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ABSTRACT This paper presents a predictive Energy Management System (EMS), aimed to improve
the performance of a domestic PV-battery system and maximize self-consumption by minimizing energy
exchange with the utility grid. The proposed algorithm facilitates a self-consumption approach, which
reduces electricity bills, transmission losses, and the required central generation/storage systems. The
proposed EMS uses a combination of Fuzzy Logic (FL) and a rule based-algorithm to optimally control
the PV-battery system while considering the day-ahead energy forecast including forecast error and the
battery State of Health (SOH). The FL maximizes the lifetime of the battery by using SOH and State
of Charge (SOC) in decision making algorithm to charge/discharge the battery. The proposed Battery
Management System (BMS) has been tested using Active Office Building (AOB) located in Swansea
University, UK. Furthermore, it is comparedwith three recently publishedmethods andwith the current BMS
utilized in the AOB to show the effectiveness of the proposed technique. The results show that the proposed
BMS achieves a saving of 18% in the total energy cost over six months compared to a similar day-ahead
forecast-based work. It also achieves a saving up to 95% compared to other methods (with a similar structure)
but without a day-ahead forecast-based management. The proposed BMS enhances the battery’s lifetime by
reducing the average SOCup to 47% compared to the previousmethods through avoiding unnecessary charge
and discharge cycles. The impact of the PV system size and the battery capacity on the net exchanged energy
with the utility grid is also investigated in this study.

INDEX TERMS Battery management system, energy management system, fuzzy logic, state of charge, state
of health.

I. INTRODUCTION
The integration of Renewable Energy Sources (RESs) to
utility grids, driven by environmental and socioeconomic
factors, is increasing dramatically. The RESs are consid-
ered an essential part of power generation to meet energy
demand and reduce dependence on fossil fuels [1], [2].
RESs’ intermittent nature has created significant difficul-
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ties for the network operators and necessitates the utiliza-
tion of Energy Storage Systems (ESSs) to balance the gen-
eration with demand [3], [4]. More recently, in countries
with a high penetration of RESs at the so-called consump-
tion level, the new trend for self-consumption is highly
encouraged (by network operators) to reduce the burden on
the distribution and transmission networks. For example,
the British Government ceased the ‘‘generation tariff’’ for
new installed domestic PV systems, which reduces the overall
‘‘feed-in’’ tariff (£0.055/kWh [5]) to almost one-third of the
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peak time electricity price (£0.1666/kWh [6]), and half of
the off-peak electricity price (£0.1104/kWh [6]). These new
changes, combined with individual rights, are paving the path
towards the ‘‘democratization’’ of the energy market and
self-management of ESSs, which necessitates the employ-
ment of more sophisticated control approaches to maximize
savings by promoting self-consumption for small scale sys-
tems. Considering the over-generation of renewable energy,
the alternative solutions to a self-consumption approach are:
(1) limiting the local renewable generation, which means
more centralized generation will be required to supply the
load, and/or (2) utilizing (more) centralized storage to store
the surplus renewable generation. Obviously, these solutions
will also need a higher capacity of transmission and distribu-
tion to handle the exchanged power.

The most crucial aspect of self-consumption/management
is the reduction of the exchanged energy with the grid,
which of course, necessitates an efficient control of the
ESSs [7], [8]. Several ESS control schemes are already pro-
posed for residential Energy Management System (EMS),
where computational intelligence methods are commonly
employed in both off-line and real-time operations. The
authors in [9] proposed computational intelligence method,
where Particle Swarm Optimisation (PSO) and Ant Colony
Optimisation (ACO) were used for real-time EMS. Like-
wise, a real-time PSO-based EMS of a stand-alone hybrid
wind and micro-turbine energy system was presented in [10].
In [11], an EMS algorithm was proposed to control the power
exchange by solving the economic dispatch problem using
PSO for various scenarios to ensure safety of operation.
Similarly, in [12], a mathematical energy cost formula was
developed and optimized using PSO algorithm. The authors
in [13] and [14] also proposed a price-based EMS algorithm
to reduce the operation cost. However, their works did not
consider the energy forecast and battery State of Heath (SOH)
to optimize the battery utilization.

Numerous papers have proposed intra-day [4] and day-
ahead [15] energy/power generation forecasting methods.
However, most of the literature used the forecasted data in the
off-line scheduling to find an optimal day-ahead operation.
In order to compensate for the mismatched power, the off-line
scheduling is combined with real-time EMS. For example,
in [16], a multi-layer perceptron neural network was used to
generate a day-ahead forecast of solar irradiance, tempera-
ture, and load, where the forecasted data was used as input to
the PSO-based EMS to find the optimal day-ahead operation
scenario. The supervisory control is used to compensate for
the mismatched power between the off-line scheduling and
real-time operation. Similarly, the authors in [17] used a
two-layer EMS to reduce operational costs and maximize
the self-consumption of RES. The upper layer used mixed-
integer linear programming optimization, while the lower
layer used a real-time controller to optimize the battery power
operation. Authors in [18] modelled the battery degradation
cost equation to find an optimum economic dispatch, aimed
to maximize the battery life cycle for a stand-alone PV-diesel

system. The battery degradation cost equation in [18] requires
some detailed knowledge of the system to formulate the cost
function. Moreover, since the system is stand-alone (i.e.,
exported energy from PV cannot be defined), the solution
optimized only the imported energy from the diesel generator.
Nonetheless, [18] demonstrates the importance of consider-
ing the battery’s health in an EMS. Although evolutionary
algorithms are commonly used for nonlinear optimization,
they require a rather detailed knowledge of the system to
formulate the cost function. Moreover, in evolutionary algo-
rithms, to reduce the possibility of convergence to some local
optima, a wider search area is defined, which increases the
computational efforts and the convergence time.

Recently, Fuzzy Logic (FL) technique has been success-
fully employed for decision making to control power flow
in Microgrids (MGs) since the nonlinear performance of
the FL control improves the system robustness. In [19], a
FL-based control system was presented to supply demand
while controlling the battery’s State of Charge (SOC) and
the hydrogen tank level between certain required margins to
optimize the lifetime of the battery and reduce the opera-
tion cost. However, the used EMS assumed that the battery
capacity remains intact over long time. In the work reported
in [7] and [20], the FL-based system was used to control the
power flow by controlling the switching signals of the battery
converter. However, these works did not take into account
different price tariffs. In [21], two different FL-based systems
were used for an EMS control in an electric ship to reduce
the greenhouse gas emissions and reduce the operation cost.
The first FL-based algorithm controlled the power exchange
between the generating units and the ESS, while the second
one controlled the inter-linking converters between the AC
and the DC buses by adjusting the duty cycle. The work
reported in [1] proposed a real-time FL-based EMS to control
the power flow in a battery supported PV-based MG. The
results for the system at the School of Renewable Energy in
Naresuan University show a saving of 5.78% in energy cost
by using efficient Battery Management System (BMS) over a
full year of operation. Their work considered operation costs
without utilizing an energy forecast, resulting in unneces-
sary charge/discharge cycles. Another recent FL-based work
in residential MG power management was reported in [2],
aiming to balance different MG resources and reduce the FL
controller rules. The main drawbacks of [2] are limiting the
battery SOC to 50% (to maintain its health), not using energy
forecast, and overlooking the different tariff prices (peak vs
off-peak). Moreover, their FL’s output acts primarily as a
binary logic switch since there is no overlapping area in both
of net-power and controller output Membership Functions
(MFs). In [22], FL control was used to predict the MG future
behavior based on forecasted generation and demand, and
then compensating the forecasted errors. However, their work
did not consider operational costs.

A common drawback of the previous works is that the
SOH of the battery has not been considered within the
BMS decision-making to avoid unnecessary charging and
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discharging cycles. This approach will accelerate degradation
of the battery’s capacity and efficiency. As a step to overcome
this drawback, [2] and [23] limited the SOC of the battery to
50%. Although this simple approach will maintain the battery
healthier for a longer time, it reduces the useable battery
capacity, which increases the capital costs and undermines
self-consumption. Although it is a non-optimal approach,
it does demonstrate that the consideration of long-term bat-
tery health is important.

To the best of the authors’ knowledge, most of the previous
works use forecasted energy to predict the future behav-
ior of the system, and then compensate the forecast error
in real-time EMS. However, few existing works utilized
the forecasted data to optimize the battery performance in
real-time EMS. For example, authors in [24] showed that
the forecast-based EMS could increase the lifetime of the
battery by storing the required energy. Their main target
was to extend the battery life by storing only the predicted
energy needed for the following night. However, the feed-
in prices of the surplus PV energy was neglected. Similarly,
in [3], forecast-based EMS was used to store the predicted
day-ahead energy during off-peak time. However, their sys-
tem didn’t use the excess energy stored to supply load during
the off-peak time.

This paper proposes a comprehensive FL-based BMS that
exploits the forecasted day-ahead solar generation and load
demand to optimize the battery storage performance by stor-
ing only the required peak-time day-ahead mismatch energy.
Using the Active Office Building (AOB) located in Swansea
University Bay Campus as a case study, it is shown that
the proposed BMS, compared with the current state-of-the-
arts [1]–[3] and with the BMS utilized in the AOB, is able to
maximize the self-consumption, reduce the operational costs,
and improve the overall SOH of the battery. A longer battery
lifetime offers many advantages, such as less maintenance,
replacement costs, and service disruption. References [1]
and [2] are chosen as the benchmark for comparison since
they proposed FL-based BMS, and their understudy sys-
tems are similar to the AOB system at Swansea University.
Reference [3] is chosen as the benchmark since it used a
day-ahead forecast-based BMS too. Note that in this instance,
the overall performance of the BMS is being compared and
not the underlying forecast methodology. MATLAB software
is used to test the performance of the proposed algorithm
and to compare it with the previous state-of-the-art methods
reported in [1]–[3], and with the commercial BMS utilized
in the AOB. The main contributions of this work can be
summarised as follows:

a) Proposing a simple rule based-algorithm combined
with FL that increases the lifetime of the battery by
improving its SOH (as shown in Table 3).

b) Integration of day-ahead forecasting which reduces the
unnecessary charging and discharging of the battery
(as illustrated in Figs. 11 and 15-18), which again
contributes to prolonged battery lifetime.

FIGURE 1. Active office building system configuration.

c) The proposed BMS promotes and facilitates a
self-consumption approach that minimizes the
exchanged energy with the utility grid (as illustrated
in Fig. 18), which reduces transmission losses and
burden on the utility grid.

d) The proposed BMS considers tariff prices in real-time
EMS that increases the profits of the PV-Battery owner
(considering the price difference between selling and
purchasing energy in countries like the UK).

e) The proposed approach can handle uncertainties related
to RES and load forecast values.

f) This work also investigates the impact of the PV system
size and the battery capacity on the net amount of
energy exchanged with the utility grid.

The rest of the paper is organized as follows. Section II
illustrates the system configuration. Section III describes the
proposed EMS. Section IV discusses the results compared
to the state-of-the-art methods reported in [1]–[3], and the
BMS utilized in the AOB. In addition, the impact of the PV
system size and the battery capacity on the net amount of
energy exchanged with the utility grid is discussed. Finally,
the conclusion of this paper is summarized in section V.

II. SYSTEM CONFIGURATION
Themain objective of the proposed FL-based BMS algorithm
is to optimize the utilization of the battery, maximize self-
consumption, extend the battery life, and minimize the oper-
ational cost. Thus, the BMS is designed to efficiently regulate
the difference between the PV output and the load demand.
The schematic diagram of the AOB is illustrated in Fig. 1,
which consists of a PV array and a battery system that is
connected to the DC link. This facility employs a 110 kWh
battery system connected to the 48 V-DC bus. The PV rat-
ing and maximum load power are 22.3 kWp and 32.5 kW,
respectively. In addition, three single-phase inverters of 230
V-AC, 48 V-DC, and 15 kVA each are used, while the DC-DC
converter rating is 23.2 kW.

VOLUME 9, 2021 58955



A. Sorour et al.: Forecast-Based Energy Management for Domestic PV-Battery Systems

Each battery technology has its operational constraints. For
instance, its SOC cannot be lower/higher than a certain limit
and the Depth of Discharge (DOD) has an impact on the
lifespan of the battery [25], [26]. In this study, a lithium-
ion battery is used for the ESS. The maximum output power
(Pmax) is 102.4 kW. In addition, the minimum SOC (SOCmin)
and the maximum SOC (SOCmax) limits are set to 20% and
98%, respectively [1].

Several methods to estimate the SOC are already proposed
in literature. For example, studies in [27] and [28] used the
variable forgetting factor recursive least-squares method to
estimate the parameters that relate to the SOC. In [29], [30]
artificial neural network is used for the SOC estimation. In
this work, the Coulomb-counting method is used to estimate
the SOC as [1]:

SOC(t) = SOC(0)−
1

Cref (t)

t∫
0

Pb(t)dt (1)

and the SOH is estimated as [31]:

SOH (t) =
Cref (t)
Cnom

(2)

where SOC (0) is the initial value of SOC, Pb is the battery
power, and Cref and Cnom are actual and nominal capacities,
respectively. The new capacity is estimated as [31]:

Cref (t) =
1

SOC(tα)−SOC(tβ )

tβ∫
tα

I (t)dt (3)

where I, is the battery current. The new capacity is updated
following each battery charge/discharge cycle (1t = 10 min)
and is fed back into (1) to estimate the new SOC accordingly.

III. PROPOSED ENERGY MANAGEMENT SYSTEM
The control algorithm utilizes the energy generation/
consumption forecast and the FL-based BMS. The developed
FL control determines the charging/discharging power and
energy of the battery based on the one-day ahead forecast
of the energy production and consumption. In this paper,
the uncertainty of PV power (Ppv) and load power (PL) are
considered when the optimization is carried out. Many suc-
cessful forecast-based techniques are already available in the
literature, such as those which employed neural network [16]
or FL systems [32] and [33].

However, to avoid diverting the attention of the current
work from a forecast-based EMS to a forecastingmethod, this
work does not consider a specific forecast method. Several
similar approaches have been reported in the literature to
represent the statistical characterization of generation/load
forecasting error, such as normal (or gaussian) [34]–[36],
and Weibull [37] distributions. Also, the authors in [3] uses
gaussian noise to represent the forecasted data. In the current
work, as explained in [34]–[36], an error with a normal
distribution is added to the recorded historical data ofPPV and
PL for the AOB to represent forecasted PV power (PPV−f )

FIGURE 2. The actual peak energies (EDay ) and forecasted peak energies
(EDay−f ).

and load power (PL−f ). The total forecasted peak time energy
imbalance between the PV source and the load demand is
calculated for each day, for the six months’ period, is denoted
as EDay−f as presented in (4):

EDay−f =
∫ t=8 PM

t=8 AM
(PPV−f (t)−PL−f (t))dt (4)

In this study, the peak and off-peak times are chosen as
twelve hours, according to an electricity utility company in
the UK [6]. The values of PPV and PL are averaged every ten-
minutes (1t) over six months (from May to October 2019).

Fig. 2 illustrates actual peak time energy (EDay) against
the generated forecast peak energy (EDay−f ). The mean per-
centage error (MPE) of forecast error over six months is 30%
under prediction of PV generation. It is worth mentioning that
the choice of 30% forecast error is very pessimistic, as under
most circumstances, the forecast techniques are much more
accurate, e.g. in [38] a forecast error of 10% is reported.

A. PROPOSED BMS ALGORITHM
Fig. 3 illustrates the flowchart of the proposed BMS, which
is divided into two modes based on being at peak time or off-
peak time.

1) PEAK TIME
During the peak time, if PPV > PL and SOC < 98% then
the battery is charged according to the FL charging control
signal, as illustrated in red solid lines in Fig. 3. Since the
feed-in tariff is much less than the purchase price from grid,
it makes sense to charge the battery regardless of the off-peak
time forecast. Otherwise, if SOC ≥ 98%, which means the
battery is fully charged, the surplus power will be exported
to the grid (hence Pb = 0). The logic behind this process is
that during the peak time, considering the price difference,
only when PPV > PL the electricity from the PV is used
to charge the battery otherwise it will be used to supply the
load. This enables to store surplus energy from the PV and
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FIGURE 3. Flowchart of the proposed BMS for the battery.

use that energy during the off-peak time or the next peak
hours. In addition, it will reduce emissions by reducing the
purchased energy from the utility grid.

If PPV < PL and SOC > 20%, the system is designed
to discharge the battery by using the FL discharging mode,
as illustrated in red dotted lines in Fig. 3. Obviously, if PPV <
PL and SOC ≤ 20%, the energy shortage will be purchased
from the grid (hence Pb = 0).

2) OFF-PEAK TIME
During the off-peak time, if PPV > PL and SOC < 98%,
the battery will be charged using the FL charging mode until
it is fully charged, as illustrated in black solid lines in Fig.
3. If SOC ≥ 98%, the extra energy will be fed into the grid
(hence Pb = 0).

If PPV < PL and SOC ≤ 30%, the battery will be charged
up to 30% by using (5), where the1t is the 10 min sampling
time (i.e., every 10 min the flowchart will be re-executed).
This process makes sure that SOC is at least 30% before the
next peak time. Obviously, as shown in the flowchart, Pb is
limited to Pmax .

Pb =
(30%− SOC(t))Cref (t)

1t
(5)

As shown in Fig. 3 in black dashed lines, for SOC> 30%,
the energy forecast EDay−f will determine whether to charge
or discharge the battery. Therefore, a 10% safety margin is
considered (from SOCmin = 20%) to account for any possible
over-forecasted generation and/or under-forecasted demand.

If EDay−f > 0, i.e. more generation than demand over peak
time, the battery will supply the load using the FL discharging
mode. If EDay−f < 0 (i.e., overall next day forecasted genera-
tion is less than the demand), the systemwill check the battery
stored energy against the forecasted energy requirement to
calculate the required battery energy (Eb) using (6):

Eb = |EDay−f | − (SOC(t) − 30%)Cref (t) (6)

If Eb > 0, i.e. the available stored energy is not enough for
the peak period, the battery needs to be charged. The charging
rate is given by (7), where the ‘‘Time’’ is the remaining time
of the off-peak period at each cycle of the flowchart.

Pb =
Eb

Time
(7)

If Eb < 0, then the battery has sufficient energy to supply
the demanded energy during the peak time, and the FL is
used to discharge the battery to supply the load. This process
will ensure that only the predicted required energy needed
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FIGURE 4. FL structure for charging mode.

FIGURE 5. MFs of PPV − PL for charging mode.

for the next peak period is stored in the battery during the
off-peak time. This will, of course, reduce the operational cost
by purchasing only the estimated required energy.

B. FUZZY LOGIC CONTROL
The FL is used to determine the Pb flow, as shown in Fig.
4. The inputs to the FL charging mode are PPV − PL , SOC,
and SOH. Where the inputs to the FL discharging mode are
PL − PPV , SOC, and SOH. The output of the FL is Pb,
which denotes the rate of charge/discharge of the battery.
To maximize the lifespan of the battery, SOH, and SOC
are contributing to decision making relating to the battery
charge/discharge mechanism.

1) FUZZY LOGIC CHARGING MODE
Fig. 5 shows theMFs for thePPV −PL input fuzzy variable in
charging mode, which is classified as power very low (PVL),
power low (PL), power medium (PM), power high (PH), and
power max (Pmax), where the values are in per unit (pu). The
base power (Pbase) is chosen to be the nominal load of the sys-
tem, which is 32.5 kW. As shown in Fig. 6, the MFs of SOC
are defined between 0 and 1, where 1 represents battery full
capacity of 100%. SOC is divided into five ranges namely,
very low (VL), low (L), medium (M), high (H), and full
(F). Most batteries need to be replaced when the SOH drops
to 70-80% depending on the battery type, as each battery
has a different chemical characteristic [39]. The lithium-ion
battery needs to be replaced when the battery SOH reaches
80% [31]. Fig. 7 shows the MFs of SOH, which is classified
as low (L), medium (M), and healthy (H), where 1 represents
a brand-new battery. Fig. 8 showsMFs for the output variable
Pb, which is classified as very low (VL), low (L), medium

FIGURE 6. MFs of SOC.

FIGURE 7. MFs of SOH.

FIGURE 8. MFs of battery power (Pb).

(M), high (H), and maximum (MAX). The maximum value
of Pb MF is chosen as Pmax . FL inference rules are applied on
the inputs MFs to infer the output. These rules are generated
based on SOC, SOH, and power mismatched to uphold the
battery lifetime while maximizing local consumption of PV
generated power. Rate of charge/discharge Pb is chosen based
on SOH and SOC. It should be noted that 150 rules are gener-
ated in relation to the battery charge/discharge modes, where
one half represents the charging mode (75) and the other half
represent the discharging mode (75). Table 1 illustrate an
example of charging mode rules with a healthy SOH of the
battery.

2) FUZZY LOGIC DISCHARGING MODE
Fig. 9 illustrates the MFs for the PL − PPV input fuzzy
variable in discharging mode, which is classified as power
very low (PVL), power low (PL), powermedium (PM), power
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TABLE 1. Example of charging rules for healthy SOH.

FIGURE 9. MFs of PL − PPV for discharging mode.

high (PH), and power max (Pmax). The other MFs are the
same as those in charging mode, where the discharge rate
of Pb is similar to MFs for charging mode, but with a neg-
ative sign (i.e., Pb < 0). Table 2 explains an example for
discharging mode rules for a battery with medium health.
The FL algorithm makes sure that the battery is never fully
discharged. For example, if during peak time, PPV < PL and
SOC is just above SOCmin (e.g., SOC = 21%), the battery
will discharge (red dotted lines in Fig. 3). However, based on
the applied rules in Table 2, FL will ensure that the discharge
rate is very low (VL), which avoids the drastic discharge of
the battery in one cycle (i.e., 1t = 10 min). Therefore, in the
next cycle of the flowchart, since SOC< 20%, the batterywill
not get discharge any further. During off-peak times, as shown
in blue solid lines in Fig. 3, the algorithm always maintains
SOC > 30%.

IV. RESULTS AND DISCUSSIONS
This section compares different aspects of the proposed
FL-based BMS with three recently published arts and the
current commercial BMS of the AOB in Swansea University.
Moreover, the impact of the PV system size and the battery
capacity on the net energy exchanged with the utility grid is
discussed.

FIGURE 10. Two test days (11th and 12th of May 2019) for the BMS in [1].
The red and black colours represent SOC and PPV − PL, respectively.

FIGURE 11. Two test days (11th and 12th of May 2019) for the proposed
BMS. The red and black colours represent SOC and PPV − PL, respectively.

A. PERFORMANCE COMPARISION
Figs. 10, 11, 12, and 13 show the results for the reported
BMS in [1], the proposed BMS in this work, the recently
proposed BMSs in [2], and in [3], respectively, for two test
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TABLE 2. Example of discharging rules for medium SOH.

FIGURE 12. Two test days (11th and 12th of May 2019) for the BMS in [2].
The red and black colours represent SOC and PPV − PL, respectively.

FIGURE 13. Two test days (11th and 12th of May 2019) for the BMS in [3].
The red and black colours represent SOC and PPV − PL, respectively.

days (11th and 12th of May 2019). The red lines represent
SOC and the black lines represent PPV − PL . As illustrated
in Fig. 10 ([1]), the battery is charged during the off-peak
time from the utility grid, so that this energy can be used in
the next peak time. However, although energy is not required

from the battery during the next peak period, it will remain
fully charged. The main target of the BMS in [1] is to keep
the battery fully charged during off-peak for the next peak
hours to avoid purchase at a high price. The main drawback
of this process is that during peak time, the extra PV output is
fed into the grid rather than being used to charge the battery as
the battery is already fully charged during off-peak time. This
will result in higher operational costs as the battery is charged
from the utility grid during the off-peak time eliminating the
chance to be charged from the PV. The stored energy will not
be used in days when PPV > PL , as shown in Fig. 10.

Unlike the implementation in [1], in Fig. 11 (proposed
BMS) the battery is maintaining SOC of 30% as energy is not
required for the next peak hours (i.e., EDay−f > 0). During
peak time, maximum power is drawn from PV (PPV > PL)
to supply load and charge the battery, while during the off-
peak time, based on the next forecast requirement (EDay−f ),
battery power could be discharged to supply the load if the
energy is not needed in the following peak time. These three
processes exactly follow the black dotted, red solid, and blue
solid lines in the flowchart shown in Fig. 3.

As shown in Fig. 12, the system proposed in [2] is designed
to charge the battery only from PV, while ensures the SOC
does not goes below 50% (to maintain the battery’s health),
which reduces the ability to store the available surplus energy
from PV. In addition, tariff prices are not considered, which
results in high operational costs. The Fuzzy rules applied
in [2] imply that when the SOC is medium (medium range is
between 55%-90% [2]) and the net power is small, the battery
is disconnected as shown in Fig. 12, during off-peak in day
1 and day 2. However, when the SOC is considered as full
(full range is between 85%-100% [2]) and the net power is
small, the battery is discharged, which is shown in Fig. 12,
off-peak in day 2, when the battery discharges till it reached
SOC of 85%.

Fig. 13, which illustrates the BMS of [3], shows the battery
is charged by the surplus PV power in day 1. However,
although energy is not required for the next peak time, it will

58960 VOLUME 9, 2021



A. Sorour et al.: Forecast-Based Energy Management for Domestic PV-Battery Systems

FIGURE 14. Two test days (16th and 17th of May 2019) charge/discharge
mode. The blue, red, green, and dashed purple colours represent SOC of
the proposed BMS algorithm, BMS in [1]–[3], respectively. The black
colour represents PPV − PL.

remain fully charged during the off-peak period. The main
target of the BMS proposed in [3] is to charge the battery dur-
ing off-peak based on the EDay−f . The main drawback of [3]
is that the battery excess stored energy is not used to supply
the load during off-peak time, which undermines the PV-self
consumption. This will also increase the operational costs and
the exchanged energy with the grid (hence more transmission
losses and potential requirement for central storage systems).

Fig. 14 compares another two test days (16th and 17th

of May 2019) for the proposed BMS in this work and
the three proposed BMS in [1]–[3]. In Fig. 14 the, blue,
red, green, dashed purple and black lines represent SOC
of the proposed BMS, SOC of [1], SOC of [2], and SOC
of [3], and the PPV − PL ,, respectively. Unlike in Figs. 10-
13, in this case, PPV − PL is most of the time negative.
As illustrated in Fig. 14 using the proposed method allow
storing the required peak day-ahead energy only, which is
in accordance to the dashed black line in Fig. 3. The SOC
(blue line) during off-peak time is maintained at 70% through
continuously checking the next day energy forecast EDay−f
and the required battery energy Eb as shown in Fig. 14.
However, in [1], SOC (red line) is fully charged during off-
peak time regardless of the next day needed energy, and
in [2], the battery SOC (green line) is not charged during
off-peak time, as the battery only charges when PV power
is available. Moreover, as shown in Fig. 14, the SOC (green
line) of the proposed method in [2] at 8 AM, when PL > PPV
indicates that the battery is not being used. This is because
the Fuzzy rules applied in [2], state that when the SOC
is medium (medium range is between 55%- 90%) and net
power is small, the battery is disconnected. This will lead to
purchasing energy during peak time at the high tariff price.

As illustrated in Fig. 14 the SOC (dashed purple line) of
the method in [3] is maintained at 95%, as energy is not
required for the next peak time (EDay−f > 0). However,
the excess energy stored is not used during off-peak time.

FIGURE 15. Exported energy during peak time. The blue, orange, green,
purple and yellow bars represent proposed BMS and works of [1]–[3],
and BMS utilized in AOB respectively, between May to October 2019.

In comparison, the proposed BMS in this work usesEDay−f to
purchase predicted energy needed during the off-peak time,
to enable maximum power utilization from PV during peak
time. However, in [1], the battery will be fully charged during
the off-peak time and the extra power fromPVwill be injected
into the utility grid. In [2] by limiting the capacity to 50% (to
maintain the battery’s health) the surplus energy from PVwill
be injected into the utility grid. In addition, the battery was
not charged during the off-peak time to store enough energy
in order to avoid purchasing at a high price. The proposed
BMS in this work (blue line) reduces the operational cost
by discharging the battery during off-peak time. However,
the BMS proposed in [3] (dashed-purple line), in spite of
using next day forecast, does not use the stored excess energy
to supply load during off-peak. The proposed BMS in this
work minimizes the unnecessary exchange of energy, which
reduces transmission losses and emissions by including the
next day forecasted energy (EDay−f ).

B. COMPARING OPERATIONAL COSTS
Figs. 15, 16 and 17 show the exported energy during peak
time, the imported energy during the off-peak time, and the
imported energy during the peak time respectively, for the
six months (May to October 2019). The blue, orange, green,
purple, and yellow bars represent the proposed BMS in the
current work, [1]–[3], and BMS utilized inAOB, respectively.
Fig. 15 shows that the proposed method enables optimum
exploitation of PV power by charging the battery and feeding
less energy into the utility grid during peak times.

Figs. 16 and 17 prove that the proposed BMS achieves
better management as it purchased less energy during peak
and off-peak time. However, during peak time the BMS pro-
posed in [1] imported less energy, which is due to the fact
that the BMS reported in [1] adopted the philosophy of fully
charging the battery during the off-peak time, regardless of
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FIGURE 16. Imported energy during off-peak time. The blue, orange,
green, purple and yellow bars represent proposed BMS and works
of [1]–[3], and BMS utilized in AOB respectively, between May to
October 2019.

FIGURE 17. Imported energy during peak time. The blue, orange, green,
purple and yellow bars represent proposed BMS and works of [1]–[3],
and BMS utilized in AOB respectively, between May to October 2019.

the forecast energy during the peak time. It is evident that
there is an improvement in cost reduction by less import
and less export of energy during peak and off-peak times.
Using the peak price of £0.1666/kWh [6], off-peak price
of £0.1104/kWh [6], and feed-in tariff of 0.055/kWh [5],
the proposed algorithm in this paper achieves a saving of
33%, 92%, 18% and 95%, in six months period when com-
pared to [1]–[3], and BMS utilized in AOB, respectively.
Moreover, the proposed BMS promotes the self-consumption
approach, which reduces the burden of the network operators
through reducing the exchanged energy as shown in Fig. 18.
This, in turn, reduces the transmission losses and the required
capital investment for large-scale central generation and stor-
age facilities.

C. COMPARING SOH OF THE BATTERY
The proposed BMS utilizes the SOH of the battery in the
proposed FL, which helps maintaining the battery’s health
for longer without disrupting its performance (unlike [2]).

FIGURE 18. Net absolute energy exchanged over six months for the
proposed BMS and works of [1]–[3], and BMS utilized in AOB, between
May to October 2019.

TABLE 3. Different initial SOH conditions.

A lower average SOC is defined in [40] and [24] as an
indication of improved battery health. Thus, to verify the
effectiveness of the proposedmethod in improving the battery
health, Table 3 compares the average SOC of the proposed
BMS with that of [1]–[3] and AOB for the same six months
period (May to October 2019) for different initial SOH con-
ditions.

Results show that the proposed FL-based BMS enhances
the battery’s lifetime by reducing the average SOC up to
47% compared to the previous works. For example, as indi-
cated in Table 3, the proposed BMS achieves an average
SOC of 58% for the new battery (i.e., initial SOH is 100%).
In comparison, the BMS applied in [1]–[3], and BMS utilized
in AOB achieves an average SOC of 84%, 85%, 66%, and
72%, respectively, which means reduced battery’s lifetime
compared to the proposed method. Moreover, as it can be
seen, the proposed BMS reduces the use of the battery to
extend its lifetime as a result of the reduced SOH. This is
demonstrated by the increasing average SOC as the initial
SOH reduces for the same test period.

These results demonstrate that the proposed BMS utilizes
the battery such that to satisfy the set targets of lowering the
operational cost and optimizing the battery lifetime.

D. PERFORMANCE OF ALGORITHM AS A FUNCTION OF
SYSTEM SIZE
Fig. 19 shows the impact of different battery capacities and
PV generation sizes on the energy exchange with the utility
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FIGURE 19. Relationship between the absolute net energy exchanged
with different battery size/rated-load and PV generation/rated-load
ratios. The x-axis represents the ratio between PV generation and rated-
load. The y-axis represents the ratio between battery size and rated-load.
The z-axis represents the absolute net energy exchanged over six months.

grid. The x-axis represents the ratio of PV generation/rated-
load. The y-axis represents the ratio of battery size/rated-load.
The z-axis represents the absolute net energy exchanged over
six months. It can be observed from Fig. 19 that for battery
capacity/rated-load ratios of 1-7.3 kWh/kW, the absolute net
energy exchange is minimum when the PV size/rated-load
ratio is 0.6 kWp/KW. Either increasing or decreasing the
PV size/rated-load ratio results in increasing the absolute
net energy exchange for a given battery capacity/rated-load.
Fig. 19 also illustrates that as the battery size increases,
the absolute net energy exchange reduces, which make sense
since more capacity is available for storing energy. However,
the effect of increasing the battery size is not the same for all
PV size/rated-load ratios. If the battery size/rated-load ratio
increases from 1 to 7.3 kWh/kW, the absolute net energy
exchange reduction for the 0.2, 0.6, and 1 kWp/kW PV
size/rated-load ratios are, 6.4%, 49% and 39%, respectively.
This demonstrate that there is an optimum PV size/rated-load
ratio (in this case 0.6 kwp/kW) that makes the most from the
battery and reduces the exchanged energy more than other
cases as the battery capacity increases.

V. CONCLUSION
Energy storage mechanisms play vital roles in future power
systems. Since ESSs are relatively expensive, it is necessary
to make efficient use of them. Most of the previous arts do
not take the SOH of the battery storage as a critical input to
determine system operation mode. As illustrated, if included
it will enable the EMS to make more efficient use of the
storage unit. The proposed BMS algorithm in this work is
designed to make the power flow more efficient and achieve
an economical operation without sacrificing the performance.
It has been demonstrated that an intelligent control strategy
can extend the battery lifetime through discharging energy
during peak/off-peak periods and import energy from the

utility grid based on the energy forecast. In addition, it avoids
storing unnecessary energy, which reduces self-discharge and
emissions. The proposedmanagement method also avoids the
unnecessary exchange of energy with the utility grid. This
promotes a self-consumption approach, which reduces the
transmission losses and the required capital investment for
the large-scale central generation, transmission, and storage
facilities.
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