointestinal mucosa
makes accurate, region-of-interest selections for different tis-
sue “compartments” (e.g., epithelium, lamina propria, etc.)
complicated and time consuming to perform. At the same
time, compartment-specific analyses are often desirable due
to the specific physiology that occurs region-by-region. To
demonstrate the automation of compartment-specific gastro-
intestinal analysis, we set out to profile intraepithelial T lym-
phocytes in longitudinal frozen sections of rat jejunum—just
using a single CD marker and the histological context
afforded by in situ microscopy. To accurately identify the epi-
thelium, one of a pair of serial frozen sections was immuno-
labeled for epithelial cell adhesion molecule (EPCAM)—
alongside nuclei and actin. This precisely pinpointed the loca-
tion of the epithelial region between the basement membrane
and the apical enterocyte surface (29-31) (Fig. 3A). Using this
EPCAM labeling as a guide to inform pixel annotation, we
then trained an Ilastik machine learning model to mask the
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Fig 2. Conquering the representative image: E. coli passage into human control or IBD ileal mucosa. (A-C) Mucosal tissue samples from the
distal ileum of either a non-IBD cancer control patient (B) or an IBD patient (Crohn’s disease) (A and C) were maintained ex vivo in Ussing
chambers. The apical sides of the living tissues were exposed to either Krebs buffer (A) or GFP- expressing, adherent invasive E. coli strain
LF82 (B and C) for 20 min. Images of the mucosa were then collected randomly across 6-8 frozen sections per tissue sample prior to per-cell
analysis for anti-GFP fluorescence to identify LF82. (D and E) Instead of relying on representative images, the image-based cell profiling
approach allowed quantification and display of all of the collected data (>35,000 cells analyzed in total). (D) Concordance between the tissue
samples taken per patient was observed (filled circles). While the fluorescence distributions (lines represent averages) from the non-IBD cancer
control samples directly overlaid the Krebs buffer negative control (dashed line) suggesting no transmucosal uptake, the samples from the IBD
patient all showed elevated fluorescence. (E) Comparison between non-IBD and IBD groups for gated cells (indicated, D) with anti-GFP values
greater than present in Krebs buffer control. (***) indicates statistical significance at P < 0.001 (Wilcoxon rank sum). Scale bars: A-C = 10 um.
[Color figure can be viewed at wileyonlinelibrary.com]

epithelium, as well as the lumen and lamina propria tissue (process exemplified stepwise, Fig. S6). Of note, we also found
compartments, directly from the actin channel itself. In this that the same approach worked with WGA labeling in FFPE
way, the EPCAM labeling was no long required (Fig. 3B) sections (demonstrated, Fig. S6E).
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Utilizing Locational and Cellular Information: Profiling
Intraepithelial Lymphocytes

Next, we set out to utilize both tissue compartment and per-
cell image-data to profile intraepithelial T lymphocytes in the
jejunal mucosa. In the second serial section, a 112-tile tilescan
containing a wide region of villous mucosa was collected with
anti-CD3 labeling to identify T cells. As both the EPCAM
and CD3 antibodies were raised in the same host, instead of
dual-labeling, the tissue compartment model was deployed in
the mucosa to provide a mask for the epithelium (Fig. 3C).

To understand and quantify background fluorescence, as
well as the nonspecific binding capacity of the CD3 antibody
in the rat jejunal tissue, set of 10 image-fields for either the
secondary antibody alone (i.e., 2° only control), or the sec-
ondary plus an irrelevant primary antibody of the same
isotype (i.e., an isotype control) were collected for the CD3
channel in adjacent, serial sections. Per-cell immunofluores-
cence data was then extracted from the CD3 tilescan (~60,000
cells) and control image-sets (~ 6,000 cells) using the water-
shed cell segmentation pipeline optimized for mucosal tissue
(above). A CD3" cell population was then formed by gating
cells with per-cell fluorescence values greater than those
observed in the 2°-only and isotype controls (i.e., as is typical
in flow cytometry) (Fig. 3D). Cell centroid markers were dis-
played on each gated cell, to help pinpoint CD3* T lympho-
cytes both visually and for subsequent locational
categorization. Interfacing this gated cell population with the
epithelial mask allowed further division of the CD3" cell pop-
ulation into intraepithelial lymphocyte (IEL) and lamina
propria T cell subpopulations by identification of cells with
centroids inside or outside of the mask (Fig. 3D). Upon close
study of the defined IEL CD3" cells in context of the masked
epithelium, it was clear that this cell population existed in
two distinct forms. IEL events were either observed in close
association with the basal aspect of enterocytes (hereafter ter-
med “IEL™), or, were truly between individual enterocytes
(hereafter termed “TEL™*™). To split the IELs into these two
classes, the epithelial mask was subjected to a morphological
process called skeletonization. This reduced the epithelial
mask to yield a central path through each “loop” of villus epi-
thelium (process exemplified, Fig. S6). Inclusion within this
submask allowed the central, IEL™" population to be sepa-
rated out, leaving behind the IEL™"® cells (Fig. 4A-E).

In this way, harnessing per-cell fluorescence data in
combination with the precise histological context provided by
the high-resolution tilescan allowed the identified CD3" cells
to be subdivided into three distinct subpopulations
(ie., lamina propria CD3" (LP°P**), IEL™™ and IEL™).
This, alongside the segmentation of all cells, whether immu-
nolabeled or not, provided data well suited to automated cell
counting in the context of a tissue map. Hence, we measured
the areas occupied by the different designated
compartments—alongside their cell counts—in total, per
100 cells, and as ratios between the different tissue compart-
ments (Fig. 4F-I). Interestingly, while not so apparent visu-
ally, the epithelium occupied a greater area (Fig. 4F) and
contained more total cells (Fig. 4G,I) than the underlying
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lamina propria. CD3" cells were also determined more abun-
dant per-cell in the lamina propria than in the epithelium
(Fig. 4I). Meanwhile, whereas IELs were quite common, the
IEL™*" subclass were rare events (~4 per 100 epithelial cells).
This was especially true when compared to the IEL™™ class, at
~13 per 100 epithelial cells (Fig. 4H,I).

Cell Interactions and Expression: Mapping in the
Peyer’s Patch

Access to per-cell immunofluorescence data collected in situ
provides the opportunity to consider both cell expression and
physical cellular interactions via nearest-cell neighbor ana-
lyses. Lymphoid tissues represent one such environment in
which interaction and expression data are of key importance.
Here we considered CD11c" mononuclear phagocyte—CD3"
T cell expression and interactions in a transverse section of
mouse Peyer’s patch (24-tile tilescan, ~16,000 cells) (Fig. 5).
A basic overview of the structure and cellular zonation of the
murine Peyer’s patch is provided in Figure S7.

Image-data were collected for six channels: fluorescence
data were collected for nuclei, actin, CD11c¢ (for mononuclear
phagocytes; i.e., antigen presenting cells) and CD3 as a pan
T-lymphocyte marker. Alongside, transmitted and reflected
light were also collected to inform on overall histology and
section quality (Fig. 5A). As before, data for the respective 2°-
only and isotype controls were also collected alongside in
tissue-matched serial sections. As per-cell immunofluores-
cence quantification was to be carried out on two of the chan-
nels (ie., CD3 and CDl11c), leave-one-out control image-sets
were also taken to check for any fluorescence crosstalk
between channels. This involved labeling additional serial sec-
tions with either CD11c or CD3, yet collecting the respective
fluorescence data for both channels. In this way, any crosstalk
into the “empty” channel could be detected in the resultant
per-cell fluorescence distributions.

Using the Ilastik/CellProfiler machine learning cell seg-
mentation pipeline, alongside the software reassembly
(tilescan) functions described above, the lymphoid tissue was
segmented seamlessly across the entire Peyer’s patch
(Fig. 5B). A region-of-interest (ROI) was then set around the
lymphoid tissue, and just the CD11c and CD3 immunofluo-
rescence data were shown on top of the segmented-cell out-
lines inside the ROIL Outside of the ROI, just the actin
staining was displayed, to provide histological context
(Fig. 5C,D). This visualization approach was found to dra-
matically reduce the visual complexity of the six-channel
image, permitting display of most important information in a
per-cell and visually intuitive manner—across the scale of the
entire lymphoid follicle.

To build CD3" and CD11c" cell populations, after debris
removal (discussed above), gating was first used to select cells
with fluorescence values above those observed in the 2°-only
and “leave-one-out” controls. The fluorescence distributions
of the isotype controls were also used to inform gating. Here,
while we gated above values high enough to remove >~99%
of cells from the isotype distributions, gating at the maximum
was avoided for fear of building highly specific, yet poorly

Image-Based Cell Profiling in Gastroenterology
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Fig 3. Identifying intraepithelial T lymphocytes in large tilescans using a single CD marker. Rat jejunal longitudinal tissue section. (A) First,
anti-epithelial cell adhesion molecule (EPCAM) immunofluorescence labeling was used to delineate the epithelium (i.e., cells lying
between the basement membrane and the apical enterocyte surface). (B) As the anti-EPCAM antibody was raised in the same host
species as the desired lymphocyte marker, the epithelium, lamina propria and lumen “compartments” were directly-detected from the
actin channel using pixel-classification machine learning in llastik (process outlined in Fig. S6). (C) A 112-tile confocal tilescan labeled for
nuclei, actin and anti-CD3 was collected. Each individual field was segmented into individual cells, and a software function was developed
to spatially reassemble the images, segmentation masks and cell positions (> 60,000 cells). (D) A region-of-interest (ROIl) was placed
around the tissue region containing optimally cross-sectioned villi, and the llastik model was used to predict and mask the epithelium
(pink). D—inset, CD3" cells inside or outside of this epithelial mask were then identified by gating against the secondary-only and isotype
control per-cell fluorescence distributions (i.e., as is typical in flow cytometry). Cell centroid markers were placed on each positive event.
This approach permitted sensitive and accurate pinpointing of CD3* lymphocytes (C, inset). Scale bars: A and B = 25 ym; C = 50 pm;
D =1 mm. [Color figure can be viewed at wileyonlinelibrary.com]
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Fig 4. Defining and counting T lymphocyte subpopulations on the basis of spatial location. Rat jejenum, continued from Figure 3. (A) To
differentiate intraepithelial (IEL) CD3* cells in close association with the apical side of the epithelium (i.e., “IELS“®”) versus those truly in

between enterocytes (i.e., “IEL™®™), the epithelial mask defined in Figure 3 was skeletonized and dilated to form a central path enabling
detection of IEL™®" cells in each “loop” of epithelium (method shown, Fig. S6). (B and C) The CD3* cell population was then split into
three subpopulations: Lamina propria CD3* (LPP%*), IELS“P or IEL™®", and locations were displayed by marker placement on each cell’s
centroid. (D and E) Typical examples of I[EL"? and IEL™®" events. (F) Area measurements for the different tissue compartments. (G) Total
cell counts according to tissue compartment. (H) Tissue compartment cell counts per 100 cells. (I) Cell counts expressed as ratios between

the different tissue compartments. Scale bars: A and C = 100 pm; B = 500 pm; D and E = 5 ym. [Color figure can be viewed at
wileyonlinelibrary.com]

sensitive cell populations (Fig. 5E). Due to the closely packed
cells, and in conjunction with the expression of CD11c and
CD3 immunofluorescence on the cell membrane, it was found
that adding a second sequential gate on the area of fluores-
cence within each cell helped to reduce “bystander-positive”
1232

events caused by small amounts of fluorescence spanning the
segmented-cell outlines and manifesting in immediately adja-
cent neighboring cells (further discussion/exemplification pro-
vided, Fig. S8). In this way, cells exhibiting CD marker
fluorescence all around their perimeters were better isolated
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Fig 5. CD11c and CD3 expression in Peyer’s patches. Mouse ileal transverse section. (A) The section was imaged as a 24-tile tilescan labeled
for nuclei, actin, anti-CD11c, and anti-CD3. Transmitted and reflected light were also collected. (B) The densely packed, lymphoid tissue
segmented accurately into cells (~16,000) using the llastik/CellProfiler machine learning approach, and the software reassembly function
spatially reassembled the data without artifacts at the overlap boundaries between the tiled images. (C and D) The complexity of
multichannel image (A) is dramatically reduced, using an example region-of-interest (yellow), and displaying the immunofluorescence
markers (cyan = CD11c, magenta = CD3) on the segmented-cell outlines. (E and F) CD3* and CD11c"* cell populations were gated against
secondary-only, leave-one-out, and isotype control per-cell fluorescence distributions. In the densely packed tissue, a second sequential gate
on fluorescence area per cell-object helped to reduce “bystander-positive” events caused by fluorescence overlap into neighboring cells
(shown, F—Inset) (further discussion/exemplification provided, Fig. S8). (F) Marker placement on the cell populations identified by the gating
strategy in (E). Highly juxtaposed, and thus indicative of communication, CD11¢c-CD3 neighboring cells (i.e., region shown in D) that
consequentially identified positive in both gates are shown with white markers. Scale bars: A, C, and F = 500 pm; B = 250 pm; D = 50 pm.
[Color figure can be viewed at wileyonlinelibrary.com]

from their immediate neighbors, while maintaining sensitivity the immunofluorescence images, as described above, provid-
(Fig. 5F, inset). To aid this second gating step, cell-centroid ing visual feedback (Fig. 5F). As expected, the subepithelial
markers for the identified cell populations were placed onto dome (SED) was rich in mononuclear phagocytes and the
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interfollicular region (IFR) at the right of the image contained
large numbers of T-cells. Surprisingly, however, a population
of highly juxtaposed, CDI11c-CD3 neighboring cells
(i.e., region shown in Fig. 5D) that still identified positive in
both gates after bystander removal were identified, indicating
an interaction (17) relative to other cells, and suggesting a
likelihood of cell-cell communication (Fig. 5F).

In addition to placing markers on cell centroids to delin-
eate the gated cell populations (Fig. 6A), other methods capa-
ble of clearly visualizing the single-cell data and consequent
spatial relationships across the scale of the complete Peyer’s
Patch were sought. In Figure 6B, the marker-placement view
was simplified further by flood-filling the individual seg-
mented cell masks to clearly show the populations in a man-
ner that could be effectively visualized at small size. The
absence of immunofluorescence labeling (i.e., black, CD11c™/
CD3" regions) was also informative, as within the patch, the
vast majority of these double-negative cells will be B lympho-
cytes (32). Next, the flood-filled view was simplified further to
only show CD11c cells with touching CD3 nearest-cell neigh-
bors (including juxtaposed CD11¢/CD3 cells) (Fig. 6C). In
this way, the view gives a sense of the spatial distribution of
APCs within interactive distances of T lymphocytes. Interest-
ingly, it was observed that the majority of these events were
predominantly congregated around B cell follicles in the ger-
minal center (GC) region, and were much less apparent in
the SED where, probably, MNP—B cell interactions may pre-
dominate (33).

Having successfully identified populations of cells, next
we moved forwards to consider quantification of per-cell fluo-
rescence (i.e., related to protein expression). To do this, we
made use of the ~800 nm optical Z plane afforded by the con-
focal optics and high numerical aperture objective (63X/1.4)
to isolate a thin plane through individual cells. The analysis
was also aided by the ability to select for cell objects optimally
cross-sectioned through their central plane during the debris
removal step (discussed above), as this improved measure-
ment consistency by sampling data from similar, central
regions in each cell. To clearly visualize the data from across
the whole lymphoid follicle within a reasonable figure-size,
the per-cell expression of CD11c and CD3 was displayed in
four intensity bands (i.e., dim, low, intermediate, and high)
(Fig. 6D,E). Perhaps unsurprisingly given the highly mixed
population of mononuclear phagocytes delineated by CDl1c,
no clear spatial patterning according to CDllc expression
was observed (Fig. 6D). For CD3, however, the IFR at the
right of the patch, in addition to the APC and T-cell zones
around the GC were rich in CD3™"™" events, while the mar-
ginal zone and SED where predominated by CD3%™°, This
may be related to T cell subtypes, or activation, and deserves
further scrutiny (34).

Finally, we also sought a method to statistically identify
significant spatial congregations of cells so that regions of cel-
lular zonation/established cellular microenvironments could
be defined across the lymphoid follicle. To do this we
harnessed both the cell location and CD11c or CD3 per-cell
expression data and used these to calculate the Getis-Ord GI*

1234

spatial statistic (28). This provided a heat map identifying
where statistically significant, spatial congregations of differ-
ent cell types occurred relative to what should be expected by
random chance—given the frequencies of the different cell
types involved (Fig. 6F). As expected, the SED was signifi-
cantly rich for CD1l1c, as was the IFR for CD3. For both cell
types, however, the maps also revealed a wealth of complex
microstructure surrounding B-cell follicles in the GC. Under
the “steady state” normal biology depicted here, it was also
noted that the SED was sparse in terms of congregating CD3*
T-lymphocytes.

Discussion

Here, with a specific focus on intestinal tissues, we develop
open, user-friendly methodology that enables per-cell quanti-
fication using routine confocal micrographs. As a methodo-
logical advancement, it is important that the findings here are
seen as a range of examples around capability, rather than
individually-powered biological studies. Notwithstanding, we
flag areas where the technique revealed interesting findings,
including measures of spatially distinct IEL subpopulations—
being either between or beneath enterocytes in the villus
mucosa—and the complex microstructure of cellular zonation
in the Peyer’s patch, including spatial distributions of APC-T
cell interactions.

Our image-based cell profiling approach delivers data
in three key ways: (a) it enumerates different cell types, as in
flow cytometry, but it also (b) provides precise cellular loca-
tional data with histological context and (c) resolution and
quantification of cell contents. To achieve this, a number of
novel approaches had to be developed or bridged together.
First, we provide routes in MATLAB or Python to enable
tilescan processing with CellProfiler—to include spatial
reassembly of the mined per-cell data and the production of
global segmentation masks with unique cell identities to
enable visualizations. Second, to permit accurate cell seg-
mentation, antibody-independent cell labeling was
employed, which we optimized for both FFPE and frozen
intestinal tissue sections. Importantly, this approach does
not use up antibody hosts and transfers easily and directly
between species. Next, effective per-cell immunofluorescence
analysis requires accurately segmented cells with mis-
segmented cells (debris) excluded. We show how this can be
achieved using density plots to refine a consistently sampled
cell population, with the outliers (partial cells or doublets)
excluded. Alongside, to tackle the difficult issue of dense cell
packing in lymphoid tissues, we use semantic machine
learning within a fast, user-friendly framework (23) to yield
accurate cell segmentations. Finally, we demonstrate how
inadvertent bystander-positive cells can be obviated through
sequentially gating on fluorescence intensity followed by
fluorescence area, and suggest that any remaining bystanders
are indicative of cell-cell interactions. We also demonstrate
how spatial statistics can be employed to better define tissue
microenvironments in terms of identifying significant cellu-
lar congregations.
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Fig 6. Mapping CD11c* and CD3"* cell interactions, expression, and spatial congregations. Mouse ileum, continued from Figure 5. (A) Cell-
marker placement on the basis of immunofluorescence labeling. Highly juxtaposed CD11¢c-CD3 neighboring cells that consequentially
identified positive for both markers are shown with white markers. (B) Flood-filling segmented cell objects provides a visually intuitive
version of the data shown in (A) that can be displayed at a much smaller size. (C) Here, the view shown in (B) is simplified to only show
CD11c cells with touching CD3 nearest-cell neighbors, or juxtaposed cells that identify positive for both markers due to close spatial
association. (D and E) CD11c and CD3 expression maps with cell-objects colored in four levels (i.e., dim, lo, intermediate (int), hi)
according to each segmented cell’s level of immunofluorescence. (F) Getis-Ord statistical map: This shows—as a probability heat map—
where statistically significant congregations of cells are found relative to what would be expected by random chance given the
frequencies of the different cell types. Scale bars: A-F = 500 um. [Color figure can be viewed at wileyonlinelibrary.com]
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Here we use the popular CellProfiler software as a “back-
bone” to enable per-cell quantification. Importantly, its
pipeline-based style is extremely flexible, and can use original,
deconvolved and/or spectrally unmixed input images from
almost any microscope or upstream software package. More-
over, the pipelines provided here can also utilize probability
maps to enable cell segmentation from any source, including,
where necessary, more advance machine learning approaches
such as deep convolutional neural networks (26). Of note, a
delivery of the popular Unet architecture within the user-
friendly environment of Ilastik is planned for release in spring
2020 (35).

In embracing such a technical approach to tissue analy-
sis, it is critical that the fundaments of robust immunofluores-
cence methodology are not overlooked. In our experience,
best possible tissue orientation helps greatly in interpretation
of outputs. Moreover, our approach does not obviate good
practice in labeling and imaging: rather, success relies upon
it. Controls, to assess background autofluorescence and non-
specific antibody binding, are extremely important, alongside
assurance that fluorescence signals do not cross between
channels. Here, we have demonstrated the use of 2°-only,
isotype, leave-one-out and biological negative controls col-
lected in tissue-matched, serial sections to assess these param-
eters. We then use Otsu thresholding in conjunction with
gated analyses to accurately isolate cell populations and mea-
sure cell expression/contents. Of course, these controls in
themselves do not ensure that the correct target is being
labeled and, as always in such work, proper validation of anti-
bodies remains essential (36,37).

Our accessible approach to per-cell analysis of tissue sec-
tions contrasts with other techniques. While imaging mass
cytometry (e.g., “CyTOF”), enables the use of dozens of anti-
body markers, it has lower spatial resolution and necessitates
highly specialist instrumentation for detection (6,18).
Although high throughput and extremely powerful within
diagnostic pathology, packages that permit the analysis of
chromogen stained slide-scans lack the resolution, sensitivity,
ability to multiplex and quantitate immunolabeled targets in a
way that is often required for precision research (12). Mean-
while, commercial “all-in-one” solutions, such as those
employing fluorescence slide scanners or spinning disk confo-
cal techniques, are (a) expensive, especially when highly capa-
ble confocal microscopes are already available at most
research institutions and (b) rely on software with the
unenviable task of enabling the analysis of all conceivable tis-
sue types. In our experience, this results in approximate per-
cell measurements. In contrast, focusing in one field and
interfacing different strategies (18), as we do here with the
intestine, enables precision cell segmentation to be achieved
and thus accurate analyses of cellular localization, per-cell
content and cell—cell interactions.

Finally, some of the original, pioneering, work in quanti-
tative, flow cytometry-type immunofluorescence analysis of
tissues (e.g., histocytometry, Refs. 1-3,16,17) relies upon com-
mercial software for implementation, limiting accessibility.
Moreover, while the histocytometry approach utilizes both
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2D and 3D confocal images, analyses have primarily focused
on the spatial relationships of just the CD-marker delineated
cells. Our approach, supported by machine learning segmen-
tation where necessary, enables precision analyses of all cells
and hence highly accurate cell counting and per-cell quantifi-
cations within an entire section or region-of-interest. Not-
withstanding, here we focus on open-source, intestinal-
specific 2D delivery, as qualitative display in this format is
today’s gold standard, and because volumetric (i.e., 3D)
immunofluorescence quantification is extremely challenging
for routine usage, given the time requirements and increasing
nonuniformities that manifest with imaging depth. With this
in mind, the use of the confocal optical section provides 2D
immunofluorescence data that is consistently sampled, and
thus well-suited for summation within cell-objects and for fair
comparison across experimental samples. In turn, an impor-
tant question for future work may involve addressing how far
regular fluorescence images (i.e., nonconfocal) can be taken
toward producing similar, quantitative results. To this end,
herein we show how per-cell data can be extracted from FFPE
sections through the use of WGA staining to delineate cell
outlines. This approach may prove important to success with
regular fluorescence microscopy because FFPE sections can
be cut much thinner than cryostat sections, and this physical
section thickness itself may enable reliable extraction of per-
cell information.

To conclude, here we have developed open, user-friendly
methodology that delivers per-cell quantifications using rou-
tine, confocal microscopy-derived images of diverse gastroin-
testinal tissues. In combination, the presented approaches
take the field of gastroenterology far beyond the representa-
tive image, and should now help to combat some of the data
reproducibility issues that are associated with antibody tech-
nologies and over-reliance on qualitative tissue micros-
copy (36,37).
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