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H I G H L I G H T S 32 

 Aquaculture ponds emit CH4 33 

 Large variations in diffusive CH4 fluxes are estimated by different thin boundary 34 

layer (TBL) models 35 

 Methane fluxes measured by chambers and match those estimated by only some 36 

TBL models  37 



 

A B S T R A C T 38 

Static floating chambers (FCs) are the conventional method to measure CH4 fluxes 39 

across the water-air interface in ponds, while thin boundary layer (TBL) modelling is 40 

increasingly used to estimate CH4 fluxes. In this study, both FCs measurements and 41 

TBL models of gas transfer velocity were used to determine CH4 evasion from 42 

aquaculture ponds in southeastern China. The surface water CH4 concentrations 43 

ranged from 0.4 to 9.1 µmol L-1 with an average of 4.8±0.8 µmol L-1. CH4 flux was 44 

always positive, indicating the ponds as a persistent CH4 source to air. Mean CH4 flux 45 

based on different TBL models showed large variations, ranging between 19 and 316 46 

µmol m-2 h-1. Compared against the direct measurement FCs, three TBL models 47 

developed for the open sea, flowing estuarine system and lentic ecosystem (TBLW92a, 48 

TBLRC01, and TBLCL98, respectively) overestimated CH4 emission by 40-200%, while 49 

the wind tunnel-based TBL model (TBLLM86) underestimated CH4 emission. Two TBL 50 

models developed for lakes (TBLW92b and TBLCW03) gave estimates similar to FCs. 51 

Keywords: Methane fluxes; Thin boundary layer models; Floating chambers; 52 

Water-air interface; Shallow aquaculture pond; Subtropical estuary 53 



 

1. Introduction 54 

Methane (CH4) emissions from inland and coastal aquatic systems are potentially 55 

significant sources of atmospheric CH4 (Bastviken et al., 2011; Musenze et al., 2014; 56 

Yang et al., 2011). CH4 release from open water can be via diffusion and/or ebullition 57 

(bubbling) (Bastviken et al., 2004). Diffusive fluxes across the water-air interface are 58 

usually determined by using static floating chambers (FCs) or thin boundary layer 59 

(TBL) models. The FCs approach determines CH4 fluxes based on the change in CH4 60 

concentrations in the chamber headspace over time. The TBL approach calculates the 61 

CH4 flux from piston velocity and gas concentration in the water (Natchimuthu et al., 62 

2017; Zhao et al., 2019). Previous studies have used either one of the two approaches 63 

to quantify CH4 fluxes from aquatic ecosystems (e.g., Musenze et al., 2014; 64 

Natchimuthu et al., 2016; Wang et al., 2017; Welti et al., 2017). However, detailed 65 

comparison of the two methods is rare (e.g., Duchemin et al., 1999; Matthews et al., 66 

2003), particularly for small pond ecosystems. 67 

Recent studies have shown that very small ponds (area <0.001 km2) are hotspots 68 

for CH4 emission (Holgerson, 2015; Holgerson and Raymond, 2016; Wik et al., 2016; 69 

Yuan et al., 2019). However, the scalability of these measurements are largely 70 

constrained by the lack of rigorous quantifications of the area, number, and spatial 71 

distribution of small ponds globally (Jonsson et al., 2008; Zhao et al., 2019) and the 72 

different flux measurement methods between studies. In particular, the lack of 73 

consensus on gas flux measurement methods remains a major source of uncertainty in 74 

greenhouse gas assessment. For instance, the TBLLM86, TBLWan92a and TBLWan92b, 75 



 

TBLRC01, TBLCL98, and TBLCW03 models, which were developed by Liss and Merlivatt 76 

(1986), Wanninkhof (1992), Raymond and Cole (2001), Cole and Caraco (1998), and 77 

Crusius and Wanninkhof (2003), respectively, are widely adopted wind-based models 78 

to estimate CH4 transfer velocities and  fluxes. Among these TBL models, the 79 

TBLLM86, TBLWan92a, and TBLRC01 models were developed for wind tunnels, open sea, 80 

and flowing estuarine systems, respectively, while TBWan92b, TBLCL98 and TBLCW03 81 

models were developed for the lentic ecosystem (e.g., lake). It is unclear to what 82 

extent these different models are transferable to other aquatic ecosystems (Musenze et 83 

al., 2014), and there is also a paucity of study comparing CH4 fluxes by the different 84 

approaches.  85 

Aquaculture ponds are an important component of the global inland aquatic 86 

habitats (FAO, 2017), and the total surface area of freshwater and brackish 87 

aquaculture ponds is estimated to be around 110,000 km2 (Verdegem and Bosma, 88 

2009). Despite the importance of aquaculture ponds for CH4 emission (Hu et al., 2016; 89 

Wu et al., 2018; Yang et al., 2015, 2019a; Yuan et al., 2019), relevant CH4 flux data 90 

are disproportionately scarce, and the published results were predominantly 91 

determined by FCs rather than TBL modelling (Hu et al., 2016; Wu et al., 2018; Yang 92 

et al., 2015, 2019a). In this study, FCs and TBL models were used to compare CH4 93 

fluxes in aquaculture ponds in southeastern China. The aims were: (1) to evaluate the 94 

performances of different wind-based TBL models for estimating CH4 fluxes; (2) to 95 

compare the diffusive CH4 emissions from aquaculture ponds derived from FCs 96 

measurements and TBL modellings; and (3) to assess which TBL model(s) can be used 97 



 

to replace FCs for estimating CH4 fluxes from ponds, with acceptable validity. 98 

2. Materials and Methods 99 

2.1. Study area  100 

Our study sites are located at the central-western Shanyutan Wetlands in the Min 101 

River Estuary (MRE) in southeastern China (Figure S1, 26°00′36″–26°03′42″ N, 102 

119°34′12″–119°40′40″ E). This area is characterized by a subtropical monsoon 103 

climate, with a multi-year annual average temperature and precipitation of 19.6 °C 104 

and 1,350 mm, respectively (Tong et al., 2010). The wetlands are dominated by a 105 

semidiurnal tide with a large tidal range (2.5-6 m) that follows a spring-neap-spring 106 

tidal cycle (Luo et al., 2014; Tong et al., 2010). The dominant vegetation are the 107 

native Cyperus malaccensis and Phragmites australis, and the invasive Spartina 108 

alterniflora. Over the past 10 years, much of area has been converted to aquacultural 109 

ponds (Yang et al., 2017a).  110 

2.2. Aquaculture pond management 111 

Small and shallow aquaculture earthen ponds (area of 0.8−2.5 ha and depth of 112 

1.1−1.8 m) are a key feature in the MRE, covering a total area of around 234 ha in the 113 

Shanyutan Wetland (Yang et al., 2017b). Semi-intensive production is concentrated 114 

between June and November, which yields a single annual crop of shrimps. The ponds 115 

are filled with brackish water (average salinity of 2.0− 8.5‰) from the MRE. The 116 

shrimps are fed twice daily (at 07:00 and 16:00 hr) with commercial aquatic feed 117 

pellets containing 42% protein. Three to five paddlewheel aerators operate four times 118 



 

a day (07:00–09:00, 12:00–14:00, 18:00–20:00, and 00:00–03:00 hr) to provide 119 

oxygen. For this study, three ponds separated by <10 m (see Table S1 for basic 120 

characteristics) (Zhang et al., 2019) were selected for the measurements. Additional 121 

details about the shrimp pond system and management can be found in Yang et al. 122 

(2017b).  123 

2.3. Determination of dissolved CH4 concentration 124 

Field campaigns were carried out at the three ponds between June and November 125 

2017 following the main aquaculture operation. In each pond, water and gas samples 126 

were collected at three sites along a foot-bridge that extended ~10 m from the 127 

embankment to the pond center. Samples were collected two or three times each 128 

month in each pond for a total of 15 times. The total number of samples was 3 ponds 129 

× 3 sites × 15 times = 135. To measure the dissolved CH4 concentrations, surface 130 

water (at a depth of ~20 cm) was collected by a homemade water sampler and 131 

transferred into 55-mL gas-tight glass serum bottles that had been flushed with pond 132 

water 2-3 times. A 0.2 mL aliquot of saturated HgCl2 solution was added to each 133 

bottle to inhibit bacterial activity of water sample (Borges et al., 2018; Hu et al., 2018), 134 

and the bottle was immediately sealed with a butyl rubber stopper and an aluminum 135 

screw cap to exclude air bubbles. Sample bottles were transported back to the 136 

laboratory in an ice-packed cooler. Dissolved CH4 concentrations were measured 137 

within 2 d of collection using the headspace equilibration method: Approximately 25 138 

mL of water in each bottle was displaced by N2 gas (>99.999% purity) to create 139 

headspace. The bottle was then shaken vigorously for 20 min and left at room 140 



 

temperature for 30 min to attain equilibrium between the air and the water phases 141 

(Cotovicz et al., 2016). Afterward, approximately 10 mL of the headspace was 142 

extracted and injected into a gas chromatograph (GC-2010, Shimadzu, Kyoto, Japan) 143 

equipped with a flame ionization detector (FID) to determine the CH4 concentration. 144 

Standard CH4 gas (at 2, 8, 500, 1000, and 10,000 ppm) was used to calibrate the FID. 145 

Dissolved CH4 concentration was calculated based on the volume of water, headspace 146 

air and gas solubility coefficient for the specific water temperature and salinity (Farías 147 

et al., 2017; Wanninkhof, 1992; Xiao et al., 2017).  148 

2.4. Determination of diffusive CH4 flux across the water-air interface  149 

2.4.1. Measurement using floating chambers  150 

This study used a modified chamber placed on a floating buoy (Figure S2). The 151 

opaque floating chamber was made from inverted plastic basin 152 

(polyethylene/plexiglas®) with a volume and area of 5.2 L and 0.1 m2, respectively. 153 

The chamber was covered with aluminum tape to minimize internal heating by 154 

sunlight (Natchimuthu et al., 2016; Yang et al., 2019). A thin gauze (pore diameter 155 

0.001 mm) covering the opening minimized the entry of bubbles into the chamber 156 

(Figure S2). A fan inside the chamber mixed the headspace air during the sampling. In 157 

order to quantify the potential contribution of CH4 ebullition flux from the ponds, 158 

total CH4 fluxes were also determined using floating chamber without gauze.  159 

The chamber was deployed for a period of 45 min and headspace air samples 160 

being extracted at 15-min intervals (0, 15, 30, 45 min) using 60-mL syringes equipped 161 



 

with three-way stopcocks. The gas samples were immediately transferred into 162 

pre-evacuated airtight gas sampling bags (Dalian Delin Gas Packing Co., Ltd., China), 163 

transported to the laboratory, and analyzed within 48 h using a gas chromatograph 164 

(GC-2010, Shimadzu, Kyoto, Japan) equipped with a FID, following the method of 165 

Tong et al. (2010). The detection limit for CH4 was 0.3 ppm, and the relative standard 166 

deviations of the measurements were ≤ 2.0% in 24 h.  167 

CH4 emission flux (FCH4, µmol m−2 hr−1) was calculated from the slope of the 168 

regression between headspace CH4 concentration and time (Yang et al., 2019). 169 

Generally, if r2 of the regression is > 0.90, the CH4 emission is considered as diffusion 170 

only (Bastviken et al., 2010; Zhu et al., 2016). If r2 is < 0.90, the emission is 171 

considered as a combination of ebullition and diffusion. The floating chambers with 172 

gauze (FCs-G) and without gauze (FCs-NG) showed distinctly linear (r2>0.9) and 173 

nonlinear (r2<0.9) increases in methane concentration, respectively; therefore, the 174 

contribution of ebullition could be calculated as the difference between the FCs-G and 175 

the FCs-NG measurements. 176 

2.4.2. Estimation using thin boundary layer models 177 

Saturation (S) of CH4 in pond water was calculated as (Hu et al., 2018):  178 

S = Cwater/CWs = Cwater/(α×Cair)×100%                                 (Eq. 1) 179 

where Cwater is dissolved CH4 concentration in pond water; CWs is the saturated CH4 180 

concentration (μmol L−1); Cair is the atmospheric CH4 concentration (μmol mol-1) at 181 

the sampling site; and α is the Bunsen coefficient (Wanninkhof, 1992). 182 

Diffusive flux of CH4 (F, µmol m−2 hr−1) across the water-air interface can be 183 



 

described by a theoretical diffusion model (Musenze et al., 2014): 184 

)( ater eqw CCkF                                                 (Eq. 2) 185 

where Cwater (μmol L-1) is the measured dissolved CH4 concentration in surface water, 186 

Ceq (μmol L-1) is the dissolved CH4 concentration in equilibrium with the air above, 187 

and k is the gas transfer velocity (cm h-1). The k value was parameterized as a function 188 

of wind speed and normalized for surface water temperature (T, oC) using a Schmidt 189 

number (Sc) derived from Eq. 3 (Wanninkhof, 1992): 190 

32 04043704209331120202039 T.T.T..cS                      (Eq. 3) 191 

This study evaluated the variations in CH4 fluxes estimated by eight widely used 192 

wind-based models developed for different environments, including wind tunnels, 193 

open sea, estuarine systems and lakes, as follows: 194 

LM86 (Liss and Merlivatt 1986) 
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W92a (Wanninkhof, 1992) 198 
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                               (Eq. 6) 199 

RC01 (Raymond and Cole, 2001)  200 
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/2-

RC CCScUexpF                          (Eq. 7) 201 

CL98 (Cole & Caraco, 1998) 202 
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W92b (Wanninkhof, 1992)
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CW03 (Crusius & Wanninkhof, 2003)  206 
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In the above equations, U10 was determined according to the logarithmic wind profile 209 

relationship (Crusius and Wanninkhof, 2003): 210 
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(Eq. 12) 211 

where Uz is the wind speed (m s-1) at height z above the water surface (2.5 m in this 212 

study), Cd10 is the drag coefficient at 10 m above the water surface (0.0013 m s-1), and 213 

K is the von Karman constant (0.41). Generally, the calculation of U10 is sensitive ot 214 

the stability of the atmosphere. If the atmosphere over the aquatic systems is unstable, 215 

and the equation used to calculate U10 needs to be adjusted. The air-water temperature 216 

difference can be used to determine the atmospheric stability; if the air-water 217 

temperature difference is positive, the atmosphere is considered stable. During the 218 

study period, the air temperature was 0.1-3.8 oC higher than water temperature, 219 

indicating that the atmosphere over the ponds was largely in the stability regime. 220 

Therefore, no adjustment was needed for U10, and Eq. 12 was appropriate for 221 

calculating U10. Some recent studies have applied surface renewal models that take 222 



 

into account both wind speed and buoyancy to determine the k values (e.g., Czikowsky 223 

et al., 2018; MacIntyre et al., 2010; MacIntyre et al., 2018). 224 

2.5. Measurement of meteorological and environmental variables 225 

Meteorological variables including air temperature (AT), air pressure (AP) and 226 

precipitation were recorded using an automatic meteorological station (Vantage Pro 2, 227 

China) installed at the MRE weather station in the China Wetland Ecosystem 228 

Research Network. The distance between the automatic meteorological station and 229 

sampling ponds is about 75 m. The precision for air temperature, atmospheric 230 

pressure, and precipitation were ± 0.2 °C, ± 1.5 hPa, and ± 0.4 mm min-1, respectively 231 

(Yang et al., 2020). Wind speed (WS) was measured at 1 Hz at a resolution of 0.4 m 232 

s-1. 233 

Water temperature, electrical conductivity (EC), pH, dissolved oxygen (DO), 234 

total organic carbon (TOC) and total dissolved nitrogen (TDN) content of surface 235 

water (~20 cm below the water surface) were measured at each sampling site in all 236 

sampling campaigns. Water temperature and pH were measured by a portable 237 

pH/mV/Temperature meter (IQ150, IQ Scientific Instruments, USA), and EC and DO 238 

by an electrical conductivity meter (2265FS EC, Spectrum Technologies, USA) and a 239 

multiparameter water quality probe (550A YSI, USA), respectively. The relative 240 

standard deviations of EC, pH, and DO measurements were ≦1.0%, ≦1.0% and 241 

≦2.0%, respectively. 242 

Water samples for TOC and TDN analyses were collected using a 5-L plexiglass 243 



 

water sampler, transferred to a 150-mL polyethylene bottle, and then transported to 244 

the laboratory in an ice-packed cooler. The water samples were filtered through a 245 

0.45-μm cellulose acetate filter (Biotrans nylon membranes); the filtrates were then 246 

analysed by a TOC analyzer (TOC-VCPH/CPN, Shimadzu, Kyoto, Japan) for TOC and a 247 

flow injection analyzer (Skalar Analytical SAN++, The Netherlands) for NO3
--N. The 248 

detection limits for NO3
−-N and TOC were 6 μg L-1 and 4 μg L-1, respectively. The 249 

relative standard deviations of NO3
−-N and TOC measurements were ≦3.0% and 250 

≦1.0%, respectively. 251 

2.6. Statistical analysis 252 

Repeated-measures analysis of variance (RM-ANOVA) was conducted to test the 253 

differences in diffusive CH4 flux between the different approaches over the study 254 

period. Pearson correlation analysis was used to examine the relationships between (1) 255 

dissolved CH4 concentration or CH4 fluxes and environmental variables, and (2) 256 

diffusive CH4 fluxes measured using FCs and those estimated using the TBL models. 257 

The coefficient of variation (CV) for CH4 fluxes on each sampling campaign was 258 

determined by dividing the standard deviation by the mean value. Statistical analyses 259 

were conducted using the software SPSS (v. 17.0, SPSS Inc., USA) and the 260 

significance level was set at p < 0.05. Data are presented as mean ± 1 standard error. 261 

Generalized linear modelling was conducted to compare the variables that 262 

influenced CH4 emission flux from the different methods (i.e. FCs + 8 TBL models). 263 

The “gls” function from the “nlme” R package (Pinheiro et al., 2018) with a saturated 264 



 

model was conducted for all variables (dissolved CH4, U10, water temperature, 265 

dissolved oxygen, total dissolved carbon and dissolved nitrate). This model was run 266 

using the stepAIC function in R “MASS” package that follows the Akaike 267 

Information Criterion (AIC) (Venables and Ripley, 2002). It was used to identify the 268 

best model (lowest AIC value) in each case. 269 

3. Results  270 

3.1. Meteorological and environmental variables 271 

The average air temperature (AT) and air pressure (AP) during the study were 272 

28.7±0.4 °C (range: 18.6−35.6 °C) and 1010.0±0.5 hPa (range: 985−1025 hPa), 273 

respectively. Notably, the maximal AT appeared in July and the minimal AP happened 274 

in August, different from the other months. WS ranged from 0.2 to 18.8 m s-1, and it 275 

varied between seasons, with a peak in July (Figure S3a). Approximately 92% of WS 276 

fell within the range of 0.2−4.0 m s-1 (Figure S3b). 277 

There were temporal variations in surface water characteristics during the study 278 

period. The mean water temperature ranged from 18.1 °C (November) to 34.4 °C 279 

(August) (Figure S4a), while the mean DO concentration varied between 9.4 mg L-1 280 

(August) and 19.9 mg L-1 (November) (Figure S4). The mean TOC concentration 281 

varied between 9.9 mg L-1 (July) and 57.3 mg L-1 (November) (Figure S3), while 282 

NO3
--N concentrations ranged from 504 µg N L-1 (June) to 10.7 µg N L-1 (November) 283 

(Figure S4). 284 

3.2. Model estimated k values and dissolved CH4 concentrations   285 



 

The mean k value showed considerable variations between models: kRC01 286 

(6.5±0.8 cm h-1) > kW92a (3.5±0.7 cm h-1) > kFCs (3.2±0.4 cm h-1) > kCL98 (2.9±0.3 cm 287 

h-1) > kCW03 (2.5±0.5 cm h-1) > kW92b (2.4±0.4 cm h-1) > kLM86 (0.6±0.1 cm h-1) (Figure 288 

1).  289 

Dissolved CH4 concentration varied considerably during the study period 290 

(0.1−31.1 µmol L-1), with a large increase between June and August, followed by a 291 

small decrease toward November (Figure 2). The water was supersaturated in CH4 in 292 

all ponds and on all sampling dates, with an overall mean of 4.8 ± 0.8 µmol L-1 (162.0 293 

±18.4 ppmv), equivalent to 8700% saturation (range of 200 – 5.9104 % saturation).  294 

3.4. CH4 flux estimates by using TBL models and FCs method 295 

There were considerable differences in the estimated diffusive CH4 fluxes among 296 

the TBL models (TBLRC01: 215.9 ±39.2 µmol m-2 h-1; TBLCL98: 115.0 ±21.9 µmol m-2 297 

h-1; TBLW92a: 102.9 ±19.5 µmol m-2 h-1; TBLW92b: 78.3 ±13.9 µmol m-2 h-1; TBLCW03: 298 

74.9 ±13.2 µmol m-2 h-1; and, TBLLM86: 19.5 ±3.7 µmol m-2 h-1) (Table 1, Figure 3 and 299 

Figure S5). Although there were marked variations in the flux estimates among the 300 

various models, results from all models showed similar temporal patterns (Figure 3). 301 

The largest fluxes were generally recorded between August and October, while the 302 

lowest fluxes were consistently recorded in June and November (Figure 3).  303 

Direct measurements using FCs with gauze (FCs-G) and without gauze 304 

(FCs-NG) methods were 75.0 ±12.5 (Figure 3) and 2231.3 ±681.3 µmol m-2 h-1 305 

(Figure S6; Yang et al., unpublished data), showing significant difference between the 306 



 

two methods (Independent Samples T-Test, F = 118.190, p<0.001). On average, 307 

ebullitive CH4 flux accounted for 33%-99% of the total CH4 emissions during the 308 

study period.  309 

3.5. Environmental influences on dissolved CH4 concentrations and fluxes 310 

Pearson correlation analysis showed that dissolved CH4 concentration was 311 

positively correlated with air temperature and TOC (p<0.01), and negatively with 312 

NO3
−-N and EC (p<0.01) (Table 2). CH4 flux was positively correlated with air 313 

temperature (p<0.05), TOC and dissolved CH4 concentration (p<0.01), and negatively 314 

with NO3
−-N (p<0.01) and EC (p<0.05) (Table 2 and Table S3). Environmental 315 

variables explained a larger proportion of variability in CH4 flux derived from the 316 

TBL models (R2=0.46-0.54) than those from direct FCs measurements (R2=0.35) 317 

(Table S2).  318 

4. Discussion  319 

4.1. CH4 supersaturation and degassing from aquaculture ponds  320 

There are very few studies on CH4 in small ponds, particularly, those created for 321 

aquaculture purposes. In this study, the dissolved CH4 concentration in surface water 322 

of the aquaculture ponds ranged from 0.1 to 31.1 µmol L-1 during the study period, 323 

which was higher than that observed in many small ponds in Florida (~2.2 µmol L-1; 324 

Barber et al., 1988), Colorado (~1.0 µmol L-1; Bastviken et al., 2004), Wisconsin and 325 

Minnesota (0.3−2.3 µmol L-1; Smith and Lewis, 1992) in the USA, in Sweden (~1.3 326 

µmol L-1; Natchimuthu et al., 2014), Canada (0.5−6.7 µmol L-1; Pelletier et al., 2014), 327 



 

and Siberia (~2.6 µmol L-1; Repo et al., 2007). In addition, CH4 concentration in our 328 

aquaculture ponds was generally larger than that in some nutrient-enriched rivers in 329 

China, i.e. Lixiahe River (0.2−0.8 µmol L-1; Wu et al., 2019), Beitang Drainage River 330 

and Dagu Drainage River (0.3−1.7 µmol L-1; Hu et al., 2018). Similar to other inland 331 

aquatic systems, such as lakes (e.g., Wen et al., 2016; Wik et al., 2016; Yan et al., 332 

2018), reservoirs (e.g., Deemer et al., 2016; Musenze et al., 2014; Wang et al., 2017), 333 

rivers (e.g., Barbosa et al., 2016; Striegl et al., 2012), floodplains (Barbosa et al., 2020) 334 

and small ponds (e.g., Holgerson and Raymond, 2016; Wik et al., 2016), our 335 

aquaculture ponds were vastly supersaturated in CH4 relative to air (2.71−599.81 336 

times the equilibrium concentration ) (Figure 2b). The small temperate ponds in the 337 

Yale Myers Forest in Connecticut, the USA, have some of the highest concentrations 338 

of CH4 (21.0−58.9 µmol L-1, equivalent to 119−2907 times the equilibrium 339 

concentration) (Holgerson, 2015). The CH4 concentrations and supersaturation levels 340 

in our aquaculture ponds fall well within the range reported by Holgerson (2015), 341 

showing that aquaculture ponds in the subtropical estuaries are also hotspots for CH4 342 

production and emission.  343 

In inland aquatic ecosystems, the strong CH4 release is likely a result of large 344 

organic matter inputs from the catchment, algae and aquatic plants that sustain high 345 

methanogenesis rates (Finlay et al., 2009; Lundin et al., 2013; Venkiteswaran et al., 346 

2013; Yan et al., 2018), as indicated by the significant relationship between dissolved 347 

CH4 and nutrient level (Huttunen et al., 2003; Kortelainen et al., 2001; Wen et al., 348 

2016). The shrimp ponds in this study are semi-artificial ecosystems that are 349 



 

maintained through a daily feed supply for the production of aquatic animals. 350 

However, only a small portion of the feed input is converted into shrimp biomass, 351 

with the feed utilization efficiency of ~4.0−27.4% (Chen et al., 2016; Molnar et al., 352 

2013; Yang et al., 2017b). Surface sediments in the aquaculture systems typically 353 

retain a large amount of organic matter from feces and residual feeds (Chen et al., 354 

2016; Yang et al., 2017b) that can support high levels of CH4 production and its 355 

subsequent release to atmosphere. Although organic matter content was not quantified 356 

in this study, our results confirmed the significantly correlation between dissolved 357 

CH4 and TOC concentration (p<0.01; Table 2), which lends support to the notion that 358 

CH4 supersaturation in the aquaculture ponds was related to the large input of organic 359 

matter. 360 

4.2. Comparison of different TBL modelled CH4 fluxes  361 

Although previous studies have compared the performance of different TBL 362 

models in estimating diffusive CH4 flux in inland waters (Amouroux et al., 2002; Li et 363 

al., 2015; Musenze et al., 2014; Xiao et al., 2017; Zappa et al., 2007), such 364 

comparison is scarce for shallow ponds, particularly aquaculture ponds. To the best of 365 

our knowledge, this study is the first attempt to compare the estimates of diffusive 366 

CH4 flux using different TBL models over the whole aquaculture period in 367 

aquaculture ponds. Interestingly, although the patterns of temporal variations in 368 

diffusive CH4 flux were largely consistent among the TBL models (Figure 3), there 369 

were clear differences in the magnitude of flux estimated from the different models 370 

(Table 1).  371 



 

Notably, the mean flux estimated by the TBLRC01 model (215.6 µmol m-2 h-1) was 372 

an order of magnitude greater than that derived from the TBLLM86 model (19.4 µmol 373 

m-2 h-1, Figure 3). Moreover, CH4 flux estimated by the TBLRC01 model was 2 - 3 374 

times larger than that by the TBLW92a, TBLCL98, TBLW92b and TBLCW03 models (Table 1 375 

and Figure S5). However, there was no significant difference between the TBLW92a 376 

and TBLCL98 models (p>0.05; Table 1 and Figure S5) or between the TBLW92b and 377 

TBLCW03 models (p>0.05; Table 1 and Figure S5). In other inland waters (river and 378 

reservoirs), Gao et al. (2014) and Musenze et al. (2014) also found that the estimated 379 

diffusive CH4 fluxes derived from the TBLRC01 model were substantially greater than 380 

those from other TBL models.  381 

The differences in the estimated CH4 flux between different TBL models were 382 

likely a result of different weighting of wind as a driver of gas transfer velocity 383 

(Musenze et al., 2014, Figure 1). Because these wind-based models were originally 384 

developed for specific environments under different conditions (Gao et al., 2014; 385 

Musenze et al., 2014), their suitability for other situations could be questioned (Bade, 386 

2009; Musenze et al., 2014; Schilder et al., 2013). The TBLCL98 and TBLCW03 models 387 

were developed for lentic ecosystems under a range of wind speed, which most 388 

closely resemble aquaculture pond conditions. One may therefore argue that these two 389 

models would be most applicable to aquaculture ponds, although more in situ 390 

measurement will be needed to further increase the accuracy of the estimate. 391 

4.3. Comparison of CH4 fluxes derived from FCs measurement and TBL models  392 

Previous studies have shown that CH4 fluxes estimated by TBL models tend to be 393 



 

lower than those measured by FCs (Chuang et al., 2017; Duchemin et al., 1999; Li et 394 

al., 2015; Matthews et al., 2003). This study also compared CH4 fluxes measured by 395 

FCs and those estimated by TBL models over the aquaculture season (Table 1 and 396 

Figure S5). Although there were significant correlations between TBL model estimates 397 

and FCs measurements (p < 0.05 in all cases), the agreement between the two 398 

methods varied considerably between models (Figure 4). The TBLW92b and TBLCW03 399 

models gave the largest r2 values (0.82 and 0.83, respectively) and good agreements 400 

with FCs measurements (slope = 0.92 and 0.89, respectively), whereas TBLCL98 401 

yielded mean estimates virtually identical to FCs measurements (slope = 1) but with 402 

larger variability around the mean (r2 = 0.53) (Figures 4d-f). In contrast, TBLLM86 403 

vastly underestimated FCs fluxes whereas TBLRC01 grossly overestimated FCs fluxes 404 

(Figures 4a,b). Approximately 80% of the diffusive CH4 fluxes estimated by the 405 

models fell within the range measured by the FC method.  406 

Balancing the consideration of overall agreement (regression slope) and estimate 407 

variability (regression r2), the TBLW92b and TBLCW03 models appeared to give the best 408 

approximations of FCs measurements. While previous studies showed that FCs were 409 

more appropriate for determining greenhouse gas fluxes in heterogeneous 410 

environments such as lakes and reservoirs (Cole et al., 2010; Duchemin et al., 1999; 411 

Murray et al., 2015; Vachon et al., 2010; Wu et al., 2018), our results suggest that 412 

TBLW92b and TBLCW03 models are reliable alternatives for estimating CH4 diffusive 413 

flux in shallow aquaculture ponds. 414 

In addition to diffusive flux from the water column, bottom sediment could also 415 



 

contribute to CH4 emission via ebullition, especially in eutrophic, shallow aquaculture 416 

ponds. This is illustrated by the differences in the measured CH4 flux using FCs with 417 

and without gauze in our aquaculture ponds (Figure S6). The CH4 flux measured by 418 

FCs without gauze (2231.3 ±681.3 µmol m-2 h-1) were one to two orders of magnitude 419 

higher than that by FCs with gauze (75.0 ±12.5 µmol m-2 h-1) (Figure S6); from this 420 

ebullition was estimate to contribute 96.6% to the total CH4 emissions. Overall, our 421 

results showed that ebullition was the primary path of CH4 emission in aquaculture 422 

ponds, and that ebullitive flux vs. diffusive flux could be easily resolved with a simple 423 

design of FCs with a detachable gauze. 424 

4.4. Implications of the comparison between different methods  425 

The FCs method is the popular technique for measuring CH4 emissions due to its 426 

ability to detect low fluxes and the simplicity of its operating principle (Bastviken et 427 

al., 2015; Lorke et al., 2015; Musenze et al., 2014; Podgrajsek et al., 2014). However, 428 

the FCs method requires time-consuming manual operation, which limits the 429 

frequency of measurements and can be difficult to deploy in remote areas (Acosta et 430 

al., 2017; Morin et al., 2017). Improvement of the global CH4 budget would require 431 

high-resolution emission data covering large time and spatial scales, which obviously 432 

is difficult to achieve with the FCs method.  433 

Large-scale estimates of aquatic CH4 emissions using TBL models has been 434 

gaining popularity (Holgerson and Raymond, 2016; Martinez-Cruz et al., 2016; 435 

Musenze et al., 2014; Wang et al., 2017) due to their simplicity, practicality and low 436 

cost. There are, however, different TBL models to choose from, and the large 437 



 

differences in the model performances (Figure 4) mean that selecting the appropriate 438 

model(s) would be critical, or otherwise large errors would occur when upscaling the 439 

results from small ponds to the regional/ global scale. Our results suggest that 440 

TBLW92b and TBLCW03 models could be used as effective and convenient alternatives to 441 

FCs in shallow aquaculture ponds.  442 

4.5. Limitation and future research 443 

The FCs method is a common method to measure CH4 fluxes from aquatic 444 

ecosystems. However, FCs may create microenvironments that affect the boundary 445 

layer conditions through, for instance, blockage of wind, change of atmospheric 446 

pressure at the measurement point, and change in the gas transfer rate through 447 

pressure build-up (Duchemin et al., 1999; Matthews et al., 2003; Musenze et al., 448 

2014). For example, the turbulence resulted from the chamber walls can enhance the 449 

efficiency of gas exchange and increase gas fluxes during low wind conditions 450 

(Matthews et al., 2003; Xiao et al., 2016).  451 

TBL models rely on the gas transfer velocity coefficient (kx), which itself is 452 

estimated from some empirical wind-based models. Effects of artificial aeration, 453 

which is commonly done in aquaculture ponds, on kx are unknown. More importantly, 454 

the TBL models ignore the effect of buoyancy fluxes near the air-water interface on kx. 455 

An alternative is the surface renewal model (SRM), which considers both wind speed 456 

and buoyancy (e.g., Czikowsky et al., 2018; MacIntyre et al., 2010; MacIntyre et al., 457 

2018).  458 

The use of eddy covariance (EC) technique is increasingly popular as it can 459 



 

provide a better characterization of the variation in CH4 fluxes through 460 

quasi-continuous measurements (Acosta et al., 2017; Morin et al., 2017; Xiao et al., 461 

2014; Zhao et al., 2019). However, its application in small water bodies (e.g., ponds) 462 

is limited by footprint contamination (Zhao et al., 2019). Developing a practical and 463 

effective way to reduce the flux footprint and the contamination from gaseous sources 464 

outside the water body will allow broader application of EC method in the future. 465 

Different methods have their own limitations; careful comparison and cross 466 

calibration would be needed to increase the overall accuracy of these methods and to 467 

improve the global CH4 budget. 468 

5. Conclusions 469 

Despite the large CH4 emission potential from small ponds, there are few studies 470 

comparing the different methods to estimate CH4 fluxes across the water-air interface. 471 

In this study, FCs and TBL models were used to estimate CH4 fluxes from aquaculture 472 

ponds. Our results indicate that dissolved CH4 concentrations in the subtropical 473 

shallow aquaculture ponds were on average ~87 times oversaturated relative to the 474 

ambient air, and thus the ponds acted as strong atmospheric CH4 sources. The high 475 

organic matter loading contributed to CH4 supersaturation in the ponds. This study for 476 

the first time compared the CH4 fluxes measured directly by floating chambers (FCs) 477 

and those estimated by thin boundary layer (TBL) models (TBLLM86, TBLW92a, TBLRC01, 478 

TBLCL98, TBLW92b, and TBLCW03). The model estimates of diffusive CH4 fluxes were 479 

highly variable, and were overall 27 - 300% larger than those measured by FCs. The 480 

TBLW92b and TBLCW03 models provided a robust and simple alternative to FCs in 481 



 

estimating diffusive CH4 fluxes. Our results suggest that the comparison of different 482 

methods and selection of the most appropriate method(s) should be a high research 483 

priority to improve the accuracy of greenhouse gas fluxes from aquaculture ponds and 484 

other aquatic ecosystems. 485 
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Figure S2. Schematic diagram for the gas sampling device of CH4 diffusive flux 71 

across the water-air interface. Numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 72 

represents chambers body, Neoprene floats, thin gauze, mooring anchor, sampling 73 

tube, 60-mL plastic syringes equipped with three-way stopcocks, fixed rope, valve 74 

body, valve body, gas collecting hole, ribbon, and handle, respectively.75 
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 83 

Figure S5. Boxplots of CH4 diffusive fluxes estimated using the TBL and FCs 84 

methods at the aquaculture ponds in Min River Estuary during the aquaculture period. 85 

The letters above the boxes represent the LSD (Least Significant Difference) test 86 

results, and different letters mean significant difference at 0.05 level. The centre line 87 

and square represent the median value and area-weighted average.88 



 

 S10

1
0

-J
u

n

2
8

-J
u

n

1
0

-J
u

l

1
9

-J
u

l

2
9

-J
u

l

0
9

-A
u

g

1
8

-A
u

g

2
8

-A
u

g

1
1

-S
e

p

2
1

-S
e

p

2
8

-S
e

p

0
8

-O
c

t

1
9

-O
c

t

1
1

-N
o

v

1
8

-N
o

v

0

50

100

150

2000

4000

6000

8000

10000
C

H
4
 f

lu
x

e
s

 (
μ

m
o

l 
m

-2
 h

-1
)

Date (dd-mm)

  FCs with gauze

  FCs with no gauze

 

89 

Figure S6. Comparison of CH4 fluxes measured using the FCs with gauze (FCs-G) 90 

and without gauze (FCs-NG) from the aquaculture ponds in the Min River Estuary 91 

during the aquaculture period. Data are after Yang et al. [unpublished data] for 92 

reference and review only. Values represent the means of nine replicates samples, 93 

while the vertical lines indicate standard errors.94 
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Table S1 Characteristics of the three aquaculture ponds in the Min River Estuary. *. 95 

Parameters Pond-I Pond-II Pond-III 

Shrimp species Litopenaeus vannamei Litopenaeus vannamei Litopenaeus vannamei 

Water depth (m) 1.3 (0.3 – 1.7) 1.7 (0.5 – 2.1) 1.5 (0.3 – 1.8) 

Water salinity (‰) 3.6 (1.5 – 6.8) 2.2 (1.7 – 5.2) 2.8 (1.7 – 5.4) 

Surface area (m2) 21426.94 18412.89 19112.71 

Stocking density (PL m-2)a 150 120 119 

Survival rate (%)a 45 62 59 

Feed conversion rateb 3.5 2.3 2.5 
* Based on Zhang et al. (2019).  96 

a The data for the stocking density, survival rate, and yield were provided by the farmers; b Feed conversion rate = 97 

dry weight of feeds added / wet weight of shrimps produced.98 
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