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Abstract 

Quantum piezotronic transistor is studied based on HgTe/CdTe topological insulator with 

a circular quantum point contact. The radius of the circular region is modulated by 

strain-induced piezoelectric potential. The electronic transport behavior of the edge and bulk 

states is explored by calculating the conductance and electronic density distribution under 

different Fermi energies and strains. Transport property of edge states is studied by machine 

learning method and the transport conductance can be effectively predicted. These results 

show that the neural network can be used for obtaining electronic transport properties, and it 

has great potential for optimizing and designing high-performance quantum piezotronic 

devices. 
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1. Introduction 

Piezotronic and piezo-phototronic devices convert externally mechanical signals into 

electrical signals, which are good candidates for highly integrated silicon-based electronic 

devices [1]. Piezoelectric semiconductor materials such as ZnO, GaN, InN and CdS 

simultaneously have piezoelectric and semiconductor property [1], producing unprecedented 

characteristics and playing an important role in the development of nanogenerators [2], 

high-performance strain sensors [3-5], strain-gated field effect transistor [6, 7] and LEDs [8]. 

Many high-performance piezoelectric devices have been developed based on piezoelectric 

semiconductors, such as piezoelectric field effect transistor [9], solar cell [10], LED [11] and 

photon detector [12], which are high sensitivity and easy to regulate. The application of 

piezoelectric effect in emerging quantum materials such as two-dimensional materials and 

topological insulators has received extensive attention. Recently, the HgTe quantum well with 

an inverted band structure which could exhibit quantum spin Hall insulator state was 

predicted by Bernevig et al. [13] and experimentally confirmed by König et al. [14]. 

Topological insulators have received wide attention in quantum computing and 

high-temperature superconductor due to its unique metallic surface states and insulating bulk 

states. Electronic transport of edge states is ultralow power consumption and has ultrahigh 

device stability [15]. Previous studies have shown that externally applied electric field can 

drive topological phase transition from normal insulator to topological insulator [16, 17]. The 

required electric field is much strong [18] with the order of 10 MV/cm. Gate voltage provides 

~100 kV/cm in experiments. Piezoelectric field can reach up to 10 MV/cm [19-21]. Strain can 

increase the bulk band gap of topological insulators [17, 22], making it possible for high 

temperature topological insulators [23]. The helical edge states of topological insulator are 

protected by time reversion symmetry [13, 14], giving rise to the robust property against the 

disorder regime and material structure [24, 25]. Furthermore, the superconductivity of edge 
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states can be observed by using the superconducting quantum interference for 

two-dimensional topological insulators [26]. Recently, high sensitivity strain sensor and 

quantum memory device based on topological insulators have been proposed [3, 4, 19, 27]. 

In this paper, we theoretically study the transport properties of edge states and bulk states 

for HgTe/CdTe quantum well topological insulator with a circular quantum point contact 

(QPC). The quantum point contact is formed between the circular region and both sides of the 

quantum well to modulate the electronic transport of topological insulator. The radius of the 

circular region is controlled by strain-induced piezoelectric potential. By calculating the 

conductance and electronic density distribution (EDD) under different Fermi energies and 

radiuses of circular quantum point contact, the electronic transport behaviors of the edge and 

bulk states are explored. We further employ machine learning to investigate the tuning of 

edge-state transports by externally applied strain. By training an artificial neural network with 

EDD, this network can effectively predict their conductance.  

2. Electronic transport in quantum piezotronic devices with a circular quantum point 

contact 

Figure 1 illustrates the topological insulator based on HgTe/CdTe quantum well. A thin 

HgTe layer is sandwiched between two CdTe layers, and a circular depletion region appears 

in the center of the system. This depletion region is created by the piezoelectric potential on 

the top of quantum wells. The constriction between the depletion region and boundaries of 

HgTe layer acts as the quantum point contacts [16]. Such topological quantum point contact 

structure has been realized experimentally based on HgTe quantum well [28]. Tuning the 

radius of depletion region is an effective way to control the width of quantum point contact. 

Applying a piezoelectric potential on the top of the quantum well, the extension of the 

depletion region is free to broaden or shrink. Figure 1(a) shows a large circular depletion 

region formed by the high piezoelectric potential. In the QPCs on both sides, band structure of 

the electrons is insulating with a finite gap [seeing left of Figure 1(a)]. In this case, edge-state 
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channels close and the electrons are blocked and reflected back, causing the “OFF” state of 

the system. The radius of the depletion region shrinks while the piezoelectric potential 

decreases. Figure 1(b) shows electronic transport when the radius of the circular insulation 

region is small (the QPCs are wide). This case corresponds to gapless band structure and the 

edge-state electrons can flow through the QPC without blocking, leading to the “ON” state. 

The electronic transport properties such as the conductance, transmission and EDD in the 

quantum well are determined by the Schrödinger equation 

H E   (1) 

where ψ is a wave function of electrons, E is an energy eigenvalue and H is a Hamiltonian. 

The transport properties can be obtained by solving the equation under specific boundary 

conditions. There are some typical boundary conditions in quantum systems such as Dirichlet, 

Neumann boundary conditions [29], and periodic boundary condition [30]. Dirichlet 

boundary condition is employed by setting a vanishing wave function at the boundary 

boundary
0   for the QPC structure [31]. 

In case of HgTe/CdTe quantum well topological insulator, the electronic properties are 

described by the four-band Hamiltonian [13] 
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where   2

k C V x Dk    , 
2

kM M Bk   with x yk k ik   , 
2 22

x yk k k   and 

the relevant parameters are A = 364.5 meV nm, B = -686 meV nm2, C = 0, D = -512 meV 

nm2, and M = -10 meV [13]. 
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According to previous studies, when the thickness of the quantum well is smaller than 

the critical value of 6.3 nm, the quantum well exhibits extremely weak conductance, 

indicating the normal insulator [32]. While the thickness is larger than 6.3 nm, gapless edge 

states appear and the quantum well maintains topological insulator [14]. In this study, we 

choose the thickness of 7 nm to ensure the existence of edge states. 

When the electrons travel through the system, transport conductance can be given from 

Landauer-Büttiker formula [33, 34] 

2

0

,

| |mn

m n

G G t   (3) 

where G0 is the conductance unit of 2e2/h and tmn is the transmission coefficient for electrons 

injected from m-th input channel and scattering to the n-th output channel. 

We use the tight-binding package KWANT to calculate the transmission properties of 

electrons in HgTe/CdTe quantum wells. KWANT is a user-friendly and high-efficient Python 

package for numerical quantum transport computation [29]. By applying the stable wave 

function algorithm to the wave function calculation, KWANT is superior to the commonly 

used Recursive Green Algorithm (RGF). We construct a Hall bar transport system with a 

circular quantum dot. Specifically, the width of transport system is fixed at W = 200 nm, and 

lattice constant is a = 1 nm. The length of the scattering region is L = 300 nm, and the radius 

R of the depletion region is in the range of 0 to 100 nm. Each site in the system is related by 

lattice translations. The onsite energy for each cubic lattice and hopping energy for two 

neighboring cubic are calculated by discretizing the kp Hamiltonian (2). By injecting 

electrons from the lead on one side, the conductance and the electronic distribution in the 

system can be obtained by KWANT. In our case, the transport conductance and wave 

functions in HgTe/CdTe topological insulator are calculated by KWANT. There are some 

tight-binding packages to calculate quantum transport, such as SMEAGOL and SIESTA 

[35-37]. 
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For a small uniform strain S applied on the piezoelectric materials, the piezoelectric 

charges can be calculated by the polarization vector P which is given by [38] 

( ) ( ) ( )i ijk jkp e S , where eijk is the third-order piezoelectric tensor. According to constituting 

equation which can be given by piezoelectric theory [39, 40], piezoelectric potential induced 

by the piezoelectric charges inside a bulk material can be given by 

0

piezo

piezo

r

PL
V

 
  (4) 

where P is the polarization vector. Lpiezo is the length of the piezoelectric material, r and 0  

are the relative dielectric constant and vacuum dielectric constant. 

For zinc-blende structure material with shear strain 
23s , the piezoelectric potential can 

be obtained as [41]  14 23 0piezo rV e s L   , where 
14e  is piezoelectric coefficient, 

r  and 

0  are relative and vacuum permittivity, L  is material length. The radius of the depletion 

region can be given by 
piezoR V  and 225   nm V-1 [42]. The piezoelectric material 

chooses CdTe, and its relevant material parameters are 
14 0.035e   C/m2, 9.8r  , and 

300L   nm. 

3. Results and discussions 

3.1. Piezotronic effect on edge-state transport 

Figure 2 (a) shows the conductance at different Fermi energies as a function of strain. 

The conductance exhibits a distinct switching behavior. The conductance of  2

0 2 /G e h  

corresponds to the “ON” state of device, and the zero conductance is the “OFF” state. All of 

the five Fermi energies are in the bulk gap of gapless band structure, and thus all of them are 

edge-state transport. When the Fermi energy is set at -8 meV which is close to the valence 
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band, there is a sharp transition from the “ON” state to the “OFF” state at R = 85 nm (s23 = 

0.31%), indicating a quick switching behavior. As the Fermi energy increases and approaches 

to the conduction band, the R region with the “ON” conductance decreases. For EF = 5 meV, 

there is a smooth transition between the “ON” and “OFF” state, meaning that the electrons 

travel partially through the QPC. When the Fermi energy is set at 1 meV, the conductance is 

significantly decreased at 
23 0.2%s  . There is the quantum interference between the 

transmitted and reflected electrons in the circular QPC. This interference effect forms the 

Fabry-Perot modes localized within the narrow QPC, giving rise to a partially transmitted 

conductance [31]. 

To illustrate it more clearly, Figures 2(b-d) show the EDDs of edge states under the 

radius of 20 nm (s23 = 0.07%), 35 nm (s23 = 0.13%) and 80 nm (s23 = 0.29%), respectively. 

The Fermi energy is fixed at 5 meV. In case of a small depletion region radius R = 20 nm, the 

width of QPC in both sides of the system is large and the electrons can freely pass through the 

QPC almost without blocking, leading to the conductance
02G , as shown in Figure 2(b). 

When the radius is R = 35 nm in Figure 2(c), the electrons partially travel through the system 

and the other is reflected back along the upper boundary, meaning the conductance 

00 G G   [43]. While the electrons are completely blocked and the conductance is zero at 

R = 80 nm in Figure 2(d). 

3.2.Piezotronic effect on bulk-state transport 

Figure 3 shows the bulk-state conductance as a function of strain for different Fermi 

energies from 17 meV to 29 meV. In terms of conductance plateau, one obvious distinction 

between edge-state and bulk-state transport in topological insulators is their number of the 

plateau. Edge states contribute one plateau, and bulk states have many channels. For instance, 

Figure 3 shows that with the increase of Fermi energy, the number of bulk channels increases, 

and hence the maximum of conductance plateau grows. 
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Figure 4 shows the EDDs at different strains. The Fermi energy is set at 30 meV and four 

conductance channels appear. When those four bulk states are injected from the left lead, they 

exhibit different transport properties. When the radius of the depletion region is as large as 80 

nm (s23 = 0.29%), all electrons are blocked and the conductance is close to 0, as shown in 

Figure 4(a). As the radius decreases, the QPCs on the upper and lower boundary become 

wide. In this case, there are three partially opening channels and one closing channel in Figure 

4(b) at R = 50 nm. Figure 4(c) shows that in R = 25 nm all channels are open but the electrons 

only partially pass and the other part is reflected back to the lead. When the radius is reduced 

to much small such as R = 10 nm in Figure 4(d), the electrons travel through the system 

almost unblocked, as shown in Figure 4(d). 

3.3. Machine learning method for edge-state transport 

The machine learning (ML) is very important for search, discovery, and optimization of 

material science and technology in the future (see Table 1 for a summary of related work on 

ML in materials science and technology). ML algorithms can achieve the equivalent functions 

for identifying topological phase transitions [44-46]. ML algorithm has very higher efficiency 

and accuracy than traditional algorithms[47, 48]. The powerful information processing 

capabilities of ML algorithms can help break physical limits, for example, recognizing and 

imaging subwavelength features from the far field [49]. Even ML algorithms can be used to 

explore new physics, such as discovering new materials [50], predicting materials properties 

[51], and obtaining the experimental conditions for materials. [52]. 

Dense Convolutional Network (DenseNet) is a typical artificial neural network algorithm 

of machine learning [53]. DenseNet is used for image processing, which can achieve high 

performance with a small number of parameters.  

In this study, The EDD matrix reflects the spatial density distribution features of 

electrons, which can be regarded as image data. DenseNet can be used to establish the 

correspondence between these features and conductance. The conductance is obtained from 
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image data of electron density distribution matrix processed by DenseNet. Figure 5(a) shows 

the structure of DenseNet for the conductance calculations, which includes three layers: the 

input layer, the hidden layer, and output layer. The hidden layer includes 4 convolutional 

layers, 3 pooling layers, 4 dense blocks, a global pooling layer, and a fully connected layer. 

There are 382,942 parameters in the network. The input images are 201 pixels by 299 pixels, 

the input layer has 60099 input nodes. The output layer is a neuron for regressing 

conductance. The EDD matrix is input data. In our calculation, four dense blocks are used to 

extract the EDD features in the hidden layer. DenseNet can predict unknown data by learning 

existing knowledge, and has great generalization ability. 1782 EDD matrices are used for the 

training process. The trained DenseNet was used to predict the 100 EDD matrices (EF = -5 

meV) that were not added to the training set, R-squared is 0.999 of the conductance from 

KWANT and machine learning.  

GaN and ZnO have attracted enormous research interests due to their unique properties. 

In theory, InN/GaN quantum well can form topological insulator based on the intrinsic 

polarization [54]. ZnO/CdO quantum well can form topological insulator under stress and be 

used as quantum piezotronic devices [55]. In experiment, µ-LED applications can be designed 

based on InGaN/GaN multiple quantum well [56]. Nanostructures including ZnO have 

excellent performance in photodetectors [57], adaptive electronics and optoelectronics such as 

pressure imaging, LED, luminescence [58]. Figure 5(b) shows the edge-state conductance of 

the calculation by KWANT and machine learning prediction of some popular relevant 

materials such as GaN and ZnO. The transition points of “ON” and “OFF” state are 0.008%, 

0.018%, 0.31% for ZnO, GaN, CdTe, respectively. The machine learning prediction shows a 

good agreement for three materials. 

Figure 5(c) shows that the training loss function curve gradually decreases and converges 

near 0 after training for about 50 epochs, which proves that DenseNet has learned and 

established the relationship between EDD and conductance. The parameter details of 
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theoretical calculation and machine learning are shown in Table S1 in the supplementary 

information. 

Conclusion 

In this paper, we investigate the modulation of edge-state and bulk-state transport 

properties in HgTe/CdTe quantum well under piezotronic effect. Piezoelectric potential is 

created by external strains to adjust the radius of the depletion region, influence the 

conductance and EDD. The edge-state conductance exhibits an excellent switching behavior. 

Machine learning is further employed to explore such edge-state transport, and can give much 

high accuracy for the conductance. This study provides a high-efficient way to search or 

design high performance quantum piezotronic devices by machine learning.  
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Figure captions 

 

Figure 1. Schematics of electrons transport and band structure in CdTe/HgTe/CdTe quantum 

well for the radius of circular quantum dot (a) R = 80 nm and (b) R = 20 nm. Spin up (red 

line) and spin down (green line) electrons travel the circular quantum dot along the opposite 

boundary.  
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Figure 2. Transport properties of the edge state. (a) The conductance as a function of strain at 

different Fermi energies uniformly selected in the gapless region. (b) The “ON” state at R = 

20 nm (s23 = 0.07%) with electrons completely passing along the boundary. (c) The electrons 

are partially reflected by the quantum point contact at R = 35 nm (s23 = 0.13%). (d) The “

OFF” state at R = 80 nm (s23 = 0.29%) with the electrons completely blocked. 
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Figure 3. The conductance versus strain under different Fermi energies. These Fermi levels 

correspond to bulk states.  

 

Figure 4. The electronic density distribution at strain (a) s23 = 0.29% (R = 80 nm), (b) s23 = 

0.18% (R = 50 nm), (c) s23 = 0.09% (R = 25 nm) and (d) s23 = 0.04% (R = 10 nm). Fermi level 

is fixed at 30 meV with four bulk-state channels.  
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Figure 5. (a) Schematic diagram of machine learning workflow for edge-state transport. The 

training objects are electronic density distributions and the outputs are conductances. (b) The 

edge-state conductances of the calculation by KWANT and machine learning predictions of 

three different materials. (c) DenseNet loss function curve of CdTe material. 

Table 1. The machine learning for material science 

Description Calculation method Result 

Deep neural network (DNN) solves 

electronic Schrödinger equation [47] 

DNN 

DNN represents electronic 

wavefunctions to improve 

computing efficiency 

The trained neural networks can 

identify topological phase [48] 

3D convolutional neural 

networks (CNN) 

CNN identifies different 

topological phases with a success 

rate of over 90% 
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DNN recognizes and images 

subwavelength features from the 

far-field [49] 

DNN 

DNN recovers λ/30 details from the 

far-field with classification 

accuracy of 80% 

ML model and high-throughput (HiTp) 

experimentation discovers new 

materials [50] 

ML model and HiTp 

experimentation 

The approach discovered three new 

glass-forming systems 

Unsupervised learning to rediscover the 

periodic table through known existing 

materials [51] 

Neural network 

ML learned the basic properties of 

atoms from known compounds and 

materials 

Machine learning discovers new 

materials by learning failed experiments 

information [52] 

Support vector machine 

(SVM) 

ML predicted conditions for new 

materials formation with a success 

rate of 89% 

DenseNet predicted conductance 

through EDD (Our works) 

DenseNet 

R-squared is 0.999 of the 

conductance from the numerical 

calculation and DenseNet 
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Graphical Abstract 

 

A quantum piezotronic transistor is proposed based on a circular quantum point contact of 

HgTe/CdTe topological insulator. Edge states and bulk states can be effectively controlled by 

strain-induced piezoelectric potential. Machine learning is employed to study edge-state 

transport, which can effectively predict transport conductance. 

 

 

Highlights 

1. Piezotronic effect can effectively control bulk and edge states. 

2. The radius of a circular quantum point contact is modulated by strain-induced 

piezoelectric potential.  

3. Machine learning is applied to predict transport conductance of quantum piezotronic 

devices. 
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