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Incompressibility Enforcement for Multiple-fluid
SPH Using Deformation Gradient

Bo Ren, Member, IEEE, Wei He, Chen-feng Li, and Xu Chen

Abstract—To maintain incompressibility in SPH fluid simulations is important for visual plausibility. However, it remains an outstanding
challenge to enforce incompressibility in such recent multiple-fluid simulators as the mixture-model SPH framework. To tackle this
problem, we propose a novel incompressible SPH solver, where the compressibility of fluid is directly measured by the deformation
gradient. By disconnecting the incompressibility of fluid from the conditions of constant density and divergence-free velocity, the new
incompressible SPH solver is applicable to both single- and multiple-fluid simulations. The proposed algorithm can be readily integrated
into existing incompressible SPH frameworks developed for single-fluid, and is fully parallelizable on GPU. Applied to multiple-fluid
simulations, the new incompressible SPH scheme significantly improves the visual effects of the mixture-model simulation, and it also
allows exploitation for artistic controlling.

Index Terms—compressible and incompressible fluids, multiple-fluid simulation, Smoothed Particle Hydrodynamics, deformation
gradient
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1 INTRODUCTION

The Smoothed-Particle Hydrodynamics (SPH) method is
popular in computer graphics for simulations of a wide
range of liquid and solid motions. It is often convenient
and desirable to treat real-world liquids and solids as in-
compressible in computer simulations. However, enforcing
incompressibility in SPH simulation is harder than that in
grid-based methods, because the meshless scheme features
a constantly-changing neighbourhood of particles. In recent
years, multiple-fluid SPH algorithms have emerged, further
increasing the complexity of the problem. This paper pro-
poses a generic approach to uniformly address the incom-
pressibility issue in SPH fluid simulations.

There are already several literatures to tackle incom-
pressibility in single-fluid SPH simulation. Through enforc-
ing the constant density and/or the divergence-free velocity
field, previous methods have achieved a high degree of
incompressibility and good computational performance in
single-fluid simulation. These techniques are readily appli-
cable to certain multiple-fluid simulators using simplified
models [1], [2], where all phases have an identical veloc-
ity such that the velocity field becomes divergence free.
However, real world multiple-fluid mixtures are much more
complex, with different phases flowing at different veloc-
ities. Thus, neither the divergence-free nor the constant-
density assumption holds for real world multiple-fluid
flows. In the fundamental theories of multiple-fluid flows,
e.g. the mixture model [3], [4], although the densities of
individual phases can be assumed as constants, the mixture
contains several phases with varying fractions such that
its rest density is not a constant and usually unknown.
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Within the typical SPH scheme where particle mass does
not change after initialization, neither the phase velocity
field nor the particle velocity field is divergence free for
real world multiple-fluid scenarios. As a result, it is hard
to extend the existing incompressible SPH schemes into
real world multiple-fluid flows described by the mixture
model. We observe that incompressibility is a physical
property to describe a material resisting volume change
caused by various forces. Such property always holds in
incompressible flows, no matter how the fluid composition
changes in complex multiple-fluid flows. For example, with
the presence of chemical reaction, dissolution or phase
transition, individual fluid phases may increase/decrease
in mass and volume, resulting in intrinsic changes to the
fluid density and the velocity divergence, but each single
phase itself is still incompressible. In such cases “physical
compressibility” does exist when we treat the multiple-fluid
mixture as a whole even if we assume each individual
phase is incompressible, i.e. they still resist force-induced
volume changes. For a practical incompressible mixture-
model simulator, a new method is required to eliminate
only the non-physical compressibility. On the other hand,
the physical compressibility directly relates to a change of
the total material volume, which in turn can be measured
based on the deformation gradient tensor, whose Jacobian
gives the volume expansion ratio. The deformation gradient
is a geometric concept originating from solid mechanics (e.g.
[5]), which can be used to describe incompressible plastic
solids. We integrate this concept in fluid simulation and
derive a novel scheme to enforce incompressibility in SPH
multiple-fluid simulations.

In this paper we derive a novel incompressibility en-
forcement approach which directly measures the physical
and non-physical volume variations of fluids using the
deformation gradient. The new incompressible SPH scheme
is generic and applicable to both single- and multiple-fluid
simulations. Specifically, our main goal is providing an
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incompressible solver that significantly improves the visu-
al effects and computational efficiency for incompressible
mixture-model multiple-fluid simulation [3], which does not
rely on the strong assumption, that all phase velocities are
the same, like in phase-field methods [1], [2]. For single-fluid
simulation, its computational performance is comparable to
previous methods such as IISPH [6]. The main contribution
of this work includes:

• A generic incompressibility enforcement scheme is
derived by using the deformation gradient to mea-
sure particle volume change in SPH fluid simulation.

• Based on the new incompressible SPH scheme, an
incompressible mixture-model multiple-fluid solver
is established. The scheme is also studied on single-
fluid simulation showing comparable performance
with previous methods.

• The new algorithm is compatible with existing simu-
lation frameworks.

The rest of the paper is organized as follows. §2 summa-
rizes related works, after which the fundamental idea of the
new approach and the concept of deformation gradient are
explained in §3. In §4, the new incompressible SPH scheme
is formulated for multiple-fluid simulation based on the
mixture model. The effectiveness and performance of the
new incompressible SPH approach are examined in §5 with
various examples.

2 RELATED WORK

The incompressibility enforcement has long accompanied
the development of SPH fluid solvers. In the early research
works [7], [8], [9], the SPH fluid is solved in a weakly
compressible manner dependent on a stiffness coefficient in
the equation of state: a higher stiffness value corresponds
to better incompressibility, but at the cost of smaller time
steps. Since the time step quickly decreases as the stiffness
coefficient grows, it is often too costly for computer graphics
applications to ensure visually incompressible results sim-
ply by raising the stiffness value.

Inspired by the grid-based fluid solvers, pressure pro-
jection schemes are developed to enforce incompressibility
in SPH fluid simulation. Early approaches use direct SPH
discretization of the Laplacian [10], [11], which is sensitive
to sampling and does not scale well. Background grid is
introduced later to alleviate the sensitivity issues [12], [13],
[14]. More recently, the convergence is greatly improved
with a better discretization method in the implicit incom-
pressible SPH (IISPH) [6], which is also friendly to GPU
implementation [15].

Some research works use an iterative prediction-
correction scheme to enhance the incompressibility of SPH
fluid. The solver first predicts an intermediate state by
advecting the particles, and iteratively solves for the velocity
correction. This is done by calculating an update term on ve-
locity relying on the pressure [16], the constraint force based
on the rigid body mechanics theory [17], or the divergence-
free velocity [18]. Direct particle displacement correction
after the prediction is proposed in position based fluid
[19] to accelerate the computation. By combining constant

density and divergence-free velocity corrections, the diver-
gence free SPH (DFSPH) method [20] further accelerates the
convergence.

The aforementioned methods mainly cope with incom-
pressible single-fluid simulation, and they do not work with
multiple-fluid simulations that have multiple phases co-
existing in a SPH particle. Recent particle-based multiple-
fluid models include the mixture-model multi-fluid SPH
solvers [3], [4], phase-field based multi-fluid SPH solvers
[1], [2] and multi-phase MPM solvers for miscible flow [21]
and sand-water mixtures [22], [23]. Among those methods,
the mixture model solvers can reproduce layered unmixing
effect such as centrifugal separating, but are hardest to
enforce incompressibility because neither mixture density
is constant nor the velocity fields are divergence free. To ad-
dress this problem, we propose a generic incompressibility
enforcement scheme that is applicable to both single- and
multiple-fluid SPH simulations.

3 DEFORMATION GRADIENT

This section introduces the deformation gradient and relat-
ed formulation to enforce incompressibility in fluid simula-
tion. For simplicity, we use single-fluid flow to demonstrate
the derivation.

The single-fluid flow is governed by a continuity equa-
tion and a momentum equation as follows:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+

1

ρ
M (2)

where ρ, p,u,M denote density, pressure, velocity and non-
pressure force of the fluid. In single-fluid simulation the
incompressibility assumption usually refers to constant den-
sity, and consequently Eqn. (1) leads to the divergence-free
condition for velocity, i.e. ∇ · u = 0. In grid-based solvers
the divergence-free condition can be treated as a constraint
in solving the momentum equation and is resolved in a
projection step. However, in SPH simulation the particle
neighbourhood is constantly changing, which makes the
problem more complex. [6] studied this issue and proposed
that better efficiency could be achieved by using known val-
ues from the current-frame particle neighborhood to enforce
incompressibility than recomputing particle neighbourhood
each time.

From a more fundamental perspective, the visual “com-
pressibility” observed during a fluid simulation can come
from two possible sources. First, the simulator may not
accurately enforce the incompressibility due to a suboptimal
model or numerical errors in the simulation. Secondly, the
fluid itself may experience changes of physical properties
resulting in volume expansion or shrinkage. In graphics
applications the visual plausibility is mostly affected by the
former source, i.e. non-physical compressibility. It is also
noted that the latter source, i.e. physical compressibility, is
fairly common in multiple-fluid flows where such processes
as reaction, dissolution and phase transition can change the
fluid composition and density. In multiple-fluid simulation,
an incompressible solver should aim at eliminating the non-
physical compressibility while allowing density change and



IEEE TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. 00, NO. 0, AUGUST 2020 3

velocity divergence originated from physical changes of
fluid. That is, the volume change of fluid phases must match
the change of fluid composition.

Based on the above observation, we propose a novel
incompressible SPH enforcement scheme using the defor-
mation gradient tensor. The deformation gradient tensor
can be computed from the current-frame particle topology
avoiding re-computation of particle neighbourhoods, and it
measures directly the volume variation of fluids. As a key
concept in continuum mechanics, the deformation gradient
quantifies the deformation of a continuum material and it is
defined using the gradient of deformed positions measured
under the original frame:

F = (∇0x)T = I + ∆t(∇0u)T (3)

where F is the deformation gradient tensor, x and u are
position and velocity of the deformed shape, ∇0 represents
the material gradient operator and the subscript 0 denotes
the gradient with respect to the original frame. A similar
equation as above can be found in [24]. The second equality
is obtained with a linear local approximation between two
adjacent time steps.

An important property of the deformation gradient is
that its Jacobian J = |F| = V

V0
is a measure of the volume

change produced by a deformation, where V0 and V are
volumes of the meta elements in the original and deformed
frames, respectively, and | · | is the determinant of the inside
matrix. Therefore, for the simple case of a fixed-density
fluid, enforcing incompressibility for non-physical causes
is equivalent to ensuring J = 1 during the simulation,
which is calculated purely from geometric quantities of
the fluid flow. For multiple fluid simulations, J provides
a direct indicator for whether the local volume change of a
particle matches its physical compressibility causes such as
composition change. We derive our novel scheme based on
the direct measure J in the following sections.

The concept of deformation gradient applies to any
material that has continuum representation, whether it is
solid or fluid, and Eqns. (3) do not rely on incompressibility
assumptions. The readers are referred to [25] for a more
thorough explanation on the deformation gradient and re-
lated theory.

4 DERIVATION

The mixture model [3] simulates multiple-fluid flows using
drift velocities of different phases and can reproduce smooth
layered un-mixing effects. However it has to be solved in a
weakly compressible SPH (WCSPH) framework [9], and its
incompressibility issue remains an outstanding challenge.
In this section we show how the deformation gradient and
its Jacobian can be used to address the incompressibility
issue in multiple-fluid simulations. The formulations are
first derived for the single-fluid simulation to demonstrate
the fundamental idea and the framework, then they are ex-
tended to multiple-fluid simulations for the mixture model.

4.1 Single-fluid Solver

As with previous methods, the intermediate particle posi-
tion xadv , velocity vadv and deformation gradient Fadv are

first predicted by advecting the particle one step forward
using known current-frame values. Then we calculate a
pressure correction ∆p that corrects the intermediate values
so that J satisfies the incompressibility requirement. Details
are given below.

From the momentum equation Eqn.(2) and SPH velocity
update scheme, ∆p will cause a velocity change up:

up = ∆t
Γ∆p

m
(4)

where for each particle i,

Γ∆p
i = −miΣj∈NF (i)mj

(
∆pi

ρ̃i
2 +

∆pj

ρ̃j
2

)
∇Wij (5)

NF (i) represents the particle i’s neighborhood, ρ̃ is inter-
polated density, and W is the kernel function. This velocity
change up will in turn results in a change of F defined in
Eqn.(3):

dFadv = ∆t(∇0u
p)T (6)

With constant particle mass J = Vt+1

Vt
= ρt

ρt+1
. The target

density can be set as ρt+1 = ρ0 or other changeable values,
and the following relation holds:

ρ̃i
ρ0

= J = |Fadv + dFadv| (7)

Here we use the interpolated density ρ̃i to reflect the current
fluid density state in the simulator and set the target density
ρt+1 = ρ0. In all later derivations, a term is by default
calculated using values at time step t and we drop the
subscript t unless for clarity. Any term that represents a
value at time step t+ 1 will explicitly have a t+ 1 subscript.
The right hand side of Eqn. (7) can be calculated using the
Jacobi’s formula

J = |Fadv|+ d|Fadv| = |Fadv|+ tr(Fadv∗dFadv) (8)

where Fadv∗ is the adjugate matrix of Fadv . We adopt the
SPH discretization to compute dFadv = ∆t

ρ̃i
Ni, where Ni is

a 3 × 3 matrix and the element in its X-th row and Y -th
column is given by:

NXY
i = Σj∈NF (i)mj(u

p
ji)X(∇Wij)Y (9)

where for a physical quantity Q, Qji = Qj − Qi, (upji)X
and (∇Wij)Y refer to the X,Y -th element in the vectors,
respectively. Following Eqns. (6-9), for each particle i, we
can obtain a linear equation with respect to velocity:

−(
ρ̃i
ρ0
− |Fadvi |)ρ̃i = ∆tΣj∈NF (i)mj(u

p
ij)

T (Fadv∗i )T∇Wij

(10)
Based on the above equation, we can further substitute ∆p
for up. For convenience, we first rewrite

∆t2
Γp
i

mi
= (−

∆t2

ρ̃i
2

∑
j∈NF(i)

mj∇Wij)

︸ ︷︷ ︸
dii

∆pi +
∑

j∈NF(i)

(−∆t2
mj

ρ̃j
2
∇Wij)

︸ ︷︷ ︸
dij

∆pj

= dii∆pi +
∑

j∈NF(i)

dij∆pj (11)
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Substituting Eqn. (11) into Eqn. (10) and after some math-
ematical derivation, we can obtain the following linear
equation with respect to ∆p:

− (
ρ̃i

ρ0
− |Fadv

i |)ρ̃i = (
∑

j∈NF(i)

mj(dii − dji)
T (Fadv∗

i )T∇Wij)

︸ ︷︷ ︸
aii

∆pi

+
∑

j∈NF(i)

mj(
∑

k∈NF(i)

dik∆pk − djj∆pj −
∑

l∈NF(j)
−{i}

djl∆pl)
T (Fadv∗

i )T∇Wij

︸ ︷︷ ︸
dterm(∆p)

= aii∆pi + dterm(∆p) (12)

The same relaxed Jacobi method as in IISPH [6] can be used
to iteratively solve for ∆p:

∆ps+1
i = (1−ω)∆psi +ω

1

aii
(−(

ρ̃i

ρ0
− |Fadv

i |)ρ̃i − dterm(∆ps)) (13)

where ω is the relax coefficient.

4.2 Multiple-fluid Solver
For multiple-fluid simulations, the mixture model SPH
solver solves the following equations [3]:

∂αk
∂t

+ (um · ∇)αk = −αk∇ · um −∇ · (αkumk) (14)

∂

∂t
um + (um · ∇)um = −∇pm

ρm
+

1

ρm
Mm (15)

where ρm is particle aggregate density, αk is the volume
fraction of the k-th phase in the particle, um,umk are the
particle velocity and k-th phase’s drift velocity, Mm rep-
resents other sources of effective forces leading to particle
velocity change. The phase velocity is uk = um + umk.

Since the particle composition is constantly changing in
multiple-fluid flows, a J value for a fluid particle is not
well-defined by default. Instead we use the phase-wise Jk
and equation ρm = Σkαkρk to derive the incompressible
solver. First, the density of mixture can be expressed as:

ρm,t+1 = Σkαk,t+1ρk = Σk
αk,t
Jk

ρk (16)

where Jk is the Jacobian of phase-wise deformation gra-
dient tensor. The last equality in Eqn.(16) is based on the
assumption that each phase is uniformly “diluted” in the
SPH particles. For the meta-volume within a particle, a rise
in the volume fraction of phase k makes it denser, and vice
versa, which is equivalent to local shrinking and expanding
of phase-wise volumes. That is Jk =

αk,t

αk,t+1
.

Next, by solving the continuity equation in the mixture
model framework [3] we can obtain αk,t+1 and treat ρm,t+1

on the left-hand side of Eqn.(16) as known values in the later
computations. On the other hand, the intermediate uadvm ,
uadvk and xadvm can be similarly calculated using the momen-
tum equation, which provides an estimate of Jk from the
mechanical-motion induced deformation. That is, we first
compute Fadvk with uk using Eqn. (3), then Jadvk = |Fadvk |.
Ideally, one wishes to have Σkαk,t+1ρk = Σk

˜αk,tρk
Jadv
k

which is
often not the case and needs a correction step. Here ˜αk,tρk
is interpolated value of αk,tρk.

Similar to §4.1, a pressure correction field ∆pm is intro-
duced, which will cause a velocity change of upm on the
SPH particle. Assuming the drift velocity does not change,

the pressure correction leads to the velocity change of each
phase upk = upm. The same derivation as Eqns. (4-10) applies.
Using the first order Taylor expansion (Jk + ∆Jk)−1 ≈
1
J2
k

(Jk −∆Jk), Eqn. (16) becomes

ρmi,t+1 = Σk
˜αki,tρk

Jadvki

− Σk
˜αki,tρk

(Jadvki )2
tr(Fadv∗ki dFadvki ) (17)

The matrix-trace part in the above equation can be similarly
developed by substituting upk for up in Eqns. (6,9). Then we
have

ρmi,t+1 − Σk
˜αki,tρk

Jadvki

= ∆t
∑

j∈NF(i)

mj(u
p
mij)

T (Σk
˜αki,tρk

˜ρi,t(Jadvki )2
Fadv∗ki︸ ︷︷ ︸

Gi

)T∇Wij

= ∆t
∑

j∈NF(i)

mj(u
p
mij)

T (Gi)
T∇Wij (18)

Eqn. (18) has exactly the same form as Eqn. (10), and it
follows the same derivation as well. The form of Eqn. (11) re-
mains the same, only replacing ˜ρmi, ˜ρmj for ρ̃i, ρ̃j . Eqn. (12)
now becomes

ρmi,t+1 − Σk
˜αki,tρk

Jadvki

= (
∑

j∈NF(i)

mj(dii − dji)
T (Gi)

T∇Wij)∆pi

+
∑

j∈NF(i)

mj(
∑

k∈NF (i)

dik∆pk − djj∆pj

−
∑

l∈NF(j)−{i}

djl∆pl)
T (Gi)

T∇Wij

= aii∆pi + dterm(∆p) (19)

The two differences in the derivation of Eqn. (19) from that
of Eqn. (12) are the substitution of Gi for Fadv∗i , and the
replacement of the left-hand side. Solving the system using
the relaxed Jacobi method completes the incompressible
mixture-model framework. Eqn. (13) now becomes

∆ps+1
i = (1− ω)∆psi + ω

1

aii
(ρmi,t+1 − Σk

˜αki,tρk

Jadv
ki

− dterm(∆ps))

(20)

4.3 Boundary Handling
Similar to IISPH [6], we adopt the rigid fluid coupling
technique [26] for boundary handling. A boundary particle
b exerts a pressure force to multiple-fluid particle i:

Γpi←b = −miΨ(ρmi)
pi

ρ̃i
2∇Wib (21)

which only substitute ρmi = Σkαkiρki for ρ0i in corre-
sponding equations in Ψ compared to the single fluid form
[6], [26]. The following derivations follow [6], and three
modifications are applied. First,

∆t2
Γp
i

mi
= −∆t2

∑
j∈NF(i)

mj

(
pi

ρ̃i
2

+
pj

ρ̃j
2

)
∇Wij −∆t2

∑
b∈NB(i)

Ψb
pi

ρ̃i
2
∇Wib

=

−∆t2
∑

j∈NF(i)

mj

ρ̃i
2
∇Wij −∆t2

∑
b∈NB(i)

Ψb

ρ̃i
2
∇Wib


︸ ︷︷ ︸

dii

pi

+
∑

j∈NF(i)

(
−∆t2

mj

ρ̃j
2
∇Wij

)
︸ ︷︷ ︸

dij

pj (22)
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Fig. 1. Triple dambreak. Top row: result of our approach. Bottom row: result of [3]. Our approach significantly improves the incompressibility, better
preserving fluid volume (indicated by the yellow line in the fourth column) and keeping ordered fine details (third column).

with an extra term −∆t2Σb∈NB(i)
Ψb

ρ̃i2
∇Wib added to dii.

Next, for single-fluid solver, substituting Eqn. (22) into
Eqn. (10) yields

− (
ρi(t)

ρ0
− |Fadv

i |)ρi

= (
∑

j∈NF(i)

mj(dii − dji)
T (Fadv∗

i )T∇Wij +
∑

b∈NB(i)

Ψbd
T
ii(F

adv∗
i )T∇Wib)

︸ ︷︷ ︸
aii

pi

+
∑

j∈NF(i)

mj(
∑

k∈NF(i)

dikpk − djjpj −
∑

l∈NF(j)
−{i}

djlpl)
T

(Fadv∗
i )T∇Wij

︸ ︷︷ ︸
dterm(p)

+
∑

b∈NB(i)

Ψb(
∑

h∈NF(i)

djhph)
T

(Fadv∗
i )T∇Wij

︸ ︷︷ ︸
bterm(p)

= aiipi + dterm(p) + bterm(p) (23)

where an extra term Σb∈NB(i)Ψbd
T
ii(F

adv∗
i )T∇Wib is added

to aii, and an extra boundary term bterm(∆p) is added to
Eqn. (12). For the multiple-fluid solver, again by replacing
the left hand side of Eqn. (23) with that of Eqn. (19) and
using Gi in place of Fadv∗i in Eqn. (23), the corresponding
linear system can be obtained.

4.4 Algorithm framework

The incompressible solver framework for mixture-model
multiple fluid simulation is shown in Algorithm 1. The
solver advances the simulation in a semi-implicit manner
in that the drift velocity and the continuity equation are
solved explicitly, and an implicit solver for pressure cor-
rection is applied to the momentum equation to enforce
fluid incompressibility. This incompressible solver can be
fully parallelized using GPU pipeline. Note that from the
prediction step, our approach follows the same routine as
the IISPH method, and can be readily integrated into the
IISPH framework. Detailed discussions on solving such
linear system with a relaxed Jacobi solver are provided in
[6].

The stopping criteria are calculated as follows. For the
single-fluid solver, we first subtract the right hand side from
the left hand side of Eqn. (12) using ∆ps+1

i in the iteration,
and then divide the result by ρ0 to yield erri:

erriρ0 = −(
ρ̃i

ρ0
− |Fadv

i |)ρ̃i − aii∆ps+1
i − dterm(∆ps+1

i ) (24)

We show this erri is equivalent to a relative density error.
Using Eqn. (7), the relative error of predicted density can
be expressed as (ρ̃i/J − ρ̃i/J

∗)/ρ0, where the superscript
∗ indicates the predicted value calculated using ∆ps+1

i .
Assuming J = 1 + ∆J, J∗ = 1 + ∆J∗ and using the first
order Taylor expansion, the relative density error can be
expressed as (ρ̃i/ρ0)(J∗ − J) = [−ρ̃i(J − J∗)]/ρ0, which
is just erri by comparing to Eqn. (7) and Eqn. (12). For the
multiple-fluid solver, similarly, we first subtract the right
hand side from the left hand side of Eqn. (19) using ∆ps+1

i
in the iteration, and then divide the result by ρmi,t+1 to yield
erri:

erriρmi,t+1 = ρmi,t+1 − Σk
˜αki,tρk

Jadv
ki

− aii∆ps+1
i − dterm(∆ps+1

i )

(25)
This erri is also equivalent to a relative density error.

In the multiple-fluid solver, a predicted mixture density
is computed by the right hand side of Eqn. (17) using the
Jacobian of deformation gradients, and erri is obviously the
relative error of it.

The error parameter err is calculated as the maximum
erri in both single-fluid or multiple-fluid cases. We then
compare err to a constant η = 0.1% at the start of each
iteration in the relaxed Jacobi solver. We also set a maximum
iteration number maxIter = 20. The relaxed Jacobi solver
stops the iteration when err ≤ η or maxIter is reached.
Same with the IISPH method, negative pressure values are
clamped to zero in the solver.

The choice of stopping criteria is analyzed in Fig. 3
using the triple dambreak case in Fig. 1. With η = 0.1%,
the convergence performance of our solver is tested under
maxIter = 20, 50, 100, respectively. We show both the
“predict” average density error evaluated when the relaxed
Jacobi solver ends iteration (left) and the “actual” average
density error evaluated at the next time step using actual
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Fig. 2. Cube fall. Top: a cube falls into the underlying pool in a four-phase miscible setting. Our approach successfully recovers incompressible flow
motion. Middle: using the method of [3]. Violent boundary oscillation and unnatural mixing color results from high compressibility. Bottom: using the
method of [3] with 1/100 time step size and 100× stiffness. Total volume is reasonably preserved but the color-mixing and boundary issues remain.
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Fig. 3. Average density error using differentmaxIter value. Left: “predic-
t” average density error evaluated when the relaxed Jacobi solver ends
iteration. Right: “actual” average density error evaluated at the next time
step using actual particle neighborhood.

Fig. 4. The “predict” and ”actual” average density errors in a single fluid
IISPH simulation using the method in [6]. Larger “actual” errors at the
next time step with a similar double-peak-shape curve can be observed.

particle neighborhood (right), i.e. (ρ̃i − Σkαkiρk)/Σkαkiρk,
which is the relative error of interpolated density from
theoretical mixture density. As shown on the left of Fig. 3,
the average density error within the relaxed Jacobi solver

is less than 0.1% using maxIter = 20 and converges to
about 0.02% during the simulation. Increasing maxIter to
50 and 100 leads to a generally smaller average density error
within the relaxed Jacobi solver, but with larger variance
between time steps. On the right of Fig. 3, we also calculate
the average density error at the beginning of the next time
step using the actual particle neighborhood. Larger errors
occur in the simulator, but the largest error is still below
0.6% and in general below 0.2%, which converges to around
0.05% when the flow becomes more steady. It is noted that
the larger “actual” error at the next time step also shows up
in the original IISPH framework. Fig. 4 shows the “predict”
and ”actual” average density errors of a single-fluid IISPH
simulation using the method in [6]. Larger errors at the
next time step are also observed. Interestingly, although in-
creasing maxIter value to above 20 leads to improvements
on the “predict” average density errors, it has only small
benefits on the “actual” average density errors. In cases
of maxIter = 50 and maxIter = 100, under maximum-
error criterion, we observe the average converged iteration
numbers are 23.8 and 22.1, respectively, and the minimum
iteration needed is about 10 in all cases. On the other hand,
Fig. 3 shows maxIter = 20 has achieved satisfactory actual
average errors during the simulation. As a result we use
maxIter = 20 as a balanced choice.

In the prediction step, previous methods [6], [20] left
out the pressure force in predicting intermediate states.
However in our experiments we find that for multiple-
fluid simulation it is better to include explicitly-calculated
pressure force in the prediction step. One possible reason is
that better initial value is provided this way.

5 RESULTS

In this section, several comparison examples are presented
to examine the effectiveness of the proposed incompressible
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Algorithm 1 Incompressible Mixture-model Solver
for all particles do

compute drift-velocity umk as in [3]
end for
for all particles do

solve the continuity equation and obtain αk,t+1, ρm,t+1

end for
for all particles do

predict xadvm ,uadvm ,uadvk ,Fadvk , Jadvk with momentum e-
quation

end for
s = 0
while err > η&&s < maxIter do

for all particle i do
calculate Σjdij∆p

s
j in Eqn.(11)

end for
for all particles do

compute ∆ps+1
i with Eqn.(13) or Eqn.(20)

end for
s = s+ 1

end while
for all particles do

compute pressure correction force
correct particle position and velocity

end for
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Fig. 5. Average density error in the triple dambreak case. Left: our
approach. Right: comparison of the previous approach [3] in differ-
ent timesteps and stiffness values with our approach. Our approach
achieves significantly better incompressibility. The “1× stiffness” of our
approach is only used in the prediction step as described in §4.4.

SPH solver, and we also demonstrate how the new solver
can be further exploited to provide artistic control. The new
algorithm is implemented on a Nvidia GTX 1080Ti GPU,
for which the performance data of all examples are listed
in Table 1. The scalability is affected by the total particle
number and the phase number, both of which linearly raise
the related computational cost. Generally, our algorithm
shows sub-linear scalability relative to “particle number
times phase number” value. In the comparisons we control
the time step sizes to be the same with previous methods
(0.001s for both multiple-fluid [3] and single-fluid [6]). The
readers are referred to the supplemental video which shows
closer visual observation and clearer comparisons.

Fig. 1 shows a comparison between our incompress-
ible solver and the original mixture model solver [3], us-
ing an immiscible triple dambreak scene (density ratio
red:green:blue = 1:2:3). The average density error during
the simulation is plotted in Fig. 5, which shows the “actual”

error discussed in §4.4. Our incompressible solver signifi-
cantly reduces the density error and produces much better
visual effects in the result. Note that the fluid volume is
better maintained in the last column, and fine details have
more ordered appearance in the third column.

Fig. 2 shows a cube falling into the pool in a four-phase
miscible setting, with the density ratio green:blue:red:yellow
= 1:2:3:3. Our approach performs well with incompressible
flow motion. The same scene is simulated using the previous
method [3] as shown in Fig. 2 middle row. Due to the high
non-physical compressibility of the previous method, ex-
cessive particle penetration occurs at the particle boundary,
and an extra soft boundary is required to hold them back.
Still, large compressibility and violent oscillation near the
boundary make the mixing effect of [3] unnatural. It is worth
noting that for this example the previous method must run
at a relatively low stiffness value using the same time step
size. Larger stiffness value will make its boundary issue
more severe and even cause break-down to the simulation.
This leads to a severe volume loss in the middle row of Fig. 2
under simple ordered particle initial position setting due to
failure of volume holding at the beginning of simulation.
In our experiment, the middle row has a volume loss up to
48.7% and converges to 41.2%. The result of [3] run at 1/100
time step and 100× stiffness is shown in the bottom row of
Fig. 2, the volume loss is reduced to 21.9% in the beginning
and 9.1% in the end. However, artifacts still remain and the
excessive compressive oscillation still thoroughly mix the
components together resulting in a dull visual appearance.
Our new approach provides natural looking results without
artifacts.

Fig. 6. Centrifugal separation. Top row: result of our approach. Bottom
row: result of [3]. Our incompressible solver successfully avoids the
central void due to compressibility of the previous method.

In Fig. 6, an un-mixing scene with large centrifugal force
is tested. The cylindrical container is totally sealed and filled
up with fluid, and there should be no free surface at all
if ideal incompressibility is enforced. In the initial state,
four immiscible phases (density ratio red:yellow:green:blue
= 1:1.5:2.5:3) are artificially mixed together with the volume
fraction ratio red:yellow:green:blue = 0.15:0.2:0.25:0.4. Our
incompressible approach successfully avoids the large cen-
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TABLE 1
Performance

Example Phase Liquid runtime-our runtime-previous [3]
Name Number Particle Number (second/step) (second/step)

Dambreak 3 62,000 0.148 0.037
Cube Fall 4 89,000 0.197 0.071
Unmixing 4 300,000 0.282 0.177

Control 2 131,000 0.151 -

Fig. 7. Artistic control. In the middle of the simulation, we artificially raise the target Jacobian of the SPH particles in a S-shaped region. The heavier
blue phase forms a fountain in the region but the other areas remains in steady layered flow appearance.

Fig. 8. Single-fluid simulation test. Top row: result of our approach. Bottom row: result of IISPH [6]. Our approach achieves comparable
incompressible visual effects with IISPH.

tral void which always appears in the result of previous
approach [3].

In Fig. 7, the deformation gradient is utilized to control
artistic effects. Specifically, the effective particle volume can
be controlled using a user-specified J without changing the
phase density. Since Jm,t =

Vm,t+1

Vm,t
, a controlling volume-

expansion coefficient Jcont can be introduced so that the
particle volume in the next time step can be set to any
desired value V̄m,t+1 = JcontJm,tVm,t. Rewriting Eqn. (16)
as ρm,t

Jm,t
= Σk

αk,t

Jk
ρk, the formulation in §4.2 effectively finds

a pressure correction that satisfies the target Jm,t. To change
the target Jm,t to JcontJm,t, one only needs to substitute
ρmi,t+1

Jcont
for ρmi,t+1 in Eqn. (18). This controlling scheme has

an interesting effect that the particles with controlled J have
a larger pressure if Jcont < 1 in the simulation that can
affect our prediction step, and vice versa. As a result, after
applying particle volume control Jcont = 2 in the middle of
the two-phase scene as shown in Fig. 7 (with the density
ratio green:blue = 1:2), the heavier blue phase formed a
fountain within our user-defined S-shape control area, but
the other areas remains in steady layered flow appearance.

We show that using deformation gradient is equivalent
to using constant-density in single-fluid simulations. In Fig.

8, the performance of our approach is tested on a single-fluid
simulation. All parameters are set at the same values in the
comparison between our algorithm and the IISPH algorith-
m. Our approach achieves comparable incompressibility in
the single fluid simulation. To quantitatively evaluate the
performance and convergence of our incompressible solver,
we re-run this dambreak scene with a fixed iteration num-
ber both for IISPH and our approach. The fixed iteration
number is set to 10 which is the average iteration number
of IISPH before convergence (which is after 9-11 iterations)
in Fig. 8. In this fixed-iteration-number test using 52,000
liquid particles, our approach runs at 1.73s per step and
IISPH runs at 1.53s per step using a single core on an Intel
Xeon 2.60GHz CPU. The average density error and the max
density error during the simulation are shown in Fig. 9,
reflecting almost the same converging speed.

To demonstrate the effectiveness of our method, we also
examine how good the result of [3] can achieve at similar
or more computational costs compared with ours. As Table
1 shows our method costs 2-4 times as much, we first run
the method of [3] using 1/4 time step size (0.00025s) with
higher stiffness values. The diagram on the right side of Fig.
5 shows a quantitative result of the average density using
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Fig. 9. Quantitative evaluation in single-fluid simulation. Left: average
density error. Right: max density error. Our approach achieves compa-
rable results with IISPH in the single-fluid simulation.

Fig. 10. Results of tuning up stiffness and reducing time step using
[3], they still do not reach the quality of our approach. Top row: triple
dambreak case with 1/100 time step size and 10× stiffness, render
timings are the same with the first and third columns in Fig.1. Bottom
left: centrifugal separating case with 1/4 time step and 14× stiffness.
Bottom right: centrifugal separating case with 1/4 time step and 16×
stiffness, particles start to fly out of the scene while the central void still
being obvious.

[3] under different time step sizes and stiffness values. These
errors never come close to 5%, but our method achieves less-
than 0.5% error during the simulation. We further reduce the
time step size to 1/100, which allows larger stiffness to be
stable. However our experiments show that simply tuning
up the stiffness has limited effects on ensuring incompress-
ibility. For the dambreak case, as can be seen in Fig. 5 and
Fig. 10 top row, the shape of the liquid block has already
started to collapse at 10× stiffness even at such small time
step and still with relatively large density error. A similar
visual shape collapsing under high stiffness value can also
be observed in the Cube Fall case in the bottom row of Fig. 2.
The bottom left of Fig. 10 shows the centrifugal separating
case at 1/4 time step and 14× stiffness, any larger stiffness
value will cause instability of simulation (bottom right), but
the central void still remains. In all these cases, our approach
can more efficiently produce incompressible mixture-model
effects with less parameter tuning efforts.

In Fig. 11, we render the triple dambreak case in Fig.
1 in particle view. On the right hand side we can observe
large color variances between adjacent particles, resulting in

Fig. 11. Particle view of the triple dambreak case. Left: our approach.
Right: Previous approach [3]. Our approach shows more ordered parti-
cle layering and better particle distributions.

a dispersed visual appearance. There are also irregular par-
ticle distribution patterns in bottom right on the boundary.
Our result on the left hand side shows more ordered particle
color layering and improves the particle distribution in the
simulation.

6 CONCLUSION

Based on the deformation gradient, we derive a novel
incompressibility enforcement scheme for SPH fluid simu-
lations. The proposed approach decouples the non-physical
compressibility from the fluid density and the divergence
of velocity in the theoretic formulation. It greatly enhances
the visual effect of multiple-fluid simulations using the
mixture model, significantly reducing the compressibility in
the previous solver [3]. The proposed algorithm is fully par-
allelizable, and can be readily implemented into previous
IISPH framework.

The proposed scheme does not fully take advantage of
single-fluid properties such as the divergence-free condi-
tion. Although the DFSPH method [20] does not apply on
multiple fluid simulations for it requires divergence free, on
single-fluid simulations, our approach has larger divergence
among particles than the DFSPH method. This is a limitation
of our approach for single-fluid simulations where strict
enforcement of divergence free property is usually desired.
In multiple-fluid simulations, occasionally a small amount
of particles can take a long time to converge to a given
error threshold and we bound the max iteration in the
implementation. One possible cause is that the proposed
approach uses a semi-implicit solver for the mixture-model
SPH simulation, which uses an explicit scheme for the con-
tinuity equation. Deformation gradients do not evolve in an
additive manner. Another possible cause is that we use the
maximum error as criterion and it is harder to satisfy then
an average-error criterion, which may also lead to the large
variance in the predict density error. In practice, we evaluate
the function between two adjacent time steps to obtain a
linear local approximation in Eqn.(3), which is found to give



IEEE TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. 00, NO. 0, AUGUST 2020 10

adequate results. However, higher-order approximations
are interesting topics and can be studied in the future work.
Moreover, reducing the gap between predict and actual
errors worths future study. Recently strong fluid-rigid cou-
pling techniques such as [27] have been proposed achieving
impressive results. Integrating them into our incompressible
multiple fluid framework worths investigation, for they
may further enhance the stability and convergence at solid
boundary. Some researches use particle labeling to simulate
immiscible multiple fluids within single fluid simulation
frameworks. Applying our approach on those methods will
require adjustment of the deformation gradient calculations
near phase interfaces and we would also like to investigate
it in the future. Another future direction is providing a
fully implicit solver which ensures exact mass continuity
in the calculation. We would also like to investigate the
application of our approach in solid-related phenomena
such as dissolving.
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