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Input-Delay Estimation for a Class of Affine

Dynamical Systems Based on Taylor Expansion

Abstract—Time delay is an important factor that degrades
the performance of control systems in practice. While there

are many existing results addressing the control problem of
dynamical systems with known input delay or unknown delay
but with conservative conclusions, how to effectively estimate
unknown input delay is still a challenging problem. In this
paper, we propose a novel method based on the Taylor expansion
for the estimation of general input delay for a class of affine
dynamical systems. Under mild conditions, the proposed method
guarantees the asymptotic convergence of the estimation error to
zero. Illustrative simulation examples are given to validate the
theoretical result and the performance of the proposed method.
In addition, an application to the input delay estimation of a
continuous stirred tank reactor system is also presented to further
show the effectiveness of the proposed method and its potential
in practical systems.

Index Terms—Input-delay, estimation, Taylor expansion, affine
dynamical system.

I. INTRODUCTION

As an important factor that could severely degrade the

performance of dynamical systems, the study of time delay

has attracted a large amount of attention in recent years.

For dynamical systems, related investigations mainly includes

stability analysis of systems with time delay and controller

design with robustness to time delay [1]–[5]. Time delay can

exist in state variables [6] or input variables [7] of a dynamical

system. As pointed out in [8], it is more challenging for design

with input delay than that with state delay, as the input usually

can be fed with non-delayed state information to dominate the

delayed states for a system with state delay but no input delay.

In this paper, we focus on the latter.

Many results have been reported for the case with known

delay in the input variable of dynamical systems. A classical

approach is to address this problem is the Smith predictor [9],

for which the value of time delay is needed to facilitate the

computation of predictions. Pyrkin and Bobtsov [7] addressed

the output-feedback stabilization problem of linear systems

with known and constant input delay and unknown harmonic

disturbance. The method does not require the systems to be

minimum-phase and the degrees of the systems are allowed to

be arbitrary. Sanz et al. [10] proposed a robust control method

for a nonlinear system with known and constant total delay by

using a state predictor. Na et al. [36] addressed the tracking

control problems of pure feedback systems subject to input

delay, where a high-order neural network observer is used to

perform system state prediction. Furtat et al. [12] proposed a

method for compensation of unknown bounded smooth dis-

turbances for linear time invariant systems with constant and

known input delay, for which a novel disturbance prediction

method was introduced based on current and delayed values

of the disturbance. Lei and Khailil [13] proposed a novel

method to address the feedback linearization of a single-input

single-output nonlinear system with known time-varying input

and output delay, where a high-gain observer serves as a

predictor. Some relavant results were also reported for multi-

agent systems. For example, Wang et al. [14] proposed a

method to address the consensus of Lipschitz nonlinear multi-

agent systems with known input delay, in which sufficient

conditions for global consensus were provided. However,

without knowing the value of input delay, the above methods

cannot work.

Recently, efforts have also been devoted to the case with

unknown delay. Léchappé et al. [15] proposed a novel pre-

dictive control scheme for linear time-invariant systems with

parameter uncertainty, external disturbance, and unknown in-

put delay. The scheme requires that the delayed value of

input is available and the the estimation quality of input delay

depends on the richness of the input signal. Delphine et al.

[16] proposed an adaptive backstepping controller for linear

systems with unknown input delay. Pade approximation is one

of the widely used approaches to address this case. Based

on Pade approximation, Li et al. [17] proposed an adaptive

fuzzy backstepping controller for a strict-feedback nonlinear

system with input delay. Pade approximation was also adopted

by Li et al. [18] to address the adaptive control of strict-

feedback nonlinear systems with state constraints and input

delay. However, as claimed in [17], [18], Pade approximation

only applies to small delay. Meanwhile, due to the existence of

the approximation error, asymptotic stability of the controlled

system is generally difficult to guarantee. Bresch-Pietri et al.

[19] proposed a framework for the estimation of input delay of

linear systems, which requires the initial estimation error to be

small enough. Obuz et al. [20] proposed a tracking controller

for a class of nonlinear systems with unknown slowly time-

varying input delay and additive disturbances. The method

requires that a sufficiently accurate constant estimate of input

delay is available.

Based on existing literature, it is found that a computa-

tionally efficient method for accurate input delay estimation is

demanded, which motivates our current research. In this paper,

we propose a method to address the issue and the method

only requires knowing the bound of input delay. As a primary

work, we consider the case with constant input delay, and the

case with time-varying input delay will be our future work. It

should be noted that when input delay is slowly time-varying,

it can be addressed by methods for constant input delay. The

current work is based on Taylor expansion. In our previous

work, Taylor expansion was introduced to facilitate the con-

troller design for the near-optimal control of affine nonlinear

systems without input delay [21]–[23]. Different from [21]–

[23], in this paper, Taylor expansion is used to facilitate the
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input delay estimation. Since the accuracy of the expansion

depends on the residual term, an additional constraint on the

second-order derivative of the input is introduced. Based on

the above steps, an auxiliary system is introduced for the

estimation. The performance of the method is theoretically

analyzed and validated via simulation examples. We also

provide an application of the method to a continuous stirred

tank reactor system. The contributions of this work mainly

include the following.

1) Input delay captures the fact of actuation latency relative

to system output. it widely exists in practice, e.g., engine

combustion control, process control, but largely ignored

in theory. This work presents a theoretically provable

adaptive scheme that can learn unknown time delay in

runtime and penetrates the power of adaptive control from

parameter adjustment to transmission delay estimation.

2) Without delay estimation, conventional methods rely on

the range of time delay to draw a conservative con-

clusion. With the presented solution, improved control

performance can be achieved by including the estimated

time delay in the feedback loop.

The reminder of the paper is organized as follows. In Section

II, the problem investigated in this paper is described. In

Section III, the proposed method is illustrated with the corre-

sponding theoretical results given, followed by the correspond-

ing simulation validations given in Section IV. In Section V, an

application to the input delay estimation of a continuous stirred

tank reactor system is shown to further show the effectiveness

of the proposed method and its potential in practical systems.

Then, conclusions are given in Section VI.

II. PROBLEM DESCRIPTION

In this section, the problem investigated in this paper is

illustrated in details.

Consider the following affine dynamical system:

ẋ(t) = f(x(t)) + g(x(t))u(t − τ), (1)

where x ∈ R
n denotes the state variable, t denotes the time

variable, ẋ = dx/dt, u ∈ R
m denotes the input variable, and

τ > 0 ∈ R denotes unknown constant input delay. Functions

f(x) ∈ R
n and g(x) ∈ R

n×m are continuously differentiable,

with g(x) being column full-rank and n ≥ m. In this paper,

we are interested in the estimation of input delay τ via the

measurement of state variable x. Let τ̂ (t) denote the estimation

of τ at time t. Our goal is to make τ̂ asymptotically converges

to τ , i.e., limt→+∞(τ − τ̂(t)) = 0.

Many physical systems can be modeled as an affine dynam-

ical system, such as such as four-bar linkage systems [24],

rotational/translational actuators [25], continuous stirred tank

reactors [26], robot manipulators [27], and DC motors [15].

When controllers and systems are connected through networks,

the controller signals are transmitted through a network. As a

result, network-induced delay causes input delay formulated

in (1) [28].

For input delay τ , we have the following assumption.

Assumption 1: The unknown constant input delay τ satisfies

τmin ≤ τ ≤ τmax, where τmin > 0 ∈ R and τmax > 0 ∈ R are

two known constants.

Regarding Assumption 1, we have the following remark.

Remark 1: In practice, although we may not known the

exact value of input delay, input delay are generally bounded.

A very simple way is to set the value of τmax to be extremely

large and the value of τmin to be extremely small but larger

than zero. However, as what happens in adaptive control, if we

have a better knowledge about τmin and τmax, faster parameter

convergence can be achieved. Note that Assumption 1 was

also adopted in relevant literature [15], [19].

III. PROPOSED METHOD

In this section, a novel method based on Taylor expansion

and an auxiliary system is proposed for the input-delayed

affine dynamical system stated above.

A. Taylor Expansion

According to Taylor expansion, we have

u(t − τ) = u(t − τ̂ ) + (τ̂ − τ)u̇(t − τ̂ ) +
(τ̂ − τ)2

2
ü(χ),

where χ ∈ R lies between t − τ and t − τ̂ . Substituting the

above equation into system (1) yields

ẋ(t) =f(x(t)) + g(x(t))

(

u(t − τ̂ ) + (τ̂ − τ)u̇(t − τ̂)

+
(τ̂ − τ)2

2
ü(χ)

)

.

(2)

Given that the maximal Euclidean norm of ü, which is denoted

by ‖ü‖max, satisfies the following equation:

(τ̂ − τ)2

2
‖ü(χ)‖max ≤

d0

‖g(x(t))‖2

, (3)

where d0 > 0 ∈ R is small enough, the dynamics of the

system is dominated by the first two terms. In inequality (3),

‖ ·‖2 denotes the Euclidean norm and | · | denotes the absolute

value. Regarding (3), it can be realized by the following way.

The input signal to the system is given at the acceleration

level, i.e., through ü. To achieves (3), we can make

ü = h(u̇,u,x, t)/ε, (4)

where h(u̇,u,x, t) is a function and parameter ε is given as

follows:

ε ≥
‖h(u̇,u,x, t)‖2(τ̂ − τ)2‖g(x)‖2

2d0

,

which together with Assumption 1 leads to

ε ≥
‖h(u̇,u,x, t)‖2 max{(τ̂ − τmin)

2, (τ̂ − τmax)
2}‖g(x)‖2

2d0

.

(5)

In the implementation of the proposed method, the value of ε
can be set according to equation (5).
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B. Auxiliary System Design

Based on equation (2), to estimate the value of input delay

τ , we have the following auxiliary system:

˙̂
x(t) =f(x(t)) + g(x(t))u(t − τ̂ (t)) − κ1sgn(x̂(t) − x(t)),

˙̂τ(t) =κ2u̇
T(t − τ̂ (t))gT(x(t))(x̂(t) − x(t)),

(6)

where x̂ is the state variable of the auxiliary system; κ1 >
0 ∈ R and κ2 > 0 ∈ R are design parameters; sgn(·) is the

sign function for which

sgn(y) =











1 if y > 0,

0 if y = 0,

−1 if y < 0.

Intuitively, in the design of the auxiliary system, the co-state

x̂ is used to capture the influence of delayed input u(t − τ̂ )
on the state of the system.

Based on (2), it can by easily found that, when the input

delay is accurately estimated and the co-state x̂ converges to x,

i.e., τ̂ (t) = τ and x̂(t) = x(t), the first equation of (6) reduces

to (1). Although the accurate input delay τ is unknown, we

cannot directly measure the difference between τ̂ (t) and τ .

However, the measurement for the difference between x̂(t)
and x(t) is available. As seen from (6), the auxiliary system

is totally driven by the difference between x̂(t) and x(t),
which is further driven by the difference between τ̂ (t) and

τ . Regarding the two parameters κ1 and κ2, to ensure that the

change of τ̂ takes an dominant role in the dynamics of the

auxiliary system, we need to set the value of κ1 to be much

larger than that of κ2.

C. Theoretical Analysis

In this subsection, theoretical results about the proposed

method are given to guarantee its performance in addressing

the input-delayed affine dynamical system (1). About the

performance of the auxiliary system, we have the following

theorem.

Theorem 1: Given that κ1 > d0 > 0 and the second-

order derivative of input u satisfies (3), the state variable x̂

of auxiliary system (6) and the state variable x of system (1)

satisfies limt→+∞(x̂(t) − x(t)) = 0.

Proof: Since system (1) is equivalent to system (2), we only

need to prove that the state variable x̂ of auxiliary system

(6) asymptotically converges to x of system (2). Let x̃(t) =
x̂(t) − x(t) and τ̃ (t) = τ̂(t) − τ . From equations (6) and (2),

we have

˙̃
x(t) = − g(x(t))τ̃ (t)u̇(t − τ̂(t)) − g(x(t))

τ̃2(t)

2
ü(χ)

− κ1sgn(x̃(t)),

˙̃τ(t) =κ2u̇
T(t − τ̂ (t))gT(x(t))x̃(t).

(7)

Consider the following Lyapunov candidate function:

V (t) =
1

2
x̃

T(t)x̃(t) +
1

2κ2

τ̃2(t).

Evidently, V (t) ≥ 0, ∀t > 0, and V (t) = 0 only when

x̃(t) = 0 and τ̃ (t) = 0. The derivative of V (t) along the

state trajectory of system (7) is calculated as follows:

V̇ (t) = x̃
T(t) ˙̃

x(t) +
1

κ2

τ̃ (t) ˙̃τ(t)

= x̃
T(t)

(

− g(x(t))τ̃ (t)u̇(t − τ̂ ) − g(x(t))
τ̃2(t)ü(χ)

2

− κ1sgn(x̃(t))

)

+ τ̃(t)u̇T(t − τ̂ (t))gT(x(t))x̃(t)

= −x̃
T(t)g(x(t))

τ̃2(t)ü(χ)

2
− κ1x̃

Tsgn(x̃(t))

= −x̃
T(t)g(x(t))

τ̃2(t)ü(χ)

2
− κ1‖x̃‖1

≤ ‖x̃(t)‖2‖g(x(t))‖2

τ̃2(t)‖ü(χ)‖max

2
− κ1‖x̃‖1,

where ‖ · ‖1 denotes the 1-norm. Together with inequality (3),

we further have

V̇ (t) ≤ d0‖x̃(t)‖2 − κ1‖x̃(t)‖1.

Note that, for any x̃, we have ‖x̃(t)‖2 ≤ ‖x̃(t)‖1 (pp. 53 of

[29]). As a result,

V̇ (t) ≤ d0‖x̃(t)‖1 − κ1‖x̃(t)‖1 = (d0 − κ1)‖x̃(t)‖1, (8)

which, together with κ1 > d0, yields

V̇ (t) ≤ 0.

Thus, based on (8) and the definition of V (t), there ex-

ists an invariant set at which ‖x̃‖1 = 0. It follows that

limt→+∞(x̂(t) − x(t)) = 0. The proof is complete. �

About the above theorem, we have the following remark

about its underlying intuition.

Remark 2: According to Theorem 1, we have

limt→+∞(x̂(t) − x(t)) = 0 under the same input. In

other words, the input-to-state response of the auxiliary

system (6) is asymptotically equivalent to the considered one,

i.e., system (1). Consequently, if we can design a controller

for auxiliary system (6) with a fixed constant τ̂ (i.e., excluding

the update for τ̂ ) to achieve certain objective such as output

tracking, the controller will also work for system (1) with

the update for τ̂ . It can be expected that although there may

be some differences in the transient behavior, the long-term

behavior of the states of the two systems will be almost the

same. This kind of design is similar to the model-reference

adaptive control, which was shown to be effective in [30],

[31] for the case without delay. To sum up, with the proposed

design, the control problem of a system with unknown input

delay can be addressed by controllers originally designed for

the corresponding systems with known input delay.

Apart from the benefits shown in Remark 2, we are also

interested in the convergence of τ̂(t) to τ . About this issue,

we have the following theorem.

Theorem 2: Given that, ∀̟ ∈ [τmin, τmax], ∃k > 0 and

T > 0 such that
∫ t+T

t
((g(x)u̇(t′ −̟))Tg(x)u̇(t′ −̟))dt′ ≥

k, the state variable τ̂ (t) of auxiliary system (6) satisfies

limt→+∞(τ̂ (t) − τ) = 0, i.e., input delay estimation τ̂(t)
asymptotically converges to actual input delay τ of system

(1).
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Fig. 1. Data profiles when auxiliary system (6) is used for system (10) with h(u̇, u,x, t) in equation (4) set to h(u̇, u,x, t) = sin(t). (a) Profile of state
variable x(t) of system (10). (b) Profile of the second-order derivative

...
u(t). (c) Profile of state difference x̃(t) = x̂(t) − x(t). (d) Profile of state variable

τ̂(t) of auxiliary system (6).

Proof: According to Theorem 1, there exists an invariant set

at which x̃(t) = 0 and ˙̃
x(t) = 0. Together with equations (1)

and (6), we have g(x(t))u(t − τ) − g(x(t))u(t − τ̂ (t)) = 0.

By the mean value theorem, we further have

g(x(t))u̇(t − ̟)τ̃ (t) = 0 (9)

with ̟ ∈ [τmin, τmax]. It follows from (9) that

(g(x(t))u̇(t − ̟))Tg(x(t))u̇(t − ̟)τ̃ (t) = 0

Integrating both sides of the above equation, with the fact

that τ̃(t) is a constant in the invariant set, over a time region

[t, t + T ], with T > 0, we have

τ̃ (t)

∫ t+T

t

(g(x)u̇(t′ − ̟))T(g(x)u̇(t′ − ̟))dt′ = 0.

Consequently, given that, ∀̟ ∈ [τmin, τmax], ∃k > 0 and T > 0

such that
∫ t+T

t
((g(x)u̇(t′ − ̟))Tg(x)u̇(t′ − ̟))dt′ ≥ k, we

have τ̃ (t) = 0. It follows that input delay estimation τ̂ (t)
asymptotically converges to actual input delay τ of system (1)

by LaSalle’s invariance principle [33]. The proof is complete.

�

About Theorem 2, we have the following remark about how

to satisfy the stated condition about input u in practice.

Remark 3: In practice, to satisfy the PE condition, we

can introduce noise into the input channel. Assume we have

noise ω ∈ R
m and νR

m such that ω̇ = ν with ω being

zero-mean, i.e., E(ω) = 0. Let u̇ = u̇1 + k1ω and ü =
ü1 + k1ν with k1 being a small positive number. Then, the

condition that
∫ t+T

t
((g(x)u̇(t′ − ̟))Tg(x)u̇(t′ − ̟))dt′ =

∫ t+T

t
((g(x)(u̇1(t

′ − ̟) + k1ω(t′ − ̟)))Tg(x)(u̇1(t
′ − ̟) +

k1ω(t′ − ̟)))dt′ ≥ k can be easily satisfied due to the

randomness of ω.

IV. SIMULATION VALIDATIONS

In this section, simulative examples are presented to validate

the effectiveness of the proposed method.

A. Validation of Theorem 1

We consider the following nonlinear dynamical system:

ẋ(t) = −4x(t) + 0.1x3 + sin(x) + u(t − τ), (10)

where τ = 3. We assume that we only know that τ ∈ [1, 10],
i.e., τmin = 1 and τmax = 10. To verify Theorem 1, h(u̇, u,x, t)
in equation (4) is set to h(u̇, u,x, t) = sin(t). Without

generality, the initial state of system (10) is set to x(0) = 0.

For the auxiliary system (6), the initial states are set to

x̂(0) = −20 and τ̂(0) = 5. The design parameters are set

to d0 = 0.1, κ1 = 3, and κ2 = 100. The reason why we

set the value of κ2 to be much larger than that of κ1 is to

guarantee that the learning of input delay takes a dominant role

in forcing the state difference to converges to zero. Meanwhile,
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ü

(d)

0 20 40 60 80 100
2.5

3

3.5

4

4.5

5

 

 

t

τ̂

(e)

0 20 40 60 80 100
0

50

100

150

200

250

 

 

t

V

(f)

Fig. 2. Data profiles when auxiliary system (6) is used for system (10) with h(u̇, u,x, t) in equation (4) set as equation (11). (a) Profile of state variable
x(t) of system (10). (b) Profile of state difference x̃(t) = x̂(t) − x(t). (c) Profile of the first-order derivative ü(t). (d) Profile of the second-order derivative
...
u(t). (e) Profile of state variable τ̂(t) of auxiliary system (6). (f) Profile of the associated Lyapunov function V (t).

as there are no projection terms added in the auxiliary system

(6), the value of κ2 cannot be too large so as to prevent the

value of τ̂(t) from decreasing to be negative. To guarantee the

satisfaction of inequality (5), we simply set

ε =
|h(u̇, u,x, t)|max{(τ̂ − τmin)

2, (τ̂ − τmax)
2}‖g(x)‖2

2d0

+2.

Under the above setup, the simulation is conducted in

Simulink, and the data of interest are shown in Fig. 1. As

seen from Fig. 1(b), the second-order derivative of input, i.e.,

ü(t), is bounded in a small region. This is due to the effect

of ε by referring to equation (4). As seen from Fig. 1(c), the

state difference, i.e., x̃(t), converges to zero with time, which

is consistent with Theorem 1. However, as seen from Fig. 1(d),

the state variable τ̂ of auxiliary system (6) does not converge

to τ = 3. This is due to the fact that ü does not satisfy the

condition stated in Theorem 2.

B. Validation of Theorem 2

To verify Theorem 2, we further conduct a simulation with

different setting of h(u̇, u,x, t) and the other setups are the

same with the aforementioned. Specifically, following Remark

3, h(u̇, u,x, t) is set as follows:

h(u̇, u,x, t) =

{

0.5, 0 ≤ t ≤ 20

0, t > 20.
(11)
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Fig. 3. Data profiles when the proposed method is combined with Smith predictor. (a) Regulation error e(t) when Simith predictor enhanced PI controller
is applied to system (12) with τ̂ = 50. (b) Delay estimation τ̂(t) when the proposed method is used for system (12). (c) Regulation error e(t) when Simith
predictor enhanced PI controller is applied to system (12) with the obtained delay estimation.

Obviously, under this setting, we have limt→+∞ ü(t) = 0 and

limt→+∞ u̇(t) > 0, by which the conditions stated in Theorem

2 are satisfied. As seen from Fig. 2(b), the state difference x̃(t)
converges to zero with time. This coincides with Theorem

1. As seen from Fig. 2(c) and Fig. 2(d), under such setting,

the second-order derivative of input, i.e., ü(t), converges to

zero and the first-order derivative of input, i.e., u̇(t), converges

to a positive constant, which satisfy the conditions stated in

Theorem 2. Besides, Fig. 2(e) shows that τ̂(t) converges to

3, i.e., τ , and Fig. 2(f) shows that the associated Lyapunov

function V (t) converges to zero. These results coincide with

Theorem 2.

C. Combination with Smith predictor

To validate the potential of the proposed method in the

usage of Smith predictor [34], simulations are also conducted.

Consider the following system:

ẋ = −x + u(t − τ), (12)

with τ = 20. Suppose we only know that τ ∈ [1, 100].
We first use the proposed method to estimate its input delay

and then use Simith predictor enhanced proportional-integral

(PI) controller to drive the state of the system to converge to

xd = 10. During the estimation process, we set h(u̇, u,x, t) in

equation (4) to h(u̇, u,x, t) = 0.2e(t) + 0.2
∫ t

0
e(χ)dχ, where

e(t) = xd(t) − x(t) denotes the regulation error. To fulfill

the requirement of Theorem 2, we inject zero-mean white

noise with noise power 10 × 10−6 to the auxiliary system.

The relevant parameters are set to κ1 = 1, κ2 = 26, and

d0 = 0.2. For the PI controller, the proportional parameter is

set to 0.6 and the integral parameter is set to 2. For the Smith

predictor, the time constant of the filter dynamics is set to 20.

As seen from Fig. 3, with the same setting for the PI controller,

when delay estimation obtained by the proposed method, i.e.,

τ̂ = 20.14 is adopted in the Smith predictor, the regulation

error is larger than the case with a rough estimation of input

delay, i.e., τ̂ = 50. The result shows the significance of the

proposed method and validate the theoretical results.

TABLE I
VALUES OF PARAMETERS IN CSTR SYSTEM (13)

Parameter Value Parameter Value

V 100 L q 100 L/min
CAf 1 mol/L K0 7.2 × 1010 1/min
E/R 8750 K ρ 1000 g/L
C 0.239 g/(LK) Tf 350 K

−∆H 5.0 × 104 J/min U 5.0 × 104 J/(min K)
τ 0.2 min

V. APPLICATION TO INPUT DELAY ESTIMATION OF CSTR

SYSTEM

To further show the effectiveness of the proposed method,

in this section, we present an application to the estimation of

input delay of a continuous stirred tank reactor (CSTR) sys-

tem, where a first-order reaction A→B occurs. The dynamics

of the system is described as follows [35]–[37]:

V ĊA(t) = q(CAf − CA(t)) − V K0 exp

(

−E

RT (t)

)

CA(t),

V ρCṪ (t) = qρC(Tf − T (t)) + V (−∆H)K0 exp

(

−E

RT (t)

)

× CA(t) − U(T (t) − Tc(t − τ)),
(13)

where V denotes the reactor volume; CA(t) and CAf denote the

effluent concentration and the feed concentration, respectively;

q denotes the feed flow rate; K0 denotes the reaction velocity

constant; E/R denotes the ratio of Arrhenius activation energy

to the gas constant; T (t) and Tf denote the reactor temperature

and the feed temperature, respectively; ρ denotes the density;

C denotes the specific heat; −∆H denotes the heat of reaction;

U denotes heat transfer coefficient of the reactor surface area;

Tc(t) denotes the coolant temperature in the reactor cooling

coil, which is the input variable of the CSTR system. The

units and values of the parameters are shown in Table I

[35], [36]. Evidently, CSTR system (13) can be described by

affine dynamical system (1) with x = [CA, T ] and u = Tc.

The difference of this system from the system in the above

simulation is that this is a physical system and the values of

the variable cannot be extremely large or small.

We use the proposed method to perform delay estimation

for the CSTR system. The initial state of the CSTR system is
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Fig. 4. Data profiles when auxiliary system (14) is used for input delay estimation of CSTR system (13). (a) Profile of effluent concentration CA(t) and

reactor temperature T (t) of CSTR system (10). (b) Profile of the first-order time derivative of coolant temperature in the reactor cooling coil Tc, i.e., Ṫc(t).

(c) Profile of the second-order derivative of coolant temperature in the reactor cooling coil Tc, i.e., T̈c(t). (c) Profiles of the state variable difference between
CSTR system (13) and auxiliary system (14).

set to CA(0) = 0.5 mol/L and T (0) = 280 K. The value of

d0 is set to 0.1. The initial input is set to Tc(0) = 260 K. For

the CSTR system, the corresponding auxiliary system (6) can

be rewritten as follows:

V
˙̂

CA(t) = q(CAf − CA(t)) − V K0 exp

(

−E

RT (t)

)

CA(t)

− κ1sgn(ĈA(t) − CA(t)),

V ρC
˙̂
T (t) = qρC(Tf − T (t)) + V (−∆H)K0 exp

(

−E

RT (t)

)

× CA(t) − U(T (t) − Tc(t − τ̂ (t)))

− κ1sgn(T̂ (t) − T (t)),

˙̂τ(t) = κ2Ṫc(t − τ̂ (t))
U

V ρC
(T̂ (t) − T (t)).

(14)

In this application, the auxiliary system (14) adopts the fol-

lowing setting: κ1 = 10, κ2 = 1000, ĈA(0) = 0.5 mol/L, and

T̂ (0) = 450 K. Besides, h(u̇, u,x, t) in equation (4) is set as

follows:

h(u̇, u,x, t) =

{

50 K/min2, 0 ≤ t ≤ 5 min,

0, t > 5 min.
(15)

The upper bound and lower bound of input delay τ is set to

τmin = 0.01 min and τmax = 1 min.

The performance of the proposed method in this application

is tested in Simulink with the data profiles shown in Fig. 4

and Fig. 5. The units of the variables in the figures follow
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Fig. 5. Data profile of input delay estimation τ̂(t) when auxiliary system
(14) is used for input delay estimation of CSTR system (13).

the corresponding ones in Table I. As seen from Fig. 4,

in the delay estimation process, the values of the effluent

concentration CA(t) and reactor temperature T (t) of the CSTR

system (13) are in a reasonable region. Meanwhile, the state

differences between the variables of CSTR system (13) and

corresponding ones of auxiliary system (14) converges to

zero. In addition, the first-order time derivative of coolant

temperature in the reactor cooling coil Tc, i.e., Ṫc(t), converges

to a constant value, and the second-order derivative of coolant

temperature in the reactor cooling coil Tc, i.e., T̈c(t) converges

to zero, which satisfy the conditions given in Theorem 2. As

stated in Theorem 2, when the two conditions are satisfied,

the proposed method can be used to estimate input delay. As
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seen from Fig. 5, τ̂ (t) of auxiliary system (14) converges to

0.2 min, which is input delay τ of CSTR system (13). The

above results demonstrate the potential and effectiveness of

the proposed method in the application.

VI. CONCLUSIONS

In this paper, a novel method based on Taylor expansion and

an auxiliary system has been proposed for affine nonlinear

dynamical systems. Theoretical analysis has shown that the

proposed method can guarantee asymptotic convergence of the

difference between the state of the dynamical system and the

corresponding state of the auxiliary to zero. Besides, it has

also been shown that, under mild conditions, the proposed

method can theoretically guarantee the asymptotic conver-

gence of input delay estimation error to zero. In addition,

simulative examples have validated the theoretical results and

the effectiveness of the proposed method. The performance of

the proposed method has also been validated in a continuous

stirred tank reactor system. It should be pointed out that due

to the above two properties of the proposed method, it can be

used for two purposes, i.e., a tool to facilitate the usage of

controllers designed for corresponding systems with known

input delay and an input delay estimator.
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