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Experimental Study of Rotor-Stator Contact Cycles

Elijah Chipato, A D Shaw, M I Friswell, R S Crespo

College of Engineering, Swansea University Bay Campus, Fabian Way, Crymlyn Burrows, Swansea SA1 8EN, UK

Abstract

A rotor can contact a stator thereby inducing some very strong non-linearities that can result

in a plethora of vibration phenomena. Synchronous motions, chaotic motion, backward whirl,

forward whirl are some of the reported phenomena in the literature. This article presents an

experimental approach based on a very flexible rotor rig designed with drill string dynamics in

mind for rotordynamic experiments. A non-contact technique was used for data acquisition using

a consumer-grade Go-Pro Hero 6 Black camera which captures a series of images(video) which

are then post-processed using MATLAB’s image processing toolbox to understand the nature of

dynamics involved. A mathematical model of the experimental rig was used for comparison with

the actual experiment to assess the effectiveness of the data acquisition procedure used and validity

of the model. The model is able to a good extent to reproduce the behaviour of the test rig. The

fundamental phenomena exhibited by the system is analysed and discussed based on bifurcation

plots, spectral intensity plots and orbit plots visualised in both rotating and stationary frame.

Keywords: Nonlinear, Rotordynamics, Periodic contacts, Backward whirl, Video

1. Introduction

Rubbing between the rotor and the stator can be found in many applications of engineering

ranging from drill strings in the oil and gas industry, aero engines and even magnetic bearings. In

flexible drill strings the rotor stator contact problem is well known [1, 2] and can be detrimental

to the drill sting system if the high amplitude backward whirl is excited. In aero engines contact

can occur between blades and the casing this could have been excited by the fan blade off scenario.

This increases the unbalance forcing in the system thereby resulting in a response that is higher

than the available clearance. Some typical examples of the severity of this problem is the grounding

of the entire fleet of the F35A due to the engine catching fire because of excessive rubbing between
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the turbine blade and the cowling. In addition, in 1973 the NTSB reported a case that one of the

engine fan assemblies disintegrated during flight because of the interaction between fan blade tip

and the fan casing [3]. In the oil and gas industry system shut-down as a result of rotor stator

contact can result in considerable costs to the organisation as well as the economy. This therefore

shows that the rotor stator contact problem needs to be understood so as to circumvent these and

other costly problems. Other authors such as [4–10] have used numerical simulations in a bid to

understand the rotor stator contact problem.

Torkhani et al. [11] used a dedicated experimental setup to consider partial, light and severe

rubs. Accelerometers and proximity probes were used to measure shaft and casing vibrations. A

model which relies on finite element (FE) modelling suitable for real rotating machinery was then

used for comparison with the experimental results. It was observed that the model reproduced

the behaviour of the actual test rig. Ma et al. [12] considered a single span rotor system with

two discs when the rubbing was between a disc and an elastic rod. An FE model of the rotor

was developed and also compared with the actual experiment which made use of eddy current

transducers for data acquisition. The Coulomb friction model was used to simulate rotor stator

frictional characteristics. The effect of the gap and the contact stiffness was also assessed. It was

noted that as the gap/clearance is decreased complicated impact rebounds are observed. When the

contact stiffness was decreased the amplitude of both vibration and normal rubbing force decreased

and the rotor stator contact time increased. The contact stiffness was noted to have greater influence

on system vibration responses at higher speeds. It was also noted that the increase in amplitude of

2x, (1/2)x and (1/3)x harmonics and the normal rubbing force are a distinguishable characteristic

to diagnose the worsening of rubbing. In addition, Chu and Lu [13] used an experimental set-up

of a rub impact multi disk rotor system and observed multiple harmonic components such as 2x,

3x, etc. The (1/2) fractional harmonic components such as (1/2)x, (3/2)x and the (1/3) fractional

harmonic components such as (1/3)x and (2/3)x were observed as well. As the rub-impact was

aggravated, the spectrum composition became complicated and chaotic motions were observed.

Wang et al. [14] investigated the response of a rotor on a test rig with sudden unbalance.

It was shown that the sudden unbalance has an impact effect on the rotor and that the critical

speed frequency was excited and was characterised by an increase in the transient response upon

sudden mass loss. The impact factor was also noted to be high at the supercritical state showing

that rotors operating above the critical speed are more sensitive to a sudden unbalance load. Rub
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impact between the rotor and constraint ring was also found to add a load path to absorb part of the

unbalance loads and also to generate additional stiffness (stiffening effect) which has a significant

influence on the response of the rotor through an increase of the resonance speed as well as expansion

of the resonance region.

In other work, Chen [15] simulated the casing vibrations resulting from blade-casing rub by

introducing a new rub model and then using an aero engine rotor stator rig that uses acceleration

sensors for data acquisition to validate the new improved model. The simulation results were

observed to agree with the experiment thus validating the new model. The improved model can

simulate a number of rubbing conditions including single point, multi point, local part and complete

cycle rubbing on the casing and rotor. It was noted that for single point rubbing on the casing,

the casing vibration has obvious periodic impact characteristics and the impact frequency is the

frequency of the blades passing the casing and the impact is modulated by the rotational frequency.

The characteristics of two point rubbing on the casing with complete-cycle rubbing on the rotor

appeared to be the same as that of single point rubbing.

Ma et al. [16] also explored a similar blade casing rub model for both single and four-blade

rubbings. Amplitude amplification phenomena was observed when multiple frequencies of the ro-

tational frequencies coincided with the conical and torsional natural frequencies of rotor system,

natural frequencies of the casing and the bending frequencies of the blades. This was also validated

by a finite element model of the rotor system. Ma et al. [17] also formulated a new rubbing model

between the rotating blade and the casing, where the model considered bending deflection of blade

as well as casing deformation during rubbing. The effects of blade physical dimensions, casing

stiffness, penetration depths and rotating speeds were analysed by both simulation and experiment

which used acceleration sensors to obtain the displacements. It was concluded that when the casing

stiffness is greater than the blade stiffness, the rubbing force has a nonlinear characteristic relative

to the penetration depth and under this condition blade deformation dominated the normal rubbing

force. When the casing stiffness is less than that of the blade the normal rubbing force was observed

to have a linear characteristic relative to the penetration depth.

Pennacchi et al. [18] analysed the effects of rotor stator contact on seals using experimental study

and a mathematical model. Proximity probes and accelerometers were used in the experimental

work for data acquisition. The stator in this study is less stiff than the rotor so as to reproduce

what happens in a real system when the shaft-line interferes with labyrinth seals. The results
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highlighted the characteristics of short arc rubs with regard to non-linearities. Ehehalt et al. [19]

presented an experimental approach based on a modular kit for rotordynamics experiments to

confirm various motion patterns brought about by non-linearity due to the rubbing action between

rotor and stator. The experimental results verify most motion patterns from simulation results

found in literature. The experiment also validated the theoretical hypothesis that the friction

coefficient is the key parameter in determining synchronous motion. Cole et al. [20] analysed a

multimode rotor bearing system with rotor stator clearance and made use of the rotating frame to

predict all possible steady state solutions that involve periodic contact with the stator. A harmonic

decomposition with generalised fundamental frequency was used to obtain periodic solutions that

involve asynchronous partial contacts. The analytical solutions were also compared with previously

published experimental results and showed a good agreement. It was observed that for increased

unbalance levels, amplitude of the contact mode vibration increased and the response moved from

a bouncing forward whirl to a backward whirl solution. Yu and Muszynska [21, 22] experimentally

and analytically investigated rotor full annular rub including synchronous forward and backward

precession. Wilkes et al. [23] investigated the nature of dry whip and whirl through experimental

and numerical methods. Childs and Kumar [24] developed analytic dry friction whip and whirl

solutions for a rigid rotor model with two contact points. A large body of research conducted by

Jiang [25–28] determined the boundary of different nonlinear phenomena and also reveal the related

mechanism. Hong [29] revealed the inherent mechanism for partial rubbing motion transmitting

into backward whirl motion.

To this point, we have explored various experimental work and all of them measure the vibration

of rotors using proximity probes or accelerometers. There is a number of ways for acquiring vibration

data and these can be classified into the so called ’contact’ and ’non-contact’ procedures [30].

Contact procedures physically attach sensors to the structure under study and are very popular as

observed earlier. Contact procedures have the drawback of altering the dynamics of the structure

via the addition of mass or stiffness if the structure has low mass or is very flexible; furthermore they

are often difficult to apply to moving surfaces. Non-contact methods require no physical contact

with the structure under test thus circumventing the additional mass or stiffness problem. Typical

examples of these non-contact techniques include the Laser Doppler Vibrometer, Scanning Laser

Doppler Vibrometer and high speed video (computer vision) which is of interest to this research

work.
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Computer vision techniques have been used extensively to extract the dynamic characteristics

of models. Yoon et al. [31] measured the response of a six story model on a shaking table using

consumer grade cameras and a reference accelerometer. The proposed computer vision method

showed potential to identify the natural frequencies and mode shapes with reasonable levels of

accuracy. Harmanci et al. [32] also identified the mode shapes of a shear frame using a high speed

camera. Sarrafi and Mao [33] and Sarrafi et al. [34] conducted studies on a wind turbine blade

using high speed cameras and managed to extract natural frequencies and mode shapes of the

wind turbine and also identify the nodal points. Melakhessou et al. [35] studied the local contact

between a drill string and the oil well, and focused on the bottom hole assembly. A mathematical

nonlinear model was developed to simulate the dynamics of the lower part of the drill string which

takes into account the impact phenomena. Two cameras located in the same plane were used to

measure the radial displacements of the drill string. The results obtained were a good match to the

numerical simulation proving the efficacy of image processing in data acquisition. Other authors

such as [36–38] also used cameras to capture the dynamics of flexible rotor stator contact systems

and the data acquisition system proved to be robust in acquiring the motion of the systems in

question. Therefore, computer vision methods, though new to this field, have proven to be effective

on relatively flexible structures with large displacements and thus making them applicable to our

problem.

In this work, the dynamics of rotor stator contact will be studied. The primary focus is to

understand orbits featuring asynchronous partial bouncing motions, which often appear in multiple

forms due to different physical causes. To the authors’ knowledge, this paper contains the first

experimental demonstration that the quasi periodic partial contacting motions due to friction are

in fact periodic in the rotating frame for an isotropic system. This experimental validation justifies

many modelling and analysis approaches that assume periodic responses in the rotating frame. An

experimental rig designed to mimic drill string dynamics with no cutting dynamics is used. It is

designed to be highly flexible in order to obtain displacements that are easily visible with low natural

frequencies. A simple two degrees of freedom mathematical model is used for comparison with the

experimental results and the two appear to show acceptable similarities. Firstly, the experimental

setup is described and the mathematical model of the experiment is given. The results of the

experiment and the mathematical model are presented in the form of spectral intensity plots, orbit

plots which will be viewed in both stationary and rotating frames, and also bifurcation diagrams.
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Finally, a brief description of the conclusions of this work is given.

2. Experimental setup and Description

  

Link to electric 

motor 

Disc 

Unbalance 

masses 

Stator ring 

with steel rods 

Rotor 

Isotropic 

flexible 

coupling 

Light source 

GoPro Camera 

Figure 1: The components of the experimental rig.

In this section, the experimental setup that was used in this work, the procedure for data

acquisition, and the implementation of the post processing are described. Figure 1 shows the

laboratory test rig used in the experimental studies. The rotor test rig consists of a single disc,

which has a bolt and nut attached to it to alter the unbalance mass. An isotropic coupling supports
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the rotor. A concentric stator ring is held in place by steel rods and the stiffness of the stator can be

altered by changing the length of the rods. A hammer test is used to obtain the natural frequency

of the stator, ωs which is then be used to calculate the stiffness of the stator, ks, standard beam

theory was used to calculate the analytical stiffness which was found to be in an acceptable range. A

brushless electric motor with integrated electronics is located at the top of the rig to give rotational

motion to the system. The motor has an embedded system that monitors the rotational speed,

although the rotational speed was checked for accuracy using the video measurements. The test

 

 

Figure 2: The flow chart of the algorithm for colour detection.

rig compartment was enclosed when capturing the videos and therefore a light source was used to

enhance the quality of the videos captured by the GoPro camera at 240fps. Based on the Nyquist

criterion this therefore means that the sampling rate was enough to extract data for rotational

speeds up to 120Hz (7200rpm). For this system the rotational speed will not exceed 600rpm and
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therefore any aliasing can be avoided. The response is likely to contain harmonics of the rotor

spin speed, and also possible asynchronous response, and hence a significant headroom before the

Nyquist frequency is desirable to allow for these uncertainties. Second, we are interested in the

rotor orbits, and more points per excitation cycle enable smoother visualisation of the orbits. The

frame-rate that was provided by the manufacturer in the camera specification (240fps) was also

noted to be inaccurate as compared to the one in the meta-data (239.7277); therefore in this work

the frame-rate of the meta-data was used instead of the one specified by the manufacturer.

Figure 2 shows the flow chart of the algorithm for colour detection using MATLAB’s Image

Processing toolbox. This work makes use of a disk with coloured markers, namely a central green

marker, which is used to plot the central position of the disc (orbits), and three red markers, which

are used to calculate the rotation angle frame by frame, facilitating accurate conversion from the

stationary frame to the rotating frame.

In this work, a GoPro camera was used for video acquisition. A video is a series of images/

frames captured at a particular framerate, and here the frames were captured at approximately

240fps. The video is then post processed frame by frame thus enabling detection and tracking

of coloured regions of the image. In their unprocessed form the videos are in RGB format; if the

resolution of the image is MxN, the RGB format is a 3D matrix of size MxNx3 where each dimension

of the matrix represents red, green and blue colour components of the image.

Firstly, the RGB frame is converted to greyscale format, which is a matrix representation of

the intensity of the pixels in an image. This is done to reduce the complexity by converting a 3D

image into a 2D image, to ease visualization and also increase the processing speed which could be

a hindrance considering the large size or resolutions of the frames. The 24 RGB bits of a pixel are

divided equally into three primary colours.

The bits of the required colour, for example green, are subtracted from the greyscale so as to

detect the tracked colour. Once the subtraction has been done, a median filter is used to filter

out any noise present while maintaining the originality of the image. The filtered image is then

converted to binary form representing each frame pixel in the form of zeros and ones so that the

output is focused on a particular area of interest. Finally, a bounding box is used to outline the

region of the frame where the desired colour is detected. Figure 3 shows the entire process described

here and this is just for a single frame. By considering multiple frames the centroid is tracked and

Figure 4 shows the tracking of the centroid of a central green marker for a typical bouncing solution.
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(a) (b)

(c) (d)

Figure 3: The image processing technique (a) Original image (b) Filtered image (c) Binary image (d)

Detected colour with bounding box and centroid.

3. Mathematical model

A mathematical model to describe the motion of the rotor was formulated so that comparison

with the actual experiment can be made. Figure 5 shows the schematic of the simplified model of

the rig. The model used in this study is a lumped parameter model implying that the system is

regarded as a mass-spring-damper system whose motion is described by a set of ordinary differential
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Figure 4: The tracking of the centroid of the central green marker for a typical bouncing solution.

 

kφ 

c 

O 

x 

y a 

b 

z D

ks 

θ̇ 

Figure 5: Schematic of the overhung rotor

equations(ODEs). The equations are formulated using the Lagrange method and are given by;





Jsφ̈y − Jpθ̇φ̇x +Dφ̇y + kφφy = amue(θ̇
2 cos θ + θ̈ sin θ) +Mφy

Jsφ̈x + Jpθ̇φ̇y +Dφ̇x + kφφx = amue(θ̈ sin θ − θ̇2 cos θ) +Mφx

Mφy = H(||r|| − c∗)ks

(
− 1 + c

b
√
φ2
x+φ

2
y

)
b2(µφx + φy)

Mφx = H(||r|| − c∗)ks

(
1− c

b
√
φ2
x+φ

2
y

)
b2(µφy − φx)

(1)

where φx and φy are rotations about the x and y axis, r is the radial displacement of the centre of

disc, c is the clearance, c∗ = ca
b is the displacement of the centre of the disc that results in contact

between rotor and stator, D represents the damping of the system, kφ represents the bearing
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stiffness , θ is the angle of rotation of the rotor, θ̇ represents the rotor spin speed where ( ˙ ) stands

for a time derivative, mu is the mass unbalance coming from the attached bolt and nuts, e is the

eccentricity, Js is the moment of inertia of the system and is calculated as Js = (Jt + a2md), Jt is

the transversal moment of inertia and Jp represents the polar moment of inertia and md is the disc

mass.

vrel = θ̇rs + φ̇y

(
φxb√
φ2x + φ2y

)
− φ̇x

(
φyb√
φ2x + φ2y

)
(2)

Table 1: Experimental parameters of the test rig. Dimensions are illustrated in Figure 5

Symbol Parameter Value

md mass of disk [kg] 0.22

Dd Diameter of disk [mm] 45

ωs natural frequency of stator [rad/s] 466.4

µ Coefficient of friction 0.35

h thickness of disk [mm] 19

wr natural frequency of rotor [rad/s] 7.65

a Disk to coupling length [mm] 400

mu Unbalance mass [kg] 0.014

b Stator to coupling length [mm] 260

rs Radius of shaft [mm] 2.5

c Clearance [mm] 12.5

kφ Coupling stiffness [Nm/rad] 2

ζ Damping ratio 0.03

Mφx and Mφy are moments related to the normal force and the tangential force due to friction

generated when the system is in contact. µ is the coefficient of friction and can be computed using

µ = µ0 tanh(vrel/v0), where µ0 is the maximum friction coefficient and v0 is a constant and its value

can be varied to obtain different friction coefficient profiles in the contact region. vrel is the relative

velocity at the contact interface and is calculated as shown in Equation (2). Parameter values for

the experimental rig are shown in Table 1. Most of the parameters in this table can be measured

in a straight forward way, however, for some of the parameters this is not possible. The natural
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frequency of the system, ωr, and the damping ratio, ζ, were obtained by conducting a decay test of

a freely swinging rotor using image processing. The stator stiffness, ks, was also obtained from a

hammer test of the stator to give ωs and then using the equivalent mass to calculate the stiffness.

The value of the coefficient of friction, µ, was obtained via a sensitivity analysis to determine which

parameter best represented the experimental data obtained.

4. Results and discussion

In this section, the results of both the experiment and the simulation are given in two different

subsections and then discussed. Typical results to be discussed include the experimental bifurcation

diagram which recreates the numerical brute force bifurcation diagrams, orbits visualised in both

stationary and rotating frames, as well as spectral intensity plots, to show how the frequency content

of the different solutions changes with the rotor spin speed.

4.1. Experimental Results

Figure 6 shows an experimental bifurcation diagram obtained from the test rig. At each given

rotor spin speed, the system is run with an initial perturbation. In many cases the system could

take an exceptional amount of time to settle into consistent behaviour; therefore it was left settle

for at least ten minutes. At this point, the light source is switched on and the camera is put in

place to start the video acquisition. The rig is enclosed and then using the GoPro app which allows

for live streaming within the enclosed compartment, the video is captured for 120 seconds. After

video acquisition, the image processing technique described in the flow chart of the algorithm in

Figure 2 is employed to quantify the dynamics involved. The central green marker is tracked to

give the orbits and the time series in both the vertical and horizontal directions. The motion is

initially captured in terms of arbitrary image coordinates, and this is converted to millimetres with

a scaling factor. The scaling factor is found by having knowledge of the actual dimension of two

known points and then finding the corresponding pixel magnitude between these two points, which

allows the conversion to be made. The phase space is then sampled using the forcing period. In

this way, a single Poincaré return point is obtained for synchronous periodic solutions or multiple

return points obtained for both asynchronous bouncing solutions and high amplitude contacting

solutions.
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Figure 6: An experimental bifurcation diagram for a soft stator for ωs = 465rad/s.

Figure 7: The experimental spectral intensity plot and the waterfall plot for ωs = 465rad/s.

It is evident from the bifurcation diagram in Figure 6 that the first three rotor spin speeds

are periodic since a single point is returned. These solutions exhibit this character since all of

them are below the first critical speed of the system which is around 72rpm, and they make no

contact with the stator therefore the system behaves linearly. These solutions grow as the rotor
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spin speed is increased because the unbalance forcing is increasing. After the first critical speed

the solution then jumps to a solution that is characterised by multiple response levels and as the

rotor spin speed increases the intrusion into the flexible stator also increases. The system is then

locked into this solution until 453rpm where the solution bifurcates into a high amplitude solution.

To get a quick overview of the dynamics of the system the spectral intensity plot and the waterfall

plot shown in Figure 7 are obtained which indicates the solution types shown by this system. It

therefore evident that there three types of solutions shown by this system, namely the synchronous

periodic solution, asynchronous bouncing solution and a high amplitude solution which appears to

be backward whirling. The waterfall plot in Figure 7 also shows forcing lines at 1X, 0.76X and

0.29X. The 1X line corresponds to the rotor spin speed. At this point, the origins of the 0.76X line

is not yet known but one observation that can be made is that it is only present in asynchronous

bouncing type solutions. The waterfall plot shows that there is a line that roughly follows 0.76X

particularly towards higher speeds but it is clearly nonlinear, and meets the 1X line near the

critical speed therefore; this is mainly used to help illustrate the similarity between simulation and

experiment. The 0.29X line is present only in high amplitude solutions where the rotor appears to

be backward whirling in the videos. An observation is made that 0.29 is quite close to the ratio

of the radius of the rotor to the clearance c which is 0.2, the difference could be due to either

the effect of increase response due to stator flexibility or slip in the contact. Therefore the second

frequency of these solutions can be approximately predicted by the expression for dry backward

whirling velocity Ωbw = θ̇ rsc [39].

To get the full picture of the dynamics at play, the orbits are visualised in both stationary

and rotating frames, and the stationary frame FFTs are presented for the three types of solutions.

Figure 8 shows orbits and the FFT of a typical synchronous non-contacting solution, the orbit in

the stationary frame is circular and when viewed in the rotating frame a single point is observed;

this is because in the rotating frame the unbalance force is a static force. The FFT shows a single

peak at 63rpm which is the rotor spin speed of this solution.

Figure 9 shows a typical asynchronous bouncing solution at 415 rpm. These solutions appear at

approximately 0.76X in Figure 7, and are characterised from their orbits, as shown in Figure 9. The

nonlinear rotor response occurs at rotor spin speeds above the first linear critical speed, where the

unbalance force is large enough to give a response sufficient to cause rotor-stator contact. The orbit

in stationary frame clearly shows the intrusion into the stator whose clearance is represented by the
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Figure 8: The experimental orbits of the synchronous periodic solution at 63rpm visualised in the

stationary and rotating frames and the corresponding stationary frame FFT.

red dashed line. The rotating frame orbit shows that the complicated orbit shown in the stationary

frame is periodic when viewed in the rotating frame. The stationary frame FFT shows peaks at 415

rpm and 321rpm. The first peak corresponds to the rotor spin speed for this solution and the second

one at 321rpm is the contact frequency of the rotor bouncing off the stator. Therefore this solution is

an asynchronous periodic bouncing solution and such solutions have also been found via simulation

by Cole and Keogh [20, 40]. For large amplitude motion, and assuming instantaneous impact, their

analysis [20] for the system considered in this paper gave a potential contacting solution at 356rpm.

Although this frequency is significantly higher than the 321rpm measured frequency, the contact is

clearly not instantaneous; the finite contact time will stiffen the response and reduce the damping,

both of which reduce the calculated frequency of the bouncing solution. This work is therefore
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Figure 9: The experimental orbits of the asynchronous periodic bouncing solution at 415rpm visualised

in the stationary and rotating frames with the corresponding stationary frame FFT.

experimental validation of the existence of such solutions in reality.

Figure 10 shows the final type of solution exhibited by this system at 465rpm. This solution is a

high amplitude solution which appears to be a predominantly backward whirling type solution with

intermittent stator contact. The orbits visualised in both the stationary and rotating frames are

shown. The stationary frame FFT of the solution shows peaks at 465rpm and 134rpm. The 465rpm

peak clearly corresponds to the rotor spin speed and the 134rpm peak appears to correspond to

the backward whirling(BW) frequency which appears to be dominating the response. A theoretical

BW will be permanently attached to the stator which is not the case here. At 465rpm, this BW

solution is at a point of transition from asynchronous bouncing motion to a BW solution, and thus

it appears to have intermittent contact. At higher rotor spin speeds this solution becomes more in
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Figure 10: The experimental orbits of a linear backward whirling solution at 465rpm visualised in the

stationary and rotating frames with the corresponding stationary frame FFT.

contact with the stator and becomes a full BW solution. Because this BW type solution can neither

be classified as linear nor dry friction backward whirl (which assumes that the surfaces are locked

which is not the case here), the BW solution seen here is termed a quasi dry friction backward whirl

(QDFBW). The fact that contact is not constant explains that the whirling speed does not exactly

match the theoretical dry backward whirl speed, which assumes non-sliding contact. However, this

is a motion that is clearly driven by highly frictional contacts.

4.2. Experimental Run-up and Run-down

Figures 11 and 12 shows spectral intensity plots and waterfall plots for the run-up and the

run-down using a stiffer stator at ωs =628rad/s. To obtain the run-up results, the rig is run for

the first speed and then moved slowly to higher speeds without restarting or disturbing the system;
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Figure 11: The experimental spectral intensity plot and waterfall plot for stiff stator at ωs = 628rad/s

for the run-up.

Figure 12: The experimental spectral intensity plot and waterfall plot for ωs = 628rad/s for the run-

down.

this therefore means that the final state of the previous rotor spin speed is the initial condition

of the preceding speed. The run-down is also implemented in a similar fashion except that this

time one has to start with the highest speed of choice and move down to the lowest. For the

run-up, it was observed that the QDFBW solutions now started to appear later from 474rpm for

the run-up as opposed to 453rpm for the softer stator. The reason for this difference could be that

for a softer stator the contact time is greater than that of the stiffer stator therefore this allows for
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frictional effects to kick in earlier for the softer stator since the QDFBW solution is mainly excited

by friction. The location of the forcing lines are observed at 0.3X, 0.77X and 1X. Figure 12 shows

the spectral intensity plot and waterfall plots for the run-down for the stiffer stator. It is evident

from the plots here that the QDFBW solution branch was tracked from 518rpm to 290rpm after

which the asynchronous bouncing solution dominates until the first critical speed, after which the

periodic solutions are obtained. The solutions obtained here demonstrated a fundamental property

of nonlinear systems which is that of the coexistence of solutions for a given rotor spin speed. We see

that QDFBW and asynchronous bouncing solutions can coexist at supercritical rotor spin speeds.

4.3. Simulation Results

In this section the simulated results from the model presented in Section 4.2 are compared with

the experimental results and discussed. A schematic of the mathematical model is shown in Figure

Figure 13: The simulated bifurcation diagram for a soft stator for ωs = 465rad/s.

5. The equations of motion used are shown in Equations (1). The parameters in Table 1 are used

in the model. The bifurcation diagram is shown in Figure 13. Figure 14 shows the comparison

between experimental and numerical data; only the minimum and maximum response levels are

shown. For a given rotor spin speed, a randomized initial condition is created. The equations of
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Figure 14: Experimental results superimposed on numerical data.

Figure 15: The simulated spectral intensity plot and waterfall plot for ωs = 465rad/s.

motion were numerically integrated using ODE45 with an event detection that detects when the

system is in contact so that the integration step size is decreased for accuracy. This is because the

system of differential equations becomes stiff when it is in contact. The simulation for each value of

rotor spin speed was run for 1000 cycles to ensure that the system has settled and then the last 100
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Figure 16: The simulated orbits of the synchronous periodic solution at 63rpm visualised in the sta-

tionary and rotating frames and the corresponding stationary frame FFT.

cycles are sampled to give the steady state. The phase space in the steady state is then sampled

every forcing period and if single point is returned then we have periodic motion but if multiple

points are returned then multi-periodic motion is occurring. A comparison of the experimental

bifurcation and the simulated bifurcation diagram shows that there is good agreement between the

two. There is clearly three classes of solutions available, namely synchronous periodic solutions,

asynchronous bouncing solutions as well as high amplitude solutions.

Figure 15 shows the spectral intensity plot and waterfall plot of the simulated bifurcation dia-

gram and clearly when compared with its corresponding experimental plot in Figure 7 the qualitative

nature of the solutions are similar. The forcing lines are now at 0.31X, 0.86X, 1X and 1.10X. The

1X line is the rotor spin speed, the 1.10X frequencies only exist for a couple of speeds just after the
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Figure 17: The simulated orbits of the asynchronous periodic bouncing solution at 415rpm visualised

in the stationary and rotating frames with the corresponding stationary frame FFT.

first critical speed in the resonance expansion region and these solutions are of the asynchronous

bouncing type. The 0.86X frequencies dominates most of the bouncing solutions and this is a close

match to the 0.76X forcing line in the corresponding experimental waterfall plot. The 0.31X forcing

line is a close match to the 0.29X line in the corresponding experimental plot which appeared to

be QDFBW solutions. As the experimental results, the orbits are visualised in the stationary and

rotating frames, as well as the stationary frame FFT, for speeds corresponding to those presented

for the experiment are also plotted here for comparison.

Figure 16 shows the orbits visualised in the stationary and rotating frames at 63rpm. These

plots are a good match to the experimental plots shown in Figure 8. The stationary frame orbit

is circular, and the rotating frame shows a single point which is consistent with periodic solutions
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Figure 18: The simulated orbits of a backward whirling solution at 465rpm visualised in the stationary

and rotating frame with the corresponding stationary frame FFT.

viewed in the rotating frame where the harmonic forcing due to unbalance is static. The stationary

frame FFT shows a single peak at 63rpm as expected.

Figure 17 shows the simulated plots corresponding to the experimental asynchronous periodic

bouncing solution shown in Figure 9. Similar to the experimental result, a complicated orbit is

observed in the stationary frame with a similar intrusion of the stator. In the rotating frame,

just like the experimental orbit, the solution appears periodic. The stationary frame FFT shows

two peaks which correspond to the rotor spin speed peak and the contact frequency of the rotor

bouncing off the stator. These two peaks are at 415rpm and 349rpm; the contact frequency at

349rpm corresponds with the experimental frequency at 321rpm. Figure 18 shows the simulated

orbits at 465rpm corresponding to those shown in Figure 10. This was observed to be a QDFBW
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Figure 19: The simulated spectral intensity plot and waterfall plot for the stiff stator with ωs =

628rad/s for the run-up.

Figure 20: The simulated spectral intensity plot and waterfall plot for the stiff stator with ωs =

628rad/s for the run-down.

solution. The simulated orbits shown here in both stationary and rotating frames are a good match

to their corresponding experimental ones. The simulated stationary frame FFT shows peaks at

465rpm and 140rpm which compare to the experimental ones obtained at 465rpm and 134rpm,

which is a good match.
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4.4. Simulated Run-up and Run-down

Figures 19 and 20 shows spectral intensity plots and waterfall plots for a stiffer stator at ωs

= 628rad/s. These two plots are qualitatively a good match to the corresponding experimental

run-up and run-down results shown in Figures 11 and 12. They clearly demonstrate a fundamental

feature of nonlinear systems which is that solutions can coexist and are highly dependent on initial

conditions.

5. Conclusions

This paper has presented a rotor-stator contact experiment that was validated using simulated

results of a two degree of freedom model. Bifurcation diagrams, spectral intensity plots, orbit plots

visualised in both stationary and rotating frame were used to classify the different solutions. The

data acquisition in the experiment was conducted using an image processing technique by making

use of the image processing toolbox in MATLAB. For the simulation, numerical integration was

used and the results compared with the experimental data for validation. The good agreement

between results and experiments confirms the effectiveness of this image processing technique and

that consumer grade cameras like GoPro can be effective in capturing dynamics of structures. In

the simulation, the Coulomb friction model was used and the qualitative agreement between exper-

imental and simulated results shows that for these problems this model can capture the dynamics

of this system very well. In the experiment, asynchronous periodic bouncing solutions were ob-

served. These were previously reported in other work but not confirmed experimentally. These

asynchronous periodic bouncing solutions appear to be quite complicated and aperiodic in the sta-

tionary frame but when viewed in the rotating frame they appear to be simple and periodic. In the

high rotor spin speed range of the system quasi dry friction backward whirl solutions were observed.

These were excited by the presence of friction in the system. For a softer stator, it was observed

that the quasi dry friction backward whirl solutions appeared at lower rotor spin speeds than for

a stiffer stator. It was observed that the reason for this is that for a softer stator the contact time

duration was higher than that of a stiffer stator therefore frictional effects kick in earlier than for

high stiffness where the contact time is lower.
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