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Abstract

Some possible cosmological implications of the inclusion of spectator gauge
fields in the inflationary action are considered. In this context, a spec-
tator field is a field that is not directly responsible for inflation but can
affect cosmological observables. Spectator gauge fields can lead to novel
and distinguishable features in inflationary models (as compared to single-
field inflation) that may be detectable. A model of anisotropic inflation is
considered where universal anisotropy is maintained through a vector field
that is coupled to both the inflaton and its derivative. The derivative cou-
pling reduces the anisotropy induced when compared to the non-derivative
case, reducing tension with observations. SU(N) gauge fields appear natu-
rally in the actions of string inflation models. The inclusion of an SU(N)
gauge field coupled both to scalars and pseudo-scalars (axions) is considered
in two models of string inflation whose inflatons are Kähler moduli: Kähler
moduli inflation and fibre inflation. It is shown that the coupling between
the axion and the gauge field can lead to a large (chiral) enhancement of
the tensor spectrum of these two models. In the case of Kähler moduli
inflation, a model that generically predicts an unobservable value for the
tensor-to-scalar ratio (r � 10−3), this enhancement is capable of boost-
ing the tensor-to-scalar ratio to values that will be potentially observable at
next generation detectors. However, the parameters required to achieve this
goal may present a challenge for its successful realisation in string theory.
In the case of fibre inflation, a model that generically predicts an observable
value for the tensor-to-scalar ratio, it is shown that this enhancement can
render the tensor spectrum of fibre inflation almost entirely chiral, giving it
a distinguishable feature that may be detectable.
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Conventions

I attempt to adhere as closely as possible to the conventions as stated on this page.

The speed of light, c, and the reduced Planck’s constant, h̄, are set to unity through-

out, c = h̄ = 1. The spacetime metric signature is (−,+,+,+). I use Greek letters,

µ, ν, ρ, σ . . . , to denote spacetime indices of coordinate xµ, and ‘middle’ Latin letters,

i, j, k, l . . . , to denote spatial indices of coordinate xi. For example the Minkowski line

element is

ds2 = ηµνdx
µdxν = −dt2 + δijdx

idxj . (1)

‘Early’ Latin letters, a, b, c, d . . . , will be used to denote indices of scalar field coordi-

nates, φa. While capital Latin letters, A,B,C,D . . . , denote the gauge field index for

some gauge field AAµ . The reduced Planck mass

Mpl =

√
h̄c

8πG
=

√
1

8πG
, (2)

with G Newton’s constant, will be routinely referred to as the Planck mass, and will

be used instead of G where appropriate. For example Einstein’s equations are written

Gµν =
1

M2
pl

Tµν . (3)
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Chapter 1

Introduction

In 1949, during a talk on BBC radio, British astronomer Sir Fred Hoyle used the term

‘big bang’ [5, 6] to describe the creation of the universe at one particular time in the

past. The term ‘Big Bang Theory’ has become widespread in popular culture and

is the de facto name for the current most-widely accepted cosmological model of the

universe. Despite accidentally creating its name, Hoyle was not a proponent of the Big

Bang theory, instead preferring the ‘Steady state’ model of the universe [6], and it was

not until the discovery of the Cosmic Microwave Background (CMB) that the term ‘big

bang’ really started to become popular with cosmologists [6].

Some 27 years prior, in 1922, Soviet physicist Alexander Friedmann had derived

the Friedmann equations that govern a cosmological universe. Friedmann used general

relativity and the assumption that the universe is both homogeneous and isotropic on

extremely large scales and therefore has metric given by

ds2 = −dt2 + a(t)2dΣ2, (1.1)

with

dΣ2 =
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)
(1.2)

in polar coordinates where k = 0,±1 is the constant of curvature of the universe, de-

termining whether the universe is perfectly flat, positively curved or negatively curved,

respectively. This metric is the so-called Friedmann-Lemâıtre-Robertson-Walker met-
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1. INTRODUCTION

ric1, and a(t) is the scale factor of the universe that gives scales to the distances between

objects at cosmological distances. Using this metric, Friedmann derived the equations

that govern the scale factor [7]

H2 =
ȧ2

a2
=

ρ

3M2
pl

− k

a2
(1.3)

ä

a
= −ρ+ 3p

6M2
pl

− k

a2
(1.4)

where ρ is the energy density, p is the pressure, H = ȧ
a is the Hubble parameter and

we have ignored the cosmological constant.

In 1929, American astronomer, Edwin Hubble, released an article in which an ob-

served relationship between distance and the recession speed of galaxies was described

[8, 9], which later came to be known as Hubble’s law. Hubble’s law can be written

simply as

v = H0d (1.5)

where v is the recession speed of a galaxy a distance d away and H0 is the current rate

of cosmic expansion, known as the Hubble constant. The simple law tells us that not

only are galaxies receding from us, the further away they are, the faster they recede. A

simple explanation for this law is that the universe is expanding, as can be reconciled

with the Friedmann equations.

A natural possible consequence of this is that some time in the distant past, the scale

factor (which increases in time) was zero, suggesting that the universe had zero size,

and there was an initial singularity. This hypothesis was first suggested by Lemâıtre

in 1931 [10], and the ‘big bang theory’ was formed. This theory was developed and

championed by Soviet-American physicist, George Gamow, as well as many others

including Gamow’s students: American physicists Ralph Asher Alpher and Robert

Herman. In 1948, Alpher and Herman presented the first estimate of the temperature

of leftover radiation from the big bang [11, 12], nowadays referred to as the Cosmic

Microwave Background (CMB). The logic of the big bang model requiring the presence

of leftover radiation is thus: if the universe started at some extremely dense state,

1After Belgian physicist and Reverend, Georges Lemâıtre; American physicist, Howard Robertson;
and British physicist, Arthur Walker. Although we include Lemâıtre in the name here, this metric is
customarily referred to as the FRW metric.
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the matter (protons and electrons) of the early universe must have been extremely

energetic. When conditions are sufficiently hot, protons and electrons do not bind to

form atoms because the electrons are too energetic: this is a state of matter that is

commonly referred to as a fully-ionised plasma. Fully-ionised plasmas are extremely

opaque to radiation due to scattering of photons with electrons: estimates for the

amount of time it takes a photon formed at the centre of the Sun (an example of a

fully-ionised plasma) to reach its surface and escape suggest a timescale of ∼ 100,000

years [13]. This opacity meant that the early universe did not permit the travel of

radiation over great distances. However as the universe expanded, it cooled, eventually

cooling enough for atoms to form at a time known as recombination, approximately

400,000 years after the big bang. With the electrons now bound into atoms, photons

decoupled and free-streamed. Some of this radiation is just reaching us now from the

distant universe, and this is known as the CMB. It is light that continually arrives at

us from the far reaches of the universe, and it is the furthest back in time we can see,

giving us a picture of what the early universe was like.

The problem for those who advocated big bang theory was that no such radia-

tion had been discovered despite the fact that – by its very definition – it should

be everywhere. The main challenger to the big bang theory was the ‘steady-state’

model, largely inspired by British-Austrian physicist, Sir Hermann Bondi and British-

American-Austrian physicist, Thomas Gold [14]; as well as Hoyle [15]. The steady-state

theory proposes that, although the universe is expanding, the density of matter in the

universe remains constant. This requires that there be a ‘creation field’ responsible

for the continuous creation of matter to leave the universe at constant density. The

principal reason for the popularity of this model was that it adheres to the perfect

cosmological principle: not only would a steady-state universe be isotropic and homo-

geneous on large scales, it would also be time-independent, asserting that we occupy

no special place in space or time.

The steady-state model was delivered a blow in 1965 when American physicists,

Arno Penzias and Robert Wilson, detected the CMB as background noise in their

experiment built to detect radio waves reflected off Echo balloon satellites2, which

2Project Echo was the world’s first communications satellite project [16].
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1. INTRODUCTION

provided the first concrete evidence for the big bang theory [17]345. Over the subsequent

decades, the CMB has been measured to greater and greater accuracy through the

Cosmic Background Explorer (COBE) [21], the Wilkinson Microwave Anisotropy Probe

(WMAP) [22] and, most recently, Planck [1, 23, 24].

1.1 Inflation

In this section I will review cosmological inflation. Inflation is the subject of countless

lecture notes and textbook sections, but I particularly recommend [25–27] for detailed

discussions.

1.1.1 Problems with standard big bang theory

Horizon problem

In 1992, COBE discovered anisotropies in the CMB [21, 28], that is to say, small

fluctuations from the mean temperature (the CMB is a blackbody spectrum of mean

temperature 2.73K), dependent on the direction that is viewed in the sky, were observed.

What is remarkable from a physics point of view about this discovery is that it took

27 years from the original discovery of the CMB to find fluctuations to the background

temperature. The reason for this is that these fluctuations are very small (∆T/T ∼ 10−5

[29]) relative to the background temperature, which poses an intriguing problem. These

anisotropies (see FIG. 1.1) tell us about inhomogeneities in the density of the universe

when it was only 400,000 years old. Light we receive from regions that were denser

than the average density of the universe appears redshifted because it has had to escape

from a greater gravitational well – likewise, light we receive from under dense regions

appears blueshifted6. The fact that the light we receive is exceptionally isotropic tells

3Penzias and Wilson searched hard for a possible source for the noise they were detecting, and even
removed a bird’s nest they had found in the antenna. After a year of searching they could find no
reason for the noise [18]. The explanation that they were detecting leftover radiation from the early
universe was given by Jim Peebles, David Wilkinson, Robert Dicke and Peter Roll [19].

4Penzias and Wilson were awarded the Nobel Prize in 1978 for this discovery.
5Although this is widely regarded as the discovery of the CMB, in 1941 Andrew McKellar had found

evidence suggesting that space had a blackbody temperature of a few Kelvin [20]. The significance of
this was perhaps lost because the CMB would not be predicted as a consequence of the big bang by
Alpher and Herman for another seven years.

6See [30] for a review of CMB physics – in reality there are many effects at play, and the physics is
extremely complex.
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1.1 Inflation

Figure 1.1: The anisotropies of the CMB as measured by Planck and WMAP. This image
is taken from [1] and is shown here with thanks to ESA and the Planck Collaboration.

us that the universe was exceptionally homogeneous when it was only 400,000 years

old.

The Friedmann equations (1.3)–(1.4) can be recast as a continuity equation in the

energy density of the universe

dρ

dt
+ 3H (ρ+ p) = 0 (1.6)

which can be written as
d ln ρ

dN
= −3 (1 + ω) (1.7)

where N = ln a is known as the e-folding number and

ω =
p

ρ
(1.8)

is the equation of state of the universe. Equation (1.7) tells us

ρ = ρ0a
−3(1+ω) (1.9)

and with this the Friedmann equation (1.3) (with negligible curvature, k = 0) tells us

that

(aH)−1 = H−1
0 a

1
2

(1+3ω) (1.10)

where (aH)−1 is called the comoving Hubble radius. The comoving Hubble radius is of

interest because the maximum (comoving) distance light can travel between two times

5



1. INTRODUCTION

t = 0 and t (the comoving horizon) is given by

χ :=

∫ t

0

dt′

a(t′)
=

∫ a

0

dã

Hã2
=

∫ a

0
dãH−1

0 ã
1
2

(3ω−1) (1.11)

which tells us that the comoving horizon

χ ∝ a
1
2

(1+3ω) (1.12)

grows monotonically with time whenever the equation of state ω = p
ρ > −

1
3 . Conven-

tional wisdom of non-inflationary big bang theory would say that the energy density

of the universe is made up of radiation and cold matter. In early times when particles

had high energy, the vast majority of the energy density and pressure of the universe

was made up of what could be considered radiation. But later (after about 47,000

years after the big bang), the universe cooled and its energy density and pressure were

dominated by cold matter. The reason it is useful to split the universe into epochs like

this is that we know the equation of state for both radiation and cold matter, and can

therefore evolve the scale factor. Matter is assumed to be pressureless: ωm = 0; while

radiation satisfies ωr = 1
3 .

Given that both the radiation and matter-dominated periods of the universe had

ω > −1
3 , we can see immediately that, in standard cosmology, the comoving horizon

(1.12) has only grown in time. Light we see from the CMB introduces us to a scale that

has just entered our comoving horizon, and if the comoving horizon has only grown in

time, this is the first time the scale has entered the horizon, and in fact would have

been far outside the horizon at the time of the CMB (∼ 14 billion years ago). This

suggests that regions we see of the CMB were not causally connected at the time of

recombination7. We can roughly estimate the number of causally disconnected regions

by comparing the horizon today with that of the CMB

(
χtoday
χcmb

)3

=

(
atoday
acmb

) 3
2

(1+3ω)

= (1 + zcmb)
3
2

(1+3ω) (1.13)

7That is to say there had literally not been enough time, only 400,000 years after the big bang, for
light to have travelled between two causally-disconnected regions. This is a consequence of the fact
that in standard big bang cosmology, the universe started expanding at some extraordinary speed and
has only been slowing down since.

6



1.1 Inflation

where we have used the definition of the redshift, z:

1 + z =
atoday
a

. (1.14)

By assuming pure matter domination from the time since recombination to today8, we

have ω = 0 and therefore(
χtoday
χcmb

)3

= (1 + zcmb)
3/2 ' (1100)3/2 ∼ 3.7× 104 (1.15)

using zcmb ' 1100. This estimate tells us that the universe at the time of the CMB

was made up of over 30,000 causally-disconnected regions, so how is it possible that the

CMB appears so uniform when this tells us that the universe was highly homogeneous

at the time of the CMB? This is the horizon problem. In standard cosmology, the

comoving horizon always increases with time and this suggests that, at the time of the

CMB, the universe was made up of many regions which could never have interacted

with one another, and yet, these regions had roughly the same density. How could these

regions ‘know’ to be the same without ever having come into contact and equilibrating?

Flatness problem

The horizon problem is not the only issue that arises in standard big bang cosmology.

The Friedmann equation (1.3) can be rewritten as

1− Ω(a) = −k (aH)−2 (1.16)

where Ω(a) := ρ(a)
ρc(a) is the ratio of the energy density of the universe to the energy

density of a perfectly flat universe with ρc = 3M2
plH

2 the critical (flat) density, with a

flat universe satisfying Ω = 1. As we have seen (eqn. (1.10)), the Hubble radius

(aH)−1 = H−1
0 a

1
2

(1+3ω) (1.17)

will only grow in time when ω > −1
3 , a condition that always holds when the dominant

energy of the universe is in radiation or matter. Since k is just a constant, the RHS

of (1.16) will grow in magnitude, and consequently Ω(a) − 1 will grow in time during

8In reality of course we are now in a period of dark-energy dominated expansion, but for the purposes
of a rough calculation, this approximation will do.
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1. INTRODUCTION

both radiation and matter domination. This suggests that the universe will always

tend away from being flat and will become more curved as time passes. Interestingly

however, it seems that the universe is flat or very close to being flat: Ω(a) = 1 is

consistent with data [31]. This is the flatness problem of standard big bang cosmology.

If the universe only becomes more curved during the radiation and matter-dominated

epochs, then it must have been considerably flatter in the past. Estimates suggest that

at the time of big bang nucleosynthesis (∼ 3 minutes after the big bang) [25]

|Ω(abbn)− 1| ≤ O
(
10−16

)
(1.18)

and that earlier still the universe had to be considerably flatter. Without the assump-

tion of an extremely specific initial condition for the curvature of the universe, how is

it possible that the universe is currently so flat?

1.1.2 A possible solution

The horizon and flatness problems can be seen as initial conditions problems in that

very specific initial conditions, namely an extremely flat and homogeneous universe,

are required to lead to the universe we see today. It would be highly preferable instead

if the universe we see today could have arisen from very general initial conditions. This

can be achieved with a period of inflation.

As has been hinted, the key is that the Hubble radius and consequently the comoving

horizon only grow in time when ω > −1
3 . Therefore, let us postulate a period of time

when the universe was dominated by a field with equation of state satisfying ω < −1
3 .

Then the Hubble radius

(aH)−1 = H−1
0 a

1
2

(1+3ω) (1.19)

shrinks. An epoch with a shrinking Hubble sphere

d

dt

(
(aH)−1

)
< 0 (1.20)

is known as inflation where the universe undergoes a period of accelerated expansion:

d

dt
(aH)−1 < 0 =⇒ d

dt
(ȧ)−1 < 0 =⇒ − ä

ȧ2
< 0 =⇒ ä > 0 (1.21)

8



1.1 Inflation

i.e. the scale factor is accelerating. The condition of accelerated expansion can be cast

in terms of ε = − Ḣ
H2 , which we will refer to as the slow-roll parameter:

ε = − Ḣ

H2
= 1− ä

aH2
(1.22)

therefore

ä > 0 =⇒ ε < 1 (1.23)

where perfect exponential expansion (de Sitter space) requires

ε = 0 =⇒ Ḣ = 0 =⇒ a ∝ eHt . (1.24)

Generally during inflation, we assume what is known as slow-roll with ε � 1 and

ω ∼ −1 which implies the universe undergoes exponential expansion a ∝ eHt = eN .

So how does a period of accelerated expansion solve the horizon and flatness prob-

lems? Starting with the horizon problem we first note that if two particles are separated

by a distance greater than the comoving horizon, they have never been in causal contact,

however if they are separated by a distance greater than the Hubble radius, they cannot

communicate now, but may have been in causal contact in the past. This difference is

at the heart of the resolution of the horizon problem – with an inflationary epoch, the

Hubble radius was exponentially larger before inflation than after. Effectively inflation

solves the horizon problem by allowing the universe to be smaller for a slightly longer

period of time than is predicted by the big bang model. During this period, different

patches that we now see as causally disconnected regions in the CMB were within the

Hubble radius and consequently were able to communicate and equilibrate before in-

flation took place. During inflation they then receded from one another exponentially

quickly. The acceleration is necessary because the scale factor has to be smaller for

longer than would be predicted by standard big bang theory – it then enters a period

of acceleration to ‘catch up’ to the value standard big bang theory would predict. To

be more explicit, note that the physical distance light can travel between two times t1

and t2 is given by

dp = a2χ = a2

∫ a2

a1

dã
1

ã2H
(1.25)

where a1 = a(t1) and a2 = a(t2). The physical distance light possibly could have

9



1. INTRODUCTION

travelled at recombination (the CMB) is

dr = arχr ' ar
∫ ae

ai

dã
1

ã2H
= ar

∫ ae

ai

dãH−1
I ã

1
2

(3ω−1)

=
ar
HI

(
a−1
i − a

−1
e

)
' ar
HI

a−1
i =

ar
aeHI

eN (1.26)

where we have assumed that the vast majority of the integral will made up by the

inflationary epoch because both (aH)−1 and a−1 will be exponentially bigger at the

start of inflation than at the end; we use ω = −19; we have used that ae � ai = aee
−N

where ai and ae are the scale factors at the start and end of inflation, respectively; ar

is the scale factor at recombination and HI is the Hubble parameter during inflation.

To solve the horizon problem, we require that, at the very least, dr is larger than the

area we see as the CMB today. This is just given by the distance between two points

that are now one Hubble radius apart (the current size of the horizon) scaled by the

scale factor at the time of recombination, ar, so:

dhub = ar(a0H0)−1 . (1.27)

Therefore to solve the horizon problem, we require that

are
N

aeHI
>

ar
a0H0

=⇒ N > ln

(
aeHI

a0H0

)
. (1.28)

The original estimate given by American physicist Alan Guth in his seminal paper – in

which the idea of inflation to solve the horizon and flatness problems was introduced –

was that N ∼ 64 [32], i.e. the universe would have to scale by a factor of at least e64

to solve the horizon problem.

The way inflation solves the flatness problem is much simpler. Recall that the

Friedmann equation implies that

|Ω− 1| = |k (aH)−2| (1.29)

where Ω = ρ
ρcrit

is a measure of how close to the universe is to being flat, Ω = 1. The

flatness problem stemmed from the fact that in standard cosmology, the Hubble radius

(aH)−1 only grows in time, so unless the universe started with some extraordinary

9This implies exponential expansion: a = eN , N = HIt = ln a.

10



1.1 Inflation

degree of flatness, we would expect it to be highly curved now. We can see immediately

that inflation solves this – even if Ω − 1 is far from 0 as an initial condition, a period

of inflation, where (aH)−2 ∝ e−2N sends the RHS to zero and consequently Ω− 1→ 0.

The exponential expansion of the universe shrinks the Hubble sphere, which leads to

the universe becoming flat.

1.1.3 Inflationary dynamics

We have seen how a period of exponential expansion can solve both the horizon and

flatness problems. But what field could dominate the energy density and crucially

satisfy the equation of state, ω = p
ρ ≤ −

1
3 , i.e. have negative pressure. The simplest

answer is a scalar field whose energy density is dominated by its potential energy. A

universe dominated by a canonically-normalised scalar field, φ, has action

S =

∫
d4x
√
−g

{
M2

pl

2
R− 1

2
∂µφ∂

µφ− V (φ)

}
(1.30)

where V (φ) is the potential of the scalar field, g is metric determinant and R the Ricci

scalar for what we assume is a flat FRW metric

gµν = a2(t) diag
(
−a(t)−2, 1, 1, 1

)
(1.31)

which gives the Ricci scalar as R = 6
(
Ḣ + 2H2

)
. From this action, assuming that

φ = φ(t) is homogeneous at the background level, we arrive at the scalar equation of

motion

φ̈+ 3Hφ̇+
dV

dφ
= 0 . (1.32)

For a scalar field, the energy momentum tensor is given by

Tµν =
−2√
−g

δSmatter
δgµν

= diag

(
1

2
φ̇2 + V, a2

(
1

2
φ̇2 − V

)
, a2

(
1

2
φ̇2 − V

)
, a2

(
1

2
φ̇2 − V

))
(1.33)

so its energy density is

ρ = T00 =
1

2
φ̇2 + V (1.34)

11



1. INTRODUCTION

and its pressure is given by

p =
1

3
δijT

j
i =

1

2
φ̇2 − V . (1.35)

This gives us the (flat) Friedmann equations as

3M2
plH

2 =
1

2
φ̇2 + V (1.36)

and

M2
plḢ = −1

2
φ̇2 . (1.37)

From this we can constrain our scalar field so that it is a viable inflaton. For inflation

we require ε = − Ḣ
H2 < 1 and for quasi-exponential expansion, we want ε � 1 which

tells us
3φ̇2

2V + φ̇2
� 1 =⇒ V � φ̇2 (1.38)

i.e. the energy density of the scalar field is dominated by its potential. For inflation to

last a sufficient amount of time, we require that derivatives of ε are also small so that

the universe does not leave its phase of accelerated expansion too quickly. We define

η =
1

H

d ln ε

dt
(1.39)

and require that |η| � 1. In single field inflation, this can be recast as

η = 2

(
φ̈

Hφ̇
+ ε

)
(1.40)

where we have used that ε = εφ := φ̇2

2M2
plH

2 in single field inflation. For a sustained

period of inflation, it is therefore necessary that

Hφ̇� φ̈ (1.41)

so that (1.32) can be simplified to

3Hφ̇ ' −dV
dφ

. (1.42)
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1.1 Inflation

Figure 1.2: A typical inflationary potential given by V = Λ4
(
1−m1 φ e

−m2φ
)

with

Λ = 3.62×10−3Mpl, m1 = 2.17M−1
pl and m2 = 0.8M−1

pl . This is an example of a large-field
model in which the inflaton spans super-Planckian values during its evolution.

If both ε, η � 1, the scalar field rolls slowly, the Hubble parameter H '
√

V
3M2

pl
∼ const.

is dominated by the potential energy, which is roughly constant, and the scale factor

increases exponentially, a ∝ eHt. If these conditions are satisfied, the universe is in

a phase of slow-roll inflation. A typical inflationary potential is plotted in FIG. 1.2.

The inflaton starts at some high value, φmax, and rolls slowly down the flat part of

the potential – during this part of its evolution the potential and therefore the Hubble

parameter are roughly constant. Eventually the inflaton nears its minimum and speeds

up dramatically, exits slow-roll and ε → 1 marks the end of inflation. The inflaton of

course settles in its minimum at a much lower energy scale and converts its energy to

standard model degrees of freedom through a process called reheating.

1.1.4 Perturbations

Everything in the previous section assumed φ = φ(t) is perfectly homogeneous. In

reality, the inflaton has small perturbations, δφ = δφ
(
t, xi

)
, that depend on position as

well as time. These perturbations prove to be extremely useful: small fluctuations in

the inflaton field leave under and over-densities that evolve to become both the source of

the anisotropies of the CMB and large-scale structure (galaxies and so on). A key point

of course is that these perturbations must be small relative to the background inflaton

so that the results of the previous chapter are still valid, and also so that the over and

under-densities are not large enough to seed a universe that is not homogeneous and

isotropic on large scales.
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Since the inflaton dominates the energy density of the universe, a fluctuation in the

inflaton field leads to a fluctuation in the energy-momentum tensor and, through that,

it leads to a fluctuation in the metric, δgµν
(
t, xi

)
. We first set up the system as follows:

we have the perturbations

φ(t, xi) = φ0(t) + δφ(t, xi), gµν(t, xi) = g0
µν(t) + δgµν(t, xi) (1.43)

where 0 stands for background quantities. The most general scalar-tensor decomposi-

tion of the metric is

ds2 = − (1 + 2Φ) dt2 + 2 a ∂iBdx
idt+ a2 {(1− 2Ψ) δij + Eij} dxidxj (1.44)

where the traceless, symmetric tensor Eij (which has 5 degrees of freedom) can be

decomposed as (via scalar-vector-tensor decomposition) Eij = ∂i∂jE − 1
3δij∇

2E + hij

with Φ, Ψ and E scalars and hij are the (traceless) tensor degrees of freedom10. We

have completely ignored the vector part of the metric since this is uninteresting both

because vectors are not sourced by the scalar inflaton and because they are naturally

diluted by the exponential expansion of space11. We now define a gauge-invariant

quantity known as the comoving curvature perturbation of single-field inflation:

R := Ψ +H
δφ

φ̇0
. (1.45)

It is defined as such because, under a transformation on constant-time hypersurfaces12,

t→ t+ ξ , (1.46)

the scalar spatial curvature perturbation (see (1.44)), Ψ, and the inflaton perturbation

10A vector, wi, can always be decomposed into a parallel and a perpendicular part, wi = wpai +wpei
where ∇× ~wpa = ∇ · ~wpe = 0. Given that the curl of a gradient is always zero, the parallel part may
expressed ~wpa = ∇S, i.e. the gradient of a scalar, S, so can actually be considered one scalar degree of
freedom. The remaining (2) vector degrees of freedom are tied up in the divergenceless perpendicular
part. Analogously a tensor can decomposed into a parallel (1 scalar d.o.f.), perpendicular (2 vector
d.o.f.) and a transverse and traceless tensor part, which has the 2 remaining d.o.f. corresponding to
the two polarisations of gravitational waves.

11See chapter 3 for details on how vectors dilute during inflation.
12See [33] for all the gauge transformations and (lots of) details.
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1.1 Inflation

transform as [33]

Ψ→ Ψ +Hξ ,

δφ→ δφ− ξφ̇0 (1.47)

We wish to move to the comoving frame where the inflationary perturbation is zero,

δφcom = 0. In this frame, R = Ψ. Since δφ → δφcom = δφ − ξφ̇0 = 0, we see that the

coordinate change that moves us to the comoving slicing is ξ = δφ

φ̇0
. We see therefore

that R is the curvature perturbation, Ψ, in the comoving gauge. Furthermore, it is

gauge-invariant through (1.47).

R is particularly useful because it is conserved on super-Hubble scales, k < aH

[25, 33], when the fluctuations in the matter content are adiabatic, i.e. they satisfy

δp− ṗ0

ρ̇0
δρ = 0 . (1.48)

Single field models of inflation always produce adiabatic fluctuations [34], and therefore

R is conserved after its scale becomes bigger than the Hubble scale which shrinks during

inflation. The metric as defined in (1.44) has 6 non-vector degrees of freedom (plus 4

vector d.o.f. that we have left out) as well as our scalar, δφ, leaving 11 total degrees

of freedom (5 scalar, 4 vector and 2 tensor). Of course the gauge freedom of general

relativity allows us to immediately remove two scalar degrees of freedom, and another

two appear only as constraints. A nice way of dealing with the constraints is to recast

the metric in terms of the ADM13 formalism [35]

ds2 = −N2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
(1.49)

which leaves our scalar field action (1.30) as

Sadm =
1

2

∫
d4x
√
−g
{
NR3 − 2NV +N−1

(
EijEij − E2

)
+N−1

(
φ̇−N i∂iφ

)2
−Ngij∂iφ∂jφ− 2V

}
(1.50)

13After American physicists, Richard Arnowitt, Stanley Deser and Charles W Misner.
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where N is the lapse, R3 is the spatial Ricci scalar of gij

Eij =
1

2

(
˙gij −∇(3)

i Nj −∇(3)
j Ni

)
, E = gijEij (1.51)

with Ni the shift, which can be decomposed into one scalar and two vector d.o.f.

Ni = ∂iβ + vi where ∇ · ~v = 0. Our two scalar degrees of freedom N and β are in fact

non-dynamical (their equations of motion have no time derivatives) and are therefore

constraints leaving us with only one dynamical scalar degree of freedom as we would

expect given the content of our theory. This remaining scalar degree of freedom depends

on the gauge. Of course any gauge can be chosen, and here we will follow [25] and use

the gauge where the inflaton perturbation is zero (the comoving gauge):

δφ = 0, gij = a2 {(1− 2R) δij + hij} (1.52)

where hij is transverse and traceless hii = ∂ihij = 0. The action (1.50) needs to be

perturbed to second order with the set-up given by (1.52). This is done by first solving

for the constraints N and β and substituting these back into the action. For the time

being, we set Mpl = 1 for simplicity, and then the scalar part of the second order action

is given by (see [25] Appendix B)

SR2 =

∫
d4x a3ε

{
Ṙ2 − a−2 (∇R)2

}
(1.53)

using ε = εφ = φ̇2

2H2 . This action is easier to work with after defining a new variable

v = zR with z2 = a2 φ̇2

H2 = 2a2ε and moving to conformal time, which is defined through

dt

dτ
= a(t) . (1.54)

The action becomes

Sv2 =
1

2

∫
dτd3x

{
v′ 2 − (∂iv)2 +

z′′

z
v2

}
(1.55)

where primes stand for derivatives with respect to conformal time, ∂/∂τ . To take

account of the inherently quantum nature of the fluctuations, v must be promoted to
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1.1 Inflation

a quantum operator:

v̂(τ, ~x) =

∫
d3k

(2π)3

{
vk(τ)â

(
~k
)
ei
~k·~x + v∗k(τ)â†

(
~k
)
e−i

~k·~x
}
. (1.56)

The canonical quantisation condition14

[
v̂(τ, ~x), v̂′(τ, ~y)

]
= iδ3 (~x− ~y) (1.57)

can be satisfied with [
â (~p) , â†(~q)

]
= (2π)3 δ3 (~p− ~q) (1.58)

and

vkv
∗ ′
k − v′kv∗k = i . (1.59)

The mode functions, vk(τ), satisfy the equation of motion found through the action

(1.55):

v′′k +

(
k2 − z′′

z

)
vk = 0 . (1.60)

In the distant past, the mode functions had wavelengths well inside the Hubble radius

(recall that inflation shrinks the Hubble sphere) k
aH = −kτ � 1. Now use that

z′′

z
= 2a2H2 (1.61)

to zeroth order in slow-roll parameters, ε, η, and therefore k2 � z′′

z so that in the

distant past of the inflationary period the mode equation becomes

v′′k + k2vk ' 0 (1.62)

which is simply a harmonic oscillator and has solutions

vk = c1e
ikτ + c2e

−ikτ . (1.63)

We wish to normalise solutions to the full equation (1.60) in this limit k � aH using

(1.59). The vacuum solution, which satisfies â(~k)|0〉 = 〈0|â†(~k) = 0, should be an

eigenvector of the Hamiltonian, Ĥ|0〉 = E0|0〉. The Hamiltonian for this system is

14The canonical condition is defined through [v,Π] = iδ3(~x− ~y) where (remembering to switch back
dτ = a−1dt) Π = ∂L

∂v̇
= a(τ)v̇ = v′.
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given by

Ĥ =
1

2

∫
d3x a−1

{
v̂′ 2 + (∂iv̂)2 − z′′

z
v̂2

}
(1.64)

using H = Πv̇−L with L =
∫
d3xL the Lagrangian and Π = ∂L

∂v̇ . Applying this to our

ground state, and using â|0〉 = 0 as well as (1.58) gives us

Ĥ|0〉 =
1

2a

∫
d3k

(2π)3

{
|v′k|2 +

(
k2 − z′′

z

)
|vk|2

}
|0〉

+
1

2a

∫
d3k

(2π)3

{
v′ 2k +

(
k2 − z′′

z

)
v2
k

}∗
â†(~k)â†(−~k)|0〉 . (1.65)

Since we require that |0〉 be an eigenstate of the Hamiltonian, the second term must

vanish. This gives us an extra condition. Again assuming that in the distant past,

scales were well inside the horizon, z′′

z � k2, we get

v′ 2k + k2v2
k = 0 =⇒ v′k = ±ikvk . (1.66)

This is important because it constrains our early-time solution (1.63) so that either c1

or c2 must be zero. Furthermore, using (1.59), we get the condition

2k
(
|c2|2 − |c1|2

)
= 1 . (1.67)

Satisfying these conditions simultaneously leaves us with c1 = 0, c2 = 1√
2k

, and we

arrive at the early-time solution

lim
kτ→−∞

vk =
e−ikτ√

2k
(1.68)

which is known as the Bunch-Davies15 initial condition for quantum fields in (quasi-)

de Sitter spacetimes. With an initial condition, we can solve the full equation for vk

given in (1.60). Assuming true de Sitter (H ′ = 0, a = − 1
Hτ ), this equation becomes

v′′k +

(
k2 − 2

τ2

)
vk = 0 (1.69)

where we have used that z′′

z = 2a2H2 = 2
τ2 when H ′ = 0. This equation of motion has

15After Timothy Bunch and Paul Davies [36].
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general solution

vk = Ae−ikτ
(

1− i

kτ

)
+Beikτ

(
1 +

i

kτ

)
(1.70)

and using our Bunch-Davies initial condition, we get

vk =
e−ikτ√

2k

(
1− i

kτ

)
. (1.71)

When it comes to constraining inflationary models, a key prediction is the scalar

power spectrum. Although this scalar power spectrum is not directly seen in the CMB

or in the large-scale structure of the universe, it acts as an initial condition for well-

understood (but highly complex) physics that can be used to predict what is seen in

the CMB and through this, models of inflation can be constrained. We define the scalar

power spectrum through the comoving curvature perturbation:

〈R~pR~q〉 = (2π)3 δ3 (~p+ ~q)PR(p), Ps(p) :=
p3

2π2
PR(p) (1.72)

where Ps(p) is the dimensionless scalar power spectrum, which is of interest to us. In

terms of our mode function, vk (recall that R = v√
2a2ε

)

〈R~pR~q〉 = (2π)3 δ3 (~p+ ~q)
|vp|2

2a2ε
(1.73)

and then using (1.71)

〈R~pR~q〉 = (2π)3 δ3 (~p+ ~q)
H2

4p3ε

(
1 +

( p

aH

)2
)

(1.74)

where we have used that −kτ = k
aH . From this we can read off the scalar power

spectrum

Ps(k) =
H2

8π2ε

(
1 +

(
k

aH

)2
)
. (1.75)

To simplify this we can use that R is constant on super-Hubble scales and therefore we

can take k
aH << 1, which gives the standard form for the power spectrum

Ps(k) =
H2

8π2ε
(1.76)

which is evaluated at horizon-crossing k = aH (usually taken to be 50–60 e-folds before
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the end of inflation, ε → 1), after which conservation of R guarantees that the power

spectrum will remain constant till the scale k re-enters the horizon and is seen today

in the CMB. The latest results from Planck [37] suggest that the inflationary power

spectrum should satisfy

Ps ∼ 2× 10−9 . (1.77)

This condition effectively constrains the scale of the potential (since 3H2 ∼ V ) relative

to the value of ε 50–60 e-folds before the end of inflation. This fact has an important

consequence we will consider shortly. First however, we discuss another inflationary

observable, the scalar spectral index, ns, which determines the scale-dependence of the

inflationary power spectrum – that is, it determines the degree to which the density of

two points in the inflationary universe correlate depends on their distance. A simple

derivation for ns in terms of basic inflationary parameters is given here. Recall ε =

− Ḣ
H2 = − 1

H
dH
dN and η = d ln ε

dN with N = ln a. The scalar spectral index is defined

through

ns − 1 =
d lnPs

d ln k
(1.78)

where

Ps =
H2

8π2ε
, ln k = N + lnH (1.79)

because x = k/aH = 1 at horizon-crossing. Using the chain rule

d lnPs

d ln k
=
d lnPs

dN

dN

d ln k
(1.80)

and

d lnPs = d ln

(
H2

8π2ε

)
= 2 d lnH − d ln ε =⇒ d lnPs

dN
= 2

d lnH

dN
− d ln ε

dN
(1.81)

but

ε = − 1

H

dH

dN
= −d lnH

dN
=⇒ d lnPs

dN
= −2ε− η . (1.82)

Also
dN

d ln k
=

(
d ln k

dN

)−1

=

(
1 +

d lnH

dN

)−1

≈ 1 + ε (1.83)

=⇒ ns − 1 =
d lnPs

d ln k
=
d lnPs

dN

dN

d ln k
= (−2ε− η) (1 + ε) ≈ −2ε− η (1.84)
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1.1 Inflation

leads us to

ns = 1− 2ε− η . (1.85)

Constraints from Planck place 0.9607 ≤ ns ≤ 0.9691 [37], suggesting the inflationary

power spectrum is nearly scale-invariant. In all the models considered in this thesis, ε

is much smaller than 1, usually ε < 10−3, and therefore this constraint on ns suggests

that η ∼ 0.03 and this strongly constrains the type of inflationary potential that can

be used. We note that in (slow-roll) single-field inflation, the slow-roll parameters can

be written in terms of the potential. First

ε = − Ḣ

H2
=

φ̇2

2H2M2
pl

' 1

2

V ′(φ)2

9M2
plH

4
'
M2

pl

2

(
V ′

V

)2

(1.86)

where V ′ = dV
dφ , and we have used (1.42) so that φ̇ ' − 1

3HV
′ and 3H2M2

pl ' V during

slow-roll. With this form for ε, we can equally estimate η in terms of the potential:

η =
d ln ε

dN
=

1

εH

dε

dt
= 2M2

pl

(
V ′

V

)2

− 2M2
pl

V ′′

V
' 4ε− 2M2

pl

V ′′

V
=⇒ η ∼ −2M2

pl

V ′′

V
.

(1.87)

Since we require η to be positive to satisfy the constraint on ns, this immediately tells

us that
V ′′

V
< 0 , (1.88)

i.e. we require a concave potential.

Tensors

We consider now the other form of perturbation that is sourced during inflation: tensors.

Using again (1.52) as our metric with tensor perturbation hij , the tensor part of the

second order action can be found to be (see chapter 3 for a related derivation)

Sh2
µν

=
M2

pl

8

∫
dτd3x a2

{
ĥ′ij ĥ

′
ij − ∂iĥjk∂iĥjk

}
. (1.89)

The operator hij can be expanded in terms of mode functions as

ĥij =
∑
s

∫
d3k

(2π)3

{
εsij(k)hsk(τ)ei

~k·~xâ(~k) + εs ∗ij (k)hs ∗k (τ)e−i
~k·~xâ†(~k)

}
(1.90)
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where εsij(k) is a polarisation tensor, hsk(τ) is for a mode function, s is an index of the

two helicities of a gravitational wave, while â and â† satisfy the usual commutation

relations. The system can be simplified by making the substitution hsk = 2
aMpl

usk. The

action for the mode functions then takes a very similar form to that of the scalar

equation (1.55)

Su2 =
∑
s

1

2

∫
dτd3x

{
(∂τu

s)2 − (∂iu
s)2 +

a′′

a
us
}

(1.91)

which gives equations of motion

us ′′k +

(
k2 − 2

τ2

)
usk = 0 (1.92)

where we have used a′′

a = 2
τ2 . This is the same equation of motion as we had for

the scalars, vk, satisfied by each helicity mode function separately. Therefore in the

super-Hubble limit, we know

|usk|2 '
1

2k
=⇒ |hsk|2 '

2

a2M2
plk

=
2H2

M2
plk

3
(1.93)

at horizon-crossing, a = k
H . As we did for the scalars, we can define a power spectrum

for h through

〈hs~ph
s
~q〉 = (2π)3δ3 (~p+ ~q)Ph(p), Ph(p) :=

p3

2π2
Ph(p) . (1.94)

Then since

〈hs~ph
s
~q〉 = (2π)3δ3 (~p+ ~q)

2H2

M2
plk

3
(1.95)

we can read off

Ph(k) =
H2

π2M2
pl

. (1.96)

The full dimensionless tensor power spectrum is therefore

Pt(k) = 2Ph(k) =
2H2

π2M2
pl

(1.97)

where the factor of two arises to account for the two helicities of the mode functions. A

crucial inflationary observable can now be defined through the ratio of the tensor and
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scalar power spectra. The tensor-to-scalar ratio is given by

r :=
Pt

Ps
' 16ε (1.98)

where the final equality is true for single-field inflation. The value of r can also be tested

through the CMB. Light, like gravity, has two polarisations, and in CMB physics,

the polarisations are chosen to be split into what are called E- and B-modes16. E-

mode polarisation can be sourced by both scalar and tensor perturbations, however,

importantly, B-mode polarisation can only be sourced by tensor perturbations17 – and

therefore a detection of B-modes in the CMB would be strong evidence for tensor

perturbations from inflation, often referred to as primordial gravitational waves. The

current constraint (due to the non-detection of B-modes) on the tensor-to-scalar ratio

is [37]

r . 0.07 . (1.99)

r is limited by V

As mentioned earlier, the fact that the power spectrum

Ps '
H2

8π2ε
' V

24M2
plπ

2ε
∼ 2× 10−9 (1.100)

constrains ε relative to the scale of the potential, V , has an important consequence.

Since r ∼ 16ε, we see immediately that lower-energy inflation leads to a lower value

for the tensor-to-scalar ratio. Future experiments proposed to search for B-modes

expect to have sensitivity down to r ∼ 10−3 [39–44]. We can thus parametrise whether

a particular potential can predict an observable value for the tensor-to-scalar ratio,

namely r & 10−3, through

r =
Pt

Ps
= P−1

s

2H2

π2M2
pl

' 10−3

(
V 1/4

5.68× 1015GeV

)4

, (1.101)

16The “E” and “B” come from parallels with electromagnetism – the E-mode (electric field) has
vanishing curl while the B-mode (magnetic field) is divergenceless.

17This is a slight simplification – B-mode polarisation can be sourced by gravitational lensing and
galactic foregrounds as well, but this can distinguished from B-modes sourced by pure inflationary
tensor modes [38].
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i.e. we require a potential satisfying V 1/4 & 5.68 × 1015GeV to lead to an observable

gravitational wave spectrum during vanilla inflation. However, as we will see in this

thesis, there are ways in which a gravitational wave source can arise during inflation, and

with an additional source, this bound can circumvented. In particular, the introduction

of a vector or gauge field suitably coupled to an axion during inflation can introduce

a large source term for the tensor modes under the right conditions. Applying this

mechanism to a low-energy model of inflation called Kähler moduli inflation is the

main concern of this thesis.

1.1.5 Multi-field inflation

Kähler moduli inflation is in general a multi-field model of inflation – we therefore

quickly note here some features of multi-field inflation. In particular, an important

feature is that it is easy to generalise the single-field results above to the case where

there are multiple scalar fields. Consider a set of scalars fields, φa = (φ1, φ2, . . . ). The

space spanned by this set of fields can be endowed with a (field-space) metric, γab, that

in practice accounts for non-trivial couplings between the fields in their kinetic terms.

An action equivalent to (1.30) can then be written

S =

∫
d4x
√
−g

{
M2

pl

2
R− 1

2
γab∂µφ

a∂µφb − V (φa)

}
(1.102)

where V (φa) is a function of all the scalar fields. Notice that in the case of trivial field-

space metric, γab = δab, the kinetic terms for the fields become canonical (1
2∂µφ1∂

µφ1 +

. . . ). In fact if the field space has zero curvature, defined by the Ricci scalar for the

field-space: Rγab = 0, then the fields can always be redefined so that we end up with

canonical kinetic terms. This action gives equations of motion:

φ̈a + 3Hφ̇a + Γabcφ̇
bφ̇c + γab

∂V

∂φb
= 0 , (1.103)

3M2
plH

2 =
1

2
ϕ̇2 + V (1.104)

and

M2
plḢ = −1

2
ϕ̇2 (1.105)
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1.1 Inflation

where Γabc are the Christoffel symbols for metric γab and ϕ̇ =

√
γabφ̇aφ̇b. Through this

we can define equivalent slow-roll parameters, e.g. in this system

ε := − Ḣ

H2
= εϕ :=

1

2M2
plH

2
ϕ̇2 . (1.106)

Crucially the scalar perturbations δφa, of which there are now many, can be cast in

terms of one tangential perturbation18

δs =
γabφ̇aδφ

b

ϕ̇
=

∆s

a
(1.107)

where ∆s is completely equivalent to v in the single-field case, and is related to the

comoving curvature perturbation through R = H∆s
aϕ̇ . For this reason we know that

if |∆s| → 1√
2kx

for x = k
aH < 1 (as is true for vk), then the curvature perturbation

behaves in the exact same way as in single field inflation, and the power spectrum and

scalar spectral index are both well-approximated by their standard forms:

Ps =
H2

8π2ε
, ns = 1− 2ε− η . (1.108)

In addition to this, the equation of motion for the tensor modes is unchanged and

therefore the tensor-to-scalar ratio is again given by

r = 16ε . (1.109)

In other words, all the results from single-field inflation nicely generalise to the multi-

field case as long as

|∆s| →
1√
2kx

, x =
k

aH
< 1 (1.110)

is satisfied.

18Of course, since this is a multi-field system, there are perturbations that correspond to the directions
orthogonal to this. These perturbations are called entropic or isocurvature perturbations. As we have
noted, single-field models predict that the curvature perturbation is purely adiabatic (i.e. it induces no
isocurvature perturbation) and this is consistent with data from Planck that put strong constraints on
the magnitude of isocurvature perturbations. Therefore in a full analysis of the multi-field inflationary
model, it is necessary to demonstrate that the isocurvature perturbations of the model are under
control. However, in the work presented in this thesis, isocurvature perturbations are assumed to be
negligible and we leave their study to a future work.
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1.1.6 Non-standard cosmologies and non-scalar fields

We end this review of inflation by quickly introducing an anisotropic inflationary metric

that will be used in chapter 2. So far we have considered inflation with a flat FRW

metric. During slow-roll, when H ∼ const, the inflationary metric is

ds2 = −dt2 + e2Htδijdx
idxj . (1.111)

However in chapter 2, we will consider an anisotropic variation of this metric. Defining

the anisotropy to be along the x-axis, we can write the anisotropic metric as

ds2 = −dt2 + e2Ht
[
e−4 Σ t dx2 + e2 Σ t

(
dy2 + dz2

)]
, (1.112)

where Σ parametrises the degree of anisotropy, determining the difference in the Hubble

parameter along the x-axis relative to the other two axes. Normally during inflation

anisotropy is quickly diluted since the scalar field dominating the universe’s energy

density is isotropic. However in chapter 2, we consider an example where a gauge

field, supported through its coupling to the inflaton, can induce and support a small

universal anisotropy that leaves an observable imprint on the CMB in the form of a

small departure from perfect rotational invariance of the power spectrum.

We note finally that although the actions we have considered in this section have

contained only scalar fields, it is quite possible for there to be additional fields besides

the scalars. The important point is that the energy density of the universe is completely

dominated by the scalar field(s) 3M2
plH

2 ' ρφ ' V (φ) so that the Hubble parameter is

roughly constant and inflation can take place. The title of this thesis refers to “spectator

fields” and the main candidates for that role in this thesis are gauge fields which, despite

being massively sub-dominant in energy density relative to the inflaton and thus not

stopping the universe from inflating, can still have non-trivial effects like increasing

the tensor-to-scalar ratio (see chapter 3 and chapter 5) and inducing non-negligible

universal anisotropy (see chapter 2).

1.2 Structure of this thesis

The main subject of this thesis is the role that gauge fields can play in introducing

non-trivial dynamics during inflation that can lead to interesting, observable features
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that can distinguish a model. With this in mind, we start off in chapter 2 by expanding

on a model [45] in which a coupling between the inflaton of a simplistic inflationary

model and a U(1) vector field can sustain a small cosmological anisotropy that could

be detected in the CMB. Applying this first to a model with canonically-normalised

inflaton, we show that it is capable of producing small enough anisotropy so as not to

be at odds with observations, but still potentially detectable in the future. We then

discuss a non-canonical, DBI-inspired19 case as first studied in [47] and although we

find anisotropic solutions, we are unable to find solutions that satisfy constraints on

anisotropy.

In chapter 3, we discuss a mechanism by which a gauge field can be supported during

inflation. This gauge field generates an extra source term for the tensor perturbations

of the metric and, under the right conditions, can artificially enhance the gravitational

wave spectrum, circumventing the need for a higher-energy potential. In this chapter we

first discuss why vectors are diluted during the exponential expansion of the universe.

We then look at the main features of one of the first models in which a vector field

[2, 48], supported through its coupling to an axion, is used to add an additional source

term for the primordial gravitational waves. Finally we consider in detail a toy example

of a more refined model [3] in which, instead of a vector field, an SU(2) gauge field is

used to provide a gravitational wave source term.

In chapter 4, we show how the potentials for Kähler moduli inflation [49] and a

related model, called fibre inflation [50], arise before discussing some explicit models of

Kähler moduli inflation and fibre inflation with a particular interest in models that could

conceivably contain an axion capable of supporting an SU(N) gauge field20 and thus

lead to an enhancement of the gravity wave sector of these models. This is of particular

interest in Kähler moduli inflation because it predicts a very small tensor-to-scalar

ratio, r . 10−6, and thus, if evidence is found for primordial tensors, Kähler moduli

inflation would be effectively ruled out without the addition of a way of enhancing its

gravitational wave spectrum. Much of this chapter is also concerned with simplifying

19Dirac-Born-Infeld inflation [46] is a model of inflation derived from string theory in which the
inflaton is associated with the movement of a relativistic brane whose action is the DBI action.

20In the enhancement model of [3] (which will be discussed in chapter 3), the gauge field is SU(2).
We will show in chapter 5 how starting with an SU(N) gauge field, the system can become equivalent
to using an SU(2) gauge field instead.
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these models as much as possible before introducing a gauge field, allowing for more

feasible numerics, particularly when considering perturbations.

In chapter 5, we round off the main focus of the thesis by actually considering

models of Kähler inflation coupled to a gauge field as discussed in chapter 3. Finally,

in chapter 6, we summarise and discuss the work of the previous chapters.
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Chapter 2

Anisotropic Inflation

This chapter is a modified version of a paper published in Physical Review D titled

Anisotropic Inflation with Derivative Couplings [51], written with Sugumi Kanno and

Ivonne Zavala.

2.1 Introduction

In the post-Planck [37] era, models of inflation have been constrained considerably

by observational data, particularly data from the CMB. However, there remains a

plethora of inflationary models that satisfy observational constraints [52]. A reason for

this is that inflationary models are constrained almost exclusively by their predictions

of the tensor-to-scalar ratio, r and the scalar spectral index, ns. With this in mind, it is

perhaps now important to look into models that predict novel features. A possibility for

one such novel feature is universal anisotropy sustained after inflation. Although quite

heavily constrained in its own right through the primordial power spectrum required to

explain the CMB [53, 54], universal anisotropy can still be non-negligible and a future

detection of it would provide an interesting test of inflationary models.

Universal anisotropy is most easily defined through the metric – consider an infla-
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2. ANISOTROPIC INFLATION

tionary metric1

ds2 = −dt2 + e2Ht
[
e−4 Σ t dx2 + e2 Σ t

(
dy2 + dz2

)]
(2.1.1)

where we naturally assume, H ∼ const and equivalently Σ ∼ const. The x-direction

is clearly the direction of the anisotropy and the degree of anisotropy is given by Σ/H

which generally follows the law:
Σ

H
=

1

3
I ε (2.1.2)

where ε is the slow-roll parameter, ε = − Ḣ
H2 and I is a model-dependent parameter

taking values between 0 ≤ I ≤ 1. This equation for the anisotropy arises after find-

ing power-law solutions for the inflaton, isotropic and anisotropic scale factors in an

anisotropic set-up. We will show this explicitly in the next section. This anisotropy

imprints itself on the statistics of the power spectrum [55]:

P(~k) = P(k)
(
1 + g∗ sin2θ

)
(2.1.3)

where g∗ characterises the degree to which P (~k) fails to be rotationally invariant and θ

is the angle between ~k and the direction of anisotropy. g∗ is found through perturbation

theory and for the inflationary scalar power spectrum is given by

g∗ = 24 I Ne
2 (2.1.4)

where Ne is the number of e-folds after horizon exit to the end of inflation. The most

recent bounds on g∗ are [53]

g∗ = 0.002± 0.016 . (2.1.5)

It was thought that anisotropy would be impossible to sustain during inflation due

to the cosmic no-hair conjecture [56, 57]. In the context of early universe cosmology,

the cosmic no-hair conjecture effectively states that inflation can proceed from very

general initial conditions and that the assumption that a flat FRW metric can be used to

1Note that during the rest of this chapter we will rewrite this metric in terms of e-folds, α ∼ Ht,
σ ∼ Σ t. We deliberately distinguish this here from the usual notation of N = ln a so it is clear there is
an isotropic part given by α and an anisotropic part given by σ. The choice that we have e−4 Σ t along
the x-direction and e2 Σ t along the y and z-directions is to allow for the average expansion rate of the
universe to be independent of Σ and to be given by H.
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describe the universe during the inflationary epoch is valid. In other words, a universe

that undergoes inflation will successfully approach quasi-de Sitter spacetime even if

there exists an initial non-negligible anisotropic component of the energy density. This

is due to the fact that the inflationary component of the energy density will remain,

by necessity, roughly constant, whereas any other energy densities will dilute quickly

due to the expansion of the universe. In this way, even if to start with the universe has

some large anisotropy, after a period of time, the quasi-vacuum energy of the inflaton

will come to dominate the energy density of the universe and this universe will be well

approximated by an FRW metric. In the same way, any anisotropic field, for example

a gauge field, will be rapidly diluted during inflation.

Multi-field models of inflation arise naturally in extensions of the simplest single-

field inflationary framework, for example in models derived from fundamental theories

such as supergravity and string theory. Usually, models with more than one scalar

field are considered in these extensions. However, fields with other spins, such as gauge

fields, may play an interesting and testable role during inflation as well [54, 55, 58].

Gauge fields are not commonly considered in the study of inflation, due to the cosmic

no-hair conjecture. However, [59] found the first working model (free from ghosts) of

inflation with a spectator vector field that can produce persistent anisotropy in the

background spacetime. The argument presented above is circumvented by coupling the

inflaton to the gauge field through the term f2(φ)F 2 where φ is the scalar inflaton:

this coupling means that the energy densities of the gauge and scalar field cannot be

truly separated, and therefore the isotropic and anisotropic energy densities cannot

be properly separated. This model brought forward the interesting possibility that

light gauge fields may affect cosmological observations by generating some observable

amount of statistical anisotropy (for reviews on anisotropic inflation see [54, 55, 58]).

Another possibility for generating observable statistical anisotropies in the presence

of vector fields is the vector curvaton scenario [60–62]. In this scenario, the inflaton is a

scalar driving inflation, while the vector field becomes important after inflation, when

it may dominate the universe and imprint its perturbation spectrum before it decays,

as in the scalar curvaton scenario (for a review of the vector curvaton see [63]).

In the context of D-brane inflationary models, the inflaton is typically identified

with the scalar field parametrising the transverse fluctuations of the D-brane (that is,

its position in the internal compact six-dimensional space). Such a brane features a
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world-volume two-form field Fµν , associated with the longitudinal fluctuations of the D-

brane. Therefore, it is natural to investigate the role of this brane field in the dynamics

of inflation. Indeed, in [64], a D-brane vector curvaton realisation was discussed, while

in [65] a Wilson line inflationary model was studied with interesting predictions. In

this case, it is precisely one of the D-brane vector internal components which drives

inflation.

In a D-brane scenario, the scalar field associated with brane position, identified with

the inflaton, and the vector field couple disformally via the DBI action that describes

the D-brane dynamics2. In particular, the gauge kinetic function, f , depends on the

scalar field φ and its derivative X := 1
2(∂φ)2, f(φ,X). This coupling can thus alter the

anisotropic background evolution and the amount of statistical anisotropy produced.

Furthermore, f(φ,X) represents a general parametrisation of a generic inflaton-

matter coupling. This has recently been used in studies in which the inflationary

universe is viewed as a cosmological collider [67]. It is thus important to know what

effect the derivative coupling has on the inflationary evolution. This derivative coupling

also appeared in the recently proposed EFT of anisotropic inflation [68, 69].

Motivated by the D-brane scenario and the more generic nature of a derivative

coupling between the inflaton and a vector field (and even more generally, with matter),

we study anisotropic inflation with derivative couplings. We start by considering a

phenomenological model where the gauge kinetic function has a monomial dependence

on X and an exponential dependence on φ. For the power-law cases we consider, no

stable solutions exist for f = f(X) only. On the other hand, for f = f(φ,X), stable

anisotropic solutions exist and the anisotropy is considerably reduced in comparison

to the non-derivative case. This is interesting in view of the latest constraints on

anisotropy [53, 70] (where the anisotropy is constrained through g∗ as in (2.1.5)). We

next use our general equations to explore more general solutions. Finally we conclude

in section 2.5 with a discussion of our results and prospects for future work.

2For an example of a theory where two scalar fields couple disformally via the DBI action, see [66].
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2.2 Scalar-vector-tensor action with general derivative couplings

2.2 Scalar-vector-tensor action with general derivative cou-

plings

Although later we will only look at power-law inflationary solutions, in this section we

will keep the discussion as general as possible when presenting the set-up and equations

of motion. This is useful in describing a variety of power-law models as we discuss later.

In most of the chapter we will concentrate on a simple field theory model that will serve

to illustrate the consequences of taking derivative couplings into account.

Our starting point is the general scalar-vector-tensor action of the form:

S =

∫
d4x
√
−g

{
M2

pl

2
R− P (φ,X)− f2(φ,X)

4
FµνF

µν

}
, (2.2.1)

where Fµν = ∂µAν − ∂νAµ, 2X = (∂φ)2, thus we see that the gauge kinetic function

depends both on the inflaton, φ and its derivative, X. This action is motivated from D-

brane actions in string theory models of inflation, where P (φ,X) and f(φ,X) take very

specific forms and arise from the Dirac-Born-Infeld (DBI) action (see [64] for details).

Here we keep these functions general, in order to cover other possibilities3.

The equations of motion derived from (2.2.1) are given by

Rµν −
1

2
gµνR =

1

M2
pl

(
TAµν + T φµν

)
, (2.2.2)

1√
−g

∂µ

[√
−g
(
F 2

2
ffX + PX

)
∂µφ

]
=
F 2

2
ffφ + Pφ , (2.2.3)

∂µ
[√
−g f2(φ,X)Fµν

]
= 0 , (2.2.4)

where we have denoted the derivatives as fi = ∂if and similarly for P , for i = φ,X.

The energy-momentum tensors for the vector and the scalar fields are given by

T φµν = ∂µφ∂νφ

(
1

2
ffXF

2 + PX

)
− gµνP , (2.2.5)

TAµν = f2

[
F α
ν Fµα − gµν

F 2

4

]
. (2.2.6)

3Anisotropic inflationary solutions with a DBI kinetic term for the scalar field and a pure inflaton-
dependent gauge kinetic function f were considered in [47]. More general forms for P (φ,X) were
further considered in [71].
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2. ANISOTROPIC INFLATION

We are interested in anisotropic solutions and therefore, without loss of generality,

we consider the following anisotropic metric:

ds2 = −dt2 + e2α(t)
[
e−4σ(t)dx2 + e2σ(t)(dy2 + dz2)

]
(2.2.7)

where eα(t) is identified with the isotropic scale factor, and eσ(t) characterises the

anisotropy. Furthermore, we use gauge invariance to choose A0 = 0 and, for con-

creteness, we consider homogeneous fields of the form [45, 59]:

φ = φ(t) , Aµ = (0, v(t), 0, 0) .4 (2.2.8)

With these Ansätze, the equation of motion for the vector field takes the simple form:

d

dt

[
f2eα+4σv̇

]
= 0 , (2.2.9)

which can be readily solved to give:

f2eα+4σv̇ = pA , (2.2.10)

where pA is a constant of integration. Since −v̇ = Fx0 = Ex, pA is the electric field

modulated by the expansion of the universe.

The Einstein equations, on the other hand, can be arranged into the following set

of equations

α̈ = −3 α̇2 +
1

6M2
pl

[
6P + f2v̇2e−2α+4σ + 3 φ̇2

(
PX −

fX
f
f2v̇2e−2α+4σ

)]
, (2.2.11)

σ̈ = −3 α̇ σ̇ +
f2v̇2

3M2
pl

e−2α+4σ , (2.2.12)

α̇2 = σ̇2 +
1

3M2
pl

[
P +

f2v̇2

2
e−2α+4σ + φ̇2

(
PX −

fX
f
f2v̇2e−2α+4σ

)]
, (2.2.13)

4Notice that the vector is directed along the same direction as the anisotropy in the metric.
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2.3 Anisotropic power-law inflation with derivative couplings

where we have used (2.2.10). Finally, the equation of motion for the scalar field becomes:

φ̈

[
−φ̇2 PXX + PX − f2v̇2e−2α+4σ

(
fX
f

+ 3
f2
X

f2
φ̇2 − fXX

f
φ̇2

)]
+ φ̇

[
φ̇ PXφ + 3 α̇PX + f2v̇2e−2α+4σ fX

f

(
φ̇

(
3
fφ
f
−
fXφ
fX

)
+ 4σ̇ + α̇

)]
+Pφ −

fφ
f
f2v̇2e−2α+4σ = 0 . (2.2.14)

From these equations, it is easy to recover the various examples studied in the literature,

for which fX = 0 [45, 47, 59, 71, 72].

In what follows we use these equations to look for stable anisotropic solutions.

We start by looking at a phenomenological example that serves as a prototype to

understand the effect of the derivative coupling between the inflaton and the vector

field, and then we explore more general cases.

2.3 Anisotropic power-law inflation with derivative cou-

plings

In this section we start the analysis of power-law anisotropic inflation with derivative

couplings, providing the first explicit example of the situation described in the EFT

description of [68]. We start with a canonically normalised inflaton:

P (φ,X) =
1

2
(∂φ)2 + V (φ) = X + V , (2.3.1)

and thus replace, Pφ = Vφ, PX = 1 in the equations of motion above, (2.2.11)-(2.2.14).

Note that eqs. (2.2.11) and (2.2.13) depend only on the derivative of f w.r.t. X. One

then immediately sees that a suitable choice of functional form is given by setting:

X
fX
f

= −n , (2.3.2)

where n = const. This has the solution:

f(X,φ) = (−X)−ng(φ) , (2.3.3)
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2. ANISOTROPIC INFLATION

for some function g(φ). On the other hand, we can also see that a suitable choice of

φ dependence is given when fφ/f = const. that is, an exponential dependence. So we

find that a suitable Ansatz for the gauge kinetic function’s dependence on the scalar

and its derivative is given by5:

f(φ,X) = M4n
pl f0

e
ρ
Mpl

φ

(−X)n
. (2.3.4)

In addition to this, we also consider an exponential potential for the scalar field

V (φ) = V0 e
λ
Mpl

φ
. (2.3.5)

We are now ready to look for power-law solutions of the form:

α = ζ log(Mpl t) , σ = β log(Mpl t) ,
φ

Mpl
= ξ log(Mpl t) + φ0 (2.3.6)

where ζ, β, ξ and φ0 are constants. Using this Ansatz with the Hamiltonian constraint

(2.2.13), we obtain the conditions:

λξ = −2 , ρ ξ + 2 ζ + 2β + 2n = 1 . (2.3.7)

We arrive at these two conditions (2.3.7) by requiring that, after substitution of (2.3.6)

into (2.2.11)–(2.2.14), powers in t balance in all equations (i.e., we end up with equa-

tions of the form Ctx = Ktx where C,K are independent of t). The remaining con-

ditions (below) come from ensuring that C = K in (2.2.11)–(2.2.14), i.e. that the

equations are satisfied (the amplitudes balance) after substitution of (2.3.6). For the

amplitudes to balance in (2.2.13) (the Hamiltonian constraint), it is required that:

−ζ2 + β2 +
1

6
ξ2 +

1

3
u+ (1− 4n) 4−n ξ4n w

6
= 0 , (2.3.8)

where we have defined u, w as:

u =
V0

M4
pl

eλφ0 , w =
p2
A

M4
pl

f−2
0 e−2ρφ0 . (2.3.9)

5In a string theory scenario, the effective 4D action can be written in terms of the 4D Mpl, which
would be a function of the string scale and coupling, as well as the compactification volume.
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2.3 Anisotropic power-law inflation with derivative couplings

From the equation for the scale factor (2.2.11) we then obtain:

3ζ2 − ζ − u+ 4−n (6n− 1) ξ4n w

6
= 0 , (2.3.10)

Similarly from the anisotropy equation (2.2.12) we get:

−β (3ζ − 1)− 4−n ξ4n w

3
= 0 . (2.3.11)

Finally from the equation for the inflaton we obtain:

−ξ + 3 ζ ξ + λu+ 4−n ξ4n−1w [2n (ζ + 4β + 4n− 1) + ρ ξ (4n− 1)] = 0 . (2.3.12)

Using these equations, we can solve for u and w to get:

u = −ζ + 3 ζ2 +
1

2
β − 3nβ − 3

2
ζ β + 9n ζ β, w = 3β 4n ξ−4n (3 ζ − 1). (2.3.13)

Substituting these into the inflaton equation (2.3.12), and using the constraints for ξ

and β from (2.3.7) gives:

(−1 + 3 ζ)
[
8 + λ2 (1− 6 ζ + 2n (−1 + 9 ζ (−1 + 2n+ 2ζ)))

−4λ ρ (−2 + 3 ζ + 3n (1 + 3 ζ)) + 12 ρ2
]

= 0 . (2.3.14)

In contrast with [45], we now obtain a cubic, rather than a quadratic equation for

ζ. As in [45], we have the solution ζ = 1
3 which gives u = w = 0, implying that there

is no anisotropy and no potential driving inflation. We hence discard this solution and

focus on the other two:

ζ+ =
A+
√
B

72nλ2
, ζ− =

A−
√
B

72nλ2
, (2.3.15)

where

A = 6λ2 + 18nλ2 − 36n2λ2 + 12λ ρ+ 36nλ ρ , (2.3.16)

and

B = A2 − 144nλ2 (8 + λ2 − 2nλ2 + 8λ ρ− 12nλ ρ+ 12 ρ2) . (2.3.17)

These solutions trivially satisfy (2.3.8), and it is important to remember that they are

constrained from the requirement that w, u must be positive by definition, (2.3.9).
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2. ANISOTROPIC INFLATION

To look for inflationary solutions we define the average slow-roll parameter6, ε in

terms of the Hubble parameter defined by H = α̇, as:

ε := − Ḣ

H2
=

1

ζ
. (2.3.18)

Hence there are two branches of solutions for ε corresponding to ζ±. In order to have

inflation, we need ε � 1, that is, we are looking for regions in the parameter space

where ζ± � 1.

The anisotropy is characterised by:

Σ

H
:=

σ̇

α̇
=
β

ζ
, (2.3.19)

where β is given by:

β =
1

2
+
ρ

λ
− ζ − n . (2.3.20)

As for ε, there are two possible branches of solutions, associated to ζ±.

Let us now discuss two cases of interest. Firstly, ρ = 0, which corresponds to a

gauge kinetic function that depends only on the derivative of the scalar field. And

secondly, ρ 6= 0, when it depends on both.

Shift symmetric coupling, ρ = 0. A purely shift symmetric coupling of the

inflaton with the vector field arises for ρ = 0 (see (2.3.4)). This type of coupling of the

inflaton to matter was considered recently in [67]. In order for inflationary solutions to

arise, we need ζ � 1. Moreover, the solutions should satisfy u,w > 0 (see (2.3.13)). In

terms of ζ (with ρ = 0), w and u are given by:

w = −3× 2−2n−1(3ζ − 1)

(
− 1

λ

)−4n

(2ζ + 2n− 1) , (2.3.21)

u = −1

4
(2n− 1)(3ζ − 1)(6ζ + 6n− 1) . (2.3.22)

Therefore, in order for w, u to be positive, n must be negative and |n|� 1, so that

n < 1/2 − ζ. From the expressions for ζ± (2.3.15) we see that for |n|� 1, ζ± ∼
6This is the average (of the three spatial directions) slow-roll parameter in the sense that it is defined

in terms of H which gives us the average rate of expansion.
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2.3 Anisotropic power-law inflation with derivative couplings

n
2 (−1 ± 1).7 Thus in principle there are anisotropic inflationary solutions that satisfy

all necessary conditions for sufficiently large |n|. For example, n = −105, λ = 1, gives

ε ∼ 10−4,Σ/H ∼ 10−9. Note that requiring sufficiently small anisotropy requires very

large values of |n|. That being said, we find no stable solutions in this case (when

ρ = 0).8

More general coupling, ρ 6= 0. Let us now consider the case when the gauge

kinetic function depends on both the inflaton and its derivative, that is ρ 6= 0. As

before, inflationary solutions require ζ � 1. Furthermore, the conditions for positive

w (and u) can be obtained by looking at (2.3.13), which takes the form:

w = −3× 2−2n(3ζ − 1)

(
− 1

λ

)−4n(
ζ + n− ρ

λ
− 1

2

)
, (2.3.23)

Therefore for sufficiently large ζ, w can be positive for positive or negative n and large

values of ρ/λ, which is also required to obtain large values of ζ (see eq. (2.3.15)). In

the limit ρ/λ� 1, the solutions ζ± become:

ζ± '
ρ
(

1 + 3n±
√

(3n− 1)2 − 8n
ρ2

)
6nλ

. (2.3.24)

Examining this, we see that for n > 0, the numerator is always positive since (1+3n) >√
(3n− 1)2 − (8n)/ρ2 meaning ζ± are both positive. Similarly for n < 0, we see that

|1 + 3n|<
√

(3n− 1)2 − (8n)/ρ2 which tells us that ζ+ is negative while ζ− is positive.

That is, in this limit, there are positive solutions for both ζ± for positive n, while for

negative n only one solution is positive. We are also interested in small anisotropy,

Σ/H � 1 (2.3.19), where in terms of the parameters we have:

Σ

H
=

1

ζ

(
ρ

λ
+

1

2
− n− ζ

)
, (2.3.25)

which, using both that ε = 1
ζ and our solutions for ζ (2.3.15), can be written in the

form of (2.1.2)
Σ±
H

=
1

3
I±ε (2.3.26)

7Notice that to see that u is positive in this limit (as required) one needs to include the next to
leading order term in the large n expansion for ζ±.

8This has been confirmed recently in [47].
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with

I± =
1

24nλ2

{
−6λ

(
λ− 3nλ+ 6n2λ+ 2ρ− 6nρ

)
±
√
B
}

(2.3.27)

where B is defined in (2.3.17) and is function of ρ, λ and n. In this way, the anisotropy

can be written in terms of the free parameters of the system9. This further selects

the appropriate solution for ζ10. With these conditions, one can check that there is a

range of values for which anisotropic solutions exist with n > 0. A stability analysis

shows that for these cases, both the isotropic and anisotropic solutions are attractors.

Therefore the evolution of the system depends on the initial conditions. Since we are

interested in the case where the anisotropic solution is the only attractor, in what

follows we focus our search for anisotropic stable solutions to the case n < 0.

In Figure 2.1 we show the behaviour of the slow-roll parameter, ε, as a function of

the parameters λ and ρ for different values of n. As one can see, the slow-roll parameter

ε decreases very slightly as the magnitude of n increases. Conversely, as can be seen

in Figure 2.2 the anisotropy, Σ/H, can be reduced by the introduction of a derivative

coupling: the greater the magnitude of n, the smaller the magnitude of anisotropy.

We can understand the decrease in the anisotropy as follows. Since we are only

interested in solutions where the anisotropic point is a single attractor (and since the

only observable anisotropic effects come from the final value of the anisotropy), we do

not have to worry about the initial value for the gauge field. If the anisotropy converges

to a number, its final value is given by the ratio of energy density of the vector field to

that of the scalar field [73]. From eq. (2.2.12), we can define this ratio R11 as:

Σ

H
' 2

3
R , R =

ρv
V (φ)

∼
f2

2 v̇
2e−2α+4σ

V (φ)
. (2.3.28)

Using (2.2.10), (2.3.4) and (2.3.5), this ratio can be written as

R ∼ φ̇4ne−2ρφ−4α−4σ−λφ ∼ ξ4nt−2ρξ−4ζ−4β−λξ−4n , (2.3.29)

where in the second expression we used (2.3.6). Furthermore, using the conditions

9As a reference, in the non-derivative coupling case (n = 0) of [45], I = λ2+2ρλ−4
λ2+2ρλ

.
10We focus only on solutions with |n|≥ 1, which guarantees real values for w in the λ > 0 we are

interested in.
11Not to be confused with the curvature perturbation.
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2.3 Anisotropic power-law inflation with derivative couplings

Figure 2.1: In these plots we show how the slow-roll parameter, ε, varies with λ (for
ρ = 20) and ρ (for λ = 0.1), for the values of n shown. Recall that λ, ρ and n are merely
parameters of the potential and gauge kinetic function which are defined, respectively as

V (φ) = V0e
λ
Mpl

φ
and f (φ,X) = M4n

pl f0e
ρ
Mpl

φ
(−X)

−n
.

Figure 2.2: In these plots we show how the anisotropy, Σ
H , varies with λ (for ρ = 20)

and ρ (for λ = 0.1), for negative values of n as shown. Recall that λ, ρ and n are merely
parameters of the potential and gauge kinetic function which are defined, respectively as

V (φ) = V0e
λ
Mpl

φ
and f (φ,X) = M4n

pl f0e
ρ
Mpl

φ
(−X)

−n
.

(2.3.7), we find that the ratio becomes a constant given by

R ∼ ξ4n =
1

ξ4|n| , n < 0 , (2.3.30)

and thus we see why the anisotropy decreases with |n| in the case with derivative

couplings. Since ξ4n is coming from the energy density of the vector field, we see that

the anisotropy is reduced because the energy density of the vector field becomes small

during inflation.
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2. ANISOTROPIC INFLATION

2.3.1 Stability of the anisotropic solutions

We now study the stability of the solutions above using a dynamical system analysis.

For this, we define the dimensionless variables:

W =
σ̇

α̇
, Y =

1

Mpl

φ̇

α̇
, Z =

f(φ,X) e−α+2σ

Mpl

v̇

α̇
, (2.3.31)

where we use the e-fold number as time coordinate, dα = α̇ dt. Using these variables,

the Hamiltonian constraint (2.2.13) can be written as

− V

M2
plα̇

2
= 3(W 2 − 1) +

Y 2

2
+
Z2

2
(1− 4n) . (2.3.32)

Since the inflationary potential is positive definite, we immediately see that (2.3.32)

implies

W 2 +
Y 2

6
+
Z2

6
(1− 4n) < 1 . (2.3.33)

In terms of the variables (2.3.31), the slow-roll parameter ε, becomes:

ε = 3W 2 +
Y 2

2
+
Z2

3
(1− 3n) . (2.3.34)

Using the Hamiltonian constraint (2.3.32), the equations of motion in terms of (2.3.31)

can be written as:

dW

dα
=

1

3
Z2 (W + 1− 3nW ) +W

(
3(W 2 − 1) +

1

2
Y 2

)
, (2.3.35)

dY

dα
=

1

6
Y
{

18W 2 + 3Y 2 + 2Z2 − 6nZ2 + 3C(Y,Z)
[
−4nZ2 (1 + 4W )

+Y
(
−6Y + 6λ (W 2 − 1) + λY 2 − Z2 (−1 + 4n)(λ+ 2ρ)

)]}
, (2.3.36)

dZ

dα
=

1

6
Z
{
−12− 12W + 18W 2 + 3Y 2 + 2Z2 − 6nZ2 − 6ρY

−6nC(Y,Z)
[
4nZ2 (1 + 4W )

−Y (−6Y + 6λ(W 2 − 1) + λY 2 − Z2 (4n− 1)(2ρ+ λ))
]}

, (2.3.37)
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2.3 Anisotropic power-law inflation with derivative couplings

where

C(Y, Z) =
1

Y 2 + 2nZ2 (1− 4n)
. (2.3.38)

We can now find the fixed points of the system by setting dW/dα = dY/dα = dZ/dα =

0. From (2.3.35), we find:

Z2 =
3W (−6 + 6W 2 + Y 2)

2(−1−W + 3nW )
, (2.3.39)

These equations are solved numerically for suitable values of the parameters λ, ρ, and

n (chosen so that w is positive) such that W , Y and Z are all non-zero and real. To

choose appropriate solutions, we perform a linear stability analysis. The isotropic fixed

point solution is located at W = Z = 0, Y = −λ, corresponding the coupling f(φ,X)

being switched off. The linearised equations of motion around this point reduce to:

dδW

dα
=

(
1

2
λ2 − 3

)
δW (2.3.40)

dδY

dα
=

(
1

2
λ2 − 3

)
δY (2.3.41)

dδZ

dα
=

[(
1

2
− n

)
λ2 + ρ λ− 2

]
δZ . (2.3.42)

When λ is small, the LHS of these equations are all negative (corresponding to the

isotropic fixed point being an attractor solution) if λ2 (1− 2n) + 2 ρ λ < 4. If however

λ2 (1− 2n) + 2 ρ λ > 4, the isotropic fixed point is unstable. Since we are searching for

anisotropic solutions, this is the parameter space we want to consider: we require that

ρ > 2
λ −

λ
2 (1− 2n).

Now, we look at two explicit examples to demonstrate that stable derivative anisotropic

solutions can be found with small but non-zero anisotropy.. Consider first the case

with n = −1, λ = 0.1, and ρ = 20, which has a fixed point at (W,Y,Z) = (3.08249 ×

10−6,−9.92559× 10−2,±5.26275× 10−3). Linearisation around this point gives:

dδW

dα
= −2.99504 δW − 3.05955× 10−7 δY ± 3.50854× 10−3 δZ (2.3.43)

dδY

dα
= −2.29684× 10−3 δW − 3.08768 δY ± 0.87150 δZ (2.3.44)

dδZ

dα
= ∓1.07688× 10−2 δW ∓ 0.434252 δY + 9.26389× 10−2 δZ (2.3.45)
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where the change in signs is due to choosing either the positive or negative Z solution.

This system has eigenvalues (−2.99504,−2.96384,−3.11922 × 10−2) whose real parts

are all negative. This system has an average slow-roll parameter of ε = 4.96279× 10−3

(from both (2.3.34) and ε− in (2.3.18)) and anisotropy Σ/H = 3.08249 × 10−6, which

is however too large compared to current data [53, 70]. As a reference, from (2.3.9),

we can also evaluate the constant of integration for the vector field defined in (2.2.10)

in terms of Mpl, f0 and φ0
12. We can compare this solution with the non-derivative

stable one λ = 0.1, ρ = 50, n = 0. In that case, Σ/H = 4 × 10−4 and thus we clearly

see that the derivative coupling decreases the level of anisotropy.

In fact the condition that the anisotropy be small enough is very restrictive [53]

– the anisotropy is not only required to be small but very small (∼ O(10−7) times

smaller) relative to the the slow-roll parameter since g∗ = 259200 ε−1 Σ
H (2.1.4) (using

that horizon-crossing takes place 60 e-folds before the end of inflation). However if

we take some extreme values for the parameters it is possible to find a stable solution

that admits an anisotropy small enough to avoid the bounds in [53, 70]13. As a second

example we take n = −100, λ = 10−6, and ρ = 2 × 106. This has a fixed point at:

(W,Y,Z) = (2.78239× 10−26,−1.00000× 10−6,±5.00415× 10−13). Linearisation of the

W,Y,Z equations around this point gives the equations:

dδW

dα
= −3.00000 δW − 2.78239× 10−32 δY ± 3.33610× 10−13 δZ (2.3.46)

dδY

dα
= −2.00332× 10−16 δW − 3.00000 δY ± 6.02500× 10−4δZ (2.3.47)

dδZ

dα
= ∓1.00083× 10−4 δW ∓ 3.01250× 10−4 δY + 6.03001× 10−8 δZ (2.3.48)

where the change in signs is due to choosing either the positive or negative Z solution,

respectively. The eigenvalues for this set of equations are (−3.00000,−3.00000,−2.00893×
10−10). The eigenvalues’ real parts are all negative and hence this fixed point is sta-

ble. Therefore, this corresponds to a stable solution that produces anisotropy during

inflation. Using (2.3.34), we find the slow-roll parameter to be ε = 5.00000 × 10−13

matching perfectly with the ζ− solution in (2.3.15), which gives the slow-roll parameter

12For example, for (φ0, f0) = (−1, 1), we find pA = ±4.4× 10−7 M2
pl. Inverting (2.3.28), we can also

find the value of v̇ in terms of all the parameters of the model, v̇ ∼ (RV 2f−2e2α−4σ)1/2.
13The example shown here differs from that in the paper [51]. The example in the paper does not

satisfy the constraints on anisotropy but this example, which has a different parameter set, does.
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(for λ, ρ, n given above) as ε− = 5.00000 × 10−13. The average anisotropy is given

by Σ/H = 2.78239 × 10−26 and in addition, w is positive and real. This value of the

anisotropy is consistent with observations because it predicts a value of g∗ ∼ 10−8 (well

below the bound obtained in [53] of g∗ = 0.002± 0.016).

2.4 More general solutions

In the previous section we explored a suitable generalisation of the non-derivative

anisotropic power-law inflation studied in [45] (the gauge kinetic function f = f(φ)

did not depend on the inflaton velocity) where the gauge kinetic function has a mono-

mial dependence on the inflaton’s velocity. Our general equations, however, allow for

an easy exploration of other interesting possibilities. One such possibility is the case

of DBI inflation [46], where the inflaton can be identified with a D-brane position or

a Wilson line. In any case, the vector field featuring on the inflationary D-brane may

give rise to anisotropic solutions. In this model, the scalar action and gauge kinetic

function are given by [64],

P (φ,X) =
2Xγ

γ + 1
+ V (φ) , f(φ,X) = γ1/2 , γ =

1√
1 + 2hX

, (2.4.1)

where h(φ) is a function of the scalar field only (the warp factor associated with the 10-

dimensional geometry where the brane is moving). We see that in the non-relativistic

case, when γ → 1, the scalar field is canonically normalised and the vector field decou-

ples from the inflaton. It is not difficult to check that power-law solutions with h′/h =

const. V ′/V = λ = const. cannot be found since the constraints ε � 1, ζ � 1, and

w > 0 (2.3.13) cannot be simultaneously satisfied. The same happens when considering

a canonically normalised inflaton (2.3.1) coupled disformally to the vector via (2.4.1).

This is consistent with the results of [74] where a detailed analysis is shown.

However, motivated by the DBI anisotropic solutions found in [47], we can modify

slightly this Ansatz. Consider a DBI inflaton, with P given as in (2.4.1), and a mono-

mial, derivative coupling, f , as in (2.3.4). This could correspond to a model where the

inflaton and the vector live on different D-branes. In [47] the authors found power-law

anisotropic solutions with h′/h =const. which implies that γ = γ0 = const. Let us see

this in some detail.
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2.4.1 DBI inflation with monomial, derivative coupling solutions

Considering h′/h = const. implies an exponential form for h, which we take as:

h(φ) =
h0

M4
pl

e
Λ
Mpl

φ
. (2.4.2)

Taking also an exponential form for the inflaton potential as before, (2.3.5), and power-

law solutions for the scale factors and inflaton as in the canonically-normalised case

(2.3.6), we obtain the conditions:

λξ = −2 , ρ ξ + 2 ζ + 2β + 2n = 1 , Λ = −λ . (2.4.3)

The requirement that Λ = −λ is akin to setting γ = γ0 = const. In terms of h0, λ, and

φ0; γ0 becomes:

γ0 =

(
1− 4

h0

λ2
e−λφ0

)− 1
2

. (2.4.4)

By applying the exact same procedure of balancing the amplitudes as we used for

the canonically-normalised case (2.3.8)–(2.3.15), we obtain two analogous solutions that

satisfy all of the system’s equations:

ζ+ =
D +

√
E

72nλ
, ζ− =

D −
√
E

72nλ
, (2.4.5)

where

D = 6λ+ 18nλ− 36n2 λ+ 12 ρ+ 36nρ , (2.4.6)

and

E = D2 − 144nλ

(
8

γ0 λ
+ λ− 2nλ+ 8 ρ− 12nρ+ 12

ρ2

λ

)
. (2.4.7)

Anisotropic inflationary solutions can now be found for suitable choices of the param-

eters, as long as they satisfy the constraints that u,w (defined as before (2.3.9)) must

be real and positive, and, of course, ε = 1/ζ � 1. As a concrete example, a stable

solution can be found by for λ = 0.01, ρ = 300, n = −2, γ0 = 1.5. It has anisotropy

Σ/H = 1.32254× 10−10 and slow-roll parameter ε = 3.33306× 10−5.

We now consider the stability of this anisotropic DBI solution. We define dimen-
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sionless variables analogous to the canonically-normalised case:

W =
σ̇

α̇
, Y =

γ0

Mpl

φ̇

α̇
, Z =

f(φ,X) e−α+2σ

Mpl

v̇

α̇
. (2.4.8)

The Hamiltonian constraint (2.2.13) for this system becomes:

− V

M2
pl α̇

2
= 3(W 2 − 1) +

Y 2

1 + γ0
+
Z2

2
(1− 4n) , (2.4.9)

and the slow-roll parameter:

ε = 3W 2 +
Y 2

2γ0
+
Z2

3
(1− 3n) . (2.4.10)

The equations of motion in terms of (2.4.8) become:

dW

dα
=

1

3
Z2 (W + 1− 3nW ) +W

(
3(W 2 − 1) +

Y 2

2γ0

)
, (2.4.11)

dY

dα
= F (Y,Z)Y

{
3 γ0 Y

4 + 4 γ0 nZ
2
[
−3W (3W (4n− 1) + 4) + Z2 (n (12n− 7) + 1)− 3

]
+

2Y 2
[
Z2
(
γ2

0 − 3n
(
γ2

0 + 4n− 1
))

+ 9 γ2
0 W

2 − 9
]

+ 3λY
(
−4nZ2 + 6W 2 + Z2 − 6

)

+6ρ Y Z2 (1− 4n) + 3γ0 λY
3
}

(2.4.12)

dZ

dα
= F (Y, Z)Z

{
48 γ0 n

3 Z4 + 2n
[
2Z2 γ0 (−6− 6W + 9W 2 + Z2) + 3Y 2(−6 + Z2 − γ2

0Z
2)

+3λY (−6 + 6W 2 + Z2) + 3λ γ0 Y
3
]
− 4n2Z2

[
γ0(−18 + 36W 2 + 7Z2) + 6Y (Y + λ)

]

+ γ0 Y
2
[
2γ0(−6− 6W + 9W 2 + Z2) + 3Y (Y − 2ρ)

]}
, (2.4.13)

where

F (Y,Z) =
1

6 γ0 (2nZ2(1− 4n) + γ0 Y 2)
. (2.4.14)
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This system reduces to the canonically-normalised case (2.3.35)–(2.3.37) when γ0 → 1.

This system permits stable, anisotropic solutions. As an example, a stable solution can

be found by taking λ = 0.01, ρ = 300, n = −2, γ0 = 1.5. With these parameters, we

find a fixed point at (W,Y,Z) = (1.32254× 10−10,−9.99917× 10−3,±3.45004× 10−5).

Linearisation of equations (2.4.11)–(2.4.13) around this fixed point yields:

dδW

dα
= −2.99997 δW − 8.81622× 10−13 δY ± 2.30003× 10−5 δZ (2.4.15)

dδY

dα
= −1.2701× 10−6 δW − 1.33371 δY ± 6.44229× 10−2 δZ (2.4.16)

dδZ

dα
= ∓6.90183× 10−5 δW ∓ 2.53082× 10−2 δY + 8.89147× 10−4 δZ . (2.4.17)

This fixed point has eigenvalues (−2.99997,−1.33249,−3.33631×10−4) and is therefore

stable. However, it has anisotropy Σ/H = 1.32254 × 10−10 and slow-roll parameter

ε = 3.33306 × 10−5, making it incompatible with data since this gives g∗ = 1.03 with

horizon-crossing taken to be 60 e-folds before the end of inflation.

2.5 Discussion

We have studied anisotropic inflationary solutions where the inflaton couples to a vector

field derivatively. That is, the gauge kinetic function depends both on the inflaton and

its derivative, f(φ,X), with 2X = (∂φ)2. This coupling is motivated by D-brane

inflationary models, where the D-brane features a vector on its world-volume, and

couples derivatively to the brane’s position (or a Wilson line), the inflaton. Moreover,

such couplings parametrise generic inflaton-matter couplings, which may be relevant in

studies of the inflationary universe as a cosmological collider [67]. On the other hand,

they also appear in the EFT of anisotropic inflation [68, 69].

We started by presenting a general set-up, which allows for the study of a wide range

of models. We studied first an immediate generalisation of the power-law anisotropic

model studied in [45], where the gauge kinetic function is a monomial in X, (2.3.4),

while exponential in the inflaton. We found that there are no stable inflationary solu-

tions for a purely shift symmetric coupling (that is fφ = 0). However, stable derivative

anisotropic solutions arise for a large range of parameters. Interestingly, compared to

the non-derivative (n = 0) case of [45], the derivative anisotropic solutions have a lower

level of anisotropy, although it still proves difficult to find solutions that can satisfy the
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2.5 Discussion

constraints on the degree of anisotropy imposed by bounds on g∗ [53]. We presented

two illustrative examples, one of which satisfies this bound on the anisotropy, but re-

quires very large values for ρ, λ and |n|. We found that the value of the anisotropy

depends mildly on the power n in (2.3.4), which needs to be negative. We also found

that the DBI generalisation of the power-law solutions in [45] can also be extended

to the derivative case. That is, derivative anisotropic DBI solutions exists, where the

gauge kinetic function is a monomial in X (see (2.3.4)). This example could correspond

to a DBI inflationary model where the inflaton and the vector field live on different

D-branes. On the other hand, in the case where the inflaton and vector live on the

same brane, the gauge kinetic function is dictated by the model and given by (2.4.1). In

this case however, the requirements of inflation, small anisotropy and a positive vector

energy density (w > 0) are not compatible and thus there are no solutions.

As we discussed in section 2.3, it is easy to understand the decrease in the anisotropy

(that occurs with an increase in |n|) by looking at its final value, which is given by the

ratio of the energy density of the vector field to that of the scalar field and is given by

(2.3.30). The energy density of the vector field is reduced by the derivative coupling

and thus there is a reduction in the anisotropy. An obvious follow-up to this work is to

look at how the derivative coupling affects the induced anisotropy in the power spectra.
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Chapter 3

Enhancement of the primordial

gravitational wave spectrum

In this chapter, we will discuss a popular mechanism for enhancing the gravitational

wave spectrum of an inflationary model by the coupling of either the inflaton itself or a

spectator axion field to a gauge field. This coupling can source tensor perturbations to

the gauge field which can act, in turn, as a source for the metric tensor perturbations,

effectively amplifying the tensor-to-scalar ratio.

3.1 Motivations

Next generation observations of the CMB such as by CMB-S4 [41, 75] will constrain

the tensor-to-scalar ratio down to r ∼ O(10−3). A detection of r at such a high value

is of particular interest to low-energy models of inflation that predict an unobservably

low value of r. As we will see in chapter 4, an example of this is Kähler moduli inflation

whose tensor-to-scalar ratio is very low: the prototypical model predicts r < 10−10 [49]

and examples with slightly higher energy scales predict at most r . 10−6[76]. With this

in mind, would a positive detection of B-mode polarisation in the CMB (at r & 10−3)

rule out Kähler moduli inflation or is there a secondary mechanism that can act as a

source for the gravitational wave spectrum and enhance it to a large value without the

need for a high energy scale of inflation (see chapter 1)? This question is the main

concern of this thesis.
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3. ENHANCEMENT OF THE PRIMORDIAL GRAVITATIONAL
WAVE SPECTRUM

In this chapter we will review an enhancement mechanism which sources gravita-

tional waves indirectly from a coupling between an axion field and a gauge field. This

review will start with the mechanism described in [2] which, although not the first

model to have successfully enhanced the gravity wave sector through the coupling of

an axion to the gauge field, was the first model to do so with a non-constant velocity

for the axion and with the evolution of the axion being subject to a potential [2]. We

will then move on to refinements of the model that will prove useful in our quest to

apply this mechanism to Kähler moduli inflation, particularly the model put forward

in [3].

3.2 Basic model

Our starting point is the model of [2, 48] which has an action given by

S =

∫
d4x
√
−g

{
M2

pl

2
R− 1

2
∂µφ∂

µφ− 1

2
∂µσ∂

µσ − V (φ)− U(σ)

−1

4
FµνF

µν − α σ

4f
FµνF̃

µν

}
(3.2.1)

where g is the spacetime metric determinant; {µ, ν, . . . } are spacetime indices; R is

the Ricci scalar; φ is explicitly the inflaton and is driven by the potential, V (φ); σ is

a pseudo-scalar (axion) spectator field1 with its own separate potential, U(σ); Fµν =

∂µAν − ∂νAµ is the field strength tensor of a vector field, Aµ; F̃µν = εµναβ

2
√
−gFαβ is the

dual field strength of Aµ (with εµνρσ the Levi-Civita symbol with ε1234 = 1); and α and

f are constants (with f the axion decay constant). Notice that due to the presence of

the 1/
√
−g in the definition of the dual field strength tensor, F̃ , the term

√
−gα σ

4fFF̃

has no dependence on the metric and will therefore make no contribution to the energy-

momentum tensor. Also, it is important to understand that the term FF̃ cannot exist

in the action on its own – it must be coupled to another field. This is because

S ⊃
∫
d4x
√
−gF F̃ = 2

∫
d4x εµνρσ∂µAν∂ρAσ

= −2

∫
d4x εµνρσ (∂ρ∂µAν)Aσ = 0 (3.2.2)

1‘Spectator’ meaning it does not affect the background inflationary evolution.
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3.2 Basic model

where we have integrated by parts and used the antisymmetry of ε and the symmetry

of partial derivatives. Without going into a lot of detail2, the main goal of this section

will be to argue why this coupling between the axion, σ and the vector field introduces

an extra source term for the primordial gravitational waves.

To start with it is important to understand that during inflation a vector field

will be diluted (in particular its energy density will become negligible) because of the

rapid expansion of the universe very quickly without some source that is continually

producing it. We can see this by considering quickly the action for a vector field without

a coupling like the one above

Svector =

∫
d4x
√
−g
{
−1

4
FµνF

µν

}
. (3.2.3)

This of course gives equations of motion for the vector field

∇µFµν = 0 (3.2.4)

which, under the Lorenz gauge (A0 = 0, ∂iAi = 0) in a flat FRW spacetime (ds2 =

−dt2 + a(t)2δijdx
idxj) becomes

Äi +HȦi −
1

a2
∇2Ai = 0, (3.2.5)

or in conformal time

A′′i −∇2Ai = 0 (3.2.6)

where H = ȧ
a is the Hubble parameter and primes indicate derivatives with respect

to conformal time. Promoting Ai to an operator, it can be defined through its mode

functions as

Âi (τ, ~x) =

∫
d3k

(2π)3/2
ei
~k·~xÂi

(
τ,~k
)

=
∑
λ=±

∫
d3k

(2π)3/2

{
ελi

(
~k
)
Aλ

(
τ,~k
)
â
(
~k
)
ei
~k·~x + ελi

(
~k
)∗
Aλ

(
τ,~k
)∗
â†
(
~k
)
e−i

~k·~x
}
(3.2.7)

where λ denotes the helicity of the mode, âλ are creation operators that satisfy

2Since the specific model relevant to this thesis is [3] which will be discussed in the next section.
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[
âλ

(
~k
)
, â†λ′

(
~k′
)]

= (2π)3δλλ′δ
3 (k − k′) and ελi are polarisation tensors that satisfy

~k · ~ε± = 0, i~k × ~ε± = ±k~ε±, ~ε± · ~ε± = 0, ~ε± · ~ε∓ = 1,
(
~ε±
)∗

= ~ε∓ , (3.2.8)

as well as

~ε± (−~p) = ~ε∓ (~p) . (3.2.9)

With these conditions, it is easy to show that the equation of motion for the mode

functions satisfies

A′′± + k2A± = 0, (3.2.10)

which clearly has an oscillatory solution (A(k, τ) ∼ e±ikτ with τ conformal time) and

no growing mode. In an FRW spacetime, the electric, E, and magnetic, B, fields of Â

are given by

Êi = − 1

a2
Â′, B̂i =

1

a2
εijk∂jÂk (3.2.11)

and therefore (with A not growing), E and B quickly decrease as a grows exponentially.

The energy density in the vector field is

ρA =

〈
E2 +B2

2

〉
(3.2.12)

and therefore the energy density of a (massless) vector field with no coupling to a

secondary field scales as a−4. This is why we say that vector fields are quickly diluted

during inflation due to the exponentially fast increase in the scale factor, a.

A massless vector field therefore requires a coupling to some secondary field to be

supported during inflation. This is why the coupling to the axion, σ, in (3.2.1) is

required – under the right conditions for σ, this coupling can support the vector field

for a sizeable time during inflation. With a vector field active, there exists a source for

the gravitational waves as we will show later in this section. The equation of motion

for the vector field including the coupling
√
−gα σ

4fFF̃ becomes

A′′i −∇2Ai −
ασ′

f
(∇× ~A)i = 0 (3.2.13)

where the axion has been taken to be homogeneous, σ = σ(τ) and, once again, we have

used the Lorenz gauge. Taking the same form for Âi as an operator as in (3.2.7), we
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arrive at the mode equation

A′′± +

(
k2 ∓ kασ

′

f

)
A± = 0 . (3.2.14)

The axion is taken to have potential

U (σ) =
Λ4

2

[
cos

(
σ

f

)
+ 1

]
. (3.2.15)

Ignoring the backreaction of the vector on the axion, it has equation of motion (in

cosmic time)

σ̈ + 3Hσ̇ − Λ4

2f
sin

(
σ

f

)
= 0 (3.2.16)

with an analytic solution

σ = 2f tan−1
(
eδH(t−t∗)

)
(3.2.17)

where δ := Λ4

6H2f2 and t∗ refers to the time at which the axion goes to its minimum:

σ = π
2 f . Most interestingly for our purposes, its derivative has the form

σ̇ =
fHδ

cosh (δH(t− t∗))
. (3.2.18)

Defining ξ := ασ̇
2Hf ,

ξ =
ξ∗

cosh (δH(t− t∗))
=

2ξ∗(
a
a∗

)δ
+
(
a∗
a

)δ (3.2.19)

with ξ∗ = α δ/2 and a∗ the respective values of ξ and a at t = t∗, σ
′ can be written

σ′ =
2aHfξ

α
=

4aHfξ∗

α

[(
a
a∗

)δ
+
(
a∗
a

)δ] = − 4ξ∗f

α τ

[(
τ∗
τ

)δ
+
(
τ
τ∗

)δ] (3.2.20)

where we have used a = − 1
Hτ and τ∗ is the value of τ at which the axion goes to its

minimum. The vector equation (3.2.14) becomes

A′′± +

k2 ± 4kξ∗

τ

[(
τ∗
τ

)δ
+
(
τ
τ∗

)δ]
A± = 0 . (3.2.21)
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Figure 3.1: Plots (on a log-log scale) of A+ against x = −kτ = k/aH with different
normalisation factors. We have used values from [2] of δ = 0.2 and ξ∗ = 5 and chosen the
minimisation point of the axion, x∗ = −kτ∗ = 1, to be horizon-crossing. A+ is greatly
enhanced as inflation proceeds.

With ξ∗ > 0 chosen to be positive, only the positive helicity modes, A+, are amplified3

and the A− modes can be ignored. An approximate analytic solution to this (see [2]

Appendix A) is given by

A+ (τ, k) ' N1

(
− τ

ξ(τ)

)1/4

exp

(
−4ξ

1/2
∗

1 + δ

(
τ

τ∗

)δ/2√
−kτ

)
(3.2.22)

and

A′+ ' N2

(
ξ(τ)

−2τ

)1/4

exp

(
−4ξ

1/2
∗

1 + δ

(
τ

τ∗

)δ/2√
−kτ

)
(3.2.23)

where N1 and N2 are normalisation factors that depend on k, ξ∗, x∗, δ, the details

of which are not important for our purposes – the key point is that A+ is indeed

enhanced. To demonstrate this, the solution (3.2.22) is plotted in FIG. 3.1 for a range

of normalisations4. A+ is greatly enhanced as inflation proceeds.

The electric and magnetic fields, Êi = − 1
a2 Â

′
i and B̂i = 1

a2 εijk∂jÂk, can be written

Êi(τ, ~x) =

∫
d3k

(2π)3/2
ei
~k·~xε+i

(
k̂
)
E+(τ, k)

[
â+

(
~k
)

+ â†+

(
−~k
)]

,

B̂i(τ, ~x) =

∫
d3k

(2π)3/2
ei
~k·~xε+i

(
k̂
)
B+(τ, k)

[
â+

(
~k
)

+ â†+

(
−~k
)]

(3.2.24)

3Remember that conformal time is negative during inflation, therefore with ξ∗ positive, the term

4kξ∗/
(
τ
[
(τ∗/τ)δ + (τ/τ∗)

δ
])

is negative.
4Strictly speaking, the normalisations in the plot do not correspond to N as stated in (3.2.22) – due

to changing coordinates to x = −kτ .
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3.2 Basic model

Figure 3.2: Plots (on a log-log scale) of E+ (left) and B+ (right) against x = −kτ = k/aH
with different normalisation factors. We have used values from [2] of δ = 0.2 and ξ∗ = 5
and chosen the minimisation point of the axion, x∗ = −kτ∗ = 1, to be horizon-crossing.
Both are greatly enhanced as inflation proceeds despite the accelerated expansion of the
universe.

with

E+(τ, k) = −N3τ
2

(
ξ(τ)

−2τ

)1/4

exp

(
−4ξ

1/2
∗

1 + δ

(
τ

τ∗

)δ/2√
−kτ

)

B+(τ, k) = N4τ
2

(
−τ

8ξ(τ)

)1/4

exp

(
−4ξ

1/2
∗

1 + δ

(
τ

τ∗

)δ/2√
−kτ

)
. (3.2.25)

In FIG. 3.2, we plot E+ and B+ to show that they are both enhanced up until about

horizon-crossing where the axion reaches its minimum. As we shall see, Ei and Bi

appear in the source term for the gravitational tensor perturbations.

In order to determine the primordial gravitational wave spectrum, we must find the

action to second order in tensor perturbations. Defining the perturbed metric tensor

in conformal time through

ds2 = a2
[
−dτ2 + (δij + hij(τ, ~x)) dxidxj

]
(3.2.26)

where the tensor perturbation to the metric is transverse, ∂ihij = 0, and traceless hii =

0. We are interested only in contributions with a coupling to hij in the action – this

automatically rules out the α
√
−g σ

4fFF̃ term since this contains no metric coupling.

The Ricci scalar and metric determinant to second order are (see standard lecture notes

e.g. [77])
√
−g = a4 − a4

4
hijhij (3.2.27)
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R = 6
a′′

a3
− 1

a2

(
hijh

′′
ij +

1

4
∂ihjk∂ihjk +

3

4
h′ijh

′
ij + 3

a′

a
hijh

′
ij

)
(3.2.28)

where we are summing over lowered indices to emphasise that the metric is not involved

in the summation. Combining these and considering only perturbations up to second

order, we get the contribution to the action from the Einstein-Hilbert term(
M2

pl

2

∫
dτd3x

√
−gR

)
hµν

=
M2

pl

2

∫
dτd3x

{
−3

2
aa′′hijhij − a2hijh

′′
ij −

a2

4
∂ihjk∂ihjk −

3a2

4
h′ijh

′
ij − 3a′ahijh

′
ij

}
=
M2

pl

2

∫
dτd3x

{
−3

2
aa′′hijhij −

a2

4
∂ihjk∂ihjk +

a2

4
h′ijh

′
ij − a′ahijh′ij

}
=
M2

pl

2

∫
dτd3x

{
1

2

((
a′
)2 − 2aa′′

)
hijhij −

a2

4
∂ihjk∂ihjk +

a2

4
h′ijh

′
ij

}
(3.2.29)

where we have repeatedly integrated by parts. An additional contribution that perfectly

cancels the first term above comes from the minimal coupling of gravity to the scalar

fields: (∫
dτd3x

{√
−gLφ

})
hµν

= −
∫
dτd3x

a4

4
hijhij

{
1

2a2

(
φ′
)2

+
1

2a2

(
σ′
)2 − V (φ)− U(σ)

}
= −

∫
dτd3x

a4

4
hijhij p = −

M2
pl

4

∫
dτd3xhijhij

((
a′
)2 − 2aa′′

)
(3.2.30)

where we have used the Friedmann equations in conformal time

3M2
pl

(
a′
)2

= a4ρ

6M2
pl

((
a′
)2 − a′′a) = a4 (ρ+ 3p) (3.2.31)

with ρ = 1
2a2 (φ′)2 + 1

2a2 (σ′)2 +V (φ)+U(σ) and p = 1
2a2 (φ′)2 + 1

2a2 (σ′)2−V (φ)−U(σ)

the energy density and pressure of the inflationary universe, respectively5. All that is

5As a condition the energy density in the vector field is taken to be much lower than that of inflaton
to ensure the background inflationary evolution is not affected. In fact, we could easily ignore the
contribution of the axion to ρ and p as well as this is also vastly sub-dominant with respect to the
inflationary potential, V .
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3.3 Using an isotropic gauge field

left is therefore to find the perturbation to the term

−1

4

√
−ggµρgνσFµνFρσ . (3.2.32)

The lowest order contribution is actually linear in hij :(
−1

4

√
−ggµρgνσFµνFρσ

)
hµν

= −1

2
hij
(
A′iA

′
j + εiklεjmn∂kAl∂mAn

)
= −a

4

2
hij (EiEj +BiBj) (3.2.33)

and higher order terms in hij are exponentially suppressed relative to the linear con-

tribution to the source term for the tensor power spectrum. This means our perturbed

action becomes

Shµν =

∫
dτd3x

{
M2

pla
2

8

(
ĥ′ij ĥ

′
ij − ∂iĥjk∂iĥjk

)
− a4

2
ĥij

(
ÊiÊj + B̂iB̂j

)}
. (3.2.34)

This leads to an equation of motion for hij :

ĥ′′ij + 2
a′

a
ĥ′ij −∇2ĥij = − 2a2

M2
pl

(
ÊiÊj + B̂iB̂j

)
(3.2.35)

where it is clear that the right-hand side is a source term for the gravitational waves if

the vector field is active during inflation.

3.3 Using an isotropic gauge field

Our attention now turns to a related model described in [3], where instead of a U(1)

vector, the axion is coupled to an SU(2) gauge field. This model can be seen as an

extension to chromo-natural inflation [78–81]6 where the axion and gauge sector are

now spectator fields, and there is a scalar field that acts as the inflaton.

6Chromo-natural inflation is a theory in which the inflaton is an axion field that enters slow-roll due
to its coupling to an SU(2) gauge field. This coupling leads to a large tensor-to-scalar ratio. In pure
chromo-natural inflation, it is impossible to satisfy the bounds on r and ns concurrently [81].
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3.3.1 Background evolution

The action of [3] takes the form

S =

∫
d4x
√
−g

{
M2

pl

2
R− 1

2
∂µφ∂

µφ− V (φ)− 1

2
∂µχ∂

µχ− U(χ)

−1

4
FAµνF

Aµν +
λχ

4f
FAµνF̃

Aµν

}
(3.3.1)

where again φ is the scalar field inflaton, driven by the potential V (φ); χ is a spectator

axion field, driven by the potential U(χ); FAµν = ∂µA
A
ν −∂νAAµ−g εABCABµACν is the field

strength tensor of the SU(2) gauge field, AAµ , with A,B,C . . . the gauge indices and g

the gauge coupling; and F̃Aµν = 1
2
√
−g ε

µνρσFAρσ is the dual field strength. An explicit

isotropic form for the gauge field, which greatly simplifies the background equations of

motion, is assumed immediately:

AA0 = 0, AAi = δAi a(t)Q(t) (3.3.2)

where Q is a scalar field and a(t) is the scale factor of the universe. With this form for

AAµ , a few identities will prove useful

FAµνF
Aµν = 6g2Q4 − 6

(
Q̇+HQ

)2
(3.3.3)

and

F̃AµνFAµν = −12gQ2
(
Q̇+HQ

)
. (3.3.4)

The background equations of motion for this system are then

φ̈+ 3Hφ̇+
dV

dφ
= 0 , (3.3.5)

χ̈+ 3Hχ̇+
dU

dχ
= −3gλ

f
Q2
(
Q̇+HQ

)
, (3.3.6)

Q̈+ 3HQ̇+
(
Ḣ + 2H2

)
Q+ 2g2Q3 =

gλ

f
χ̇Q2 , (3.3.7)

3M2
plH

2 =
φ̇2

2
+ V (φ) +

χ̇2

2
+ U(χ) +

3

2

(
Q̇+HQ

)2
+

3

2
g2Q4 , (3.3.8)
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3.3 Using an isotropic gauge field

and

−2M2
plḢ = φ̇2 + χ̇2 + 2

(
Q̇+HQ

)2
+ 2g2Q4 . (3.3.9)

It will prove useful to define the slow-roll parameter in terms of components

ε = − Ḣ

H2
= εφ + εχ + εE + εB (3.3.10)

with

εφ :=
φ̇2

2M2
plH

2
, εχ :=

χ̇2

2M2
plH

2
, εE :=

(
Q̇+HQ

)2

M2
plH

2
, εB :=

g2Q4

M2
plH

2

(3.3.11)

where, using electromagnetic notation, E and B refer to the “electric” and “magnetic”

parts of the gauge field, respectively. In [3], a specific inflationary model is not assumed,

and instead they require only that the energy density in the inflaton field is much greater

than the energy densities of the axion and the gauge field, ρφ � ρχ, ρQ. This ensures

that 3M2
plH

2 ∼ V (φ) and that the basic inflationary predictions of the model, including

ns are negligibly affected by the presence of the spectator axion and gauge fields. As

in the model presented in the previous section, the gauge field, Q, is supported by the

rolling of the axion, χ, and a rough estimate for its value can be found by considering

(3.3.6) in the extreme slow-roll limit. The equations become

dU

dχ
≈ −3gλ

f
HQ3 =⇒ Q ≈

(
− f

3gλH

dU

dχ

)1/3

, (3.3.12)

and with this form for Q, the contribution from the potential to the equation of motion

for χ is almost perfectly cancelled by the contribution of the gauge field – this allows

the axion to slow roll. We will present a toy model where an inflationary potential of

the form7

V (φ) = Λ4
(

1−m1φ e
−m2φ

)
(3.3.13)

is taken to demonstrate the key features of the enhancement mechanism. The potential

for the axion is (as in [3])

U(χ) = µ4

(
1 + cos

(
χ

f

))
. (3.3.14)

7This is the same potential that was shown in the introduction Figure 1.2.
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We use the parameters

g = 1.11× 10−2, µ = 2.10× 1015 GeV, f = 4.00× 1016 GeV, λ = 280

(3.3.15)

and

Λ = 8.80× 1015 GeV, m1 = 8.91× 10−19 GeV−1, m2 = 3.29× 10−19 GeV−1 ,

(3.3.16)

as well as initial conditions

φin = 8.87Mpl, χin = 0.1πf, Qin =

(
− f

3gλ
√
V (φin)/3

dU

dχ

∣∣∣∣
χ=χin

)1/3

Mpl

(3.3.17)

where we have used (3.3.12) as an initial condition for Q, taken H ∼
√
V/3M2

pl and

converted to Planck units for convenience. We define the effective mass of the gauge

field as

ξQ :=
gQ

H
(3.3.18)

and note for now that, in general, the higher the value of this at horizon-crossing, the

greater the amplification to the gravitational wave spectrum. We define also

ξχ :=
λ

2fH
χ̇ (3.3.19)

and note that in the slow-roll limit (3.3.6) becomes

2H2Q+ 2g2Q3 ≈ gλ

f
χ̇Q2 =⇒ λ

2fH
χ̇ ≈ gQ

H
+

H

gQ
=⇒ ξχ ≈ ξQ + ξQ

−1 . (3.3.20)

With ξQ > 1, ξχ ∼ ξQ suggesting that the faster the axion is evolving after it has

entered its slow-roll phase, the larger ξQ will be. Plots of the evolutions of the (back-

ground) fields and their energy densities are shown in FIG. 3.3–3.6. The scalar field,

φ, completely dominates the energy density of the universe and therefore the basic in-

flationary predictions of this toy model are unaffected by the presence of the spectator

fields. The axion rolls to its minimum and while it is rolling supports the gauge field

through the coupling gλ
f χ̇Q

2 that appears in the equation of motion for Q. The axion

rolls at a speed that is roughly given by ξχ = ξQ + ξQ
−1.
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3.3 Using an isotropic gauge field

Figure 3.3: Plots of the evolution of the scalar inflaton, φ, in units of Mpl during the last
60 e-folds and last few e-folds of inflation in the left and right figure, respectively.

Figure 3.4: Plots of the evolution of the spectator axion (left figure) and ξχ = λ
2Hf χ̇

(right figure) during the last 60 e-folds of inflation.

Figure 3.5: Plots of the evolution of the gauge field, Q (left figure), and its effective mass,
ξQ = gQ

H (right figure), during the last 60 e-folds of inflation.
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Figure 3.6: Plot (on a log scale) of the energy densities of the inflaton (blue), ρφ = 1
2 φ̇

2 +

V , the axion (orange), ρχ = 1
2 χ̇

2 + U , and the gauge field (green), ρQ = 3
2

(
Q̇+HQ

)2

+
3
2g

2Q4. The energy densities of the axion and the gauge field are vastly sub-dominant to
the energy density in φ, which allows φ to cause inflation.

Figure 3.7: Plot (on a log scale) of ε = − Ḣ
H2 (blue), and its components: εφ = φ̇2

2M2
plH

2

(orange), εχ = χ̇2

2M2
plH

2 (green), εB = g2Q4

M2
plH

2 (red), and εE =
(Q̇+HQ)

2

M2
plH

2 during the last 60

e-folds of inflation.
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3.3 Using an isotropic gauge field

For reference, the basic inflationary predictions of this model are (taking horizon-

crossing to be 60 e-folds before the end of inflation)

ns = 0.966, rb = 16ε = 4.82× 10−3 (3.3.21)

where rb is the background (non-amplified) tensor-to-scalar ratio, and ns = 1− 2ε− η

is the scalar spectral index.

3.3.2 Tensor perturbations

In order to evaluate the amplification of the gravitational wave spectrum, we must

consider the tensor perturbations of the action (3.3.1) to second order. We set up the

perturbations to the gauge field exactly as in [3, 80]

AA0 = a(t)δAi (Yi + ∂iY ) ,

AAi = a(t)
{

(Q+ δQ) δAi + ∂i (Mj + ∂jM) δAj + εACi δCj (Wj + ∂jW ) + δAj Tij
}

(3.3.22)

where Yi, Mi and Wi are vector perturbations that are safe to neglect since they have

been shown to decay rapidly on super-horizon scales [80]; Y , δQ, M , and W are scalar

perturbations; and Tij is a transverse, traceless tensor perturbation. In addition to

this, the SU(2) gauge freedom allows us to set W = 0.

Following [3] and without loss of generality, we take the wavevector of the tensor

modes to be along the z-axis, ~k = kz ẑ. The gauge field becomes

A1
µ = a(t) (0, Q+ δQ+ T+, T×, 0) ,

A2
µ = a(t) (0, T×, Q+ δQ− T+, 0) ,

A3
µ = a(t)

(
∂zY, 0, 0, Q+ δQ+ ∂2

zM
)

(3.3.23)

where the tensor perturbations have been chosen to be of circular and cross polarisation

with directionality along the z-axis:

Tij =

T+ T× 0
T× −T+ 0
0 0 0

 . (3.3.24)
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Equivalently to this, the perturbed metric can be written as (ignoring scalar perturba-

tions to the metric)8

gµν = a2(τ)


−1 0 0 0
0 1 + h+ h× 0
0 h× 1− h+ 0
0 0 0 1

 (3.3.25)

with inverse (to second order)

gµν = a2(τ)


−1 0 0 0
0 1− h+ + h2

× + h2
+ −h× 0

0 −h× 1− h+ + h2
× + h2

+ 0
0 0 0 1

 (3.3.26)

where we have moved to conformal time, τ , and the metric satisfies gµρg
ρν = δνµ+O(h3)

up to second order in perturbations. We note that to second order T+,× = T+,× (τ, z)

and h+,× = h+,× (τ, z) are the polarisations of the gauge and gravitational wave tensor.

The system can be simplified by defining left- and right-moving modes for the tensors

ψL,R :=
a(τ)Mpl

2
(h+ ± ih×) , tL,R := a(τ) (T+ ± iT×) . (3.3.27)

Explicitly we wish to find the action

(3.3.28)

S =

∫
d4x

{
M2

pl

2

√
−gR− 1

2

√
−ggµν∂µφ∂νφ−

√
g V − 1

2

√
ggµν∂µχ∂νχ

−
√
−g U − 1

4

√
−ggµρgνσF aµνF aρσ +

λ

8f
χεµνρσF aµνF

a
ρσ

}

to second order. The full second order action is in Appendix B and leads to the following

equations of motion for the tensor modes

∂2
xψR,L +ψR,L

[
1− 1

x2
(2 + εE − 3εB − 4εφ− 4εχ)

]
=

2
√
εE

Mplx
∂xtR,L +

2
√
εB
x2

tR,L (ξQ∓ x)

(3.3.29)

8The scalar perturbations to the metric have a negligible effect on the scalar equations of motion and
we demonstrate this explicitly in chapter 5 when we apply this mechanism to Kähler moduli inflation.
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and

∂2
xtR,L + tR,L

[
1∓ 2

x
(ξχ + ξQ) +

2

x2
ξχξQ

]
= −

2
√
εE

Mplx
∂xψR,L + ψR,L

[
2

x2

√
εE +

2

x2

√
εB (ξQ ∓ x)

]
(3.3.30)

where we have changed variables to x = −kτ = k/aH.

These are the full equations that will be used for numerical calculations, but first

it will prove useful to study a slow-roll expansion of these equations to get a feel for

what is going on. Ignoring anything higher order in slow-roll parameters than
√
εi and

ignoring the RHS of equation of motion for tR,L, which has a negligible effect on the

evolution of tR,L, we arrive at the much simpler equations of motion:

∂2
xψR,L + ψR,L

(
1− 2

x2

)
=

2
√
εE
x

∂xtR,L +
2
√
εB
x2

(ξQ ∓ x) tR,L (3.3.31)

and

(3.3.32)∂2
xtR,L = −tR,L

[
1∓ 2

x
(ξχ + ξQ) +

2

x2
ξχξQ

]
.

Examining first the equation of motion for the tensor perturbations of the gauge field

(3.3.32), we see that well before horizon-crossing when x � 1, ∂2
xtR,L ∼ −tR,L: both

right- and left-moving modes are not growing. However as x becomes smaller but still

larger than 1, there reaches a point where the dominant term inside the bracket on

the RHS of (3.3.32) is ∓ 2
x (ξχ + ξQ) if ξχ ∼ ξQ is large enough so that 2

x (ξχ + ξQ) > 1

while 1
x �

1
x2

9. We see immediately that in this region where ∓ 2
x (ξχ + ξQ) is dominant,

that the right-moving tensor mode, tR, will become a growing mode. Around horizon-

crossing x ∼ 1, the term 2
x2 ξχξQ becomes the dominant term and in this region both

tR,L are not growing modes and remain as such for x < 1. Therefore, we see that tL will

never become a growing mode and is of no interest, whereas it is possible that tR can

become a growing mode for a short period of time (known as a transient instability)

just before horizon-crossing x & 1. Examining now the equation of motion for the

gravitational tensor perturbations, (3.3.31), we see that well before horizon-crossing,

x� 1, the RHS of the equation is heavily suppressed and therefore there is no source

term for the modes. However as x approaches 1, the terms on the RHS can become

9In practice this is not difficult to achieve and a value of ξQ & 2 will usually suffice.
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Figure 3.8: Plot of
√

2kx|ψR| and
√

2kx|tR| against x = k/aH with horizon-crossing,
x = 1, taken to be 60 e-folds before the end of inflation for the background solution shown
in FIGs 3.3–3.7. The right-helicity mode of the gravitational wave tensor receives a modest
enhancement. For reference the non-sourced solution for ψR is also plotted (dashed line).

important if the gauge field mode is large enough, and since tR is a growing mode in

this region, we see that the right-helicity mode of the gravity wave tensor, ψR, receives

a source term and can be amplified if tR is large enough.

Solving equations (3.3.29)–(3.3.30) numerically with the background system shown

above (FIGs 3.3–3.7) leads to the solution for ψR and tR shown in FIG. 3.8. We use

standard Bunch-Davies initial conditions

tR(xin) = ψR(xin) =
1√
2k
, t ′R(xin) = ψ ′R(xin) =

i√
2k

(3.3.33)

where xin is some relatively large number numerically approximating infinity, we take

to be xin = 2 × 104. The right-helicity mode of the gravitational wave tensor, ψR,

receives a modest enhancement (compared to the non-sourced, dashed-line solution)

due to its coupling to tR which experiences a transient instability that temporarily

increases its magnitude round x ∼ 1.

The right/left-helicity tensor power spectrum is given by

P
R,L
t =

H2

π2

∣∣∣∣√2kxψR,L

∣∣∣∣2 (3.3.34)

where the non-sourced solution freezes out |
√

2kxψR,L|2 → 1, and the full tensor power

spectrum is given by Pt = PRt +PLt leading to Pt = 2H2

π2 in the standard pure inflationary

scenario. The sourced solution leads to r = Pt
Ps

= 0.0417, compared to the non-sourced

solution which gives r = Pt
Ps

= 0.00482, so we see an enhancement of roughly an order

of magnitude. Given that the vast majority of the tensor spectrum is provided by the
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right-helicity mode, we see that this spectrum is highly chiral.

3.3.3 Scalar perturbations

We will now discuss the scalar perturbations to this system: in particular we are

interested to see whether the introduction of the gauge field and axion has a non-

negligible effect on the scalar power spectrum, Ps.

We define the scalar perturbations as in [3] and, for simplicity, ignore scalar pertur-

bations to the metric, which contribute negligibly10 [80]. Considering the scalar part

of (3.3.22) gives

Φ = (φ(τ) + δφ(τ, z), χ(τ) + δχ(τ, z))

A1
µ = a(τ) (0, Q(τ) + δQ(τ, z), 0, 0) ,

A2
µ = a(τ) (0, 0, Q(τ) + δQ(τ, z), 0) ,

A3
µ = a(τ)

(
∂zY (τ, z), 0, 0, Q(τ) + δQ(τ, z) + ∂2

zM(τ, z)
)
. (3.3.35)

where the again the wavevector is directed along the z-axis, ~k = kz ẑ. and we use a flat

FRW metric in conformal time ds2 = a(τ)2ηµνdx
µdxν . It is also convenient to redefine

the perturbations in comoving form:

δφ =
∆φ

a
, δχ =

∆χ

a
, δQ =

∆1√
2a
, M =

agQ∆1 +
√
k2 + 2a2g2Q2∆2√

2ga2k2Q
. (3.3.36)

The equations for the scalar perturbations are found from the second order action

shown in Appendix B where we also include the equations of motion for ∆φ,∆χ,∆1,∆2.

Evolving these equations with standard Bunch-Davies initial conditions, ∆i(xin) =

1/
√

2k and ∆′i(xin) = i/
√

2k with i = φ, χ, 1, 2 and again we choose xin = 20000.

The evolution of the scalar perturbations is plotted in FIG. 3.9. In the case where the

inflationary perturbation, ∆φ is massless (corresponding to a perfectly flat potential),

after horizon-crossing,
√

2kx∆φ → 1, x < 1. As can be seen, the gauge and axion

perturbations are sub-dominant in comparison to the inflaton perturbation, ∆φ.

10When we consider this mechanism applied to KMI (see chapter 5), we will explicitly demonstrate
that the scalar perturbations of the metric (which are non-dynamical) make no difference to the evo-
lution of the dynamical scalar perturbations.
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Figure 3.9: Plot of
√

2kx|∆φ|,
√

2kx|∆χ|,
√

2kx|∆1| and
√

2kx|∆2| against x = k/aH
with horizon-crossing, x = 1, taken to be 60 e-folds before the end of inflation for the
background solution shown in FIGs 3.3–3.7.

3.3.4 Backreaction

We have shown that the scalar perturbations from the gauge field are sub-dominant

relative to that of the inflaton. However, the (right-helicity) tensor perturbation, tR, is

by necessity large and we need to check whether this tensor perturbation contributes

significantly to the background equations of motion. If there were a large contribution

from the tensor perturbation to the background equation of the motion, our assumption

that, at the background level, we can take the gauge field in the isotropic configuration

AAi = δAi a(t)Q(t) (3.3.37)

would be inconsistent. We follow [3] and in order to estimate this backreaction, we

will take advantage of an analytic solution for the tensor fluctuation to the gauge field,

tR. The equation of motion for tR is given by (3.3.32), which has an analytic solution

(assuming ξQ and ξχ are constant) given by

tR(x) =
1√
2k
iβWβ,α (−2ix) (3.3.38)

where Wa,b(z) is the Whittaker function, α := −i
√

2ξQξχ − 1
4 and β := −i (ξQ + ξχ).

Of course this solution is merely a mode function, and we start by promoting tR and its

conjugate tL to quantum operators. Starting with the definitions for T+, T×, we arrive

at the following forms for t̂R and t̂L:
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t̂R(z) =

∫
d3k

(2π)3

{
tR(k) âR(k) ei

~k.~z + t∗L(k) â†L(k) e−i
~k.~z
}

t̂L(z) =

∫
d3k

(2π)3

{
tL(k) âL(k) ei

~k.~z + t∗R(k) â†R(k) e−i
~k.~z
}

(3.3.39)

where t̂R = t̂†L but tR 6= t∗L. The creation and annihilation operators satisfy:

[
âR(p), â†R(q)

]
= (2π)3 δ3 (~p− ~q)[

âL(p), â†L(q)
]

= (2π)3 δ3 (~p− ~q) (3.3.40)

and all other combinations are zero. The mode function tR and its conjugate t∗R are

given by (3.3.38) and tL, t
∗
L are assumed to be negligible over the relevant region. The

following integrals prove useful:

〈0|t̂R t̂L|0〉 =

∫
d3k

(2π)3
|tR|2

〈0|t̂L t̂R|0〉 =

∫
d3k

(2π)3
|tL|2 ∼ 0

〈0|t̂R ∂tt̂L|0〉 =

∫
d3k

(2π)3
tR (∂tt

∗
R)

〈0|t̂L ∂tt̂R|0〉 =

∫
d3k

(2π)3
tL (∂tt

∗
L) ∼ 0

〈0|∂tt̂L t̂R|0〉 =

∫
d3k

(2π)3
(∂ttL) t∗L ∼ 0

〈0|∂tt̂R t̂L|0〉 =

∫
d3k

(2π)3
(∂ttR) t∗R

〈0|t̂R ∂z t̂L|0〉 =

∫
d3k

(2π)3
(−ik)|tR|2

〈0|t̂L ∂z t̂R|0〉 =

∫
d3k

(2π)3
(−ik)|tL|2 ∼ 0

〈0|∂z t̂R t̂L|0〉 =

∫
d3k

(2π)3
ik|tR|2
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〈0|∂z t̂L t̂R|0〉 =

∫
d3k

(2π)3
ik|tL|2 ∼ 0

〈0|∂tt̂R ∂tt̂L|0〉 =

∫
d3k

(2π)3
|∂ttR|2

〈0|∂tt̂L ∂tt̂R|0〉 =

∫
d3k

(2π)3
|∂ttL|2 ∼ 0

〈0|∂z t̂R ∂z t̂L|0〉 =

∫
d3k

(2π)3
k2|tR|2

〈0|∂z t̂L ∂z t̂R|0〉 =

∫
d3k

(2π)3
k2|tL|2 ∼ 0

(3.3.41)

With these in hand, we can find the equation of motion for the gauge field, Q, including

the backreaction of the tensor perturbations. (3.3.7) becomes

Q̈+3HQ̇+
(
Ḣ + 2H2

)
Q+2g2Q3−gλ

f
χ̇Q2+

g

3 a2

∫
d3k

(2π)3

k

a
|tR|2+

g ξχH

3 a2

∫
d3k

(2π)3
|tR|2 = 0 .

(3.3.42)

The backreaction contribution can be estimated by defining

T
Q
BR :=

g

3 a2

∫
d3k

(2π)3

k

a
|tR|2+

g ξχH

3 a2

∫
d3k

(2π)3
|tR|2 '

gH3

12π2
(ξχ β1(ξQ) + β2(ξQ))

(3.3.43)

where

β1 (ξQ) =

∫ xmax

0
dxx|iβWβ,α (−2ix)|2 , (3.3.44)

β2 (ξQ) =

∫ xmax

0
dxx2|iβWβ,α (−2ix)|2 , (3.3.45)

we have used the analytic solution for tR, (3.3.38), and used the cut-off described in

[3], xmax ≡ ξQ + ξχ +
√
ξ2
Q + ξ2

χ which encompasses the main region for which tR

is enhanced by the transient instability near x = 1. As can be seen in FIG. 3.10, the

backreaction term, TQBR (red), on the equation of motion for Q is sub-dominant relative

to the leading terms in that equation, 2gHξχQ
2 (blue), 2g2Q3 (orange), and 2H2Q.

The backreaction is under control and our assumption that we can take

AAi = δAi a(t)Q(t) (3.3.46)
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Figure 3.10: The backreaction, T
Q
BR, (red), along with the dominant contributions of

(3.3.7): 2gHξχQ
2 (blue), 2g2Q3 (orange), and 2H2Q plotted against x = k

aH for the
background solution shown in FIGs 3.3–3.7 and horizon-crossing, x = 1, chosen to be 60
e-folds before the end of inflation.

is well justified.

3.4 Summary

In this chapter, we have presented two models where a gauge field can be supported

during inflation by its coupling to an axion through the Chern-Simons-like term χFF̃ .

First, we presented the general features of the model put forward in [2, 48]. We showed

why a vector field needs a source during inflation for it not to dilute rapidly due to

the exponential expansion of the universe; and showed how, if the vector field were

supported successfully by this coupling to the axion, it can contribute a source term to

the primordial gravitational wave equation of motion.

Secondly, we considered a concrete example of the model put forward in [3], where

instead of a vector field, an SU(2) gauge field is coupled to an axion. We demonstrated

how this coupling leads to the gauge field being sustained during inflation and how the

gauge field can successfully act as a source for the primordial gravitational wave spec-

trum and enhance the tensor-to-scalar ratio, leading to a highly chiral tensor spectrum.

We also showed that the scalar perturbations are under control and that the backreac-

tion of the tensor perturbation to the gauge field does not contribute significantly to

the background equations of motion.
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Chapter 4

Introduction to Kähler moduli

inflation

In this chapter, we will discuss the basics of two models of inflation whose inflatons are

Kähler moduli. First, we will introduce the form of the potentials of both Kähler moduli

inflation [49] and fibre inflation [76]. We will then look at some explicit examples of

these two models. In chapter 5, we will attempt to apply the mechanism discussed in

chapter 3 that leads to an enhancement of the inflationary tensor spectrum to Kähler

moduli inflation and fibre inflation. With this in mind, we will be concerned with

examples of Kähler and fibre inflation that are most applicable to successfully admitting

this enhancement mechanism. This is of particular interest in Kähler moduli inflation,

because, as we will see, it generally predicts a low value of the tensor-to-scalar ratio,

and it is important to see if this value can be enhanced to observable (r & 10−3) values,

thus providing a lifeline to Kähler moduli inflation if inflationary tensor modes are ever

detected. Kähler moduli inflation also naturally contains, in its particle content, axions

with a non-perturbative superpotential term W ⊃ e−aa(τa+iba) (with τa Kähler moduli

and ba their axionic superpartners), and therefore we will be interested in seeing if

these native axions can be included in the inflationary evolution without disturbing the

evolutions of the other fields1.

In general, Kähler moduli inflation can have many fields, which makes numerical

simulation (particularly at the order of perturbations) more difficult. Therefore, much

1In the phenomenological example presented in chapter 3, the axion is included in an ad-hoc manner,
whereas in Kähler inflation, axions appear naturally in the inflationary action, but are usually set to
their minima for ease of calculation.
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of this chapter will be concerned with demonstrating that some of these fields can

be set to their minima and removed from the equations of motion without affecting

the evolutions of the other (important) fields and without significantly affecting the

inflationary predictions of the model, thus allowing us to use a simplified model when

applying the enhancement mechanism. The parameters in the examples in this chapter

are taken from [76] for Kähler moduli inflation and [50] for fibre inflation.

In this chapter, we will not include the coupling between the Kähler moduli and

the gauge field. However, all the work we do in this section is with a view to applying

the enhancement mechanism of chapter 3 to Kähler moduli inflation. The interested

reader is directed to Appendix A for some basics on Kähler moduli and Calabi-Yau

compactification where a quick review is given of these concepts, but any familiarity

with these concepts should not be required to understand the remainder of this thesis.

4.1 Basics of Kähler moduli inflation

The starting point for building an inflationary model from a high-energy theory is to

derive the (low-energy) Lagrangian for an N = 1 four-dimensional supergravity theory.

The bosonic fields of a general four-dimensional N = 1 supergravity theory are the

spacetime metric, gµν , gauge potentials, AAµ , and complex scalar fields, Φa. The low-

energy interactions of the scalar fields are determined by the superpotential, W (Φa),

which is a holomorphic function of Φa; the Kähler potential, K
(
Φa, Φ̄ā

)
, which is a

real, analytic function of the scalars; and the gauge kinetic function, f(Φa), which is a

holomorphic function of Φa and provides the coupling between the scalars and gauge

fields. Considering a theory without gauge fields, the scalar field Lagrangian is:

LΦ = −Kab̄ ∂µΦa∂µΦ̄b̄ − V (4.1.1)

where Kab̄ := ∂a∂b̄K is the Kähler metric2, and the potential is given by

V
(

Φa, Φ̄b̄
)

= eK/M
2
pl

[
Kab̄DaWDbW −

3

M2
pl

|W |2
]

(4.1.2)

where Kab̄ is the inverse Kähler metric and DaW := ∂aW + 1
M2

pl
(∂aK)W .

2With ∂a = ∂/∂Φa and ∂ā = ∂/∂Φ̄ā.
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Kähler moduli inflation [49] is an inflationary model derived from type IIB string

theory. Compactification of a ten-dimensional string theory onto a (six-dimensional)

Calabi-Yau manifold3 leads to an abundance of moduli (including the Kähler moduli,

complex structure moduli and the axio-dilaton) that may appear as scalar fields in the

four-dimensional cosmological action. These moduli are in fact at first glance problem-

atic – they are massless and couple to Standard Model matter particles and lead to

effects that have not been observed in nature. Therefore an important step in the com-

pactification process is moduli stabilisation, the process by which a potential is found

for the moduli that makes them massive enough so that their effect on the Standard

Model fields at low energy is negligible. This process of moduli stabilisation leads to a

scalar potential that, in the case of type IIB flux compactifications, can cause inflation

through one or more Kähler moduli and stabilises all other moduli (in particular the

axio-dilaton, all complex structure moduli, and the remaining Kähler moduli). The

topic of moduli stabilisation and the derivations that lead to the superpotential and

Kähler potential for Kähler moduli inflation from type IIB string theory are beyond

the scope of this thesis. The interested reader is directed to [82] for a discussion of

moduli stabilisation in type IIB string theory, Chapter 14 in [83] for a general discus-

sion of moduli stabilisation via flux compactification, and [84, 85] for the explicit flux

compactification mechanism that is used in the moduli stabilisation of Kähler modu-

lus inflation and in particular justifies the forms of the volume, Kähler potential and

superpotential used below.

The general idea however is as follows: a compactification from ten-dimensional

type IIB string theory is made onto a Calabi-Yau three-fold (referring to the three

complex dimensions of the CY), M, with the addition of two non-trivial but sourceless

3-form fluxes, F3, H3 (hence the name flux compactification), being included in the

10-D action. These fluxes generate a superpotential for the Calabi-Yau moduli

Wtree =

∫
M

G3 ∧ Ω (4.1.3)

3Calabi-Yau manifolds are complex manifolds that are often used as compactification manifolds due
to some useful properties. Calabi-Yaus have structures determined by what are known as moduli – for
example the Kähler moduli are related to volume of the manifold. See Appendix A if interested, but
the important point from our perspective is that these moduli contain no four-dimensional spacetime
index and can therefore appear as scalars in the effective four-dimensional cosmological action.
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where G3 = F3 + iSH3 with S = e−φ + iC0 the axio-dilaton of type IIB string theory

and Ω is M’s (3, 0)-form which as may be seen in Appendix A is related to M’s complex

structure moduli, uα, and Ω should be viewed as being implicitly dependent on uα. The

Kähler potential for the theory takes the form

K

M2
pl

= −2 lnV− ln
(
S + S̄

)
− ln

(
−i
∫
M

Ω ∧ Ω

)
(4.1.4)

where V is the volume of the Calabi-Yau, M, and should be viewed as being implicitly

dependent on the Kähler moduli. The form for the superpotential, Wtree, stabilises both

the axio-dilaton and the complex structure moduli by minimising it with DaWtree = 0.

The Kähler moduli do not appear in this superpotential so at this stage they are still

massless. The Kähler potential can be rewritten after stabilising the complex structure

moduli and axio-dilaton

K = Kcs − ln

(
2

gs

)
+KT (4.1.5)

where Kcs = − ln
(
〈−i

∫
M

Ω ∧ Ω〉
)

and ln
(

2
gs

)
(with gs = e〈φ〉 the string coupling) are

constant contributions since the relevant fields have been stabilised, and KT = K0 =

−2 lnV. The superpotential for this system is constant: W = W0 := 〈Wtree〉. Define

the multiplet T a = τa + iba
4 where τa is a 4-cycle volume called a Kähler modulus

and ba is its axionic partner: a component of a 4-form, C4, integrated on this cycle:

ba =
∫
τa
C4. A Kähler potential, K, is no-scale if it satisfies Kab̄∂aK∂b̄K = 3. Then

with a constant superpotential, W = W0:

V = eK/M
2
pl

(
Kab̄DaWDb̄W −

3

M2
pl

|W |2
)

= 0 (4.1.6)

since DaW0 = 0 and ∂aK = ∂aK0. With a no-scale Kähler potential, the Kähler moduli

are therefore exactly massless at this order. The volume in Kähler inflation is chosen

so that K0 = −2 ln(V) is no-scale.

4.1.1 Kähler modulus inflation potential

The superpotential receives no contributions from α′ and gs expansions. But a potential

for the Kähler moduli can be generated by including non-perturbative corrections to

4We will refer to both τa and T a as Kähler moduli.
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the superpotential. In particular if a gauge field, AA, with gauge group SU(N), is

included in the low-energy effective action, it is coupled to the scalar fields through the

gauge kinetic function, fA, and contributes to the Lagrangian

L ⊃ −Re(fA)

4
FAµνF

Aµν +
Im(fA)

4
FAµνF̃

Aµν (4.1.7)

where FA = dAA−AA ∧AA, F̃Aµν = εµνρσ

2
√
−gF

A
ρσ with g the metric determinant, and fA

is a holomorphic function of the scalar fields, in particular for our example, T a. This

coupling to an SU(N) gauge field generates a contribution to the superpotential:

W =
g

3/2
s M3

pl√
4π

(
W0 +

∑
a

Aae
−aaTa

)
(4.1.8)

where Aa depend on the complex structure moduli so are constants after flux compact-

ification stabilises these moduli, aa = 2π/N , and we have now included the normali-

sation term for the superpotential as given in [85]. The Kähler potential does receive

perturbative corrections, and to first order in α′, KT becomes

KT = K0 − 2 ln

(
1 +

ξ̂

2V

)
= −2 ln

(
V +

ξ̂

2

)
(4.1.9)

where ξ̂ := ξ/g
3/2
s , ξ = −χ(M)ζ(3)

2(2π)3 , χ(M) is called the Euler number of M that depends

on the number of moduli in M, and ζ is the Riemann zeta function with ζ(3) ∼ 1.2.

We are now interested to see what potential is generated by (4.1.8)–(4.1.9) through

(4.1.2). To do this, we first need a form for the volume in terms of the Kähler moduli. In

this thesis, two models of Kähler moduli inflation are studied; namely, the eponymous

Kähler moduli inflation [49] with a detailed analysis in [76], and fibre inflation [50]. We

start with Kähler moduli inflation, a model in which the volume of the Calabi-Yau, M,

is taken to have the “Swiss cheese” form

V = α

(
τ

3/2
1 −

n∑
a=2

λaτ
3/2
a

)
(4.1.10)

where α and λa are model-dependent constants, and it is assumed that τ1 � τa, a > 1

so that the τ1 modulus forms the block of the “Swiss cheese” and the remaining τa

form holes. The full Kähler potential written in terms of the multiplet Kähler moduli
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becomes

K

M2
pl

=
Kcs

M2
pl

− ln

(
2

gs

)
− 2 ln

[
α

2
√

2

((
T 1 + T̄ 1

)3/2 − n∑
a=2

λa
(
T a + T̄ a

)3/2)
+
ξ̂

2

]
.

(4.1.11)

In fact for the sake of simplicity, ignoring the constant contributions to the scalar

potential Kcs − ln
(

2
gs

)
which we will take to be an overall normalisation factor of the

potential (through eK/M
2
pl)5 we write

K = KT = K0 − 2 ln

(
1 +

ξ̂

2V

)
(4.1.12)

with K0 = −2 lnV and we have set Mpl = 1. With this form for the volume, we have

the following relations

∂1K = ∂1̄K = −
3α
√
τ1

2V + ξ̂
= −

3α2/3 (V + α
∑n

a=2 λaτa)
1/3

2V + ξ̂
,

∂aK = ∂āK =
3αλa

√
τa

2V + ξ̂
, a > 1 (4.1.13)

which leads to a Kähler metric, Kab̄ = ∂a∂b̄K, of the form

K11̄ =
3α4/3

(
4V− ξ̂ + 6α

∑n
a=2 λaτ

3/2
a

)
4
(

2V + ξ̂
)2 (

V + α
∑n

a=2 λaτ
3/2
a

)1/3
, K1b̄ = −

9α5/3λb
√
τb

(
V + α

∑n
c=2 λcτ

3/2
c

)1/3

2
(

2V + ξ̂
)2

Kab̄ =
9α2λaλb

√
τa
√
τb

2
(

2V + ξ̂
)2 , Kaā =

3αλa

(
2V + ξ̂ + 6αλaτ

3/2
a

)
4
√
τa

(
2V + ξ̂

)2 (4.1.14)

5Including the normalisation in front of W as given in (4.1.8), we see our overall normalisation factor

will become
g4s
8π
eKcs . Furthermore in [85], it assumed that eKcs ∼ O(1) so our normalisation is expected

to be ∼ g4s
8π

. In the examples of Kähler moduli inflation we will consider that are taken from [76], this
whole normalisation term is absorbed into the parameters inside the potential. Meanwhile in the fibre

inflation example we consider taken from [50], the power spectrum is explicitly normalised with
g4s
8π

.
From now on we will write the potential without this normalisation factor.
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and an inverse Kähler metric, Kab̄, of

K11̄ =
4
(

2V + ξ̂
)(

V + α
∑n

a=2 λaτ
3/2
a

)1/3 (
2V + ξ̂ + 6α

∑n
a=2 λaτ

3/2
a

)
3α4/3

(
4V− ξ̂

)

K1b̄ =
8τb

(
2V + ξ̂

)(
V + α

∑n
c=2 λcτ

3/2
c

)2/3

α2/3
(

4V− ξ̂
) , Kab̄ =

8
(

2V + ξ̂
)
τaτb

4V− ξ̂
,

Kaā =
4
(

2V + ξ̂
)√

τa

(
4V− ξ̂ + 6αλaτ

3/2
a

)
3αλa

(
4V− ξ̂

) (4.1.15)

with a, b > 1. This Kähler metric is almost no-scale with respect to W0 in the sense

that:

Kab̄∂aK∂b̄K =
12V

4V− ξ̂
' 3 , (4.1.16)

where the last step is valid when V � ξ̂. The form for the Kähler metric is a little

messy but will be greatly simplified once we apply the large volume approximation.

The large volume approximation is an assumption of the moduli stabilisation regime

for the Kähler moduli [85] – there is a minimum for the potential for the Kähler moduli

at very large volume. Requiring therefore that V � 16, we see immediately from the

form of the volume that τ
3/2
1 � λaτ

3/2
a and for simplicity we take τ1 � τa

7. In the

limit that V� 1, the Kähler metric simplifies greatly

K11̄ =
3α4/3

4V4/3
K1b̄ = −

9α5/3λb
√
τb

8V5/3

Kab̄ =
9α2λaλb

√
τa
√
τb

8V2
, Kaā =

3αλa
8V
√
τa

(4.1.17)

and

K11̄ =
4V4/3

3α4/3
, K1b̄ =

4τbV
2/3

α2/3
,

Kab̄ = 4τaτb, Kaā =
8
√
τaV

3αλa
. (4.1.18)

6In the examples we will consider later, V takes values between ∼ 104l6s and ∼ 106l6s , with ls the
string length.

7In the explicit examples, λa takes values between 1
100

and 10.
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In addition to this, we have

∂1K = −3α2/3

2V2/3
, ∂aK =

3αλa
√
τa

2V
, a > 1 . (4.1.19)

We are now in a position to find the scalar potential for Kähler modulus inflation

through (4.1.2). Considering first the contribution to the potential of terms independent

of the Kähler moduli (i.e. terms that are proportional to |W0|2) and using the almost

no-scale property of the full Kähler metric (4.1.16)

V ⊃ eK
(
Kab̄DaW0DbW0 − 3|W0|2

)
=

1

V2

(
1 +

ξ̂

2V

)−2 (
Kab̄∂aK∂b̄K − 3

)
|W0|2

=
1

V2

(
1 +

ξ̂

2V

)−2(
12V

4V− ξ̂
− 3

)
|W0|2

=
1

V2

(
1 +

ξ̂

2V

)−2
3

(
1− ξ̂

4V

)−1

− 3

 |W0|2

' 1

V2

(
1− ξ̂

V

)(
3 +

3ξ̂

4V
− 3

)
|W0|2

' 3ξ̂

4V3
|W0|2 (4.1.20)

where we have explicitly used V � 18. This term is the only contribution that the

α′ correction to the Kähler potential, ξ̂, makes to the scalar potential, V , in the large

volume limit. The remaining potential is taken to be order O(1/V3) in the large vol-

ume limit and it is assumed that V ∼ eaaτa where a > 19 apart from an uplift term

Vuplift = β
V2 which is added to uplift the potential to a Minkowski minimum (Vmin = 0).

Remembering W = W0 +
∑

aAae
−aaTa and eK0 = V−2, the remaining part of the po-

8In the examples we will consider, it is always the case that V� ξ̂.
9Terms that contain e−a1τ1 are ignored since this is effectively exponential in the volume and hence

extremely small.
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tential is

V ⊃ 1

V2

(
Kab̄∂a

(
Aae

−aaTa) ∂b̄ (Abe−abT̄ b̄)+Kab̄∂a
(
Aae

−aaTa)W0∂b̄K0

+Kab̄∂a
(
Aae

−aaTa)Abe−abT̄ b̄∂b̄K0 +Kab̄W0∂aK0∂b̄

(
Abe

−abT̄ b̄
)

+ Kab̄W0∂aK0Abe
−abT̄ b̄∂b̄K0 +Kab̄Aae

−aaTa∂aK0∂b̄

(
Abe

−abT̄ b̄
)

+Kab̄Aae
−aaTa∂aK0W0∂b̄K0 +Kab̄Aae

−aaTa∂aK0Abe
−aaT̄ b̄∂b̄K0

)
(4.1.21)

where we have explicitly now assumed that aa, Aa and W0 are all real. The relevant

contributions are

1

V2
Kaā∂a

(
Aae

−aaTa) ∂ā (Aae−aaT̄ ā) =
1

V2

8
√
τaV

3αλa
(Aaaa)

2e−T
a−T̄a

=
8
√
τa

3αλaV
(Aaaa)

2e−2aaτa , (4.1.22)

1

V2
Ka1̄∂a

(
Aae

−aaTa)W0∂1̄K0 =
1

V2

4τaV
2/3

α2/3
aaAae

−aaTaW0
2α2/3

2V2/3

=
6τaaaAaW0

V2
e−aaτae−iaaba , (4.1.23)

1

V2
Kaā∂a

(
Aae

−aaTa)W0∂aK0 = − 1

V2

8
√
τaV

3αλa
aaAaW0

3αλa
√
τa

2V
e−aaT

a

= −4τaaaAaW0

V2
e−aaτae−iaaba , (4.1.24)

1

V2
K1āW0∂1K0∂ā

(
Aae

−aaT̄ ā
)

=
1

V2

4τaV
2/3

α2/3
W0

3α2/3

2V2/3
aaAae

−aaT̄ ā

=
6τaaaAaW0

V2
w−aaτaeiaaba , (4.1.25)

1

V2
KaāW0∂aK0∂ā

(
Aae

−aaT̄ ā
)

= − 1

V2

8
√
τaV

3αλa
W0

3αλa
√
τa

2V
aaAae

−aaT̄ ā

= −4τaaaAaW0

V2
e−aaτaeiaaba (4.1.26)

where we have ignored anything higher order than O(1/V3) and anything proportional
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to e−a1τ1 – all the remaining terms are of cubic order in inverse volume. Putting the

whole potential together gives

V =
n∑
a=2

8
√
τa

3αλaV
(aaAa)

2 e−2aaτa

+

n∑
a=2

τaaaAa
V2

W0e
−aaτa

(
6e−iaaba − 4e−iaaba + 6eiaaba − 4eiaaba

)
+

3ξ̂

4V3
W 2

0 + Vuplift (4.1.27)

which leads to our large volume potential for Kähler moduli inflation

V =

n∑
a=2

8
√
τa

3αλaV
(aaAa)

2 e−2aaτa +

n∑
a=2

4aaAaτa
V2

W0e
−aaτa cos (aaba) +

3ξ̂

4V3
W 2

0 +
β

V2

(4.1.28)

where the (pseudo-) scalar fields are V, the volume of the Calabi-Yau; τa, 4-cycle Kähler

moduli of the Calabi-Yau; and their axionic superpartners, ba. Explicit inflationary

examples of this model will be reviewed in the next section.

4.1.2 Fibre inflation potential

The potential for fibre inflation [50] is derived in the same way with some key differences

to Kähler moduli inflation. The superpotential is of the same form

W = W0 +
∑
a

e−aaT
a
. (4.1.29)

A key difference is that the Kähler potential receives additional (string-loop) correc-

tions. Without these string-loop corrections the Kähler potential has the same form as

in Kähler moduli inflation10

K = −2 ln

(
V +

ξ̂

2

)
. (4.1.30)

10We have again removed the constant part Kcs− ln 2/gs of the Kähler potential and superpotential,
as this contributes just an overall normalisation of the scalar potential.
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4.1 Basics of Kähler moduli inflation

Another difference is the form of the volume, which, after taking the number of Kähler

moduli to be 3, has the form

V = α
(√

τ1τ2 − γτ3/2
3

)
(4.1.31)

where it is important that τ1, τ2 � τ3 and V ∼ V0 := α
√
τ1τ2 � αγτ

3/2
3 � 1. Since

both τ1 and τ2 are very large, we can immediately see that their contribution to the

superpotential will be negligible and we can write

W = W0 +A3e
−a3T3 (4.1.32)

with T 3 = τ3 + ib3 as before. Since, at this order, K has the same form, we know that

ξ̂ contributes to the potential
3ξ̂

4V3
W 2

0 (4.1.33)

at large volume and with K ' K0 = −2 lnV the remaining part of the Kähler potential.

With this form for the volume, we get

∂aK = ∂āK =

(
− ατ2

2
√
τ1V

,−
α
√
τ1

V
,
3αγ
√
τ3

2V

)
(4.1.34)

as well as

Kab̄ =
1

4τ2
2



(
τ2
τ1

)2
γ
(
τ3
τ1

)3/2
−3γ

√
τ3τ2

2τ
3/2
1

γ
(
τ3
τ2

)3/2
2 −3γ

√
τ3√
τ1

−3γ
√
τ3τ2

2τ
3/2
1

−3γ
√
τ3√
τ1

3αγτ2
2

2V
√
τ3


(4.1.35)

and its inverse

Kab̄ = 4


τ2

1 γ
√
τ1τ

3/2
3 τ1τ3

γ
√
τ1τ

3/2
3

τ2
2
2 τ2τ3

τ1τ3 τ2τ3
2V
√
τ3

3αγ

 (4.1.36)

where in the Kähler metric, a large volume expansion has been applied: explicitly, all

terms higher order in
√
τ3/τ1,2 than the lowest order in each matrix entry have been

dropped, and V has been taken to be equal to V0: V → V0 := α
√
τ1τ2. In completely
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4. INTRODUCTION TO KÄHLER MODULI INFLATION

the same way as was shown for Kähler moduli inflation, with this Kähler metric the

contributions to the scalar potential can be calculated. Without the inclusion of the

string-loop corrections, the potential for fibre inflation is

Vngs =
8
√
τ3

3αλ3V
(a3A3)2 e−2a3τ3 +

4a3A3τ3

V2
W0e

−a3τ3 cos (a3b3) +
3ξ̂

4V3
W 2

0 (4.1.37)

where the subscript ngs stands for without string-loop corrections.

The string-loop corrections to the Kähler potential contribute (see [50, 86]) to the

scalar potential

δVgs =
W 2

0

V2

(
A

τ2
1

− B

V
√
τ1

+
Cτ1

V2

)
(4.1.38)

where A, B and C are constants that depend on gs that we treat as model-dependent

parameters. This leads to an overall potential for fibre inflation of

V =
W 2

0

V2

(
A

τ2
1

− B

V
√
τ1

+
Cτ1

V2

)
+

8
√
τ3

3αγV
(a3A3)2 e−2a3τ3

+
4a3A3τ3

V2
W0e

−a3τ3 cos (a3b3) +
3ξ̂

4V3
W 2

0 +
δup

V4/3
(4.1.39)

where we have included an uplift term that scales as 1/V4/3 in the volume to uplift this

potential to Minkowski.

4.2 Bog-standard Kähler moduli inflation

We have seen that in Kähler moduli inflation [49, 76], the volume of the compactified

space is given by

V = α

(
τ

3/2
1 −

n∑
a=2

λaτ
3/2
a

)
(4.2.1)

where τa are Kähler moduli with τ1 specifically a large modulus that controls the

overall size of the volume, and the other moduli are necessarily smaller; and α and

λa are model-dependent constants. In Kähler inflation, it is standard to take n = 3,

because it is necessary that there be a stabiliser modulus (which must remain more or

less constant) in addition to the inflaton (which of course has to be shifted away from
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4.2 Bog-standard Kähler moduli inflation

its minimum). With three moduli, and in the large-volume limit, V� 1, we have

Kab̄ =



3α4/3

4V4/3 −9α5/3λ2
√
τ2

8V5/3 −9α5/3λ3
√
τ3

8V5/3

−9α5/3λ2
√
τ2

8V5/3
3αλ2

8V
√
τ2

9α2λ2λ3
√
τ2τ3

8V2

−9α5/3λ3
√
τ3

8V5/3

9α2λ2λ3
√
τ2τ3

8V2
3αλ3

8V
√
τ3


(4.2.2)

where Kab̄ is the Kähler metric and we have taken only the highest order terms in

O
(

1
V

)
in each entry. The scalar potential is

V =

3∑
a=2

8
√
τa

3αλaV
(aaAa)

2 e−2aaτa +

3∑
a=2

4aaAaτa
V2

W0e
−aaτa cos (aaba) +

3ξ̂

4V3
W 2

0 +
β

V2

(4.2.3)

where all terms (bar the uplift term) scale like O( 1
V3 ) since aaτa ∼ lnV, a > 1. The

Kähler metric is the complex metric for the space spanned by the complex fields,

T a = τa + iba. It is simpler to move to real space by making the association

Kab̄∂µT
a∂µT̄ b̄ =

1

2
γab∂µφ

a∂µφb (4.2.4)

where φa = (τa, ba) are the real fields. It also proves convenient to use V as a field

rather than τ1 since V naturally appears in the metric and the potential. The modulus,

τ1, can of course always be found through (4.2.1). To change variables from τ1 to V,

use

τ1 = α−2/3

(
V + α

3∑
a=2

λaτ
3/2
a

)2/3

'
(
V

α

)2/3

(4.2.5)

then, for example, looking at the pure T1 kinetic term:

K11̄∂µT
1∂µT̄ 1̄ =

3α4/3

4V4/3
∂µτ1∂

µτ1 (4.2.6)

where we have ignored the contribution from the b1 axion since the potential has no

dependence on b1 and therefore b1 is effectively massless. Continuing

3α4/3

4V4/3
∂µτ1∂

µτ1 '
3α4/3

4V4/3

2

3α2/3V1/3
∂µV

2

3α2/3V1/3
∂µV =

1

3V2
∂µV∂

µV . (4.2.7)

The system can therefore be set up as follows: we have fields φa = (V, τ2, b2, τ3, b3) with
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4. INTRODUCTION TO KÄHLER MODULI INFLATION

real-space metric given by

γab =



2
3V2 −3αλ2

√
τ2

2V2 0 −3αλ3
√
τ3

2V2 0

−3αλ2
√
τ2

2V2
3αλ2

4V
√
τ2

0
9α2λ2λ3

√
τ2τ3

4V2 0

0 0 3αλ2
4V
√
τ2

0
9α2λ2λ3

√
τ2τ3

4V2

−3αλ3
√
τ3

2V2

9α2λ2λ3
√
τ2τ3

4V2 0 3αλ3
4V
√
τ3

0

0 0
9α2λ2λ3

√
τ2τ3

4V2 0 3αλ3
4V
√
τ3


(4.2.8)

and potential given in (4.2.3). The action describing this system is

S =

∫
d4x
√
−g

{
M2

pl

2
R− 1

2
γab∂µφ

a∂µφb − V (φa)

}
(4.2.9)

with g the determinant of the spacetime metric. At the background level, during

inflation, φa = φa(t), and therefore this action leads to equations of motion for the

scalars

φ̈a + 3Hφ̇a + Γabcφ̇
bφ̇c + γab

∂V

∂φb
= 0 (4.2.10)

where Γabc are the Christoffel symbols for metric, γab. The Friedmann equations are

3M2
plH

2 =
1

2
ϕ̇2 + V (4.2.11)

and
Ḣ

H2
= −εϕ (4.2.12)

where we have defined ϕ̇2 = γabφ̇
aφ̇b and εϕ = ϕ̇2

2H2M2
pl

.

We consider first the parameter set given in example 1 in [76], a prototypical Kähler

moduli inflation scenario. It has parameters

ξ = 24, α = 1, λ2 =
1

100
, λ3 = 1, a2 = 20π, a3 =

π

2
,

A2 =
1

300
, A3 =

1

300
, β = 1.984× 10−6, W0 = 2 . (4.2.13)

These parameters are chosen to be consistent with the necessary constraint on the
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4.2 Bog-standard Kähler moduli inflation

power spectrum, H2/(8M2
plπ

2εϕ) ∼ 2 × 10−9, and β is chosen so that the potential

can be uplifted to as close a value of 〈V 〉 = 0 as possible at the minimum of the

potential. To be more explicit, with these parameters, τ2 is the inflaton11, and τ3 is a

stabiliser, which is indispensable in its role of ensuring that the volume is stable. To

emphasise why τ3 is a stabiliser, and cannot be the inflaton, we look at local minima of

the potential. First, consider the full global minimum where the potential is minimised

and all fields are at their respective minima. The axions are of course minimised at

〈ba〉 =
π

aa
(4.2.14)

and the moduli are minimised at

〈V〉 = 6.6010× 106, 〈τ2〉 = 0.30205, 〈τ3〉 = 5.8861 (4.2.15)

which gives

〈τ1〉 = 3.5189× 104 . (4.2.16)

We are free to shift τ2 and b2 considerably without affecting the volume’s stability. If

we choose

τ in2 = 0.802, bin2 = 0.1
π

a2
(4.2.17)

there is still a local minimum at

Vin = 6.6166× 106, τ in3 = 5.8875 (4.2.18)

meaning we can safely shift τ2 and b2 well away from their minima without ruining the

stability of the system. The same is not true for τ3. Putting all fields to the global

minimum apart from τ3 and the volume, we can get a feel for why changing τ3’s position

is crucial to the stability of the system. As can be seen in FIGs 4.1–4.2, the minimum

for the volume is highly sensitive to both τ3 and b3 – both cannot be perturbed far

from their minima without destroying the global minimum, leading to the minimum

being at infinite volume. The reason for this sensitivity is that with the parameters

above (4.2.13) the largest proportion of the potential is made up by the τ3 terms, and

11In most of the literature, the axions are set to their minima. But if we include the axion, b2, in the
evolution, we will see that to some extent, this is also an inflaton.
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4. INTRODUCTION TO KÄHLER MODULI INFLATION

Figure 4.1: A plot of the potential, V , near its minimum with respect to the volume, V,
for three different values of τ3 with all other fields set to their values at the global minimum.
Blue corresponding to the global minimum; and orange and green corresponding to values
of τ3 just below and above its value at the global minimum, respectively. The minimum
for the volume is highly sensitive to changes in τ3, and shifting it away from the global
minimum destroys this minimum for the volume, which then has a minimum at V→∞.

in particular, the term
4W0a3A3τ3

V2
e−a3τ3 cos (a3b3) (4.2.19)

is the most important term for the stabilisation of the potential since this term is

negative when b3 is near its minimum. The potential and the volume of this system

are effectively fine-tuned to the values of τ3 and b3. Therefore, immediately we can see

why τ3 is not a viable inflaton candidate. Moreover, since we are interested in an axion

that can evolve for many e-folds during inflation, b3 is clearly not a suitable candidate

for our interest in coupling the axion to a gauge field. This is a general feature of

these models, the potential requires a stabilising modulus, which is chosen to be τ3,

and therefore both τ3 and b3 cannot be shifted far from their minima.

However, both τ2 and b2 can be shifted away from the minimum of the potential

without destroying this minimum and without greatly affecting the volume. The po-

tential experienced by the inflaton, τ2, is shown in FIG. 4.3. We evolve the system

with initial conditions given by (4.2.17)–(4.2.18) and plot the evolution of the fields in

FIGs 4.4–4.7. The inflaton modulus, τ2, and its axionic superpartner, b2, roll slowly

and thus cause inflation. Their evolutionary histories are linked, and they reach their

minima at roughly the same time. The other three fields: the stabilisers, τ3 and b3;

and the volume modulus, V, are all extremely stable during inflation.
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4.2 Bog-standard Kähler moduli inflation

Figure 4.2: A plot of the potential, V , near its minimum with respect to the volume, V,
for three different values of b3 with all other fields set to their values at the global minimum.
Blue corresponding to the global minimum; and orange and green corresponding to values
of b3 shifted slightly away from the minimum. The minimum for the volume is highly
sensitive to changes in b3 and shifting it away from the global minimum destroys this
minimum for the volume, which then has a minimum at V→∞.

Figure 4.3: A plot of the potential, V , against the inflaton, τ2, with all other fields set
to their values at the global minimum. Starting inflation with τ in2 = 0.802, the inflaton
first rolls slowly down the flat part of the potential before exiting slow-roll as it nears the
minimum and picks up speed.
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4. INTRODUCTION TO KÄHLER MODULI INFLATION

Figure 4.4: The evolution of the inflaton modulus, τ2, during the last 60 e-folds of inflation
(left figure) and at the end of inflation when it decays (right figure) for the parameters
given in (4.2.13).

Figure 4.5: The evolution of the axionic partner to the inflaton modulus, b2, during the
last 60 e-folds of inflation (left figure) and at the end of inflation when it decays (right
figure) for the parameters given in (4.2.13).

Figure 4.6: The evolution of the stabiliser modulus, τ3, and its axionic partner, b3, during
the last 60 e-folds of inflation for the parameters given in (4.2.13). Both fields are extremely
stable during inflation.
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4.2 Bog-standard Kähler moduli inflation

Figure 4.7: The evolution of the volume modulus, V, during the last 60 e-folds of inflation
for the parameters given in (4.2.13). V is extremely stable during inflation despite the
relatively large change in τ2.

The inflationary predictions of this example are

ε = 9.35× 10−17, ns = 0.971, r = 1.50× 10−15, V 1/4 = 5.89× 1012GeV (4.2.20)

where ns = 1− 2ε− η is the scalar spectral index (with η = d ln ε
dN ), and r = Pt

Ps
= 16ε is

the tensor-to-scalar ratio with the scalar power spectrum normalised12 to Ps ∼ 2×10−9.

The tensor-to-scalar ratio, r, is extremely small in this example. This is because of the

extremely low energy scale of inflation, which, in turn, is partly because of the large

volume, V, which appears (to various powers) in the denominator of all terms in the

potential.

Concerning our interest of applying the mechanism described in chapter 3 to po-

tentially enhance the gravitational spectrum of Kähler moduli inflation to observable

values (r ∼ 10−3), we see that with a tensor-to-scalar ratio of r ∼ 10−15, we would need

an enhancement of order 1012 in the tensor power spectrum. To make things easier, we

will therefore consider a different example put forward in [76] (see example 4), where

the volume modulus, although still large, is a couple of orders of magnitude greater

than in example 1. This, and a suitable choice of parameters, leads to a much larger

inflationary energy scale, and consequently, a greater tensor-to-scalar ratio.

12Recall from 4.1 that the scalar potential actually contains a normalisation factor
g4s
8π
eKcs where

eKcs is assumed to be O(1). In the examples of Kähler moduli inflation we consider here (taken from
[76]), this normalisation has been absorbed into the parameters, W0, A2, . . . , etc.
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4.3 Kähler moduli inflation with a higher energy scale

(example 1)

The parameters of example 4 in [76] are

ξ =
1

2
, α =

1

9
√

2
, λ2 = 10, λ3 = 1, a2 =

2π

30
, a3 =

2π

3
,

A2 =
1

1.7× 106
, A3 =

1

425
, β = 6.947× 10−5, W0 =

40

17
. (4.3.1)

This potential has a global minimum at

〈V〉 = 10142, 〈τ2〉 = 4.7752, 〈τ3〉 = 2.6511, 〈ba〉 =
π

aa
(4.3.2)

which gives

〈τ1〉 = 2555.69 . (4.3.3)

As before τ3 is the stabiliser and therefore it and b3 cannot be shifted from their minima.

In fact, since if b3 is put to its minimum, it stays there, we will remove b3 from the

equations of motion and focus on a four-field model, φa = (V, τ2, b2, τ3). As before, τ2

is the inflaton modulus and shifting it as well as its axion, b2, away from their minima

does not destabilise the system. Taking

τ in2 = 79.1, bin2 = 0.7
π

a2
(4.3.4)

shifts the minima for V, τ3 and τ1 to

Vin = 10972, τ in3 = 2.6846, τ in1 = 2644.39 . (4.3.5)

Unlike the previous example, the volume modulus is shifted by a non-negligible amount

with these parameters:

∆V

〈V〉
=

10972− 10142

10142
= 8.18% (4.3.6)

and therefore it is not trivial that this modulus can be safely set to its minimum without

affecting the inflationary predictions. As mentioned in the introduction to this chapter,

we would like to minimise the number of fields we evolve to ease the numerics when we
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4.3 Kähler moduli inflation with a higher energy scale (example 1)

attempt to apply the enhancement mechanism of chapter 3 to Kähler moduli inflation.

With this in mind, we will show that it can be assumed that both V and τ3 are at

the global minimum and, although this has a small impact on the fields’ evolutions

(in particular we will have to slightly shift the initial value for τ2 to recover the same

results), it drastically simplifies the numerics and leaves the important inflationary

predictions of the model intact.

We first evolve the system with all four fields active, φa = (V, τ2, b2, τ3), and with

the full metric (to first order in each entry in 1/V). This system has real-space metric

given by

γab =



2
3V2 −3αλ2

√
τ2

2V2 0 −3αλ3
√
τ3

2V2

−3αλ2
√
τ2

2V2
3αλ2

4V
√
τ2

0
9α2λ2λ3

√
τ2τ3

4V2

0 0 3αλ2
4V
√
τ2

0

−3αλ3
√
τ3

2V2

9α2λ2λ3
√
τ2τ3

4V2 0 3αλ3
4V
√
τ3


. (4.3.7)

The equations of motion (4.2.10)–(4.2.12) and potential (4.2.3) are of course the same

as before. The evolutions of the fields for this higher-energy system are plotted in FIGs

4.8–4.11. As in the previous example, the evolutions of the inflaton, τ2, and its axionic

partner, b2, are linked and both decay at the same time. The volume modulus (FIG.

4.10) is stable for the majority of inflation while the inflaton is slowly rolling, but decays

quickly in line with the decay of the inflaton and axion as the system settles into the

global minimum of the potential, (4.3.2).

The inflationary predictions of this model are (50 e-folds before the end of inflation)

ε = 4.14× 10−8, ns = 0.967, r = 6.62× 10−7, V 1/4 = 8.96× 1014GeV (4.3.8)

for power spectrum normalised to Ps ∼ 2 × 10−9. The much greater scale of inflation

(V is 8 orders of magnitude larger), naturally leads to a much larger tensor-to-scalar

ratio. Concerning our interest in enhancing the tensor spectrum to observable values

(r ∼ 10−3), we now require an enhancement of roughly 4 orders of magnitude.
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Figure 4.8: The evolution of the inflaton modulus, τ2, during the last 60 e-folds of inflation
(left figure) and at the end of inflation when it decays (right figure) for the parameters
given in (4.3.1) (example 1).

Figure 4.9: The evolution of the axionic partner to the inflaton modulus, b2, during the
last 60 e-folds of inflation (left figure) and at the end of inflation when it decays (right
figure) for the parameters given in (4.3.1) (example 1).

Figure 4.10: The evolution of volume modulus, V, during the last 60 e-folds of inflation
(left figure), and at the end of inflation when it decays (right figure) for the parameters
given in (4.3.1) (example 1). The volume modulus is stable while the inflaton, τ2, is slowly
rolling but decays quickly in line with the decay of the inflaton.
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4.3 Kähler moduli inflation with a higher energy scale (example 1)

Figure 4.11: The evolution of the stabilising modulus, τ3, during the last 60 e-folds
of inflation (left figure) and at the end of inflation when it decays (right figure) for the
parameters given in (4.3.1) (example 1).

Removing V and τ3 from the evolution

We will now consider the same system but with τ3 and V set to their values at the

global minimum

〈V〉 = 10142, 〈τ3〉 = 2.651 (4.3.9)

to demonstrate that these two fields can be safely excluded from the numerical evolution

without significantly impacting the inflationary predictions of the model. We now have

a two-field model with φa = (τ2, b2) and metric

γab =

(
3αλ2

4V
√
τ2

0

0 3αλ2
4V
√
τ2

)
. (4.3.10)

We use initial conditions with τ2 slightly shifted from the previous example (which

allows us to recover the same value of ns)

τ in2 = 78.5, bin2 = 0.7
π

a2
. (4.3.11)

The evolution during the last 60 e-folds of inflation of the two fields proceeds as expected

and is plotted in FIGs 4.12–4.13. Despite the fact that the volume modulus does evolve

non-negligibly during inflation (see FIG. 4.10), excluding it and the stabiliser from the

evolution has only a very small effect on the evolution of the inflaton, τ2, and its axionic

partner, b2 (compare with FIGs 4.8–4.9).

The inflationary predictions of this model are now (50 e-folds before the end of
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Figure 4.12: The evolution of the inflaton modulus, τ2, during the last 60 e-folds of
inflation (left figure) and at the end of inflation when it decays (right figure) for the
parameters given in (4.3.1) with the volume modulus, V, and stabiliser, τ3, excluded from
the evolution. The evolution proceeds almost identically to that of FIG. 4.8 for which V

and τ3 were included in the evolution.

Figure 4.13: The evolution of the axionic partner to the inflaton modulus, b2, during
the last 60 e-folds of inflation (left figure) and at the end of inflation when it decays (right
figure) for the parameters given in (4.3.1) with the volume modulus, V, and stabiliser, τ3,
excluded from the evolution. The evolution proceeds almost identically to that of FIG. 4.8
for which V and τ3 were included in the evolution.
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inflation)

ε = 4.88× 10−8, ns = 0.967, r = 7.80× 10−7, V 1/4 = 9.13× 1014GeV (4.3.12)

for power spectrum normalised to Ps ∼ 2× 10−9. The scalar spectral index is exactly

the same as it was in the full evolution, however the potential, slow-roll parameter, and

consequently the tensor-to-scalar ratio are all slightly greater in value. These differences

are small however, and the generic inflationary predictions of the model are the same

as they were in the full evolution. In particular, we still require an enhancement factor

of roughly 104 if we wish to have a detectable tensor spectrum.

The model shown in this section is very promising – it contains an axion that will

couple naturally to a gauge field through the b2FF̃ term in the action; with this axion

active during inflation, the inflationary predictions of the model satisfy observational

constraints; the tensor-to-scalar ratio is much greater than that of standard Kähler

moduli inflation, and will therefore be much easier to enhance to observable values;

and, we can reduce it to a two-field model without affecting its predictions significantly,

greatly simplifying the numerics, which will become involved when we consider the

perturbations of this system coupled to a gauge field in chapter 5. In the next section,

we will consider a slight variation to this model, which, in practice, proves much more

readily applicable to admit a large enhancement of the gravitational wave spectrum

through the mechanism shown in chapter 3.

4.4 Including an extra modulus (example 2)

Although the model shown in the previous section looks very promising, in practice it

proves difficult to implement a successful enhancement of the gravitational wave spec-

trum without incurring an excessive backreaction of the gauge field tensor perturbation

on the background equations of motion. This difficulty is in a large part because the

axion, whose evolution can sustain the gauge field, is linked inextricably to the inflaton.

This will be discussed in more detail in chapter 5. In the model discussed in chapter 3,

the axion is a spectator field, with no direct coupling to the inflaton. Using this as a

guide, we pose the question in this section of whether it is possible to include an extra

modulus, T4 = τ4 + ib4, that is neither responsible for inflation (T2) nor responsible
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4. INTRODUCTION TO KÄHLER MODULI INFLATION

for stabilising the potential (T3). It is easy to include an extra (small) modulus in the

volume

V = α

(
τ

3/2
1 −

4∑
a=2

λaτ
3/2
a

)
(4.4.1)

and the potential (see 4.1) becomes

V =
4∑

a=2

8
√
τa

3αλaV
(aaAa)

2 e−2aaτa +
4∑

a=2

4aaAaτa
V2

W0e
−aaτa cos (aaba) +

3ξ̂

4V3
W 2

0 +
β

V2
.

(4.4.2)

Likewise, the Kähler metric generalises easily

Kab̄ =



3α4/3

4V4/3 −9α5/3λ2
√
τ2

8V5/3 −9α5/3λ3
√
τ3

8V5/3 −9α5/3λ4
√
τ4

8V5/3

−9α5/3λ2
√
τ2

8V5/3
3αλ2

8V
√
τ2

9α2λ2λ3
√
τ2τ3

8V2

9α2λ2λ4
√
τ2τ4

8V2

−9α5/3λ3
√
τ3

8V5/3

9α2λ2λ3
√
τ2τ3

8V2
3αλ3

8V
√
τ3

9α2λ3λ4
√
τ3τ4

8V2

−9α5/3λ4
√
τ4

8V5/3

9α2λ2λ4
√
τ2τ4

8V2

9α2λ3λ4
√
τ3τ4

8V2
3λ4

8V
√
τ4
.


(4.4.3)

Our goal in this section is to show that this is consistent in that the model still predicts

acceptable inflationary observables in ns, r and that, like in the previous section, we

can safely set the volume modulus, V, and the stabiliser, τ3, to their minima. Since the

plan is to use the b4 axion as the field coupled to the gauge field, we can set b2 = π/a2

along with b3 = π/a3. This leaves us with a 5-field system, φa = (V, τ2, τ3, τ4, b4) with

real-space metric given by

γab =



2
3V2 −3αλ2

√
τ2

2V2 −3αλ3
√
τ3

2V2 −3αλ4
√
τ4

2V2 0

−3αλ2
√
τ2

2V2
3αλ2

4V
√
τ2

9α2λ2λ3
√
τ2τ3

4V2

9α2λ2λ4
√
τ2τ4

4V2 0

−3αλ3
√
τ3

2V2

9α2λ2λ3
√
τ2τ3

4V2
3αλ3

4V
√
τ3

9α2λ3λ4
√
τ3τ4

4V2 0

−3αλ4
√
τ4

2V2

9α2λ2λ4
√
τ2τ4

4V2

9α2λ3λ4
√
τ3τ4

4V2
3αλ4

4V
√
τ4

0

0 0 0 0 3αλ4
4V
√
τ4


.

(4.4.4)

100



4.4 Including an extra modulus (example 2)

We use the same parameters as in the previous example (4.3.1) with the addition of

λ4 = 0.1, a4 =
2π

70
, A4 = 2× 10−9 . (4.4.5)

A4 is chosen so that the contribution to the potential (4.4.2) from the T4 terms is small;

λ4 � λ2 is chosen so that the contribution from the fields τ4 and b4 to εϕ = ϕ̇2

2H2M2
pl

is

small; and a4 is chosen phenomenologically to help with the enhancement mechanism

(see chapter 5). The minimum of this potential is found at

〈V〉 = 10140, 〈τ2〉 = 4.7752, 〈τ3〉 = 2.6510, 〈τ4〉 = 11.141, 〈ba〉 =
π

aa
(4.4.6)

and shifting both the inflaton and b4 axion to their initial conditions of

τ in2 = 80.5, bin4 = 0.59
π

a4
(4.4.7)

gives us the initial conditions for the other fields at the local minimum of the potential

Vin = 10971, τ in3 = 2.6846, τ in4 = 11.141 . (4.4.8)

The equations of motion are still given by (4.2.10)–(4.2.12). The evolutions of the fields

for this 5-field model is shown in FIGs 4.14–4.17. The fields τ2, τ3 and V behave in

much the same way they did in the previous, 3 moduli, example (see FIGs 4.8–4.11).

The evolution of τ4 and, more importantly, the axion, b4, (FIG. 4.15) are particularly

uninteresting in this example: the axion moves to its minimum immediately (before

the last 60 e-folds of inflation). However, as mentioned in chapter 3, an axion can enter

slow-roll through its coupling to a gauge field (the two fields, in essence, support one

another), and this is exactly what we will see when we couple this system to a gauge

field in chapter 5. Without the gauge-coupling, however, the axion does nothing of

interest. The important thing is that the inflaton still slows rolls and causes inflation

in a way compatible with observations after the introduction of an extra modulus, T4.

The inflationary predictions of this example are (60 e-folds before the end of infla-

tion)

ε = 2.40× 10−8, ns = 0.965, r = 3.84× 10−7, V 1/4 = 8.14× 1014GeV . (4.4.9)
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4. INTRODUCTION TO KÄHLER MODULI INFLATION

Figure 4.14: The evolution of the inflaton modulus, τ2, during the last 60 e-folds of
inflation (left figure) and at the end of inflation when it decays (right figure) for the extra
modulus example with the parameters given in (4.3.1) and (4.4.5).

Figure 4.15: The evolution of the axion, b4 (left figure), and its scalar superpartner, the
τ4 modulus, during the last 60 e-folds of inflation for the extra modulus example with the
parameters given in (4.3.1) and (4.4.5). Because b4 has no gauge field to support it, it
rapidly falls to its minimum and does not evolve.

Figure 4.16: The evolution of volume modulus, V, during the last 60 e-folds of inflation
(left figure), and at the end of inflation when it decays (right figure) for the extra modulus
example with the parameters given in (4.3.1) and (4.4.5). The volume modulus is stable
while the inflaton, τ2, is slowly rolling but decays quickly in line with the decay of the
inflaton.
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4.4 Including an extra modulus (example 2)

Figure 4.17: The evolution of the stabilising modulus, τ3, during the last 60 e-folds of
inflation (left figure) and at the end of inflation when it decays (right figure) for the extra
modulus example with the parameters given in (4.3.1) and (4.4.5).

In comparison to the 3-moduli case, where we took horizon-crossing to be 50 e-folds

before the end of inflation, in this case η = d(ln ε)/dN is larger earlier in inflation,

meaning ns = 1− 2ε− η reaches an observable value earlier (in general η will increase

as inflation continues), hence why we measure 60 e-folds prior to the end of inflation

rather than 50. Because this point is further from inflation’s end (ε→ 1), ε is slightly

smaller than the 3-moduli example, and therefore so is r. This effect is not due to the

additional modulus since both τ4 and b4 are effectively stationary. Rather, it is because

in this example we have b2 set to its minimum – this changes the evolution of τ2, the

inflaton, because it feels a stronger pull from the potential to its minimum. We note

that both [49, 76] leave the axions at their minima so this is actually a more standard

Kähler inflation scenario. But it is interesting that taking b2 away from its minimum

leads to a difference in the evolution. Despite this, in itself, this seems a perfectly viable

multi-field model of inflation.

Removing V and τ3 from the evolution

As already mentioned repeatedly, we very much would like to simplify our models as

much as possible before attempting to include a gauge field as we do in chapter 5.

Therefore, we will consider this example again but with both V and τ3 at their minima

as we did with the previous example. In addition to this we will also ignore the off-

diagonal terms in the metric between τ2 and τ4. This massively simplifies the numerics,

and we will show that, by slightly shifting the initial condition for τ2, we can arrive at

a very similar evolution for the fields, and very similar inflationary predictions.
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4. INTRODUCTION TO KÄHLER MODULI INFLATION

Figure 4.18: The evolution of the inflaton modulus, τ2, during the last 60 e-folds of
inflation (left figure) and at the end of inflation when it decays (right figure) for the
extra modulus example with the parameters given in (4.3.1) and (4.4.5) with the volume
modulus, V, and stabiliser, τ3, excluded from the evolution. The evolution proceeds almost
identically to that of FIG. 4.14 for which V and τ3 were included in the evolution.

Setting V = 〈V〉 = 10140 and τ3 = 〈τ3〉 = 2.651 to their values at the global

minimum, and ignoring the off-diagonal terms leaves the three-dimensional real field-

space metric as

γab =


3αλ2

4V
√
τ2

0 0

0 3αλ4
4V
√
τ4

0

0 0 3αλ4
4V
√
τ4

 (4.4.10)

with real fields φa = (τ2, τ4, b4). We take

τ in2 = 80, bin4 = 0.59
π

a4
, τ in4 = 11.141 (4.4.11)

The evolutions of the fields are plotted in FIGs 4.18–4.19. The inflationary predictions

of this model are (60 e-folds before the end of inflation)

ε = 2.71× 10−8, ns = 0.965, r = 4.34× 10−7, V 1/4 = 8.29× 1014GeV . (4.4.12)

As before, simplifying the system leads to a slight increase in the scale of the potential

60 e-folds before the end of inflation, leading to a slightly greater value for the tensor-

to-scalar ratio. However this system is well-approximated by this simplified example.

In this section, we have shown that we can safely introduce an extra (spectator)

modulus to the system whilst satisfying observational constraints. This model is very

promising with regards to our aim of enhancing its gravitational wave spectrum through

the tensor modes of a gauge field supported by its coupling to an axion.
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4.5 Fibre inflation

Figure 4.19: The evolution of the axion, b4 (left figure), and its scalar superpartner, the
τ4 modulus, during the last 60 e-folds of inflation for the extra modulus example with the
parameters given in (4.3.1) and (4.4.5) with the volume modulus, V, and stabiliser, τ3,
excluded from the evolution. The evolution proceeds almost identically to that of FIG.
4.8 for which V and τ3 were included in the evolution. Because b4 has no gauge field to
support it, it rapidly falls to its minimum and does not evolve.

4.5 Fibre inflation

In relation to the mechanism of enhancing the tensor spectrum of an inflationary model,

fibre inflation [50] is – at first glance – a less interesting model since it already predicts an

observable tensor-to-scalar ratio. However, as we saw in chapter 3, the tensor spectrum

produced after applying the enhancement mechanism is highly chiral – giving models

that use this enhancement mechanism a potentially observable (see chapter 5, [87]) and

distinguishable feature, differentiating themselves from vanilla models of inflation. For

this reason, in chapter 5, we will attempt to enhance the spectrum of fibre inflation in

the manner described in chapter 3 13.

The first thing to note is that the potential in the standard case of fibre inflation

(4.5.1)
V =

W 2
0

V2

(
A

τ2
1

− B

V
√
τ1

+
Cτ1

V2

)
+

8
√
τ3

3αλ3V
(a3A3)2 e−2a3τ3

+
4a3A3τ3

V2
W0e

−a3τ3 cos (a3b3) +
3ξ̂

4V3
W 2

0 +
δup

V4/3

contains no suitable axion. This is because like Kähler moduli inflation, τ3 is a stabiliser

meaning that it and b3 cannot be shifted far away from their minima without ruining

13We note that the original example of this enhancement mechanism in [3] was not applied to a
model that initially predicted an unobservable tensor-to-scalar ratio, and was concerned merely with a
modest enhancement to an already relatively large tensor spectrum.
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the stability of the potential. The reason there is no axion partner to τ1 nor τ2 is due

to the form of the volume and superpotential in fibre inflation

V = α
(√

τ1τ2 − γτ3/2
3

)
(4.5.2)

where by necessity, τ1 and τ2 are large moduli: τ1, τ2 � τ3. This means that the

superpotential (which is the same as in Kähler moduli inflation)

W = W0 +

3∑
a=1

Aae
−aaTa 'W0 +A3e

−a3T3 (4.5.3)

where the T1 and T2 terms are exponentially suppressed. The fact that the superpoten-

tial takes this form without the negligible contribution from the T1 and T2 fields leads

to the potential above (4.5.1). Recall that the potential terms for τ1 and τ2 arrive from

string-loop corrections to the Kähler potential. Although of course we can include the

superpotential terms for T1 and T2 in the potential, in practice these are so small as to

be irrelevant and the axions, b1 and b2 remain approximately massless. Therefore, our

only hope of having an axion that can evolve during inflation is to include, as we did for

Kähler moduli inflation in the section above, an extra modulus, T4 = τ4 + ib4, that has

similar properties to T3 but is not responsible for stabilising the potential. Consider

V = α
(√

τ1τ2 − γ3τ
3/2
3 − γ4τ

3/2
4

)
(4.5.4)

where T4 is chosen so that τ4 ∼ τ3 � τ1, τ2. Now the superpotential becomes

W 'W0 +A3e
−a3τ3 +A4e

−a4τ4 . (4.5.5)

The Kähler potential becomes

K = −2 ln

(
V +

ξ̂

2

)
' K0 = −2 lnV (4.5.6)

working in the large volume limit. Explicitly taking V ' V0 = α
√
τ1τ2 and performing

an expansion in
√
τ3,4/τ1,2 and keeping only the highest order term in each entry gives

∂aK = ∂āK =

(
− 1

2τ1
,− 1

τ2
,

3 γ3
√
τ3

2
√
τ1τ2

,
3 γ4
√
τ4

2
√
τ1τ2

)
. (4.5.7)
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The Kähler metric is

Kab̄ =
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1

γ3τ
3/2
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√
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√
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√
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√
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√
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√
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√
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(4.5.8)

and its inverse is

Kab̄ = 4



τ2
1 γ3

√
τ1τ3

3 + γ4

√
τ1τ3

4 τ1τ3 τ1τ4

γ3

√
τ1τ3

3 + γ4

√
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4
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2
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√
τ1τ3

3γ3
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2τ2
√
τ1τ4
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(4.5.9)

where we have explicitly left everything in terms of the fields τ1,2,3,4. The T4 modulus

contributes equivalent terms to those of T3 to the Kähler potential due to the symmetry

of the τ3 and τ4 terms in the volume (4.5.4). Equivalently, because the superpotential

(4.5.5) has symmetric terms in T3 and T4, we know that the potential (4.5.1) receives

the additional terms14

VT4 =
8
√
τ4

3αλ3V
(a4A4)2 e−2a4τ4 +

4a4A4τ4

V2
W0e

−a4τ4 cos (a4b4) (4.5.10)

and gives us the full potential (setting b3 to its minimum)

V =

(
A

τ2
1

− B

V
√
τ1

+
C τ1

V2

)
W 2

0

V2
+

8 a2
3A

2
3
√
τ3

3αγV
e−2a3τ3 −

4W0 a3A3
√
τ3

V2
e−a3τ3

+
3ξ̂W 2

0

4V3
+

8
√
τ4

3αλ3V
(a4A4)2 e−2a4τ4 +

4a4A4τ4

V2
W0e

−a4τ4 cos (a4b4) +
δup

V4/3
.

(4.5.11)

14Cross terms in the potential involving both τ3 and τ4 are higher order in O
(

1
V

)
(see the derivation

of the potential of Kähler moduli inflation in 4.1 which has the same form for the superpotential) and
are therefore suppressed.
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Following [50], we wish to remove τ3 from the equations of motion to simplify the

numerics. This is achieved by finding the minimum of τ3 in terms of V. Solving

∂V/∂τ3 = 0 gives

V =
3αγ3W0

a3A3

√
τ3

(
1− a3τ3

1− 4a3τ3

)
ea3τ3 ' 3αγ3W0

a3A3

√
τ3e

a3τ3 (4.5.12)

where we have assumed a3τ3 � 1. This gives an approximate solution for τ3 of

a3τ3 ' ln

(
2a3A3

3αγ3W0

)
(4.5.13)

and substituting this into the potential (4.5.11) leads to a four-field potential

V =

{
− 3αγ3

2a
3/2
3

(
ln

(
2a3A3

3αγ3W0
V

))3/2

+
3ξ̂

4

}
W 2

0

V3
+

(
A

τ2
1

− B

V
√
τ1

+
C τ1

V2

)
W 2

0

V2

+
8 a2

4A
2
4
√
τ4

3αγ4V
e−2a4τ4 +

4W0 a4A4
√
τ4

V2
cos (a4b4) e−a4τ4 +

δup

V4/3
. (4.5.14)

This is the exact same potential as in [50] (equation 3.60) with the addition of the two

terms for T4. As we did for Kähler inflation, we will use the volume modulus, V, as a

field since this is already in the potential. We therefore consider a four-field system,

φa = (τ1,V, τ4, b4), and we note at this point that both τ1 and V can be considered as

inflatons15. Again we use Kab̄∂µT
a∂µT̄ b̄ = 1

2γab∂µφ
a∂µφb to find the real-space field

metric, γab. We change variables from τ2 to V ' V0 = α
√
τ1τ2 by

∂µT2 = ∂µτ2 =
1

α
√
τ1

(
∂µV−

V

2τ1
∂µτ1

)
(4.5.15)

where we are assuming the axions b1 and b2 are stationary. With this the real-space

15In the sense that they both have a non-negligible contribution to the number of e-folds that pass
as the fields roll to their minima.
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metric can be found:

γab =



3
4τ2

1
− 1

2τ1V
0 0

− 1
2τ1V

1
V2 −3αγ4

√
τ4

2V2 0

0 −3αγ4
√
τ4

2V2
3αγ4

4V
√
τ4

0

0 0 0 3αγ4

4V
√
τ4


(4.5.16)

with fields φa = (τ1,V, τ4, b4). The equations of motion and constraint equation of

course take the same general form as in Kähler moduli inflation

φ̈a + 3Hφ̇a + Γabcφ̇
bφ̇c + γab

∂V

∂φb
= 0 , (4.5.17)

3M2
plH

2 =
1

2
ϕ̇2 + V (4.5.18)

and
Ḣ

H2
= −εϕ (4.5.19)

with Γabc the Christoffel symbols, ϕ̇2 = γabφ̇
aφ̇b and εϕ = ϕ̇2

2H2M2
pl

.

As an example we use the parameter set “SV2” in [50]:

ξ̂ =
ξ

g
3/2
s

= 4.59, A = 2.9× 10−3, B = 0.93, C = 4.3× 10−5,

W0 = 100, a3 =
π

4
, A3 = 1, α = 0.1543, γ3 = 3.055, δup = 0.082 (4.5.20)

and we note that there is an additional normalisation factor in front of the potential

that comes from e
Kcs−ln

(
2
gs

)
, and a constant term in front of the superpotential, g3

s
4π .

This normalisation is fixed so as to achieve the correct power spectrum16. In this

example, the normalisation factor is g4
s

8π = 3.22 × 10−4 with gs = 0.3. We introduce

parameters for T4

a4 =
2π

100
, A4 = 10−4, γ4 = 0.1 (4.5.21)

which are chosen so that T4 has little effect on the inflationary evolution but so that

16As mentioned, in the Kähler moduli inflation example, this normalisation was assumed to be
absorbed into the parameters, which were chosen so as to give the correct normalisation.
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b4 is able to sustain a gauge field (see chapter 5 for this system coupled to a gauge

field). Here we evolve the system without this coupling to demonstrate explicitly first

the key predictions of fibre inflation, but also to show that the introduction of this

fourth modulus does not ruin the inflationary predictions of the model. We find the

global minimum of (4.5.11) to be at

〈τ1〉 = 6.7637, 〈V〉 = 1408.1, 〈τ4〉 = 15.849, 〈b4〉 =
π

a4
. (4.5.22)

Shifting the principal inflaton, τ1, as well as b4 (which we would like to evolve) away

from their minima:

τ in1 = 5000, bin4 = 0.5
π

a4
(4.5.23)

gives a local minimum for the remaining fields at

Vin = 1831.8, τ in4 = 15.929 . (4.5.24)

Using these values as initial conditions, we can evolve the system. The evolutions of the

fields are plotted in FIGs 4.20–4.22. The evolutions of τ1 and V, the fields responsible

for inflation proceed as expected (the same as in [50]) despite the introduction of the

fourth modulus. As in the last example of Kähler moduli inflation above, the evolution

of τ4 and, more importantly, b4, is trivial. Without a gauge field to support b4, it

immediately goes to its minimum and remains there for the duration of inflation. In

chapter 5, we will show that the introduction of a gauge field coupled to the axion,

allows it to roll slowly for a sizeable duration of inflation. The inflationary predictions

of this model are as follows (taken 50 e-folds before the end of inflation)

ε = 3.70× 10−4, ns = 0.965, r = 5.39× 10−3, V 1/4 = 9.04× 1015GeV . (4.5.25)

As mentioned, fibre inflation predicts a considerably larger value for the tensor-to-scalar

ratio (it is of observable value r > 10−3) when compared to Kähler moduli inflation

– this is because the potential is of higher energy, which is likely due to the smaller

value of the volume, V ∼ O
(
103
)
. The introduction of the axion (and its spectator

modulus) did not have a significant impact on the evolutions of the two inflationary

fields, τ1 and V. Although this model already predicts an observably high tensor-to-

scalar ratio, it is still a viable candidate for the enhancement mechanism described in
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Figure 4.20: The evolution of the principal inflaton modulus, τ1, during the last 60
e-folds of inflation (left figure) and at the end of inflation when it decays (right figure)
for fibre inflation with an additional, spectator, modulus, T4, and parameters given in
(4.5.20)–(4.5.21).

Figure 4.21: The evolution of the volume modulus, V, during the last 60 e-folds of inflation
(left figure) and at the end of inflation when it decays (right figure) for fibre inflation with
an additional, spectator, modulus, T4, and parameters given in (4.5.20)–(4.5.21).

Figure 4.22: The evolutions of the axion, b4 (left figure), and its superpartner modulus,
τ4 (right figure), during the last 60 e-folds for fibre inflation with an additional, spectator,
modulus, T4, and parameters given in (4.5.20)–(4.5.21). Because there is no gauge field to
act to slow it, the axion immediately goes to its minimum and stays there for the duration
of inflation.
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chapter 3. In the next chapter we will apply this mechanism to a slightly modified

version of this example of fibre inflation (whose inflationary sector is the same) by

adding a further spectator axion. This does not modify the inflationary predictions

of the model meaning the results of this section are still valid but helps to justify the

necessarily large Chern-Simons-like coupling required to enhance the gravity sector.

4.6 Summary

In this chapter, we have considered three examples of Kähler moduli inflation and

examined their general features: first, in section 4.2, we looked at a “bog-standard”

low-energy example, where the tensor-to-scalar ratio is exceptionally small (r ∼ 10−15).

Since we are interested in enhancing the tensor-to-scalar ratio of Kähler inflation to

observable values, we decided to a look at an example with higher energy, in section 4.3:

this example predicts a considerably larger background tensor-to-scalar ratio, r ∼ 10−6,

and naturally contains an axion that could be coupled to a gauge field. In addition

to this we also considered a model, in section 4.4 with the same parameters, but with

the addition of an extra modulus to act as the field coupled to the gauge field. We

showed that this extra modulus, although following a trivial evolution without the

presence of a gauge field, has no ill effect on the inflationary predictions of the model.

We also importantly demonstrated that these last two models can be greatly simplified

by setting both the volume modulus and the stabiliser modulus to their values at

the global minimum and discarding them from the evolution whilst maintaining the

generic features and inflationary predictions of the model. This will greatly simplify

the numerics when we couple this system to a gauge field, which can be tricky, especially

when we examine the perturbations of the system.

Finally, in section 4.5, we considered a model of fibre inflation to which we have

added an extra modulus to act as a spectator and couple to a gauge field. This system

satisfies observational constraints, and, being fibre inflation, predicts an observable

value of the tensor-to-scalar ratio (r ∼ 10−3). The inclusion of the extra modulus did

not negatively impact the evolutions of the other fields, τ1 and V, and inflation proceeds

as expected when compared to the case without the extra modulus (see [50], section

3.4.2).
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Chapter 5

Primordial Gravitational Waves

in String Inflation

This chapter includes much of a paper published in Journal of Cosmology and As-

troparticle Physics written with Ivonne Zavala and Gianmassimo Tasinato titled On

chromo-natural inflation in string theory [88]. We include examples of Kähler and fibre

inflation where a Kähler modulus, T , is coupled to a gauge field and show how this

coupling can lead to a large enhancement of the tensor-to-scalar ratio; large enough,

in fact, to lift the tensor sector to a potentially observable value for r despite the low

energy scale of Kähler modulus inflation. As well as the example that is included in

the paper, we discuss some additional examples. In particular, in this chapter we will

first consider some phenomenological examples, before discussing the example that is

included in the paper.

5.1 Introduction

Vanilla, single field, models of inflation are of course in good agreement with the most

recent data. However ongoing and future experiments will allow us to take a step

forward in testing the inflationary paradigm. Particularly interesting are the PGWs

produced by inflation, which lead to a distinctive B-mode pattern in the CMB polar-

isation [89, 90], that is being searched for by a wide range of ground-based, balloon

and satellite experiments [39–44]. Current bounds on the tensor-to-scalar ratio r from
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5. PRIMORDIAL GRAVITATIONAL WAVES IN STRING INFLATION

Planck and BICEP/Keck restrict r < 0.07 [37], but future experiments are likely to be

able to reach a sensitivity of order ∆r ' 10−3.

In theories beyond the standard model of particle physics and cosmology, other

fields besides the inflaton may be present during inflation and can have interesting

consequences. Their dynamics can participate to the inflationary mechanism at the

level of background or fluctuation evolution, and can leave imprints on the properties

of tensor modes, for example by amplifying their spectrum. This implies that even

models of inflation that normally predict a small value of r can see the primordial

tensor spectrum amplified by couplings with additional fields.

Perhaps the most studied example is the case with several scalar fields giving rise

to a multi(scalar) field inflationary scenario (see e.g. [91] for a review and references

therein). However, spin one particles have also been considered in various scenarios (see

e.g. [58] for a review and references therein). Non-abelian gauge fields have attracted

a lot of attention in cosmology recently [78, 79, 92, 93]. Interestingly, in these models

the spin-2 sector of gauge field fluctuations can provide a source for primordial gravi-

tational waves as shown in chapter 31, thus potentially enhancing the amplitude of the

gravitational wave spectrum of low-energy models of inflation, up to values observable

with future CMB polarisation experiments. Moreover, the PGW spectrum turns out

to be chiral (only the right-helicity mode of the gauge field and hence the gravity mode

gets enhanced), making it potentially distinguishable from a vanilla inflation scenario.

These scenarios are consequently very interesting for their potential to generate dis-

tinctive observables that can be probed by the next generation of CMB polarisation

experiments.

In particular, an SU(2) gauge field Aaµ is used in the chromo-natural inflation (CNI)

model proposed in [78, 79]. The original motivation of this model was to relax the

requirement of a super-Planckian decay constant f in natural inflation2, by using the

Chern-Simons (CS) coupling χFAµνF̃
Aµν of the axionic inflaton field χ, to the gauge

field with field strength FAµν . This coupling effectively provides a friction term on

the axion dynamics, allowing inflation to occur in a steeper potential with f < Mpl.

It has however been demonstrated that in this original form the CNI model is not

1Also, amplification of tensor modes by spectator scalar fields has been discussed in e.g. [94–96], and
the prospects for direct detection with future gravitational-wave experiments were recently discussed
in [97].

2See [98] for a review of natural inflation.
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observationally viable [81, 99] as it cannot satisfy constraints on the scalar spectral

index. An interesting proposal to alleviate this problem is to introduce a separate

inflationary sector, while the gauge-axion sector acts only as a spectator [3, 100] (this is

the second model shown in chapter 3): this scenario is dubbed spectator CNI (SCNI).

A common feature of both these proposals, which shall constitute an important point

for our investigation, is a large axion-gauge CS coupling (where the axion, gauge field

– and inflaton in SCNI – are canonically normalised):

L ⊃ λ

4f
χFAµνF̃

Aµν , (5.1.1)

(where F = dA − gA ∧ A, g being the gauge coupling). Successful chromo-natural

inflationary proposals that enhance tensor modes can be constructed, but must take

into account that an enhancement of primordial tensor modes generally implies a very

large enhancement of the tensor fluctuations of the gauge field. One needs to avoid

excessive backreaction of the gauge field fluctuations to the background – as emphasised

for example in [3, 101–103] – that would spoil the background inflationary dynamics.

This condition typically requires very small values for the gauge coupling g.

These facts indicate that it is not simple to design theories with the correct prop-

erties to realise satisfactory (S)CNI models, and one has to carefully balance between

different requirements on the quantities involved. Here we will explore the possibility of

embedding SCNI in models of Kähler moduli inflation and look for a consistent SCNI

model, accompanied by a relatively large amplitude of the gravitational wave spectrum.

Brief review of attempts so far to embed CNI in supergravity and

string theory

Before discussing our model, we review two ideas that have been proposed so far in

this direction.

The first interesting possibility is to embed CNI in supergravity, as proposed in

[104]. In supergravity, the coupling between the axion (and saxion) to the gauge sector

is dictated by the gauge kinetic function, fA, as:

L ⊃ −Re(fA)

4
FAµνF

Aµν +
Im(fA)

4
FAµνF̃

Aµν , (5.1.2)
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where fA is a holomorphic function of the superfields, including the axion that acts as

the inflaton in CNI. The proposal to account for a large CS coupling was to introduce

two canonically normalised (super)fields, Φj = αj + iφj , j = 1, 2 and choose the gauge

kinetic function as3 fA = 1 + ic Φ1
Φ2

with c a number of order one. The inflationary

trajectory occurs for αi = 0, such that, Re(fA) = 1, while Im(fA) = φ1/φ2. The

superpotential is chosen such that φ2 is heavier than the Hubble scale and it is thus

kept fixed at its minimum at a suitable value of 〈φ2〉 during inflation4. As we have

mentioned before, CNI has been shown to be observationally unviable, however, one

could in principle add to this set-up an inflationary sector as in [3], while keeping the

axion-gauge sector as spectators. However, the viability of such a model will need to

be carefully scrutinised when adding more fields; also the backreaction of the gauge

field tensor fluctuations on the background evolution will be hard to control without

introducing new parameters (i.e. superfields)5 [3, 101, 102]. We will discuss this aspect

in detail.

The second possibility is the work of [4] to embed SCNI in a string theory set-up.

In [4] a simplified string model is considered using gaugino condensation on magnetised

D7-branes in type IIB CY orientifold compactifications, and the axion associated to

the 2-form potential C2 present in the compactification (this was used in [105, 106]

to realise natural inflation in string theory). It is argued that this set-up could in

principle be embedded in a large volume scenario (LV) for moduli stabilisation [84,

85], with the inflationary sector being a model of Kähler inflation [49]. Although an

explicit string model was not presented they consider as possible values for the relevant

parameters: λ = 50, f = 10−12Mpl, a gauge coupling gA = 0.7, and an axion scale6,

µ ∼ 5.89 × 10−8Mpl, that is, µ � f , which may be theoretically inconsistent due

to unitarity constraints as discussed in [107]. Importantly, the backreaction of the

gauge field tensor fluctuations on the background was not considered in [4]. It has been

3In [104], fA = 1 + c Φ1
Φ2

with the norm |c| a number of order one; c needs to be purely imaginary in
order for the axion-gauge coupling to be non-zero along the inflationary trajectory, which is given by
Re Φi = αi = 0.

4The Kähler potential and superpotential for this model are given by K = 1
2
(Φ1 + Φ̄1)2 + 1

2
(Φ2 +

Φ̄2)2 + SS̄ and W = S
[
i
√

2Λ sinh
(
iΦ1/

√
2Φ2

)
+ (Λ2

2 + Φ2
2)
]
, where Φi = αi + iφi and αi = S = 0

during inflation, while Λ2 = 〈φ2〉 sets the large coupling required.
5As we will discuss, the gauge coupling needs to be sufficiently small to guarantee control on the

backreaction. This could be introduced in supergravity by adding a third superfield, Φ3 to the config-
uration of [104], in addition to the inflationary sector, such that 〈Φ3〉 sets the required small coupling.

6Assuming an effective potential for the axion of the form V = µ4(1− cos (χ/f)).
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argued in the literature that backreaction imposes strong constraints on the parameters

[3, 101, 102]. As we shall discuss in detail, keeping under control the backreaction of

gauge fluctuations requires an additional parameter, which needs to be sufficiently

small.

What we do in this work

In light of these results, we consider in detail the requirements for an explicit realisation

of the SCNI scenario in a string theory set-up, including for the first time a careful esti-

mate of backreaction issues for gauge fluctuations. As we will see, and already pointed

out in [4] (and [104] in supergravity), string theory naturally includes the field con-

tent of SCNI, albeit in a more intricate form. Given the phenomenologically appealing

features of this scenario, and the forthcoming experimental opportunities associated

with CMB polarisation, it is of paramount importance to investigate the possibility

of realising this model in a theoretically consistent theory, keeping backreaction under

control.

As a concrete set-up, we adopt the LV scenario [84, 85] in type IIB CY orientifold

compactifications. Within this framework, we consider Kähler inflation, where the

tensor-to-scalar ratio is too small to be observationally relevant, namely r < 10−6 [49,

76], and include one of the gaugino condensation sectors involved in moduli stabilisation

as the spectator sector to explore realisations of SCNI [3, 101], which will be capable

of enhancing the amplitude of primordial tensor modes to observable levels.

We organise our discussion as follows:

� In section 5.2, we discuss the dynamics of gauge fields in general multi-field in-

flationary scenarios that arise in typical supergravity and string theory models.

In particular, the metric in the scalar manifold is generically curved, the scalar

potential is non-separable, and the coupling of the scalars to gauge fields is non-

trivial. Within this general set-up, we discuss the background evolution and

requirements for successful inflation in this more general configuration. Once

specialised on the case of spectator chromo-natural inflation, we show how the

background evolution leads to conditions on the parameters in (5.1.1).

� In section 5.3 we then analyse gauge fields in Kähler inflation and the embedding

of SCNI in this framework, introducing the relevant parameters discussed above
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and presenting the full background evolution, setting up the system phenomeno-

logically with two parameters c1 and c2. We attempt to apply the enhancement

mechanism discussed in chapter 3 to the examples considered in chapter 4.

� In sections 5.4–5.6 we focus on a detailed analysis of the tensor, scalar perturba-

tions for the models of section 5.3, including a careful estimate of the backreaction

of the gauge fluctuations on the background equations of motion. We show that

the amplitude of primordial tensor modes can be enhanced by a factor of order

104 with respect to the typical values met in Kähler inflation set-up. In order

to avoid excessive backreaction from gauge fluctuations, we need to reduce the

value of the effective gauge coupling for the gauge group under consideration, and

this implies we need to choose a large value N ∼ 106 for the degree of the gauge

group SU(N). We find that the simplest example from chapter 4 where the axion

coupled to the gauge field is the superpartner of the inflaton is unable to satisfy

constraints on the backreaction, whereas the four-field model provides a viable

model.

� In section 5.7, we consider the slightly more complex scenario discussed in [88]

where the superpotential of Kähler moduli inflation is modified in order to justify

the large coupling between the axion and the gauge field. We show that the

conditions to obtain successful slow-roll inflation can be satisfied by turning on

large values for the magnetic flux on the D7 branes.

� In section 5.8 we consider the feasibility of this model.

� In section 5.9, we apply this same model to fibre inflation and demonstrate that

one can achieve a highly chiral spectrum for fibre inflation.

5.2 Gauge fields in general multi-field inflation

We start by introducing the general set-up that arises when considering SU(N) gauge

fields coupled to an axion in a general multi-field inflationary system, and then study in

detail the requirements for successful inflationary dynamics. Our aim is to determine

general conditions that a successful model of slow-roll inflation has to satisfy in the
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general set-up we study. Moreover, when specialising to the case spectator chromo-

natural inflation, we show that our formulae require large Chern-Simons couplings

between the axion and gauge fields (as introduced in eqn. (5.1.1)).

The action describing the system we are interested in consists of multiple scalar

fields interacting with a gauge field. It reads7

S =

∫
d4x
√
−g

[
M2

pl

2
R− γab(φ

c)

2
∂µφ

a∂µφb − V (φa)− f(φa)

4
FAµνF

Aµν +
h(φa)

4
FAµνF̃

Aµν

]
,

(5.2.1)

where γab(φ
c) is the metric of the scalar manifold spanned by the scalar fields φa,

and V (φc) is the scalar potential, which is generally not separable; that is, the scalar

fields generically interact via the kinetic and/or potential terms. The scalar sector

with a = 1, . . . n scalars, contains the axion as well as the inflaton(s), which may be

constituted by one or more fields, non-trivially coupled to one another. The coupling

of the scalars (inflaton(s) and axion(s)) to the gauge sector is dictated by the functions

f(φa), h(φa), which generically depend on the scalar fields8.

The gauge group is in general SU(N) and the gauge field strength, FAµν , is given by

FAµν = ∂µA
A
ν − ∂νAAµ − fABCABµACν , (5.2.2)

where fABC are the structure functions of SU(N), and the dual, F̃Aµν , is defined as

F̃Aµν = εµναβFAαβ/(2
√
−g) with g the metric determinant. Let us stress that at this

stage the gauge field is not canonically normalised. Thus, there is no gauge coupling,

gA, appearing in the definition of FA, nor in the action. The gauge coupling is field-

dependent and it is given by g2
A = 1/f(φa) once the scalar field φa, coupled to the

gauge field, has been stabilised. However, while the scalar is evolving, we can define an

instantaneous gauge coupling at a fixed time, t0 as, g2
A,0 = 1/f(φa(t0)) as will be the

case in our string theory set-up.

We now discuss the cosmological background evolution and slow-roll dynamics of

the system. Specifically we are interested in the case where two scalar fields couple to

7In [100], a generalisation of CNI was presented where the canonically normalised inflaton – driven
by a dilaton – and the axion, are both coupled to a canonically normalised SU(2) gauge field. In our
notation, they had a flat scalar metric, γab = δab, f(φa) a function of the inflaton and h(φa) = λ

f
σ,

where σ denotes the axion.
8As can be inferred from the introduction, and as we will discuss below, they are related to the real

and imaginary parts of the gauge kinetic function.
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the gauge field via the functions f(φa) and h(φa), plus an additional scalar field, not

coupled to the gauge field, which acts as the inflaton. That is, the spectator sector

consists of two scalars coupled to the gauge field. This system generalises the chromo-

natural inflation models discussed in [3, 78].

5.2.1 Background evolution and slow-roll inflation

We consider a homogeneous and isotropic flat FRW metric ds2 = −dt2 + a(t)2dxidxi,

where a(t) is the scale factor. To treat the SU(N) case, we proceed as follows. First,

homogeneity and isotropy of the gauge field energy density, and hence the background

can be maintained by splitting the SU(N) gauge group into N = [N/2] (N/2 mod 2)

disjoint sub-groups of SU(2) [108, 109]. In each sub-group, the gauge field equals a

different scalar, which can be assumed to be locked into the following isotropic config-

uration,

AA0(n) = 0, AAi(n) = a(t)Qn(t)δAi , n = 1, . . . ,N . (5.2.3)

Notice that now within each sub-group, fABC = εABC . In the background configuration

(5.2.3), the field strength tensor components within each sub-group are,

FA0i(n) = −aEAi(n) = a(t)
[
HQ(n)(t) + Q̇(n)(t)

]
δAi , (5.2.4)

FAij(n) = a2εijkB
A
k(n) = − εAij [a(t)Q(n)(t)]

2 , (5.2.5)

where H = ȧ/a is the Hubble parameter.

For N > 1, it is difficult to solve the full background evolution. However, a simplifi-

cation occurs if one assumes that each SU(2) sub-group has a common field strength9,

FA. In this case, the system and equations of motion are equivalent to those of the

single SU(2) case10 by replacing AAi → AAi /
√
N, that is,

Q→ Q√
N
, (5.2.6)

and defining an effective gauge coupling, g, as

g :=
1√
N
, (5.2.7)

9This can be realised by initialising the system with a common initial condition. See also the
discussion in [108].

10In this way, the system becomes equivalent to that studied in chapter 3.
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which is now equivalent to having F = dA−gA∧A, without introducing this coupling

into the function h(φ). Let us stress again that this is not the standard gauge coupling,

which is still given by g2
A = 1/f(φa) defined above and at this stage is field dependent.

From (5.2.7) we already see that a small (effective) gauge coupling g can be achieved for

a large gauge group, N . Keeping this in mind, we focus on the single SU(2) case with

an effective gauge coupling given by (5.2.7), to investigate the background evolution of

the system.

In this case, the equations of motion for the metric are given by

3M2
plH

2 = ρϕ + ρYM , (5.2.8)

2M2
plḢ = −ϕ̇2 − 2f(φa)

[(
HQ+ Q̇

)2
+ g2Q4

]
, (5.2.9)

where in (5.2.8) the energy densities are

ρϕ =
1

2
ϕ̇2 + V (φa) , ρYM =

3

2
f
[
(HQ+ Q̇)2 + g2Q4

]
, (5.2.10)

and we have defined:

ϕ̇2 := γabφ̇
aφ̇b . (5.2.11)

The scalar equations of motion are given by

φ̈a+3Hφ̇a+Γabc φ̇
bφ̇c+γab V,b = −3g γabh,bQ

2
(
HQ+ Q̇

)
+

3

2
γabf,b

((
HQ+ Q̇

)2
− g2Q4

)
,

(5.2.12)

where X,a denotes a derivative with respect to the field φa. Note that the RHS of this

equation will be zero for any scalar field that is not coupled to the gauge field. Note

as well that these equations are valid also if the inflationary sector (decoupled from

the gauge field) includes several scalars. In this case, there may be further interesting

phenomenology due to possible large turns (see e.g. [110–116]). We leave exploration

of this possibility for future work.

Finally, the gauge field equation is given by

Q̈+ 3HQ̇+Q
(
Ḣ + 2H2

)
+ 2g2Q3 = gQ2 φ̇a

h,a
f
− φ̇a f,a

f

(
QH + Q̇

)
, (5.2.13)

where on the RHS only the scalar fields coupled to the gauge field will appear.
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The energy-momentum conservation equation, ∇µTµν = 0, where Tµν is the total

energy momentum tensor including the scalars and gauge field, further gives (ν = 0):

ρ̇ϕ + 3H(ρϕ + pϕ) = φ̇aQaYM ,

ρ̇YM + 4HρYM = −φ̇aQaYM , (5.2.14)

with pϕ = 1
2 ϕ̇

2 − V (φa) and

QaYM := −3 gh,aQ
2(HQ+ Q̇) +

3

2
f,a

[
(HQ+ Q̇)2 − g2Q4

]
. (5.2.15)

Equations (5.2.14) show in a neat way the non-trivial interplay between the scalar and

gauge field dynamics in a cosmological setting.

5.2.2 Slow-roll Dynamics

To study inflation, we define the first slow-roll parameter in the usual way as

ε := − Ḣ

H2
= εϕ + εE + εB , (5.2.16)

where we introduced the slow-roll parameters for the scalars and the gauge field11:

εϕ :=
ϕ̇2

2H2M2
pl

, εE :=
f(HQ+ Q̇)2

H2M2
pl

, εB :=
fg2Q4

H2M2
pl

. (5.2.17)

During inflation, ε = εϕ + εE + εB � 1, and the energy density must be dominated by

the scalar potential, 3M2
plH

2 ∼ V . Note that there may be different hierarchies among

the individual slow-roll parameters, but the overall ε� 1 has to be small.

We now define a second small slow-roll parameter as follows:

η :=
ε̇

Hε
= 2εH − 2

εϕ
εH
δϕ + ξf (εB + εE) + 2

εE
εH
δE + 4

εB
εH
δB � 1 . (5.2.18)

where we introduce the quantities

δϕ := − ϕ̈

Hϕ̇
, δE :=

d
dt(Q̇+HQ)

H(Q̇+HQ)
, δB :=

Q̇

HQ
, (5.2.19)

11Notice in comparison to the case of chapter 3, εE,B have an additional factor of f(φa). This is
because of the non-canonical nature of the fF 2 term in the action.
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which we take to be small during inflation (to ensure that η is small barring cancella-

tions), as well as the small parameter

ξf := Mpl
faφ̇

a

2fϕ̇

√
2εϕ =

faφ̇a

2fH
. (5.2.20)

Notice that the slow-roll conditions defined above do not involve the coupling between

the axion and the gauge field, h. Therefore, this coupling can be large during inflation.

Dropping all terms with time derivatives except on the RHS of the equation for

Q, (5.2.13), which transfers part of the scalar sector kinetic energy to the background

gauge field, we get the relation

2H2Q+ 2g2Q3 ' gQ2haφ̇
a

f
−HQfaφ̇

a

f
. (5.2.21)

Introducing the parameters

ξh := Mpl
haφ̇

a

2fϕ̇

√
2εϕ =

haφ̇a

2fH
, ξQ :=

gQ

H
, (5.2.22)

eq. (5.2.21) becomes

1 + ξ2
Q ' ξh ξQ − ξf . (5.2.23)

In fact in every scenario we consider (5.2.21) is dominated by 2g2Q3 and gQ2 haφ̇a

f and

we get the very approximate solution

2g2Q3 ∼ gQ2haφ̇
a

f
=⇒ ξQ ∼ ξh . (5.2.24)

Physically, the parameters ξf and ξh represent a dimensionless (i.e. scaled by 1
H ) mea-

sure of the speeds of the fields coupled to the gauge field through f and h, respectively,

scaled by 1
f . Meanwhile, the parameter ξQ can be seen to be roughly equal to the

square root of the ratio of the magnetic and electric parts of the energy density of the

gauge field (see (5.2.10)) when the system is in slow-roll:√
ρB
ρE

=
gQ2

HQ+ Q̇
' gQ

H
= ξQ (5.2.25)

where in the second step we have assumed slow-roll evolution for Q: Q̇� HQ. As we
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saw, the slow-roll conditions imply that ξf � 1, while no condition is required for ξQ, ξh,

which can be significant, and given (5.2.23), we have, ξh & ξQ. Stability analysis in CNI

has shown that scalar perturbations are stable for ξQ >
√

2 and therefore ξh & ξQ >
√

2

[78–80, 117]. Then ξh > 1, which implies

Mpl

f

haφ̇
a

2ϕ̇
>

1√
2εϕ

. (5.2.26)

This is the first important constraint on the background field evolution that any suc-

cessful model of inflation described by action (5.2.1) should satisfy. Note that this

relation depends on the ratio between the gauge field coupling to the scalars via ha/f

and has non-trivial implications for their values as we now discuss.

5.2.3 Large Chern-Simons couplings are needed in spectator chromo-

natural inflation

Let us consider the condition in eq. (5.2.26) in the known cases of CNI and SCNI. In

those examples, h(φa) = λχ/f (see eq. (5.1.1) in the Introduction) where χ is the axion,

while f(φa) = 1. Then, condition (5.2.26) reduces to [117]

Mpl

f

λ√
2
>

1
√
εχ
, (5.2.27)

where εχ is the slow-roll parameter associated to the axion field alone: εχ = χ̇2

2M2
plH

2

(that is, the inflaton does not enter in this relation in the case of SCNI). Therefore it

is clear that in CNI, where the axion is also the inflaton, the larger the combination

λMpl/f is, the smaller εχ will be. In other words, to avoid an excessively large coupling

λMpl/f , εχ will be as large as possible (see e.g. [117] where Mplλ/f ∼ 10). On the

other hand, in order to ensure a maximal enhancement of the tensor fluctuations from

the gauge field, the parameter ξQ needs to be as large as possible, while keeping the

backreaction of the gauge tensor perturbations on the background equations of motion

under control [3, 101]. We will see this in detail in the string theory realisation in

sections 5.3 and 5.4.

In the extended version of chromo-natural inflation [3], the axion and gauge fields

act as spectators and therefore the requirement of a large axion coupling from the
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condition (5.2.27) can be relaxed by consistently maximising the value of εχ, while

having εφ < εχ � 1, where φ is the inflaton. An extreme example of this situation

with εφ ∼ 10−73, Hinf ∼ 10−40Mpl and εχ ∼ 10−6 (with λ/f ∼ 104M−1
pl , ξQ ∼ 44,

g ∼ 10−36) was discussed in [101]12.

In the rich multi-field model we consider in the next section, there is not a neat dis-

tinction between each scalar’s dynamics, and therefore, ξh is dictated by the evolution

of all scalar fields, as seen in (5.2.22). This means that this large coupling requirement

could be mildly relaxed due to the multiple field evolution13. Moreover, as we already

mentioned, we are also aiming to maximise the tensor fluctuations’ enhancement, that

is largely determined by the magnitude of ξQ, while keeping the backreaction under

control.

5.3 Examples of (spectator) chromo-natural Kähler infla-

tion

In this section we will put forward two examples of of Kähler moduli inflation coupled to

an SU(2) gauge field. The two inflationary examples are given in chapter 4 as example 1

and 2. In example 1, the inflaton itself, τ2, as well as its axionic partner b2 is coupled to

the gauge field. In example 2, an additional spectator modulus T4 = τ4 + ib4 is coupled

to the gauge field while the inflaton remains as τ2. The second example is SCNI.

Example 1, although capable of producing a large enhancement to the PGW spectrum

of Kähler inflation, cannot do so without incurring excessive backreaction by the tensor

fluctuations to the gauge field, which we will discuss in detail in 5.5. Example 2 has

more freedom in choosing parameters in its potential because the field coupled to the

gauge field does not need to support inflation. Example 2 permits a large enhancement

with controlled backreaction, but controlling the backreaction requires g � 1. These

examples are phenomenological in the sense that we do not motivate or justify the

necessary large and small parameters. In particular we require the coupling between

the axion and the gauge field to be large and as stated g� 1. In 5.6 we will introduce

a tweak to example 2 that complicates the model slightly but gives some motivation to

the magnitude of these couplings.

12See however [103] for restrictions on the model in [101].
13As all the scalar fields interact non-trivially via the kinetic and potential terms, non-linearities may

restrict further the parameter space along the lines discussed in [103].
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The four dimensional effective action arising in models of inflation in string theory

such as Kähler moduli inflation is given by (after moving into real space, see chapter 4)

S =

∫
d4x
√
−g

[
M2

pl

2
R− 1

2
γab∂µφ

a∂µφb − V (φa)− Re(fa)

4
FAµνF

Aµν +
Im(fa)

4
FAµνF̃

Aµν

]
,

(5.3.1)

where the Planck scale is given by M2
pl = 2V 0

6 /((2π)7α′ 4g2
s), with V 0

6 the dimensionful

six-dimensional volume vev, (2π)2α′ = `2s the string scale and gs = e〈φ〉 the string

coupling given in terms of the dilaton φ vev. The SU(N) gauge field (that, as has been

shown, is equivalent to one SU(2) gauge field of field strength FAµν = ∂µA
A
ν − ∂νAAµ −

gεABCABµA
C
ν with g = 1√

N/2
), gives rise to gaugino condensation on the D7-branes,

which generates a potential for the Kähler moduli T a = τa+ iba. The dual is defined as

F̃Aµν = εµναβFAαβ/(2
√
−g) with A = 1, 2, 3 the gauge index. The other moduli present,

namely the axio-dilaton and complex structure (and deformation moduli of D7-branes)

are assumed to be already stabilised at the perturbative level by internal fluxes at a

higher scale and integrated out consistently (as mentioned in chapter 4).

This action could of course be written in terms of the Kähler metric and complex

scalar fields T a = τa + iba. The moduli τa are the (Einstein frame) volumes of the

4-cycles Σa wrapped by the D7-branes in units of `s; while the imaginary parts, ba, are

axions that are the components of the C4-forms along these cycles ba = α′ −2
∫

Σa
C4.

This action has been written in terms of the real fields φa = (τa, ba). To see how we

arrive at γab for the different examples, see chapter 4. The coupling between the scalars

(Kähler moduli) and the gauge field is given by the holomorphic gauge kinetic function,

fa(T a).

Comparing (5.3.1) to the general multi-field action (5.2.1) we introduced in section

5.2, we have a non-trivial scalar metric (γab) mixing non-trivially the scalar fields; the

scalar potential is in general a non-separable, non-trivial function of all the scalar fields,

and there is a non-trivial well-defined coupling between the scalar fields and the gauge

field. We saw in the previous section how to deal with the general SU(N) group in

terms of an effective single SU(2) group by introducing an effective gauge coupling

(5.2.7), g = 1/
√
N/2.
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Let us now discuss the gauge field coupling to the scalars in (5.3.1) and (5.2.1). In

the original LV Kähler inflation scenario, the gauge kinetic function is given by [85]:

fa =
T a

2π
, (5.3.2)

where T a = τa + iba is the Kähler modulus coupled to the gauge field we want to

use to realise SCNI. Therefore, we can immediately identify the functions f and h

in (5.2.1) with the real and imaginary parts of fa respectively. As we discussed in

the previous section, a successful background evolution implies the condition (5.2.26),

which depends on the ratio h,a/f . For f given by (5.3.2) this ratio gives h,a/f ∼ 1/τa,

and the constraint (5.2.26), becomes

Mpl
ḃa
τaϕ̇

&
1√
2εϕ

,

or more simply
ḃa
τaH

=
1

τa

dba
dN

& 1 (5.3.3)

where ϕ̇ and εϕ are defined in (5.2.11) and (5.2.17) respectively, and N = ln a is the

e-folding number. Although it is in principle possible that the cosmological evolution

satisfies this condition, we did not find any example where this could be satisfied for

a non-negligible time during inflation14. Therefore, it is clear that we need the real

and imaginary parts of the gauge kinetic function fa to have different coefficients,

which is not possible in the original Kähler inflation model. We therefore propose for

example 1 and 2 (see below) that the coupling functions f and h are given purely

phenomenologically as

f(φa) =
c1

2π
τa, h(φa) =

c2

2π
ba (5.3.4)

where a corresponds to the modulus coupled to the gauge field T a = τa + iba. We see

that (5.3.3) now becomes
c2

c1τa

dba
dN

& 1 (5.3.5)

and we therefore require the hierarchy c2 � c1.

14Recall that in the slow-roll solution described in chapter 3, the axion is actually slowed down by
its coupling to the gauge field, making this condition even more difficult to achieve.
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5.3.1 Background evolution of example 1

We first consider a model with three Kähler moduli, whose basic inflationary predictions

are shown in chapter 4. The scalar potential is derived using the Kähler potential, K,

and superpotential, W , using, as standard

V
(
φa, φ̄b

)
= eK/M

2
pl

[
Kab̄DaWDbW −

3

M2
pl

|W |2
]
. (5.3.6)

The derivation for the potential of Kähler moduli inflation is given in chapter 4. In the

three-field case, it has potential

V1 =
8(a2A2)2e−2a2τ2

√
τ2

3αλ2V
+

4W0a2A2e
−a2τ2 cos (a2b2) τ2

V2
+

3ξ̂W0

4V3
+

β

V2
+ V3 , (5.3.7)

where the term proportional to β is the uplifting piece, taken to be of the form Vuplift =

β/V2 as in [49] and V3 comes from the stabilisation of the T3 modulus and it is given

by:

V3 =
8(a3A3)2e−2a3〈τ3〉

√
〈τ3〉

3αλ3V
− 4W0a3A3e

−a3〈τ3〉〈τ3〉
V2

, (5.3.8)

with b3 set to its minimum, 〈b3〉 = π/a3. As we show in chapter 4, the small cycle τ3

acts as a stabiliser for the potential at large volume V so cannot be shifted far from

its minimum. However τ2 and b2 can be displaced away from their minima leading to

an effective two-field inflationary model as shown in [76]. The T3 modulus stays at its

minimum with 〈b3〉 = π/a3 during the cosmological evolution in this case.

We can now use our general discussion in section 5.3 to study the scalar field dy-

namics in the presence of the gauge field. Our scalar fields are given by

φa = (τ2, b2) (5.3.9)

and we have simplified field-space metric (with V and τ3 set to their minima (see

chapter 4)) given by

γab =

(
3αλ2

4V
√
τ2

)
δab. (5.3.10)

Moreover, the coupling functions f, h in (5.2.1) can now be easily identified. We have

f(φa) =
c1

2π
τ2 , h(φa) =

c2

2π
b2 , (5.3.11)
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where the phenomenological constants c1, c2 allow for some freedom in the parameter

space.

Parameters

We use parameters as in example 1 in chapter 4 (this is example 4 in [76]):

ξ̂ = 1/2 , α =
1

9
√

2
, λ2 = 10 , λ3 = 1 , a2 =

2π

30
, a3 =

2π

3
,

A2 =
1

1.7× 106
, A3 =

1

425
, β = 6.9468131457× 10−5 , W0 =

40

17
.

(5.3.12)

The global minimum of the potential at zero cosmological constant is found to be at:

〈τ1〉 = 2555.69 , 〈τ2〉 = 4.77519 , 〈τ3〉 = 2.65111 , → 〈V〉 = 10142.4 , (5.3.13)

while the axions’ minima lie at ba = π/aa. This is a relatively small volume example

for Kähler modulus inflation, however it is still consistent with the large volume ap-

proximation. We are interested in the cosmological evolution when moving T2 away

from its minimum while T1, T3 are consistently kept at their minima (see chapter 4).

The scalar sector is coupled to the gauge sector through the gauge kinetic functions

f and h. We are searching for solutions which yield a sizeable period of inflation in

which the isotropic gauge field, Q, is supported. This support is given by its effective

coupling to the axion, ξh = c2ḃ2
2c1Hτ2

. As we shall see, the effective mass of the gauge

field goes ξh ' ξQ + ξ−1
Q so the larger ξh the larger ξQ; and as we shall also see in

section 5.4 the larger ξQ the larger the enhancement to the primordial gravitational

wave spectrum. c1 and c2 are therefore chosen so that there is ξh and consequently ξQ

are large enough to get a considerable amplification. We take:

c1 = 1, c2 = 7000 (5.3.14)

and we take the gauge coupling, g, which we will see is an extremely important fac-

tor in determining how large the backreaction of the gauge field perturbation on the
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Figure 5.1: Parametric plot of the cosmological evolution of τ2 and b2, during the last 60
e-folds on the left and the last e-fold of inflation in example 1.

Figure 5.2: Cosmological evolution of τ2 and b2, during the last 61 e-folds in example 1.
Inflation ends at N = 60.

background equations of motion is in section 5.6, to be

g =
1

10
. (5.3.15)

This system is evolved under the equations of motion given by (5.2.8)–(5.2.9) and

(5.2.12)–(5.2.13) and the background evolution is plotted in FIGs 5.1–5.8.

Interestingly, as can be seen in FIG 5.8, the contribution from the gauge field,

Figure 5.3: Cosmological evolution of τ2 and b2, during the last e-fold in example 1.
Inflation ends at N = 60.
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Figure 5.4: Cosmological evolution of the gauge field Q (left figure) and ξQ = gQ
H (right

figure) during the last 60 e-folds of inflation in example 1. The gauge field is supported by
its coupling to the axion determined by ξh.

Figure 5.5: Cosmological evolution of the effective coupling terms ξf = τ̇2
2Hτ2

(left figure)

and ξh = c2ḃ2
2c1Hτ2

(right figure) during the last 60 e-folds of inflation in example 1.

Figure 5.6: The evolution of the slow-roll parameter, ε = − Ḣ
H2 (left figure), and the

proportion of ε made up by εϕ = 1
2H2 γabφ̇

aφ̇b (right figure) during the last 60 e-folds of
inflation in example 1. εϕ dominates over the other components of the slow-roll parameter.
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Figure 5.7: The evolution of the electric and magnetic components of the slow roll

parameter, εE = c1
2π τ2

(Q̇+HQ)
2

H2M2
pl

(left figure) and εB = c1
2π τ2

g2Q4

H2M2
pl

(right figure) respectively

during the last 60 e-folds of inflation in example 1. They contribute only a small amount
to the overall slow-roll parameter, FIG. 5.6.

Figure 5.8: A comparison of the contributions to b2’s equation of motion (5.2.12) from

the term provided by the potential,
4V
√
τ2

3αλ2

dV
db2

; and the term provided by the gauge field,

−3 g c2
2π

4V
√
τ2

3αλ2

(
HQ+ Q̇

)
for example 1. Unlike the examples shown in [3] and [4], this

is not a “slow-roll solution” whereby the axion, b2 is slowed by the backreaction of the
gauge field, Q. In this example b2’s evolution is unaffected by the presence of Q but Q is
supported nonetheless.
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−3 g c2
2π

4V
√
τ2

3αλ2

(
HQ+ Q̇

)
, to b2’s equation of motion (5.2.12) is vastly sub-dominant

compared to the contribution from the potential, 4V
√
τ

3αλ2

dV
db2

. This suggests that example

1 is not a “slow-roll solution” (as described in [3] and [4] and the situation in chapter 3)

whereby the axion, b2, is slowed by the backreaction of the gauge field, Q – in the slow-

roll case, Q settles to a value that enables the contribution from the gauge field to

almost perfectly cancel the contribution from the potential to the axion’s equation of

motion. In this example, b2’s evolution is unaffected by the presence of Q but Q is

supported nonetheless. This is in part necessary since the evolutionary histories of the

inflaton, τ2, and b2 are intertwined (see FIG 5.1–5.2) – if b2’s evolution were slowed

considerably by the presence of Q, this would have a large effect on τ2 and consequently

the basic inflationary predictions of Kähler inflation. This model makes the following

inflationary predictions, 50 e-folds before the end of inflation:

εϕ = 4.75× 10−8, ns = 0.966, rb = 7.61× 10−7,

V
1/4
inf = 9.77× 1014GeV, ∆ϕ = 0.194Mpl (5.3.16)

where ∆φ =
∫ Ne
N∗

√
2εϕ dN with Ne the end of inflation and N∗ = Ne − 50, ns is

the scalar spectral index, and r = PT /PS = 16 εϕ is the non-sourced estimate for the

tensor-to-scalar ratio.

Although this model seems promising as a candidate to have a large enhancement

of the gravitational wave sector induced by the gauge field as it supports Q for a

long period during inflation, it turns out to be ineffective. The backreaction (we will

derive in detail an estimate for the backreaction in section 5.6) induced by the tensor

perturbation to the gauge field, tR, responsible for the enhancement to the gravity wave

sector, is too large. The principle concern of this backreaction is onto the equation of

motion for Q, (5.2.13). We require that the backreaction on this equation, T
Q
BR, be

much smaller than the largest term in (5.2.13), namely 2HgQ2ξh (see (5.2.24)). As is

discussed in [3], TQBR is dependent on the size of ξQ and g and we show this in FIG. 5.9.

Since our background inflationary system is of a lower energy scale than the example

provided in [3], we naturally require a larger enhancement to the gravity wave sector

to uplift r to observable values. This requires a larger value of ξQ and hence leads to

larger backreaction. On top of this, the largest term in (5.2.13) is considerably smaller

due to the lower energy scale – one can write 2HgQ2ξh = 2H3 ξ
2
Qξh
g and we see that a
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Figure 5.9: A quick comparison of the backreaction, TQBR, on (5.2.13) (solid lines), and
the largest term in (5.2.13), 2HgQ2ξh (dashed lines) against ξQ for different values of g.
Reducing g decreases the backreaction and increases the largest term in (5.2.13).

lower value of V ∝ H2 reduces the size of this term, consequently meaning we require

even smaller backreaction on this equation. As we can see in FIG. 5.9, this effect can

be mitigated however by choosing a smaller value for g and as is seen in [101], having

a low energy scale does not necessarily ruin the efficacy of this model. Unfortunately,

we were unable to find a working example where the evolution of b2 could support a

good value of ξQ with low enough g for the backreaction to be under control without

spoiling the generic inflationary predictions of Kähler inflation caused by τ2. In fact

in the example shown here the value of ξQ ∼ 3.5 is not large enough to generate a

substantial enhancement to the PGW spectrum despite the fact we have g = 1
10 at a

relatively large value and the backreaction is already too large. In practice we were

unable to even get close to a working model with this two scalar field model. This is in

a large part due to the interaction between τ2 and b2; as can be seen in FIG 5.1–5.2,

their evolutionary histories are tied. The fact that the field responsible for inflation, τ2,

is directly (through the coupling f) and indirectly (through b2) coupled to the evolution

of the gauge field, Q, is in fact quite restrictive.

This is the reason we modify this model by introducing a fourth Kähler modulus,

T4, to act as an inflationary spectator and instead choose this modulus to be coupled

to the gauge field, while allowing the inflaton, τ2, to be free. This modified model with

an extra Kähler modulus is example 2 in chapter 4 and we now couple it to a gauge

field.
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5.3.2 Background evolution of example 2

We now consider example 2, the case where an extra modulus, T4 = τ4 +ib4, is included

in the system. We choose this modulus to be coupled to the gauge field through the

gauge kinetic functions, f and h, while τ2 remains the inflaton. For simplicity, b2 is

taken to be at its minimum. The inflationary potential can again be found from the

superpotential and Kähler potential as shown in chapter 4:

V2 = V1 +
8(a4A4)2e−2a4τ4

√
τ4

3αλ4V
+

4W0a4A4e
−a4τ4 cos (a4b4) τ4

V2
(5.3.17)

where V1 is the potential for example 1 (5.3.7). The advantage of this system, where we

effectively have spectator fields, τ4 and b4, coupled to the gauge sector, is that there is

now a lot more freedom in choosing the parameters and initial conditions for the axion

and gauge field because we do not have to worry about inflationary predictions. We do

however require that both the kinetic and potential energy densities in the spectator

fields are less than those of the inflaton. This ensures that the inflationary predictions

of Kähler inflation are not affected and that τ4 and b4 are true spectator fields.

Parameters

We choose parameters to be

ξ̂ =
1

2
, α =

1

9
√

2
, λ2 = 10, λ3 = 1, λ4 = 0.1,

a2 =
2π

30
, a3 =

2π

3
, a4 =

2π

70
, A2 =

1

1.7× 106
, A3 =

1

425

A4 = 2× 10−9, β = 6.94681× 10−5, W0 =
40

17
. (5.3.18)

The parameters are the same as in (5.3.12) with the addition of λ4, chosen to be

much smaller than λ2 so that τ4 and b4 have lower kinetic energy and therefore have a

negligible contribution to εϕ; and a4 and A4 are chosen to be much smaller than a2 and

A2, respectively, so that the energy density of the universe is dominated completely by

the inflationary sector.
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The global minimum of this potential is found at:

〈τ1〉 = 2555.35, 〈τ2〉 = 4.77519, 〈τ3〉 = 2.65102, 〈τ4〉 = 11.141, 〈V〉 → 10140.1 ,

(5.3.19)

with ba = π/aa. Displacement of τ1, τ4 and b4 away from this minimum leads to a small

shift in the values of τ3 and V at the new local minimum. For numerical simplicity, we

set τ3 and V, as well as the b2 and b3 axions, to their minima. We are now considering

a three-field system of (τ2, τ4, b4) with real field space metric

γab =
3α

4V


λ2√
τ2

0 0

0 λ4√
τ4

0

0 0 λ4√
τ4

 . (5.3.20)

This system is coupled to a gauge field exactly as in example 1, however, this time

it is not the inflaton, τ2, that is coupled to the gauge field. Instead, the two spectator

fields, τ4 and b4 are coupled to it through the terms in the action:

L ⊃ −f (φa)

4
FAµνF

Aµν +
h (φa)

4
FAµνF̃

Aµν (5.3.21)

where

f (φa) =
c1

2π
τ4, h (φa) =

c2

2π
b4 . (5.3.22)

The equations of motion are as before (5.2.12)–(5.2.13). The initial conditions for τ4,

b4, and Q; as well as the values of c1, c2, and g are chosen phenomenologically to lead

to a large (observable) enhancement of the gravitational wave spectrum (see section

5.4) without leading to excessive backreaction from the gauge tensor perturbation (see

section 5.6). With this in mind, the parameters are chosen to be

c1 = 1, c2 = 450, g =
1

2000
. (5.3.23)

Although smaller than in example 1, again the value of c2 � 1. This seems to be a

general requirement of these models. The initial conditions are taken as:

τ2 = 80.17, τ4 = 12.6, b4 = 0.59
π

a4
, Q = 8× 10−4Mpl . (5.3.24)

The modulus τ4 is taken to start near its minimum for simplicity, and as can be
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Figure 5.10: The evolution of the inflaton, τ2 during the last 60 e-folds of inflation (left)
and during the last few e-folds (right) for example 2.

seen in FIG. 5.11, it remains roughly constant. The important spectator field is of

course the axion, b4, which moves slowly towards its minimum as can be seen in FIG.

5.11. Contrary to the situation described in example 1 above, in this example, the

axion’s (b4) evolution is slowed considerably by its coupling to the gauge field, Q, which

backreacts on b4 through the term on the RHS of (5.2.12), −3 g γab h,bQ
2
(
HQ+ Q̇

)
=

3 g c2
2π

4V
√
τ4

3αλ4
Q2
(
HQ+ Q̇

)
. This term almost completely cancels with the potential

term γabV,b =
4V
√
τ4

3αλ4

dV
db4

as can be seen in FIG. 5.12. This “slow-roll solution” is the

situation described and expected in chromo-natural inflation [78] and more generally

in models with a spectator axion coupled to a gauge field ([3],[4]) where the gauge

field, Q, has an attractor solution such that it forces the axion to roll slowly. This slow

evolution of the axion leads to the gauge field, Q, being sustained for a large period of

time during inflation as is shown in FIG. 5.13. The evolution of the inflaton, τ2, as well

as plots of ξf , ξh and the slow-parameters, ε, εϕ, εB, εE are shown in FIG. 5.10–5.17.

Notice also that εB ∼ ε > εϕ in the early stages of inflation. This is a similar situation

to that described in [101] and is acceptable as long as the scalar perturbations of the

gauge field are very small relative to the inflationary perturbation and therefore the

scalar power spectrum can be taken as H2

8πεϕ
, which we will discuss in section 5.5.

We turn now to the inflationary predictions of this model. Let us start discussing the

scalar spectral index: ns = 1− 2ε− ηϕ with ηϕ = d (ln εϕ) /dN . This form for ns arises

under the assumption that the power spectrum is well-approximated by Ps = H2

8π2εϕ

instead of Ps = H2

8π2ε
. Since in the model described, ε ∼ εB � εϕ for much of inflation,

this a very important distinction. This assumption is well-justified if the scalar power

spectrum receives a negligible contribution from the gauge field perturbations on super-
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5. PRIMORDIAL GRAVITATIONAL WAVES IN STRING INFLATION

Figure 5.11: The evolution of the secondary modulus, τ4 and its axion partner b4 in
example 2. Both fields decay well before the end of inflation.

Figure 5.12: The contributions of (left) the term 3 g c2
2π

4V
√
τ4

3αλ4

(
HQ+ Q̇

)
provided by the

gauge field, Q; and (right) the term
4V
√
τ4

3αλ4

dV
db4

provided by the potential, to the equation
of motion for b4 given by the form in (5.2.12) in example 2. The contribution from the
gauge field almost exactly cancels the contribution from the potential leading to a slow-roll
evolution for b4.

Figure 5.13: The evolution of the gauge field, Q (left) and ξQ = gQ
H (right) during the

last 60 e-folds of inflation in example 2. The evolution of Q is tied to the evolution of b4.

138



5.3 Examples of (spectator) chromo-natural Kähler inflation

Figure 5.14: The evolution of the effective coupling constants of τ4 and b4 to the gauge
field, ξf (left) and ξh (right) during the last 60 e-folds in example 2.

Figure 5.15: The evolution of the slow-roll parameter, ε (left), and the proportion of ε
made up by εϕ, during the last 60 e-folds of inflation in example 2.

Figure 5.16: The evolution of the electric and magnetic components of the slow roll
parameter, εE (left figure) and εB (right figure) respectively during the last 60 e-folds of
inflation in example 2.
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5. PRIMORDIAL GRAVITATIONAL WAVES IN STRING INFLATION

Figure 5.17: Comparing εB with the overall slow-roll parameter, ε. εB provides the
largest contribution to ε for the majority of the last 60 e-folds of inflation.

horizon scales [101] (see 5.5) and is therefore the same power spectrum that would arise

in this model if the gauge fields were ignored, i.e., the one approximated by

Ps =
H2

8π2εϕ
. (5.3.25)

The value of the scalar spectral index can then be determined following the usual

procedure:

ns − 1 =
d lnPs

d ln k
(5.3.26)

where

Ps =
H2

8π2εϕ
, ln k = N + lnH (5.3.27)

because x = k/aH = 1 at horizon-crossing. Using the chain rule

d lnPs

d ln k
=
d lnPs

dN

dN

d ln k
(5.3.28)

and

d lnPs = d ln

(
H2

8π2εϕ

)
= 2 d lnH − d ln εϕ =⇒ d lnPs

dN
= 2

d lnH

dN
− dεϕ
dN

(5.3.29)

but

ε = − 1

H

dH

dN
= −d lnH

dN
=⇒ d lnPs

dN
= −2ε− ηϕ (5.3.30)
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where we have explicitly defined ηϕ =
d ln εϕ
dN . Also

dN

d ln k
=

(
d ln k

dN

)−1

=

(
1 +

d lnH

dN

)−1

≈ 1 + ε (5.3.31)

=⇒ ns − 1 =
d lnPs

d ln k
=
d lnPs

dN

dN

d ln k
= (−2ε− ηϕ) (1 + ε) ≈ −2ε− ηϕ (5.3.32)

leads us to

ns = 1− 2ε− ηϕ . (5.3.33)

The expression for the non-sourced tensor-to-scalar ratio rb is equivalently

rb =
Pt

Ps
= 16εϕ . (5.3.34)

This model makes the following inflationary predictions, 50 e-folds before the end of

inflation:

εϕ = 4.44× 10−8, ns = 0.967, rb = 7.10× 10−7,

V
1/4
inf = 9.49× 1014GeV, ∆ϕ = 0.189Mpl (5.3.35)

where ∆φ =
∫ Ne
N∗

√
2εϕ dN with Ne the end of inflation.

5.4 Perturbations

We now consider perturbations to this system. We are particularly interested in the

tensor sector as our hope is that the gauge field, supported during inflation by the

evolution of the axion – which can act as a source term for the tensor perturbations

– provides a large amplification to the gravitational wave spectrum of Kähler modulus

inflation. In the next few sections we will discuss the following aspects that must be

simultaneously satisfied

� Amplification of primordial tensor fluctuations: we show that the primordial spec-

trum of tensor fluctuations of Kähler inflation can be amplified by a factor of order

103. The enhanced spectrum reaches values that can be probed by the future gen-

eration of CMB polarisation experiments [39–44]. The spectrum produced will
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Figure 5.18: Analytic estimate of the sourced tensor-to-scalar ratio, r, against ξQ = gQ
H

for different values of g. The dashed lines correspond to the (non-sourced) background
tensor-to-scalar ratio for our example rb = 7.10 × 10−7 (orange) and the observational
cut-off robs & 10−3 (blue).

be almost completely chiral. However, we shall explain that the tensor chirality

is likely not observable for the predicted value of the parameters of our Kähler

moduli inflation model.

� Backreaction of gauge fluctuations: In section 5.6 we perform a careful estimate

of the backreaction of fluctuations. We show that the backreaction of a poten-

tially large amplitude of gauge field fluctuations can be made sub-dominant in

the evolution equations for background quantities. As anticipated, a small back-

reaction requires a small effective gauge coupling, which is why in example 2,

g = 1
2000 was chosen. We were unable to find a parameter set for example 1

where the value of g could be very low and the gauge field could be sustained at

a large enough value for sizeable enhancement.

Before discussing the perturbations in detail, we show in figures 5.18–5.19 (repeating

a very similar plot as FIG. 5.9 for emphasis of this point) why the system is heavily

constrained, and in particular why we require a very low value for g. In figure 5.18

we plot the analytical estimate (see below) of the sourced tensor-to-scalar ratio as a

function of the parameter ξQ = gQ/H for different values of the effective gauge coupling,

g. The enhancement is exponentially sensitive to the value of ξQ. In figure 5.19 we

show an estimate of the backreaction (see 5.6) of the gauge field tensor perturbations

on the equation of motion for Q (5.2.13) as a function of ξQ for different values of

g. In order to ensure that our approach of choosing the gauge field to be in the
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5.4 Perturbations

Figure 5.19: The backreaction of the tensor fluctuations on the equation of motion for
Q, TQBR (solid lines) along with the largest term in the equation of motion for Q, 2gQ2Hξh
(dashed lines) plotted against ξQ for different values of g. Increasing ξQ increases T

Q
BR

much faster than 2gQ2Hξh, but decreasing g reduces T
Q
BR whilst increasing 2gQ2Hξh.

isotropic configuration, AAi = δAi aQ, is consistent, we require that the backreaction

T
Q
BR, be considerably smaller than the largest term in (5.2.13), namely 2gQ2Hξh. The

backreaction also increases exponentially with ξQ. However, the lower g, the smaller

the backreaction. Since we require a large enhancement to uplift the tensor spectrum

of Kähler moduli inflation, we need a relatively large value for ξQ & 4 (in [3], ξQ . 3.5)

and consequently a very small value for g.

5.4.1 Set-up

Following [80], the perturbations can be decomposed as (equivalently to chapter 3):

φa = φa(t) + δφa(t, xi)

AA0 = a(t)
(
YA(t, xi) + ∂AY (t, xi)

)
AAi = a(t)

[
(Q(t) + δQ(t, xi))δAi + ∂i(MA(t, xi) + ∂AM(t, xi))

+εiAC
(
UC(t, xi) + ∂CU(t, xi)

)
+ tiA(t, xi)

]
g00 = −a2(t)(1− 2φ(t, xi))

g0i = a2(t)(Bi(t, x
i) + ∂iB(t, xi))

gij = a2(t)
[
(1 + 2ψ(t, xi))δij + 2∂i∂jE(t, xi) + ∂iEj(t, x

i) + ∂jEi(t, x
i) + hij(t, x

i)
]

(5.4.1)
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Here, again, A = 1, 2, 3 is the SU(2) index and i = 1, 2, 3 is the spatial index. The

tensor modes are the perturbations tiA and hij , on which we impose the transverse

and traceless gauge: ∂ihij = ∂itiA = tiA = tii = hii = 0 which leaves us with 4

tensor perturbations. The vector modes are YA,MA, UC , Bi, Ei, which are also chosen

to be transverse leaving 10 vector perturbations. The scalar modes contribute another

10 (example 1) or 11 (example 2) perturbations. However, the SU(2) gauge freedom

allows us to set U = Ui = 0, immediately removing a scalar and vector perturbation.

However, vector perturbations have been shown to quickly decay on super-horizon scales

[3, 80] and so these are ignored.

Tensors

First we focus on the tensor perturbations15. This is the same set-up as in chapter 3.

Taking our momentum vector along the z-axis, k = kz and including only the remaining

tensor perturbations, we can write our gauge fields and metric as:

A1
µ = a (0, Q+ T+, T×, 0)

A2
µ = a (0, T×, Q− T+, 0) ,

A3
µ = a (0, 0, 0, Q) (5.4.2)

and

gµν = a2


−1 0 0 0
0 1 + h+ h× 0
0 h× 1− h+ 0
0 0 0 1

 (5.4.3)

where T+, T× and h+, h× are the transverse tensor perturbations of the gauge fields

and metric, respectively. To quadratic order the metric inverse is:

gµν = a−2


−1 0 0 0
0 1− h+ + h2

+ + h2
× −h× 0

0 −h× 1 + h+ + h2
+ + h2

× 0
0 0 0 1

 . (5.4.4)

15We will use a different formalism for the metric when working with the scalars for convenience.
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5.4.2 Analytic approximation

After finding the tensor action to 2nd order in perturbations, the linearised equations

of motion for the tensor modes to leading order in slow-roll can be found and these are

given below. We use notation standard to the literature (as in [3]), whereby we split

the tensor modes into left and right-moving modes: ψL,R = (aMp/2)(h+ ± ih×) and

tL,R = a(T+ ± iT×). By applying a first order slow-roll expansion16, we arrive at the

equations of motion17 :

∂2
xψR,L +

(
1− 2

x2

)
ψR,L =

2
√
fεE
x

∂xtR,L +
2
√
fεB
x2

(ξQ ∓ x) tR (5.4.5)

∂2
xtR,L +

[
1 +

2

x2
(ξQξh ∓ x(ξQ + ξh))

]
tR,L −

2ξf
x
∂xtR,L

= −
2
√
εE/f

x
∂xψR,L +

2

x2

[
(ξQ ∓ x)

√
εB/f + (1 + 2ξf )

√
εE/f

]
ψR,L (5.4.6)

where, to first order in slow-roll:

√
εE =

√
f (Q− x∂xQ))

Mpl
∼
√
fQ

Mpl
,

√
εB =

√
fgQ2

HMpl
, (5.4.7)

and recall that

ξQ =
gQ

H
, ξh =

c2ḃa
2fH

, ξf =
c1τ̇a
2fH

(5.4.8)

where a = 2, 4 corresponding to example 1 and 2 above, respectively. Before discussing

our numerical results, we can make some progress analytically as in [3]. First, we note

that only the right-helicity mode can be enhanced – the relevant term in (5.4.6) is given

by ∓ 2
x (ξQ + ξh) tR,L, which can only cause an enhancement in the right-helicity mode,

tR due to the minus sign.18 For this reason, we will only consider the right-helicity

mode, tR, in our discussion as this is the one relevant to enhancing the gravitational

wave spectrum. Proceeding to find an analytic approximation, we start by solving

16Here by, first order, we mean objects proportional to
√
εi, i = φ,E,B. The full equations are in

Appendix C.
17These equations of motion are completely equivalent to those in chapter 3 and [3] (set f = 1).
18Due to the 1/x factor, and ξQ, ξh > 1, this term dominates over the other two terms proportional

to tR,L when x ∼ O(1). When x � 1, the term tR,L dominates, tR,L does not grow; and then when
x� 1, the term 2

x2
ξqξhtR,L dominates and the solution once again stops growing.
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the right-helicity homogeneous equation of (5.4.6) with ξf , ξh and ξQ assumed to be

constant19. This gives solutions

tR =
1√
2k
iβxξfWβ,α(−2ix) (5.4.9)

whereWk,m(z) is the Whittaker function, β = −i(ξQ+ξh) and α = 1
2

√
−8ξQξh + (1 + 2ξf )2.

The solution is normalised by the early-time solution, tR → (2k)−1/2(2x)βeixxξf ,

x→∞, which is the equivalent initial condition to the one given in [3] (set ξf = 0).

We then wish to find the Green function for (5.4.5) for which we use the following

formula

G(x, x′) =
ν1(x)ν2(x′)− ν1(x′)ν2(x)

ν ′1(x′)ν2(x′)− ν1(x′)ν ′2(x′)
(5.4.10)

where ν1 and ν2 are the homogeneous solutions to the equation one wishes to solve. In

our case, (5.4.5) has homogeneous solutions:

ν1(x) = eix
(

1 +
i

x

)
(5.4.11)

and

ν2(x) = e−ix
(

1− i

x

)
. (5.4.12)

With this, our Green’s function is

G(x, x′) =
(x′ − x) cos(x′ − x)− (1 + xx′) sin(x′ − x)

xx′
. (5.4.13)

We now need to perform the integral∫
dx′
{

2
√
fεE
x′

∂x′tR,L +
2
√
fεB

(x′)2
(ξQ − x′)

}
G(x, x′) . (5.4.14)

An analytic estimate for this integral can be found by first performing an indefinite

integral over x′, then by taking two limits: first x′ → ∞ (the dominant contribution

to this integral will be in the sub-horizon limit before the gauge field decays). Then in

19Of course in reality, as can be seen in e.g. FIGs 5.13–5.14, these are not constants and this is a
limiting factor on the accuracy of this analytic approximation. Despite this, it proves to be a good
order of magnitude estimate of the enhancement.
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the super-horizon limit

lim
x→ 0

ψR =
1√
2kx

{
FRE
√
fεE + FRB

√
fεB

}
. (5.4.15)

The sourced tensor power spectrum is given by:

Pst = P
R,s
t + P

L,s
t

where

P
L,s
t = 0, P

R,s
t (k) =

H2

π2M2
pl

|
√

2kx lim
x→0

ψR|2 = f
εBH

2

π2M2
pl

F2
R (5.4.16)

and F2
R := |FRB +

√
εE/εBF

R
E |

2 is a measure of the amplification. FRE and FRB are given

by

FRE =

− i 24−ξf

256
e

1
2
iπ(β+ξf ) Γ

(
−α+ ξf −

3

2

)
Γ

(
α+ ξf −

3

2

){
Γ(−β − ξf )

Γ
(
−α− β + 1

2

)
Γ
(
α− β + 1

2

)
[ −16α4 + 8α2

(
8β + 4ξf

2 + 5
)
− 8

(
(8β + 3)ξf

2 + 8βξf + 2β(8β + 1) + 2ξf
4
)

+ 32ξf − 9
]

+
1

Γ(−β + ξf + 1)

[
16α4 + 8α2

(
8β − 4ξf

2 − 5
)

+ 128β2 − 16β(2ξf + 1)2

+(1− 2ξf )2(4 ξf (ξf + 1) + 9)
]}

, (5.4.17)

FRB =

24−ξf

256
e

1
2
iπ(β+ξf)Γ

(
−α+ ξf −

3

2

)
Γ

(
α+ ξf −

3

2

){
Γ (−β − ξf )

Γ
(
−α− β + 1

2

)
Γ
(
α− β + 1

2

)
[ 8iξQ(β + ξf )

(
1− 4α2 + 8β + 4 (ξf − 1) ξf

)
−
(
4α2 − 4 (ξf − 3) ξf − 9

) (
4α2 − 8β − 4ξf (ξf + 1)− 1

)]
− 1

Γ (−β + ξf + 1)

[
8iξQ (β − ξf )

(
4α2 + 8β − 4 (ξf − 1) ξf − 1

)
+
(
4α2 − 4 (ξf − 3) ξf − 9

) (
4α2 + 8β − 4ξf (ξf + 1)− 1

)]}
. (5.4.18)
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Figure 5.20: The amplification factor, F2, of the tensor power spectrum for right-helicity
modes in our analytic estimate plotted against the effective mass of the gauge field, ξQ. The
left figure uses ξf = 9.91× 10−5 and shows the function e3.6ξQ which gives an idea of how
the enhancement scales with ξQ. The right figure shows two cases, ξf = 9.91 × 10−5 and
ξf = 0 demonstrating that ξf is too small to have any effect on the tensor perturbations.
This plot is therefore completely equivalent to that given in [3].

As was mentioned in section 5.3, example 1 leads to too great backreaction from tR

on the background equations of motion meaning it is inconsistent. For this reason, we

focus on example 2 where an extra modulus, T4 has been introduced and is coupled to

the gauge field. Using the slow-roll approximation, ξh = ξQ + ξ−1
Q + ξf/ξQ and taking

ξf = 9.91× 10−5, the value it takes 50 e-folds before the end of inflation in example 2

above, we plot the amplification factor F2 for right mode in FIG. 5.20 and we compare

the amplification factor for ξf = 9.91× 10−5 and ξf = 0. There is negligible difference,

suggesting that this coupling is too small to affect the tensor spectrum.

We define the total tensor spectrum as r = rb + renh where rb is the background

inflationary tensor spectrum rb = (2H2/π2)/Ps and renh = Pst/Ps with Ps = 2× 10−9

where Pst is calculated through (5.4.16). For example 2, 50 e-folds before the end of

inflation we have rb = 7.10×10−7 and renh = 8.57×10−4 leading to an overall estimate

for the tensor-to-scalar ratio of r = 8.58× 10−4.

5.4.3 Numerical results

We will now discuss the full numerical solution for the tensor perturbations for example

2. We consider the full equations of motion without employing the slow-roll approxima-

tion and normalise our solutions in the Bunch-Davies form tR(xin) = ψR(xin) = 1/
√

2k,

t ′R(xin) = ψ ′R(xin) = i/
√

2k where xin should be some relatively large number that

we take to be xin = 2 × 104, numerically approximating infinity, and20 k = k∗ =

20This is default pivot scale for Planck [37].
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0.05 Mpc−1. The evolutions of tR and ψR are plotted in FIG.5.21. With no enhance-

ment to the gravity sector, |
√

2k xψ| → 1 at super-horizon scales, x < 1, but as we

can see ψR freezes out at super-horizon scales with an enhanced value due to a tran-

sient instability experienced by tR just before horizon-crossing even as tR decays. The

freeze-out value of 1
2 |
√

2k xψR|2 (the factor of a half arrives because only one of the

two helicities is amplified) is the amplification factor for the tensor power spectrum.

Evaluating the tensor-to-scalar ratio, r = Pt/Ps with this freeze-out value leads to a

larger enhancement than that predicted by our analytic estimate above, giving an en-

hancement of rb = 7.10 × 10−7 −→ r = 1.27 × 10−3, an amplification of ∼ 1791 for

example 2. The value of r = 1.27 × 10−3 is large enough to be potentially observable

at next generation detectors such as CMB-S4 [41] and many others [39, 40, 42–44]. We

define the tensor power spectrum as21:

Pt =
H2

π2M2
Pl

|
√

2k xψR|2 (5.4.19)

and evaluate this with the freeze-out value (x � 1) for |
√

2k xψR|2, with horizon-

crossing, x = 1, taken to be 50 e-folds before the end of inflation.

It is interesting to stress that the resulting tensor spectrum is fully chiral, since

only the right-helicity tensor modes get amplified. On the other hand, the resulting

tensor-to-scalar ratio is at least one order of magnitude too small for its chirality to be

detected by cross-correlating T , E and B spectra with future CMB experiments – see

e.g. [87] for a detailed analysis.

5.5 Scalar perturbations

We will now discuss the scalar perturbations in this system. As mentioned, we will use

a different formalism for the metric than the one used for the tensors. This will prove

to be consistent as we will show that the scalar metric perturbations have no impact at

linear order, and can therefore be set to zero. Our starting point is the ADM formalism

as described for generalised multi-field inflation in [118]22. In the ADM formalism, the

21This is not the same as (5.4.16), which accounted only for the sourced contribution to the tensor
power spectrum. The following is defined through the full numerical solution and is therefore the full
(right-helicity) tensor power spectrum. Since this is so much larger than the (non-enhanced) left-helicity
power spectrum, we can safely neglect the contribution from the left-helicity mode.

22This is simply a multi-field generalisation of the formalism discussed in chapter 1.
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Figure 5.21: The evolution of the (right-helicity) tensor modes for the gauge field, tR,
and the gravity sector, ψR for example 2 plotted against x = k/aH.

metric is taken to be:

ds2 = −N2dt2 + hij(dx
i +N i dt)(dxj +N j dt) (5.5.1)

where N and N i are the lapse and shift functions, respectively. With this choice, our

full action, (5.2.1), can be written in the form:

S =
1

2

∫
dtd3x

√
hN

(
R(3) + 2P

)
+

1

2

∫
dtd3x

√
h

N

(
EijE

ij − E2
)
, (5.5.2)

where R(3) is the Ricci scalar calculated with the spatial metric, hij , whose determinant

is h = det (hij). Eij is the symmetric extrinsic curvature tensor given by:

Eij =
1

2
ḣij −

1

2
∇(3)
j Ni −

1

2
∇(3)
i Nj (5.5.3)

and E is its trace, E = hijEij . Finally, P , is the matter sector and for our system is:

P = X − V − f(φa)

4
FAµνF

Aµν +
h(φa)

4
F̃AµνF

Aµν (5.5.4)

where X is the kinetic term and can be decomposed as:

X = −1

2
γab∂µφ

a∂µφb =
1

2N2
γabv

avb − γab
2
hij∂iφ

a∂jφ
b (5.5.5)
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with va = φ̇a − N j∂jφ
a. Variation with respect to the lapse, N , leads to the energy

constraint:

R(3) − 2V − γabhij∂iφa∂jφb −
1

N2

{
EijE

ij − E2 + γabv
avb

+f
(
hijFA0iF

A
0j − hjkN iFA0jF

A
ik + hijNkN lFAikF

A
jl + hijNkFA0iF

A
jk

)}
= 0 (5.5.6)

and variation with respect to the shift, N i, leads the momentum constraint:

∇(3)
j

(
1

N

(
Eji − Eδ

j
i

))
N = γabv

a∂iφ
b + f hjk

(
N lFAklF

A
ij + FA0jF

A
ik

)
. (5.5.7)

We now wish to linearise the system in scalar perturbations. We choose the spatially

flat gauge to set hij = a(t)2δij and define the scalar perturbed lapse and shift function

as:

N = 1 + α , Ni = ∂iβ (5.5.8)

where α and β are linear perturbations. As defined previously, we decompose our fields

in the following way (considering now only scalar perturbations):

φa = φa(t) + δφa(t, xi)

AA0 = a(t) ∂AY (t, xi)

AAi = a(t)
[(
Q(t) + δQ(t, xi)

)
δAi + ∂i∂AM(t, xi)

]
. (5.5.9)

In example 2, δφa = {δτ2, δτ4, δb4}. Including α and β, we therefore have 8 remain-

ing perturbations. However, the perturbations Y, α, β are all non-dynamical (no time

derivatives of, e.g., Y , appear in its equation of motion). The equations of motion

for these three perturbations can therefore be used as constraints. From the energy

constraint (5.5.6), we get the following equation for β:

(5.5.10)4H∂2β + 12 a2H2α= 2aH
√
fεE ∂

2Y −6a2H
√
fεE (HδQ+ ˙δQ)−2a2 V,a δφ

a

− 2a2H
√
fεE ∂

2(HM + Ṁ)− 2a2γabφ̇aDtδφ
b

and from the momentum constraint (5.5.7), we get the α equation:

α =
1

2H

(
γab φ̇aδφ

b + 2H
√
fεE δQ+ 2HξQ

√
fεB Y

)
, (5.5.11)
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where Dtδφ
a = ˙δφa + Γabc φ̇

bδφc, ∂2 = ∂i∂
i, and we have performed a systematic slow-

roll expansion up to first order in
√
ε as was described for the tensor perturbations. By

expanding the action up to second order in the scalar perturbations, and substituting

the values for α and β found from (5.5.10) and (5.5.11), we find equations for the

remaining perturbations, Y, δφa, δQ,M . The constraint equation for Y can then be

found after moving into momentum space and choosing the wave-vector to be purely on

the z-axis, k = kz. Y can be found from this equation then substituted into the Fourier-

space equations of motion for δφa, δQ,M . Whether we set the metric perturbations

α and β to zero or not, the algebra is extremely involved, and we will therefore only

summarise our results here. Before attempting to numerically solve the equations for

δφa, δQ,M , we change to x = k/aH coordinates, and by redefining the fields as in

([3],[80])

δτ2 =
∆τ2

a
, δτ4 =

∆τ4

a
, δb4 =

∆b4

a

δQ =
∆1√
2a

, M =
agQ∆1 +

√
k2 + 2a2g2Q2∆2√

2ga2k2Q
(5.5.12)

we can remove a and k from the equations of motion, using k = xaH. The initial

conditions for the scalar field perturbations have the multi-field inflation form [26]:

∆a(xin) =
−xH dφa

dx√
2kϕ̇

,
d∆a

dx
(xin) =

−ixH dφa

dx√
2kϕ̇

(5.5.13)

where ∆a = (∆τ2 ,∆τ4 ,∆b4) and ϕ̇2 = γabφ̇aφ̇b = x2H2 γab
dφa

dx
dφb

dx while the scalar gauge

field perturbations have the standard Bunch-Davies initial conditions:

∆i(xin) =
1√
2k
,

d∆i

dx
(xin) =

i√
2k

(5.5.14)

where ∆i = (∆1,∆2), k = k∗ = 0.05 Mpc−1 is the pivot scale and as before xin = 2×104.

We first demonstrate that the inclusion of the scalar metric perturbations, α, β, in

the equations of motion for scalar perturbations (5.5.12) has no effect on the evolution as

these contribute negligibly. The complexity of the equations including the contribution

from the metric perturbations is so high that a full evolution of the system is beyond

the scope of this work. Instead, we show that over a shorter evolution23, there is

23The smaller the final value of x, the closer to the end of inflation.

152



5.5 Scalar perturbations

Figure 5.22: The evolution of the scalar perturbations defined in (5.5.12) with (left figure)
and without (right figure) the inclusion of the metric perturbations α, β found through
(5.5.11) and (5.5.10) for example 2 plotted against x = k/aH. The metric perturbations
have a negligible effect on the evolution and can safely be set to zero.

no difference in the system’s evolution with or without the inclusion of the metric

perturbations. We then do a full evolution without the metric perturbations to include

the decays of all the fields. As can be seen in FIG. 5.22, the metric perturbations have

a negligible effect on the evolution of the scalar perturbations and can therefore be set

to zero. We include the scalar perturbation equations for example 2 in Appendix C.

In order to see that the perturbations are well behaved, we define the (tangential)

multi-field scalar perturbation

δs =
γab φ̇a δφ

b

ϕ̇
=

∆s

a
=
γab φ̇a ∆b

a ϕ̇
(5.5.15)

with ∆a = (∆τ2 ,∆τ4 ,∆b4). In the standard multi-field inflation case, the combination

|
√

2kx∆s| should be O(1)24 after horizon-crossing, x < 1 before the background fields

decay and lead to a decay in the scalar perturbations. In FIG. 5.23, ∆s is plotted

with the gauge perturbations, ∆1,∆2. As can be seen, ∆s freezes out (x < 1) with

|
√

2kx∆s| ∼ O(1) � |
√

2kx∆1|, |
√

2kx∆2| suggesting the gauge field has negligible

effect on the scalar power spectrum. The full evolution including the decays of all the

perturbations is shown in FIG. 5.24.

We have shown that the metric scalar perturbations contribute negligibly and that

the scalar perturbations to the gauge field are very small relative to the tangential

inflationary perturbation. Our assumption is that the scalar power spectrum can be

24In the perfectly massless case, when the potential is perfectly flat, |
√

2kx∆s| = 1 after horizon-
crossing. Therefore a value close to 1 is expected during slow-roll inflation. When the slow-roll ap-
proximation breaks down, as happens when the inflaton nears its minimum, the perturbation will grow
before decaying as the background inflaton settles to its minimum (see 5.24).
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5. PRIMORDIAL GRAVITATIONAL WAVES IN STRING INFLATION

Figure 5.23: The evolution of the scalar perturbations defined in (5.5.12) and (5.5.15)
plotted against x = k/aH. After horizon-crossing, x < 1, the scalar perturbation associated
with the scalar fields, ∆s is consistently much larger than the scalars associated with the
gauge field, ∆1,∆2.

Figure 5.24: The full evolution of the scalar perturbations defined in (5.5.12) and (5.5.15)
plotted against x = k/aH including the decays of all the perturbations which take place
concurrently with the decays of the corresponding background fields.
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5.6 Backreaction

split into a contribution from the gauge field and the standard inflationary part. With

the gauge field perturbations sub-dominant, this means that the power spectrum will

be well-approximated by Ps = H2

8π2εϕ
and that therefore the inflationary predictions of

both Ps and ns are not spoiled by the presence of the spectator gauge field.

5.6 Backreaction

In order to verify the consistency of this model, particularly the assumption that at

the background level, the gauge field, AAi , can be taken in the isotropic form, AAi =

a(t)δAi Q(t), we must check whether the tensor perturbation to the gauge field, which is,

by necessity, large when x ∼ 1, does not produce a large backreaction on the background

equations of motion. In order to estimate this backreaction, we will take advantage of

our analytic solution for the tensor fluctuation to the gauge field, tR, given in (5.4.9).

Of course this solution is merely a mode function, and we start by promoting tR and its

conjugate tL to quantum operators. Starting with the definitions for T+, T×, we arrive

at the following forms for t̂R and t̂L
25:

t̂R(z) =

∫
d3k

(2π)3

{
tR(k) âR(k) ei

~k.~z + t∗L(k) â†L(k) e−i
~k.~z
}

t̂L(z) =

∫
d3k

(2π)3

{
tL(k) âL(k) ei

~k.~z + t∗R(k) â†R(k) e−i
~k.~z
}

(5.6.1)

where t̂R = t̂†L but tR 6= t∗L. The creation and annihilation operators satisfy:

[
âR(p), â†R(q)

]
= (2π)3 δ3 (~p− ~q)[

âL(p), â†L(q)
]

= (2π)3 δ3 (~p− ~q) (5.6.2)

and all other combinations are zero. The mode function tR and its conjugate t∗R are

given by (5.4.9) and tL, t
∗
L are assumed to be negligible over the relevant region. The

25This is completely the same as discussed in chapter 3.
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following integrals prove useful:

〈0|t̂R t̂L|0〉 =

∫
d3k

(2π)3
|tR|2

〈0|t̂L t̂R|0〉 =

∫
d3k

(2π)3
|tL|2 ∼ 0

〈0|t̂R ∂tt̂L|0〉 =

∫
d3k

(2π)3
tR (∂tt

∗
R)

〈0|t̂L ∂tt̂R|0〉 =

∫
d3k

(2π)3
tL (∂tt

∗
L) ∼ 0

〈0|∂tt̂L t̂R|0〉 =

∫
d3k

(2π)3
(∂ttL) t∗L ∼ 0

〈0|∂tt̂R t̂L|0〉 =

∫
d3k

(2π)3
(∂ttR) t∗R

〈0|t̂R ∂z t̂L|0〉 =

∫
d3k

(2π)3
(−ik)|tR|2

〈0|t̂L ∂z t̂R|0〉 =

∫
d3k

(2π)3
(−ik)|tL|2 ∼ 0

〈0|∂z t̂R t̂L|0〉 =

∫
d3k

(2π)3
ik|tR|2

〈0|∂z t̂L t̂R|0〉 =

∫
d3k

(2π)3
ik|tL|2 ∼ 0

〈0|∂tt̂R ∂tt̂L|0〉 =

∫
d3k

(2π)3
|∂ttR|2

〈0|∂tt̂L ∂tt̂R|0〉 =

∫
d3k

(2π)3
|∂ttL|2 ∼ 0

〈0|∂z t̂R ∂z t̂L|0〉 =

∫
d3k

(2π)3
k2|tR|2

〈0|∂z t̂L ∂z t̂R|0〉 =

∫
d3k

(2π)3
k2|tL|2 ∼ 0

(5.6.3)

With these in hand, we can find equation of motion for Q, (5.2.13), including the

backreaction from tR:

Q̈+ 3HQ̇+Q
(
Ḣ + 2H2

)
+ 2g2Q3 − 2gQ2H ξh + 2H ξf

(
QH + Q̇

)
+

g

3 a2

∫
d3k

(2π)3

k

a
|tR|2+

g ξhH

3 a2

∫
d3k

(2π)3
|tR|2 = 0 (5.6.4)
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5.6 Backreaction

Figure 5.25: The evolution of the leading terms in the equation of motion for Q (5.6.4),
2gQ2H ξh (blue), 2g2Q3 (orange), 2H2Q (green) and the backreaction induced by the

gauge tensor perturbation, TQBR (red) in example 2 plotted against x = k/aH.

which is in fact identical to the equivalent expression in chapter 3 and [3] – the difference

is accounted for in the definition of ξh. To make an estimate of the additional terms’

magnitudes in terms of the effective mass of the gauge field, ξQ, we again follow [3] by

defining:

T
Q
BR :=

g ξhH

3 a2

∫
d3k

(2π)3
|tR|2+

g

3 a2

∫
d3k

(2π)3

k

a
|tR|2'

gH3

12π2
(ξh β1(ξQ) + β2(ξQ)) (5.6.5)

where

β1 (ξQ) =

∫ xmax

0
dxx|iβxξfWβ,α (−2ix)|2 , (5.6.6)

β2 (ξQ) =

∫ xmax

0
dxx2|iβxξfWβ,α (−2ix)|2 (5.6.7)

where we have used the analytic solution for tR given in (5.4.9); used the same cut-off

described in [3], xmax := ξQ + ξh +
√
ξ2
Q + ξ2

h which encompasses the main region for

which tR is enhanced by the transient instability near x = 1; and β = −i(ξQ + ξh)

and α = 1
2

√
−8ξQξh + (1 + 2ξf )2. FIG. 5.25 shows the evolution of the backreaction

term, TQBR, plotted with the leading contributions to the equation of motion for Q for

example 2. T
Q
BR is indeed small relative to the largest contribution given by 2gQ2H ξh.

As mentioned in section 5.3, in example 1 the backreaction of tR is too large and this

is shown in FIG. 5.26.

We also want to check that the contribution to the energy density is low. The

contribution to the energy density from the gauge tensor perturbation is found to be
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Figure 5.26: The evolution of the leading terms in the equation of motion for Q (5.6.4),
2gQ2H ξh (blue), 2g2Q3 (orange), 2H2Q (green) and the backreaction induced by the

gauge tensor perturbation, TQBR (red) in example 1 plotted against x = k/aH.

(exactly analogously to [3])

ρtR =
1

a4

∫
d3k

(2π)3

{
1

2
|∂ηtR|2 +

(
k

2
+ a g Q

)
k |tR|2

}
' f H

4

8π2
ItR (5.6.8)

where η is conformal time and

ItR =

∫ xmax

0
dxx3

{∣∣∣∣iβ∂x (xξfWβ,α (−2ix)
)∣∣∣∣2 +

(
1 + 2

ξQ
x

) ∣∣∣∣iβxξfWβ,α (−2ix)

∣∣∣∣2
}
.

(5.6.9)

Using this expression, in FIG. 5.27, the evolution of ρtR is plotted alongside ρϕ ' V

and ρQ = 3
2f

[(
H Q+ Q̇

)2
+ g2Q4

]
. It is a sub-dominant contribution throughout.

Example 2 is therefore a working phenomenological model which is capable of pro-

ducing a large enhancement to the gravity wave spectrum without excessive backre-

action and without a large contribution to the scalar power spectrum from the scalar

perturbations to the gauge field. This model requires without justification that c2 � 1

and g � 1. The coupling between the gauge field and the axion must be large (see

(5.2.27)) and since in Kähler inflation we expect that c1 = c2 = 1 [119], there is no

theoretical justification for this, and we treat c1 and c2 as purely phenomenological. In

addition to this, since g = 1√
N
� 1 (with N = [N/2]) (5.2.7), we see that immediately

that with g = 1
2000 , we require an extremely large value for the degree of the gauge

group, SU(N) with N = 8× 106.

In the next section we consider a very similar but slightly more involved model in

which the necessary large coupling between the gauge field and axion can be given some
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5.7 Justifying the large Chern-Simons coupling (example 3)

Figure 5.27: The evolution of the energy densities in φa, ρϕ ' V (blue); in Q, ρQ =

3
2f

[(
H Q+ Q̇

)2

+ g2Q4

]
(orange); and in tR, (5.6.8) (green), in example 2 plotted against

x = k/aH.

theoretical grounding. We will also consider more specifically what the requirement of

small g means for the gauge group degree.

5.7 Justifying the large Chern-Simons coupling (example

3)

The action is still given by (5.3.1) and as in example 2, we use an extra modulus,

T4 = τ4 + ib4, as the spectator scalar field coupled to the gauge field – the key difference

here is that instead of b4 being coupled to the gauge field through the gauge kinetic

coupling, we introduce a further C2 axion that allows for a difference between f , the

coupling to F 2 and h, the coupling to FF̃ .

The spectator sector arises from a multiply-wrapped magnetised D7-brane stack

along a 4-cycle, Σ4, parametrised by the fourth Kähler modulus τ4. In this case, the

gauge kinetic function becomes [4, 105, 119–121]26

f4 = n

(
T4 + κAbcG

bfc +
κAbc f

bfc

2gs

)
, (5.7.1)

where n is the wrapping number, κAbc are the intersection numbers between the 2-cycles

of the Calabi-Yau, fc is the D7-brane magnetic flux and Ga contains the 2-form axions

26In example 2, we used f4 = c1
2π
τ4 + i c2

2π
τ4.
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and is given by27 Ga = 1
gs
ba + ica, where ba and ca are the axions descending from

the B2 and C2 forms present in the theory. The Kähler coordinate T4 is also shifted by

G as T4 → T4 − gs
4 κ

A
bcG

b(G+ Ḡ)c [119–121]. The magnetisation of the D7-branes also

contributes to the D-term for the D7-brane gauge theory [120, 121]. In general this can

receive contributions from matter fields living on the D7-branes. Here we assume that

these have been stabilised at a high scale together with the complex structure moduli

and the axiodilaton. Furthermore, we assume that the D-terms also contribute to the

stabilisation of the B2 axion at b = 0 similarly to [4, 105].

Finally, for a successful stabilisation of τ4 consistent with the SCNI scenario we plan

to construct, we include as before a second stack of unmagnetised D7-branes, wrapping

the same cycle, Σ4, as the spectator brane, which gives rise to a second non-perturbative

contribution for the modulus τ4. That is, the superpotential includes two terms for the

spectator sector given by

W (s)
np = A4e

−a4T4 +Ae−af4 , (5.7.2)

where

f4 = n (T4 + im b) , (5.7.3)

with T4 = τ4 + ib4 and we have denoted the magnetic brane flux with m and renamed

the C2 axion as b28. As before, the 4-cycles, Σ2 and Σ3, with volumes given by τ2

and τ3, respectively, are wrapped by stacks of unmagnetised D7-branes that give rise

to gaugino condensation and introduce the standard Kähler inflation superpotential

terms W ⊃ e−a2T2 and W ⊃ e−a3T3 . The set-up of the 4-cycles and their respective

brane wrappings is summarised in FIG. 5.28.

Let us summarise the parameter freedom we have and compare to the phenomeno-

logical DFF model [3]. The spectator sector’s action takes the following form29:

L ⊃ −f(τ4)

4
FAµνF

Aµν +
h(b)

4
FAµνF̃

Aµν , (5.7.4)

27Where we have assumed that the axiodilaton imaginary part has been fixed to zero.
28We emphasise that this is not b4 which is still included in T4 = τ4 + ib4.
29We have ignored here the shift in Imf4 due to b4, which will be stabilised during the cosmological

evolution. We do this because the required value of the magnetic flux m � 〈b4〉 and thus will not
change the results.
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Figure 5.28: A schematic of the set-up used in this section.

where f(τ4) = τ4, h(b) = mb, we have absorbed the wrapping number n into the gauge

field AA, whose field strength is now given by F2 = dA−gA∧A with our gauge coupling

now redefined as g = 1/
√
nN/2 for convenience, and as we have discussed, both τ4 and

b are dynamical during inflation. We therefore see that the key differences between

this and the previous examples are c1
2π → 1, c2

2π → m, and g = 1√
N/2
→ g = 1√

nN/2
.

Another difference is that the scalar potential is changed by the introduction of the

second term in (5.7.2), however the potential for b will still take the form (see below)

V (b) ∝ g(τ4) cos (namb) , (5.7.5)

where g(τ4) is a function of the spectator saxion, a = 2π/N .

Scalar potential

The scalar potential is exactly the same as the four-field potential used in example 2

((5.3.17) whose large-volume derivation was given in chapter 4, starting with (5.3.6))

with the addition of the terms dubbed Vn, i.e. our potential is

V3 = V2 + Vn (5.7.6)
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where

Vn =
8ã2Ã2√τ4

3αλ4V
e−

2ã
m
τ4 +

16ãÃa4A4
√
τ4

3αλ4V
e−(a4+ ã

m)τ4 cos

[
a4b4 − ã

(
b+

b4
m

)]
+

4ãÃW0τ4

V2
e−

ã
m
τ4 cos

[
ã

(
b+

b4
m

)]
. (5.7.7)

where we have defined

ã := anm, Ã :=
A

m
(5.7.8)

for convenience. These terms were found in the exact same manner as for the original

potential (see chapter 4) whereby terms higher order than O((1/V)3) in 1/V with V ∼
e−aaτa are discarded. The now four-field system can be described by real-space metric

[88, 119, 120]:

γab =


3αλ2

4
√
τ2V

0 0 0

0 3αλ4
4
√
τ4V

0 0

0 0 3αλ4
4
√
τ4V

0

0 0 0
2gs
√
τ4√

ζV

 . (5.7.9)

where gs is the string-coupling and ζ is a model-dependent constant. The majority of

this section will in fact assume a three-field model as we will show that if the b4 axion

is started at its minimum b4 = π
a4

, it only moves negligibly and has no effect on the

overall system. The new terms in the potential (5.7.7) with b4 at its minimum simplify

a little to become

Vn →
8ã2Ã2√τ4

3αλ4V
e−

2ã
m
τ4 −

16ãÃa4A4
√
τ4

3αλ4V
e−(a4+ ã

m)τ4 cos

[
ã

(
b+

b4
m

)]
+

4ãÃW0τ4

V2
e−

ã
m
τ4 cos

[
ã

(
b+

π

a4M

)]
. (5.7.10)

With this system τ4 and b, coupled to the gauge sector act fully as spectator fields.

We require that both the kinetic and potential energy densities in the spectator fields

are less than those of the inflaton. This ensures that the inflationary predictions of

Kähler inflation driven by τ2 are not affected and thus τ4, b and the gauge field, are

true spectator fields.

Considering our discussion in section 5.2, and the clear need for large parameter

to uplift the large coupling between the axion and the gauge field, we now see that

this can be achieved by a large magnetic flux, m. We also need the gauge field to
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be sustained for a sufficiently long time, and we can parametrise this now with a

“decay constant”. Sustaining the gauge field for a sizeable period requires a specific

value for the decay constant of the axion. Note that since the scalar fields are not

canonically normalised, the naive decay constant read from the scalar potential (5.7.5)

fc = 1/(mna) is not correct. However we can identify an instantaneous decay constant

as fc = Mpl

√
γbb(τ4)/(mna) and as we will see, this is of order fc ∼ 10−3Mpl. We

see that now we can constrain our parameters (n,m,N). At this stage, we have two

constraints for the three parameters in order to have a successful inflationary evolution

with a gauge field that can be sustained for long enough to enhance the tensor spectrum.

However, on top of a successful background evolution, one needs to make sure that the

backreaction of the tensor gauge perturbations are under control [3, 101–103], which

will require g� 1, thus introducing a third constraint, fixing the three parameters we

have available. We choose m, the D7-brane flux, n, the D7-brane wrap number and N ,

the condensing group, to ensure a successful background evolution, large enhancement

of tensor perturbations and good control on the backreaction.

5.7.1 Background evolution and cosmological parameters

We consider the following set of parameters for the Kähler moduli30:

ξ̂ =
1

2
, α =

1

9
√

2
, λ2 = 10, λ3 = 1, λ4 = 0.01,

a2 =
2π

30
, a3 =

2π

3
, a4 =

2π

50
, ã = 40a4, gs = 0.1,

A2 =
1

1.7× 106
, A3 =

1

425
, A4 = 4.2× 10−9, Ã = 0.0034A4,

m = 10000, ζ = 5, β = 6.94681× 10−5, W0 =
40

17
. (5.7.11)

As in example 2, λ4 is chosen to be much smaller than λ2 so that τ4 has lower kinetic

energy, and therefore a negligible contribution to εϕ. We require that the energy den-

sity of the universe receives only a small contribution from the spectator part so that

30As in example 1 and 2, we are still using the parameters from example 4 in [76] as a base for the
inflationary sector.
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inflation can proceed as expected with the important inflationary terms involving τ2.

With this in mind, A4, a4, Ã, ã are chosen to be small relative to A2, a2. In addition

to this, we would like the stabilisation of τ4 and b4 to be dictated by the terms

V ⊃
8(a4A4)2e−2a4τ4

√
τ4

3αλ4V
+

4W0a4A4e
−a4τ4 cos (a4b4) τ4

V2
, (5.7.12)

which is why Ã is taken to be small relative to A4. Ensuring the terms involving b are

much smaller than the terms in (5.7.12) ensures that the b4 axion will be minimised

at 〈b4〉 = π
a4

, which in turn ensures that τ4 is stabilised at a much smaller value than

τ1
31. We are then left with some freedom in choosing a and m, which are chosen

phenomenologically to lead to a successful enhancement of the PGW spectrum.

The global minimum of the potential for this set of parameters is found to be at:

τ1 = 2554.50, τ2 = 4.77523, τ3 = 2.65081, τ4 = 14.8743, V→ 10135.3 ,

(5.7.13)

while the axions’ minima of course lie at ba = π/aa. We are now in a position to evolve

the system under equations of motion (5.2.8)–(5.2.13). The initial conditions are taken

as:

τ2 = 80.17, τ4 = 10, b = 0.4
π

a
, Q = 8× 10−4Mpl . (5.7.14)

As in example 2, g = 1
2000 . The rest of this analysis is exactly equivalent to example

2 with of course the key difference being the axion coupled to the gauge field is b

not b4. We therefore quickly go through the background evolution, perturbations and

backreaction.

The background evolution of this system is plotted in FIGs 5.29–5.37. The evolution

proceeds very similarly to that of example 2 – b evolves slowly (see FIG. 5.30) because of

its coupling to Q, which cancels the potential term in the equation of motion for b (see

FIG. 5.31), while τ4’s evolution is quite trivial: it is shifted only a small amount from

its minimum while b is away from its minimum, and decays as b does. The “slow-roll”

evolution of b supports Q (see FIG. 5.32) which roughly satisfies ξQ ∼ ξh (see FIG. 5.33,

left figure). Also in the the right figure of FIG. 5.33, we see that the evolution of b4

takes it only a negligible distance away from its minimum – in fact it has a completely

31Recall τ4 must be a ‘small’ blow-up modulus, and a minimum at low values of τ4 is achieved through
the terms in the potential of (5.7.12). The minimum can be ruined if the terms involving the b axion
are too large and τ4 can be destabilised to very large values, τ4 & 103.
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Figure 5.29: The evolution of the inflaton, τ2 during the last 60 e-folds of inflation (left)
and during the last few e-folds (right) for example 3.

Figure 5.30: The evolution of the spectator modulus, τ4 and the axion b during the last
60 e-folds of inflation for example 3. Both fields reach their minima well before the end of
inflation.

Figure 5.31: The contributions of (left) the term −3 gm
√
ζV

2gs
√
τ4
Q2
(
HQ+ Q̇

)
provided

by the gauge field, Q; and (right) the term
√
ζV

2gs
√
τ4

∂V
∂b provided by the potential, to the

equation of motion for b given by the form in (5.2.12) for example 3. The contribution
from the gauge field almost exactly cancels the contribution from the potential leading to
a slow-roll evolution for b.
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Figure 5.32: The evolution of the gauge field, Q (left) and ξQ = gQ
H (right) during the

last 60 e-folds of inflation for example 3. The evolution of Q is tied to the evolution of b.

Figure 5.33: Left figure: The two dominant terms in the equation of motion for Q,
(5.2.13), satisfy 2g2Q3 ∼ gHQ2ξh for example 3. The term introduced through the coupling
to the axion almost cancels 2g2Q3, a term that sends Q to zero. In this way the axion-
gauge coupling supports the gauge field. Right figure: The evolution of the b4 modulus for
example 3 – started at its minimum, it moves only negligibly during inflation, and can be
safely ignored in the numerics.

Figure 5.34: The evolution of the effective couplings of τ4 and b to the gauge field, ξf
(left) and ξh (right) during the last 60 e-folds of example 3.
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5.7 Justifying the large Chern-Simons coupling (example 3)

Figure 5.35: The evolution of the slow-roll parameter, ε (left), and the proportion of ε
made up by εϕ, during the last 60 e-folds of inflation for example 3.

Figure 5.36: The evolution of the electric and magnetic components of the slow roll
parameter, εE (left figure) and εB (right figure) respectively during the last 60 e-folds of
inflation for example 3.

Figure 5.37: Left figure: Comparing εB with the overall slow-roll parameter, ε. εB
provides the largest contribution to ε for a substantial part of the last 60 e-folds of inflation

in example 3. Right figure: Plot of the instantaneous decay constant, fc =
√
γbb

amn , during
the last 60 e-folds of inflation in example 3.
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negligible effect on the overall evolution and it is safe to consider a three scalar field

system of (τ2, τ4, b) (+Q) from here on. Finally in the left figure of 5.37, we see that

as in example 2, the slow-roll parameter ε ∼ εB is dominated by the gauge field for

a large period of inflation. This of course requires us to assume again that the power

spectrum can be well-approximated by Ps = H2

8π2εϕ
. In the right figure of 5.37, we see

that the instantaneous decay constant of the axion is around fc ∼ 10−3Mpl.

The inflationary predictions of this model (assuming Ps = H2

8π2εϕ
, ns = 1− 2ε− ηϕ,

r = 16εϕ) are (now taken to be 60 e-folds before the end of inflation)

εϕ = 2.80× 10−8, ns = 0.964, rb = 4.48× 10−7,

V
1/4
inf = 8.39× 1014GeV, ∆ϕ = 0.190Mpl (5.7.15)

where ∆ϕ =
∫ Ne
N∗

√
2εϕ dN with Ne the end of inflation and N∗ = Ne − 60.

We see here at the background level, we have a working model where the large

coupling between the axion and gauge field is accounted for by including very large

magnetic flux, m = 10000. We also require a small value for g = 1√
Nn/2

= 1
2000 ,

and constraints on the decay speed of the axion have us choose (to achieve the best

enhancement) ã = anm = 8π
5 , with a = 2π

N . We see in this way, we have 3 constraints

and 3 unknowns and can solve to get a slightly smaller value for the gauge degree than

in example 2, N ∼ 3× 105 with the wrapping number at n = 25. In FIG. 5.38, we plot

g against N for example 3 where n = 25 and m = 10000 have already been constrained.

Requiring small g means we need very large gauge degree, N .

5.7.2 Tensors

The perturbations are found in the exact same way as for example 2, and, in fact

the analytical estimate for the enhancement to the tensor power spectrum is identical

to that given in (5.4.16)–(5.4.18). 60 e-folds before the end of inflation, we have in

example 3: ξf = 7.85 × 10−3 and ξQ = 4.23, which gives us the analytic estimate for

the enhancement to r of

rb = 4.48× 10−7 → r = 2.86× 10−3 . (5.7.16)

The full equations of motion for the right-helicity tensor modes, tR and ψR are
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5.7 Justifying the large Chern-Simons coupling (example 3)

Figure 5.38: Plot of how the effective gauge coupling g constrains the value of the gauge
degree N in example 3. The example given g = 1

2000 is marked with a blue dot.

Figure 5.39: The evolution of the (right-helicity) tensor modes for the gauge field, tR,
and the gravity sector, ψR for example 3 plotted against x = k/aH.

written in Appendix C, and their numerical evolution is plotted in FIG. 5.39 using the

standard initial conditions of ψR(xin) = tR(xin) = 1√
2k

with k = k∗ = 0.05Mpc−1 the

pivot scale, xin = 2× 104 and horizon-crossing, x = 1, is taken to be 60 e-folds before

the end of inflation. As in example 2, we see a large enhancement to ψR, and using the

freeze-out value (x� 1), we get an enhancement of

rb = 4.48× 10−7 → r = 2.29× 10−3, (5.7.17)

of a similar value to that predicted by the analytic estimate. This corresponds to an

enhancement of 5× 103.
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Comparing this to the example given in [3] where the freeze-out value of
√

2kxψR .

10 (FIG. 4), we see that the amplification factor in our model is much larger. This is

of course necessary because we wish to amplify the tensor-to-scalar ratio to observable

values r & 10−3. In the example given in [3], rb ∼ 10−3 whereas in our example,

rb . 10−6 meaning we require a much greater enhancement. This does not come for

free and the larger enhancement leads to larger backreaction (see section 5.6), which

can be compensated for by reducing the value of g, and in [3], g = 1.11×10−2, compared

to our value of g = 5× 10−4.

As in example 2, we are able to greatly amplify the tensor power spectrum which

becomes almost completely right-handed. Although as in example 2, this chirality is

unlikely to be detectable because r is still about an order of magnitude too small [87].

5.7.3 Scalars

The set-up of the scalars proceeds again exactly as for example 2 – starting with the

ADM formalism, the constraint equations for the metric perturbations, α and β are

given by (5.5.10)–(5.5.11)32. The remaining scalar perturbations are then given by

φa = φa(t) + δφa(t, xi)

AA0 = a(t) ∂AY (t, xi)

AAi = a(t)
[(
Q(t) + δQ(t, xi)

)
δAi + ∂i∂AM(t, xi)

]
. (5.7.18)

where we are now explicitly assuming a three-field system φa = (τ2, τ4, b). Again after

moving to momentum space and assuming the wave-vector is purely along the z-axis,

k = kz, the non-dynamical Y can be solved for then substituted along with α and β

into the remaining equations of motion. Again it is simplest to work with x = k/aH,

use

δτ2 =
∆τ2

a
, δτ4 =

∆τ4

a
, δb =

∆b

a

δQ =
∆1√
2a

, M =
agQ∆1 +

√
k2 + 2a2g2Q2∆2√

2ga2k2Q
(5.7.19)

32These equations are written in terms of the functions f and h, and the scalar metric γab so are
quite general, and can be applied equally to examples 1, 2 and 3 (in ex. 3, f = τ4, h = Mb).
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5.7 Justifying the large Chern-Simons coupling (example 3)

Figure 5.40: The evolution of the scalar perturbations defined in (5.7.19) with (left
figure) and without (right figure) the inclusion of the metric perturbations α, β found
through (5.5.10), (5.5.11) for the example 3 plotted against x = k/aH. As we can see, the
metric perturbations have a negligible effect on the evolution and can safely be set to zero.

and remove a and k from the equations of motion, using k = xaH. The initial conditions

for the scalar field perturbations have the multi-field inflation form [26]:

∆a(xin) =
−xH dφa

dx√
2kϕ̇

,
d∆a

dx
(xin) =

−ixH dφa

dx√
2kϕ̇

(5.7.20)

where ∆a = (∆τ2 ,∆τ4 ,∆b) while the scalar gauge field perturbations have the standard

Bunch-Davies initial conditions:

∆i(xin) =
1√
2k
,

d∆i

dx
(xin) =

i√
2k

(5.7.21)

where ∆i = (∆1,∆2), k = k∗ = 0.05 Mpc−1 is the pivot scale and as before xin = 2×104.

As we did for example 2, we first demonstrate graphically that the inclusion of the

metric perturbations has no effect on the evolution of the dynamical perturbations as

can be seen in FIG. 5.40.

The equations of motion (with the metric perturbations set to zero) for the five

remaining scalars without the metric perturbations are included in Appendix C. We

again define the (tangential) multi-field scalar perturbation

δs =
γab φ̇a δφ

b

ϕ̇
=

∆s

a
=
γab φ̇a ∆b

a ϕ̇
(5.7.22)

with ∆a = (∆τ2 ,∆τ4 ,∆b). We plot clearly its evolution during slow-roll in FIG. 5.41.

As in example 2, the gauge perturbations are vastly sub-dominant to the inflationary

perturbation, and during slow-roll of the background fields, ∆s freezes out (x < 1)

with |
√

2kx∆s| ∼ O(1) suggesting the gauge field has a negligible effect on the scalar
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Figure 5.41: The evolution of the scalar perturbations defined in (5.7.19) and (5.7.22) for
example 3 plotted against x = k/aH. After horizon-crossing, x < 1, the scalar perturbation
associated with the scalar fields, ∆s is consistently much larger than the scalars associated
with the gauge field, ∆1,∆2.

Figure 5.42: The full evolution of the scalar perturbations defined in (5.7.19) and (5.7.22)
plotted against x = k/aH for example 3 including the decays of all the perturbations which
take place concurrently with the decays of the corresponding background fields.

power spectrum. In this way we seek to justify our assumption that the scalar power

spectrum is well-approximated by H2

8π2εϕ
.

Finally in FIG. 5.42, we plot the full evolution of all the perturbations including

their decays, which occur concurrently to the decays of their background fields. We

have shown that the metric scalar perturbations’ contribution is negligible and that

the scalar perturbations to the gauge field are very small relative to the tangential

inflationary perturbation. Our assumption is that the scalar power spectrum can be

split into a contribution from the gauge field and the standard inflationary part. With

the gauge field perturbations sub-dominant, this means that the power spectrum is

well-approximated by Ps = H2

8π2εϕ
and that therefore the inflationary predictions of

both Ps and ns are not spoiled by the presence of the spectator gauge field.

172



5.8 Discussion of viability of example 3

Figure 5.43: The evolution of the leading terms in the equation of motion for Q (5.6.4),
2gQ2H ξh (blue), 2g2Q3 (orange), 2H2Q (green) and the backreaction induced by the

gauge tensor perturbation, TQBR (red) for example 3 plotted against x = k/aH.

5.7.4 Backreaction

Finally we demonstrate that the backreaction for example 3 is under control. The

backreaction of the tensor perturbations onto the gauge field equation of motion, TQBR,

as well as the energy density in the tensor modes, ρtR , is given again by (5.6.4)–(5.6.8).

Since these equations are written in terms of ξh, they are quite general. It is shown in

FIGs 5.43–5.44 that the backreaction is well under control in this example.

We have therefore shown that if we can include an extremely large magnetisation

of the branes m = 104 in order to sustain the gauge field, while having a gauge field

of extremely large degree (N ∼ 105), it is possible to greatly enhance the spectrum of

Kähler moduli inflation without incurring excessive backreaction. The viability of this

model is discussed in the next section.

5.8 Discussion of viability of example 3

As we have discussed, designing field theory models with the correct properties to realise

satisfactory (S)CNI seems rather challenging [107, 122]. Supergravity and string theory

models of inflation offer a natural framework where one can study possible embeddings

of SCNI that may overcome some of these challenges. A first look at the supergravity

embedding of CNI was taken in [104], while in string theory, a proposal to embed SCNI

was first made in [4].
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Figure 5.44: The evolution of the energy densities in φa, ρϕ ' V (blue); in Q, ρQ =

3
2f

[(
H Q+ Q̇

)2

+ g2Q4

]
(orange); and in tR, (5.6.8) (red), for the example 3 plotted

against x = k/aH.

In example 1 and 2, we attempted to use Kähler inflation in its original form,

but without introducing a large phenomenological constant, c2, this cannot be used

to realise SCNI. Thus, similarly to [4], for example 3, we introduced as a spectator

sector magnetised D7-branes, multiply wrapping four cycles, parametrised by a Kähler

modulus T4 and a C2 axion, b, coupled to the non-abelian gauge fields living on the

magnetised multiply-wrapped D7-branes. The parameters available in this set-up are

the magnetic field on the spectator D7-branes, m, its wrapping number, n, and the

degree of the gauge group, N . From the cosmological point of view, we were interested

in realising successfully three specific goals: successful inflation, a sustained gauge field

to successfully source gravitational waves at the observable level, r ∼ 10−3, and a

controllable backreaction from the tensor gauge fluctuations. We therefore fixed the

parameters (m,N, n) in order to realise these goals.

We were then left with a general multi-field system described from the field theory

point of view by the action (5.2.1), where the field space metric γab is given by33 (5.7.9),

the scalar potential is given by (5.7.6), the couplings f(φa), h(φa) are given by f = τ4,

h = mb, the gauge field F = dA−gA∧A and we defined the “effective gauge coupling”

as g = 1/
√
nN/2

A successful period of inflation and large enough enhancement of the gravitational

wave spectrum impose two conditions on the parameters, which can be fixed by two of

33Where we are working in the large volume limit.
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the three parameters in the model, namely m and n. However, keeping the backreaction

under control imposes a third condition, which then fixes the third parameter, N .

We show in FIG. 5.18 the enhancement of r for different values of g as a function

of the parameter ξQ, while in FIG. 5.19, we see the backreaction estimate for three

values of g as a function of ξQ. As we have discussed, for a fixed value of the effective

coupling, the larger ξQ, the larger the enhancement, but also the backreaction (see also

FIGs 5.25 and 5.43). We show the dependence of g as a function of N in figure 5.38 –

low g requires very high N .

Since the spectator axion is not canonically normalised, and its kinetic term depends

on τ4, a dynamical field, we cannot define a decay “constant” in the usual way. However,

we can define an “instantaneous decay constant”, as in [116], which we show in FIG.

5.37 in Planck units and turns out to be sub-Planckian as expected, fc ∼ 10−3Mpl.

On the other hand, because the host inflationary model is Kähler inflation, the field

excursion is sub-Planckian as well, ∆φ ∼ 0.2Mpl and the large-potential bound on r is

avoided, since the enhanced tensor spectrum gives r = 2.29× 10−3. The actual gauge

kinetic coupling is field dependent and set by τ4. At the minimum of τ4, this is given

by g2 = 1/〈τ4〉 ∼ 1
15 , and remember that it is displaced only a small distance from its

minimum, so an instantaneous gauge coupling defined at time t differs little from its

value at the minimum.

An important feature of the model from the cosmological point of view, is that it

realises a very mild version of the proposal in [101] to enhance the gravitational wave

spectrum. Indeed, the model requires a specific hierarchy in the slow-roll parameters,

namely ε ∼ εB � εϕ in order to ensure such a large enhancement. To see why this

is we plot in FIG. 5.45 how εB is affected by reducing the value of g. Despite the

fact that, naively, it seems εB = f g2Q4

M2
plH

2 ∝ g2, in fact if we plot it against ξQ, we see

that εB = f
H2ξ4

Q

g2M2
pl

. This fact has the important consequence that if we wish to have a

model that produces a relatively large value of ξQ (e.g. in our case ξQ ∼ 4) so that we

can get a large enough enhancement to the tensor-to-scalar (see FIG. 5.18) to achieve

r ∼ 10−3, whilst having a small value of g so as not to produce too large a backreaction

(see FIG. 5.19), it is unavoidable that ε ∼ εB > εϕ. This point is further emphasised in

FIG. 5.46 where we plot the enhancement factor against the ratio of εB to εϕ for two

values of g. In [3] (and equivalent chapter 3), their inflationary model already predicts a

background tensor-to-scalar ratio of rb ∼ 10−3; they have a much larger value of εϕ than
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Figure 5.45: The value of εB = f g2Q4

M2
plH

2 = f
H2ξ4Q
g2M2

pl
plotted against ξQ = gQ

H . If one wishes

to achieve the same value of ξQ after reducing g to mitigate the backreaction, εB will be
larger. The dashed line shows the value of εϕ 60 e-folds before the end of inflation for
example 3. Similarly the dot corresponds to the values for ξQ and εB in example 3 60
e-folds before the end of inflation.

in our example; and their model predicts a considerably smaller enhancement factor
rs+rb
rb
∼ 20 (compared to rs+rb

rb
∼ 5000 in example 3). To achieve this enhancement,

they only require ξQ ∼ 3.4 compared to our ξQ ∼ 4.2 and as discussed the backreaction

scales exponentially in ξQ. For these reasons, in [3], they are able to choose a relatively

large value for g = 1.11× 10−2 compared to our g = 1
2000 , and therefore they are able

to satisfy ε ∼ εϕ � εB. In this regard our example has more in common with [101]

where they demonstrate that one can achieve exceptionally large enhancements whilst

controlling the backreaction if g is taken to be small enough and it is allowed that

ε ∼ εB. In the specific example in [101], they achieve an enhancement of rs+rb
rb
∼ 1068

and have ε ∼ εB ∼ 10−2.

The fact that we have ε ∼ εB may be seen as a problem. However as in [101], we

assume that scalar power spectrum, Ps, is dominated by the scalar field perturbations

and the gauge field perturbations therefore contribute negligibly to Ps. This is a crucial

assumption of this work and is of course also valid for example 2 as well as example 3.

This in turn allows us to assume that the scalar power spectrum is well approximated

by Ps = H2

8π2εϕ
and consequently that ns = 1− 2ε− ηϕ. This of course ensures that the

important inflationary predictions of Kähler inflation are not spoiled. In FIGs 5.40–

5.42, we show that the scalar field perturbations are much larger in magnitude than

the scalar perturbations of the gauge field.

Comparing to the phenomenological models in the literature, we have seen that a
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Figure 5.46: Two plots showing how the enhancement factor, rs+rbrb
, varies relative to the

ratio of εB
εϕ

where εϕ = 2.80× 10−8, the value it takes 60 e-folds before the end of inflation

in example 3. The left plot corresponds to g = 1
2000 , the value of g used in example 3 and

the right plot shows g = 1
100 . The dot corresponds to the values in example 3. The red

part of the lines corresponds to parameter space where the backreaction is too large. It can
be seen immediately that with g = 1

100 , it is impossible to get a substantial enhancement
without incurring excessive backreaction. Because of the low value of εϕ in Kähler inflation,
in order to get a large enhancement with controlled backreaction, we require g small, which
leads to a large value of εB relative to εϕ.

relatively simple string theory construction has enough parameters to account for the

cosmological constraints required to realise our goals. At least one of these parameters

can be easily incorporated in field theory models, namely rather than working with

SU(2), one can work with SU(N), introducing an effective coupling that can be made

small, at the price of a large degree. However it is not clear whether there are field

theory equivalents of the magnetic flux and the D7-brane wrapping number.

Let us now discuss in more detail the values of the model parameters (m,N, n). As

we saw, for a successful evolution we require a large magnetic flux m = 104. Requiring

that the gauge field is sustained for enough e-folds to enhance the tensor spectrum

then requires that the instantaneous decay constant fc ∼ 10−3Mpl, which fixes n = 25.

Finally control of the backreaction requires a specific value for the effective decay

constant g ∼ 1
2000 , which fixes N ∼ 3× 105. The winding number is of a similar order

to the values used in e.g. [105]. The magnetic flux on the other hand is much larger,

and may backreact on the geometry. Moreover, the gauge group degree required is very

large N ∼ 105. Since N is basically the number of D7-branes, such a large number of

them may backreact on the full geometry. In any case, it is not clear that such a large

number for N can be realised in any realistic large volume compactification. So we

see this as the biggest challenge of the construction. Remember however, that we have
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required three very specific cosmological objectives and the large value of N is needed

to realise these.

Finally we note that although the tensor spectrum that is produced is fully chiral,

this chirality is unlikely to be detectable by cross-correlating T , E and B spectra with

future CMB experiments because overall the tensor-to-scalar ratio is about one order

of magnitude too small [87]. This leads us nicely into our next section in which we

apply this enhancement mechanism to fibre inflation, a model that already predicts an

observable tensor-to-scalar ratio, r ∼ 5× 10−3.

5.9 Fibre inflation (example 4)

In chapter 4, we considered an example of fibre inflation with an additional spectator

modulus, T4, and we saw that fibre inflation is capable of producing an observable

tensor-to-scalar ratio without the need for an enhancement – it has a high energy

potential (V is about 4 orders of magnitude larger in fibre inflation than Kähler modulus

inflation). Although we could work with this model straight away and consider a more

phenomenological scenario equivalent to example 2 above for Kähler moduli inflation,

we modify the spectator sector as in example 3, coupling again to an SU(N) gauge

field. Applying this mechanism to fibre inflation is potentially interesting because, with

a small enhancement to the right-handed part of the tensor spectrum, the chirality

of this model could potentially be observable (we will see that we can enhance the

spectrum up to r ∼ 10−2 very easily), giving it a distinguishable feature. Because the

superpotential terms for T4 are assumed to be the same as in example 3, i.e.

W (s)
np = A4e

−a4T4 +Ae−af4 , (5.9.1)

and because the τ4 modulus is manifestly chosen to be small relative to τ1 and τ2 so it

does not receive a correction from the Kähler potential, we can see that the spectator

part of the potential will be the same as it was in example 3 for Kähler moduli inflation.
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The whole potential is as follows

V =

{
− 3αγ3

2a
3/2
3

(
ln

(
2a3A3

3αγ3W0
V

))3/2

+
3ξ̂

4

}
W 2

0

V3
+

(
A

τ2
1

− B

V
√
τ1

+
C τ1

V2

)
W 2

0

V2

+
8 a2

4A
2
4
√
τ4

3αγ4V
e−2a4τ4 +

4W0 a4A4τ4

V2
cos (a4b4) e−a4τ4

8ã2Ã2√τ4

3αγ4V
e−

2ã
m
τ4 +

16ãÃa4A4
√
τ4

3αγ4V
e−(a4+ ã

m)τ4 cos

[
a4b4 − ã

(
b+

b4
m

)]
+

4ãÃW0τ4

V2
e−

ã
m
τ4 cos

[
ã

(
b+

b4
m

)]
+

δup

V4/3
(5.9.2)

where the first line corresponds to the inflationary part of the potential after substitut-

ing for τ3 (which is a stabiliser) as in [50] (equation 3.60) (see chapter 4 for details) with

A, B,C, a3, A3 model-dependent constants;
δup
V4/3 is an uplift term used in fibre inflation;

and the remaining terms are entirely equivalent to the spectator part of example 3 (re-

place γ4 → λ4) recalling that we have made the replacement ã = anm and Ã = A
m with

a = 2π
N , N the degree of the gauge group to which the spectator sector is coupled, n

the wrapping number, and m the magnetisation of the branes. In fibre inflation both

V and τ1 contribute to inflation, and here we have added as spectators τ4, b4, b. We will

show that, as in example 3, the b4 axion can be safely set to its minimum as it only

moves negligibly during inflation. We therefore start with a five-scalar field system

(τ1,V, τ4, b4, b) coupled to the gauge field, Q, in the usual way through f = τ4 and

h = Mb. The scalar manifold metric is given by the four-field metric used in chapter 4

with the addition of the term for the b axion [88, 119, 120]

γab =



3
4τ2

1
− 1

2τ1V
0 0 0

− 1
2τ1V

1
V2 −3αγ4

√
τ4

2V2 0 0

0 −3αγ4
√
τ4

2V2
3αγ4

4V
√
τ4

0 0

0 0 0 3αγ4

4V
√
τ4

0

0 0 0 0
2gs
√
τ4√

ζV


. (5.9.3)
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5.9.1 Background evolution

The background evolution of this system can now be described by (5.2.8)–(5.2.13). We

use as parameters:

ξ̂ =
ξ

g
3/2
s

= 4.59, A = 2.9× 10−3, B = 0.93, C = 4.3× 10−5,

W0 = 100, a3 =
π

4
, A3 = 1, α = 0.1543, γ3 = 3.055,

δup = 0.082, gs = 0.3, a4 =
2π

70
, A4 = 1.5× 10−4, γ4 = 0.1,

ã = 7a4, Ã = 10−2A4, m = 500, ζ = 5, g =
1

50
(5.9.4)

where the inflationary parameters are taken from example set “SV2” in [50]. As in

example 3, the parameters a4, A4 are chosen so that the terms involving the modulus

T4 are small relative to the inflationary terms and do not spoil the minimum for the

τ1 and V, the inflatons. On top of this, Ã is taken to be small relative to A4 so that

the minimum for τ4 and b4 is dictated by the terms not involving the C2 axion as

was discussed for example 3. Finally ã (as well A4, a4, Ã) and g are chosen to lead

to a phenomenologically interesting example where the tensor power spectrum can be

enhanced. Notice immediately that g is much larger than in the Kähler moduli inflation

examples – this is because we now only require a small enhancement (and hence small

ξQ), which means the backreaction is not as difficult to control.

The minimum of this potential is found at

〈τ1〉 = 6.7570, 〈V〉 = 1408.2, 〈τ4〉 = 13.741. (5.9.5)

We take τ in1 = 5000 and bin = 0.001π
a as chosen initial conditions and this leaves V and

τ4 at the new minimum

Vin = 1830, τ in4 = 9.46 , (5.9.6)

which we use as their initial conditions. The evolution of this system is plotted in FIGs

5.47–5.55. Inflation proceeds normally due to the slow evolution of τ1 and V plotted in

FIGs 5.47 and 5.48. As in example 2 and 3, the evolution of the τ4 modulus is trivial

(FIG. 5.49) – it goes to its minimum as b does. The axion b (FIG. 5.49) is supported

by its coupling to the gauge field – the potential term in its equation of motion is
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5.9 Fibre inflation (example 4)

Figure 5.47: The evolution of the inflaton field, τ1, during the last 60 e-folds (left figure)
and its decay as inflation ends (right figure) for example 4 plotted against N the e-fold
number.

Figure 5.48: The evolution of the volume modulus, V, during the last 60 e-folds (left
figure) and its decay as inflation ends (right figure) for example 4 plotted against N the
e-fold number.

almost perfectly by the term from the gauge field (FIG. 5.52). In this way, this is

another example of the slow-roll solution described before. As the axion is active for

many e-folds during inflation, it supports Q (see FIG. 5.50) and notice that the value

of ξQ ∼ 2.5 is much smaller than in the Kähler moduli case. In 5.53, we see that the

gauge field roughly satisfies ξQ ∼ ξh and that the b4 axion only moves negligibly during

inflation and can therefore safely be set to its minimum and removed from the evolution

as expected. Unlike examples 2 and 3, we see that in this case, ε ∼ εϕ – the slow-roll

parameter is not dominated by the magnetic part of the gauge field in this example.

This is because of the much larger value of g used here (see FIG. 5.45 in the previous

section).
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Figure 5.49: The evolution of the spectator fields, τ4 (left figure) and b (right figure),
during the last 60 e-folds of inflation for example 4 plotted against N the e-fold number.

Figure 5.50: The evolution of the gauge field, Q (left figure), and its effective mass, ξQ
(right figure), during the last 60 e-folds of inflation for example 4 plotted against N the
e-fold number.

Figure 5.51: The evolution of the effective couplings from the spectator fields to the

gauge field, ξf = ḟ
2Hf (left figure) and ξh = ḣ

2Hf (right figure), during the last 60 e-folds
of inflation for example 4 plotted against N the e-fold number.
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Figure 5.52: The contributions of (left) the term −3 gm
√
ζV

2gs
√
τ4
Q2
(
HQ+ Q̇

)
provided

by the gauge field, Q; and (right) the term
√
ζV

2gs
√
τ4

∂V
∂b provided by the potential, to the

equation of motion for b given by the form in (5.2.12) for example 4. The contribution
from the gauge field almost exactly cancels the contribution from the potential leading to
a slow-roll evolution for b.

Figure 5.53: Left figure: The two dominant terms in the equation of motion for Q,
(5.2.13), satisfy 2g2Q3 ∼ gHQ2ξh for example 4. The term introduced through the coupling
to the axion almost cancels 2g2Q3, a term that sends Q to zero. In this way the axion-
gauge coupling supports the gauge field. Right figure: The evolution of the b4 modulus for
example 4 – started at its minimum, it moves only negligibly during inflation, and can be
safely ignored in the numerics.

Figure 5.54: The evolution of the slow-roll parameter, ε = − Ḣ
H2 (left figure) and its scalar

component εϕ = γab
φ̇aφ̇b

2H2 (right figure), during the last 60 e-folds of inflation for example
4 plotted against N the e-fold number.
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Figure 5.55: The evolution of the magnetic component of slow-roll parameter, εB =

f g2Q4

M2
plH

2 (left figure) and the electric component of the slow-roll parameter εE = f
(HQ+Q̇)

2

M2
plH

2

(right figure), during the last 60 e-folds of inflation for example 4 plotted against N the
e-fold number.

The inflationary predictions of this model (using as before Ps = H2

8π2εϕ
, ns = 1 −

2ε− ηϕ, r = 16εϕ) 50 e-folds before the end of inflation

εϕ = 3.73× 10−4, ns = 0.964, rb = 5.97× 10−3,

V
1/4
inf = 9.03× 1015GeV, ∆ϕ = 4.55Mpl . (5.9.7)

The much higher energy scale of fibre inflation (as well as much larger field displace-

ment) allows for a much greater value of the tensor-to-scalar ratio. We wish to enhance

this but must be careful that the enhancement does not take r above the observational

bound r . 0.07 set by Planck [37]. The parameters we use of ã = amn = 2π
10 , with

a = 2π
N and m = 500 as well as g = 1√

Nn/2
= 1

50 . Satisfying these requirements si-

multaneously leaves us with a wrapping number of n = 1 and a gauge group degree of

N = 5000.

5.9.2 Tensors

The tensor perturbations are found in exactly the same way as 5.4 and the analytic

estimate is again identical to that found there. Using the analytic estimate, we get the

sourced right-helicity tensor-to-scalar ratio as

rs,R = 4.59× 10−2 . (5.9.8)
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5.9 Fibre inflation (example 4)

Figure 5.56: The evolution of the (right-helicity) tensor modes for the gauge field, tR,
and the gravity sector, ψR for example 4 plotted against x = k/aH.

The non-sourced right and left-helicities both contribute rb
2 = 2.98× 10−3 meaning our

total estimate for the tensor-to-scalar ratio is

r = 5.18× 10−2 (5.9.9)

corresponding to an enhancement of roughly an order of magnitude. This spectrum is

highly chiral – 94.2% of it is from the right-helicity mode.

The full equations of motion for the tensors are written in Appendix C. We evolve

these with the usual initial conditions ψR(xin) = tR(xin) = 1√
2k

with xin = 2× 104 and

k = k∗ = 0.05Mpc−1. The evolution is plotted in FIG. 5.56.

We see the enhancement to the right-helicity mode of the gravity sector is consid-

erably smaller than in our Kähler moduli inflation examples (see e.g. FIG. 5.39) with

|
√

2kxψR| →∼ 4. Since the enhancement is only to the right-helicity mode, we must

add to this the background left-helicity contribution to the tensor spectrum to get the

full tensor-to-scalar ratio, i.e.34

Pt = PRt + PLt with PRt = |
√

2kxψR|2
H2

π2

∣∣∣∣
x<1

, PRt =
H2

π2
. (5.9.10)

Using this method with the numerical solution and taking the freeze-out (x < 1) value

of |
√

2kxψR|2 = 15.9, we get

rb = 5.97× 10−3 → r = 4.87× 10−2 , (5.9.11)

34We did not need to be this careful when considering the power spectra for the Kähler moduli
inflation examples because the left-helicity mode was completely negligible.
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an enhancement of ∼ 8. The spectrum is highly chiral – approximately 94.1% of

it comes from the right-helicity mode, ψR. Given that this spectrum is an order of

magnitude larger than that predicted in example 2 and 3, it is possible that this right-

handedness could potentially be detectable by analysis of cross-correlation of CMB

polarisations [87], giving this model a distinguishable feature.

5.9.3 Scalars

The scalar perturbations are again set up exactly as in example 2 and 3, except we now

have one extra:

φa = φa(t) + δφa(t, xi)

AA0 = a(t) ∂AY (t, xi)

AAi = a(t)
[(
Q(t) + δQ(t, xi)

)
δAi + ∂i∂AM(t, xi)

]
. (5.9.12)

with four-field system φa = (τ1,V, τ4, b). We use again x = k/aH and comoving

perturbations are defined

δτ1 =
∆τ1

a
, δV =

∆V

a
, δτ4 =

∆τ4

a
, δb =

∆b

a

δQ =
∆1√
2a

, M =
agQ∆1 +

√
k2 + 2a2g2Q2∆2√

2ga2k2Q
. (5.9.13)

Once again the initial conditions for the scalar field perturbations have the multi-field

inflation form [26]:

∆a(xin) =
−xH dφa

dx√
2kϕ̇

,
d∆a

dx
(xin) =

−ixH dφa

dx√
2kϕ̇

(5.9.14)

where ∆a = (∆τ1 ,∆V,∆τ4 ,∆b) while the scalar gauge field perturbations have the

standard Bunch-Davies initial conditions:

∆i(xin) =
1√
2k
,

d∆i

dx
(xin) =

i√
2k

(5.9.15)

where ∆i = (∆1,∆2), k = k∗ = 0.05 Mpc−1 is the pivot scale and as before xin = 2×104

with x = 1 taken to be 50 e-folds before the end of inflation.
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Figure 5.57: The evolution of the scalar perturbations defined in (5.9.13) and (5.9.16) for
example 4 plotted against x = k/aH. After horizon-crossing, x < 1, the scalar perturbation
associated with the scalar fields, ∆s is consistently much larger than the scalars associated
with the gauge field, ∆1,∆2.

Figure 5.58: The full evolution of the scalar perturbations defined in (5.9.13) and (5.9.16)
plotted against x = k/aH for example 4 including the decays of all the perturbations which
take place concurrently with the decays of the corresponding background fields.

The equations of motion for the six remaining scalars without the metric perturba-

tions and after solving for Y are included in Appendix C. Using the multi-field scalar

perturbation

δs =
γab φ̇a δφ

b

ϕ̇
=

∆s

a
=
γab φ̇a ∆b

a ϕ̇
(5.9.16)

with ∆a = (∆τ1 ,∆V,∆τ4 ,∆b). We plot clearly its evolution during slow-roll in FIG.

5.57. As in examples 2 and 3, the gauge perturbations are vastly sub-dominant to the

inflationary perturbation, and during slow-roll of the background fields, ∆s freezes out

(x < 1) with |
√

2kx∆s| ∼ O(1) suggesting the gauge field has a negligible effect on the

scalar power spectrum.

Finally in FIG. 5.58, we plot the full evolution of all the perturbations including
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Figure 5.59: The evolution of the leading terms in the equation of motion for Q (5.6.4),
2gQ2H ξh (blue), 2g2Q3 (orange), 2H2Q (green) and the backreaction induced by the

gauge tensor perturbation, TQBR (red) for example 4 plotted against x = k/aH.

their decays, which occur concurrently to the decays of their background fields. We

have shown that the scalar perturbations to the gauge field are very small relative to

the tangential inflationary perturbation.

5.9.4 Backreaction

The backreaction of the gauge tensor modes onto the equation of motion for Q, TQBR

is again given by (5.6.4) and is plotted against the leading terms in this equation in

FIG. 5.59. The energy density contribution from the tensor modes of the gauge field,

ρtR is shown in FIG. 5.60. Both contributions are vastly sub-dominant relative to the

background terms, meaning our approach of choosing an isotropic background form for

the gauge field is consistent.

We have therefore shown that it is possible to amplify by roughly an order of

magnitude the tensor spectrum of fibre inflation while keeping the backreaction under

control. Although fibre inflation naturally predicts an observable tensor-to-scalar ratio

r ∼ 5× 10−3, this is interesting because it renders the tensor spectrum highly chiral –

giving it a distinguishable feature that may be detectable.

5.10 Summary

In this chapter we have applied the enhancement mechanism introduced in chapter 3

to various examples of Kähler moduli inflation and fibre inflation where a modulus is
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Figure 5.60: The evolution of the energy densities in φa, ρϕ ' V (blue); in Q, ρQ =

3
2f

[(
H Q+ Q̇

)2

+ g2Q4

]
(orange); and in tR, (5.6.8) (red), for the example 4 plotted

against x = k/aH.

coupled to an SU(N) gauge field that can be split into a set of SU(2) gauge fields

with common field strength. Redefinitions of the gauge field then allow us to treat this

system as one SU(2) field and take the same approach as in chapter 3. First we applied

the mechanism to example 4 of [76] where the axion coupled to the gauge field is the

superpartner of the inflaton (and in fact itself is partially responsible for inflation).

Due to constraints put on the axion due to its intrinsic role in inflation (in particular

the inflaton cannot decay until its axionic partner has decayed), we were unable to find

any working examples where the tensor spectrum could be greatly amplified without

incurring excessive backreaction.

In order to get a working example, we required a bit more freedom for the fields

coupled to the gauge field, and thus we introduced a spectator sector modulus, T4, to

be coupled to the SU(N) gauge field while the inflationary sector remained unchanged.

This extra freedom that comes from not needing the fields coupled to the gauge sector

to also satisfy inflationary requirements allows us in particular to reduce the gauge

coupling g that necessarily needs to be small to control the backreaction of the gauge

tensor modes (see FIG. 5.19). With this model we are able to amplify the tensor

spectrum of Kähler inflation by ∼ 103 and uplift it to potentially observable values

(r & 10−3 [39–44]). The spectrum produced is fully chiral but this chirality is unlikely

to be detectable because the tensor-to-scalar ratio is still roughly an order of magnitude

too small [87]. Although this model is extremely positive, it requires the introduction
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of a large parameter to induce a large difference in the axion-gauge coupling, h, and the

four-cycle-gauge coupling, f . We parametrise this be defining f = c1
2π τ4 and h = c2

2π b4,

and in this example we need c2 = 450, c1 = 1. There is unfortunately no theoretical

justification for this and it is expected that c1 = c2 = 1 [85]. For this reason we

introduce another model, where the axion is not the direct superpartner to four-cycle,

τ4, coupled to the gauge field, but is instead an additional axion that arises from a

multiply-wrapped D7-brane stack along τ4.

This new model immediately allows for a theoretical justification for the difference

between f = τ4 and h = mb where m is the magnetisation and b is the new axion. In

this way we can parametrise the necessary requirements of the models through physical

means. Another important parameter is g, which now, after successive redefinitions,

takes the form g = 1√
Nn/2

where N is the gauge degree and n is the wrapping number.

Using this model we are able to get a working solution very similar to the previous

example, increasing the tensor-to-scalar ratio to observable values, having a completely

chiral spectrum – but at too low a tensor-to-scalar ratio for this to be detectable. This

model requires that the magnetisation m = 10000 and the gauge degree N ∼ 105 be

very large, which may be physically unreasonable. In addition to this, this example

and the previous one both require that the slow-roll parameter be dominated by the

magnetic component of the gauge field ε ∼ εB (see FIG. 5.45). This introduces the

possibility that the scalar power spectrum of the inflationary model is spoiled – we

assume therefore that if the gauge field perturbations are very small relative to those

of the scalar sector (see FIG. 5.41) that we can assume that Ps = H2

8π2εϕ
. This follows

[101] and is the main assumption of this work.

Finally we applied this same model to fibre inflation, a model that already predicts

an observable tensor-to-scalar ratio. We were able to uplift the tensor spectrum by

about an order of magnitude making it largely chiral – a chirality that for this example

may be detectable [87], making this an interesting and distinguishable feature of the

model.
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Chapter 6

Summary and discussions

In this thesis we have considered two possible implications of including spectator gauge

fields in the inflationary action. By “spectator” we mean a field not responsible for

driving inflation, but a field that nonetheless can affect inflationary predictions. In

chapter 2, we showed how a U(1) gauge field – supported through its coupling to the

inflaton – can sustain a global universal anisotropy under the right conditions; and

in chapter 5, we showed how the tensor-to-scalar ratio of Kähler modulus models of

inflation can be enhanced through a coupling of an axion and an SU(N) gauge field.

In this chapter, we review the main results; consider the feasibility of the models and

their assumptions; and discuss possibilities for future work.

6.1 Anisotropic inflation

In chapter 2 (based on [51]), we consider an extension to the model put forward in [45],

which was the first working example of a system capable of sustaining an anisotropy in

the metric after a period of inflation. The system is set up with the anisotropic metric

ds2 = −dt2 + e2α(t)
[
e−4σ(t)dx2 + e2σ(t)

(
dy2 + dz2

)]
(6.1.1)

with α ∼ Ht and σ ∼ Σt (with the anisotropy characterised by Σ
H ) the isotropic and

anisotropic e-folding numbers, respectively; and this anisotropy can be sustained during

inflation if a vector field, chosen to be directed along the direction of anisotropy

Aµ = (0, v(t), 0, 0) , (6.1.2)
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is supported through a coupling to the inflaton, φ, appearing in the action as f2(φ)F 2.

The extension we consider is to generalise this coupling to include derivative terms of

the inflaton, i.e. f = f(φ,X) with 2X = −φ̇2. We then follow [45] exactly and choose

a power-law form for the (single-field) inflationary potential and gauge kinetic function

V (φ) = V0e
λ
Mpl

φ
, f(φ,X) = M4n

pl f0
e

ρ
Mpl

φ

(−X)n
(6.1.3)

and use as Ansätze that the isotropic and anisotropic e-folding numbers and the infla-

ton scale logarithmically with time. Using this set-up, we study analytically possible

solutions. In particular, we perform a dynamical system analysis to search for stable

(attractor) solutions that support a non-negligible anisotropy. We find no stable solu-

tions when the gauge kinetic function is taken to depend only on the derivative term

(ρ = 0) f = f(X); however, stable, anisotropic solutions exist when ρ is non-zero. The

anisotropy can be constrained through g∗, a parameter that measures the degree to

which the scalar power spectrum fails to be isotropic through

Ps(~k) = Ps(k)
(
1 + g∗ sin2 θ

)
(6.1.4)

with θ the angle between the mode function wave-vector and the anisotropic direction.

For an anisotropic inflationary model that predicts a certain anisotropy, Σ
H , we can

evaluate g∗ through

g∗ = 24IN2
e (6.1.5)

where Ne is the number of e-folds after the end of inflation, and I = 3ε−1 Σ
H [55]. In

[53], they constrain g∗ = 0.002±0.0161. This greatly constrains Σ
H relative to ε. Taking

Ne = 60, we get g∗ = 259200ε−1 Σ
H , which using the constraint tells us

1

ε

Σ

H
. 6.94× 10−8 (6.1.6)

for positive Σ
H . We provide one stable example that satisfies this constraint with ε =

5.00× 10−13 and Σ
H = 2.78× 10−26. Interestingly the derivative coupling parametrised

by n reduces the anisotropy as is shown in FIG. 2.2 while only inducing a small re-

duction in ε. This helps to satisfy constraints on g∗. All the same as is shown in [70],

1This is a true intrinsic anisotropy – the foreground di-polar anisotropy (assumed to be our motion
relative to the CMB) has been removed.
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the anisotropic attractor solution described in [45] cannot satisfy the constraint on g∗

without a fine-tuning of the parameters – and the same seems to be the case here. If

we examine the form for the anisotropy given in (2.3.19), we get

Σ

H
= ε

(
1

2
+
ρ

λ
− ε−1 − n

)
. (6.1.7)

The parameters used for (2.3.46) are n = −100, λ = 10−6, ρ = 2× 106, ε−1 = 2× 1012

we see that ρ/λ and ε−1 roughly cancel – and in fact at high precision ε−1 cancels

with 1
2 + ρ

λ −n to give O(10−13). This non-trivial cancellation provides the necessarily-

small value for the anisotropy, but requires some extreme values for the parameters

– particularly ρ and λ. The extremely small value of λ means that the inflationary

potential would require an extremely large (super-Planckian) excursion for the inflaton.

More generally of course the exponential function chosen for the inflationary po-

tential is very much out of favour with constraints on ns and r [37] and it would be

interesting to see if an example of anisotropic inflation could be found with a more real-

istic potential and after performing a full numerical evolution of the inflationary period

with the inflaton-vector field coupling. This is an obvious follow-up to this work. The

work shown in this thesis focussed on analytic solutions and therefore may have missed

some subtle problems that can arise when a full numerical evolution is attempted.

Finally the perturbations of this system were not considered – it would be interesting

to see if the vector field has any effect on the scalar and tensor power spectrum besides

the introduction of an anisotropy2.

6.2 Gauge field-induced enhancement of the tensor power

spectrum

The other main topic of this thesis is concerned with the coupling of axions to gauge

fields through the action term χFF̃ – under the right conditions the axion, χ, can

support the gauge field during inflation, and interestingly a gauge field supported during

inflation introduces a source term for inflationary gravitational waves. In this way the

2The tensor spectrum is also expected to receive an anisotropy given by g∗ = 6IεN2
e [55] – slow-roll

suppressed when compared to the anisotropy induced in the scalar power spectrum.
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tensor-to-scalar ratio of an inflationary model may be enhanced without increasing the

energy scale of the inflationary potential.

In chapter 3, we introduce two models [2, 3] where an axion is coupled to a gauge

field that introduces a source term for the tensor modes. We first however demonstrated

why a vector field dilutes during inflation – demonstrating that – without a source term

of its own, its energy density decreases with the expansion of the universe. We then

showed how a vector field introduces a source term into the equation of motion for

gravitational waves. In the second half of chapter 3, we considered a specific example

of the model introduced in [3], an extension of chromo-natural inflation where the

inflaton and axion sectors are separate. The axion is coupled to an SU(2) gauge field

(through the term λχ
4f ) which is assumed (at the background level) to be locked into an

isotropic configuration A0 = 0, AAi = a(t)Q(t)δAi with A the gauge index. In [3], the

authors leave the background inflationary model unspecified whereas here we chose, as

a toy model, a potential of V (φ) = Λ4
(
1−m1φe

−m2φ
)
. We showed how the axion and

gauge field can interact in such a way that allows the axion to support the gauge field

for a lengthy period of time during inflation if the coupling constant λ
f is large enough.

We then showed how the tensor perturbations of the gauge field can enhance the right-

helicity mode of the gravity sector inducing a large increase in the tensor-to-scalar ratio

and rendering the tensor spectrum chiral. We also demonstrated how we can estimate

the backreaction of the tensor modes, and that this backreaction is under control in

this specific example.

In chapter 4 we introduced Kähler moduli inflation [49] and fibre inflation [50] –

two models of inflation to which we wished to apply the enhancement mechanism of

[3]. We derived the large-volume form for the potential in Kähler moduli inflation and

introduced the potential of fibre inflation before studying several examples of Kähler

moduli and fibre inflation numerically, all the time bearing in mind that our goal was

to enhance the models’ tensor spectra through an axion-gauge field coupling. We first

show a prototypical example of Kähler inflation (based on the parameter set “example

1” in [76]) with very large volume (V ∼ 7 × 106) and extremely low energy scale

(V 1/4 ∼ 6 × 1012GeV) which consequently predicts a very low value for the tensor-

to-scalar ratio (r ∼ 10−15) and since our goal was to enhance the tensor spectrum of

Kähler moduli inflation to observable values (r ∼ 10−3) we see we would have required

an enhancement of O(1012) with this parameter set. We therefore use as our basic

194



6.2 Gauge field-induced enhancement of the tensor power spectrum

inflationary model the parameter set “example 4” in [76] which leads to a much higher

scale for the potential – V 1/4 ∼ 8− 9× 1014GeV and consequently the tensor-to-scalar

ratio r . 10−6. The field content of Kähler inflation models naturally allows for the

inclusion of axions in the inflationary evolution, and we showed that we can evolve both

the superpartner axion of the inflaton (dubbed example 1) and the additional modulus,

T4 = τ4 + ib4, introduced to allow for a bit more freedom in the parameters (example

2), while satisfying standard constraints on inflation (particularly on ns). Much of the

chapter was concerned with the simplification of the models – in full Kähler inflation,

there are many fields in the evolution including the volume, V, and a stabiliser modulus,

τ3 that only evolve a small amount and have little effect on the inflationary predictions

of the model, and we demonstrated that they can be safely removed from the evolution,

easing the numerics that become convoluted when we involve the gauge field. Finally

we showed an example of fibre inflation (using parameter set “SV2” of [50] as a base)

to which we add again an additional modulus, T4.

Finally in chapter 5 (large parts based on [88]), we couple Kähler moduli inflation

and fibre inflation to an SU(N) gauge field. We showed that the SU(N) gauge field can

be split into SU(2) sub-groups such that, if assumed to have common field strength,

we can recover the system of chapter 3 with effective gauge coupling, g = 1
N

where

N = [N/2]. The scalar sector was coupled to the gauge sector through

L ⊃ −f(φa)

4
FAµνF

Aµν +
h(φa)

4
F̃AµνFAµν (6.2.1)

where f is a function of the 4-cycle saxion τa and h a function of its axion partner

ba. We first considered the case where the scalar sector coupled to the gauge field is

taken from the intrinsic field content of Kähler moduli inflation. In order to support

the gauge coupling we unfortunately required a hierarchy between the couplings of f

to F 2 and h to F̃F – we parametrised this by defining f = c1
2π τa and h = c2

2π ba where

T a = τa+ iba is the modulus we choose to couple to the gauge field and left c1 and c2 as

phenomenological constants. We note that however it is expected that c1 ∼ c2 ∼ O(1)

[85] whereas we required c1 � c2 in order for the axion to support the gauge field in

every example we considered. In example 1 we couple the inflaton, τ2, and its axion,

b2, to the gauge field. We were unable to find a working example for this scenario – the

principal problem being the backreaction of the tensor fluctuations to the gauge field,
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which was too large. As is plotted in FIGs 5.9 and 5.19, the backreaction onto the

background equation of motion of the gauge field (Q) scales exponentially with ξQ, and

since we require a large enhancement of the gravity sector (∼ 104) to uplift the tensor

spectrum of Kähler moduli inflation to observable values, we require a larger value of

ξQ (see FIG. 5.20) than in e.g. [3] and the example we considered in chapter 3. This

problem is compounded by the fact that the largest background terms in the equation

of motion for Q, 2
g
H3ξ3

Q ∼
2
g
H3ξ2

Qξh (see (5.6.4)), are smaller in lower energy inflation

due to the scaling H3. This effect can be mitigated by reducing the gauge coupling

g, which not only reduces the backreaction (FIGs 5.9 and 5.19) but also increases

the terms 2
g
H3ξ3

Q ∼
2
g
H3ξ2

Qξh and actually increases the enhancement to the tensor

spectrum (see FIG. 5.18) for a given value of ξQ meaning we do not require as large a

value for ξQ to achieve our goal of enhancing the tensor spectrum to observable values,

and this further reduces the backreaction. For the set-up described in example 1 where

the inflaton itself is coupled to the gauge field, we were unable to find a background

solution which could sustain ξQ at a large value (so as to lead to a large enhancement)

and for which g was small enough to mitigate the backreaction. In reality the set-up of

example 1 was very restrictive – the axion’s and inflaton’s evolutions were intertwined

due to the form of the scalar metric and the potential, in particular the term in V

4W0a2A2e
−a2τ2 cos (a2b2) τ2

V2
(6.2.2)

is vital to the evolution of both τ2 and b2 – while b2 is well away from the minimum, this

term is positive and τ2 continues in slow-roll until b2 nears its minimum. In this way

their evolutionary histories are tied and this is shown nicely in FIG. 5.1. The fact that

b2 is so important to the inflationary evolution means we do not have much freedom in

choosing the parameters that govern its evolution (a2, A2, λ2), and this makes it very

difficult to find solutions that support large ξQ, particularly when g is reduced.

For this reason, in example 2, we introduce an additional modulus, T4 = τ4 + ib4,

as a spectator sector that is coupled to the SU(N) gauge field instead of the infla-

ton. This gives us considerably more freedom in choosing the parameters that dictate

the evolution of the axion coupled to the gauge field (a4, A4, λ4). These parameters

are constrained in that we require that the new terms (T4) introduced into the po-

tential (5.3.17) are sub-dominant so we do not affect the inflationary evolution. This
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6.2 Gauge field-induced enhancement of the tensor power spectrum

still leaves us with a lot more freedom however, and in this example we are able to

reduce g considerably and take g = 1
2000 . We showed, both through an analytic ap-

proximation and numerically, that this set-up can lead to a large enhancement of the

gravitational wave spectrum, and enhance the tensor spectrum of Kähler moduli in-

flation from r ∼ 10−6 → r ∼ 10−3, uplifting the tensor-to-scalar ratio to a value that

may be observable at next generation detectors [39–44]. Interestingly this spectrum is

almost perfectly right-handed – a feature that would in theory give it a distinguishable

observable. However, due to the relatively low value of the tensor-to-scalar ratio (even

after the enhancement), this chirality is likely unobservable [87]. We then considered

the scalar perturbations and demonstrated that: the metric scalar perturbations con-

tribute negligibly and can be safely set to zero; the inflationary scalar perturbations

are well behaved in that the tangential multi-field perturbation satisfies |∆s

√
2kx| ∼ 1

after horizon-crossing when the background system is still in slow roll; and the scalar

perturbations to the gauge field are much smaller than the inflationary perturbation

after horizon-crossing. We then derived an analytic approximation of the backreac-

tion of the tensor perturbations of the gauge field onto the equation of motion for Q,

which we showed is sub-dominant in example 2. In this way example 2 is a successful

phenomenological model in that we see a large enhancement to the gravitational wave

spectrum of Kähler moduli inflation, the scalar perturbations are under control, and

the model is consistent in that the backreaction from the tensor perturbations of the

gauge field is sub-dominant. However, this model requires without justification the hi-

erarchy c2 � c1 despite the fact the expected gauge kinetic function for Kähler moduli

inflation would give c2 ∼ c1 ∼ O(1) [85].

With this in mind, in example 3, we considered an extension to this set-up, whereby

the superpotential (given in Kähler inflation as W = W0 +
∑

aAae
−aaTa) receives

a correction of the form Ae−af4 (arising from the introduction of multiply-wrapped

magnetised D7-branes) where f4 = n (T4 + imb) where m is the magnetisation of the

branes and n is the wrapping number. Setting the b4 axion to its minimum, this

allowed us to generate a hierarchy between the axion-gauge coupling and the saxion-

gauge coupling. This set-up leads to f = τ4 and h = mb, and the (effective) gauge

coupling constant was g = 1√
nN/2

with N the degree of the gauge group and a = 2π
N .

The analysis and results for this model were almost identical to those of example 2:
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we see a large enhancement of the tensor spectrum, lifting r to observable values3 with

r ∼ 10−7 → r ∼ 10−3, the inflationary scalar perturbations are dominant over those of

the gauge field, and the backreaction of the tensor perturbations to the gauge field is

under control. Achieving this however requires very large magnetisation m = 10000,

and very small g = 1
2000 . Along with the required value for a, we get from this that

n = 25 and N ∼ 3 × 105. The large values of m and N (effectively the number

of D7-branes) are likely unrealistic in any true compactification scenario and both

the large magnetic flux and the large number of D7-branes would likely backreact on

the geometry. Achieving these large values is certainly one of the biggest challenges

presented by this model, and a full consideration of the compactification process would

need to be considered in a further work.

Another potential issue with the set-ups of both example 2 and example 3 is that

requiring that there be a large enhancement while maintaining control over the back-

reaction seems to guarantee that ε ∼ εB � εϕ. This is particularly problematic when

starting with a low value for εϕ as is the case here where εϕ ∼ 10−8. This is plotted

nicely in FIGs 5.45–5.46 where it is shown that even with a gauge coupling as small

as g = 1
100 , it is impossible to achieve a greater than O(1) enhancement to the tensor-

to-scalar ratio (with our value of εϕ ∼ 10−8) without incurring excessive backreaction.

Thus one requires a lower value of g to mitigate the backreaction and this leads to a

larger value of εB. We therefore take it as a necessity that ε ∼ εB and follow [101] by

assuming that if the scalar perturbations to the gauge field are vastly sub-dominant

relative to the inflationary perturbations, then we are free to take the power spectrum

Ps = H2

8π2εϕ
and therefore ns = 1 − 2ε − ηϕ. We see in FIGs 5.22–5.24 for example

2 and FIGs 5.40–5.42 for example 3 that this is indeed the case. However, if this

assumption does not hold, then Ps = H2

8π2ε
and ns = 1 − 2ε − η, which dramatically

changes the inflationary predictions of the model – in particular, since ε ∼ εB, this

model becomes effectively equivalent (in its predictions of the scalar spectral index)

to chromo-natural inflation and is therefore not observationally viable [81, 99]. We

therefore see that this assumption is absolutely pivotal to the success of this model,

and a thorough consideration of the viability of this assumption is required in a future

work. Another assumption of this work is that the isocurvature perturbations are under

3As before the produced tensor spectrum is perfectly chiral, however this chirality is likely unob-
servable due to the low tensor-to-scalar ratio.
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6.2 Gauge field-induced enhancement of the tensor power spectrum

control. Throughout this work we have neglected isocurvature perturbations, but given

that this example is a multi-field model of inflation, a complete analysis would include

a study of the isocurvature perturbations. This is left to a further work.

We note finally with regards to example 3 that a similar set-up was considered in

[4] where they also include a C2 axion coupled to a gauge field with Kähler moduli

inflation. However they do not consider the backreaction, and achieve extremely large

enhancements ( rrb ∼ O(107)) with (relatively large) g = 1√
2

and therefore this model is

extremely likely to incur excessive backreaction from the tensor perturbations to the

gauge field onto the equation of motion for Q (see e.g. FIGs 5.19 and 5.46, as well as

[101]) and is therefore inconsistent.

At the end of chapter 5 (example 4), we applied the same set-up of example 3

(whereby f = τ4, h = mb and g = 1√
nN/2

) to fibre inflation (using parameter set

“SV2” from [50]). This example of fibre inflation already predicts an observable tensor

spectrum, r ∼ 5× 10−3 so we were searching only for a relatively small enhancement.

This allowed us to relax somewhat the constraints on m and g. In this example we

had m = 500, g = 1
50 , which gives a wrapping number of n = 1 and a gauge degree

of N = 5000. With this set-up we were able to achieve an enhancement of about an

order of magnitude and uplift the tensor-to-scalar ratio to r ∼ 5 × 10−2, satisfying

the current bound of r . 0.07 [37] but leading to a large chirality (∼ 94% of it is

from the right-handed mode), and given the higher overall value of the tensor-to-scalar

ratio in this example, this chirality is potentially detectable [87], giving this model a

distinguishable feature. Unlike examples 2 and 3, this model does not require a very

low value for g to satisfy constraints on the backreaction (since we do not require a very

large enhancement) – this means, the hierarchy ε ∼ εϕ � εB is maintained and we do

not need to make the assumption of examples 2 and 3 that the scalar power spectrum

is approximated by Ps = H2

8π2εϕ
despite the fact that ε ∼ εB � εϕ in those examples.

The values taken for the magnetic flux m = 500 and the gauge degree N = 5000 in

this fibre inflation example are both roughly two orders of magnitude smaller than the

Kähler moduli inflation case, however it is likely these are both still too large for a

realistic compactification scenario. As was stated for example 3, a full consideration of

the compactification process and a study of the isocurvature perturbations would need

to be considered in a further work.
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6.3 Final thoughts

In this thesis we have considered two possible implications of including spectator gauge

fields in the inflationary action. Gauge fields, of course, naturally dilute during the

exponential expansion of space, however they can be supported through couplings to

the inflaton (as in the anisotropic inflation part of this thesis) or to rolling axions (as

in the enhancement part) that arise naturally in high energy theories such as string

theory. In this way the two scenarios considered in this thesis are linked. The main

difference between the two is that in the anisotropic inflation case, we have a massless

vector field that is supported through its coupling to the inflaton; whereas in the

enhancement scenario, we have an SU(N) gauge field supported by a rolling axion,

that is usually taken to be a spectator in its own right. We have demonstrated that

it is possible to sustain a consistent anisotropy after inflation and that the tensor

spectrum of a low energy inflationary model such as Kähler moduli inflation can be

enhanced to potentially observable levels while rendering the tensor spectrum chiral.

These two paradigms both require specific assumptions that may be impractical in a

realistic effective field theory derived from string theory to achieve the exact goals set

out in this thesis, but are interesting in their own rights as stand-alone models and

certainly warrant further investigation. An interesting follow-up to this work would be

the exploration of the possibility that these two models could be combined – starting

with an anisotropic metric, is it possible to have a scenario that both enhances the

gravity wave spectrum whilst also supporting an anisotropy?
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Appendix A

Calabi-Yau compactification and

the moduli space

In this appendix, we discuss how compactifications onto Calabi-Yau manifolds lead to

the introduction of scalar fields into the four-dimensional effective action. The majority

of this review is inspired by chapters in [83] with help from [123–130].

A.1 Maths

For completeness we will briefly review some mathematical concepts that will prove

useful in the section ahead. The expert reader will wish to skip to the next section,

section A.2.

A.1.1 Differential forms and boundaries

A differential form, Cp, is a tensor of rank [0, p] whose components Cm1..mp are com-

pletely antisymmetric. It is expanded in terms of its components as follows:

Cp =
1

p!
Cm1..mp(x)dxm1 ∧ ... ∧ dxmp . (A.1.1)

The exterior derivative maps p-forms to (p+ 1)-forms via

dCp =
1

p!
∂m0Cm1..,mp(x)dxm0 ∧ dxm1 ∧ ... ∧ dxmp . (A.1.2)
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and satisfies

d (dCp) = 0 ∀Cp =⇒ d2 = 0. (A.1.3)

Analogous to the exterior derivative is the “boundary operator”, ∂. For some manifold,

M, consider an n-dimensional sub-manifold, N. N is defined as a subset of M and has

the structure of an n-dimensional manifold. The boundary of N, denoted ∂N is (n−1)-

dimensional. The operator, ∂, analogously to the exterior derivative, satisfies

∂ (∂N) = 0 =⇒ ∂2 = 0 . (A.1.4)

In words: the boundary of a manifold can have no boundary.

A.1.2 Cohomology

A p-form, Ap, is closed if it satisfies dAp = 0. Furthermore, Ap is exact if there exists

some Bp−1 for which Ap = dBp−1. By the basic properties of the exterior derivative

(d2 = 0), it is trivial to see that any exact form is closed; the opposite is not always

true however. In a topologically-trivial space, Rd, any closed form is exact but this is

not true generally. In fact, for some manifold, M, the closed forms that are not exact

provide a characterisation of the degree to which M fails to be Rd.

A manifold, M, can be defined by glueing together a set of coordinate patches, Un.

A closed p-form Ap on M defines closed p-forms, Anp , on the coordinate patches Un.

Each patch, Un, is locally homeomorphic to Rd and therefore the closed p-forms on Un

are exact, and there exists some Bn
p on Un for which Anp = dBn

p−1. However, this does

not necessarily imply that Bn
p−1 will patch up to a globally well-defined Bp−1 for which

Ap = dBp−1 on M. Whether this is possible depends on the global structure of M and

therefore the existence on M of closed forms that are not exact is a measure of the

topological non-triviality of M. For this reason, the topological non-triviality of M is

determined by its cohomology groups. The pth cohomology group of M, Hp (M,R) is

defined as the quotient:

Hp (M,R) =
Zp
Bp

(A.1.5)

where Zp and Bp are the set of closed and exact p-forms on M, respectively. In other

words, the pth cohomology group contains the closed p-forms on M that are not exact.

Hp(M,R) have the structure of vector spaces with dimension (the number of non-exact
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closed p-forms on M) given by the Betti numbers of M, bp(M):

bp(M) = dim (Hp(M,R)) . (A.1.6)

A.1.3 Homology

A set of sub-manifolds of dimension p, Nk
p of M1, can be given the structure of a vector

space by introducing linear combinations of Nk
p called p-chains:

ap = ckN
k
p (A.1.7)

where ck are real coefficients. A p-chain, ap ∈M with no boundary

∂ap = 0 (A.1.8)

is called a p-cycle. A p-chain, ap, that is the boundary of some (p + 1)-chain, bp+1,

ap = ∂bp+1 is called trivial. Since the boundary of a sub-manifold has no boundary,

∂(∂ap) = 0, all p-chains are p-cycles. Completely analogously to the case of p-forms, in

Rd all p-cycles are trivial but this may not be true for some general manifold, M, and

the existence of p-cycles on M that are not trivial is a measure of the non-triviality of

M for analogous reasons to those described in section A.1.2. The homology groups of

M are the sets of non-trivial cycles on M. The pth homology group of M is defined as

Hp (M,R) =
Zp

Bp
(A.1.9)

where Zp and Bp are the sets of p-cycles and trivial p-cycles, respectively. There

exists a duality between the vector spaces of the cohomology groups, Hp, and the

homology groups, Hp; and their product defines a linear map to the reals: Hp×Hp →

R. This duality means that, equivalently to the case of the cohomology groups, the

dimensionalities of the homology groups, Hp(M,R), are given by the Betti numbers,

bp(M).

1Here p denotes the dimension of the sub-manifold and k is just a label.
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A.2 Calabi-Yau compactifications

In the context of cosmology, models derived from string theory are almost always done

so via Calabi-Yau compactifications, the motivation for which is discussed here.

String theories are 10-dimensional so if we wish to use string theory in cosmology,

we need to compactify our string theory space, S10, to 4D:

S10 → Σ4 ×M (A.2.1)

where Σ4 is our cosmological spacetime and M is the compactified space of the remain-

ing six dimensions. How can we perform this compactification? Progress can be made

by posing the question: what features would we like the compactified space, M, to

have? Principally we would like the compactification process to preserve some super-

symmetry (SuSy) on M. This is because SuSy provides a good starting point to build

particle physics models.

A.2.1 Preserving supersymmetry on M

At each point on Σ4×M, there exists a local set of supercharges that transforms under

SO(10). M is a curved manifold and therefore local supercharges at different points on

M can be related by parallel transport with respect to the SO(6) spin connection. A

local supercharge, S, at a point, P on M, parallel transported around some closed loop,

C, will return to P having been rotated by some element of SO(6), RC , which will be

in general non-trivial due to the curvature of M. For this reason S is not a globally

well-defined supercharge on M and therefore supersymmetry has been broken.

The condition that compactification onto M preserves some supersymmetry is there-

fore that there exist non-trivial 6-dimensional spinors ξ(xm) on M that are covariantly

conserved

∇M ξ(xm) = 0 (A.2.2)

where xm are our coordinates on M and ξ are Killing spinors. Whether there exist

solutions to this equation can be determined by the holonomy group2 of M. The

holonomy group of M is the set of rotations RC undergone by a spinor after parallel

transport around a closed loop, C, for every closed loop on M. The holonomy group

2Not to be confused with the homology groups defined in section A.1.3.
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depends on the metric and spin connection of M. In general a 6-dimensional manifold

will have holonomy group of SO(6) and therefore every spinor parallel transported

around a closed loop on M will be rotated, i.e. there are no Killing spinors on M

and therefore all supersymmetry has been broken by compactification. Therefore to

preserve some supersymmetry, M must possess some special holonomy (not SO(6)), in

particular, if M has holonomy group of SU(3) some supersymmetry is conserved3.

A.2.2 Calabi-Yau manifolds and their moduli

If our compactified space, M, has holonomy of SU(3) some supersymmetry is conserved

after compactification. Therefore if we know a manifold has SU(3) holonomy it is a

good candidate for compactification. Here a conjecture by Eugenio Calabi [131] (proved

by Shing-Tung Yau [132]) proves extremely useful. Calabi’s conjecture states that

an N -dimensional complex manifold that is Kähler and admits a nowhere-vanishing

holomorphic N -form will have an SU(N) holonomy metric. A manifold that satisfies

this is called a Calabi-Yau (CY) manifold. An N -dimensional complex manifold is a

2N -dimensional manifold endowed with a complex structure. Complex coordinates can

be decomposed into holomorphic and anti-holomorphic coordinates:

dzj = dxj + i dyj+N (A.2.3)

and

dz̄j̄ = dxj − i dyj+N (A.2.4)

where j = {1, . . . , N}, dzk and dz̄k are called holomorphic and anti-holomorphic coor-

dinates, respectively; xi (i = {1, . . . , N}) and yi (i = {N + 1, . . . , 2N}) are two sets of

real coordinates that together span the 2N real coordinates of M. From now on to avoid

confusion, we will use “early” Latin letters {a, ā, b, b̄, ..} (running from {1, . . . , N}) to

mark holomorphic and anti-holomorphic indices, and “middle” Latin letters {i, j, k..}
(running from {1, . . . , 2N}) to mark the 2N real coordinates. A complex manifold is

endowed with a complex structure that relates coordinates through

Iij dx
j = −dyi+N , Iij dy

j+N = dxi (A.2.5)

3The compactification leads to a reduction of the supersymmetry on the cosmological 4-dimensional
space, Σ4, as well.
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which implies

Iabdz
b = i dza, I āb̄dz̄

b̄ = −i dz̄ā (A.2.6)

where Iij is the complex structure tensor of M whose fundamental property is

IijI
j
kX

k = −Xi ∀X ∈M =⇒ IikI
k
j = −δij . (A.2.7)

With these rules in place, tensors can be decomposed according to their holomorphic

and anti-holomorphic indices, in particular, a p-form, Ap, can be decomposed on a

complex manifold as

Ap = Ap,0 +Ap−1,1 + · · ·+A1,p−1 +A0,p (A.2.8)

where Am,n is a form with m holomorphic and n anti-holomorphic indices with basis

dza1 ∧ . . .∧ dzam ∧ dz̄b̄1 ∧ . . .∧ dz̄b̄n . The complex structure tensor can be decomposed

in terms of the complex coordinates as

I = Iab
∂

∂za
⊗ dzb + Iab̄

∂

∂za
⊗ dz̄b̄ + I āb

∂

∂z̄ā
⊗ dzb + I āb̄

∂

∂z̄ā
⊗ dz̄b̄ (A.2.9)

where ∂/∂za and ∂/∂z̄ā are basis vectors dual to (A.2.3) and (A.2.4). It can be shown

that (see e.g. [126]) that the mixed components of I are zero, Ia
b̄

= I āb = 0. In fact the

components of I can be chosen to be

Iij =

Iab Ia
b̄

I āb I ā
b̄

 =

iδab 0

0 −iδā
b̄

 . (A.2.10)

A complex manifold, M, is hermitian if it admits a metric that satisfies

IijX
jIkl Y

lgik = XiY jgij ∀X,Y ∈M =⇒ Iki I
l
jgkl = gij . (A.2.11)

This tells us that gij must be a covariant (1, 1) type tensor, i.e. its only non-zero

components are mixed holomorphic and anti-holomorphic since by (A.2.10)

Iki I
l
jgkl = (iδca)

(
iδdb

)
gcd + (iδca)

(
−iδd̄b̄

)
gcd̄ +

(
−iδc̄ā

) (
iδdb

)
gc̄d +

(
−iδc̄ā

) (
−iδd̄b̄

)
gc̄d̄

= −gab + gab̄ + gāb − gāb̄
!

= gij = gab + gab̄ + gāb + gāb̄

=⇒ gab = gāb̄ = 0 (A.2.12)
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Therefore gij = gab̄ + gāb or in perhaps better notation

gij =

(
0 gab̄
gc̄d 0

)
. (A.2.13)

The fundamental form of a hermitian manifold, J , is defined by lowering an index of

the complex structure to make a two-form Jij = gikI
k
j . Using (A.2.10), we get

Jij = igab̄ − igāb (A.2.14)

which is antisymmetric since gab̄ = gb̄a. Expanded in terms of the basis, it becomes

clear that J is a (1, 1)-form:

J = igab̄ dz
a ⊗ dz̄b̄ − igāb dz̄ā ⊗ dzb = igab̄dz

a ∧ dz̄b̄ (A.2.15)

where in the last step we have again used the symmetry of the metric and the fact that

dza∧dz̄b̄ = dza⊗dz̄b̄−dz̄b̄⊗dza. A hermitian manifold is Kähler if J is closed, dJ = 0,

in which case J is called the Kähler form. Therefore a manifold for which J is closed

and for which there may exist a (N, 0)-form that is nowhere vanishing is a Calabi-

Yau manifold and thus admits an SU(N) holonomy metric and will preserve some

supersymmetry after compactification. In particular, in the case of compactification

onto cosmological spacetimes where our compactified space, M, is 6-dimensional, the

holonomy group is SU(3) and M is called a Calabi-Yau three-fold.

On a complex manifold, cohomology classes (see section A.1.2) are split by holomor-

phic and anti-holomorphic components. For example, the 3-form cohomology group of

M becomes

H3 (M,R) = H3,0 (M,R) + H2,1 (M,R) + H1,2 (M,R) + H0,3 (M,R) (A.2.16)

where Hm,n (M,R) is the cohomology group for forms with m holomorphic and n anti-

holomorphic indices. The Hodge numbers, hm,n = dim (Hm,n (M,R)), are the complex

generalisation of the Betti numbers defined in section A.1.2. The Hodge numbers are

used to define the Euler characteristic, the weighted sum of the Hodge numbers:

χ (M) =
3∑

m,n=0

(−1)m+n hm,n (M) = 2 [h1,1 − h1,2] . (A.2.17)
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Figure A.1: Hodge diamond for a Calabi-Yau three-fold with SU(3) holonomy.

Hodge numbers are represented in diamond diagrams. The Hodge diamond for M,

a Calabi-Yau three-fold with SU(3) holonomy, is shown in Figure A.1. Notice that

h3,0 = 1, showing that M has a (3, 0)-form as required by Calabi’s conjecture, the

second part of which is the existence a holomorphic N -form4, i.e. an (N, 0)-form. We

will refer to this holomorphic 3-form as Ω.

Let us consider some properties of the Kähler form, J , on a Calabi-Yau three-fold.

Consider the integral over M:∫
M

J3 =

∫
M

J ∧ J ∧ J = i3
∫
M

gab̄ gcd̄ gef̄ dz
a ∧ dz̄b̄ ∧ dzc ∧ dz̄d̄ ∧ dze ∧ dz̄f̄ . (A.2.18)

Expanding and using the antisymmetry of the wedge product this becomes∫
M

J3 = 3! (i)

∫
M

det (gab̄) dz
1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3 (A.2.19)

which, converting back to real coordinates through dza∧dz̄ā = −idxa∧dya+3+idya+3∧
dxa = −2i dxa ∧ dya+3 and then permuting through the wedge products, becomes∫

M

J3 = 6i(−i)3

∫
M

23
√

det (gij)dx
1 ∧ dx2 ∧ dx3 ∧ dy4 ∧ dy5 ∧ dy6 = 6VM (A.2.20)

where VM is the volume of M, the factor of 23 in the volume element is conventional,

and det (gij) = det (gab̄)
2 because of the block form of gij in (A.2.13). This is an

important result because it demonstrates that the Kähler form, J , cannot be exact and

yet we know by definition that is it closed, dJ = 0. If J were exact, there would exist

some A for which J = dA then∫
M

J ∧ J ∧ J =

∫
M

dA ∧ J ∧ J = −
∫
M

A ∧ d (J ∧ J) = 0 =⇒ VM = 0 (A.2.21)

4For the case of an N -dimensional complex manifold. In our example, M is a 3-dimensional complex
manifold.
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where we have assumed that A, J disappear on the boundary of M and explicitly used

that dJ = 0. Since the volume of our Calabi-Yau must be non-zero we know that J

cannot be exact. The Kähler form, J , is a closed, non-exact (1, 1)-form and is therefore

in the H1,1 cohomology group and can be expanded in a basis as such

J =

h1,1∑
α=1

tαwα (A.2.22)

where wα are (1, 1)-forms that form a basis {wα} of H1,1 (cohomology groups have

the structure of vector spaces) and tα are 2-cycle volumes that control the size of the

even-dimensional cycle volumes in M, through

V =
1

6

∫
M

J ∧ J ∧ J =
1

6
καβγt

αtβtγ

τα = ∂tαV =
1

2
καβγt

βtγ (A.2.23)

where καβγ are constants and τa are 4-cycle volumes that we will refer to as Kähler

moduli. The key point to notice about these moduli is that they have no 4D spacetime

index (µ, ν, ..) and therefore from the point of view of our compactified 4D cosmological

theory, they are scalars. In addition to this, these moduli can appear in the low-energy

effective action of the cosmological spacetime. Since the value of h1,1 can be very large

depending on the Calabi-Yau that is chosen, we can have a large number of these moduli

appearing in our 4D theory. Could one or more of these be suitable inflaton candidates?

In addition to the Kähler moduli, a Calabi-Yau also contains complex structure moduli.

The simplest way to define the complex structure moduli is by considering them as

deformations to the metric gij → gij +δgij
56. We first define a (2, 1)-form, C, with help

from the unique holomorphic 3-form, Ω:

C = Ωabc δg
c
d̄ dz

a ∧ dzb ∧ dz̄d̄ (A.2.24)

5The Kähler moduli can in fact be defined similarly through δgab̄ =
∑h1,1

α=1 bab̄ αtα where bα form a
basis of (1, 1)-forms.

6The relevance of the variation of the Kähler metric is that a CY manifold has a Ricci-flat metric:
Rij(g) = 0. The condition that a variation of this metric should leave it Ricci-flat: Rij(g+ δg) = 0 can
be cast in terms of the Kähler and complex structure moduli. For more information, see [130].
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which can be expanded in a basis of the H2,1 cohomology group:

Cabc̄ = Ωabc δg
c
d̄ =

h1,2∑
α=1

uαbabc̄ α (A.2.25)

where {uα} form a basis for H2,1 and uα are 3-cycle volumes called complex structure

moduli.
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Appendix B

Second order action for action

with isotropic gauge field

We are interested in perturbing to second order the action

(B.0.1)
S =

∫
d4x

{
M2

pl

2

√
−gR− 1

2

√
−ggµν∂µφ∂νφ−

√
g V − 1

2

√
ggµν∂µχ∂νχ

−
√
−g U − 1

4

√
−ggµρgνσF aµνF aρσ +

λ

8f
χεµνρσF aµνF

a
ρσ

}

with

gµν = a2


−1 0 0 0
0 1 + h+ h× 0
0 h× 1− h+ 0
0 0 0 1

 , (B.0.2)

gµν = a2


−1 0 0 0
0 1− h+ + h2

× + h2
+ −h× 0

0 −h× 1− h+ + h2
× + h2

+ 0
0 0 0 1

 , (B.0.3)

A1
µ = a (0, Q+ δQ+ T+, T×, 0) ,

A2
µ = a (0, T×, Q+ δQ− T+, 0) ,

A3
µ = a

(
∂zY, 0, 0, Q+ δQ+ ∂2

zM
)

(B.0.4)
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B. SECOND ORDER ACTION FOR ACTION WITH ISOTROPIC
GAUGE FIELD

and after the redefinition of the tensor modes to left- and right-moving ones

ψL,R :=
aMpl

2
(h+ ± ih×) , tL,R := a (T+ ± iT×) . (B.0.5)

With this form for metric, square root of the determinant of the metric to second order

is
√
−g = a4 − 2a2ψLψR (B.0.6)

and the Ricci scalar is

(B.0.7)
R =

8a,τ,τψLψR
a5

+
2a′2ψLψR

a6
+

2a,τψL,τψR
a5

+
2a,τψLψR,τ

a5
+

6ψL,zψR,z
a4

+
4ψL,z,zψR

a4
+

4ψLψR,z,z
a4

− 6ψL,τψR,τ
a4

− 4ψL,τ,τψR
a4

− 4ψLψR,τ,τ
a4

+
6a,τ,τ
a3

.

With this, the second order action (B.0.1) can be found

S2 = −9 g2Q2δQ2a4 + g2Q2Y 2
,za

4 − g 2Q2M2
,z,za

4 − 1

2
δχ2U,τ,τ (χ)a4 − 1

2
δφ2V,τ,τ (φ)a4

− 6 g 2Q2δQM,z,za
4 +

2 gλQχY,zδQ,za
3

f
+

gλQ2δχY,z,za
3

f
+

2 gλQδQχY,z,za
3

f

− 6 gλQδQδχQ,τa
3

f
− 3 gλδQ2χQ,τa

3

f
− 2 gλQδχQ,τM,z,za

3

f

− 2 gλδQχQ,τM,z,za
3

f
−

3 gλQ2δχδQ,τa
3

f
−

6 gλQδQχδQ,τa
3

f

−
2 gλQχM,z,zδQ,τa

3

f
− gλQ2δχM,τ,z,za

3

f
− 2 gλQδQχM,τ,z,za

3

f
− δQ2

,za
2

− 1

2
δφ2

,za
2 − 1

2
δχ2

,za
2 +

1

2
Y 2
,z,za

2 +
3

2
δQ2

,τa
2 +

1

2
δφ2

,τa
2 +

1

2
δχ2

,τa
2 +

1

2
M2
,τ,z,za

2

+ 2 g 2Q3tRψLa
2 + 2 g 2Q3tLψRa

2 − 3 g 2Q4ψLψRa
2 + 2U(χ)ψLψRa

2

+2V (φ)ψLψRa
2−Y,z,zδQ,τa

2−Y,z,zM,τ,z,za
2 +δQ,τM,τ,z,za

2− 9 gλQ2δQδχa,τa
2

f

− 9 gλQδQ2χa,τa
2

f
− 3 gλQ2δχa,τM,z,za

2

f
− 6 gλQδQχa,τM,z,za

2

f

+
gλχtLtRQ,τa

f
− i gQtRtL,za+ 2 g iQ2ψRtL,za+ g iQtLtR,za

− 2i gQ2ψLtR,za− δQa,τY,z,za− a,τM,z,zY,z,za+ 3δQa,τδQ,τa+ a,τM,z,zδQ,τa
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(B.0.8)

+
gλQχtRtL,τa

f
+

gλQχtLtR,τa

f
+δQa,τM,τ,z,za+a,τM,z,zM,τ,z,za

+
3

2
δQ2a′2 +

Q2ψLψRa
′2

a2
+
ψLψRa

′2

a2
+ ψLψRQ

′2 − ψLψRφ′2

− ψLψRχ′2 +
1

2
a′2M2

,z,z +
gλQχtLtRa,τ

f
− tL,ztR,z + 3ψL,zψR,z

+ δQa′2M,z,z + 2ψRψL,z,z + 2ψLψR,z,z − 2ψRQ,τ tL,τ − 2ψLQ,τ tR,τ

+
iλχtL,ztR,τ

f
+ tL,τ tR,τ − 3ψL,τψR,τ − 2ψRψL,τ,τ − 2ψLψR,τ,τ

− iλχtR,ztL,τ
f

+
2QψLψRa,τQ,τ

a
− 2ψLψRa,τ,τ

a
− 2QψRa,τ tL,τ

a

− 2QψLa,τ tR,τ
a

+
ψRa,τψL,τ

a
+
ψLa,τψR,τ

a

The perturbation, Y , is non-dynamical (its equation of motion contains no time-

derivatives of Y ) and after moving into Fourier space, it can solved for explicitly in

terms of the other fields. After substituting this into the other equations of motion,

the scalar perturbation equations from this action become

(B.0.9)H2
(
x2∆φ,x,x + ∆φ

(
x2 + ε− 2

))
+ ∆φV,φ,φ = 0 ,

213
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GAUGE FIELD

(B.0.10)

x5λ∆2Q,xH
5√

1
2x

2H2 + g2Q2
− x4λQ∆2H

5√
1
2x

2H2 + g2Q2
+fx4∆χH

4−2fx2∆χH
4

+ fx2ε∆χH
4 + fx4∆χ,x,xH

4 +
2gx2λQ2

√
x2H2 + 2g2Q2∆1H

3√
1
2x

2H2 + g2Q2

+
3g2x3λQ2∆2Q,xH

3√
1
2x

2H2 + g2Q2
+

g2x3λQ3∆2,xH
3√

1
2x

2H2 + g2Q2

− 3g2x2λQ3∆2H
3√

1
2x

2H2 + g2Q2
− 2gx3λQ

√
x2H2 + 2g2Q2∆1Q,xH

3√
1
2x

2H2 + g2Q2

−
gx3λQ2

√
x2H2 + 2g2Q2∆1,xH

3√
1
2x

2H2 + g2Q2
+

g2x2λ2Q4∆χH
2

f

− 4fg2Q2∆χH
2 + 2fg2x2Q2∆χH

2 + 2fg2εQ2∆χH
2

+ fx2∆χU,χ,χH
2 + 2fg2x2Q2∆χ,x,xH

2

+
4g3λQ4

√
x2H2 + 2g2Q2∆1H√

1
2x

2H2 + g2Q2
+

4g4xλQ4∆2Q,xH√
1
2x

2H2 + g2Q2

+
2g4xλQ5∆2,xH√

1
2x

2H2 + g2Q2
− 4g4λQ5∆2H√

1
2x

2H2 + g2Q2

− 4g3xλQ3
√
x2H2 + 2g2Q2∆1Q,xH√
1
2x

2H2 + g2Q2

−
2g3xλQ4

√
x2H2 + 2g2Q2∆1,xH√

1
2x

2H2 + g2Q2
+ 2fg2Q2∆χU,χ,χ = 0 ,

214



−
√

2x7λ∆2χ,xH
7

f
√
x2H2 + 2g2Q2

+ x6
√

2∆1H
6 +

2gx4Q
√

2∆2H
6√

x2H2 + 2g2Q2
+

gx6
√

2∆2Q,x,xH
6√

x2H2 + 2g2Q2

+ x6
√

2∆1,x,xH
6 − 3

√
2gx6Q∆2H

6√
x2H2 + 2g2Q2

− 2
√

2gx5∆2Q,xH
6√

x2H2 + 2g2Q2

−
√

2gx6Q∆2,x,xH
6√

x2H2 + 2g2Q2
+

4gx4λQ2∆χH
5

f
+
x5
√

2x2H2 + 4g2Q2∆1H,xH
5√

x2H2 + 2g2Q2

+
2gx5λQ2∆χ,xH

5

f
+

2gx5λQ
√

2∆1χ,xH
5

f
− 2gx5λQ∆χQ,xH

5

f

− 2
√

2gx5Q∆2H,xH
5√

x2H2 + 2g2Q2
− 6
√

2g2x5λQ2∆2χ,xH
5

f
√
x2H2 + 2g2Q2

+ 10g2x4Q2
√

2∆1H
4

+
8g3x3Q2

√
2∆2Q,xH

4√
x2H2 + 2g2Q2

+
2g3x4Q2

√
2∆2Q,x,xH

4√
x2H2 + 2g2Q2

+ 4g2x4Q2
√

2∆1,x,xH
4

−
6
√

2g3x4Q∆2Q
2
,xH

4√
x2H2 + 2g2Q2

− 18
√

2g3x4Q3∆2H
4√

x2H2 + 2g2Q2
− 2
√

2g3x2Q3∆2H
4√

x2H2 + 2g2Q2

(B.0.11)

−
4
√

2g3x4Q3∆2,x,xH
4√

x2H2 + 2g2Q2
+

10g3x2λQ4∆χH
3

f

+
4g2x3Q2

√
2x2H2 + 4g2Q2∆1H,xH

3√
x2H2 + 2g2Q2

+
10g3x3λQ4∆χ,xH

3

f

+
8g3x3λQ3

√
2∆1χ,xH

3

f
− 6
√

2g3x3Q3∆2H,xH
3√

x2H2 + 2g2Q2

− 12
√

2g4x3λQ4∆2χ,xH
3

f
√
x2H2 + 2g2Q2

+ 28g4x2Q4
√

2∆1H
2

+ 4g4x2Q4
√

2∆1,x,xH
2 − 36

√
2g5x2Q5∆2H

2√
x2H2 + 2g2Q2

−
4
√

2g5x2Q5∆2,x,xH
2√

x2H2 + 2g2Q2
+

12g5λQ6∆χH

f

+
4g4xQ4

√
2x2H2 + 4g2Q2∆1H,xH√
x2H2 + 2g2Q2

+
12g5xλQ6∆χ,xH

f

+
8g5xλQ5

√
2∆1χ,xH

f
− 4
√

2g5xQ5∆2H,xH√
x2H2 + 2g2Q2

− 8
√

2g6xλQ6∆2χ,xH

f
√
x2H2 + 2g2Q2

+ 24g6Q6
√

2∆1 −
24
√

2g7Q7∆2√
x2H2 + 2g2Q2

= 0 ,
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(B.0.12)

gx7Q
√

2∆2H
7√

x2H2 + 2g2Q2
+

2gx6
√

2∆2Q,xH
7√

x2H2 + 2g2Q2
+

gx7Q
√

2∆2,x,xH
7√

x2H2 + 2g2Q2

− 2
√

2gx5Q∆2H
7√

x2H2 + 2g2Q2
−
√

2gx7∆2Q,x,xH
7√

x2H2 + 2g2Q2
+

2gx6Q
√

2∆2H,xH
6√

x2H2 + 2g2Q2

+
2gx6λQ∆χQ,xH

6

f
− 2gx5λQ2∆χH

6

f
−
√

2gx6λQ∆1χ,xH
6

f

+
6g3x5Q

√
2∆2Q

2
,xH

5√
x2H2 + 2g2Q2

− 2
√

2g2x5Q2∆1H
5

+
6g3x5Q3

√
2∆2H

5√
x2H2 + 2g2Q2

+
2g3x3Q3

√
2∆2H

5√
x2H2 + 2g2Q2

+
4g3x5Q3

√
2∆2,x,xH

5√
x2H2 + 2g2Q2

− 8
√

2g3x4Q2∆2Q,xH
5√

x2H2 + 2g2Q2

− 2
√

2g3x5Q2∆2Q,x,xH
5√

x2H2 + 2g2Q2
+

6g3x4Q3
√

2∆2H,xH
4√

x2H2 + 2g2Q2

− 2g3x3λQ4∆χH
4

f
−

2g3x4λQ4∆χ,xH
4

f

− 4
√

2g3x4λQ3∆1χ,xH
4

f
− 8
√

2g4x3Q4∆1H
3

+
12g5x3Q5

√
2∆2H

3√
x2H2 + 2g2Q2

+
4g5x3Q5

√
2∆2,x,xH

3√
x2H2 + 2g2Q2

+
4g5x2Q5

√
2∆2H,xH

2√
x2H2 + 2g2Q2

− 4g5xλQ6∆χH
2

f

−
4g5x2λQ6∆χ,xH

2

f
− 4
√

2g5x2λQ5∆1χ,xH
2

f

− 8
√

2g6xQ6∆1H +
8g7xQ7

√
2∆2H√

x2H2 + 2g2Q2
= 0

where the scalar perturbations are defined through

δφ =
∆φ

a
, δχ =

∆χ

a
, δQ =

∆1√
2a
, M =

agQ∆1 +
√
k2 + 2a2g2Q2∆2√

2ga2k2Q
. (B.0.13)
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Appendix C

Full perturbation equations for

chapter 5

In this appendix we write the full perturbation equations for chapter 5. We exclude

the scalar equations including the metric perturbations as these are infeasibly long.

C.1 Example 2

Considering first example 2 in chapter 5, and looking at the tensor equations of motion

for the right-helicity modes. Recalling that

ψL,R :=
aMpl

2
(h+ ± ih×) , tL,R := a (T+ ± iT×) , (C.1.1)

the full equations of motion for tR and ψR are

2g2Q3ψR = −4H2QξfψR + 4H2xξfQ,xψR − 2H2xξf tR,x + 2gHQξhtR + 2gHQ2xψR

− 2gHQxtR − 2H2xξhtR + 2H2xQ,xψR − 2H2x2Q,x,xψR − 2H2QψR

+ 2H2QεψR − 2H2x2Q,xψR,x + 2H2QxψR,x +H2x2tR +H2x2tR,x,x

(C.1.2)
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C. FULL PERTURBATION EQUATIONS FOR CHAPTER 5

(C.1.3)

−
3αH2c2

1λ4ξ
2
hψR

√
τ2τ3

4

Vc2
2

√
τ2

− 3g2Q4c1τ4ψR + 2g2Q3c1τ4tR

− 2gHQ2xc1τ4tR +H2Q2c1τ4ψR +H2x2c1τ4Q
2
,xψR

− 2H2Qxc1τ4Q,xψR − 2H2x2c1τ4Q,xtR,x + 2H2Qxc1τ4tR,x

−
3αH2x2λ2τ

2
2,xψR

4V
√
τ2

−
3αH2λ4ξ

2
fψR

√
τ2τ3

4

V
√
τ2

−H2x2ψR

− 4H2ψR + 3H2εψR −H2x2ψR,x,x + 2V ψR = 0

where , x means derivatives with respect to x = k
aH .

The scalar perturbations for example 2 are split as

δτ2 =
∆τ2

a
, δτ4 =

∆τ4

a
, δb4 =

∆b4

a

δQ =
∆1√
2a

, M =
agQ∆1 +

√
k2 + 2a2g2Q2∆2√

2ga2k2Q
(C.1.4)

and their equations of motion (with the metric perturbations set to zero) are as follows

32g5
√

2
√
τ4

√
(2g2Q2 +H2x2) τ4c1c2∆2Q

6

2g2Q2 +H2x2

−
32g4

√
4g2Q2 + 2H2x2c1c2∆1

√
τ4

√
(2g2Q2 +H2x2) τ4Q

5

2g2Q2 +H2x2

+
32g3H2x2

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4c1c2∆2Q

4

2g2Q2 +H2x2

+
16g3H2x

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4c1c2∆2,xQ

4

2g2Q2 +H2x2
+ 8gH3x2c2

2∆b4Q
3

−
16
√

2g3H2x2c1c2Q,x∆2,x
√
τ4

√
(2g2Q2 +H2x2) τ4Q

3

2g2Q2 +H2x2

−
16
√

2g2H2x2c1c2∆1
√
τ4

√
(2g2Q2 +H2x2) τ4Q

3√
2g2Q2 +H2x2

−
16
√

2g2H2xc1c2∆1,x
√
τ4

√
(2g2Q2 +H2x2) τ4Q

3√
2g2Q2 +H2x2

+
18g2H2α

√
(2g2Q2 +H2x2) τ4c

2
1∆τ4λ4ξ

2
hQ

2√
2g2Q2 +H2x2Vc2

218



C.1 Example 2

+
16g2H2x2

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4c1c2Q,x∆1,xQ

2√
2g2Q2 +H2x2

+
8gH4x4

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4c1c2∆2Q

2

2g2Q2 +H2x2

+
8gH4x2

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4c1c2∆2Q

2

2g2Q2 +H2x2

+
8gH4x3

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4c1c2∆2,xQ

2

2g2Q2 +H2x2
− 8gH3x3c2

2Q,x∆b4Q
2

− 8H4x2c1c2∆τ4Q
2 +

24g2H2α
√

(2g2Q2 +H2x2) τ4c2∆τ4λ4Q
2√

2g2Q2 +H2x2V

+
12g2H2α

√
(2g2Q2 +H2x2) τ4c2∆τ4λ4ξfQ

2√
2g2Q2 +H2x2V

+
12g2H2α

√
(2g2Q2 +H2x2) τ4c1∆b4λ4ξhQ

2√
2g2Q2 +H2x2V

+
12g2H2xα

√
(2g2Q2 +H2x2) τ4c1∆b4,xλ4ξhQ

2√
2g2Q2 +H2x2V

+
6g2H2x2α

√
(2g2Q2 +H2x2) τ4c2∆τ4λ4τ4,x,xQ

2√
2g2Q2 +H2x2Vτ4
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−
18g2H2αc2∆τ4λ4ξ

2
f

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2V

−
12g2H2x2αc2∆τ4λ4

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2V

−
12g2H2αεc2∆τ4λ4

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2V

−
12g2H2x2αc2∆τ4,x,xλ4

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2V

−
12g2H2xαc2∆τ4,xλ4ξf

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2V

−
16g2c2V,b4,τ4∆b4

√
τ4

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2

−
16g2c2V,τ2,τ4∆τ2

√
τ4

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2

−
16g2c2V,τ4,τ4∆τ4

√
τ4

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2

+ 16H4x3c1c2Q,x∆τ4Q− 8
√

2H4x3c1c2∆1,xτ4Q

−
16
√

2gH4x3c1c2Q,x∆2
√
τ4

√
(2g2Q2 +H2x2) τ4Q

2g2Q2 +H2x2

−
8
√

2gH4x4c1c2Q,x∆2,x
√
τ4

√
(2g2Q2 +H2x2) τ4Q

2g2Q2 +H2x2

+
9H4x2α

√
(2g2Q2 +H2x2) τ4c

2
1∆τ4λ4ξ

2
h√

2g2Q2 +H2x2Vc2

+
8gH4x4

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4c1c2Q

2
,x∆2

2g2Q2 +H2x2

− 8H4x4c1c2Q
2
,x∆τ4 +

12H4x2α
√

(2g2Q2 +H2x2) τ4c2∆τ4λ4√
2g2Q2 +H2x2V

+
6H4x2α

√
(2g2Q2 +H2x2) τ4c2∆τ4λ4ξf√

2g2Q2 +H2x2V

+
6H4x2α

√
(2g2Q2 +H2x2) τ4c1∆b4λ4ξh√

2g2Q2 +H2x2V

+
6H4x3α

√
(2g2Q2 +H2x2) τ4c1∆b4,xλ4ξh√

2g2Q2 +H2x2V

+ 8H4x4
√

2c1c2Q,x∆1,xτ4
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(C.1.5)

+
3H4x4α

√
(2g2Q2 +H2x2) τ4c2∆τ4λ4τ4,x,x√

2g2Q2 +H2x2Vτ4

−
9H4x2αc2∆τ4λ4ξ

2
f

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2V

−
6H4x4αc2∆τ4λ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2V

−
6H4x2αεc2∆τ4λ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2V

−
6H4x4αc2∆τ4,x,xλ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2V

−
6H4x3αc2∆τ4,xλ4ξf

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2V

−
8H2x2c2V,b4,τ4∆b4

√
τ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
8H2x2c2V,τ2,τ4∆τ2

√
τ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
8H2x2c2V,τ4,τ4∆τ4

√
τ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2
= 0 ,
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8x5
√

2
√
τ4

√
(2g2Q2 +H2x2) τ4c2Q,x∆2H

5

2g2Q2 +H2x2

−
8
√

2Qx4c2∆2
√
τ4

√
(2g2Q2 +H2x2) τ4H

5

2g2Q2 +H2x2

+
6x4α

√
(2g2Q2 +H2x2) τ4∆b4λ4H

4√
2g2Q2 +H2x2V

+
6x2αε

√
(2g2Q2 +H2x2) τ4∆b4λ4H

4√
2g2Q2 +H2x2V

+
6x4α

√
(2g2Q2 +H2x2) τ4∆b4,x,xλ4H

4√
2g2Q2 +H2x2V

+
6x2α

√
(2g2Q2 +H2x2) τ4∆b4λ4ξfH

4√
2g2Q2 +H2x2V

+
6x3α

√
(2g2Q2 +H2x2) τ4∆b4,xλ4ξfH

4√
2g2Q2 +H2x2V

+
6x3α

√
(2g2Q2 +H2x2) τ4c1∆τ4,xλ4ξhH

4√
2g2Q2 +H2x2Vc2

+
18x2α

√
(2g2Q2 +H2x2) τ4c1∆τ4λ4ξfξhH

4√
2g2Q2 +H2x2Vc2

−
12x2α∆b4λ4

√
(2g2Q2 +H2x2) τ4H

4√
2g2Q2 +H2x2V

−
6x2αc1∆τ4λ4ξh

√
(2g2Q2 +H2x2) τ4H

4√
2g2Q2 +H2x2Vc2

−
3x4αb4,x,x∆τ4λ4

√
(2g2Q2 +H2x2) τ4H

4√
2g2Q2 +H2x2Vτ4

+
16gQ2x2

√
4g2Q2 + 2H2x2√τ4

√
(2g2Q2 +H2x2) τ4c2∆1H

3

2g2Q2 +H2x2
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+
24g2Q2x3

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4c2Q,x∆2H

3

2g2Q2 +H2x2

+
8g2Q3x3

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4c2∆2,xH

3

2g2Q2 +H2x2

− 8gQ3x2c2∆τ4H
3 + 8gQ2x3c2Q,x∆τ4H

3

−
16gQx3

√
4g2Q2 + 2H2x2c2Q,x∆1

√
τ4

√
(2g2Q2 +H2x2) τ4H

3

2g2Q2 +H2x2

−
8gQ2x3

√
4g2Q2 + 2H2x2c2∆1,x

√
τ4

√
(2g2Q2 +H2x2) τ4H

3

2g2Q2 +H2x2

−
24
√

2g2Q3x2c2∆2
√
τ4

√
(2g2Q2 +H2x2) τ4H

3

2g2Q2 +H2x2

+
8g2Q4x2c2

2∆b4H
2

c1
+

8x2√τ4

√
(2g2Q2 +H2x2) τ4V,b4,b4∆b4H

2√
2g2Q2 +H2x2

+
8x2√τ4

√
(2g2Q2 +H2x2) τ4V,τ2,b4∆τ2H

2√
2g2Q2 +H2x2

+
8x2√τ4

√
(2g2Q2 +H2x2) τ4V,b4,τ4∆τ4H

2√
2g2Q2 +H2x2

+
12g2Q2x2α

√
(2g2Q2 +H2x2) τ4∆b4λ4H

2√
2g2Q2 +H2x2V

+
12g2Q2αε

√
(2g2Q2 +H2x2) τ4∆b4λ4H

2√
2g2Q2 +H2x2V

+
12g2Q2x2α

√
(2g2Q2 +H2x2) τ4∆b4,x,xλ4H

2√
2g2Q2 +H2x2V

+
12g2Q2α

√
(2g2Q2 +H2x2) τ4∆b4λ4ξfH

2√
2g2Q2 +H2x2V

+
12g2Q2xα

√
(2g2Q2 +H2x2) τ4∆b4,xλ4ξfH

2√
2g2Q2 +H2x2V

+
12g2Q2xα

√
(2g2Q2 +H2x2) τ4c1∆τ4,xλ4ξhH

2√
2g2Q2 +H2x2Vc2
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(C.1.6)

+
36g2Q2α

√
(2g2Q2 +H2x2) τ4c1∆τ4λ4ξfξhH

2√
2g2Q2 +H2x2Vc2

−
24g2Q2α∆b4λ4

√
(2g2Q2 +H2x2) τ4H

2√
2g2Q2 +H2x2V

−
12g2Q2αc1∆τ4λ4ξh

√
(2g2Q2 +H2x2) τ4H

2√
2g2Q2 +H2x2Vc2

−
6g2Q2x2αb4,x,x∆τ4λ4

√
(2g2Q2 +H2x2) τ4H

2√
2g2Q2 +H2x2Vτ4

+
32g3Q4

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4c2∆1H√

2g2Q2 +H2x2

+
32g4Q4x

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4c2Q,x∆2H

2g2Q2 +H2x2

+
16g4Q5x

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4c2∆2,xH

2g2Q2 +H2x2

−
32
√

2g4Q5c2∆2
√
τ4

√
(2g2Q2 +H2x2) τ4H

2g2Q2 +H2x2

−
32
√

2g3Q3xc2Q,x∆1
√
τ4

√
(2g2Q2 +H2x2) τ4H√

2g2Q2 +H2x2

−
16
√

2g3Q4xc2∆1,x
√
τ4

√
(2g2Q2 +H2x2) τ4H√

2g2Q2 +H2x2

+
16g2Q2√τ4

√
(2g2Q2 +H2x2) τ4V,b4,b4∆b4√
2g2Q2 +H2x2

+
16g2Q2√τ4

√
(2g2Q2 +H2x2) τ4V,τ2,b4∆τ2√
2g2Q2 +H2x2

+
16g2Q2√τ4

√
(2g2Q2 +H2x2) τ4V,b4,τ4∆τ4√
2g2Q2 +H2x2

= 0 ,

(C.1.7)

9αH2x2λ2τ
2
2,x∆τ2

V
√
τ2

+
12αH2xλ2

√
τ2τ2,x∆τ2

V
−

12αH2x2λ2
√
τ2τ2,x∆τ2,x

V

−
12αH2x2λ2

√
τ2τ2,x,x∆τ2

V
− 48αH2λ2τ

3/2
2 ∆τ2

V
+

24αH2ελ2τ
3/2
2 ∆τ2

V

+
24αH2x2λ2τ

3/2
2 ∆τ2

V
+

24αH2x2λ2τ
3/2
2 ∆τ2,x,x

V

+ 32τ2
2 ∆b4V,τ2,b4 + 32τ2

2 ∆τ2V,τ2,τ2 + 32τ2
2V,τ2,τ4∆τ4 = 0 ,
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∆1,x,x = −
√

2gQ2c2∆b4

Hx2c1τ4
−
√

2gQ2c2∆b4,x

Hxc1τ4
−∆1 −

4g2Q2∆1

H2x2
+

2gQ∆1ξh
Hx2

+
2∆1,xξf

x

− 4g2Q2∆2ξh

Hx2
√

2g2Q2 +H2x2
− 2H∆2ξh√

2g2Q2 +H2x2
+

2gQ∆2√
2g2Q2 +H2x2

+
4g3Q3∆2

H2x2
√

2g2Q2 +H2x2
− 2
√

2g2Q3∆τ4

H2x2τ4
+

√
2Q,x∆τ4

xτ4
−
√

2Q∆τ4

x2τ4

+

√
2Qε∆τ4

x2τ4
−
√

2Q,x,x∆τ4

τ4
−
√

2Q,x∆τ4,x

τ4
+

√
2Q∆τ4,x

xτ4
,

(C.1.8)

∆2,x,x =
8g5
√

2g2Q2 +H2x2c1∆τ4Q
7

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

− 8
√

2g6c1∆2τ4Q
7

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
4g4H

√
2g2Q2 +H2x2c2∆b4Q

6

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
4g4Hx

√
2g2Q2 +H2x2c2∆b4,xQ

6
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√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√
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+
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2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2
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√
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√
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− 12
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√
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2g2Q2 +H2x2c1∆τ4Q

3

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2
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− 2gH4x3
√

2g2Q2 +H2x2c1∆τ4,xQ
3

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

− 6
√

2g2H4x4c1∆2τ4Q
3

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

− 2
√

2g2H4x2c1∆2τ4Q
3

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

− 2
√

2g2H4x2εc1∆2τ4Q
3

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
4g2H4x2

√
2c1∆2ξfτ4Q

3

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
8g2H4x3

√
2c1∆2,xξfτ4Q

3

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

− 8
√

2g2H3x2
√

2g2Q2 +H2x2c1∆1ξhτ4Q
3

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
2H5x4

√
2g2Q2 +H2x2c2∆b4Q

2

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

− 10gH4x3
√

2g2Q2 +H2x2c1Q,x∆τ4Q
2

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
2gH4x4

√
2g2Q2 +H2x2c1Q,x,x∆τ4Q

2

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
2gH4x4

√
2g2Q2 +H2x2c1Q,x∆τ4,xQ

2

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
2gH4x4

√
4g2Q2 + 2H2x2c1∆1τ4Q

2

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
8g2H4x3

√
2c1Q,x∆2τ4Q

2

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2
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(C.1.9)

+
2g2H4x4

√
2c1Q,x,x∆2τ4Q

2

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

−
4
√

2g2H4x3c1Q,x∆2ξfτ4Q
2

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

− 2H5x5
√

2g2Q2 +H2x2c2Q,x∆b4Q

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
4gH4x4

√
2g2Q2 +H2x2c1Q

2
,x∆τ4Q

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

−
6
√

2g2H4x4c1Q
2
,x∆2τ4Q

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

−
√

2H6x6c1∆2τ4Q

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

−
√

2H6x4εc1∆2τ4Q

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
2H6x4

√
2c1∆2τ4Q

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
2H6x4

√
2c1∆2ξfτ4Q

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
2H6x5

√
2c1∆2,xξfτ4Q

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

− 2
√

2H5x4
√

2g2Q2 +H2x2c1∆1ξhτ4Q

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

− 2
√

2H6x5c1Q,x∆2τ4

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

+
H6x6

√
2c1Q,x,x∆2τ4

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2

−
2
√

2H6x5c1Q,x∆2ξfτ4

H6Q
√

2c1τ4x6 + 4g2H4Q3
√

2c1τ4x4 + 4g4H2Q5
√

2c1τ4x2
.

C.2 Example 3

The e.o.m for tR and ψR are now given by, respectively

(C.2.1)
−4H2QξfψR + 4H2xξfQ,xψR − 2H2xξf tR,x − 2g2Q3ψR + 2gHQξhtR

+ 2gHQ2xψR − 2gHQxtR − 2H2xξhtR + 2H2xQ,xψR − 2H2x2Q,x,xψR

− 2H2QψR + 2H2QεψR − 2H2x2Q,xψR,x + 2H2QxψR,x +H2x2tR

+H2x2tR,x,x = 0
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and

(C.2.2)

−
3αH2x2λ2τ

2
2,xψR

4V
√
τ2

−
3αH2λ4τ

3/2
4 ξ2

fψR

V
− 3g2Q4τ4ψR + 2g2Q3τ4tR

−
8
√

2H2τ
5/2
4 gsξ

2
hψR√

ζm2V
− 2gHQ2xτ4tR +H2Q2τ4ψR +H2x2τ4Q

2
,xψR

− 2H2Qxτ4Q,xψR − 2H2x2τ4Q,xtR,x + 2H2Qxτ4tR,x

−H2x2ψR − 4H2ψR + 3H2εψR −H2x2ψR,x,x + 2V ψR = 0 .

The scalar metric perturbations are defined through

δτ2 =
∆τ2

a
, δτ4 =

∆τ4

a
, δb =

∆b

a

δQ =
∆1√
2a

, M =
agQ∆1 +

√
k2 + 2a2g2Q2∆2√

2ga2k2Q
. (C.2.3)

Their equations of motion are given by

32g5m
√

2
√
τ4

√
(2g2Q2 +H2x2) τ4∆2Q

6

2g2Q2 +H2x2

−
32g4m

√
4g2Q2 + 2H2x2∆1

√
τ4

√
(2g2Q2 +H2x2) τ4Q

5

2g2Q2 +H2x2

+
32g3H2mx2

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4∆2Q

4

2g2Q2 +H2x2

+
16g3H2mx

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4∆2,xQ

4

2g2Q2 +H2x2
+ 8gH3m2x2∆bQ

3

−
16
√

2g3H2mx2Q,x∆2,x
√
τ4

√
(2g2Q2 +H2x2) τ4Q

3

2g2Q2 +H2x2

−
16
√

2g2H2mx2∆1
√
τ4

√
(2g2Q2 +H2x2) τ4Q

3√
2g2Q2 +H2x2

−
16
√

2g2H2mx∆1,x
√
τ4

√
(2g2Q2 +H2x2) τ4Q

3√
2g2Q2 +H2x2

+
8gH4mx4

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4∆2Q

2

2g2Q2 +H2x2

+
8gH4mx2

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4∆2Q

2

2g2Q2 +H2x2

+
8gH4mx3

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4∆2,xQ

2

2g2Q2 +H2x2
− 8gH3m2x3Q,x∆bQ

2

− 8H4mx2∆τ4Q
2 +

24g2H2mα
√

(2g2Q2 +H2x2) τ4∆τ4λ4Q
2√

2g2Q2 +H2x2V
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+
12g2H2mα

√
(2g2Q2 +H2x2) τ4∆τ4λ4ξfQ

2√
2g2Q2 +H2x2V

+ 16g2H2mx2
√

2Q,x∆1,xτ4Q
2

+
6g2H2mx2α

√
(2g2Q2 +H2x2) τ4∆τ4λ4τ4,x,xQ

2√
2g2Q2 +H2x2Vτ4

−
32
√

2g2H2gs∆bξh
√
τ4

√
(2g2Q2 +H2x2) τ4

√
(2g2Q2+H2x2)τ4

ζ Q2

(2g2Q2 +H2x2)V

−
32
√

2g2H2xgs∆b,xξh
√
τ4

√
(2g2Q2 +H2x2) τ4

√
(2g2Q2+H2x2)τ4

ζ Q2

(2g2Q2 +H2x2)V

−
16
√

2g2H2gs∆τ4ξ
2
h

√
τ4

√
(2g2Q2 +H2x2) τ4

√
(2g2Q2+H2x2)τ4

ζ Q2

m (2g2Q2 +H2x2)V

−
18g2H2mα∆τ4λ4ξ

2
f

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2V

−
12g2H2mx2α∆τ4λ4

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2V

−
12g2H2mαε∆τ4λ4

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2V

−
12g2H2mx2α∆τ4,x,xλ4

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2V

−
12g2H2mxα∆τ4,xλ4ξf

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2V

−
16g2mV,b,τ4∆b

√
τ4

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2

−
16g2mV,τ2,τ4∆τ2

√
τ4

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2

−
16g2mV,τ4,τ4∆τ4

√
τ4

√
(2g2Q2 +H2x2) τ4Q

2√
2g2Q2 +H2x2

+ 16H4mx3Q,x∆τ4Q

− 8
√

2H4mx3∆1,xτ4Q−
16
√

2gH4mx3Q,x∆2
√
τ4

√
(2g2Q2 +H2x2) τ4Q

2g2Q2 +H2x2

−
8
√

2gH4mx4Q,x∆2,x
√
τ4

√
(2g2Q2 +H2x2) τ4Q

2g2Q2 +H2x2

+
8gH4mx4

√
2
√
τ4

√
(2g2Q2 +H2x2) τ4Q

2
,x∆2

2g2Q2 +H2x2
− 8H4mx4Q2

,x∆τ4
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(C.2.4)

+
12H4mx2α

√
(2g2Q2 +H2x2) τ4∆τ4λ4√

2g2Q2 +H2x2V

+
6H4mx2α

√
(2g2Q2 +H2x2) τ4∆τ4λ4ξf√
2g2Q2 +H2x2V

+ 8H4mx4
√

2Q,x∆1,xτ4

+
3H4mx4α

√
(2g2Q2 +H2x2) τ4∆τ4λ4τ4,x,x√
2g2Q2 +H2x2Vτ4

−
16
√

2H4x2gs∆bξh
√
τ4

√
(2g2Q2 +H2x2) τ4

√
(2g2Q2+H2x2)τ4

ζ

(2g2Q2 +H2x2)V

−
16
√

2H4x3gs∆b,xξh
√
τ4

√
(2g2Q2 +H2x2) τ4

√
(2g2Q2+H2x2)τ4

ζ

(2g2Q2 +H2x2)V

−
8
√

2H4x2gs∆τ4ξ
2
h

√
τ4

√
(2g2Q2 +H2x2) τ4

√
(2g2Q2+H2x2)τ4

ζ

m (2g2Q2 +H2x2)V

−
9H4mx2α∆τ4λ4ξ

2
f

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2V

−
6H4mx4α∆τ4λ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2V

−
6H4mx2αε∆τ4λ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2V

−
6H4mx4α∆τ4,x,xλ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2V

−
6H4mx3α∆τ4,xλ4ξf

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2V

−
8H2mx2V,b,τ4∆b

√
τ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
8H2mx2V,τ2,τ4∆τ2

√
τ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
8H2mx2V,τ4,τ4∆τ4

√
τ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2
= 0
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mQx4ζ
√

2
√

τ4
ζ

√
(2g2Q2+H2x2)τ4

ζ ∆2H
5

2g2Q2 +H2x2

−

√
2mx5ζQ,x∆2

√
τ4
ζ

√
(2g2Q2+H2x2)τ4

ζ H5

2g2Q2 +H2x2

+
4x2
√

4g2Q2 + 2H2x2
√

(2g2Q2+H2x2)τ4
ζ gs∆bτ4H

4

(2g2Q2 +H2x2)V

+
2x2
√

4g2Q2 + 2H2x2
√

(2g2Q2+H2x2)τ4
ζ gs∆bξfτ4H

4

(2g2Q2 +H2x2)V

+
2x3
√

4g2Q2 + 2H2x2
√

(2g2Q2+H2x2)τ4
ζ gs∆b,xξfτ4H

4

(2g2Q2 +H2x2)V

+
2x3
√

4g2Q2 + 2H2x2
√

(2g2Q2+H2x2)τ4
ζ gs∆τ4,xξhτ4H

4

m (2g2Q2 +H2x2)V

+
2x2
√

4g2Q2 + 2H2x2
√

(2g2Q2+H2x2)τ4
ζ gs∆τ4ξfξhτ4H

4

m (2g2Q2 +H2x2)V

−
x4
√

4g2Q2 + 2H2x2b,x,xgs∆τ4

√
(2g2Q2+H2x2)τ4

ζ H4

(2g2Q2 +H2x2)V

−
2x2
√

4g2Q2 + 2H2x2εgs∆bτ4

√
(2g2Q2+H2x2)τ4

ζ H4

(2g2Q2 +H2x2)V

−
2x4
√

4g2Q2 + 2H2x2gs∆bτ4

√
(2g2Q2+H2x2)τ4

ζ H4

(2g2Q2 +H2x2)V

−
2x4
√

4g2Q2 + 2H2x2gs∆b,x,xτ4

√
(2g2Q2+H2x2)τ4

ζ H4

(2g2Q2 +H2x2)V

−
2x2
√

4g2Q2 + 2H2x2gs∆τ4ξhτ4

√
(2g2Q2+H2x2)τ4

ζ H4

m (2g2Q2 +H2x2)V

+
3g2mQ3x2ζ

√
2
√

τ4
ζ

√
(2g2Q2+H2x2)τ4

ζ ∆2H
3

2g2Q2 +H2x2
+ gmQ3x2∆τ4H

3

− gmQ2x3Q,x∆τ4H
3 − 2

√
2gmQ2x2∆1τ4H

3 + 2gmQx3
√

2Q,x∆1τ4H
3

+ gmQ2x3
√

2∆1,xτ4H
3 −

3
√

2g2mQ2x3ζQ,x∆2

√
τ4
ζ

√
(2g2Q2+H2x2)τ4

ζ H3

2g2Q2 +H2x2

−

√
2g2mQ3x3ζ∆2,x

√
τ4
ζ

√
(2g2Q2+H2x2)τ4

ζ H3

2g2Q2 +H2x2
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(C.2.5)

−g2m2Q4x2∆bH
2

+
8g2Q2

√
4g2Q2 + 2H2x2

√
(2g2Q2+H2x2)τ4

ζ gs∆bτ4H
2

(2g2Q2 +H2x2)V

− x2V,b,b∆bτ4H
2 − x2V,τ2,b∆τ2τ4H

2 − x2V,b,τ4∆τ4τ4H
2

+
4g2Q2

√
4g2Q2 + 2H2x2

√
(2g2Q2+H2x2)τ4

ζ gs∆bξfτ4H
2

(2g2Q2 +H2x2)V

+
4g2Q2x

√
4g2Q2 + 2H2x2

√
(2g2Q2+H2x2)τ4

ζ gs∆b,xξfτ4H
2

(2g2Q2 +H2x2)V

+
4g2Q2x

√
4g2Q2 + 2H2x2

√
(2g2Q2+H2x2)τ4

ζ gs∆τ4,xξhτ4H
2

m (2g2Q2 +H2x2)V

+
4g2Q2

√
4g2Q2 + 2H2x2

√
(2g2Q2+H2x2)τ4

ζ gs∆τ4ξfξhτ4H
2

m (2g2Q2 +H2x2)V

−
2g2Q2x2

√
4g2Q2 + 2H2x2b,x,xgs∆τ4

√
(2g2Q2+H2x2)τ4

ζ H2

(2g2Q2 +H2x2)V

−
4g2Q2

√
4g2Q2 + 2H2x2εgs∆bτ4

√
(2g2Q2+H2x2)τ4

ζ H2

(2g2Q2 +H2x2)V

−
4g2Q2x2

√
4g2Q2 + 2H2x2gs∆bτ4

√
(2g2Q2+H2x2)τ4

ζ H2

(2g2Q2 +H2x2)V

−
4g2Q2x2

√
4g2Q2 + 2H2x2gs∆b,x,xτ4

√
(2g2Q2+H2x2)τ4

ζ H2

(2g2Q2 +H2x2)V

−
4g2Q2

√
4g2Q2 + 2H2x2gs∆τ4ξhτ4

√
(2g2Q2+H2x2)τ4

ζ H2

m (2g2Q2 +H2x2)V

+
4g4mQ5ζ

√
2
√

τ4
ζ

√
(2g2Q2+H2x2)τ4

ζ ∆2H

2g2Q2 +H2x2

− 4
√
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√

2g4mQ5xζ∆2,x

√
τ4
ζ

√
(2g2Q2+H2x2)τ4

ζ H

2g2Q2 +H2x2
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(C.2.7)
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C.3 Example 4

The tensor perturbation equations for the fibre inflation example are
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+
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(C.3.1)
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−
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√
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4 ξ
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√
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+
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(C.3.2)
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The scalar perturbation equations are
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+ 16H4mQ2x2V3∆τ4 + 16H4mx4V3Q2
,x∆τ4

− 32H4mQx3V3Q,x∆τ4

+
32g2mQ2V3√τ4

√
(2g2Q2 +H2x2) τ4V,τ4,τ4∆τ4√

2g2Q2 +H2x2

+
16H2mx2V3√τ4

√
(2g2Q2 +H2x2) τ4V,τ4,τ4∆τ4√

2g2Q2 +H2x2

+
12H4mx4α

√
(2g2Q2 +H2x2) τ4V

2
,xγ4∆τ4√

2g2Q2 +H2x2

+
24g2H2mQ2x2α

√
(2g2Q2 +H2x2) τ4V

2
,xγ4∆τ4√

2g2Q2 +H2x2

+
6H4mx4V2α

√
(2g2Q2 +H2x2) τ4γ4∆τ4√

2g2Q2 +H2x2

+
12g2H2mQ2x2V2α

√
(2g2Q2 +H2x2) τ4γ4∆τ4√

2g2Q2 +H2x2

+
12g2H2mQ2V2αε

√
(2g2Q2 +H2x2) τ4γ4∆τ4√

2g2Q2 +H2x2
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+
6H4mx2V2αε

√
(2g2Q2 +H2x2) τ4γ4∆τ4√

2g2Q2 +H2x2

+
6H4mx3Vα

√
(2g2Q2 +H2x2) τ4V,xγ4∆τ4√
2g2Q2 +H2x2

+
12g2H2mQ2xVα

√
(2g2Q2 +H2x2) τ4V,xγ4∆τ4√

2g2Q2 +H2x2

+
6H4mx4V2α

√
(2g2Q2 +H2x2) τ4γ4∆τ4,x,x√
2g2Q2 +H2x2

+
12g2H2mQ2x2V2α

√
(2g2Q2 +H2x2) τ4γ4∆τ4,x,x√

2g2Q2 +H2x2

+
32g2mQ2V3√τ4

√
(2g2Q2 +H2x2) τ4V,V,τ4∆V√

2g2Q2 +H2x2

+
16H2mx2V3√τ4

√
(2g2Q2 +H2x2) τ4V,V,τ4∆V√

2g2Q2 +H2x2

+
6H4mx3V2α

√
(2g2Q2 +H2x2) τ4γ4∆τ4,xξf√
2g2Q2 +H2x2

+
12g2H2mQ2xV2α

√
(2g2Q2 +H2x2) τ4γ4∆τ4,xξf√

2g2Q2 +H2x2

+
64g2H2Q2V2

√
2
√

(2g2Q2+H2x2)τ4
ζ

√
τ4

√
(2g2Q2 +H2x2) τ4gs∆bξh

2g2Q2 +H2x2

+
32H4x2V2

√
2
√

(2g2Q2+H2x2)τ4
ζ

√
τ4

√
(2g2Q2 +H2x2) τ4gs∆bξh

2g2Q2 +H2x2

+
32H4x3V2

√
2
√

(2g2Q2+H2x2)τ4
ζ

√
τ4

√
(2g2Q2 +H2x2) τ4gs∆b,xξh

2g2Q2 +H2x2

+
64g2H2Q2xV2

√
2
√

(2g2Q2+H2x2)τ4
ζ

√
τ4

√
(2g2Q2 +H2x2) τ4gs∆b,xξh

2g2Q2 +H2x2

−
16H4mx4

√
4g2Q2 + 2H2x2V3Q,x∆1,x

√
τ4

√
(2g2Q2 +H2x2) τ4

2g2Q2 +H2x2

−
32g2H2mQ2x2

√
4g2Q2 + 2H2x2V3Q,x∆1,x

√
τ4

√
(2g2Q2 +H2x2) τ4

2g2Q2 +H2x2

−
64
√

2g5mQ6V3∆2
√
τ4

√
(2g2Q2 +H2x2) τ4

2g2Q2 +H2x2

−
16
√

2gH4mQ2x4V3∆2
√
τ4

√
(2g2Q2 +H2x2) τ4

2g2Q2 +H2x2
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−
64
√

2g3H2mQ4x2V3∆2
√
τ4

√
(2g2Q2 +H2x2) τ4

2g2Q2 +H2x2

−
16
√

2gH4mQ2x2V3∆2
√
τ4

√
(2g2Q2 +H2x2) τ4

2g2Q2 +H2x2

−
16
√

2gH4mx4V3Q2
,x∆2
√
τ4

√
(2g2Q2 +H2x2) τ4

2g2Q2 +H2x2

−
16
√

2gH4mQ2x3V3∆2,x
√
τ4

√
(2g2Q2 +H2x2) τ4

2g2Q2 +H2x2

−
32
√

2g3H2mQ4xV3∆2,x
√
τ4

√
(2g2Q2 +H2x2) τ4

2g2Q2 +H2x2

−
24g2H2mQ2V2αγ4∆τ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
12H4mx2V2αγ4∆τ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
6H4mx4VαV,x,xγ4∆τ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
12g2H2mQ2x2VαV,x,xγ4∆τ4

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
6H4mx4VαV,xγ4∆τ4,x

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
12g2H2mQ2x2VαV,xγ4∆τ4,x

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
12g2H2mQ2V2αγ4∆τ4ξf

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
6H4mx2V2αγ4∆τ4ξf

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
6H4mx3VαV,xγ4∆τ4ξf

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
12g2H2mQ2xVαV,xγ4∆τ4ξf

√
(2g2Q2 +H2x2) τ4√

2g2Q2 +H2x2

−
6H4mx4Vαγ4∆V

√
(2g2Q2 +H2x2) τ4τ4,x,x√

2g2Q2 +H2x2

−
12g2H2mQ2x2Vαγ4∆V

√
(2g2Q2 +H2x2) τ4τ4,x,x√

2g2Q2 +H2x2

−
3H4mx4V2αγ4∆τ4

√
(2g2Q2 +H2x2) τ4τ4,x,x√

2g2Q2 +H2x2τ4

−
6g2H2mQ2x2V2αγ4∆τ4

√
(2g2Q2 +H2x2) τ4τ4,x,x√

2g2Q2 +H2x2τ4

=

= 0 ,
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(C.3.4)

mQx4∆2H
5

√
2 (2g2Q2 +H2x2)3/2

+
mQx5∆2,xH

5

√
2 (2g2Q2 +H2x2)3/2

− mx5Q,x∆2H
5

√
2 (2g2Q2 +H2x2)3/2

+
mQx2∆2H

3

√
2
√

2g2Q2 +H2x2

+
g2mQ3x3

√
2∆2,xH

3

(2g2Q2 +H2x2)3/2
− mx3Q,x∆2H

3

√
2
√

2g2Q2 +H2x2

− mQx3∆2,xH
3

√
2
√

2g2Q2 +H2x2
+

gmQ3x2∆τ4H
3

(2g2Q2 +H2x2) τ4

− gmQ2x3Q,x∆τ4H
3

(2g2Q2 +H2x2) τ4
+

4
√

2
√

τ4
ζ gs∆bH

2

V

+
2x
√

2
√

τ4
ζ gsV,x∆bH

2

V2
+

2x2
√

2
√

τ4
ζ gsV,x∆b,xH

2

V2

+
2x2
√

2
√

τ4
ζ b,x,xgs∆VH

2

V2
+

2
√

2
√

τ4
ζ gs∆bξfH

2

V

+
2x
√

2
√

τ4
ζ gs∆b,xξfH

2

V
+

2x
√

2
√

τ4
ζ gs∆τ4,xξhH

2

mV

+
2
√

2
√

τ4
ζ gs∆τ4ξfξhH

2

mV
+

4
√

2
√

τ4
ζ gs∆Vξhτ4H

2

mV2

+
8x
√

2
√

τ4
ζ gsV,x∆Vξhτ4H

2

mV3
+

4
√

2
√

τ4
ζ gs∆Vξfξhτ4H

2

mV2

−
2
√

2x2gs∆b

√
τ4
ζ H

2

V
−

2
√

2εgs∆b

√
τ4
ζ H

2

V

−
2
√

2x2gs∆b,x,x

√
τ4
ζ H

2

V
−

2
√

2gs∆τ4ξh
√

τ4
ζ H

2

mV

−
2
√

2xgsV,x∆τ4ξh
√

τ4
ζ H

2

mV2
−

4
√

2xgs∆V,xξhτ4

√
τ4
ζ H

2

mV2

−

√
2x2b,x,xgs∆τ4

√
τ4
ζ H

2

Vτ4
− g2m2Q4x2∆bH

2

2g2τ4Q2 +H2x2τ4

− 2gmQ2
√

2∆1H + 2gmQx
√

2Q,x∆1H

+ gmQ2x
√

2∆1,xH +
2g2mQ3

√
2∆2H√

2g2Q2 +H2x2

− 2
√

2g2mQ2xQ,x∆2H√
2g2Q2 +H2x2

−
√

2g2mQ3x∆2,xH√
2g2Q2 +H2x2

− V,b,b∆b − V,τ1,b∆τ1 − V,b,τ4∆τ4 − V,V,b∆V = 0 ,
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(C.3.5)

9H2V2x2τ2
1,x∆τ1

τ1
+ 8V2τ3

1 ∆bV,τ1,b − 6H2V2τ1∆τ1 + 3H2V2ετ1∆τ1

− 2H2x2τ1∆τ1V
2
,x − 4H2Vxτ1∆τ1V,x + 3H2V2x2τ1∆τ1

+ 2H2Vx2τ1∆τ1V,x,x + 3H2V2x2τ1∆τ1,x,x + 4H2Vτ2
1 ∆V

− 2H2Vετ2
1 ∆V −

4H2x2τ2
1 ∆VV

2
,x

V
+ 4H2x2τ2

1 ∆V,xV,x

− 2H2Vx2τ2
1 ∆V − 2H2Vx2τ2

1 ∆V,x,x + 2H2x2τ2
1 ∆VV,x,x

+ 8V2τ3
1 ∆τ1V,τ1,τ1 + 8V2τ3

1V,τ1,τ4∆τ4 + 8V2τ3
1 ∆VV,V,τ1

+ 6H2V2xτ1,x∆τ1 − 6H2V2x2τ1,x∆τ1,x − 6H2V2x2τ1,x,x∆τ1 = 0 ,

(C.3.6)

−
6H2αγ4∆Vξfτ

3/2
4

V3
−

3H2αγ4∆Vξ
2
fτ

3/2
4

2V3

+
8H2
√

2
√

τ4
ζ gs∆Vξ

2
hτ

2
4

m2V3
+

4H2
√

2
√

τ4
ζ gs∆bξhτ4

mV2

+
4H2x

√
2
√

τ4
ζ gs∆b,xξhτ4

mV2
−

2
√

2H2gs∆τ4ξ
2
h

√
τ4
ζ τ4

m2V2

+
H2x2∆Vτ

2
1,x

4V2τ2
1

+
H2x2∆τ1τ

2
1,x

2Vτ3
1

− V,V,b∆b − V,V,τ1∆τ1

− V,V,τ4∆τ4 +
3H2x2α

√
τ4γ4∆τ4

4V2
+

3H2αε
√
τ4γ4∆τ4

4V2

+
3H2x2α

√
τ4γ4∆τ4,x,x

4V2
− V,V,V∆V +

H2x2V,x,x∆V

V3
+
H2∆V

V2

+
H2x2V,x∆V,x

V3
+

3H2α
√
τ4γ4∆τ4ξf

4V2
+
H2x∆Vτ1,x

2V2τ1

+
3H2x2αγ4∆τ4τ4,x,x

8V2√τ4
−

3H2αγ4∆τ4
√
τ4

2V2
− H2x2∆V

2V2
− H2ε∆V

2V2

−
H2x2∆V,x,x

2V2
−

3H2xαγ4∆τ4,xξf
√
τ4

4V2
−

3H2αγ4∆τ4ξ
2
f

√
τ4

8V2

− H2xV,x∆V

V3
−

3H2x2αγ4∆V
√
τ4τ4,x,x

2V3
−

3H2x2V2
,x∆V

2V4

− H2∆τ1

2Vτ1
+
H2x2∆τ1

4Vτ1
+
H2ε∆τ1

4Vτ1
+
H2x2∆τ1,x,x

4Vτ1

− H2x2∆Vτ1,x,x

4V2τ1
−
H2x2∆τ1,xτ1,x

2Vτ2
1

− H2x2∆τ1τ1,x,x

4Vτ2
1

= 0 ,
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(C.3.7)

∆1,x,x = −∆1 −
4g2Q2∆1

H2x2
+

2gQ∆1ξh
Hx2

+
2∆1,xξf

x
− 4g2Q2∆2ξh

Hx2
√

2g2Q2 +H2x2

− 2H∆2ξh√
2g2Q2 +H2x2

+
2gQ∆2√

2g2Q2 +H2x2
+

4g3Q3∆2

H2x2
√

2g2Q2 +H2x2

−
√

2gmQ2∆b

Hx2τ4
−
√

2gmQ2∆b,x

Hxτ4
− 2
√

2g2Q3∆τ4

H2x2τ4
+

√
2Q,x∆τ4

xτ4

−
√

2Q∆τ4

x2τ4
+

√
2Qε∆τ4

x2τ4
−
√

2Q,x,x∆τ4

τ4
−
√

2Q,x∆τ4,x

τ4
+

√
2Q∆τ4,x

xτ4

and finally

∆2,x,x =
8g5
√

2g2Q2 +H2x2∆τ4Q
7

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

− 8
√

2g6∆2τ4Q
7

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
4g4Hm

√
2g2Q2 +H2x2∆bQ

6

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
4g4Hmx

√
2g2Q2 +H2x2∆b,xQ

6

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
8g5
√

4g2Q2 + 2H2x2∆1τ4Q
6

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

− 4g3H2
√

2g2Q2 +H2x2ε∆τ4Q
5

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
4g3H2

√
2g2Q2 +H2x2∆τ4Q

5

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2
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+
8g3H2x2

√
2g2Q2 +H2x2∆τ4Q

5

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

− 4g3H2x
√

2g2Q2 +H2x2∆τ4,xQ
5

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

− 12
√

2g4H2x2∆2τ4Q
5

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
8g4H2x

√
2∆2,xξfτ4Q

5

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

− 8
√

2g4H
√

2g2Q2 +H2x2∆1ξhτ4Q
5

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
2g2H3mx2

√
2g2Q2 +H2x2∆bQ

4

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
2g2H3mx3

√
2g2Q2 +H2x2∆b,xQ

4

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

− 4g3H2x
√

2g2Q2 +H2x2Q,x∆τ4Q
4

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
4g3H2x2

√
2g2Q2 +H2x2Q,x,x∆τ4Q

4

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
4g3H2x2

√
2g2Q2 +H2x2Q,x∆τ4,xQ

4

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
8g3H2x2

√
2
√

2g2Q2 +H2x2∆1τ4Q
4

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

− 2gH4x2
√

2g2Q2 +H2x2ε∆τ4Q
3

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

247



C. FULL PERTURBATION EQUATIONS FOR CHAPTER 5

+
2gH4x4

√
2g2Q2 +H2x2∆τ4Q

3

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
6gH4x2

√
2g2Q2 +H2x2∆τ4Q

3

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

− 2gH4x3
√

2g2Q2 +H2x2∆τ4,xQ
3

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

− 6
√

2g2H4x4∆2τ4Q
3

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

− 2
√

2g2H4x2∆2τ4Q
3

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

− 2
√

2g2H4x2ε∆2τ4Q
3

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
4g2H4x2

√
2∆2ξfτ4Q

3

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

+
8g2H4x3

√
2∆2,xξfτ4Q

3

H6Q
√

2τ4x6 + 4g2H4Q3
√

2τ4x4 + 4g4H2Q5
√

2τ4x2

− 8
√

2g2H3x2
√
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2
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√
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√

2τ4x2
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