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Abstract

Rotating machines are intrinsically susceptible to expensive and high-risk faults such as rotor-stator

rub. During a rub event normal and tangential forces are generated by the contact and friction that

cause wear at the contacting interfaces. In the present work, such forces are computed by assuming

linear elastic contact and Coulomb friction at multiple interface locations. A finite element shaft-

line model of a horizontally mounted rotor is used to demonstrate the approach and the model is

reduced for computational efficiency. The modal assurance criterion is used to identify the linear

modes that contribute to a given solution. It is observed that bouncing solutions exist with rotor-

stator contact in complex machines that can be viewed as internal resonances involving a small

number of modes. The responses can become complex because different modes can combine to give

the internal resonance (and hence a larger range of frequency ratios) and because of asymmetries,

such as gravity. One design goal is to avoid any contact in the system and the analysis in this

paper identifies the conditions for internal resonance that should be avoided in a real machine. The

complicated dynamics shown here reveal some of the distinct features of contacting solutions and

could also be used in condition monitoring to characterise faults.
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1. Introduction

The clearance between the stationary and rotating parts of a rotating machine has reduced in

recent years, typically to increase the machine efficiency. Rotor-stator contact in these machines

with small clearance becomes a critical fault; for example, aircraft engines have failed because

of contact between the fan blade and the casing [1]. Rotor-stator contact has been studied for

many years, usually for relatively simple systems. Johnson [2] studied a vertical shaft analytically
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and determined the changes in synchronous whirl due a bearing with clearance. Choy et al. [3]

investigated the effects of mass, support stiffness and blade stiffness during rotor stator rubbing for

a simple rotor model, and showed intermittent behaviour and full rub. Ecker[4] investigated the

steady state response of a rigid, single mass rotor supported by an active nonlinear magnetic bearing,

and observed periodic, non-periodic and quasiperiodic solutions. Lawen and Flowers [5] studied the

dynamic behaviour of a flexible rotor supported by linear bearings and an auxiliary bearing with

clearance. Sinha [6] presented an analytical method to show the nonlinear dynamic effects of

blades rubbing against a rigid outer case in rotating machinery. Smyth et al. [7] incorporated

viscoelasticity into the stator support and investigated its effect on the global dynamics of a rotor-

stator rub. Model order reduction methods have been suggested for high dimensional rotor systems

[8, 9].

Asynchronous solutions have been identified in rotor-stator contact systems. Choi and Noah

[10] viewed subharmonic frequency components as nonlinear resonant frequencies of the system.

Ehrich [11] found that high speed rotors with bearing clearance exhibit high orders of subharmonic

vibration particularly for systems with low damping and extreme nonlinearity. Childs [12] studied a

Jeffcott model to explain the existence of (1/2)X and (1/3)X subharmonic motion in rotor systems

with clearance. Childs [13] gave an explanation of the half frequency whirl for rotating machinery

with light damping, and suggested the rub-induced whirl could be suppressed by lubricating the

surfaces or reducing the local casing stiffness. Sun et al. [14] analysed a high speed rotor system with

rub and observed periodic, chaotic and quasiperiodic solutions as the rotor spin speed increased.

They observed two types of routes to chaos, namely the quasiperiodic route and the period doubling

route.

The dynamics of a machine with rotor-stator contact has also been used for condition moni-

toring. Chu and Lu [15] assessed the feasibility to determine the rubbing location in a multi-disk

rotor system by using dynamic stiffness identification. Liu et al. [16] proposed a method based

on Nonlinear Output Frequency Response Functions to identify signal features; the method was

verified with simulations and experiments. Hu et al. [17] conducted rub, crack and rub-crack cou-

pled fault experiments and analysed the instantaneous frequency signatures of the faults using the

Hilbert-Huang transform. The rub impact fault in rotating machines can cause periodic frequency

modulation in the vibration response and Zhou et al. [18] used a fast modulated instantaneous

frequency extraction to diagnose rubbing fault. Hong et al. [19] analysed the influence of rub on
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the modal characteristics using the concept of complex nonlinear modes. It was observed that the

modal frequencies of both the backward whirl (BW) and forward whirl (FW) modes increase with

modal amplitude. The BW mode however sometimes became unstable. Mokhtar et al. [20] used

the stator vibrations for rub identification instead of the rotor response which is normally difficult

to measure.

In real machines BW motion is often destructive. Bartha [21] suggested to reduce the contact

friction coefficient, to tune the dynamic properties of the stator and to reduce the coefficient of

restitution of the impacts as methods to protect plants from BW. Fumagalli [22] found the whirl

acceleration to be dependent on the material of the rotor and stator. Schmied and Pradetto

[23] and Kirk et al. [24] considered the nonlinear dynamics following rotor drop to determine

auxiliary bearings that inhibit the development of BW. Black [25] derived the existence condition

of dry friction backward whirl (DFBW) using an unforced coupled nonlinear rotor/stator model and

assuming pure rolling at the inception of DFBW. Ma et al. [26] considered the response due to a fan

blade out event in an aero-engine, and showed that blade casing rubbing increases the resonance

speed (resonance expansion). Bin et al. [27] investigated the dynamic response of a high speed

turbocharger and observed that the subsynchronous 0.12X component caused rotor instability for

small induced unbalance but as the unbalance is increased the vibration frequencies change from

mainly 0.12X to synchronous vibration 1X. Nembhard et al. [28] conducted an experimental study

on the shaft orbit response for different rotor related faults including rub. BW solutions were

observed at subcritical speeds. Tehrani and Dardel [29] suggested using a tuned mass damper and

a nonlinear energy sink to prevent contact. Bab et al. [30] modelled a two disk rotating machine

and showed that a smooth nonlinear energy sink with rub at the disk positions can decrease the

vibration and the inception of rub over a wide range of rotor spin speeds.

The motivation for this study comes from the work of Zilli et al. [31] who were the first to

propose that the onset of bouncing type solutions can occur as a result of synchronisation of three

fundamental frequencies, namely the rotor spin speed frequency, the FW frequency and the BW

frequency. Shaw et al. [32, 33] suggested that this synchronisation may be interpreted as internal

resonance. The resonance is caused by modal interaction of the FW and BW modes, and these

solutions appear asynchronous in the stationary frame but periodic in the rotating frame. However,

these studies do not address frictional and gravitational effects. The effect of gravity and friction

on the internal resonance have been studied individually using a modified 2DOF Jeffcott rotor. For
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the case with gravity, Chipato et al. [34] observed that gravity should be included for low shaft

stiffness problems particularly for horizontal shaft systems but for high shaft stiffness, gravity can

be ignored. Additional chaotic and multi periodic solutions, not seen for the case without gravity,

were observed. Varney and Green [35] also highlighted that gravity has a significant impact on

the non-linear response of rotor systems particularly at low rotor spin speeds which corresponds

to the low stiffness case identified by [34]. For the case with friction, Chipato et al. [36] identified

an additional type of quasiperiodic bouncing solution which was excited by friction and this was

identified as the asynchronous periodic bouncing solution. A high amplitude response was also

observed which proved to be a stiffened backward whirling (SBW) solution and as the coefficient of

friction was increased the basin of attraction of this type of solution branch expanded. Crespo et al.

[37] conducted an experiment to validate these internally resonating solutions. The experimental

results lack the pristine geometrical elegance of a numerically simulated solution, however the

presence of 2:1 frequencies and the higher orders visible in the solutions visualised in the rotating

frame suggest that these solutions exist in reality. A good agreement between simulation and

experiment was observed even though the numerical model did not include friction.

The focus of this study is the modal interaction which results in the onset of bouncing limit

cycles. As discussed earlier, the effects of gravity and friction have been studied for a relatively

simple 2DOF system with a single contact point. However, the influence of other modes in an

MDOF system with multiple contacts is poorly understood, and this work intends to answer this

question. In this work, a finite element shaft line model of a two disk rotor is developed, where the

shaft comprises of Timoshenko beam elements. To make the analysis comprehensive, the study is

done for both single contacts and double contacts. Studies are conducted on the effect of gravity,

friction, coupled gravity and friction and finally the link between the gravitational and anisotropic

case is discussed. The results are analysed using orbits and FFTs in both the stationary and

rotating frames, bifurcation diagrams, spectral intensity plots and finally the modal assurance

criterion (MAC) is used to reveal which modes contribute to a given solution.

The paper is organised as follows. Section 2 introduces the finite element model, the underlying

assumptions and the final equations of motion. In Section 3 the modal assurance criterion (MAC)

is discussed, which is used to determine the modal participation. Section 4 presents the results

obtained from the numerical simulation and finally Section 5 gives the conclusions.
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2. Finite Element Modelling

The Finite Element Method (FEM) is widely used in rotordynamics to develop the equations

of motion of a given system [38]. The system under study in this work is shown in Figure 1. This
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Figure 1: Schematic view of the rotor-bearing system, nodes, elements and potential contact locations.

system is the simplest machine that has multiple forward and backward whirling modes; since the

arguments in the paper are based on the underlying linear modes of the machine, the proposed

methods are easily applied to more complex machines. In order to study the rotor system, the FE

model is simplified according to the following assumptions;

1. The right and left bearing are modelled as simple spring damper members of constant stiffness

and damping unless mentioned that they are anisotropic.

2. The shaft is divided into 12 Timoshenko beam elements with 13 nodes. Each node has four

degrees of freedom as shown in Figure 2, and therefore the entire system has 52 degrees of

freedom (DOF). In Figure 2, xi, yi, θyi and θxi denote the displacements in translation and

the angular displacements in the rotational direction of the ith node

3. The two identical rigid disks are simulated as lumped mass elements superimposed on respec-

tive shaft nodes. These are simulated by the mass and the diametral and polar moments of

inertia. The gyroscopic effects of the disks are also included. In Figure 2b, xd, yd, θyd and
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θxd denote the displacements in translation and the angular displacements in the rotational

direction of a disk member.

4. The rotor-stator contact is modelled by a clearance, c, and stator stiffness ks. Although three

positions of possible rotor-stator contact are shown in Figure 1, all of these locations are not

implemented simultaneously.
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Figure 2: FE model of a Timoshenko shaft element and a rigid disk.

The general displacement vector of the two node shaft element can be expressed as;

qj =
[
xi yi θxi θyi xi+1 yi+1 θx(i+1) θy(i+1)

]T
(1)

where the subscript j denotes for the element number. The displacement vector of a rigid disk

member qk is

qk =
[
xd yd θxd θyd

]T
(2)

The stiffness, mass and gyroscopic matrices of the shaft and disk elements are represented by Ke,

Me, Ge, Md, Gd and these are assembled to obtain the overall system. The assembled dynamic

equation of motion of the rotor bearing system can be written as;

Mq̈ + (ΩG + C)q̇ + Kq = Fu − Fc − Fg (3)
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where K, M, G and C are the stiffness, mass, gyroscopic and damping global matrices of the rotor

bearing system. Ω is the rotor spin speed. In this work shaft damping is ignored and damping

solely comes from the bearing supports. Fu is the excitation force due to the mass unbalance which

only exists at the disk at node 4 and is given by;

Fu = Re(Ω2bue
iΩt) (4)

where bu is the unbalance magnitude vector given by the product of the mass of the disk and its

disk offset, ε and t is the time. The vector has two non-zero terms at the degrees of freedom of the

disk where the unbalance excitation is imposed. Fg is the rotor system gravity and is given by

Fg = Mg (5)

where M is the mass matrix and g is the gravity vector, g =
[
0 −g 0 0 0 −g 0 0...

]T
where g is the acceleration due to gravity which is applied on every yi degree of freedom along the

rotor system [39]. Fc denotes the nonlinear contact force generated when the response, r=
√
x2 + y2

of the machine exceeds the clearance. The undisturbed rotor of radius R is shown in Figure 3a where
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Figure 3: Undeflected rotor and deflected rotor with contact.

the geometric centre Or is initially at the location O. During contact an elastic normal force, FN ,

and a tangential force, Fτ , are generated at the interface as shown in Figure 3b. The elastic restoring

force is linearly proportional to the interference by the stator stiffness ks, meanwhile the tangential

force is proportional to the product of the normal force, FN and the coefficient of friction, µ. In
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this study the Coulomb friction model is used. The contact force Fc is mathematically represented

by the expression;

Fnl =



ks

(
1− c

rc

)1 −µ

µ 1


xcyc

 , if r ≥ c

0

0

 , if r ≤ c

(6)

Fnl is a 2-by-1 local vector with forces in the x and y directions, Fx and Fy. These are applied to

the global contact force Fc which is a 52-by-1 matrix at the appropriate degrees of freedom. For

this work, there can either be a single or double contact case. For the latter, one would have to

compute the response at each contact location, here assumed at nodes 4 and 9, check whether the

clearance has been exceeded and then apply the resulting contact forces to the DOF 13, 14, 33 and

34, ignoring the rotational degrees of freedom for each node. The symbols rc, xc and yc are the

local radial and lateral displacements at a contact location. The problem in this work has contact

at either one or two nodes thus requiring a significant computational effort. For computational

efficiency the model is reduced by only taking into account the first 8 mass normalized non-rotating

modes. The simulations were performed and bifurcation plots obtained with 12 modes for typical

cases to ensure that 8 modes was sufficient. The new transformed variable p is related to U by

q = Up (7)

where U is the 52-by-8 matrix of eigenvectors of the stationary system. The reduced mass, stiffness,

damping and gyroscopic matrices are denoted Mr, Kr, Cr and Gr. The relationship between the

full and condensed matrices is

Mr =UTMU = I Gr = UTGU

Kr =UTKU = Λr Cr = UTCU
(8)

where I is an 8-by-8 identity matrix and Λr is a diagonal matrix of the eigenvalues of the reduced

system. Transforming Equation (3) into its condensed form gives

p̈ + Ω(Gr + Cr)ṗ + Λrp = UT (Fu − Fc − Fg) (9)

To solve Equation (9) it is convenient to write the equations in state space form asṗ

v̇

 =

 0 I

−Λr −(Cr + ΩGr)

p

v

+

 0

UT (Fu − Fc − Fg)

 (10)
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These first order nonlinear equations can be numerically solved using an appropriate time integra-

tion solver. In this work the fourth order Runge Kutta procedure was used.

3. The Modal Assurance Criterion(MAC)

The Modal Assurance Criterion (MAC), also known as the Mode Shape Correlation Coefficient

(MSCC), is a widely used statistical technique to estimate the degree of correlation between mode

shape vectors[40–43]. Typically the MAC is used for comparison between measured and predicted

mode shapes. Ewins [40] suggests that this statistical method is useful for all sorts of comparisons

not only theory vs. experiment and that it can be applied to compare any pair of mode shape

estimates. In this work the linear modes from the eigenvalue analysis are correlated with the

nonlinear responses, in order to identify the modal content. Previous works, for example [32, 34, 36],

rely on FFT observations to identify modal content, and this can require some interpretation due

to nonlinearity causing response frequencies to shift from the underlying linear modal frequencies.

However, since all of the responses are available at all of the degrees of freedom, one can use the

MAC to perform a more rigorous identification of the participating modes. For each frequency peak

in the FFT, one can get the complex FFT value which will give a vector of the response at that

frequency. Also available are the complex modes at a given rotor spin speed from the eigenvalue

analysis. With this information one can see which mode shape correlates best with the response

frequencies, with the results presented in a bar chart or 2D table (similar to a MAC matrix in

modal analysis). The correlation is easily performed using the scalar vector product normalised by

the vector lengths as

MAC(l ,n) =
| UH

l Un |2

(UH
nUn)(UH

l Ul)
(11)

where Ul and Un are the complex linear mode from the eigenvalue analysis and the decomposition

of the nonlinear motion into deflection shapes at each frequency peak in the FFT respectively. The

vectors on the right side of Equation (11) are complex and thus the transpose is represented by

the Hermitian transpose, H. In the MAC plots the deflection shapes for each frequency peak are

represented by the term Nonlinear Frequency Components (NFC). This scalar product is complex

but the absolute value is real and the MAC values range between zero and one, similar to that
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of the conventional MAC, with 1 indicating that the deflection shape at a given frequency fully

matches the given mode shape. Previous authors such as [43, 44] have used the MAC to identify

linear modal participation in nonlinear responses, but to the author’s knowledge this is the first

time that this has been used to explore rotor-stator contact responses.

4. Numerical Simulations and Discussions

The reduced equation of motion in state space form in Equation (10) was solved numerically

using the 4th/5th order variable step Runge Kutta solver, ode45 in Matlab. Table 1 shows the

Table 1: The FEA model system parameters

Symbol Parameter Value Unit

E Young’s modulus 211 GPa

G Shear modulus 81.2 GPa

ρ Material density 7800 kg/m3

g Acceleration due to gravity 9.81 m/s2

Ds Shaft diameter 0.02 m

Dd Disks diameter 0.3 m

cb Bearing damping 5e3 N/(m/s)

kb Bearing stiffness 4e6 N/m

h disk thickness 0.01 m

e Unbalance offset 0.5e-3 m

c Clearance 5e-3 m

ks Contact stiffness 4e6 N/m

system parameters of the FEA model under study. The simulation was run for 100s. The integration

results for each rotor spin speed were output as a 16 element vector consisting of displacements

and velocities for the first 8 modal variables. This was then converted back into the physical

coordinates resulting in a 52-by-n vector where 52 is the number of degrees of freedom of the FEA

model. Appropriate DOF are then selected for further study, for example for node 4, the x and y

DOFs corresponds to the 13th and 14th DOF.
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In this work, the nonlinear dynamics were analysed using bifurcation diagrams, spectral intensity

plots, FFT spectra in both the rotating and stationary frames, complex FFTs and Poincaré maps.

In summary, the bifurcation diagrams were plotted by sampling the last 100 forcing periods of a

given solution in the steady state region over a range of parameter values. This gives a summary of

the essential nonlinear dynamics of a system by observing the structure of the bifurcation diagram

as a system parameter is changed. Since colour graphics are widely used nowadays, a 3D waterfall

plot can be projected onto a 2D plot with the intensity of the colour representing the amplitude,

forming the spectral intensity plot. The Poincaré map is the stroboscopic portrait of a given

motion at specific times and contains information about periodicity, quasi-periodicity, chaos and

bifurcations of the system’s dynamics. The results of this work are given as follows: the effect of

gravity and friction are discussed separately for cases with a single and double contact and finally

the effect of coupling both friction and gravity is given.

4.1. The effect of gravity on the nonlinear rotor system

To illustrate the effect of gravity on the system, both the single contact and the double contact

are analysed in this section. Figure 4 shows the bifurcation and spectral intensity plots for the

system with a single contact at node 7 for the case with no gravity force (Figures 4a and 4c) and

for the case with gravity (Figures 4b and 4d). For the spectral intensity plots, amplitudes that are

greater than 0.5mm are shown as dark red. It is apparent from the bifurcation and spectral intensity

plots the qualitative changes that happen upon introduction of asymmetry into the system. There

is also a reduction in bouncing solutions upon introducing asymmetry to the system.

Furthermore, the bouncing solutions at higher rotor spin speeds, that is, in the neighbourhood of

7000rpm, seem to be unchanged by just looking at the spectra even though these have decreased in

number as compared to the non-gravity case. To get more insight into the nature of the dynamics,

orbits visualised both in the stationary and rotating frames and their respective FFTs are presented.

The stationary frame orbits are superimposed with a Poincaré map of the given solution. Figures

5, 7 and 8 shows orbits and FFTs obtained for the zero gravity case at 3650rpm, 4430rpm and

6590rpm respectively. It is apparent from these plots that one striking feature they possess is the

difference in the number of loops in the orbit that is visualised in the rotating frame. In Figure 5,

for the FFT plot we see three major peaks for the motion in the stationary frame with one of them

being the excitation frequency at 3650rpm. The origins of the remaining two peaks at 1776rpm
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Figure 4: Bifurcation and spectral intensity plot for single contact at node 7, (4a and 4c) for the case with no gravity

and (4b and 4d) for the case with gravity.

Figure 5: Orbits and FFTs visualised in both stationary and rotating frame at 3650rpm at node 7.
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Figure 6: FFT for all degrees of freedom and the MAC for 3650rpm with contact at node 7.

Figure 7: Orbits and FFTs visualised in both stationary and rotating frames at 4430rpm at node 7.

Figure 8: Orbits and FFTs visualised in both stationary and rotating frames at 6590rpm at node 7.

and 2292rpm can be obtained from the MAC calculation in Figure 6. The FFT plot shows the

peaks used in the calculation of MAC and from the MAC calculation it is evident the modes which

contribute to the existence of such a solution; these are the first BW and FW frequencies. The

linear modal frequencies of these modes are 1723rpm and 2251rpm; these frequencies are lower

than the ones obtained in the FFT because in contacting systems the linear modes tend to be

stiffened. In addition, the nonlinear stiffened modal frequencies in the rotating frame are 1356rpm

and 5424rpm; the two frequencies are in a ratio of 4:1, and this therefore makes this solution a 4:1
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internal resonance solution.

Figure 7 shows the orbit and FFT at a higher speed of 4430rpm for the zero gravity case,

where both the stationary and rotating frame orbits look strikingly different and in particular it is

the rotating frame orbit with just two loops which is fewer than for the lower speed solution just

discussed. The stationary frame FFT shares similar features to the one at a lower speed of 3650rpm

with the three peaks representing the BW, FW and the excitation frequencies. The rotating frame

FFT has peaks at 2052rpm and 6168rpm making this a 3:1 internal resonance solution. Figure
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Figure 9: Orbits and FFTs visualised in both stationary and rotating frames at 4130rpm at node 7 for the case with

gravity.

Figure 10: Orbits and FFTs visualised in both stationary and rotating frames at 6590rpm at node 7 for the case

with gravity.

8 shows the orbits and FFTs at a much higher speed of 6590rpm for the zero gravity case. It is

apparent that the rotating frame orbit has bifurcated into a single loop orbit. The stationary frame

orbit has the typical three frequencies showing that the system is mode locked to give this type

of internal resonance solution. Moreover, the rotating frame FFT shows peaks at 4104rpm and

8208rpm, and this is therefore a 2:1 internal resonance solution. It is therefore discernible from

the zero gravity case results that the number of loops in the rotating frame can be used to predict

the type of internal resonance solution; suppose Ln represents the number of loops in the rotating

frame orbit then this will be an (Ln + 1) : 1 internal resonance solution.
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Figures 9 and 10 shows orbits and FFTs for the case with gravity obtained at 4130rpm and

6590rpm. It is evident from the lower speed solution in Figure 9 that gravity induces asymmetry

into the system as shown clearly in the stationary frame orbit which shows that the rotor precess in

the lower part of the stator. This is solely an effect of very strong gravitational effects which results

in directional stiffness variation. The orbit in the rotating frame shows a noisy circular orbit. The

FFT in the stationary frame shows the typical three interacting frequencies at the BW, FW and

excitation frequencies. The rotating frame FFT shows three peaks, the two shifted FW and BW

frequencies and an attenuated peak at the rotor spin speed. It is also important to note that the

FW in the rotating frame coincides in magnitude with the BW frequency in the stationary frame.

Figure 10 shows the orbit and FFTs at 6590rpm for the case with gravity, which is the same speed

as that shown in Figure 8 for the zero gravity case so a direct comparison can be made. Both the

orbits and FFTs are similar but the rotating frame orbit seems to appear more noisy than the zero

gravity case whilst keeping the same structure. This implies that even with imperfection the limit

cycles found in the isotropic case still exist. It also shows that at higher speeds there is weaker

directionality leading to a more symmetrical stationary frame orbit as the increased momentum of

the rotor overcomes the strong gravitational effects.

Figure 11 shows the bifurcation and spectral intensity plots for the double contact case with

contact locations at nodes 4 and 9 which are the locations of the two disks. The single and double

contact case share a similar feature which is the reduction in the number of contacting solutions

with the introduction of gravitational effects in the system. In addition, we see that for both cases at

higher speeds the spectral intensity plots show a broadband response with finite spectra suggesting

the presence of chaotic solutions in the system. Figure 12 shows orbits and FFTs at 4460rpm for the

zero gravity case with double contact. The rotating frame orbit has two loops suggesting that this is

3:1 internal resonance solution which was confirmed by observing the rotating frame FFT. Figure 13

shows the orbit and FFT at a higher speed of 6110rpm for the double contact case with no gravity.

The rotating frame orbit shows a structure that seems to suggest that this is an entrainment of the

single loop orbits shown earlier and thus this is a 2:1 internal resonance solution. The ratio of the

2 major peaks in the rotating frame suggest that this is indeed a 2:1 internal resonance solution.

Figure 14 shows the orbits and FFTs at 6110rpm for the double contact case and it follows from

the single contact case that even in the presence of multiple contacts the isotropic assumption is

reasonably robust in rotating systems.
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Figure 11: Bifurcation and spectral intensity plots for double contact at nodes 4 and 9. (11a and 11c) for the case

with no gravity and (11b and 11d) for the case with gravity.

Rotor systems are usually supported by bearings and fluid film elements with anisotropic or

asymmetric stiffness. One way of introducing anisotropy has already been discussed and this is the

inclusion of gravity. Another way would be to have anisotropic bearings. Figures 15 and 16 shows

orbits and stationary frame FFTs for the single and double contact cases at 7400rpm and 6800rpm

respectively. The similarity in the solutions for both the single and double contact cases suggest

that the inclusion of gravity to a system can be seen as similar to other forms of anisotropy.
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Figure 12: Orbits and FFTs visualised in both stationary and rotating frames for the double contact case(nodes 4

and 9) at 4460rpm at node 9.

Figure 13: Orbits and FFTs visualised in both stationary and rotating frames for the double contact case(nodes 4

and 9) at 6110rpm at node 9.

Figure 14: Orbits and FFTs visualised in both stationary and rotating frames for the double contact case(nodes 4

and 9) at 6110rpm at node 9 for the case with gravity.

4.2. The effect of friction on the nonlinear rotor system

Figure 17 shows the spectral intensity plots for a single contact at node 7 with friction in

Figure 17a and for a double contact with contact locations at nodes 4 and 7 in Figure 17b. It is

apparent from the two plots that the double contact case shows evidence of richer dynamics as

compared to that of the single contact case. Also the introduction of friction into the system seems

to excite complicated dynamics in the vicinity of the resonance expansion region close to the first

natural frequency of the system. Figure 18 shows the orbits and FFTs for a typical solution in the

resonance expansion region of the first natural frequency of the system. The rotating frame orbit
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Figure 15: Comparison of orbits and FFTs for the anisotropic(kx = 4e6, ky = 3.9e6) and gravity case at 7400rpm.

(a)

Figure 16: Comparison of orbits and FFTs for the anisotropic(kx = 4e6, ky = 3.9e6) and gravity case at 6800rpm.

clearly shows that this is a periodic bouncing solution as it shows a circular orbit and a single peak

in the rotating frame which is the sum of the two peaks in the stationary frame. The two peaks

therefore corresponds to the excitation frequency and the contact frequency. These types of orbits

are thereby referred to as Friction Induced Asynchronous Partial Contacting solutions. Figure
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(a) (b)

Figure 17: Spectral intensity plots for a single contact at node7 in 17a and a double contact at nodes 4 and 7 in 17b

for µ=0.1.

Figure 18: Orbits and FFTs visualised in both stationary and rotating frames for the single contact case(node 7)

with friction at 2210rpm.

19 shows the MAC calculation showing the modes that are responsible for the existence of these

friction induced asynchronous partial contacting solutions. Clearly, modes 1, 2 and 7 contribute

the most, with modes 1 and 7 being the BW modes and they appear mainly because this solution

is excited in the presence of friction. The FW mode here is excited mainly because the excitation

frequency of 2210rpm is quite close to the first FW natural frequency which is at 2119rpm. Figure

20 shows a solution at 4430 rpm which has two loops in the rotating frame. The FFT in the rotating

frame also shows that this is a 3:1 internal resonance solution and henceforth these types of solution
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Figure 19: FFT for all degrees of freedom and the MAC for 2210rpm with contact at node 7.

Figure 20: Orbits and FFTs visualised in both stationary and rotating frames for the single contact case(node 7)

with friction at 4430rpm.

Figure 21: FFT for all degrees of freedom and the MAC for 4430rpm with contact at node 7.

are termed Internal Resonance Induced Partial contacting solutions. The MAC calculation shown

in Figure 21 shows that the first BW and FW modes contribute the most to this solutions. The

natural frequencies of these modes are 1652rpm and 2254rpm, and these approximately correspond
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to the FFT values which are at 1702rpm and 2380rpm; the difference being due to the stiffening

effect of the stator. The last type of solution is excited by friction; as shown in Figure 22. From

Figure 22: Orbits and FFTs visualised in both stationary and rotating frames for the single contact case(node 7)

with friction at 7250rpm.

Figure 23: FFT for all degrees of freedom and the MAC for 7250rpm with contact at node 7.

the orbit in the stationary frame this is a very high amplitude solution and is in permanent contact

with the stator. The stationary frame FFT consists of a highly attenuated excitation frequency

and a second high magnitude peak which appears to be the BW frequency. The MAC calculation

shows that the solution is dominated by mode 1 which is the first BW mode and mode 4 which

is the second FW mode. The natural frequency of these modes are 1454rpm and 6888rpm; the

FFT of the response has major peaks at 4926rpm and 7251rpm and clearly the second peak values

somewhat matches but for the other peak the difference is large. However, since the rotor is in

permanent contact the linear natural frequency would be significantly different to the FFT value

and thus one has to calculate the stiffened natural frequencies which assume permanent contact at

node 7; from this the new stiffened BW frequency was found to be 5260rpm. For the double contact
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Figure 24: FFT for all degrees of freedom and the MAC for 7250rpm with contact at node 4 and 7.

case it follows that the partial contact solutions are a good match with no extra stiffening due to

an extra contact location. By inspection of the bifurcation diagrams at the two contact locations,

that is at nodes 4 and 7, the response is such that when a location is in contact at node 7, node

4 is not and thus no extra stiffening effect occurs. In contrast, for the BW solution, inspection

of the bifurcation diagram shows that the node 7 response is much larger than the clearance, at

node 4 the bifurcation diagram shows that the rotor will be grazing the stator or rather bouncing.

This introduces a little more stiffening effect and will thus introduce new modal contributions to

this solution. Figure 24 shows the MAC calculation at 7250rpm for the double contact case with

contact locations at node 4 and node 7 and the extra contact seems to excite mode 7 which is the

4th BW natural frequency. Please note that this mode was not excited in the single contact case

shown in Figure 23.

4.3. Effect of coupled friction and gravity on the nonlinear rotor system

Real systems experience both friction and the universal gravity force. This section demonstrates

how coupling these two forces will change the nonlinear dynamics of the system under study. Figure

25 shows the spectral intensity plots for a single contact at node 7 with both gravity and friction

included and for the double contact case with contact at the location of the discs at node 4 and

9. By inspecting the two plots for the single contact case it is evident that one type of solution

is absent, that is the internal resonance induced partial contacting cycles. This suggest that the

existence of this type of solution is also dependent upon the location of the contact under study, and

the reason for this could be that the disk elements have high polar moment of inertia. Furthermore,
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(a) (b)

Figure 25: Spectral intensity plots for a single contact at node7 in 25a and a double contact at nodes 4 and 9 in 25b

for the case with friction (µ=0.1) and gravity.

the friction induced partial contacting cycles which have been seen earlier appear in the vicinity of

the first natural frequency and persist in addition to the BW solutions. For the double contact case

Figure 26: Orbits and FFTs visualised in both stationary and rotating frames at node 4 for the double contact

case(nodes 4 and 9) with friction and gravity at 6110rpm.

with gravity and friction, friction induced asynchronous partial contacting cycles were observed.

BW solutions were also observed but for this case the BW frequency was stiffened significantly more

than the previous cases. On inspecting the bifurcation diagrams in these regions at nodes 4 and

9, the steady state response for both nodes was significantly more than the clearance thus the two

23



Figure 27: FFT for all degrees of freedom and the MAC for 6110rpm with contact at nodes 4 and 9.

contacts provided significant stiffening. In addition, it was also observed that there were several

internal resonance induced partial contacting cycles and Figure 26 shows a typical solution at node

4. The two major peaks in the rotating frame FFT shows that this is a 3:1 internal resonance

solution. The MAC calculation shown in Figure 27 shows that the first four modes contribute the

most in this solution, and the natural frequencies of these modes are 1533rpm, 2345rpm, 5629rpm

and 6854rpm. The four response frequencies correspond to 2449rpm, 3251rpm for the first BW

and FW and these appear to be higher than the first two linear natural frequencies as a result

of the stiffening effect due to the partial contacting behaviour. The last two natural frequencies

correspond to 5328rpm and 6116rpm in the FFT; the second BW and FW appear to be lower than

the FFT values with no stiffening. This is rather peculiar but could suggest an influence from other

modes thereby causing an increased flexibility.

In light of the observed results it is apparent that this exercise has established with good confi-

dence the effect of both gravitational and frictional forces on the synchronisation/ internal resonance

phenomena which has been addressed here. The model used has its limitations, although for very

short time impacts equivalent models can capture most of the effects, and very detailed models of

the contact are beyond the scope of this paper. For example, a linear elastic contact model was used

which is relatively simple to use as it includes only a few parameters. The set of parameters can be

increased to include parameters such as wear at the contact interface, temperature dependencies of

the rotor-stator contact interactions and contact damping.
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5. Conclusion

In this paper an FEA model of a two disk rotor system with a single and double contact locations

was used to analyse the nonlinear dynamics of the rotor with gravity, friction and with coupled

gravity and friction. Bifurcation diagrams, orbits and spectral intensity plots were used to analyse

the system. For the case with gravity it was observed that the internal resonance induced partial

contacting cycles reduced with the introduction of gravity for both the single and double contact

cases. It was evident that, for the single contact case, as the rotor spin speed increased the number

of loops visible in the rotating frame decreased for the zero gravity case. It was also observed that

very strong gravitational effects can lead to directional stiffness variation, however, at higher speed

weaker directionality was observed leading to more symmetrical orbits in the stationary frame as

the increase in momentum overcame the gravity.

For the double contact case at the location of the discs, the spectral intensity plots showed

a broadband response with finite frequency peaks showing evidence of chaos. For the case with

multiple contacts the limit cycles found in the isotropic case still exist. Also it was seen that the

inclusion of gravity to the system can be viewed as similar to other forms of anisotropy as shown by

the similarity in solutions for the different cases. For the case with friction the double contact case

showed richer dynamics than the single contact case. Friction also excited complicated dynamics

in the resonance expansion region for both the single and double contact cases. The BW frequency

was also seen to be strongly dependent on whether there is permanent contact on both contact

locations for the double contact case; if so, that meant stiffness will be significantly increased.

The extra contact location also meant that new modal contributions would be excited. For the

coupled gravity and friction case it was observed that the existence of certain types of solutions is

dependent upon contact location. This is because a single contact location did not show evidence of

internal resonance induced partial contacting cycles whereas the double contact case with coupled

gravity and friction did. However, friction induced partial contacting cycles persisted. Finally, it

was also observed that the influence of other modes caused extra flexibility and thus in some cases

frequencies that were supposed to be stiffened were actually lower than expected.

The study conducted in this paper has provided significant insight into the features of the

different solutions observed in practice. For example a noisy response in the rotating frame can

show that gravity has a significant influence on the system dynamics and this information can

be used in diagnostics to determine the root cause of certain observed dynamic behaviour. In
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addition, the analysis can be used during the design stage of a machine. The goal is to avoid the

possibility of bouncing solutions and at the design stage one would ensure that these solutions

do not occur. Since this study has shown the modes which participate in an internal resonance,

the designer could search for ways of modifying the rotating machine’s properties to change the

natural frequencies and avoid internal resonance within the operational rotor spin speed range of

the machine. Alternatively, the designer could try and change the relative phasing of the mode

shapes involved in internal resonance.
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