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Abstract
The Inertia Relief (IR) technique is widely used by industry and produces equi-
librated loads allowing to analyze unconstrained systems without resorting to
the more expensive full dynamic analysis. The main goal of this work is to
develop a computational framework for the solution of unconstrained para-
metric structural problems with IR and the Proper Generalized Decomposition
(PGD) method. First, the IR method is formulated in a parametric setting for
both material and geometric parameters. A reduced order model using the
encapsulated PGD suite is then developed to solve the parametric IR problem,
circumventing the so-called curse of dimensionality. With just one offline compu-
tation, the proposed PGD-IR scheme provides a computational vademecum that
contains all the possible solutions for a predefined range of the parameters. The
proposed approach is nonintrusive and it is therefore possible to be integrated
with commercial finite element (FE) packages. The applicability and potential
of the developed technique is shown using a three-dimensional test case and
a more complex industrial test case. The first example is used to highlight the
numerical properties of the scheme, whereas the second example demonstrates
the potential in a more complex setting and it shows the possibility to integrate
the proposed framework within a commercial FE package. In addition, the last
example shows the possibility to use the generalized solution in a multi-objective
optimization setting.

K E Y W O R D S

inertia relief, nonintrusive, proper generalized decomposition, reduced order model,
shape optimization

1 INTRODUCTION

Unconstrained structures are widespread in the automotive, aerospace and naval industry. As is well known, due to the
singularity of the stiffness matrix, conventional static analyses cannot be performed if the system undergoes rigid body
motions. At the same time, imposing dummy constraints in order to make a free-body system statically determinate leads
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to unrealistic reaction forces and, as a consequence, an unrealistic distribution of the internal stresses. The inertia relief
(IR) method represents an attractive alternative for solving unconstrained structural problems without resorting to the
more expensive full dynamic analysis.1 The main idea is to counteract the unbalanced applied loads by a set of rigid body
accelerations, the latter providing body forces which are distributed over the structure in such a way that the applied
forces are equilibrated and the static analysis can be performed. The technique is available into most of the commercial
finite element (FE) packages and it has been widely used by the industry in different fields.2-10

The static global stiffness analysis of a body in white (BIW) is a common example that involves the computational
simulation of an unconstrained configuration using the IR method. The BIW global stiffness plays a significant role in
the design process of a car. An important challenge of this problem is the number of parameters (e.g., geometry, material)
to be considered during the analysis of a BIW. As any change in the material or geometrical characteristics of the car
components might have considerable effects on the global behavior of the structure, the number of simulations that
are required to account for the whole range of the involved parameters becomes prohibitive when classical numerical
approaches are employed. As a consequence, the possibility to perform parametric studies, shape optimization or inverse
identification in the context of a BIW remains a challenge.

A way to circumvent this issue and to reduce the computational complexity of parametric problems is to employ
a reduced order model (ROM). In the last two decades, researchers from the most diverse areas of science and engi-
neering have developed different ROM techniques, with the common goal of finding low-order models, described by a
reduced order basis, which are able to capture the essential behavior of a complex system. Well-known computational
approaches based on this idea are Krylov-based methods,11 the reduced basis method ,12 and the proper orthogonal
decomposition.13-15 These techniques, known as a posteriori methods, first solve the full-order problem for a suitably
chosen set of parameters, providing a set of snapshots of the solution. This step, usually referred to as the offline stage, is
used to extract the most relevant characteristics of the solution. Then, during the online phase, the solution for any new
parameter value can be expressed as a linear combination of the previously computed basis functions.

A valuable alternative is represented by the proper generalized decomposition (PGD) method,16-19 which is an a pri-
ori approach. The main idea behind the PGD method is to consider the parameters as extra coordinates of the problem,
increasing the dimensionality of the problem at hand, and to assume that the solution of the high-dimensional problem
can be approximated by a separable function. During the offline stage, usually performed by employing high-performance
computing resources, the PGD algorithm computes on-the-fly a set of basis functions, usually called modes. The PGD
approximation depends explicitly on the parameters, so it represents a computational vademecum containing the solu-
tion for every possible combination of the parameters. In the online stage, the solution can be particularized for any set
of the parameters in real time. The method has been tested in the most diverse fields, such as flow problems,20-24 ther-
mal problems,25-27 solid mechanics,28,29 fracture mechanics,30,31 elastic metamaterials, and coupled magneto-mechanical
problems.32,33

Despite the wide range of problems where the PGD has shown its potential, the application to geometrically
parametrized problems remains particularly challenging, due to the difficulty to obtain a separable expression of
the discrete problem. Previous works that dealt with parametric shapes are usually limited to simple geometric
dependence.17,34-37 Other authors proposed a technique based on the idea that a parent domain can be associated to the
parametric domain in order to introduce the parametric dependency on the geometry in the governing equations.34,38

More recently, another approach was proposed39 in which the control points characterizing the NURBS curves or surfaces
used in CAD representation are defined as the geometric parameters of the problem.

One of the main drawbacks of the original PGD approach, when compared to other a posteriori approaches, is the
intrusivity of its implementation, which precludes its wider application in an industrial context, where commercial soft-
ware are usually employed. This limitation has motivated the development of nonintrusive implementations of the PGD
rationale for solid40 and fluid41 mechanics problems. Also motivated by the goal of achieving the nonintrusive applica-
tions of the PGD, the Encapsulated PGD Toolbox has been recently developed by Díez et al.42,43 The toolbox consists of a
collection of PGD-based routines that are able to perform algebraic operations for multidimensional tensors. One relevant
advantage of the toolbox is that each routine is encapsulated and can be used as a black box, enabling the nonintrusive
coupling with commercial FE packages. This feature is of major importance for the application of the PGD method in an
industrial setting.

This work proposes a nonintrusive PGD-IR method for the solution of an unconstrained structure characterized by
material and/or geometric parameters. The proposed parametric IR approach involves a "cascade" application of the PGD
method in order to solve three sequential parametric problems, where the parametric solution of one problem is taken as
the input of the next parametric problem. In order to automate the process, an ad hoc solver was implemented that makes
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use of the Encapsulated PGD Toolbox. In the present work, a nonintrusive interaction between the external commercial
FE software MSC-Nastran and an in-house code implemented in Matlab is considered.

The structure of the remainder of the paper is as follows. Section 2 presents the problem statement in terms of an
elastodynamic boundary value problem. Section 3 briefly reviews the idea behind the IR method for a non-parametric
problem. The proposed PGD-IR approach is presented in Section 4, where the "cascade" application of the PGD approach
is proposed to solve the PGD-IR problem. Also, the algebraic approach to deal with geometric parameters is detailed.
In Section 5 two numerical examples are used to show the potential of the proposed method. In the first example, a
simple linear elastic three-dimensional (3D) structure with one material and one geometric parameter are considered to
underline the main properties of the developed ROM. The second example uses a more realistic case of a dummy car to
demonstrate the nonintrusive interaction with the commercial FE software MSC-Nastran. A multi-objective optimization
study is shown which proves that the method can be employed as a fast and reliable tool to guide the designers in the
intricate decision-making procedure. Finally, Section 6 summarizes the conclusions of the work that has been presented.

2 FINITE ELEMENTS FORMULATION OF ELASTODYNAMIC PROBLEMS

2.1 Problem statement

Let us consider an open-bounded domain Ω ⊂ Rd, where d is the number of spatial dimensions. The boundary of the
domain is assumed to be partitioned into the the disjoint parts ΓD and ΓN , where Dirichlet and Neumann boundary
conditions are prescribed, respectively. The strong form of the elastodynamic problem using the classical Voigt notation44

can be written as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌ü − 𝛁T
S𝝈 = b in Ω × (0,T]

u = uD on ΓD × (0,T]
ET𝝈 = tN on ΓN × (0,T],
u = u0 in Ω × {0}
u̇ = v0 in Ω × {0}

(1)

where u is the displacement field, ü denotes the acceleration, 𝝈 is a vector containing the extensional and shear stress
components of the Cauchy stress tensor, b is a external body force vector, T is the final time of interest, E is a matrix
accounting for the normal direction to the boundary, uD and tN are the prescribed displacement and traction vectors on
the Dirichlet and Neumann boundaries, respectively, and u0 and v0 are the initial position and velocity, respectively. In
three dimensions, the matrix operator 𝛁S and the matrix E are given by

𝛁S ∶=
⎡⎢⎢⎢⎣
𝜕∕𝜕x1 0 0 𝜕∕𝜕x2 𝜕∕𝜕x3 0

0 𝜕∕𝜕x2 0 𝜕∕𝜕x1 0 𝜕∕𝜕x3

0 0 𝜕∕𝜕x3 0 𝜕∕𝜕x1 𝜕∕𝜕x2

⎤⎥⎥⎥⎦
T

, E ∶=
⎡⎢⎢⎢⎣
n1 0 0 n2 n3 0
0 n2 0 n1 0 n3

0 0 n3 0 n1 n2

⎤⎥⎥⎥⎦
T

, (2)

with n being the outward unit normal vector to 𝜕Ω. For a linear elastic material, the generalized Hooke’s law expresses a
linear relation between the stress vector, 𝝈, and the strain vector, 𝜺, namely

𝝈 = D𝜺, (3)

where 𝜺 ∶= 𝛁Su and D is a symmetric positive definite matrix depending upon the Young modulus, E, and the Poisson
ratio, 𝜈. In three dimensions

D ∶= E
(1 + 𝜈)(1 − 2𝜈)

⎡⎢⎢⎢⎢⎢⎣

1 − 𝜈 𝜈 𝜈

𝜈 1 − 𝜈 𝜈 0d

𝜈 𝜈 1 − 𝜈
0d (1 − 2𝜈)∕2Id

⎤⎥⎥⎥⎥⎥⎦
. (4)
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The weak formulation of the strong form of Equation (1) reads as follows: given uD on ΓD and tN on ΓN , find u ∈
1

D(Ω) ∶= {w ∈ 1(Ω) | w = uD on ΓD} such that

∫Ω
𝜌v ⋅ üdΩ + ∫Ω

𝛁Sv ⋅ (D𝛁Su) dΩ = ∫Ω
v ⋅ bdΩ + ∫ΓN

v ⋅ tN dΓ, (5)

for all v ∈ 1
0 (Ω) ∶= {w ∈ 1(Ω) | w = 0 on ΓD}.

2.2 Spatial discretization

A partition of the domain Ω in a set of nel disjoint elements Ωe is considered. Following the classical isoparametric
framework, the approximation of the displacement field is defined in a reference element, Ω̂, with local coordinates 𝝃, as

u(𝝃) ≃ uh(𝝃) ∶=
nen∑
j=1

UjNj(𝝃), (6)

where Uj are nodal values, Nj are polynomial shape functions of order p in the reference element and nen is the number
of nodes per element. The so-called isoparametric mapping, given by

𝝋e ∶ Ω̂ ⊂ R
d → Ωe ⊂ R

d

𝝃 → 𝝋e(𝝃) ∶=
nen∑
j=1

xe
j Nj(𝝃), (7)

is employed to establish the relation between the reference element, Ω̂, and a generic physical element, Ωe, with nodes
{xj}j=1,… ,nen . Employing the isoparametric mapping of Equation (7), the element and boundary integrals are mapped to
the reference space. By using the approximation of the displacement field given by Equation (6) and selecting the space
of weighting functions to be equal to the space spanned by the interpolation functions, the following system of ordinary
differential equations is obtained

MÜ + KU = F. (8)

As usual in a FE context, the global mass matrix M, the global stiffness matrix K and the global forcing vector F are
obtained by assembling the elemental contributions given by

Me = ∫Ω̂
𝜌NTN|Je

𝝋|dΩ̂, Ke = ∫Ω̂
(Be)TDeBe|Je

𝝋|dΩ̂, Fe = ∫Ω̂
NTb|Je

𝝋|dΩ̂ + ∫Γ̂
NTt||Je

Γ||dΓ̂. (9)

In the above expressions Be ∶= (Je
𝝋)−1𝛁SN is the strain–displacement matrix, Je

𝝋 is the Jacobian of the isoparametric
mapping, Je

Γ is the Jacobian of the restriction of the isoparametric mapping to an element face and the matrix N, in three
dimensions, is given by

N ∶=
⎡⎢⎢⎢⎣
N1 0 0 N2 0 0 … Nnen 0 0
0 N1 0 0 N2 0 … 0 Nnen 0
0 0 N1 0 0 N2 … 0 0 Nnen

⎤⎥⎥⎥⎦ . (10)

3 THE INERTIA RELIEF METHOD

In this section, a short review of the IR method is presented. As already mentioned, the IR method1 is available in many
commercial FE packages and it is widely used in industry to solve unconstrained structural problems without resorting
to the more expensive full dynamic analysis.
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When constant unbalanced external loads are applied to an unconstrained structure, the whole system undergoes a
steady-state rigid body acceleration in each free direction and, due to the mass of the system, inertial forces are generated
that deform elastically the body. The trajectory as rigid body of the system (as if it was infinitely stiff) is described by a
displacement field Ur(t) such that KUr(t)= 0, and therefore also KU̇r(t) = KÜr(t) = 0. The global displacement U has to
be complemented with the elastic deformation, namely

U = Ur + Ue. (11)

The elastic deformation field Ue is important to analyze the internal stresses created by the motion and also to assess
other quantities of interest like the torsional stiffness, which is one of the aims of this paper.

The key idea of the IR method is to compute Ue solving a static problem

KUe = Feq, (12)

where the forces Feq are equilibrated, that is the resultant forces and moments are zero. Despite matrix K is singular, the
fact that Feq is equilibrated guaranties that system (12) is solvable with a family of infinite solutions, all equivalent up to
a rigid body motion. Isostatic constrains (as many as rigid body modes, 3 in two-dimensional [2D] and 6 in 3D) have to
be set to compute one of these solutions (they all produce the same strains and stresses).

The idea of the inertia relief is to compute the equilibrated forces as

Feq = F − MÜr, (13)

noting that Ür is the rigid body mode (recall that KÜr(t) = 0) such that Feq is equilibrated. Thus, Equation (12) is derived
from (8) assuming that Üe = 0 (which stands under a constant load, and therefore constant acceleration).

The rigid body acceleration vector Ür can be expressed as a linear combination of the (6 in 3D) rigid body modes,
namely

Ür = 𝚽𝜶, (14)

where each column of the rigid body transformation matrix 𝚽 corresponds to one of the nr rigid body modes (nr = 6 in
three dimensions) and the coefficient vector 𝜶 is seen as containing the acceleration of each of the rigid body modes.
Introducing the expression of Equation (14) in Equations (13) and (12), and premultiplying by 𝚽T , the following equation
is obtained

𝚽TF −𝚽TM𝚽𝜶 = 0, (15)

which guaranties that the right-hand side term in Equation (12) is an equilibrated system of forces (sum of forces and
sum of moments equal to zero). It is worth noting that 𝚽TK = 0 because the eigenmodes are mutually orthogonal and the
eigenvalues (frequencies) associated to the rigid body modes are zero. The vector of unknown accelerations 𝜶 providing
the equilibrated forces Feq is therefore computed by solving the system

𝜶 =
(
𝚽TM𝚽

)−1𝚽TF, (16)

where𝚽TM𝚽 and𝚽TF are a reduced 6× 6 mass matrix and a reduced 6× 1 load vector, respectively. To completely define
the rigid body acceleration vector Ür in Equation (14) it is only necessary to compute the rigid body modes of the structure,
that is the 6 columns of matrix 𝚽. They correspond to the kernel of the global stiffness matrix, so they are computed as
the solution of K𝚽 = 0. To this end, the set of indices corresponding to the nd = d×nn degrees of freedom, with nn being
the number of mesh nodes, is partitioned into the reference set s and the remaining set l. To simplify the notation, and
without loss of generality, the set s is assumed to correspond to the last nr degrees of freedom. The system of equations to
obtain the rigid body modes is then written as [

Kll Kls

Ksl Kss

][
𝚽l

𝚽s

]
=

[
0l

0s

]
. (17)
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F I G U R E 1 Schematic representation of the steps performed in the inertia relief method

As Kll is symmetric and positive definite, the degrees of freedom of the rigid body modes corresponding to the l set
can be expressed in terms of the degrees of freedom of the rigid body modes corresponding to the reference set, namely

𝚽l = −K−1
ll Kls𝚽s. (18)

A natural assumption consists of choosing 𝚽s = Inr , where Inr denotes the identity matrix of dimension nr ×nr, so
that each column of the matrix 𝚽s represents a unit translation or rotation in the direction of the corresponding reference
degrees of freedom. With all these premises, the relative elastic displacement Ue in Equation (12) is computed. It is worth
noting that, in the IR framework, displacements are measured relative to the moving reference set of degrees of freedom
s, which is subjected to a constant acceleration and undergoes infinite displacements. As a consequence, the rigid body
displacement Ur is not of interest and can be eliminated from the solving equation. Finally, the system to be solved to
compute the relative elastic displacement, which in the remainder is simply referred to as U, reads[

Kll Kls

Ksl Kss

]{
Ul

Us

}
=

{
Fl

Fs

}
−

[
Mll Mls

Msl Mss

]
𝚽𝜶. (19)

Imposing a zero displacement in the degrees of freedom of the s set, Us = 0, ensures that the following system is
solvable and provides the required relative elastic displacement at the degrees of freedom of the l set,

KllUl = Fl − Ml𝚽𝜶, (20)

where Ml = [Mll Mls]. The IR method can be summarized in three steps as depicted in Figure 1.

4 THE PARAMETRIC INERTIA RELIEF METHOD

4.1 Problem definition

The IR problem is now extended to the case of an unconstrained structure characterised by parametric properties. Let us
introduce a set of np material or geometric parameters denoted by𝝁 = [𝜇1, 𝜇2, … , 𝜇np]

T ∈  ⊂ R
np . The set of parametric

domains  is defined as the Cartesian product of a predefined interval for each one of the parameters, namely  ∶=
1 ×2 × … ×np , with 𝜇j ∈ j for j= 1, … , np . The semi-discrete system of Equation (8) for a parametric problem
can be written as

M(𝝁) Ü(𝝁) + K(𝝁) U(𝝁) = F(𝝁). (21)
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In order to solve Equation (21) with the IR method, three parametric steps have to be performed, following the ratio-
nale of the IR method described in Section 3 for the nonparametric case. The first step consists of computing the rigid
body modes as

𝚽(𝝁) =

[
−K−1

ll (𝝁) Kls(𝝁)
Ir

]
. (22)

Second, the vector of accelerations is given by

𝜶(𝝁) =
[
𝚽T(𝝁) M(𝝁)𝚽(𝝁)

]−1 𝚽T(𝝁) F(𝝁). (23)

Finally, the relative elastic displacement is computed as

U(𝝁) =

[
0nr

K−1
ll (𝝁) (Fl(𝝁) − Ml(𝝁)𝚽(𝝁) 𝜶(𝝁))

]
. (24)

In Equations (22) to (24), 𝝁 is treated as a set of additional independent variables (or parametric coordinates), instead
of problem parameters. As a consequence, the generalized solution of the three equations depends explicitly on the
parameters and takes values in the multidimensional domain  = Ω ×. Standard numerical methods (e.g., FEs, finite
volumes, finite differences) would require the solution of each step of the IR method in the high-dimensional space ,
which is not feasible in practical problems. In this work, the PGD is proposed as a ROM able to circumvent the so-called
curse of dimensionality and to provide the generalized solution of the parametric IR problem.

4.2 Cascade application of the encapsulated PGD approach

The goal of this section is to solve the parametric IR problem by means of the PGD technique. Following the standard
PGD rationale, let us assume that the solution U(𝝁) of Equation (21) can be approximated by a linear combination of an
a priori unknown number NU of terms (or modes), namely

U(𝝁) ≈ UPGD(𝝁) =
NU∑
i=1

𝛽 i
U Ui

np∏
j=1

ui
j(𝜇j). (25)

Each PGD mode i is given by the product of a spatial term, Ui, defined on the discretized spaceΩ and a set of parametric
functions ui

j(𝜇j) depending, in a separated form, on each parameter𝜇j, for j= 1, 2, … , np. The spatial term, Ui, is a vector of
the size of the FE displacement vector, whereas each parametric dimension𝜇j is discretized with nj points with coordinates
𝜇

pj

j , where pj = 1, 2, … , nj. The spatial and parametric modes are usually normalized and the amplitude of each mode,
𝛽 i

U, indicates the relevance of the ith mode to the final separated solution.
In order to compute the terms of the summation in Equation (25), the PGD solver typically employs a greedy approach.

Assuming that the previous n− 1 modes are known, the greedy algorithm computes sequentially the nth term

UPGD,n(𝝁) = UPGD,n−1(𝝁) + Un
np∏
j=1

un
j (𝜇j), (26)

given by the spatial mode Un and the parametric terms un
j (𝜇j) for j= 1, 2, … , np. The enrichment process automatically

stops when a user-defined level of accuracy is reached, that is when the amplitude 𝛽n
U of the last term is smaller than a

user defined tolerance.
Since the unknown spatial and parametric terms Un and un

j (𝜇j) are multiplying, the problem of computing the nth
term in Equation (26) is nonlinear. More precisely, it is a nonlinear least-squares problem defined to find the best rank-one
approximation (meant as the product of sectional functions) of the unknown term Un ∏np

j=1 un
j (𝜇j). As commonly done

in a PGD context, an alternating direction scheme is applied, which consists in solving the problem separately for each
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unknown function, assuming that all the others are known, until a stationary solution is reached. It is worth empha-
sizing that despite a nonlinear problem needs to be solved to obtain each PGD mode, the computational cost of the
problem increases linearly with the number of introduced parameters, making the solution of high-dimensional problems
affordable.

Recently, Díez et al.43 developed the Encapsulated PGD Toolbox, which is a collection of PGD-based algorithms able
to perform algebraic operations (e.g., product, division, storage, compression, solving linear system of equations, etc.) for
multidimensional data represented in a discretized tensorial separated format. The main advantage of the library (freely
available at https://git.lacan.upc.edu/zlotnik/algebraicPGDtools.git) is that each routine is encapsulated, meaning that it
can be used as a black box. This is particularly attractive for the end user and it facilitates the interaction with commercial
software.

To illustrate the idea behind the encapsulated PGD Toolbox, Figure 2 describes the structure of the encapsulated-PGD
routine that solves parametric linear systems of equations. In a straightforward way, the same structure can be extended
to other arithmetic operators. Shortly, given an algebraic linear system of equations A(𝝁) x(𝝁) = b(𝝁) depending on
the set of parameters 𝝁, the toolbox is able to return an explicit description of x(𝝁), also called computational vade-
mecum, containing the solution for every possible combination of the parameters. The only requirement to employ
the encapsulated PGD approach is to pre-process the input quantities, that is, the parametric matrix A(𝝁) and vec-
tor b(𝝁), such that they are expressed in a PGD separated form. Given the input data, the user only needs to employ
the encapsulated PGD in the offline stage, to obtain the PGD approximation by means of the above-mentioned greedy
algorithm and alternate direction scheme. The output consists of the sought computational vademecum and, during
an online stage, the solution can be evaluated in real time for any set of parameters at a negligible computational
cost.

The PGD-IR approach proposed in this work makes use of the encapsulated PGD toolbox. The three parametric IR
Equations (22)–(24) are solved sequentially, in the sense that the solution of each equation is directly needed in the next
one. Consequently, as depicted in Figure 3, a cascade PGD scheme can be employed, in which the output of each step,
obtained in a separated format by simply calling the encapsulated PGD linear solver, can be directly used as an input
of the next one, until the final solution of the global problem is computed. It is worth noting that, in order to use the
toolbox, the user has to provide a separable representation of the input data. In particular, the stiffness K(𝝁) and mass
M(𝝁) matrices must be written as

K(𝝁) ≈
NK∑
i=1

Ki
np∏
j=1

ki
j(𝜇j), (27)

F I G U R E 2 Structure of the Encapsulated-PGD linear solver

https://git.lacan.upc.edu/zlotnik/algebraicPGDtools.git
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F I G U R E 3 Schematic representation of the cascade encapsulated proper generalized decomposition approach for the solution of a
parametric inertia relief problem

M(𝝁) ≈
NM∑
i=1

Mi
np∏
j=1

mi
j(𝜇j), (28)

where the spatial terms are Ki ∈ Rnd×nd and Mi ∈ Rnd×nd , whereas the parametric terms are ki
j(𝜇j) ∈ R

nj and mi
j(𝜇j) ∈ R

nj ,
for j= 1, 2, … , np. Similarly, the input nodal force vector F(𝝁) must be written as

F(𝝁) ≈
NF∑
i=1

Fi
np∏
j=1

f i
j (𝜇j), (29)

with Fi ∈ Rnd and f i
j (𝜇j) ∈ R

nj . In the above expressions NK, NM, and NF are the number of modes required to produce a
separable approximation of K(𝝁), M(𝝁) and F(𝝁), respectively.

It is important to underline that it is not always trivial to find a separated representation of the input data, as given
by Equations (27) and (29), especially when geometric parameters are considered in the problem. This issue will be
addressed in the next section.

Finally, in order to solve the parametric equations of the PGD-IR approach, steps 2 and 3 depicted in Figure 3 require
some extra operations between the parametric objects, such as products, additions, or compression. These operations can
be easily performed by the Encapsulated PGD toolbox.

Remark 1. The first two steps of the PGD-IR shown in Figure 3 are parametric problems only if geometric parameters are
considered, because, by definition, the rigid body modes of a structure do not depend on the material properties.

4.3 Geometric parameters: a nonintrusive algebraic approach to separate input
quantities

The extension of the proposed nonintrusive PGD framework to geometrically parametrized problems represents a chal-
lenging task. This is due to the fact that, if geometric parameters are introduced in the problem, it is not trivial to find
separable representation of the input quantities.
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If a closed form separated expression of the stiffness and mass matrices is sought, the weak form of the problem
must be modified to account for the parametric geometry. A common approach consists of formulating the problem in a
reference domain, leading to several limitations that are briefly discussed in Appendix A. The most important limitation
in the context of the current work is that the implementation based on a reference domain requires access to the code,
precluding its application in an industrial framework, where commercial codes are typically employed.

In this section a nonintrusive algebraic approach is proposed, which is able to deal with general geometric
parametrizations. The main idea is to perform a sampling of the parametric matrices and to express them in a separated
format. The approach requires the computation of the parametric matrices for different values of the geometric param-
eters, while maintaining the connectivity matrix of the FE mesh. To this end a mesh morphing approach is adopted in
this work. Every time a sampling of the parametric matrices is required, an initial mesh is deformed according to the
geometric parameters and the global stiffness and mass matrices are computed. It is worth noting that this approach
can be easily integrated in commercial packages that are equipped with a mesh morphing capability. Alternatively,
the user can define the preferred mesh morphing approach and produce a set of meshes to be imported in the pre-
ferred FE software. It is also worth mentioning that the sampling does not require the solution of the FE system of
equations as only the global stiffness and mass matrices are of interest for the proposed PGD-IR approach. Once the set
of global stiffness and mass matrices is available, they are expressed in a separated format using the encapsulated PGD
toolbox.

To illustrate the proposed nonintrusive approach, let us consider the stiffness matrix K ∈ Rnd×nd , depending on
np parameters 𝝁 = [𝜇1, 𝜇2, … , 𝜇np]

T ∈  ⊂ R
np . The parametric dimension 𝜇j ∈ j, for j= 1, 2, … , np, is discretized

using nj points with coordinates 𝜇pj

j , where pj = 1, 2, … , nj. The full-order sampling of the parametric matrix consists of
evaluating K(𝝁) in the set of ntot points used to discretize the parametric domain  = 1 ×2 × … ×np , where
ntot =

∏np

j=1 nj. Each point is characterized by its sectional indices (p1, p2, … , pnp), which are duly sorted by using a linear
array index i such that

i = p1 + (p2 − 1)n2 + (p3 − 1)n2 × n3 + … = p1 +
np∑
j=2

(pj − 1)
j∏

l=2
nl. (30)

Note that the association between the multi-index (p1, p2, … , pnp) and the index i is also obtained by updating i= i+ 1
inside np nested loops, with no need to use explicitly expression (30). Employing the association between the multi-index
(p1, p2, … , pnp) and the linear index i, the parametric stiffness matrix K(𝝁) can be written as

K(𝝁) =
n1∑

p1=1

n2∑
p2=1

…
nnp∑

pnp=1
K(𝜇p1

1 , 𝜇
p2
2 , … , 𝜇

pnp
np

) Fp1,p2,… ,pnp
(𝜇1, 𝜇2, … , 𝜇np), (31)

where Fp1,p2,… ,pnp
is such that Fp1,p2,… ,pnp

(𝜇p1
1 , 𝜇

p2
2 , … , 𝜇

pnp
np

) = 1 and it is equal to zero for any other values of the discrete
indices pj. Using the linear indexing i introduced in Equation (30), Equation (31) becomes

K(𝝁) =
ntot∑
i=1

Ki
np∏
j=1

ki
j(𝜇j), (32)

where Ki = K(𝜇p1
1 , 𝜇

p2
2 , … , 𝜇

pnp
np

), and ki
j(𝜇

pl
j ) = 𝛿pl,pj for any pl = 1, 2, … , nj, while pj is given by i as defined in

Equation (30). Finally, Equation (32) represents the desired separated representation of the stiffness matrix.
Depending on the number of parameters, np, and the number of nodes chosen to discretize the parametric domains,

nj, the separated expression of the parametric stiffness matrix might involve a large number of terms, ntot. It is possi-
ble to reduce the computational cost of the following calculations by employing the PGD-compression, available in the
encapsulated PGD-toolbox.43 The idea is to perform an 2 projection of the expression of Equation (32) to reduce the
number of terms in the summation while maintaining an accurate representation of K(𝝁). In a similar fashion, a sepa-
rated representation of the mass matrix can be also obtained. As it will be shown by means of numerical examples, the
main advantage of the proposed algebraic technique is its flexibility which in general allows to add an arbitrary number
of geometric parameters as variables of the problem. In addition, the nonintrusive character of the proposed ROM makes
the approach proposed in this work suitable for industrial applications.
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5 NUMERICAL EXAMPLES

In this section two numerical examples are presented in order to show the properties of the proposed method. The first
example is used to illustrate the numerical properties of the proposed PGD-IR method when both material and geometric
parameters are considered. In the second example, the method is applied to a more realistic industrial case involving three
parameters. Furthermore, a multi-objective optimization study is performed, which proves the potential of the PGD-IR
method in the context of design optimization problems.

5.1 Parametric IR with material and geometric parameters

A pure torsion test case is considered for an unconstrained linear elastic 3D structure characterized by one material
and one geometric parameter, that are treated as additional coordinates of the problem. For a better readability, the two
variables are denoted here with different symbols, that is,𝜇 ∈ 𝜇 and 𝜃 ∈ 𝜃 for the material and geometric parameters,
respectively.

As depicted in Figure 4, the reference domain Ω̂ consists of a block with dimensions [−Lx/2, Lx/2]× [−Ly/2, Ly/2]×
[−Lz/2, Lz/2] with an inclusion given by [−Lx/6, Lx/6]× [−Ly/4, Ly/4]× [−Lz/2, Lz/2], where Lx = 6, Ly = 12 and Lz = 1. The
torsional load is given by two parallel forces of constant magnitude F = 10 acting on the positive and negative z direction,
respectively, and applied at the points P= (2, 4, 1/2) and Q= (−2, 4, 1/2). Figure 4 also shows the spatial discretization
employed, consisting on a regular mesh with 236 nodes and 742 linear tetrahedral elements.

The physical domain Ω(𝜃) depends upon the geometric parameter and it is split into two nonoverlapping subdomains
ΩA(𝜃) and ΩB(𝜃). The parametric Young’s modulus E is defined as

E(x, 𝜇) =

{
EA(𝜇) = 𝜇 for x ∈ ΩA(𝜃),
EB = 200 for x ∈ ΩB(𝜃),

(33)

where the Young modulus EA(𝜇) is considered varying in the range 𝜇 = [10,410], and 𝜇 is discretized with a uniform
distribution of n𝜇 = 41 points. The Poisson’s ratio and the density are assumed constant in the whole domain and taken
as 𝜈 = 0.3 and 𝜌 = 1, respectively.

The geometrically parametrized domain Ω(𝜃) is described with the Cartesian coordinates x, and it is defined as the
image of the reference domain Ω̂, with reference coordinates x̂, via a geometric mapping 𝚿(x̂, 𝜃), namely

⎧⎪⎪⎨⎪⎪⎩
x = 𝜓1(x̂, 𝜃) = x̂ + 𝜃 sin

(
𝜋ŷ
Ly

)(
x̂ − Lx

2

)
,

y = 𝜓2(x̂, 𝜃) = ŷ,
z = 𝜓3(x̂, 𝜃) = ẑ.

(34)

F I G U R E 4 Computational domain, showing the partition into two non-overlapping subdomains ΩA(𝜃) and ΩB(𝜃) (left) and top view
of the discretized computational domain showing the dimensions and the points P and Q where the forces are applied (right)
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The parameter 𝜃 is taken to be in the interval 𝜃 = [0, 0.5], and 𝜃 is discretized with a uniform distribution of
n𝜃 = 21 points.

Figure 5 shows the influence of the parameter 𝜃 in the geometry of the computational domain for three different
values of 𝜃. The value 𝜃 = 0 leads to a deformed configuration that coincides with the reference configuration, that is, the
mapping of Equation (34) becomes the identity. The configurations in Figure 5 also show that the mapping changes the
nodal coordinates of the mesh while maintaining the connectivities, as required within the current PGD framework.

The objective of this numerical test is to employ the proposed PGD-IR approach to obtain a computational vademecum
able to describe the variation of the solution with respect to the material and geometric parameters.

Following the proposed PGD-IR framework, the first step consists of choosing a reference set of six degrees of free-
dom able to counteract the rigid body motions of the structure. Next, in order to employ the encapsulated PGD toolbox,
it is necessary to define the input data (i.e., stiffness matrix, mass matrix, force vector) in a separated format. By using
the linear dependence of the stiffness matrix on the Young’s modulus, an analytical separable representation of the stiff-
ness matrix with respect to 𝜇 can be easily constructed. For the geometric parameter 𝜃, the algebraic PGD toolbox is
employed, as discussed in detail in Section 4.3. For every nodal value of the geometric parameter 𝜃p = [𝜃1, 𝜃2, … , 𝜃n𝜃 ]T ,
the geometrically deformed mesh is generated according to the mapping of Equation (34), and two stiffness-like matrices
KA(𝜃p) and KB(𝜃p) are computed. The quantity KA(𝜃p) is calculated by imposing the Young’s modulus (EA, EB)= (1, 0),
thus accounting for the contribution of the FEs belonging to the subdomain ΩA(𝜃p) to the global stiffness matrix. Anal-
ogously, KB𝜃

p corresponds to the choice (EA, EB)= (0, 1) and accounts for the contribution of the FEs belonging to the
subdomainΩB(𝜃p). Once these matrices are sampled in the parametric nodes n𝜃 , a separated form of the parametric global
stiffness matrix is readily available, namely

K(𝜇, 𝜃) = EA(𝜇)
n𝜃∑

i=1
Ki

A ki(𝜃) + EB

n𝜃∑
i=1

Ki
B ki(𝜃), (35)

with ki(𝜃p) = 𝛿p,i, for every p = 1, 2, … ,n𝜃 . In this example, a PGD-compression was performed, which is always advis-
able when the number of PGD-terms is large, and an accurate approximation of the stiffness matrix was obtained in the
known PGD format

KPGD(𝜇, 𝜃) =
NK∑
i=1

Ki ki(𝜇) ki(𝜃). (36)

In this case, after performing compression with a tolerance tol =10−5, the number of PGD terms was reduced to
NK = 10. Following the same procedure, the PGD approximation of the parametric mass matrix is also obtained, namely

MPGD(𝜇, 𝜃) =
NM∑
i=1

Mi mi(𝜇) mi(𝜃). (37)

Please note that the mass matrix is actually independent on the Young modulus, that is mi(𝜇) = 1. However, the
general expression of Equation (37) is used to maintain a consistent notation for all the inputs of the PGD-IR approach.

F I G U R E 5 Physical domain for three different values of the geometric parameter 𝜃
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Finally, the global forcing vector is also written in the general separated form

FPGD = F f (𝜇) f (𝜃), (38)

where, again, it is worth emphasizing that F is the standard FE forcing vector and f (𝜇) = f (𝜃) = 1, because the right hand
side is not dependent on the material parameter and, for the given set of forces applied to the structure is also independent
on the geometric parameter.

The computation of the separated form of the stiffness and mass matrices and the forcing vector completes the
pre-process required to apply the proposed PGD-IR approach. Next, the three steps of the PGD-IR approach can be
sequentially completed. As detailed in Remark 1, the three steps involve a parametric problem because not only material
parameters are considered but also geometric parameters, leading to a generalized solution that can be written as

UPGD(𝜇, 𝜃) =
NU∑
i=1

𝛽U Ui ui
𝜇(𝜇) ui

𝜃
(𝜃). (39)

It is worthy to mention that the proposed PGD-IR approach was implemented in a Matlab routine which acts as a
black-box, following the philosophy of the encapsulated PGD toolbox. In fact, the routine only requires to receive the
input quantities in a separated form in order to return the output in the same separated form.

Figure 6 plots the evolution of the amplitude 𝛽U of each PGD mode. It can be observed that the amplitude rapidly
decreases as the number of modes is increased. With 15 computed modes the amplitude of the last mode is almost four
orders of magnitude lower than the amplitude of the first mode. In addition, the results show that the first four modes
capture the most relevant information of the generalized solution as the fifth and subsequent modes have an amplitude
at least two orders of magnitude lower than the amplitude of the first mode.

The first four normalized spatial modes are shown in Figure 7, whereas the first four parametric modes are displayed
in Figure 8. The spatial modes provide an illustration of the deformation induced by the four most relevant modes of
the generalized solution. The parametric modes corresponding to the material illustrate that the four modes have the
maximum contribution to the generalized solution for𝜇 = 10. As the material property approaches the maximum value of
𝜇 = 410, the third and fourth mode have less influence on the solution. Finally, the modes corresponding to the geometric
parameter have a more global character, proving the extra difficulty in solving geometrically parametrized problems. In
order to get a particularized solution for a chosen set of the parameters (𝜇, 𝜃), the correspondent function values ui

𝜇(𝜇)
and ui

𝜃
(𝜃) are evaluated for each PGD-mode i and then multiplied by the correspondent spatial mode and amplitude.

Figure 9 shows the particularized solutions in terms of deformed configuration and equivalent von Mises stress field for
nine specific sets of parameters. The dominant character of the first spatial mode of Figure 7 can be clearly observed,
whereas the magnitude of the stress highly depends on the parametric choice. Please remember that these particularized
solutions were obtained in real-time during an online postprocess step.

F I G U R E 6 Evolution of the amplitude of the proper generalized decomposition modes 𝛽 i of the solution UPGD(𝜇, 𝜃) with respect to the
number of proper generalized decomposition modes, i
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(A) Mode 1 (B) Mode 2 (C) Mode 3 (D) Mode 4

F I G U R E 7 First four spatial modes of the generalized solution UPGD(𝜇, 𝜃)

F I G U R E 8 First four material u𝜇(𝜇) and geometric u𝜃(𝜃) modes of the generalized solution UPGD(𝜇, 𝜃)

F I G U R E 9 Particular cases of the generalized solution, showing the von Mises stress field, for nine choices of the parameters. The
solutions are obtained in real-time after the PGD-IR is applied to compute the spatial and parametric modes
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In order to validate the PGD results, the accuracy with respect to the full-order FE computations is measured as the
relative error between the PGD and FE solutions in the 2(Ω ×𝜇 ×𝜃) norm, that is

𝜀PGD =
⎛⎜⎜⎝
∫𝜃

∫𝜇
∫Ω (

UPGD − UFE) ⋅ (UPGD − UFE
)

dΩ d𝜇 d𝜃

∫𝜃
∫𝜇

∫ΩUFE ⋅ UFE dΩ d𝜇 d𝜃

⎞⎟⎟⎠
1∕2

. (40)

It is worth noting that to compute this error measure, the problem is solved by means of the standard FE method for
each possible combination of the parameters, that is n𝜇 × n𝜃 = 21 × 41 = 861 FE simulations.

Figure 10 shows the evolution of the relative error with respect to the number of PGD modes. As expected, the level of
accuracy increases as the number of modes increases, up to a user-defined tolerance, which in this case was chosen equal
to 10−3. Note that the PGD solution converges to the desired tolerance with only nine PGD modes. An interesting advan-
tage of the PGD method with respect to the standard FE method concerns the storage memory. In fact, the obtained PGD
computational vademecum needs ∼74 KB of storage memory versus the ∼6650 KB needed to store all the 861 full-order
FE solutions. Computational time is not particularly significant in the PGD context. In fact, the main goal is to provide a
method which is able to explore an arbitrary large parametric space with only one offline computation. Nevertheless, an
interesting comparison is shown in Table 1 where the number of iterations needed by the alternating direction scheme
for the computations of each PGD mode is provided. As the cost of each iteration corresponds to the cost of a full-order
FE simulation, the results in Table 1 show that the cost of the proposed PGD-IR is equivalent to 161 full-order solutions,
compared to the 861 full-order computations required by the standard FE approach.

Finally, a major advantage of computing a PGD computational vademecum is the possibility to explore the design space
and check, in real time, the effects of the design parameters on a predefined quantity of interest (QoI). As an example,
the relative displacement in the z direction, ΔUPQ(z), of the points P and Q (see Figure 4) is selected as QoI. The variation
of the chosen QoI in the parametric space is depicted in Figure 11.

5.2 Industrial application: dummy car test

The PGD-IR method is now employed to solve a more realistic problem, which is the static global torsional stiffness anal-
ysis of the BIW structure of a generic car. The geometry of the BIW is shown in Figure 12. Two couples of parallel and
opposite forces are applied at the front and rear shock towers, such that two opposite torsional moments of magnitude

F I G U R E 10 2(Ω ×𝜇 ×𝜃) norm of the difference between the proper generalized decomposition (PGD) solution and the finite
element solution as a function of the number of PGD modes, i

T A B L E 1 Total number of iterations performed by the alternating direction scheme to compute each Proper Generalized
Decomposition (PGD) mode

PGD mode Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9

Number of iterations 12 27 17 14 14 18 24 17 18

Total number of iterations = 161
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F I G U R E 11 Variation of the quantity of interestΔUPQ(z) with respect to the parameters 𝜇 and 𝜃

F I G U R E 12 Geometry, load conditions (left), and mesh properties (right) of the body in white structure used for the static global
torsional stiffness analysis

1 Nm are generated. The FE model, is discretized with isoparametric quadrilateral shell elements. The material is linear
elastic and it is characterized by a Young’s modulus E = 207 GPa, Poisson’s ratio 𝜈 = 0.29 and density 𝜌 = 7.82 kg∕m3. In
this example, the thickness of three car components highlighted in Figure 13, that usually play a role in the characteriza-
tion of the global stiffness of the car, are introduced as extra coordinates of the problem. The three parameters are denoted
by𝝁 = [𝜇1, 𝜇2, 𝜇3]T and they vary in the intervals j = [0.7, 1.5] mm, for j= 1, 2, 3. The three parametric domains are
discretized with n1 =n2 =n3 = 9 equidistant nodes. The goal of this example is to demonstrate potential of the proposed
PGD-IR approach, able to produce a generalized solution that enables a designed to check how the overall static stiffness
of the vehicle is affected by any change of the introduced parameters. This is done by computing the equivalent torsional
stiffness (ETS), which is defined as a function of the front and back twisting rotations of the car body when a torsion load
is applied (see Figure 14), namely

ETS = 1
𝛼AB + 𝛼CD

× 𝜋

180
, (41)

where the two angles 𝛼AB and 𝛼CD are defined as

𝛼AB =
|Uz(A)| + |Uz(B)|||LAB|| , 𝛼CD =

|Uz(C)| + |Uz(D)|||LCD|| . (42)

In the above expressions, Uz(P) denotes the displacement in the z direction at point P and LPQ denotes the distance
between the points P and Q.
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F I G U R E 13 Geometry of the body in white with three car components highlighted. The parameters correspond to the thickness of
each one of the components

F I G U R E 14 Illustration of the angles used to compute the equivalent torsional stiffness in Equation (41)

The proposed PGD-IR approach is employed following the same procedure described in the previous example. In the
preprocess stage, the commercial FE package MSC-Nastran is now used to sample the parametric input matrices. A script
was prepared to automatically produce a new Nastran input file (.bdf and .dat files) for each possible combination of the
parameters. The generated files were then read by the Nastran solver, where the matrices were assembled (without solving
the problem) and stored in a plain text format. Afterwards, the matrices were read by the developed Matlab routine to be
expressed in the required separated form, namely

KPGD(𝝁) =
ntot∑
i=1

Ki
3∏

j=1
ki

j(𝜇j), (43)

with ntot =n1 ×n2 ×n3 = 729, while Ki and ki
j(𝜇j) being defined as described in Section 4.3. The mass matrix was obtained

in a similar fashion and the separated force vector was computed. Finally, the separated expression of both the parametric
stiffness and mass is compressed to minimize the number of terms in the separated form.

As already shown in the previous example, once the input data KPGD(𝝁),MPGD(𝝁) and FPGD(𝝁) are preprocessed and
expressed in a separated form, the cascade scheme of the encapsulated PGD is used to sequentially solve the three steps
involved in the developed PGD-IR approach, such that the final solution is obtained as

U(𝝁)PGD =
NU∑
i=1

𝛽UUi
3∏

j=1
ui

j(𝜇j). (44)

The amplitude of the PGD modes is shown in Figure 15. In this example, with a more complex geometry and a
larger number of parameters, it can be observed that more modes are required to produce an accurate description of the
multi-dimensional solution. With 21 modes the amplitude of the modes is approximately two orders of magnitude lower
than the amplitude of the first mode.
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F I G U R E 15 Evolution of the amplitude of the proper generalized decomposition modes, 𝛽 i, of the solution UPGD(𝝁)

The first four spatial modes are depicted in Figure 16 amplified by a factor of ∼1000 and Figure 17 shows the first four
normalized parametric functions.

To illustrate the full potential of the proposed PGD-IR approach, the application of the PGD-IR in a multi-objective
optimization process is considered. The goal is to find the combination of parameters that maximize the ETS, while
minimizing the mass of the three car components considered in this example. To this end, two objective functions are
considered, namely {

g1(𝝁) = 𝜌 (𝜇1A1 + 𝜇2A2 + 𝜇3A3),
g2(𝝁) = ETS(𝝁),

(45)

(A) Mode 1 (B) Mode 2 (C) Mode 3 (D) Mode 4

F I G U R E 16 First four spatial modes of the solution generalized solution UPGD(𝝁)

(A) 1( 1) (B) 2( 2) (C) 3( 3)

F I G U R E 17 First four parametric modes of the generalized solution UPGD(𝝁). (A) u1(𝜇1); (B) u2(𝜇2); (C) u3(𝜇3)
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F I G U R E 18 Multi-objective optimization showing the Pareto front as a function of the objectives (left) and the proper generalized
decomposition parameters (right)

where g1(𝝁) represents the mass of the material needed to manufacture the three car components, equal to the product
of the material density 𝜌 and the parametric volume. The latter is given by the sum of the products between the car
components areas (A1, A2, A3) times their variable thicknesses (𝜇1, 𝜇2, 𝜇3). Clearly, this quantity is strictly related to the
production cost. The objective function g2(𝝁) represents the parametric ETS defined in Equation (41).

With the computed generalized solution UPGD(𝝁), an evaluation of the objective functions within a multi-objective
optimization process only requires the particularization of the solution for a given set of the parameters. With the proposed
PGD-IR approach, this evaluation can be performed in real time, making the overall cost of the optimization stage almost
negligible. This is in contrast with a traditional approach where each evaluation of the objective functions requires the
assembly and solution of a new FE system of equations.

In this example, the optimization problem was solved by means of the gamultiobj function available in the Global
optimization Toolbox released by Matlab. The function is able to find the Pareto front of multiple objective functions using
a genetic algorithm. A Pareto front is a set of optimal points in the parametric space that represent a trade-off between the
objective functions. More specifically, a point is considered optimal if no objective can be improved without sacrificing at
least one other objective.

Figure 18 shows the Pareto front in terms of the objective functions as well as the whole range of configurations that
result from the parametric space1 ×2 ×3. It is important to note that the optimization study allows to significantly
reduce the range of solutions to be considered by a designer in the decision-making process. In fact, the variability in the
two quantities of interest (mass and ETS), induced by the three parameters and calculated by PGD for all the possible
combinations (PGD points in the left Figure 18), is much larger than the number of points belonging to the Pareto front.
Figure 18 (right) plots the Pareto points in the parametric space (𝜇1, 𝜇2, 𝜇3), where the correspondence to the Pareto front
is described by same colours. In this example, the Pareto front was computed by assigning the same weight to the objective
functions. Nevertheless, it is straightforward to obtain other fronts if the user wants to put more emphasis on one of the
objective functions.

6 CONCLUSIONS

A nonintrusive algebraic PGD approach combined with the IR method for the solution of unconstrained problems
being characterized by material and geometric parameters has been presented. The developed solver makes use of the
Encapsulated PGD Toolbox developed by Díez et al.,43 which enables to perform algebraic operations for multidimensional
data and allows to solve sequentially the three parametric problems required by the IR method.

An algebraic approach has been proposed to deal with geometric parameters by morphing a mesh generated for a
reference configuration. The proposed method acts as a black-box, such that a nonintrusive interaction with commercial
FE packages is possible.
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Two numerical examples are used to underline the main properties of the method. The first example considers an
academic test case with one material and one geometric parameter. The ability to compute a computational vademecum
is shown and the accuracy of the generalized solution is measured by comparing the PGD solution to a set of standard
FE full-order solutions. It it shown that the proposed PGD-IR approach is able to save almost the 99% of storage memory,
requiring only the 20% of computational time needed by the FE method to solve the problem for every possible set of
parameters. The second problem involves an industrial application for the static global stiffness analysis of a car BIW
structure characterized by three parameters. This example shows the potential of the proposed PGD-IR approach and
its ability to be integrated with a commercial FE package, such as MSC-Nastran. Finally, a multi-objective optimization
was performed in order to show how the proposed approach can represent an important support to designers during the
decision-making process. With the developed technique it is to possible to produce a computational vademecum displayed
in a portable device to support the design engineers in the decision-making by evaluating in real time the impact of certain
parameters on the global response of the structure.
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APPENDIX A. ANALYTICAL APPROACH TO SEPARATE INPUT QUANTITIES

The analytical technique follows the standard isoparametric concept widely used in FE formulations. This implies that a
mapping function Ψ(𝜃) which transforms the reference domain Ω into the geometrically parametrized domain Ω(𝜃) has
to be defined, such that

Ψ(𝜃) ∶ Ω → Ω(𝜃) (A1)
X → x = Ψ(X, 𝜃), (A2)

where X represents the coordinate system associated to the reference domain Ω, while x describes the modified domain
Ω(𝜃). According to the standard procedure, in order to transform the integrals involved in the weak formulation from the
parametrized domain to the reference one, the Jacobian matrix JΨ(𝜃) = 𝜕x∕𝜕X associated to the mapping Ψ(𝜃) has to be
introduced. Then, the discretized definition of the stiffness and mass matrices at the reference element level Ωe (already
defined in Section 2.2) becomes

Ke = ∫Ωe

BTJΨ(𝜃)−T JΨ(𝜃)−∞B det(JΨ(𝜃)) dΩ, (A3)

Me = ∫Ωe

NTN det(JΨ(𝜃)) dΩ. (A4)

The modification of the stiffness matrix formulation caused by the introduction of the inverse of the Jacobian matrix
J−1
Ψ , leads to the first important limitation of the analytical method. In fact, it is well known that even if the mapping func-

tion and correspondent Jacobian can be written in a separated form, the inverse matrix J−1
Ψ (𝜃) is in general not separable

due to the presence of det(JΨ(𝜃)) at the denominator. As a consequence, an explicit dependency of the stiffness matrix
on the geometric parameter cannot be found and other methods should be employed to find a separated expression of it.
This difficulty is discussed in detail in Reference 39. An alternative mixed formulation has also been recently considered
to circumvent this difficulty in a discontinuous Galerkin framework.45


