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Abstract

Purpose: Normal transformation is often required in structural reliability analysis to convert
the non-normal random variables into independent standard normal variables. The existing
normal transformation techniques, e.g. Rosenblatt transformation and Nataf transformation,
usually require the joint probability density function (PDF) and/or marginal PDFs of non-
normal random variables. In practical problems, however, the joint PDF and marginal PDFs
are often unknown due to the lack of data while the statistical information is much easier to
be expressed in terms of statistical moments and correlation coefficients. The study aims to
address this issue, by presenting an alternative normal transformation method that does not
require PDFs of the input random variables.

Design/methodology/approach: The new approach, namely the Hermite polynomial nor-
mal transformation, expresses the normal transformation function in terms of Hermite polyno-
mials and it works with both uncorrelated and correlated random variables. Its application in
structural reliability analysis using different methods is thoroughly investigated via a number
of carefully designed comparison studies.

Findings: Comprehensive comparisons are conducted to examine the performance of the pro-
posed Hermite polynomial normal transformation scheme. The results show that the presented
approach has comparable accuracy to previous methods and can be obtained in closed-form.
Moreover, the new scheme only requires the first four statistical moments and/or the corre-
lation coefficients between random variables, which greatly widen the applicability of normal
transformations in practical problems.

Originality/value: This study interprets the classical polynomial normal transformation
method in terms of Hermite polynomials, namely Hermite polynomial normal transformation,
to convert uncorrelated/correlated random variables into standard normal random variables.
The new scheme only requires the first four statistical moments to operate, making it par-
ticularly suitable for problems that are constraint by limited data. Besides, the extension
to correlated cases can easily be achieved with the introducing of the Hermite polynomials.
Compared to existing methods, the new scheme is cheap to compute and delivers comparable
accuracy.

Keywords: Structural reliability analysis, Polynomial normal transformation, Hermite polynomials,
Statistical moments
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Figure 1: Transformation from physical space to standard normal space (Hu et al., 2019).

1 Introduction

Structural reliability analysis aims to determine the probability of failure for a structural system, and it is
the theoretical foundation for the associated risk assessment and reliability-based optimal design. In en-
gineering practice, the uncertainties can arise from loading conditions, material properties, environmen-
tal factors and modelling errors, which are often formulated as a random vector X = [X1, X2, ..., Xn]T

defined in the physical space. The probability of failure is expressed as a multidimensional integral:

Pf = Prob[g(x) ≤ 0] =

∫
g(x)≤0

fX(x)dx (1)

where fX(x) is the joint probability density function (PDF) of random vectorX, g(x) is the performance
function that g(x) ≤ 0 denotes the failure domain and g(x) > 0 the safe domain.

Despite the simple definition in Eq. (1), the accurate evaluation of failure probability is often very
difficult through direct integration, in that for practical engineering problems the dimension of integral
is usually high and the performance function is of complicated shape. Moreover, direct integration is
unfeasible when the joint PDF of random variables is unknown a priori. The challenge of accurately
computing this integral has led to the development of various approximation methods, such as the first-
order reliability method (FORM) (Hasofer and Lind, 1974; Shinozuka, 1983), second-order reliability
method (SORM) (Breitung, 1984; Der Kiureghian et al., 1987), Monte Carlo simulation (MCS) (Naess
et al., 2012), importance sampling methods (Au and Beck, 2003), directional simulation methods (Nie
and Ellingwood, 2000), subset simulation (Au and Beck, 2001), moment-based methods (Zhao and Ono,
2001) and various surrogate-based approaches (Aldosary et al., 2018; Zhang and Xiao, 2019; Yangtian Li,
2020). It is almost always desirable to conduct the aforementioned methods in the standard normal
space, thanks for its simplicity. Therefore, when non-normal random variables are present in the physical
space, normal transformation techniques are applied to convert the non-normal random variable into
standard normal ones before performing the reliability analysis. A schematic illustration for normal
transformation is shown in Fig. 1. The Rosenblatt transformation (Rosenblatt, 1952; Hohenbichler and
Rackwitz, 1981) and the Nataf transformation (Der Kiureghian and Liu, 1986) are two most widely used
approaches for this purpose. The former one requires the cumulative distribution function (CDF) or joint
PDF of random variables in the physical space, and the later one requires the marginal distribution
function of the random variables. In engineering practice, however, the CDF/PDF of some random
variables may be unknown due to the lack of data, whereas the probabilistic properties of these random
variables is easier to be expressed in terms of statistical moments and correlation coefficients (Zhao and
Ono, 2000). In such cases, a strict failure probability evaluation using the conventional transformation
techniques is unfeasible unless additional effort is made to fit an appropriate distribution.

This paper presents an alternative approach, namely the polynomial normal transformation, to
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Figure 2: The solution condition for the third-order PNTF (Chen and Tung, 2003).

convert non-normal random variables in the physical space into standard normal random variables. In
this approach, the normal transformation and its inverse can be performed by using only the statistical
moments and correlation coefficients between random variables in the physical space. As a result, the
reliability analysis can be carried out without the CDF/PDF of input random variables, and hence
greatly widens the applicability. The rest of the paper is organised as follows. § 2 briefly recaps the
existing polynomial normal transformation functions (PNTF) and the common approaches to determine
the polynomial coefficients. § 3 presents the PNTF in terms of Hermite polynomials, which works for
correlated input random variables and offers an explicit solution when the marginal PDFs of random
inputs are known. In § 4, the Hermite PNTF is combined with standard reliability analysis methods, e.g.
MCS and FORM/SORM, to demonstrate and examine its performance. Finally, concluding remarks
are summarised in § 5.

2 A brief overview of polynomial normal transformation functions

Normal transformation is often desired in probabilistic analysis especially for problems involving multi-
variate non-normal random variables. Rosenblatt and Nataf transformations are the two most commonly
used approaches to convert non-normal random variables to normal ones. However, as discussed earlier,
these two classic methods cannot be employed for cases where the CDF/PDF of input random vari-
ables are unknown due to lack of data. Indeed, it is often easier to quantify practical random variables
in terms of their statistical moments and correlation coefficients. In these cases, the polynomial nor-
mal transformation, also known as the power method, provides a promising alternative to conduct the
non-normal to normal transformation. The polynomial normal transformation has been used in many
literatures (Zhao and Ono, 2000; Zhao and Lu, 2007; Tung et al., 2019; Zhang et al., 2019), where the
non-normal random variables are expressed as polynomial functions of the normal ones, referred to as
polynomial normal transformation functions (PNTF):

Xi − µxi
σxi

= XSi '
P∑
k=0

akiZi
k (2)

where Xi is the i-th entry in the random vector X, µxi denotes its mean value, σxi denotes its variance,
XSi is the standardized variable of Xi with zero mean and unit variance, aki, k = 0, 1, 2, ..., P are the
unknown polynomial coefficients to be determined, Zi is the i-th entry of the independent standardized
normal vector Z.
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A third-order PNTF was first proposed by Fleishman (1978) to generate non-normal random vari-
ables with specified moments, and it is expressed as:

XSi = a0i + a1iZi + a2iZi
2 + a3iZi

3 (3)

where the polynomial coefficients aki, k = 0, 1, 2, 3 are determined by equalling the first four central
moments of both sides of Eq. (3):

0 = a0i + a2i (4)

1 = a21i + 6a1ia3i + 2a22i + 15a23i (5)

α3xi = 2a2i
(
a21i + 24a1ia3i + 105a23i + 2

)
(6)

α4xi − 3 = 24
[
a1ia3i + a22i

(
1 + a21i + 28a1ia3i

)
+ a23i

(
12 + 48a1ia3i + 141a22i + 225a23i

)]
(7)

where α3xi and α4xi are skewness and kurtosis of Xi, respectively. This approach to determining the
polynomial coefficients aki is known as the product-moment method. Its accuracy and monotonicity
range were investigated in (Chen and Tung, 2003). Once the coefficients aki are obtained, the non-normal
random variables can be simulated by substituting normal samples into Eq. (3). The solution for the
above product-moment equations (4-7) depends on the values of skewness and kurtosis (Fleishman,
1978). When skewness is less than 2.5 and kurtosis less than 9, the solution exists if the following
condition holds:

α4X > 1.58857α2
3X + 1.8683 (8)

For skewness less than 10 and kurtosis less than 120, the solution condition for Eqs. (4-7) was studied
in (Chen and Tung, 2003) and is depicted in Fig. 2, where the relation α4X ≥ 1+α2

3X holds for a feasible
distribution (Stuart et al., 1994).

Tadikamalla (1980) presented five alternative methods for generating non-normal distributions and
compared them with the third-order PNTF in terms of the efficiency, implementation and generality.
The third-order PNTF was found to be the easiest for implementation and with the highest efficiency.
In addition to the third-order polynomial transformation in Eq. (3), a closed form second-order PNTF
was derived in (Zhao and Ono, 2000) using the information of the first three moments. Some other
formulations for normal transformation have also been proposed over the years, among which the second-
order Fisher-Cornish expansion is given in an explicit form as (Chen and Tung, 2003; Zhao and Lu,
2007):

XS = −a1 + (1− 3a2)Z + a1Z
2 + a2Z

3 (9)

where XS = X−µx
σx

, a1 = α3x
6 , a2 = α4x−3

24 . The above closed-form PNTF is convenient to use. However,
as pointed out in (Zhao and Lu, 2007), the first four moments of the right-hand side of Eq. (9) are not
equal to those of the left-hand side, and large errors may occur when applying the transformation.

An improved version to Eq. (9) was presented in (Winterstein and Bjerager, 1987):

XS = −kb1 + k (1− 3b2)Z + kb1Z
2 + kb2Z

3 (10)

where
b1 =

α3x

4 + 2
√

1 + 1.5 (α4x − 3)
(11)

b2 =

√
1 + 1.5 (α4x − 3)− 1

18
(12)

k =
1√

1 + 2b21 + 6b22
(13)

The above formula improves the accuracy of the Fisher-Cornish expansion while retaining explicit.
A further improvement was proposed in (Zhao and Lu, 2007):

XS = −l1 + k1Z + l1Z
2 + k2Z

3 (14)
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where the polynomial coefficients were derived from trial and error using a large amount of data as:

l1 =
α3x

6 (1 + 6l2)
, l2 =

1

36

(√
6α4x − 8α2

3x − 14− 2

)
(15)

k1 =
1− 3l2

1 + l21 − l22
, k2 =

l2
1 + l21 + 12l22

(16)

The following condition must hold for the validity of Eq. (14):

α4x ≥
(
7 + 4α2

3x

)/
3 (17)

According to the study of (Zhao and Lu, 2007), the range expressed in Eq. (17) can generally meet
the common engineering use. An extension of Eq. (14) was recently presented in (Zhao et al., 2019).

All aforementioned polynomial transformation functions are limited to independent random vari-
ables. For the simulation of multivariate non-normal random variables with specified moments and
correlation matrix, further improvement have been reported in (Vale and Maurelli, 1983; Headrick and
Sawilowsky, 1999).

The application of PNTF usually involves matching moments up to the fourth-order, and results of
sufficient accuracy can generally be obtained. One way to further improve the approximation accuracy
generated by moment-matching is to account for higher-order moments. In this regard, a PNTF of order
five was proposed in (Headrick, 2002), and it offers additional control over the fifth and sixth moments
to approximate some distributions that are difficult for the lower-order approach. Its implementation,
however, requires rather tedious mathematical computation to determine the polynomial coefficients.
To simplify the coefficient estimation, L-moments were used to establish the fifth-order PNTF and the
corresponding analytical expressions were derived in (Headrick, 2011). Along this line of development,
a PNTF of order 19 was proposed in (Xiao, 2015) where the polynomial coefficients are determined
using the probability weighted moments matching method or the percentile matching method. Based
on a similar idea, a 9-th order polynomial transformation was used with a quasi-Monte Carlo method
to solve for the probabilistic optimal power flow problem (Zou and Xiao, 2014).

It is noted that the third-order PNTF has recently been further employed to construct a flexible
probability distribution for a random variable only with the first four moments in (Zhao et al., 2018b),
whereas the application of third-order PNTF to establish a multivariate distribution model has previ-
ously been reported in (Chen and Tung, 2003). For more information, it is referred to (Chen and Tung,
2003; Headrick and Kowalchuk, 2007; Zhao et al., 2018b) and references therein.

3 PNTF in terms of Hermite polynomials

As Hermite polynomials are orthogonal with each other weighted by the PDF of standard normal dis-
tribution (Andrews et al., 1999; Xiu and Karniadakis, 2002), it is attractive to use Hermite polynomials
as the PNTF to link non-normal random variables to normal ones:

XSi =
P∑
k=0

bkiHk(Zi) (18)

where XSi is the standardized non-normal random variable, k is the order of expansion, bki is the k-th
unknown coefficients to be determined, and Hk(•) is the k-th order Hermite polynomial. For a finite
order expansion, it is trivial to build the connection between the Hermite expansion in Eq. (18) and the
power series in Eq. (2). For the sake of simplicity, a third order expansion is considered here:

XSi =
3∑

k=0

bkiHk(Zi) = b0i + b1iZi + b2i
(
Z2
i − 1

)
+ b3i

(
Z3
i − 3Zi

)
(19)
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Comparing Eq. (19) with Eq. (3), the relationships between the expansion coefficients in these two
equations can be obtained as:

b0i = a0i + a2i; b1i = a1i + 3a3i;
b2i = a2i; b3i = a3i;

(20)

Following Eq. (19), the moments of XSi can be calculated as:

E[Xm
Si] = E[{

3∑
k=0

bkiHk(Zi)}m] = E[{b0i + b1iZi + b2i(Z
2
i − 1) + b3i(Z

3
i − 3Zi)}m] (21)

Based on the moment matching method, the following set of equations can be established for solving
the unknown coefficients when m = 4:

0 = b0i
1 = b21i+2b22i+6b23i
α3xi = 2b2i(2 + b21i + 18b1ib3i + 42b23i)
α4xi = 15 + 288b1ib3i + 936b23i − 12b41i − 264b31ib3i−864b21ib

2
3i − 432b1ib

3
3i − 2808b43i

(22)

then, the same set of equations can be derived as expressed in Eqs. (4-7) by substituting Eq. (20) into
Eq. (22), which in a way establish the connection between the Hermite polynomial expansion in Eq. (18)
and the power series in Eq. (2) by restricting P = 3.

The benefits of expressing PNTF in terms of Hermite polynomials are explained in the following
two subsections, from two different aspects: 1) simple and efficient calculation of the PNTF coefficients
for random variables with specified distribution; and 2) convenience to cope with correlated non-normal
random variables.

3.1 Coefficients calculation for random variables with specified distributions

Although the PNTF for normal transformation only requires the statistical moments of random vari-
ables, interesting properties can be observed for the Hermite PNTF applied to random variables with
specified distributions. Unlike in Eq. (18) where the left-hand side is a standardized random vari-
able, here the original random variable Xi is directly expanded as a weighted summation of Hermite
polynomials:

Xi =
P∑
k=0

ckiHk(Zi) (23)

Due to the orthogonality of Hermite polynomials and their moment properties, the following equation
can be derived:

E[Xi ·Hk(Zi)] = ckiE[(
P∑
k=0

Hk(Zi))Hk(Zi)] = ckiE[H2
k(Zi)] = ckik! (24)

The isoprobabilistic transformation between the non-normal random variable Xi and the standard
normal variable Zi is given as:

FX(Xi) = Φ(Zi)→ Xi = F−1
X (Φ(Zi)) (25)

where FX(•) and Φ(•), respectively, are the CDF of non-normal random variable and standard normal
random variable.

Substituting Eq. (25) into Eq. (24) yields:

E[Xi ·Hk(Zi)] =

∫
R

F−1
X (Φ(Zi))Hk(Zi)φ(Zi)dZi = ckik! (26)
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(a) (b)

Figure 3: Approximation of the Gamma distribution using third-order PNTF derived from different
methods: (a) PDF; (b) CDF.

where φ(•) is the PDF of a standard normal random variable. Finally, the polynomial coefficients can
easily be calculated as a one-dimensional integral for any order of expansion:

cki =
1

k!

∫
R

F−1
X (Φ(Zi))Hk(Zi)φ(Zi)dZi (27)

For example, assuming that X1 follows Gamma distribution with the shape parameter of 10 and
scale parameter of 7, a third-order PNTF in the form of Eq. (23) is used to represent X1. With the
aid of Eq. (27), the four polynomial coefficients can readily be calculated as: c01 = 70, c11 = 21.8928„
c21 = 2.3111 and c31 = 0.0634. Therefore, the random variable X1 can be expressed in terms of Hermite
polynomials as:

X1 = 70 + 21.8928Z1 + 2.3111
(
Z2
1 − 1

)
+ 0.0634

(
Z3
1 − 3Z1

)
(28)

By generating a large set of realizations of the standard normal random variable Z1, the PNTF
approximation of the PDF and CDF of Gamma random variable X1 are illustrated in Fig. 3. The
PNTF-based PDF/CDFs derived from moment matching methods mentioned in Section 2, i.e. Eq. (3)
and Eq. (14), are also shown in Fig. 3 for comparison purpose. It is observed that all the PNTF-based
PDF/CDFs exhibit a close agreement with each other, and match with the exact ones very well in the
whole domain, even in the tail part of the distribution. Therefore, both the moment matching methods
and Eq. (27) can be used to calculate the coefficients for establishing the PNTF-based transformation.

3.2 Extension to correlated random variables

Another advantage for expressing the PTNF as Hermite polynomials is its convenience to establish the
relationship between the correlation coefficients in the original space and that in the standard normal
space, which leads to the normal transformation that links correlated non-normal random variables to
independent standard normal ones. Specifically, given two correlated random variables Xi and Xj , their
corresponding standardized variables XSi, XSj can be expressed as:

Xi − µxi
σxi

= XSi =

P∑
k=0

bkiHk (Zi) (29)

Xj − µxj
σxj

= XSj =
P∑
k=0

bkjHk (Zj) (30)
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where Xi and Xj are the desired non-normal random variables with correlation coefficient of ρxixj , XSi,
XSj are the standardized variables of Xi and Xj with zero mean and unit variance, Zi and Zj are the
standard normal random variables with the correlation coefficient ρzizj . Then according to the following
property of Hermite polynomials (Buet-Golfouse, 2015):

Cov[Hm(Zi), Hn(Zj)] =

{
0 for n 6= m

n!ρnzizj for n = m > 0
(31)

the following equation can be derived:

Cov (XSi, XSj) = ρXSiXSj
σXSi

σXSj
= ρxixj =

P∑
k=1

bkibkjk!ρkzizj (32)

Thus, the relationship between the correlation coefficient in the original space ρxixj and the corre-
lation coefficient in the standard normal space ρzizj is established, which is formulated as a polynomial
function of ρzizj up to degree P . For practical application purpose, the expansion up to 3-order (i.e.
P = 3) is generally employed. According to the relationship between the parameter vectors a and b
expressed in Eq. (20), Eq. (32) can also be expressed in terms of the parameter vector a:

6α3iα3jρ
3
zizj + 2a2ia2jρ

2
zizj + (α1i + 3α3i)(α1j + 3α3j)ρzizj − ρxixj = 0 (33)

The correlation coefficient in standard normal space ρzizj can then be determined by solving Eq. (32)
or Eq. (33). In order to satisfy the definition of correlation coefficient, the valid solution is restricted
by the following conditions (Tung et al., 2019; Xiao, 2017):

−1 ≤ ρzizj ≤ 1;
ρzizj · ρxixj ≥ 0;

(34)

Therefore, following the above derivations, any pair of statistically dependent random variables
with the first four moments and correlation coefficients available can be transformed into two correlated
standard normal variables, whose correlation coefficients can easily be determine from Eq. (32) or
Eq. (33).

The aforementioned transformation procedure can readily be generalized to n variables, whose joint
CDF/marginal PDFs are unknown and the probabilistic characteristics are expressed as the first four
moments and correlation coefficients. Consider a n dimensional random vector X = [X1, X2, · · ·, Xn]T

with the probabilistic information defined by the first four moments (µxi , σxi , α3xi , α4xi) and the corre-
lation matrix:

RX =


1 ρx1x2 · · · ρx1xn

ρx2x1 1 · · · ρx2xn
...

...
. . .

...
ρxnx1 ρxnx2 · · · 1

 (35)

Then, each pair of the random variables in X can be transformed into a pair of correlated standard
normal variable in Z = [Z1, Z2, · · ·, Zn]T using Eqs. (29-30). The elements of the correlation matrix in
the standard normal space can be constructed by solving Eq. (32) or Eq. (33) for each pair of random
variables and is expressed as:

RZ =


1 ρz1z2 · · · ρz1zn

ρz2z1 1 · · · ρz2zn
...

...
. . .

...
ρznz1 ρznz2 · · · 1

 (36)

Given a positive definite correlation matrix RZ of statistically dependent standard normal vector
Z = [Z1, Z2, · · ·, Zn]T , an independent standard normal random vector U = [U1, U2, · · ·, Un]T can be
formulated as:

U =L−1Z (37)
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where L is a lower-triangular matrix obtained from Cholesky decomposition of the correlation matrix
RZ such that RZ= LLT. The lower-triangular matrix L is expressed as:

L =


l11 0 · · · 0
l21 l22 · · · 0
...

...
. . .

...
ln1 ln2 · · · lnn

 (38)

From Eq. (37), the vector Z can be expressed in terms of an independent standard normal vector U
as:

Z = LU (39)

where the element of Z can be expressed as:

Zi =
i∑

m=1

limUm, (i = 1, 2, . . . , n) (40)

By substituting Eq. (40) into Eq. (29), the PNTF that connect the statistically dependent variables
with the independent standard normal ones can thus be established in terms of Hermite polynomials:

Xi = µxi + σxi

3∑
k=0

bkiHk

(
i∑

m=1

limUm

)
, (i = 1, 2, · · · , n) (41)

or in the form of classical formulation:

Xi = µxi + σxi

a0i + a1i

i∑
m=1

limUm + a2i(
i∑

m=1

limUm)

2

+ a3i(
i∑

m=1

limUm)

3
 , (i = 1, 2, · · · , n) (42)

Using Eq. (41) or Eq. (42), normal transformation can then be directly performed for correlated non-
normal variables with their first four moments and correlation coefficients only, whereas the information
on joint PDF/marginal PDFs is not required. The transformation expressed in Eq. (42) is an extension
of the work reported in (Lu et al., 2017), where the transformation is achieved based on the first three
moments.

4 Comparison and application of PNTF for structural reliability anal-
ysis

Although the PNTF was originally developed for the simulation of non-normal random variables, it can
be further extended to aid structural reliability analysis in different ways. In this section, some existing
attempts of using PNTF for structural reliability analysis are examined, and the newly derived Hermite
PNTF is incorporated with conventional reliability analysis methods, e.g. MCS, FORM and SORM, to
deal problems with correlated random variables. The third-order PNTF is exclusively adopted in the
numerical study, while the observation and conclusion hold for more general cases.

4.1 MCS using PNTF

Since the PNTF was originally developed for simulating non-normal random variables, its application
in MCS is straightforward. The MCS method for structural reliability analysis using second- and third-
order PNTF was proposed by Zhao (Zhao et al., 2002), where the method was found simple to use
and yet accurate enough to include the random variables with unknown CDF/PDF. In this section, the
application of PNTF for reliability analysis using MCS will be illustrated for problems with independent
random variables and correlated random variables, respectively.
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Table 1: Distribution information and statistical parameters of the random vari-
ables.

Distribution Statistical Moments Parameters

µ σ α3 α4 a0 a1 a2 a3

Lognormal 120 24 0.6080 3.6644 -0.09791 0.96964 0.09791 0.00686

Gamma 80 25 0.6250 3.5859 -0.10326 0.98129 0.10326 0.00266

Gumbel 100 40 1.1396 5.4000 -0.16827 -0.89695 0.16827 -0.02417

Weibull 120 48 0.2768 2.7875 -0.05066 1.04205 0.05066 -0.01510

4.1.1 Cases with independent random variables

When all input random variables are independent, the basic steps of PNTF-based MCS for reliability
analysis are listed below:

1. Initialize the number of sampling points N .

2. Collect the information of the first few moments, i.e. mean, standard deviation, skewness and
kurtosis, of random variables, either using the PDF or the available samples of the variables.

3. Determine the polynomial coefficients using the first few moments of random variables by moment-
matching method, e.g. solving Eqs. (4-7) to establish the PNTF for each random variable.

4. Generate a set of standard normal random variables for each non-normal random variable, and
substitute them into their corresponding PNTF to generate samples with desired non-normal
distributions or moment properties.

5. Substitute the samples of random variables generated in step 4 into the performance function
g(X) to determine the value of performance function for each sample.

6. Count the number of samples Nf that fall in the failure domain, i.e. g(X) ≤ 0.

7. Estimate the failure probability as Pf =
Nf

N .

8. Check the convergence condition: if met, stop calculation; otherwise, generate more samples and
add into N , repeat from step 4 to step 7 until convergence criterion is reached.

Example 1: This example aims to investigate the accuracy and efficiency of the PNTF-based MCS
for the simulation of some commonly used distributions. Four different distributions are considered,
e.g. Lognormal, Gamma, Gumbel and Weibull, and the corresponding first four moments are listed in
Table 1. With the given moments of the four distributions and solving the equations, e.g. Eqs. (4-7) or
Eqs. (14-16), the corresponding coefficients for each distributions can be obtained, as recorded in Table
1. Once the polynomial coefficients are obtained, the random samples for each specific distribution can
readily be generated using the third-order PNTF, i.e. Eq. (3). The histograms obtained using PNTF-
based MCS with a sample size of 1,000,000 for the four distributions are shown in Fig. 4 along with
the exact PDF indicated with the solid lines. For all four distributions, good agreement is observed
between the histogram plotted from MCS and the exact PDF.

Example 2: In order to investigate the performance of the PNTF-based MCS for structural relia-
bility analysis, this example considers the following non-linear performance function:

G (X) = X3 −
√

300X2
1 + 1.92X2

2 (43)
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(a) (b)

(c) (d)

Figure 4: Comparison of the histogram generated using PNTF-based MCS and the exact PDF (a)
Lognormal distribution (b) Gamma distribution (c) Gumbel distribution (d) Weibull ditribution.

Table 2: Distribution information and statistical parameters of the random vari-
ables

Random variables Distribution Mean Standard deviation Skweness Kurtosis

X1 Lognormal 1.0 0.16 0.4841 3.4195

X2 Gumbel 20.0 2.0 1.1396 5.4000

X3 Weibull 48 3.00 -0.8658 4.2596

whereX1, X2, X3 are three independent random variables, whose distribution information and statistical
parameters are listed in Table 2. With the given distribution information of the random variables, the
failure probability can be readily calculated using the classical reliability analysis methods, e.g. FORM,
SORM and MCS. The failure probability and the corresponding reliability indices obtained using FORM,
SORM and MCS (with a sample size of 1,000,000) are recorded in Table 3 along with the exact results
computed by direct integration.

Since the statistical moments, i.e. mean, standard deviation, skewness and kurtosis, are known for
all input random variables, the failure probability can also be calculated following the PNTF-based
MCS (with a sample size of 1,000,000), and the results are recorded in Table 3. It is observed that the
results from the PNTF-based MCS agrees well with that obtained using conventional MCS with the
information of CDF/PDF, and the relative errors are 0.17% and 0.06%, respectively. This agreement
in failure probability calculation is expected from the good match of the histogram generated using
PNTF-based MCS and the exact PDF of the random variables, as shown in Fig. 5. On the other hand,
however, the result provided by FORM exhibits large error, i.e. as high as 44.75%. The reason is that
the performance function is of non-linear form, the first-order Taylor series expansion in FORM cannot
accurately capture the non-linearity of the limit state surface and thus results in a large error of the
failure probability estimation. Since the curvatures of the limit state surface are considered in SORM,
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Table 3: Results for example 2 using different methods

Methods Reliability index (β) Failure probability (Pf ) e% =
|pf(Exact)−pf |

pf(Exact)
× 100

FORM 3.0845 1.0195× 10−3 44.75

SORM 2.8960 1.8895× 10−3 2.41

Conventional MCS 2.9033 1.8462× 10−3 0.06

PNTF-based MCS 2.9030 1.8483× 10−3 0.17

Exact 2.9035 1.8451× 10−3 ∼

Figure 5: Comparison of the histogram generated using PNTF and the exact PDF for the variables.

a better approximation to the failure surface is expected and thus it offers a more accurate estimation
of the failure probability.

Through this example, it is observed that an accurate estimation can be achieved using the PNTF-
based MCS. The reliability analysis can be directly conducted using the PNTF-based MCS even when
the CDF/PDF of the random variables are unavailable, whereas only the statistical moments are known.
This property makes it especially attractive when only samples of the random variables are available.
However, it inherits the drawbacks of conventional MCS when dealing with small failure probabilities,
especially for problems involving time-consuming numerical analysis such as finite element simulation.
The application of PNTF in more advanced simulation methods such as importance sampling still needs
further investigation.

4.1.2 Cases with correlated random variables

The implementation of PNTF-based MCS for reliability problems with independent random variables is
quite straightforward by directly applying the PNTF for each variable. For cases with correlated random
variables, however, the PNTF should be extended to account for the correlation coefficients between
random variables. In this section, two different PNTF-based MCSs are presented, named as PNTF-
based MCS 1 and PNTF-based MCS 2, respectively. The two MCS schemes use different methods to
generate correlated random samples.

• PNTF-based MCS 1

Suppose n correlated non-normal random variables are involved in a reliability problem. The poly-
nomial normal transformations for i-th and j-th variables are:

Xi − µxi
σxi

= XSi = a0i + a1iZi + a2iZ
2
i + a3iZ

3
i (44)
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Xj − µxj
σxj

= XSj = a0j + a1jZj + a2jZ
2
j + a3jZ

3
j (45)

where Xi and Xj are the desired correlated non-normal random variable with correlation coefficient of
ρxixj , XSi and XSj are the standardized variable of Xi and Xj with zero mean and unit variance, Zi
and Zj are the standard normal random variable, which can be generated and correlated according to
the following theorem (Headrick and Sawilowsky, 1999):

Theorem 1. Let ri be real-valued number inside the interval [−1, 1] for i = 0, 1, · · · , n, and let

K1,V ,E1,· · · ,En ∼ i.i.d N(0, 1). Futher, let Kt+1 = r0K1 + V
√

1− r2i , where t = 1 if r0 < 1, and t = 0

if r0 = 1. If Zi = riK1 + Ei

√
1− r2i and Zj = rjKt+1 + Ej

√
1− r2j . Then, Zi, Zj ∼ N(0, 1), and the

correlation coefficient between Zi and Zj is: ρzizj = r0rirj when t = 1; ρzizj = rirj when t = 0; In
particular, ρzizj = r2 when ri = rj = r and t = 0.

It is referred to (Headrick and Sawilowsky, 1999) for the full proof of the above theorem. Following
the definition of correlation coefficient and Theorem 1, a general equation that solves ρzizj for specified
values of ρxixj can be derived as follows with the aid of parameters in Eqs. (44-45):

ρxixj = r0rirj
(
a1ia1j + 3a1ja3i + 3a1ia3j + 9a3ia3j + 2a0ia0jr0rir + 6a3ia3jr

2
0r

2
i r

2
j

)
(46)

or more generally as:

ρxixj = ρzizj

(
a1ia1j + 3a1ja3i + 3a1ia3j + 9a3ia3j + 2a0ia0jρzizj + 6a3ia3jρ

2
zizj

)
(47)

For any given k non-normal variables that may be desired, in order to ensure simultaneous solutions for
all pairwise intercorrelations in Eqs. (46-47), it is suggested to impose certain restrictions to Theorem
1 and is given as follows (Headrick and Sawilowsky, 1999):

1. If k = 2, then ρzizj = r by restricting r0 = 1 and ri = rj = r. This results in one equation of the
form of Eq. (46) or Eq. (47) with one unknown, r.

2. If k = 3, then ρzizj = rirj by restricting r0 = 1. This results in three equations of the form of
Eq. (46) or Eq. (47) with three unknowns, r1, r2 and r3.

3. If k > 3, then ρzizj = r0rirj where r0 =
∏s
i=1 ti, s = k (k − 3)/2. A system of I = k (k − 1)/2

equations of the form of Eq. (46) or Eq. (47) can be derived with a series of unknowns, e.g. r1,
r2, r3, r4, t1 and t2 for k = 4.

Thus, any two correlated normal random variables, Zi and Zj , can be generated according to Theorem
1. Then, they can be substituted into Eqs. (44-45) to obtain Xi and Xj that are correlated with the
desired correlation coefficients and possess the specified moments.

The basic procedure of PNTF-based MCS 1 for reliability analysis with correlated random variables
are summarized asfollows:

1. Collect the information of the first few moments, i.e. mean, standard deviation, skewness and
kurtosis, and correlation coefficients of random variables, either using the PDF or the available
samples of the variables.

2. Determine the polynomial coefficients using the first few moments of random variables by moment-
matching method, to establish the PNTF for each random variable.

3. Determine the values of ri, i = 0, 1, · · · , n by substituting the desired values of ρxixj and polyno-
mial parameters (a0i, a1i, a2i, a3i; a0j , a1j , a2j , a3j) obtained in step 2 into Eq. (46) and simultane-
ously solving for ri, i = 0, 1, · · · , n. Then, ρzizj = r0rirj can be obtained.
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(a) (b)

Figure 6: Results using different methods (a) Failure probability (b) Reliability index.

4. Substitute the values of ri, i = 0, 1, · · · , n into the equations in Theorem 1 to generate samples of
Zi, i = 0, 1, · · · , n for each random variable.

5. Substitute Zi, i = 0, 1, · · · , n from step 4 and their corresponding polynomial parameters obtained
from step 2 into Eq. (44) to generate samples of specified distributions (or moment properties)
with the desired correlation coefficients.

6. Substitute the samples of random variables generated in step 5 into the performance function
g (X) to determine the value of performance function for each sample vector.

7. Count the number of samples Nf that fall in the failure domain, i.e. g(X) ≤ 0.

8. Estimate the failure probability as Pf =
Nf

N .

9. Check the convergence condition: if met, stop calculation; otherwise, generate more samples,
repeat from step 4 to step 8 until convergence criterion is reached.

• PNTF-based MCS 2

The PNTF presented in (Zhao and Lu, 2007), i.e. Eq. (14), performs quite well for independent
variables. For dependent random variables, however, this PNTF is unfeasible. In this section, Eq. (14)
is extended to cope with correlated random variables with the aid of Eq. (42), where the parameter
vector a = (a0i, a1i, a2i, a3i) is calculated using Eqs. (15-16).

The basic procedure of PNTF-based MCS 2 is similar to the PNTF-based MCS 1, and the only
difference is that instead of using Theorem 1, the newly derived Eq. (42) is employed to generate
correlated random variables with the desired correlation coefficients. Described below, Example 3
demonstrates the performance of these two PNTF-base MCSs for reliability analysis.

Example 3: In this example the same performance function and distribution parameters as in
Example 2 are considered, but it is assumed that X1, X2 are correlated with correlation coefficient
varies from ρx1x2 = 0.1 to ρx1x2 = 0.9. The results of failure probability and corresponding reliability
indices using different methods are shown in Fig. 6.

It is observed from Fig. 6 that both SORM and the PNTF-based MCS methods can provide very
accurate results compared with the conventional MCS for all investigated cases with different correlation
coefficients. Since the performance function studied is of non-linear type, the results provided by FORM
have large errors. It is also interesting to notice that the failure probability increases as the correlation
coefficient grows, whereas the reliability index decreases.
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Table 4: Comparison between the original correlation coefficient ρx1x2 and the one obtained using PNTF-based
MCS ρ∗x1x2

ρx1x2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ∗x1x2

PNTF-based MCS 1 0.0993 0.1992 0.3022 0.3992 0.4997 0.6003 0.7004 0.8000 0.9002

PNTF-based MCS 2 0.1010 0.2001 0.2990 0.4014 0.5006 0.6001 0.7003 0.7997 0.9004

Moreover, based on the samples generated using PNTF-based MCS 1 and PNTF-based MCS 2, the
correlation coefficient between X1 and X2 can readily be calculated, which is given in Table 4 along
with the original coefficient correlations. As is clearly shown in the table that the correlation coefficients
provided by these two PNTF-based MCS methods match quite well with the original ones, which in a
way justifies the accuracy of using the proposed PNTF-based MCS approaches to generate correlated
random variables with the specified correlation coefficient.

4.2 PNTF based FORM/SORM

FORM and SORM are arguably the most widely used methods for the reliability analysis of linear and
slightly non-linear problems. With the presence of non-normal random variables, normal transformation
techniques such as Rosenblatt transformation and Nataf transformation are usually required in order
to conduct the reliability analysis in the standard normal space. In practical engineering problems, the
joint PDF and marginal PDFs are often unknown due to the lack of data and the statistical information
is easier to be expressed in terms of statistical moments and correlation coefficients. In such cases, the
conventional normal transformation techniques, such as Rosenblatt transformation and Nataf transfor-
mation , cannot be applied, unless additional effort is made to fit an approximate distribution function.
The PNTF provides an alternative approach to conduct the normal transformation such that FORM
and SORM can still be used to calculated the failure probability even when the CDF/PDF of random
variables are unknown (Zhao and Ono, 2000; Zhao and Lu, 2007).

4.2.1 Cases with independent random variables

In this section, the third-order PNTF is used to illustrate the basic procedure of PNTF-based FORM/SORM
for reliability analysis with independent random variables. The inverse of the PNTF in Eq. (14) is re-
quired for the PNTF-based FORM/SORM, which is given as (Zhao and Lu, 2007):

u = −
3
√

2p
3
√
−q + ∆

+
3
√
−q + ∆

3
√

2
− l1

3k2
(48)

∆ =
√
q2 + 4p3 (49)

p =
3k1k2 − l21

9k22
(50)

q =
2l31 − 9k1k2l1 + 27k22 (−l1 − xS)

27k32
(51)

Based on the third-order PNTF in Eq. (14), the Jacobian matrix of the transformation corresponding
to a random variable with unknown CDF/PDF can be derived as:

Jii =
∂xi
∂zi

= σxi
[
k1 + 2l1zi + 3k2z

2
i

]
(52)

The computational procedure of the PNTF-based FORM/SORMwith independent random variables
is similar to the conventional FORM/SORM, and the only difference is that the normal transformation
and its inverse are conducted using Eq. (14) and Eq. (48), respectively, and the Jacobian matrix is
calculated using Eq. (52). The main steps are:

15



Table 5: Distribution information and statistical parameters of the
random variables

Random variables Distribution Mean C.O.V Skweness Kurtosis

X1 Lognormal 0.6 0.131 0.3953 3.2790

X2 Gumbel 2.18 0.03 1.1396 5.4000

X3 Weibull 32.8 0.03 -1.0041 4.7905

1. Collect the information of the first few moments, e.g. mean, standard deviation, skewness and
kurtosis, and correlation coefficients of random variables, either using the PDF or the available
samples of the variables.

2. Determine the polynomial coefficients using the first few moments of random variables by moment-
matching method, e.g. solving Eqs. (15-16) or Eq. (27), to establish the PNTF for each random
variable.

3. Transform the performance function G (X) with independent non-normal random variables into
a performance function G (U) of independent standard normal random variables using Eq. (14).

4. Compute the reliability index and failure probability using the classical FORM / SORM procedure.
When calculating the derivative of performance function with respect to the original variables X,
the element of Jacobian matrix of normal transformation for variables with known CDF/PDF
can be calculated using Rosenblatt transformation, Nataf transformation or Eq. (52), whereas for
variables with unknown CDF/PDF only Eq. (52) can be used to calculate the element of Jacobian
matrix.

Described below, Example 4 demonstrates the applicability and accuracy of PNTF-based FORM/SORM
in structural reliability analysis.

Example 4: This example considers a non-linear performance function,

G (X) = 567fr − 0.5H2 (53)

and the statistical parameters of these three input random variables are given in Table 5.
Since the distributions of random variables are known, the failure probability can be readily cal-

culated using the classical FORM, SORM and MCS. The results obtained using FORM, SORM and
MCS (with a sample size of 1000,000) are listed in Table 6. For comparison purpose, assuming the
distributions for input random variables are unknown and the only statistical information available are
the first four moments. In this case, the normal transformation and its inverse are conducted using
Eq. (14) and Eq. (48), respectively, and the Jacobian matrix is calculated using Eq. (52). The results of
the PNTF-based FORM/SORM are recorded in Table 6 along with the results for PNTF-based MCS.

Shown in Table 6, the PNTF-based MCS can obtain almost the same result as the reference one
obtained using conventional MCS with a sample size of 1,000,000. Both the conventional FORM/SORM
and the PNTF-based FORM/SORM can provide a failure probability estimation with the same level
of accuracy as their respective counterparts. However, since the performance function is of highly non-
linearity, both the conventional FORM and the PNTF-based FORM produce large errors for the failure
probability estimation; whereas both the conventional SORM and the PNTF-based SORM can improve
the results significantly by taking into consideration the curvature of the limit state surface.

4.2.2 Cases with correlated random variables

The PNTF-based FORM/SORM as illustrated in the previous section can offer comparable accuracy
as the classical FORM/SORM. However, the aforementioned PNTF-based FORM/SORM can only be

16



Table 6: Results for example 4 using different methods

Methods Reliability index (β) Failure probability (Pf ) e% =
|pf(Exact)−pf |

pf(Exact)
× 100

FORM 2.1092 0.01747 18.20

SORM 2.1652 0.01519 2.77

PNTF-based FORM 2.1051 0.01764 19.35

PNTF-based SORM 2.1648 0.01520 2.84

PNTF-based MCS 2.1756 0.01479 0.07

Conventional MCS 2.1759 0.01478 ∼

applied to problems with independent random variables. In this section, the extension to cope with
correlated random variables is examined.

Based on the theory presented in Section 3.2 and Section 4.1.2, the substitution of Eq. (41) or
Eq. (42) into the performance function transforms the performance function of correlated random vari-
ables into a function of independent standard normal variables, and the reliability analysis methods
such as FORM/SORM can thus easily be performed. The Jacobian matrix JXU of the transformation
corresponding to a random vector with unknown CDF/PDF can be derived as:

JXU = LTJXZ (54)

where the matrix L is given in Eq. (38) and the elements of JXZ can be calculated using the following
equation:

Jxizi =
∂xi
∂zi

= σxi
[
k1 + 2l1zi + 3k2z

2
i

]
(55)

The computational procedure of the PNTF-based FORM/SORM with dependent random variables
is similar to the conventional FORM/SORM, and the only difference is that for random variables
with unknown CDF/PDF, the normal transformation and the Jacobian matrix are calculated using
Eq. (42) and Eq. (54), respectively. Described below, three examples, two with known PDFs and one
with unknown PDFs, demonstrate the applicability of the PNTF-based FORM/SORM for reliability
analysis.

• Correlated random variable with known PDF

Example 5: In this example, the PNTF-based FORM/SORM is applied to calculate the failure
probability for the performance function given in Example 2, where random variablesX1, X2 are assumed
correlated with the correlation coefficient varies from ρx1x2 = 0.1 to ρx1x2 = 0.9. The results of failure
probability and reliability index using different methods are shown in Fig. 7. The PNTF-based FORM
and SORM can both provide results with comparable accuracy as those given by FORM and SORM
using Nataf transformation. Since the performance function is non-linear, only the PNTF-based SORM
and SORM using Nataf transformation can provide a good estimate of failure probability as compared
with that of MCS over the whole investigation range, whereas the PNTF-based FORM and the Nataf-
based FORM produce large errors.

In order to further investigate the applicability and accuracy of the PNTF-based FORM/SORM, it
is important to study the performance of normal transformation embedded. Table 7 lists the correlation
coefficients ρzizj in the standard normal space obtained using PNTF along with those obtained by Nataf
transformation. Almost identical correlation coefficients in the standard normal space can be obtained
using PNTF and Nataf transformation for all investigated cases, which further verify the accuracy of
PNTF.

Example 6: A frame structure as shown in Fig. 8a is studied in this example. The statistical
information of the member strength and load parameters are listed in Table 8. According to the study
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(a) (b)

Figure 7: Results using different methods (a) Failure probability (b) Reliability index.

Table 7: Correlation coefficient in the standard normal space obtained using different ap-
proaches

ρx1x2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρz1z2
PNTT 0.1035 0.2064 0.3088 0.4105 0.5117 0.6123 0.7124 0.8119 0.9109

Nataf 0.1034 0.2063 0.3085 0.4103 0.5115 0.6122 0.7125 0.8123 0.9117

(a) (b)

Figure 8: Structural illustration for Example 6 (a) Two-story two-bay frame structure and (b) Most
likely failure mode (after (Lu et al., 2017)).
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Table 8: Distribution information and statistical parameters of the random variables

Random variables Distribution Mean Standard deviation Skweness Kurtosis

M1,M2,M3(kN ·m) Lognormal 700 105 0.4534 3.3677

M6,M7(kN ·m) Lognormal 700 105 0.4534 3.3677

M4(kN ·m) Lognormal 1500 225 0.4534 3.3677

M5(kN ·m) Lognormal 1200 180 0.4534 3.3677

M8(kN ·m) Lognormal 90 13.5 0.4534 3.3677

S1(kN) Lognormal 100 25 0.7656 4.0601

S2(kN) Lognormal 200 50 0.7656 4.0601

S3(kN) Lognormal 265 66.25 0.7656 4.0601

S4(kN) Lognormal 180 45 0.7656 4.0601

S5(kN) Lognormal 140 35 0.7656 4.0601

conducted in (Zhao and Ono, 1998; Lu et al., 2017), the most likely failure mode of this frame is
illustrated in Fig. 8b, and the limit state function is given as:

G (X) = 2M1 + 2M2 + 2M3 − 4.5S1 − 4.5S2 (56)

Given the limit state function in Eq. (56), it is assumed that the member strength parameters
Mi (i = 1, 2, 3) of the frame structure are independent of the load parameters Si (i = 1, 2) and the
dependence between different random parameters are assembled in a correlation matrix as:

CX =



1 0.21 0.21 0 0

0.21 1 0.21 0 0

0.21 0.21 1 0 0

0 0 0 1 0.35

0 0 0 0.35 1


(57)

The “exact” failure probability obtained using MCS with 80,000,000 samples is 3.8750e-7 and the
corresponding reliability index is 4.9416. With the given information of marginal distribution and
correlation matrix, the classical Nataf-based FORM/SORM can be implemented without any difficulty,
providing the reliability index estimation with a value of 4.9299 and 4.9204, respectively. Based on
the first four moments of the random variables, the reliability analysis can also be performed using the
PNTF-based FORM/SORM as described above, and the reliability index is respectively obtained as
4.9658 and 4.9616, which are similar with the results from by their classical counterparts and all in close
agreement with that of MCS.

• Correlated random variable with unknown PDF

Example 7: In this example an H-shaped steel column studied in (Zhao and Lu, 2007) (for inde-
pendent variables) is considered, and the performance function is expressed as:

G (X) = AY − C (58)
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Table 9: Statistical moments of the random variables

Variable
Statistical Parameters

Mean Standard deviation Skewness Kurtosis

A(cm2) 71.656 3.691 0.709 3.692

Y (t/cm2) 3.055 0.364 0.512 3.957

C(t) 100 40 1.264 5.969

Table 10: Results for example 7 using different methods

Methods Reliability index (β) Failure probability (Pf ) Correlation matrix

PNTF-based FORM 2.0180 0.02180 ∼

PNTF-based SORM 2.0170 0.02185 ∼

PNTF-based MCS1 2.0003 0.02273 CX =


1 −0.3099 0.5707

−0.3099 1 −0.4383

0.5707 −0.4383 1



PNTF-based MCS2 2.0015 0.02267 CX =


1 −0.3107 0.5699

−0.3107 1 −0.4403

0.5699 −0.4403 1



The statistical information of the random variables are listed in Table 9 and the correlation matrix is
assumed as:

CX =


1 −0.31 0.57

−0.31 1 −0.44

0.57 −0.44 1

 (59)

Since only the statistical moments of the random variables are known in this example, the classical
FORM/SORM cannot be directly used unless a proper distribution is identified for each random variable.
Using the PNTF-based FORM/SORM, the failure probability estimation can be directly evaluated, and
with the results are listed in Table 10 along with the results provided by the PNTF-based MCSs described
in section 4.1.2. Based on the samples generated using PNTF-based MCS 1 and PNTF-based MCS
2, the correlation coefficients between random variables in the original space can also be obtained and
given in Table 10 for comparison. The results obtained using PNTF-based FORM/SORM are almost
the same and both give very good approximation to the results provided by the PNTF-based MCS.
Moreover, the correlation matrices obtained by PNTF-based MCS 1 and PNTF-based MCS 2 are very
close to the original correlation matrix of the random variables in this example.

5 Conclusions

The polynomial normal transformation method is presented for structural reliability analysis, to trans-
form between non-normal and normal random variables. It requires only the first four moments and
correlation matrix of the input random variables to work, which is especially attractive when only sam-
ples of the random variables are available. The PNTF is expressed in terms of Hermite polynomials and
being extended to correlated cases. The following conclusions can be drawn from the comprehensive
numerical studies:
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1. The Hermite polynomial normal transformation is equivalent to the classical power series formu-
lation, but it is much easier to establish the relationship between the correlation coefficient in the
original space and the normal space. In addition, when the PNTF is applied for random variables
with known PDF, the use of Hermite polynomials can greatly simplify the coefficient calculation.

2. Using the PNTF-based MCS, samples of random variables with or without CDF/PDF can be
easily generated with sufficient accuracy both for independent and correlated random variables.

3. The newly derived equation for normal transformation, i.e. Eq. (42), is easy to implement and
the polynomial normal transformation can provide good results for correlation coefficient in the
standard normal space as compared with that of Nataf transformation.

4. The PNTF-based FORM/SORM utilizing the first few moments and correlation matrix of the
random variables can provide comparable results as those given by classical FORM/SORM based
on Nataf transformation, which complements existing methods for reliability analysis when the
CDF/PDF of the random variables are unknown.

However, it is noteworthy that the PNTF-based methods are accurate enough only in the applica-
ble range of their corresponding PNTF, large errors may be introduced for problems with statistical
moments outside the applicable range. In this case, the complete formula recently proposed in (Zhao
et al., 2018a) might be an option to bypass the limitation of the present work, which is an aspect worth
for further investigation.
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