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Abstract10

Tropical Montane Cloud Forests (TMCFs) form biodiverse communities

that are characterized by frequent occurrence of low-level clouds from which

they capture a substantial proportion of their precipitation — here referred

to as occult precipitation. TMCFs provide important ecosystem services, in

particular the supply of water to their wider surroundings. Throughout the

tropics (here 23.5◦ S to 23.5◦ N), they are under pressure from deforesta-

tion and poor land management which leads to loss of both forest area and

species diversity, and reduces their capture of occult precipitation. Climate

change may also reduce occult precipitation in TMCFs since the cloud base

may lift in response to higher temperatures — the ‘lifting cloud-base hypoth-

esis’. These threats to TMCFs are well understood, but their quantitative
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assessment is hampered by 1) uncertainty in the location and spatial extent

of TMCFs and 2) limited availability of representative meteorological data.

We use a Random Forest Classifier — informed by topographic data, MODIS

vegetation data, TRMM precipitation data and ERA5-Land and MERRA-

2 reanalysis products — to estimate the spatial distribution and extent of

TMCFs (2.1 × 106 km2 ± 0.5 × 106 km2). We analyze temporal changes in

climate, tree-cover and greenness of TMCFs over the past two to four decades

to detect 1) multi-decadal trends, and 2) associations with the El Niño South-

ern Oscillation (ENSO) and Indian Ocean Dipole (IOD). Evidence for the

‘lifting cloud-base hypothesis’ in reanalysis products was inconsistent across

the tropics; a lifting of the cloud base during the past four decades occurred

for about 20 % of TMCFs, predominantly in the Americas and a few loca-

tions in Africa, while in Asia a downward movement of the cloud base was

found. However, these results in part depend on the bias correction applied

to the reanalyses. Changes in TMCF tree cover and greenness varied by

continent; in Africa in &50% of TMCFs tree cover declined, whereas TMCFs

in the Americas and in Asia exhibited a net increase in tree cover, despite a

reduction in tree cover in &20% of TMCFs. An important limitation of the

tree-cover data is that they do not distinguish between natural tree cover
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and agro-forestry. ENSO signals were more strongly present in precipita-

tion in American and Asian TMCFs, whereas IOD signals were stronger in

TMCF temperature and dewpoint temperature across the tropics. ENSO

and IOD signals were approximately equally important for precipitation in

African TMCFs and in cloud-base height across the tropics. An arbitrary

warming of 1 ◦C and a 100 m lifting of the cloud base, in accordance with the

‘lifting cloud hypothesis’, imposed on the Random Forest classifier showed a

decline in the extent of TMCFs in the Americas and Africa, but an increase

in Asia — mostly at the expense of evergreen broadleaf forests. The greater

vulnerability of TMCFs in Africa may be linked to their more isolated and

scattered distribution across the continent and drier conditions compared to

a more continuous distribution and wetter conditions in the Americas and

Asia.

Keywords: Climate Change — Tropical Montane Cloud Forests —11

Cloud-base height — ENSO — IOD — Reanalysis — TRMM — MODIS12

1. Introduction13

Formulating a precise definition of tropical montane cloud forests (TM-14

CFs) is not straightforward (Hamilton et al., 1995). TMCFs tend to be15

tropical forests, for the main part located above 500 m a.s.l., that experience16
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persistent low-level cloud cover for at least part of the year; the moisture17

captured by the vegetation canopy from these low-level clouds, referred to as18

occult precipitation, forms a large proportion of total precipitation. TMCFs19

are unique ecosystems that host a range of highly specialised organisms, of-20

ten adapted to foggy conditions, such as epiphytes, bryophytes, amphibians,21

and insects (Pounds et al., 1999; Still et al., 1999; Foster, 2001; Karmalkar22

et al., 2008; Hemp, 2009; Bruijnzeel et al., 2010, 2011; Diaz et al., 2014;23

Lister and Garcia, 2018). Trees in TMCFs tend to have reduced height and24

greater stem density and their form, in particular at higher elevations, is often25

stunted or gnarled (Grubb and Whitmore, 1966; Cavelier, 1996; Bruijnzeel26

et al., 2010). TMCFs provide important ecosystems services; a stable supply27

of fresh water to their surroundings is particularly important (Asquith et al.,28

2008; Mart́ınez et al., 2009).29

TMCFs are adversely affected by human actions such as clear-cutting30

and use of forests as a source for firewood, food, medicines and fodder for31

livestock (Mart́ınez et al., 2009; Cuńı-Sanchez et al., 2018); the loss in for-32

est cover is estimated larger for ‘cloud affected’ montane forests (55–60 %)33

than for other tropical forests (ca 47 %) (Doumenge et al., 1995; FAO, 1995;34

Mulligan and Burke, 2005). A reduction in the density of the forest canopy,35

4



associated with human activities, has an additional effect in that it reduces36

the ability of forests to capture water from clouds. Global warming poses a37

threat as well because of the potential for the cloud base to lift gradually as38

temperatures increase, thereby putting an important source of moisture out39

of reach of the canopy; this mechanism is known as the ‘lifting cloud-base hy-40

pothesis’ (Pounds et al., 1999; Bradley et al., 2004; Williams et al., 2007; Fu41

et al., 2011; Ohmura, 2012; O’Gorman and Singh, 2013; Oliveira et al., 2014;42

Helmer et al., 2019). On tall mountains, not disturbed by humans, there43

is sufficient room for TMCFs to move to higher altitudes to accommodate44

upward movements of the cloud base, but on mountains of moderate height45

or on mountains where the treeline is suppressed by humans (Bush et al.,46

2008; Di Pasquale et al., 2008; Sylvester et al., 2017), a higher cloud base47

could lead to “mountain-top extinctions” (Pounds et al., 1999; Still et al.,48

1999; Bruijnzeel et al., 2011).49

The mechanisms that adversely affect TMCFs are well understood but50

quantifying their effects is hampered by two factors: the first is that the spa-51

tial extent and locations of TMCFs are not well known — current estimates52

vary by an order of magnitude between 0.22 × 106 km2 and 2.2 × 106 km2
53

(Mulligan and Burke, 2005; Scatena et al., 2010; Bruijnzeel et al., 2011);54
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and the second is that relatively few representative long-term meteorological55

records exist for the tropics. Jarvis and Mulligan (2011) find that meteoro-56

logical stations measuring rainfall have an average distance to a cloud forest57

of 21 km; those measuring 2 m surface temperature 38 km; and those measur-58

ing the daily temperature range 53 km. Hence, in many cases these stations59

do not represent meteorological conditions in the TMCFs; moreover, large60

gaps frequently occur in these records.61

The present study has two aims. The first is to obtain an estimate of62

the spatial extent and distribution of TMCFs. To this effect a random for-63

est classifier is informed by a wide range of data sources: topographic data,64

normalized difference vegetation index data from the Moderate Resolution65

Imaging Spectroradiometer (MODIS), precipitation data from the Tropical66

Rainfall Measuring Mission (TRMM), and temperature and dew-point tem-67

perature products from the European Centre for Medium-Range Weather68

Forecasts Reanalysis (ERA5-Land) and the NASA Modern-Era Retrospec-69

tive analysis for Research and Applications Version 2 (MERRA-2). Because70

of the unique meteorological conditions found in TMCFs, it is thought that71

climate information contained in reanalysis products will make an important72

contribution to the estimation of their extent. The second aim of the present73
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study is to use the spatial distribution of the TMCF land-cover class to an-74

swer the following questions linked to changes in the climate and environment75

of TMCFS over the past two to four decades: 1) are temperatures increasing?76

2) Is there evidence that the cloud base has lifted during the recent past as a77

result of global warming? 3) Is precipitation (rainfall) affected? 4) Is there a78

noticeable decrease in vegetation greenness? 5) Is tree-cover decreasing? 6)79

How do these changes (if any) compare to those found in tropical land-cover80

classes in particular evergreen broadleaf forests? 7) Do climate oscillators81

(the El Niño Southern Oscillation and Indian Ocean Dipole) have an effect82

on TMCFs? And 8) can we expect the spatial extent of TMCFs to change83

in response to a lifting of the cloud base as a result of global warming?84

We acknowledge that the adopted approach has limitations, most of which85

are related to the relatively low spatial resolution of the data products (all86

scaled to 0.1◦ × 0.1◦), but nevertheless it is able to provide an assessment of87

TMCF extent and to identify where the most severe pressures on TMCFs88

have occurred at continental scales during the past two to four decades.89
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2. Data sources and adjustments90

The data sets used in the present study have different spatial resolu-91

tions. Raster data with low resolutions (≤ 0.25◦ × 0.25◦) are scaled to the92

0.1◦×0.1◦ spatial resolution of the ERA5-Land products using bi-linear inter-93

polation (Hijmans, 2019); higher resolution data are averaged. The station94

data (Smith et al., 2011) and TMCF location data (Aldrich et al., 1997) are95

assigned to the corresponding 0.1◦ × 0.1◦ cell.96

2.1. ERA5-Land and MERRA-2 2 m temperature and dew-point temperature97

The ECMWF Reanalysis 5 ERA5-Land version 1.0 (Copernicus Climate98

Change Service (C3S), 2019) is a recent release by the ECMWF that replaces99

the ERA-Interim. We use the ERA5-Land monthly 2 m temperature and100

dew-point temperature from 1981 until 2019 at 0.1◦ × 0.1◦ spatial resolution101

(Copernicus Climate Change Service (C3S), 2017, 2019).102

Cloud-base height, ZC (m), is approximated from ERA5-Land 2 m tem-

perature and dew-point temperature using Espy’s equation. The approxima-

tion has an error smaller than 2 % for relative humidity values above 50 %

and temperatures between 0 ◦C and 30 ◦C (Lawrence, 2005):

ZC = 125(T2m − Td,2m), (1)
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with T2m being the 2 m air temperature and Td,2m the dew-point temperature103

(both in either K or ◦C).104

MERRA-2 (Gelaro et al., 2017) was developed by the NASA Global Mod-105

eling and Assimilation Office (GMAO) to meet two primary objectives: 1.106

to assimilate data from NASA’s Earth Observation System (EOS) and to107

demonstrate its usefulness for climate studies and 2. to improve the rep-108

resentation of the atmospheric hydrological cycle in reanalysis models com-109

pared to previous ones. MERRA-2 has a resolution of 0.625 ◦ longitude by110

0.5◦ latitude and covers a period from January 1980 until the present. We111

use monthly MERRA-2 2 m temperature, T2m, dew-point temperature, Td,2m,112

and cloud-base height, ZC , from 1980 until 2019.113

2.2. Meteorological observations from station data114

We use 2 m surface-air temperature and dew-point temperature contained115

in the National Oceanic and Atmospheric Administration (NOAA) National116

Climatic Data Center (NCDC) Integrated Surface Data set (ISD; Smith et al.117

(2011)) to check the reanalyses for bias. Annual averages are calculated from118

daily averages when there are fewer than 20 days of data missing per year.119

Station data are assigned to the corresponding 0.1◦ × 0.1◦ cell. The temporal120

coverage of meteorological data varies from year to year; the minimum num-121
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ber of cells with at least one station operating for more than 345 days per122

year during 1980–2019 is around 670, the average around 960, and the maxi-123

mum close to 1500. The reduced ISD data set used in the present study is a124

subset of both the World Meteorological Organization (WMO) station data125

used by ERA5-Land and of the Global Historical Climate Network (GHCN)126

data used by MERRA-2.127

2.3. Bias correction of ERA5-Land and MERRA-2 T2m and Td,2m128

Both the ERA5-Land and MERRA-2 reanalyses show good agreement

with observations — the coefficients of correlation with station data are high

for both and the biases are low. The biases are smaller and less negative for

MERRA-2 than for ERA5-Land T2m and Td,2m but correlations are lower as

well (Table 1). In both reanalyses, T2m and Td,2m show a drift in bias over

time relative to the ISD observations. Similar, but smaller drifts occur as a

function of longitude, latitude and altitude; an example is shown in Fig. 1

for ERA5 Td,2m. Trends in these drifts are estimated using:

∆drift = β0 + β1 cos(x) + β2 sin(x) + β3 cos(y)+

β4 sin(y) + β5z + β6 cos(z) + β7sin(z)+ (2)

β8h+ β9 cos(x) sin(x) · · · + β36sin(z)h

10



−150 −100 −50 0 50 100 150

−
1

0
−

5
0

5
1

0

Longitude (°)

D
ri

ft
 D

e
w

p
o

in
t 

T
e

m
p

e
ra

tu
re

 (
°C

) 

 A
ve

ra
g

e
 p

e
r 

0
.1

° 
L

o
n

g
it
u

d
e

−20 −10 0 10 20

−
1

0
−

5
0

5
1

0

Latitude (°)

D
ri

ft
 D

e
w

p
o

in
t 

T
e

m
p

e
ra

tu
re

 (
°C

)

 A
ve

ra
g

e
 p

e
r 

0
.1

° 
L

a
ti
tu

d
e

1980 1990 2000 2010 2020

−
1

0
−

5
0

5
1

0

Year

D
ri

ft
 D

e
w

p
o

in
t 

T
e

m
p

e
ra

tu
re

 (
°C

)

 A
ve

ra
g

e
 p

e
r 

y
e

a
r

Average

Drift correction

0 1000 2000 3000 4000

−
1

0
−

5
0

5
1

0

Elevation (m a.s.l.)

D
ri

ft
 D

e
w

p
o

in
t 

T
e

m
p

e
ra

tu
re

 (
°C

)

 A
ve

ra
g

e
 p

e
r 

1
m

 i
n

te
rv

a
l

Figure 1: Average drift in dew-point temperature (difference between ERA5-Land and

observations) shown as a function of longitude, latitude, time and elevation. The red line

shows the drift correction obtained with eq. 2.

with ∆drift being the difference of either ERA5-Land or MERRA-2 mean129

annual T2m or Td,2m from observations, x the latitude converted to radians130

(−180◦...180◦ is one wavelength), y the same as x but for longitudes from131

23.5◦ S to 23.5◦ N, z the year (1981..2019 for ERA5-Land, 1980..2019 for132

MERRA-2; for the trigonometric functions the year is converted to radians133
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Table 1: Comparison of ERA5-Land and MERRA-2 2 m surface-air temperature (T2m),

2 m dew-point temperature (Td,2m) and cloud-base height (ZC) with meteorological station

data for the entire tropics before and after bias correction (eq. 2). The bias correction

increases the secular trend in dew-point temperature and reduces the secular trend in

cloud-base height.

ERA5-Land correction MERRA-2 correction

r ISD T2m 0.80 0.81 0.59 0.66

bias ISD T2m (K) -1.1 0 -0.6 0

r ISD Td,2m 0.89 0.89 0.79 0.81

bias ISD Td,2m (K) -0.7 0 -0.2 0

r ISD ZC 0.88 0.88 0.80 0.83

bias ISD ZC (m) -56 -0.8 -42 -0.7

trend T2m (K y−1) 0.023 0.029 0.023 0.028

trend Td,2m (K y−1) 0.004 0.026 0.011 0.022

trend ZC (m y−1) 2.4 0.37 1.6 0.7

with the length of one wave matching the entire time period) and h the ele-134

vation. Trigonometric functions are used rather than second or higher order135

polynomials to avoid extrapolation errors when applying the bias correction.136

The bias correction improves the correspondence with the station observa-137
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tions; it also reduces the temporal trend in cloud-base height for the tropics138

and trends in ERA5-Land and MERRA-2 cloud base are more similar after139

the drift correction is applied (Table 1). The decrease in coverage over time140

by meteorological stations appears to have a negligible effect on the bias141

correction.142

2.4. TRMM 3B43 precipitation143

The Tropical Rainfall Measuring Mission (TRMM) was designed to fill144

important gaps in the previous land and ocean surface precipitation record145

between latitudes of 40◦ S and 40◦ N (Simpson et al., 1988). The 3B43 record146

starts in 1998 and has 0.25◦×0.25◦ spatial resolution, a monthly time step and147

covers latitudes between 50◦ S and 50◦ N. This product combines data from148

the TRMM satellite, the Global Precipitation Climatology Project (GPCP)149

ground station network, and the Aqua, Terra, Defence Meteorological Satel-150

lite Program and NOAA satellites (Huffman et al., 2007, 2010).151

2.5. Satellite vegetation data152

We obtained MODIS Terra Normalized Difference Vegetation Index (NDVI)153

data version 6 (Huete et al., 2002) projected on a climate modelling grid at154

0.05◦ × 0.05◦ resolution from the United States Geological Survey (USGS).155
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We applied Fourier series (annual and 6 month harmonics) to these data to156

fill in missing values and adjust outliers caused by interference from clouds157

and aerosols; the procedure is similar to the method developed by Sellers158

et al. (1996) and Los et al. (2000) — Fourier series are used to adjust per cell159

the entire time series using a moving window of 12 months that is shifted 6160

months at a time. For each 12-month window, Fourier series are fitted using161

weighted regression to identify and replace outliers and missing data. For the162

first and last window of the time series the first and last 9 monthly values are163

used, for the other windows the central 6 values. After the Fourier adjust-164

ment is applied, the spatial resolution of the data is reduced to 0.1◦ × 0.1◦
165

by calculating the mean of a window of 2 × 2 pixels. The standard devia-166

tion of this window is calculated as well to retain information about spatial167

variability. A monthly climatology consisting of the average seasonal cycle is168

calculated per cell from both the average and standard deviation time series.169

The minimum, average and maximum values of these climatologies are used170

as independent variables in the land-cover classification (Section 3.1).171

Annual MODIS International Geosphere Biosphere Programme (IGBP)172

land-cover data (Friedl et al., 2010; Sulla-Menashe et al., 2019) are obtained173

from the USGS for the years 2001 until 2018. We use the percentage cover174
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Table 2: Rules applied to International Geosphere-Biosphere Programme (IGBP) tropical

land-cover classes to aggregate them into broader units. The following IGBP classes are

not included because of very low coverage in the tropics: Deciduous Needle-leaf Forests

(IGBP class 3), Permanent Wetlands (11), Urban and Built-up (13), and Snow and Ice

(16).

Class (present study) Abbreviation IGBP class

1. Tropical Montane Cloud Forest TMCF -

2. Evergreen Broadleaf Forest EBL 2. Evergreen Broadleaf Forest

3. Deciduous Broadleaf Forest DBL 4. Deciduous Broadleaf Forest

5. Mixed Forest

8. Woody Savanna

4. Savanna SAV 9. Savanna

5. Shrub land Shrub 6. Closed shrub lands

7. Open shrub land

6. Grassland Grass 10. Grasslands

7. Cropland Crop 12. Croplands

14. Crop + natural vegetation mosaic

8. Barren Barren 16. Barren
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for each of the IGBP land-cover classes averaged over this period. The land-175

cover classes are grouped into 7 larger units according to the rules set out in176

Table 2.177

The ‘Making Earth System Data Records for Use in Research Environ-178

ments’ (MEaSUREs) Vegetation Continuous Fields version 001 data (Song179

et al., 2018) are obtained from the USGS. This data set provides annual180

updates of tree-cover fraction at 0.05◦ × 0.05◦ resolution. Tree-cover frac-181

tion in the MEaSUREs data set is estimated from cross-calibrated Advanced182

Very High Resolution Radiometer (AVHRR), MODIS and Landsat data; the183

data set is sufficiently accurate for change detection. A limitation is that184

the MEaSUREs tree-cover data do not distinguish between natural trees and185

agroforestry (Song et al., 2018).186

2.6. Topography187

The Global Multi-resolution Terrain Elevation Data 2010 at 30 arc-seconds188

resolution (GMTED2010, Danielson and Gesch (2011)) has improved vertical189

accuracy compared to the GTOPO30 data set that it replaces (the root mean190

square errors (RMSEs) are 25–42 m and 66 m, respectively). The improve-191

ment is due to, amongst other things, the incorporation of data from the192

Shuttle Radar Topography Mission (SRTM) and the Ice, Cloud, and Land193
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Elevation Satellite (ICESat).194

2.7. Distance to the coast195

Distance to the coast at 0.01◦ × 0.01◦ resolution was obtained from the196

OceanColor project which used the Generic Mapping Tools (GMT) software197

(Wessel and Luis, 2017) to generate this data set (Stumpf and Kuring, pers.198

comm.).199

2.8. Country data200

We use the Natural Earth data (https://www.naturalearthdata.com/) to201

identify boundaries used to calculate country statistics shown in Tables S2202

and S3. The land-sea mask in this data set differs slightly from that used in203

the other data sets.204

2.9. Locations of cloud forests205

The cloud-forest location data base was compiled by Aldrich et al. (1997)206

and is held at the World Conservation Monitoring Centre (WCMC). This207

data base was obtained from local experts and is considered the best avail-208

able information on the location and status of TMCFs (Aldrich et al., 1997).209

The data set contains 525 TMCF locations, but does not provide informa-210

tion about their spatial extent, dominant species or degree of disturbance.211
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TMCFs within International Union for Conservation of Nature (IUCN) pro-212

tected zones (Americas (4 %), Africa 39 % and south-east Asia 50 % ) tend213

to be larger and more continuous, but outside of these they tend to be more214

patchy. Information about the effects of humans on TMCFs, which become215

increasingly important over time (Power et al., 2008; Bush et al., 2011; Sub-216

blette Mosblech et al., 2012; Sylvester et al., 2017; Marchant et al., 2018),217

is not available. Further limitations of the data base are that some cloud-218

dependent ecosystems such as the uplands of the Galápagos Islands are natu-219

rally shrub or grass-dominated; other locations are situated below an altitude220

of 500 m, the generally accepted lower boundary of TMCFs (Jarvis and Mul-221

ligan, 2011). The low-altitude locations are retained in the current analysis.222

The Aldrich et al. (1997) data are the basis of several subsequent estimates223

of the spatial extent of TMCFs (Bubb et al., 2004; Mulligan, 2010; Jarvis224

and Mulligan, 2011). For example Jarvis and Mulligan (2011) used MODIS225

land-cover data and combined these with topographic measurements and es-226

timates of immersion of the canopy by fog and low-level clouds and refer to227

these areas as ‘significantly cloud-affected forests’.228

The number of TMCF locations is reduced to 466 when the data are229

scaled to 0.1◦ × 0.1◦ because multiple locations map onto the same cell. A230
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further 6 data points are lost when the locations are used in the Random231

Forest Classifier (section 3.1) because of missing data in one or more of the232

independent variables.233

3. Analysis and Results234

3.1. RF-based estimation of TMCF spatial extent235

We estimate the spatial extent of TMCFs using a Random Forest Clas-236

sifier (Breiman, 2001; Liaw and Wiener, 2002). Random Forest Classifiers237

average the outcome of multiple decision trees to calculate class probability.238

The algorithm uses cross-validation; a proportion of the training data is set239

aside to test the accuracy of the classification. Random Forest Classification240

is less sensitive to overfitting than most other classification method. We aim241

to classify TMCFs and the aggregated MODIS IGBP classes to obtain a uni-242

form classification consisting of the 8 classes in Table 2. The training sites243

are obtained from two sources: the 460 centre locations of TMCFs compiled244

by Aldrich et al. (1997) scaled to 0.1◦×0.1◦ and randomly selected sites from245

the aggregated MODIS IGBP land-cover classification (Friedl et al. (2010);246

Sulla-Menashe et al. (2019); Table 2). From each of the aggregated MODIS247

classes, 999 sites are selected from pixels where cover for a particular class is248
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Figure 2: a) MODIS IGBP land-cover classification aggregated into 7 classes (Table 2).

The locations of Tropical Montane Cloud Forests from Aldrich et al. (1997) are indicated

by circles. b) Distribution of land-cover classes (including TMCFs) obtained using a

Random Forest Classifier (Liaw and Wiener, 2002; Breiman, 2001); an accuracy assessment

is provided in Table 3. The spatial distribution of TMCFs (probability and dominant class)

is provided in the Supplement in GeoTIFF format).

larger than 75 %. MODIS training sites that overlap with the TMCF training249

sites are identified as TMCFs and their MODIS class is ignored.250
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Figure 3: Importance of variables used to classify TMCFs (continuous magenta line)

compared to the same for broadleaf evergreen forests (continuous dark green line) and the

average of all classes (dashed black line). Importance is the effect that permutation of a

particular variable has on the Random Forest classification results (Liaw and Wiener, 2002;

Breiman, 2001). Variable h indicates the altitude, P the TRMM precipitation amount, ZC

the cloud-base height (eq. 1), T2,m the 2 m surface air temperature and STDV the spatial

standard deviation in NDVI calculated from windows of 2 × 2 pixels (Section 2.5).

Both static and time-variant independent variables were used for the251

land-cover classification (Section 2). Static independent variables are alti-252

tude, relief (the difference between minimum and maximum altitude for each253

0.1◦×0.1◦ cell), distance from the coast, and ∆h/∆d, the change in elevation254

as a function of distance from the coast (Section 2). This variable is the slope255
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coefficient determined from linear regression on data of each 0.1◦ × 0.1◦ cell256

with ∆h the dependent variable and ∆d the independent variable. Time-257

variant independent data include, for each 0.1◦ × 0.1◦ cell, the minimum,258

average and maximum of the NDVI climatology calculated from 2001-2019259

data. The same three statistics were used for the climatology of the spatial260

standard deviation in NDVI (STDV). A higher standard deviation is likely as-261

sociated with disturbance and greater human influence on land cover. Other262

independent data used in the classifier are the minimum, average and maxi-263

mum seasonal values of 2 m temperature (T2m), cloud base height (ZC , eq. 1),264

and precipitation (P ). The use of minimum, average and maximum provides265

information about the shape of the seasonal cycle; e.g. the warm season is266

longer if the average temperature is closer to the maximum and shorter if it267

is closer to the minimum.268

The number of decision trees for the Random Forest Classifier is set to269

20,000; the Random Forest classification is then carried out separately using270

either the ERA5-Land or MERRA- T2m and Td,2m products at 0.1◦×0.1◦ res-271

olution. The Random Forest Classifier adds outcomes of individual decision272

trees to estimate the overall probability for a particular class. The Random273

Forest Classifier also estimates out-of-bag (OOB) errors (Breiman, 2001) for274
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each of the classes as well as a confusion matrix (Table 3). Similar accuracy275

is achieved for both re-analysis products. The largest confusion between276

classification results occurs between TMCFs and evergreen broadleaf forests277

(for the ERA5-Land classification 58 predictions of EBL are made where the278

actual class is TMCF, and 36 predictions of TMCFs where the actual class is279

EBL, Table 3; the results for MERRA-2 are similar; see Table S1). Confusion280

of TMCFs with other, drier classes occurs as well. An explanation for this is281

that some TMCFs, mostly located in Africa, are small in size (< 0.1◦ × 0.1◦
282

cell) and are surrounded by much drier environments; examples are TMCFs283

located on the summits of dormant volcanoes in Kenya that are surrounded284

by much drier shrub lands and deserts (Bussmann, 2002; Cuńı-Sanchez et al.,285

2018). In some cases, the Aldrich et al. (1997) data refer to the remnants286

of TMCFs that survived extensive clearing of trees over the past centuries287

(Aldrich et al., 1997; Marchant et al., 2018) and the classifier may indicate a288

TMCF where shrub land remains and in other cases the Aldrich et al. (1997)289

data refer to cloud-dependent forests where non-tree species are dominant.290

As a result, the estimated TMCF distribution includes a small proportion291

of cells with very low or no tree cover (< 10 %). This proportion of cells is292

smaller for the ERA5-Land based classification (3 %) than for the MERRA-2293
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based classification (5 %).294

The probability values representing the likelihood that a particular class295

occurs in a cell, correlate highly with MODIS cover fractions (Table 3) in-296

dicating compatibility with the MODIS land-cover classification despite the297

relatively low spatial resolution of the independent variables.298

Importance of a variable for the classification is estimated by calculating299

the effect of permuting the variable on the outcome of the classification. By300

this definition, the most significant variables for the classification of TMCFs301

are relief and slope and NDVI (min and max) and spatial variability in NDVI302

(STDV avg, min, max; Fig. 3). Of the variables associated with cloud-base303

height, the maximum (ZC,max) is the most important for both the ERA5-304

Land and MERRA-2 based classifications. The precipitation variables are305

among the least important for the classification of TMCFs.306

3.1.1. Effects of T2m and ZC on classification307

The effect of T2m and ZC fields on the performance of the classification308

is further assessed by comparing the classification results obtained with the309

ERA5-Land and MERRA-2 products with one that uses neither (no reanal-310

ysis – NR; Table 4). The overall error for the NR classification is higher (η311

= 7.2 %) than those for the reanalysis-based classifications (η = 5.7 %), and312
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the ERA5-Land and MERRA-2-based classifications show better agreement313

with each other (η = 5.4 %) than with the NR classification (η = 8.0 % or314

7.9 %). However, for TMCFs the disagreement between the reanalysis-based315

classifications is larger (14.2 %) than the disagreement of either with the NR316

classification (13.9 % and 12.6 %). Disagreement for all other classes was317

smallest between the reanalysis-based classifications; disagreement between318

the NR classification and the reanalysis based classifications is particularly319

large for deciduous broadleaf forests (17.9 % and 16.6 %), shrubs (11.4 % and320

11.1 %), and crop lands (22.2 % and 24.1 %). These classes cover smaller321

areas and show a relatively large degree of confusion with each other. A rel-322

atively low agreement is also indicated by the lower correlations between the323

class probability calculated by the Random Forest Classifier and the MODIS324

fractional cover in Table 3.325

3.1.2. Evaluation and summary of classification results326

The spatial extent of TMCFs and of seven aggregated MODIS-IGBP327

land-cover classes was estimated with a Random Forest Classifier. The328

largest uncertainty was in the estimation of TMCFs (24 %); the range in329

uncertainty for the other classes was between 0 % (Barren land cover) and330

7 % (Crop land). The disagreement between different approaches to esti-331

25



mate the spatial extent of TMCFs (ERA5-Land, MERRA-2, no reanalysis)332

was smaller (12 % – 14 %) than the uncertainty indicated by the RF classi-333

fication. TMCFs were most easily confused with broadleaf evergreen forests334

(13 %; Table 3). The relatively large uncertainty in the classification of TM-335

CFs is not surprising since the training data (Aldrich et al., 1997) have a336

fairly large degree of uncertainty as well (Jarvis and Mulligan, 2011; Brui-337

jnzeel et al., 2011).338

TMCF area estimates for 25 countries are compared to the ‘cloud affected’339

tropical montane forests from Mulligan and Burke (2005). The agreement is340

good for the Americas and Asia (Fig. S1; note that the results for Brazil are341

not comparable since Mulligan and Burke (2005) compiled statistics for all of342

Brazil and in the present study only the tropical part of Brazil is considered).343

For several African countries, in particular for the Democratic Republic of344

the Congo, the estimates by Mulligan and Burke (2005) are much higher.345

Orography (relief and slope) was the most important factor for the identi-346

fication of TMCFs, most likely because the forced uplift of ocean air increases347

relative humidity leading to more frequent occurrence of supersaturated con-348

ditions and low-level clouds. Measures of NDVI seasonality and spatial vari-349

ability in NDVI were also important for the identification of TMCFs as were350
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some of the reanalysis temperature statistics and maximum cloud-base height351

(Fig. 3).352

The largest extent of TMCFs is found in the Americas ( &1.0 × 106 km2),353

followed by Asia ( &0.8 × 106 km2), and the smallest extent in Africa (354

&0.3 × 106 km2; Tables S2 and S3). Statistics collated for countries with355

the largest TMCF cover indicate differences between continents. There are356

indications that TMCFs in Africa are either smaller or more patchy than357

in other continents, since (1) the probability in cells where TMCFs are the358

dominant class is lowest in Africa (0.54 (ERA5-Land) or 0.55 (MERRA-2)359

versus 0.69 or 0.68 in the Americas and 0.61 or 0.57 in Asia; Tables S2 and360

S3), (2) the vegetation cover for African TMCFs is lower (lower mean NDVI,361

Tables S2 and S3), (3) is more spatially variable (higher spatial standard362

deviation in NDVI, Tables S2 and S3) and (4) contains a higher percentage363

of crop land (Tables S2 and S3). African TMCFs are drier as well; the364

amount of TRMM precipitation is lower, the cloud-base height higher and365

the distance to the ocean larger (Tables S2 and S3). TMCFs in Asia tend to366

be warmer (&24◦C versus &20◦C both in the Americas and in Africa) and are367

found in lower altitudes than on other continents (994 m a.s.l. (ERA5-Land)368

or 812 m a.s.l. (MERRA-2) versus 1771 or 1695 m a.s.l. in the Americas and369
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1642 or 1656 m a.s.l in Africa) and the atmosphere tends to contain a higher370

amount of moisture (the average cloud-base height is lower in Asia (358 m371

(ERA5-Land) or 435 m (MERRA-2)) versus that in the Americas (418 m or372

583 m) or Africa and (596 m or 696 m; Tables S2 and S3).373

For the overall classification of 7 IGBP classes, NDVI measures (clima-374

tological minimum, average and maximum), distance to the coast and mea-375

sures of cloud-base height and temperature were the most important (Fig. 3).376

Grasses and crops showed the biggest improvement in identification from377

incorporation of reanalysis temperature and cloud-base height followed by378

shrubs and deciduous broadleaf forests (Table 4).379

3.2. Detection of trends and variability in temperature, cloud-base height,380

precipitation, NDVI and tree cover381

Variability and trends in climatic and environmental variables in TMCFs,382

as identified by the Random Forest Classification (Section 3.1), are analyzed383

over the past two to four decades. Variables investigated are surface-air384

temperature, dew-point temperature, cloud-base height (1980/1981 – 2019),385

precipitation (1998 – 2019), NDVI (2000 – 2019) and tree cover (1982 – 2016;386

Section 2); for these variables the secular trends are calculated for the time387

span over which data are available (Tables 5, S4). Furthermore, associations388

28



1980 1990 2000 2010 2020

1
9

2
1

2
3

Year

T
 (

°C
)

a) Temperature tropics

ERA5 − TMCF locations

ERA5 − TMCF class

MERRA − TMCF locations

MERRA − TMCF class

1980 1990 2000 2010 2020

1
9

2
1

2
3

Year

T
 (

°C
)

b) Temperature Americas

1980 1990 2000 2010 2020

1
9

2
1

2
3

Year

T
 (

°C
)

c) Temperature Africa

+ ENSO − ENSO

1980 1990 2000 2010 2020

1
9

2
1

2
3

Year

T
 (

°C
)

d) Temperature Asia

Figure 4: Temporal variations in MERRA-2 and ERA5 Land 2 m temperatures for TMCFs

from 1981 (ERA5-Land) or 1980 (MERRA-2) until 2019. Continuous lines show averages

for the TMCFs obtained from the Random Forest Classifier (Section 3.1); dashed lines

show averages for the central locations of TMCFs in the Aldrich et al. (1997) data. The

boxes indicate when the Oceanic Niño Index, the three month running average of the

ERSST.v5 (Huang et al., 2017) for the Niño-3.4 region, is 0.7 ◦C above (red) or below

(blue) average. a) Average land-surface temperatures for all TMCFs (sign test between

occurrences of the Oceanic Niño Index (ONI) outside ±0.7◦C and positive or negative

anomaly in MERRA-2 or ERA5-Land temperature is significant (p < 0.05) for both; but r

is not significant (NS) for either). b) Average for TMCFs in the Americas (South America,

Central America and North America; sign test p < 0.05; r (ERA) NS; r (MERRA-2) =

0.44). c) Average for Africa (sign test p < 0.05; r NS). d) Average for Asia (sign test

(ERA) NS; sign test (MERRA-2) p < 0.05; r NS).
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are investigated with two important climate oscillators: the El Niño Southern389

Oscillation (ENSO) (Ropelewski and Halpert, 1987; Philander, 1989) and the390

Indian Ocean Dipole (IOD) (Saji and Yamagata, 2003); their associations are391

reported in the figure captions (Figs 4, 6, 8, 12 and 14). The spatial extent of392

correlations between environmental variables and ENSO or IOD are shown393

in Figs 5, 7, 10, S11, 13 and 15 as well as in the Supplement; a comparison394

of the relative strength of ENSO and IOD averaged for the tropics and each395

of the continental regions is also provided in the Supplement.
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Figure 5: Correlation between mean ERA5-Land annual temperature (1981–2019) and

a) ENSO (the average ERSSTv.5 of the Niño3.4 area); and b) IOD (Saji and Yamagata,

2003). Pixels where correlations are not significant are white. Boundaries of TMCFs are

indicated by magenta lines. The IOD is significantly correlated with temperature for a

larger number of cells than ENSO, in particular in the Americas and Africa (Fig. S3, S4).

396
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3.2.1. Trends and variability in surface-air temperature397

TMCF 2 m surface-air temperatures (bias adjusted; Section 2) are 1–2 ◦C398

lower for ERA5-Land than for MERRA-2, but their variability is similar (399

0.85 < r < 0.93, Fig. 4). The offset between ERA5-Land and MERRA-2400

surface temperature is explained by a stronger association between altitude401

and temperature in ERA5-Land (r = −0.85) than in MERRA-2 (r = −0.71).402

The secular trends in temperature are between 0.01 and 0.02 ◦C per year and403

are highest in the Americas and in Africa. These trends are lower for ERA5404

than for MERRA-2 land-surface temperatures and are smaller in TMCFs405

than in most other land-cover classes (Tables 5, S4). The link between ENSO406

and land-surface temperatures of TMCFs is complex. We use the Oceanic407

Niño Index (ONI) to define the occurrence and strength of ENSO events.408

The ONI is the three month running average of Extended Reconstructed Sea409

Surface Temperature (ERSST.v5) (Huang et al., 2017) anomalies in the Niño410

3.4 region (5◦ S – 5◦ N and 120◦-170◦ W). Here we use a threshold of ±0.7◦C411

to identify a warm or cold ENSO event. In a similar way to ENSO, we use412

the Dipole Mode Index (DMI) to indicate the occurrence and strength of413

the IOD (Saji et al., 1999). DMI is the SST anomaly difference between414

the western (60◦ — 80◦ E, 10◦ S — 10◦ N) and eastern (90◦ — 110◦ E, 10◦
415
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Figure 6: Same as Fig. 4 but for ERA5-Land and MERRA-2 dew-point temperature. a)

(sign test between ONI and ERA5-Land or MERRA-2 dew-point temperature p < 0.05; r

not significant (NS)). b) (sign test (ERA) p < 0.05; sign test (MERRA-2) NS; r (ERA5)

= 0.38; r (MERRA-2) = 0.33). c) (sign test (ERA5) NS; sign test (MERRA-2) p < 0.05;

r NS). d) (sign test (ERA5) p < 0.05; sign test (MERRA-2) NS; r NS).

S -–Equator) Indian Ocean. The correlation between DMI and ONI is low416

(r = 0.3 for 1981–2019 and r = 0.05 for 2001–2019), therefore simple, not417

partial, correlations with environmental variables are used in this section and418

the sections below.419

The link between the above or below normal land-surface temperatures420

concurrent with a warm or cold ENSO event is significant for all time series421

with the exception of the ERA5-Land Asia time series. However, the corre-422

lation between the mean annual ONI and mean land-surface temperatures is423

32



only significant for MERRA-2 in the Americas. Hence, although it is possible424

to infer that land temperatures in TMCFs will increase or decrease during425

a warm or cold ENSO event, it not possible to infer the magnitude of that426

change.427

Correlations between surface-air temperature and IOD are more extensive428

spatially than correlations with ENSO (Fig. 5); this is found across all re-429

gions. However, a large proportion of coastal areas in the Americas and Asia430

have significant correlations between surface-air temperature and ENSO, and431

hence ENSO is relatively important for temperatures in TMCFs.432

3.2.2. Trends and variability in dew-point temperature433

−100 −50 0 50 100 150

−
2

0
−

1
0

0
1

0
2

0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

a) r (ENSO, Td)

−100 −50 0 50 100 150

−
2

0
−

1
0

0
1

0
2

0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

b) r (IOD, Td)

TMCF

Figure 7: Same as Fig. 5 but for dewpoint temperature. The IOD is significantly correlated

with dewpoint temperature for a larger number of cells than ENSO, in particular in Africa

and Asia (Fig. S6, S7).

Year-to-year variability in the dew-point temperature time series is similar434
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to that in the surface-air temperature time series (Fig. 6). ERA5-Land435

dew-point temperatures are lower than MERRA-2 dew-point temperatures,436

similar to surface-air temperatures. For both reanalyses, the secular trends in437

dew-point temperatures are higher than in surface-air temperatures (Table 5,438

S4). The influence of ENSO events is as follows (Fig. 6): warm and cold439

ENSO events lead to a corresponding increase or decrease in ERA5-Land440

dew-point temperature for the entire tropics, the Americas and Asia; and for441

MERRA-2 this relationship is significant for the entire tropics and Africa.442

The mean annual ONI has a significant positive correlation with mean annual443

dew-point temperatures in the Americas, but not in the other continents.444

More areas have significant correlations of dewpoint temperature with the445

IOD than with ENSO; in particular, the absence of significant correlations446

with ENSO for most of Asia is remarkable. Similar to temperatures, correla-447

tions of dewpoint temperatures with ENSO and IOD are significant in many448

areas along coastal regions in the Americas where TMCFs are located.449

3.2.3. Trends and variability in cloud-base height450

The cloud-base height averaged over all TMCFs decreased over time, but451

this negative trend is not consistent; for example within continents areas452

with opposite trends are found. TMCFs in the Americas show an increase in453

34



1980 1990 2000 2010 2020

4
0
0

6
0
0

8
0
0

1
0
0
0

Year

Z
C
 (

m
)

a) Cloud−base height tropics

ERA5 − TMCF locations

ERA5 − classification

MERRA − TMCF locations

MERRA − classification

1980 1990 2000 2010 2020

4
0
0

6
0
0

8
0
0

1
0
0
0

Year

Z
C
 (

m
)

b) Cloud−base height Americas

+ ENSO − ENSO

1980 1990 2000 2010 2020

4
0
0

6
0
0

8
0
0

1
0
0
0

Year

Z
C
 (

m
)

c) Cloud−base height Africa

1980 1990 2000 2010 2020

4
0
0

6
0
0

8
0
0

1
0
0
0

Year

Z
C
 (

m
)

d) Cloud−base height Asia

Figure 8: Same as Fig. 4 but for cloud-base height. a) (sign test between ONI and ERA5

cloud-base height p < 0.05; sign test (MERRA-2) NS; r (ERA) = 0.34; r MERRA) =

0.53). b) (sign test (ERA) NS; sign test (MERRA) p < 0.05; r (ERA)NS; r (MERRA) =

0.36). c) (sign test NS; r NS). d) (sign test NS; r (ERA) = 0.45; r (MERRA) = 0.55).

cloud-base height for large areas whereas for Asian TMCFs a decline in cloud-454

base height is predominant (Fig. 9, Tables 5, S4, S5). For the entire tropics,455

outside the TMCFs (Fig. 9), the cloud base lifted over most of the Americas456

and in large parts of Africa, and descended over most of Asia. Year-to-year457

variability in cloud-base height is smaller in ERA5-Land than in MERRA-2458

(Fig. 9). The relationship between cloud-base height and ENSO events varies459

between continents: during a warm ENSO event areas on the American west460

coast and African east coast show a decline in cloud-base height, whereas461

throughout south-east Asia cloud-base height increases. Correlations be-462
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Figure 9: Secular trend in cloud-base height (m y−1) over the period of 1981–2019. Amer-

ica and Africa show a predominantly upward trend in cloud-base height in their interiors,

whereas most of Asia shows a continued downward trend in cloud-base height.
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Figure 10: Same as Fig. 5 but for cloud-base height. The number of cells significantly

correlated with either ENSO or the IOD is about the same for all continents (Fig. S9,

S10).

tween ONI and cloud-base height are significant for the tropics; they tend to463

be negative for Africa and Asia and positive for the Americas (Fig. 9). The464

36



2000 2005 2010 2015

1
0

0
0

2
0

0
0

3
0

0
0

Year

P
re

c
ip

it
a

ti
o

n
 (

m
m

)

a) TRMM Precipitation tropics

TMCF locations TMCF class

2000 2005 2010 2015

1
0

0
0

2
0

0
0

3
0

0
0

Year

P
re

c
ip

it
a

ti
o

n
 (

m
m

)

b) TRMM Precipitation Americas

2000 2005 2010 2015

1
0

0
0

2
0

0
0

3
0

0
0

Year

P
re

c
ip

it
a

ti
o

n
 (

m
m

)

c) TRMM Precipitation Africa

2000 2005 2010 2015

1
0

0
0

2
0

0
0

3
0

0
0

Year

P
re

c
ip

it
a

ti
o

n
 (

m
m

)

d) TRMM Precipitation Asia

+ ENSO − ENSO

Figure 11: Same as Fig. 4 but for TRMM precipitation from 1998 until 2018 (no significant

trend in any of the time series; none of the sign tests with the ONI are significant). a)

(r = −0.87). b) r = −0.73. c) r NS d) r = −0.85.

number of TMCF cells throughout the tropics with significant correlations465

of cloud-base height and IOD is lower than for correlations with temperature466

or dewpoint temperature, but in Africa this number is relatively large. The467

number of significant correlations in all TMCFs of ENSO with cloud-base468

height, temperature and dewpoint temperature is similar (Fig. S9).469

3.2.4. Trends and variability in precipitation470

TRMM precipitation is lowest for the African TMCFs and highest for471

the Asian TMCFs. TMCF precipitation data averaged by continent do not472

show any secular trends. A significant negative correlation exists between473

the strength of the ENSO ONI signal and average TMCF precipitation for474
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the tropics (r = −0.82), the Americas (r = −0.5) and Asia (r = −0.77).475

Other relationships between ENSO and precipitation are not significant; the476

lower number of ENSO events during the shorter length of the time series477

(compared to the reanalysis time series) is probably a contributing factor.478

The spatial distribution of correlations between precipitation and ENSO (Ro-479

pelewski and Halpert, 1987) or IOD (Saji and Yamagata, 2003) have been480

published elsewhere; however, they are included in the Supplement to pro-481

vide figures that are consistent with the analysis of other variables (Fig. S11).482

The number of cells significantly (negatively) correlated with ENSO is much483

larger than the number of cells correlated with the IOD (Fig. S12); but for484

Africa the areas of positive and negative correlations are similar. TMCFs, ev-485

ergreen broadleaf forests and deciduous broadleaf forests show the largest %486

area with negative correlations; but for the IOD the majority of correlations487

is positive.488

3.2.5. Trends and variability NDVI489

TMCFs in Asia have the highest NDVI values, those in Africa the low-490

est. NDVI time series averaged over all TMCFs show a significant positive491

trend; this trend is explained by positive trends in the Americas and in Asia;492

however, there is no significant average trend for the African TMCFs (Ta-493
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Figure 12: Same as Fig. 4 but for NDVI from 2000 until 2019. No significant sign tests or

significant correlations are found between NDVI and ONI or between NDVI and ENSO.
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Figure 13: Same as Fig. 5 but for NDVI. More areas show a significant correlation with

ENSO than with the IOD; throughout the tropics TMCFs and evergreen broadleaf forest

have the largest % area affected (Fig. S13).

ble 5, S4). More TMCF areas have significant correlations of NDVI with494

ENSO than with the IOD; although the number of areas with significant495

correlations is smaller than that for temperature, cloud-base height and pre-496
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Figure 14: Same as Fig. 4 but for MEaSUREs tree-cover fraction from 1982–2016; 1994

and 2000 are not included because of poor data coverage (Song et al., 2018). No significant

sign tests or significant correlations are found between tree cover and ONI.

cipitation. The number of positive correlations is larger than the number of497

negative correlations. The average time series show no significant correlations498

with either ENSO or the ONI.499

3.2.6. Trends and variability in tree cover500

Tree cover as defined in the MEaSUREs data set (Song et al., 2018)501

increases in TMCFs in the Americas, Asia and the entire tropics, but does502

not show a trend in Africa. For the Americas and Asia more areas show an503

increase in tree-cover over time than a decline. No significant association is504

found between changes in tree cover and the occurrence of ENSO events or505

between tree cover and strength of the ENSO signal. A limitation of the506
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Figure 15: Same as Fig. 5 but for % tree cover. A small percentage area shows a signif-

icant correlation with either ENSO or the IOD (Fig. S14), however in some areas where

deforestation rates are high (southern parts of the Amazon in Brazil, South Borneo, West

Sumatra) negative correlations between tree cover and either ENSO or the IOD are found.

MEaSUREs data set is that it does not provide information about the type507

of tree cover.508

The percentage of areas with significant correlations of tree-cover and509

either ENSO and IOD is small; however a higher density of pixels with sig-510

nificant correlations can be found in areas where deforestation rates are high511

(Fig. 15.512

3.2.7. Summary trend and variability analysis513

Trend analysis showed that over the past decades while temperatures in514

TMCFs increased as a result of global warming, the increase was on average515

smaller than for other tropical land-cover types. There is mixed evidence516
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for TMCFs becoming drier; in the American TMCFs a significant negative517

trend was found in the TRMM precipitation data but for other continents no518

change was found in the averaged TRMM precipitation. Cloud-base height519

averaged over all TMCFs decreased, leading on average to wetter conditions;520

however, for some regions, in particular in the Americas, the cloud-base521

height increased. Outside the TMCFs, the increase in cloud-base height was522

large in the interiors of South America and Africa and it is an open question523

if the lifting of the cloud base will extend to the adjacent TMCFs in the524

future. TMCFs, on average, tend to become greener; this was evidenced525

both by an average increase in NDVI and in tree-cover. There are, however,526

important exceptions in particular in Africa – the average NDVI and tree527

cover for the continent did not show a significant trend; areas with positive528

and negative trends were similarly large and trends cancelled each other out.529

For the entire tropics, a larger proportion of TMCFs showed and increase530

in tree cover whereas for evergreen broadleaf forests the areas with positive531

and negative changes were similar in size. NDVI did increase on average in532

both; this positive trend was smaller in evergreen broadleaf vegetation than533

in TMCFs in the Americas and Asia, but was larger in Africa (Table 5).534

A link was found between climate oscillators, IOD and ENSO and the535
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climate of TMCFs. For most of the TMCFs, temperature was positively536

correlated to the IOD. Positive associations with ENSO occurred over fewer537

areas for some of the TMCFs in the Americas and Asia. Conditions tend538

to be drier during warm ENSO events in American TMCFs because of a539

reduction in rainfall and in Asian TMCFs both because of a reduction in540

rainfall and a lifting of the cloud-base. For African TMCFs, the effects were541

much less pronounced, but there was a tendency for the cloud-base height542

to decrease over TMCFs in eastern regions and to lift in central regions.543

The effect on vegetation greenness and tree cover associated with ENSO and544

IOD variations was much smaller, and some cases opposite to that noticed545

in precipitation.546

3.3. Sensitivity of land-cover classification to an arbitrary increase in T2m547

and Td,2m548

The sensitivity of the Random Forest Classifier is explored by modelling549

the response to a change in climate that is in line with the ‘lifting cloud-550

base hypothesis’. Using the Random Forest Classifier, the spatial extent551

of TMCFs (and of other land-cover classes) is predicted for an increase in552

temperature by 1 K and an increase in cloud base-height by 100 m, which cor-553

responds to an increase in Td,2m of 0.25 K. This sensitivity analysis provides554
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an indication of the stability of the classification and indicates the direc-555

tion of change of land-cover when exposed to a warmer, drier climate. The556

adopted approach does not address the response of individual species to a557

warming event; such an approach would provide a more realistic projection as558

to how the composition of biomes is affected. One limitation of the adopted559

approach is, for example, that it is not possible to simulate the composition560

of biomes not in existence under current conditions such as non-analogue561

species assemblages which have been observed in response to past glaciations562

(Street-Perrott et al., 2007).563

The results of the sensitivity analysis are shown in Fig. 16. The effect of a564

change in temperature and cloud-base height on the classification is smallest565

in the Americas and highest in Africa and Asia. A proportion of TMCF566

cells in Africa and the Americas move into one or more of the drier classes567

(predominantly deciduous broadleaf and savanna). In Asia the same shift568

occurs, but here the loss of TMCF cells is more than compensated for by a569

movement of evergreen broadleaf forests into the TMCFs. Hence the lifting570

of the cloud base has the potential to reduce the spatial extent of TMCFs in571

some areas, e.g. in Africa, and expand it in others, in particular in Asia. The572

change in altitude of TMCFs showed a divergent pattern; at lower altitudes,573
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Figure 16: Sensitivity analysis of the Random Forest classification in response to a 1 K

increase in temperature and a 100 m increase in cloud-base height. The diagonal shows the

overall percentage change: positive numbers indicate the land cover class has increased in

size, negative numbers that it has decreased. Off diagonal numbers in the columns show

the increase of the new land-cover class.

below 1000 m a.s.l. (Asia and Americas) or 2000 m. a.s.l (Africa), TMCFs on574

average moved upward whereas at altitudes above 4000 m a.s.l. (Americas)575

or 2000 m. a.s.l. (Asia) TMCFs moved downward (not shown).576

4. Discussion577

The aim of the present study is to estimate the spatial distribution of TM-578

CFs and to investigate how their climate, vegetation greenness and tree-cover579

45



fraction have changed during the past 20 to 40 years. An important aspect580

of this analysis is the use of ERA5-Land and MERRA-2 reanalysis temper-581

ature, dew-point temperature and cloud-base height to obtain information582

about conditions favourable for TMCFs. Reanalysis uses physical represen-583

tations of the atmosphere to estimate the spatial and temporal distribution584

of meteorological variables globally including areas where no measurements585

are available. The availability of reanalysis at higher spatial resolutions than586

before offers the prospect of obtaining information relevant at more local587

scales.588

4.1. Random Forest classification results589

The Random Forest classifier (Breiman, 2001; Liaw and Wiener, 2002)590

was informed by a range of data sets, directly or indirectly linked to the hu-591

mid conditions of TMCFs (Grubb and Whitmore, 1966; Aldrich et al., 1997;592

Bruijnzeel et al., 2011), to obtain estimates of their spatial distribution. The593

data used were altitude, slope, relief, distance from the coast and seasonal594

statistics (monthly minimum, mean and maximum) of NDVI, temperature,595

dewpoint temperature, cloud-base height and precipitation (predominantly596

rainfall and excluding occult precipitation).597

For the identification of TMCFs, relief and slope were the two most im-598
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portant variables. This indicates that the uplift of air, forced by orography,599

and associated increase in humidity leading to more frequent supersaturated600

conditions and occurrence of fog and low-level clouds is a key factor in deter-601

mining the location of TMCFs. Other important variables are measures of602

NDVI seasonality and of spatial variability in NDVI; these measures are the603

most important for the identification of evergreen broadleaf forests as well604

as for the other IGBP land-cover types. Use of reanalysis temperature, dew-605

point temperature and cloud-base height improved the classification results606

of TMCFs but, rather surprisingly, also those of grasslands and crops. This607

latter result is intriguing and suggests that conversion of natural cover into608

grass land or crops affects temperatures and humidity of the overlying atmo-609

sphere (Sagan et al., 1979; Pielke Sr et al., 2007). The improvement of the610

classification by incorporation of climate data emphasizes the link between611

climate and vegetation that has been long recognized, e.g. in the studies612

by Köppen (Belda et al., 2014) and early attempts to model biome primary613

productivity (Lieth, 1975).614

The total TMCF area estimated, 2.1 x 106 km2 ± 0.5 x 106 km2, is at615

the upper end of previous estimates. The variables most important for the616

identification of TMCFs (measures of orography, NDVI, temperature and617
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cloud-base height), are, with the exception of NDVI, not directly affected by618

humans. Hence it is probable that in some cases the classifier has identified619

potential TMCF locations rather than actual ones, e.g. in the Andes and in620

Africa there is ample evidence that humans have affected forests, including621

TMCFs, for centuries (Bush et al., 2008; Di Pasquale et al., 2008; Feeley622

et al., 2011; Sylvester et al., 2017; Marchant et al., 2018).623

Our approach to identify TMCFs has similarities to the study by Mulligan624

and Burke (2005) that identified ‘cloud affected’ montane forests. The latter625

study used cloud frequency observed from satellite and cloud-base height626

(referred to as lifting condensation level) from a 1 km climatology based on627

spatial interpolation of station data (Hijmans et al., 2005). The agreement628

between the TMCF area for 25 countries estimated in the present study and629

in the study by Mulligan and Burke (2005) was good for the Americas and630

Asia, but not for Africa; here Mulligan and Burke (2005) estimated a much631

larger extent of ‘cloud affected’ montane forests. Possible explanations for632

this difference are 1) that the reanalysis used in the present study shows drier633

conditions over Africa and higher cloud-base height values than those used634

in Mulligan and Burke (2005) or 2) that the RF classifier used in the present635

study is constrained by training sites distributed across Africa that indicate636
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a non-TMCF class; as a result of which the classification obtains clusters of637

TMCFs located closely to the training sites identified by Aldrich et al. (1997).638

It is worth noting that both studies identify the potential for a large presence639

of TMCFs in Ethiopia, despite this region having a modest presence in the640

Aldrich et al. (1997) data. In the Ethiopian highlands, a large proportion of641

old-growth forests has disappeared and has been replaced by crop land and642

tree plantations (Dessie and Kleman, 2007; Kidane et al., 2012).643

TMCFs environments differ between continents. In Africa, TMCFs tend644

to be drier, rainfall and atmospheric humidity are lower and the distance to645

the coast is larger, and indications are that they are more patchy as well —646

NDVI values are lower and spatially more variable than in other continents,647

furthermore the probability of their occurrence estimated by the RF classifier648

is lower and the proportion of crop land is higher. TMCFs in Asia appear649

warmer and are located at lower altitudes than in other continents.650

4.2. Detection of trends in temperature, cloud-base height, precipitation NDVI651

and tree cover652

Because of the relatively low resolution of the data, 0.1◦×0.1◦, the change653

detection was focused on the identification of regional, rather than local654

pressures on TMCFs. We analysed changes in TMCF temperature, cloud-655
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base height, NDVI and tree cover and found large differences among and656

within continents.657

Climate change potentially poses a threat to the future existence of TM-658

CFs; its most important adverse effects are linked to increased temperatures659

and to decreased precipitation. We found ample evidence for increased tem-660

peratures in TMCFs over the past 40 years, although the rate of increase was661

lower than for many other tropical land-cover classes. Species will either have662

to adapt to warmer conditions or move to higher altitudes. Evidence for up-663

ward movement of tree species in response to global warming has been found664

in the Andes for example (Feeley et al., 2011). This upward movement has665

been found for extended periods during the Holocene as well (Bush et al.,666

2005, 2008; Di Pasquale et al., 2008). A second, potentially more serious667

effect is that the cloud base may be elevated in response to global warm-668

ing and that occult precipitation, which is an important source of water for669

TMCFs, is diminished as a result. This ‘lifting cloud-base hypothesis’ was670

analyzed using ERA5-Land and MERRA-2 cloud-base height of the past four671

decades. It was found that surface-air temperature averaged over all TMCFs672

increased, however, dew-point temperature increased as well. In the Amer-673

icas the increase in dew-point temperature was smaller than in surface-air674
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temperature, resulting in an overall increase in cloud-base height over time675

in agreement with the ‘lifting cloud-base hypothesis’. In Asia and parts of676

Africa, dewpoint temperatures increased more than surface-air temperatures,677

leading to a decrease in cloud-base height; about twice as many areas showed678

a decrease in cloud-base height compared to an increase (Table S5). Locally679

there are important exceptions to this trend, e.g. in several East African680

TMCFs cloud-base height increases leading to a reduction in occult precip-681

itation (Cuńı-Sanchez et al., 2018; Los et al., 2019). The decrease in occult682

precipitation poses a problem for these TMCFs since in Africa, compared683

to other continents, TMCFs are drier and their dependency on occult pre-684

cipitation is greater. Cloud-base height changed in different ways across the685

tropics. For the interiors of South America and Africa, the cloud-base height686

increased substantially (up to 400 m in 40 years) whereas in tropical Asia687

cloud-base height decreased. TMCFs in Asia are by and large located on688

islands, suggesting a control of the ocean on the observed increase of atmo-689

spheric humidity (Chen and Liu, 2016) and higher dew-point temperatures.690

A caveat is that the increase in dewpoint temperature for an important part691

the result of the bias correction of the reanalyses which is based on station692

data (Table S5). The correction affects the ERA5-Land products more than693
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the MERRA-2 products. Trends in TRMM precipitation between 2000 and694

2019 tended to be local, whereas changes in cloud-base height were notice-695

able when averaged over continents and appeared a more important factor696

affecting water inputs into TMCFs.697

MEaSUREs tree-cover data (Song et al., 2018) declined between 1982698

and 2016 in about half of the African TMCFs and increased in most of the699

remainder; the resulting average secular trend in all African TMCFs was not700

significant. Regional studies in Tanzania (Hamunyela et al., 2020) found that701

deforestation rates in montane forests are larger than rates of forest recovery702

— the MEaSUREs tree-cover data (Song et al., 2018) show a decline here as703

well. By contrast, both in the American and Asian TMCFs a net increase704

in tree cover between 1982 and 2106 was found, although about 20 % of705

TMCFs in both regions showed a decline. The MEaSUREs data set (Song706

et al., 2018) has been tested extensively and is suitable for change detection,707

however it does not distinguish between tree-cover types and hence it is not708

possible to conclude whether the increases in forest cover in the tropics are709

linked to an increase in natural vegetation or to an increase in agroforestry.710

Similar to tree cover, average MODIS NDVI (2000–2019) in African TMCFs711

did not show a significant trend but did increase in American and Asian712
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TMCFs. Increased NDVI has been attributed to elevated atmospheric CO2713

concentrations — the attribution varies between 40 % to 70 % (Los, 2013;714

Zhu et al., 2016), to increased temperatures in mid-to-high latitudes (Myneni715

et al., 1997; Slayback et al., 2003) and at higher altitudes (Wang et al., 2011).716

These effects could also contribute to an increase in tree-cover, in particular at717

higher elevations. In addition, Song et al. (2018) attributed 60 % of increased718

tree cover world-wide to land-cover change and forest restoration. Evergreen719

broadleaf forests did not see a net increase (with the exception of Asia),720

hence our results are different from previous analyses where the decline in721

tree cover in TMCFs was higher than in other tropical forests (FAO, 1995;722

Doumenge et al., 1995; Mulligan and Burke, 2005). Potential explanations723

for this are (1) the remoteness of TMCFs (Mulligan, 2010; Bruijnzeel et al.,724

2011; Hamunyela et al., 2020); this, combined with the sometimes hostile725

climate, the less accessible terrain, and deforestation legislation preventing726

felling on slopes above a certain gradient, make it more difficult for large scale727

conversion of TMCFs than for lowland forests (2) replacement of original728

forests or reforesting of areas with tree plantations to provide timber and729

fuel (Dessie and Kleman, 2007; Mart́ınez et al., 2009; Kidane et al., 2012)730

(3) global change (temperature and atmospheric CO2) which in some areas731
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results in an upward movement of trees and stimulation of tree growth (Feeley732

et al., 2011), and (4) a greater appreciation of the ecosystem services provided733

by TMCFs and the establishment of incentive schemes for their conservation734

(Asquith et al., 2008; Muñoz-Piña et al., 2008; Van Hecken et al., 2012).735

4.3. Climate oscillators736

Climate oscillators, ENSO and IOD, affect large parts of the tropics and737

are of importance for the climate of TMCFs. ENSO is more closely linked738

to rainfall variability in TMCFs than the IOD across the tropics; for the739

west coast of the Americas and in Asia, warm (cold) ENSOs are associated740

with a decrease (increase) in rainfall (Ropelewski and Halpert, 1987; Saji and741

Yamagata, 2003). ENSO and the IOD have an equally large effect on rainfall742

in African TMCFs; a positive phase of the IOD is associated with increased743

rainfall, whereas a warm ENSO depresses rainfall. For most TMCFs, the744

IOD is more strongly associated with variations in surface-air temperature745

and dewpoint temperature than ENSO; the relationship of the IOD and746

temperature or dewpoint temperature is predominantly positive. ENSO and747

IOD affect cloud-base height in TMCFs for a similar percentage of area;748

however the sign of the relationship varies from one continent to the next.749

The relationship between climate oscillators and NDVI or tree cover is750
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less clear than that for precipitation and cloud-base height. For most TMCFs751

and tropical evergreen broadleaf forests NDVI values are not affected, even752

during periods with less rainfall. For areas that show a significant correlation,753

NDVI in TMCFs tends to be positively correlated with ENSO — this positive754

relationship is consistent for all continents and is unlikely to be caused by a755

decrease in rainfall but could be linked with a reduction in cloud cover, more756

suitable illumination conditions and a less contaminated observation by the757

satellite sensor (Morton et al., 2014). Some regions in the Americas, notably758

the southern edge of the Amazon, and in Asia show a negative correlation759

between ENSO and tree-cover. Drier conditions in these areas during warm760

ENSO events favour forest clearing and biomass burning — increases in forest761

fires and clearing during warm ENSO events have been reported elsewhere762

(Malingreau et al., 1985; Mori, 2000; Achard et al., 2002; Lewis et al., 2011).763

4.4. Response to imposed ‘lifting cloud base’764

Climate models show a lifting of the cloud base that will reduce the765

amount of occult precipitation that TMCFs receive (Still et al., 1999). The766

effect of an idealized hypothetical 1 K warming and lifting of the cloud base767

by 100 m, on the spatial distribution of TMCFs was explored; this showed a768

reduction in their extent in the Americas and Africa. The outcome for Asia,769
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however, was different since here the reduction in TMCF area is more than770

compensated for by a shift of broadleaf evergreen vegetation into TMCFs —771

hence a hypothesized lifting of the cloud base associated with climate change772

may not lead to a reduction in the extent of TMCFs in Asia. The analy-773

sis of past climates of the last 30,000 years also indicates that the response774

of TMCFs in the three major tropical regions was different. At the Last775

Glacial Maximum (LGM), in the wettest parts of the Australasian “Mar-776

itime Continent” and South America, cloud-adapted upper-montane taxa777

migrated downslope into areas currently occupied by EBLs (Flenley, 1998).778

By contrast, in drier parts of Africa, the corresponding montane elements779

were restricted to scattered pockets at lower elevations, in association with780

C4 graminoids and savanna/xerophytic trees and shrubs, forming plant com-781

munities that have no modern counterparts (Street-Perrott et al., 2007; Los782

et al., 2019). TMCFs and mountain forests are more vulnerable in the larger783

and more ancient cratonic continent of Africa compared to the other conti-784

nents, since mountains tend to be much more isolated, and TMCFs are often785

surrounded by dry forests and savannas (Bussmann, 2002). This is not the786

case in the tectonically more active and more continuous mountain ranges of787

Asia and South America, where TMCFs are more closely spaced.788
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5. Conclusions789

The ERA5-Land and MERRA-2 reanalysis temperature and dewpoint790

temperature provide useful information that improves the classification of791

TMCFs and allow analysis of variations in their temperature, dewpoint tem-792

perature and cloud-base height.793

We estimate that TMCFs cover about 4 % ±1 % of the tropical land794

surface; this estimate is at the upper end of previous estimates and probably795

includes areas where tree cover has been reduced or has been replaced by796

tree plantations.797

Evidence of significant warming of TMCFs was found in all continents798

(0.15 ◦C y−1 – 0.23 ◦C y−1); however, the amount of warming was higher for799

most other tropical land-cover types.800

Testing of the ‘lifting cloud-base hypothesis’ with ERA5-Land and MERRA-801

2 reanalyses of the past 40 years showed that it is valid for TMCFs in the802

Americas and to a lesser extent in Africa, but for TMCFs in Asia cloud-803

base height decreased because Td,2m increased more than T2,m due to the804

(counter-intuitive) effects of increasing atmospheric moisture.805

Changes in TMCF tree cover were less unidirectional than previously806

thought; areas with reduced tree cover were found in all continents, however807
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in the Americas and Asia more TMCFs showed a gain in tree cover. TMCFs808

with tree loss in Africa were of a similar extent to those showing a gain in809

tree cover. The data used did not provide information on the type of tree810

cover (natural versus agro-forestry) and there is evidence from the literature811

that locally, tree plantations explain a substantial part of this increase.812

ENSO signals were dominant, compared to IOD signals, in TRMM pre-813

cipitation of American and Asian TMCFs, whereas the reverse was found for814

temperature and dewpoint temperature in TMCFs across the tropics. ENSO815

and IOD signals were approximately equally important for precipitation in816

African TMCFs and for cloud-base height in TMCFs across the tropics.817

The RF classifier projects that a hypothetical lifting of the cloud base by818

100 m throughout the tropics would reduce the spatial extent of TMCFs in819

the Americas and in particular in Africa, but would increase it in Asia. A820

high sensitivity of African TMCFs to climate change is supported by longer-821

term evidence reported in palaeoecological studies .822
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Doumenge, C., Gilmour, D., Pérez, M.R., Blockhus, J., 1995. Tropical905

montane cloud forests: Conservation status and management issues, in:906

Hamilton, L.S., Juvik, J.O., Scatena, F.N. (Eds.), Tropical Montane Cloud907

Forests, Springer US, New York, NY. pp. 24–37.908

Feeley, K.J., Silman, M.R., Bush, M.B., Farfan, W., Cabrera, K.G., Malhi,909

Y., Meir, P., Salinas Revilla, N., Quisiyupanqui, M.N.R., Saatchi, S.,910

2011. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791.911

doi:10.1111/j.1365-2699.2010.02444.x.912

63



Flenley, J.R., 1998. Tropical forests under the climates of the last 30,000913

years. Clim. Change 39, 177–197, doi: 10.1023/A:1005367822750.914

FAO – Food and Agricultural Organization, 1995. Forest Resources Assess-915

ment 1990 – Global Synthesis – FAO Forestry Paper 124. Technical Report.916

FAO. Rome, http://apps.fao.org/.917

Foster, P., 2001. The potential negative impact of global climate change on918

tropical montane cloud forest. Earth Sci. Rev. 55, 73–106.919

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,920

Sibley, A., Huang, X.M., 2010. MODIS collection 5 global land cover:921

Algorithm refinements and characterization of new datasets. Remote Sens.922

Environ. 114, 168–182.923

Fu, Q., Manabe, S., Johanson, C.M., 2011. On the warming in the tropical924

upper troposphere: Model versus observations. Geophys. Res. Lett. 38,925

L15704, doi:10.1029/2011GL048101.926

Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs,927

L., Randles, C andDarmenov, A., Bosilovich, M.G., Reichle, R., Wargan,928

K andCoy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty,929

A., da Silva, A., Gu, W., Kim, G.K., Koster, R., Lucchesi, R., Merkova,930

64



D., Nielsen, J.E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,931

Schubert, S.D., Sienkiewicz, M., Zhao, B., 2017. The Modern-Era Retro-932

spective Analysis for Research and Applications, Version 2 (MERRA-2),.933

J. Clim. 30, 5419–5454.934

Grubb, P.J., Whitmore, T.C., 1966. A comparison of montane and low-935

land rain forets in Ecuador: II. The climate and its effects on the dis-936

tribution and physiognomy of the forests. J. Ecol. 54, 303–333, doi:937

10.2307/2257951.938

Hamilton, L.S., Juvik, J.O., Scatena, F.N., 1995. The puerto rico trop-939

ical cloud forest symposium: Introduction and workshop synthesis, in:940

Hamilton, L.S., Juvik, J.O., Scatena, F.N. (Eds.), Tropical Montane Cloud941

Forests, Springer US, New York, NY. pp. 1–18.942

Hamunyela, E., Brandt, P., Shirima, D., Do, H.T.T., Herold, M., Roman-943

Cuesta, R.M., 2020. Space-time detection of deforestation, forest degra-944

dation and regeneration in montane forests of Eastern Tanzania. Int. J.945

Appl. Eearth Obs. Geoinf. 88. doi:10.1016/j.jag.2020.102063.946

Helmer, E.H., Gerson, E.A., Scott Baggett, L., Bird, B.J., Ruzycki, S., Vo-947

gesser, S.M., 2019. Neotropical cloud forests and páramo to contract and948

65



dry from declines in cloud immersion and frost. PLOS One , e0213155 doi:949

10.1371/journal.pone.0213155.950

Hemp, A., 2009. Climate change and its impact on the forests of Kilimanjaro.951

Afr. J. Ecol. 47, 3–10, doi: 10.1111/j.1365–2028.2008.01043.x.952

Hijmans, R.J., 2019. Raster: Geographic Data Analysis and Modeling. URL:953

https://CRAN.R-project.org/package=raster. r package version 3.0-2.954

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005.955

Very high resolution interpolated climate surfaces for global land areas.956

Int. J. Climatol. 25, 1965–1978, doi: 10.1002/joc.1276.957

Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Law-958

rimore, J.H., Menne, M.J., Smith, T.M., Vose, R.S., Zhang, H., 2017.959

Extended reconstructed sea surface temperature, version 5 (ERSSTv5):960

Upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205, doi:961

10.1175/JCLI–D–16–0836.1.962

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G.,963

2002. Overview of the radiometric and biophysical performance of the964

modis vegetation indices. Remote Sens. Environ. 83, 195–213.965

66



Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Nelkin, E.J., Bowman,966

K.P., Hong, Y., Stocker, E.F., Wolff, D.B., 2007. The TRMM multi-967

satellite precipitation analysis: Quasi-global, multi-year, combined-sensor968

precipitation estimates at fine scale. J. Hydrometeorol. 8, 38–55, doi:969

10.1175/JHM560.1.970

Huffman, G.J., Adler, R.F., Bolvin, D.T., Nelkin, E.J., 2010. Satellite971

Rainfall Applications for Surface Hydrology. Springer Verlag, Heidelberg,972

Germany. chapter 1. The TRMM Multi-satellite Precipitation Analysis973

(TMPA), doi: 10.1007/978-90-481-2915-7.974

Jarvis, A., Mulligan, M., 2011. The climate of cloud forests. Hydrol.Process.975

25, 327–343, doi: 10.1002/hyp.7847.976

Karmalkar, A.V., Bradley, R.S., Diaz, H.F., 2008. Climate change scenario977

for Costa Rican montane forests. Geophys. Res. Lett. 35, L11702, doi:978

10.1029/2008GL033940.979

Kidane, Y.O., Stahlmann, R., Beierkuhnlein, C., 2012. Vegetation dynamics,980

and land use and land cover change in the Bale Mountains, Ethiopia.981

Environ. Monit. Assess. 12, 7473–7489, doi: 10.1007/s10661–011–2514–8.982

Lawrence, M.G., 2005. The relationship between relative humidity and the983

67



dewpoint temperature in moist air: A simple conversion and applications.984

Bull. Am. Meteorol. Soc. 86, 225–233, doi: 10.1175/BAMS–86–2–225.985

Lewis, S.L., Brando, P.M., Phillips, O.L., van der Heijden, G.M.F., Nepstad,986

D., 2011. The 2010 amazon drought. Science 331, 554, doi: 10.1126/sci-987

ence.1200807.988

Liaw, A., Wiener, M., 2002. Classification and regression by randomforest.989

R News 2, 18–22. URL: htpps://CRAN.R-project.org/doc/Rnews/.990

Lieth, H., 1975. Primary Productivity of the Biosphere. Springer Verlag,991

Berlin, Heidelberg and New York. chapter Modelling primary productivity992

of the world. Ecol. Studies 14, pp. 237–263.993

Lister, B.C., Garcia, A., 2018. Climate-driven declines in arthropod abun-994

dance restructure a rainforest food web. PNAS 115, E10397–E10406, doi:995

0.1073/pnas.1722477115.996

Los, S.O., 2013. Analysis of trends in fused AVHRR and MODIS NDVI data997

for 1982–2006: Indication for a CO2 fertilization effect in global vegetation.998

Global Biogeochem. Cycles 27, 318–330, doi: 10.1002/gbc.20027.999

Los, S.O., Collatz, G.J., Sellers, P.J., Malmstrom, C.M., Pollack, N.H., De-1000

68



Fries, R.S., Bounoua, L., Parris, M.T., Tucker, C.J., Dazlich, D.A., 2000.1001

A global 9-yr biophysical land surface dataset from NOAA AVHRR data.1002

J. Hydrometeorol. 1, 183–199.1003

Los, S.O., Street-Perrott, F.A., Loader, N.J., Froyd, C.A., Cuńı-Sanchez, A.,1004
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Table 3: Assessment of the accuracy of the Random Forest Classification using the ERA5-

Land T2m and ZC products. The diagonal of the confusion matrix shows the number of

training sites correctly classified; the off-diagonal numbers show the type-1 and type-2

classification errors. The out-of-bag (OOB) estimate of error rate for the overall classifi-

cation is 5.7 %. The column ‘% Error’ shows the classification error per class, ‘r MODIS’

shows the correlation between the class probability estimated by the Random Forest Clas-

sifier and the % cover of the same class in the aggregated MODIS classification (Friedl

et al., 2010; Sulla-Menashe et al., 2019), and ‘% Area’ shows the percentage area per class

as estimated by the Random Forest Classifier. (EBL = Evergreen broadleaf forest; DBL

= Deciduous broadleaf forest; see also Table 2)

Predicted Class

TMCF 2 3 4 5 6 7 8 % Error r MODIS % Area

A
ct
u
a
l
C
la
ss

1. TMCF 349 58 13 10 0 19 9 2 24 4.3

2. EBL 36 952 10 1 0 0 0 0 5 0.93 20.3

3. DBL 14 14 940 30 0 0 1 0 6 0.77 8.0

4. SAV 9 2 29 935 0 14 10 0 6 0.82 20.9

5. Shrub 0 0 0 0 956 26 0 4 3 0.87 5.6

6. Grass 2 0 0 10 12 953 23 0 5 0.84 20.9

7. Crop 1 0 0 34 0 33 932 0 7 0.70 5.5

8. Barren 0 0 0 0 0 0 0 999 0 0.98 14.7
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Table 4: Error estimates (η) of classifications not using T2m and ZC products (no reanalysis

–η NR) and those using the ERA5-Land (η E) and MERRA-2 (η M) T2m and ZC products.

Columns η E and η M are repeated from tables 3 and S2 for convenience. Errors in columns

η E–M, η E–NR, and η M–NR represent the mean deviations between two classifications

(e.g. η E–M indicates average of error ERA5-Land compared to MERRA-2 and the other

way around). EBL = Evergreen broadleaf forest; DBL = Deciduous Broadleaf forest

(Table 2).

Class η NR (%) η E (%) η M (%) η E–M (%) η E–NR (%) η M–NR (%)

1. TMCF 25.2 24.1 24.7 14.2 13.9 12.6

2. EBL 5.3 4.7 4.9 3.6 4.0 3.7

3. DBL 6.6 5.9 5.4 11.4 17.9 16.7

4. Savanna 7.0 6.4 6.4 5.3 8.5 8.4

5. Shrub 3.7 3.0 2.3 5.0 11.4 11.1

6. Grass 9.6 4.7 5.7 4.2 7.1 7.6

7. Crop 9.8 6.8 6.4 15.2 22.2 24.1

8. Barren 0 0 0 0.3 1.0 1.0

mean error 7.2 5.7 5.7 5.4 8.0 7.9
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Table 5: Secular trends in ERA5-Land T2m, ZC , TRMM Precipitation, MODIS NDVI,

MEaSUREs tree-cover fraction and surface area with positive or negative trends in MEa-

SUREs tree cover for 8 land-cover classes (columns ‘TMCF’ through ‘Barren’) as well as

for locations of TMCFs identified by Aldrich et al. (1997) (column marked ‘Sites’). Zero

trends with significance of p > 0.05 are indicated by a ‘-’.

Sites TMCF EBL DBL SAV Shrub Grass Crop Barren

ERA5 T2m (10 × K y−1): 1981–2019

Tropics 0.20 0.20 0.32 0.26 0.29 0.20 0.26 0.21 0.39

Americas 0.24 0.23 0.34 0.34 0.34 0.21 0.25 0.34 0.17

Africa 0.20 0.19 0.38 0.27 0.27 0.21 0.29 0.30 0.40

Asia 0.15 0.15 0.20 0.18 0.16 0.19 - 0.13 -

ERA5 Td,2m (10 × K y−1): 1981–2019

Tropics 0.24 0.23 0.24 0.23 0.17 - 0.24 0.38 0.47

Americas 0.18 0.16 0.19 0.13 0.07 - 0.09 0.19 -

Africa 0.30 0.27 0.34 0.21 0.23 0.19 0.29 0.34 0.49

Asia 0.31 0.30 0.32 0.35 0.34 - 0.19 0.44 0.32

ERA5 ZC (m y−1): 1981–2019

Tropics -0.55 -0.39 0.97 0.5 1.46 - - -2.17 -

Americas 0.84 0.89 1.92 2.69 3.39 - 2.00 1.95 4.09

Africa -1.26 -0.98 - - - - - - -

Asia -2.08 -1.79 -1.48 -2.13 -2.32 - - -3.88 -

TRMM Precipitation (mm y−1): 1998–2019

Tropics - - - - - -8.82 -3.88 - -

Americas - -8.57 - - - - -6.66 - -

Africa - - -8.02 - - - - -6.79 -

Asia - - - - - -14.83 - - -

MODIS NDVI × 1000 (- y−1): 2000–2019

Tropics 0.78 0.96 0.45 0.71 0.54 - - 1.39 -

Americas 0.91 1.07 0.36 - - 0.52 - 0.96 0.35

Africa - - 0.62 0.78 0.54 - - - -

Asia 0.878 1.11 0.55 0.98 1.84 - - 2.19 0.78

MEaSUREs Tree cover (% y−1): 1982–2016

Tropics 0.19 0.21 - - -0.09 - - 0.04 -

Americas 0.20 0.23 - -0.10 -0.19 - - 0.08 -

Africa 0.06 - - - - - - - -

Asia 0.24 0.28 0.15 0.15 0.10 - - 0.05 -
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Table 6: Total area of land-cover classes estimated with the Random Forest Classifier

(Section 3.1) and areal extent showing significant positive or negative secular trends in

MEaSUREs tree cover (Song et al., 2018) for each of the 8 land-cover classes.

TMCF EBL DBL SAV Shrub Grass Crop Barren

Total Area (km2 × 1000)

Tropics 2120 10030 3930 10310 2780 10290 2630 7270

Americas 1010 6080 1090 4470 190 1590 370 260

Africa 310 1870 1790 4840 1090 6960 710 7000

Asia 790 2070 1050 1000 1510 1740 1550 10

Area with positive secular trend in tree cover (km2 × 1000)

Tropics 1590 5000 1890 4450 340 4560 1860 80

Americas 790 2630 440 1500 30 630 260 30

Africa 160 830 730 2290 190 3200 390 50

Asia 650 1530 710 660 120 730 1210 1

Area with negative secular trend in tree cover (km2 × 1000)

Tropics 520 5030 2040 5850 1620 4410 750 30

Americas 220 3450 640 2970 40 940 110 10

Africa 150 1040 1060 2560 440 2480 310 20

Asia 150 540 340 330 1140 990 320 0

81


