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Abstract: A new sensitivity analysis scheme is presented based on explicit expressions for sensitivity
coefficients to estimate timewise varying heat flux in heat conduction problems over irregular
geometries using the transient readings of a single sensor. There is no prior information available
on the functional form of the unknown heat flux; hence, the inverse problem is regarded as a
function estimation problem and sensitivity and adjoint problems are involved in the solution of the
inverse problem to recover the unknown heat flux. However, using the proposed sensitivity analysis
scheme, one can compute all sensitivity coefficients explicitly in only one direct problem solution
at each iteration without the need for solving the sensitivity and adjoint problems. In other words,
the functional form of the unknown heat flux can be numerically estimated by using the parameter
estimation approach. In this method, the irregular shape of heat-conducting body is meshed using
the boundary-fitted grid generation (elliptic) method. Explicit expressions are given to compute
the sensitivity coefficients efficiently and the steepest-descent method is used as the minimization
method to minimize the objective function and reach the solution. Three test cases are presented to
confirm the accuracy and efficiency of the proposed inverse analysis.

Keywords: inverse heat transfer; steepest-descent method; sensitivity analysis; function estimation;
body-fitted grid generation; timewise varying heat flux

1. Introduction

Direct heat transfer problems are concerned with the determination of temperature distribution in
a heat-conducting body from known values for thermo-physical properties, geometrical configuration,
boundary conditions, and heat flux. In contract, inverse heat transfer problems (IHTPs) deal with
the determination of the thermo-physical properties, the geometrical configuration, the boundary
conditions, and the heat flux from the knowledge of the temperature distribution within or on some
part of the boundary of the heat-conducting body. Unlike the direct heat transfer problems which are
well-posed, the inverse heat transfer problems are ill-posed and inherently unstable and extremely
sensitive to measurement errors. Due to the ill-posed nature of IHTPs, these problems are widely
regarded as mathematically challenging problems and many methods have been proposed to address
the underlying challenges. Over the past decades, the numerical methods for solving the inverse
heat transfer problems have received much attention due to the ever-increasing power of computers.
Among the numerical methods used to overcome the instabilities in inverse heat transfer problems are
the iterative regularization methods. In these gradient-based methods, the inverse problem solution is
improved sequentially, and the number of iterations required to obtain a stable solution is set based on
the measurement errors using the discrepancy principle [1–3].

During the past decades, inverse heat transfer analysis has been extensively used to estimate the
constant and variable heat flux using temperature measurement taken at some points inside the heat
conducting body or on some part of the boundary of the body. In [4], a three-dimensional inverse heat
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conduction problem is solved to determine the unknown transient boundary heat flux in an irregular
domain using simulated temperature measurements taken at some appropriate locations and times on
different parts of the boundary. Then, the least-squares functional is minimized using the conjugate
gradient method. In [5], the inverse problem deals with the estimation of the space-dependent heat
flux in two-dimensional steady-state heat conduction problems in the presence of variable thermal
conductivity. The conjugate gradient method is used as a minimization method to minimize the
least-squares objective function. In [6], the inverse problem is concerned with the simultaneous
estimation of heat transfer coefficient and heat flux imposed on different parts of the boundary of
an eccentric hollow cylinder. The thermal conductivity of the cylinder varies with space and is not
considered constant. In [7], an inverse analysis is used to estimate an imposed heat flux on the inner
surface of a long cylinder in a transient heat conduction problem using the measured temperature
on the outer surface of the cylinder. In [8], a time-dependent heat flux applied at the inner surface of
a functionally graded hollow cylinder is estimated via inverse analysis. The simulated temperature
measurements are taken within the cylinder and the minimization of the functional is performed by the
conjugate gradient method. In [9], an inverse analysis is employed to estimate the unknown base heat
flux in an irregular fin made of a material with space-dependent thermal conductivity. The temperature
measurements are taken within the fin and the conjugate gradient is used to minimize the objective
function. In [10], using an inverse analysis, the heat flux applied on the high-temperature wall of an
engine is estimated. The thermal conductivity is a function of temperature and the imposed heat flux
is a function of time and position. In [11], the surface heat flux is estimated from two temperature
measurements taken inside a finite domain with temperature-dependent thermal properties using
a sequential inverse method. In [12], a time-dependent wall heat flux applied on the surface of a
solid medium is estimated using an inverse analysis in which the minimization of the functional is
performed by the Levenberg-Marquardt method. The temperature measurement data are obtained
from thermocouples embedded inside the solid medium.

Inverse problems can be regarded either as a parameter estimation or as a function estimation
approach [2]. The parameter estimation approach can be used whenever the unknown quantity can
be expressed by a few parameters. For example, the recovery of a constant thermal conductivity can
be viewed as a parameter estimation approach. However, if no prior information is available on the
functional form of the unknown quantity, then the function estimation approach should be used to
estimate the unknown functional form of the unknown quantity. To the best of the author’s knowledge,
this study is the first one in which the unknown functional form of a variable heat flux is estimated
by the parameter estimation approach through the simultaneous estimation of so many parameters
efficiently and accurately.

The function estimation approach to estimate timewise varying surface heat flux, when no a
priori information is available on the functional form of the variable heat flux, involves the solution
of sensitivity and adjoint problems which require additional mathematical developments and have
computational costs equivalent to that of the direct problem. In this study, the inverse problem is
formulated based on the parameter estimation approach to solve the function estimation problem of
the recovering of the timewise varying heat flux with no a priori information of the functional form of
the unknown variable heat flux.

To do so, a two-dimensional transient heat conduction equation subjected to appropriate initial
and boundary conditions (with Neumann and Robin conditions at boundaries of a general irregular heat
conducting body) is solved using an explicit scheme. Initially, the two-dimensional irregular domain is
transformed into a regular computational domain, and all computations needed to solve the direct
and inverse problem equations are performed in the regular computational domain. A body-fitted
grid generation method (here the elliptic grid generation method) is used to mesh the physical
domain, and the finite-difference method, a method chosen for its easy-to-implement feature, is used
to approximate the derivatives of the field variable (temperature) at the grid nodes by algebraic
expressions. A novel, efficient, accurate, and very easy to implement sensitivity analysis scheme
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is developed to compute the sensitivity (Jacobian) matrix by employing the chain rule to relate the
temperature at the sensor place and the timewise varying wall heat flux applied on the part of the
domain boundary. As mentioned above, the inverse analysis using the proposed sensitivity analysis
scheme is not involved with the sensitivity and the adjoint equations, thereby reducing the associated
development efforts and the computational costs significantly. The main novelty of the proposed
sensitivity analysis is that all sensitivity coefficients can be computed efficiently in only one direct
problem solution (during the transient solution), with no need for the solution of the sensitivity and
adjoint equations (to compute the gradient of the objective function with respect to the variables),
irrespective of the number of unknown parameters, which is extremely large in this study. A nonlinear
least-square formulation is used to define the objective function and the steepest-descent method with
an appropriate stopping criterion specified by the discrepancy principle is employed to minimize the
objective function and recover the unknown functional form accurately. Three test cases are presented
to reveal the accuracy and efficiency of the employed inverse analysis. In this study, three different
measurement errors will be considered. As will be shown, the proposed inverse analysis is not strongly
affected by the errors involved in the temperature measurements and the unknown timewise varying
heat flux can be recovered with good accuracy.

The inverse analysis for the transient heat conduction problem presented in this study is sufficiently
general; that is, it can be used to estimate the timewise varying wall heat flux applied on part of the
boundary of a general irregular two-dimensional region (a heat-conducting body) with both Neumann
and Robin conditions at the boundaries as long as the general two-dimensional region can be mapped
onto a regular computational domain.

2. Governing Equation

The heat-conducting body shown in Figure 1a is made of a material of constant thermal conductivity
kT, density ρ, and specific heat c, and is initially at the temperature T0. For the time t > 0, a timewise
varying heat flux

.
q(t) is applied at the boundary surface Γ1. Convective heat transfer is imposed

on boundary surfaces Γi, i = 2, 3, 4 with corresponding heat transfer coefficients hi, i = 2, 3, 4 and
surrounding temperatures T∞i , i = 2, 3, 4.
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Figure 1. Arbitrarily shaped two dimensional heat-conducting body (physical domain) subjected to
a timewise varying heat flux

.
q(t) on surface Γ1 and convective heat transfer on surfaces Γi, i = 2, 3, 4

(a) and the corresponding computational domain (b).
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For this problem, the two-dimensional transient heat conduction equation with no heat
generation is

kT

(
∂2T(x, y, t)

∂x2 +
∂2T(x, y, t)

∂y2

)
= ρc

∂T(x, y, t)
∂t

in physical domain Ω(x, y) (1)

The boundary and initial conditions are

∂T(x, y, t)
∂n1

=

.
q(t)
kT

on boundary surface Γ1(x, y) (2)

∂T(x, y, t)
∂ni

= −
hi
kT

(
TΓi(x, y, t) − T∞i

)
on boundary surface Γi(x, y), i = 2, 3, 4 (3)

T(x, y, 0) = T0(x, y) in physical domain Ω(x, y) (4)

where t is the time. Since the heat conduction problem is concerned with an irregular body, the irregular
shape (the x and y physical domain) is mapped onto a regular one (the ξ and η computational domain).
The elliptic grid generation method is used to mesh the domain. Then, the heat conduction equation
and its associated boundary and initial conditions can be transformed from the (x, y, t) to the (ξ, η, t)
variables [2,13]. The transformation gives

α
∂2T(ξ,η,t)

∂ξ2 − 2β∂
2T(ξ,η,t)
∂ξ∂η + γ

∂2T(ξ,η,t)
∂η2

J2 + (∇2ξ)
∂T(ξ, η, t)

∂ξ
+ (∇2η)

∂T(ξ, η, t)
∂η

 = ρc
kT

∂T(ξ, η, t)
∂t

(5)

where ∇2ξ = P(ξ, η) and ∇2η = Q(ξ, η) are grid control functions. If P(ξ, η) = Q(ξ, η) = 0, a smooth
grid over the physical domain is generated. Thus, Equation (5) becomes

α
∂2T(ξ,η,t)

∂ξ2 − 2β∂
2T(ξ,η,t)
∂ξ∂η + γ

∂2T(ξ,η,t)
∂η2

J2

 = ρc
kT

∂T(ξ, η, t)
∂t

in 1 < ξ < M, 1 < η < N, for t > 0 (6)

where
α = x2

η + y2
η

β = xξxη + yξyη
γ = x2

ξ + y2
ξ

J = xξyη − xηyξ (Jacobian of transformation)

(7)

are the coefficients obtained from the elliptic grid generation method. The transformed boundary and
initial conditions becomes(

−1
J
√
γ

(
γ
∂T(ξ, η, t)

∂η
− β

∂T(ξ, η, t)
∂ξ

))
Γ1

=

.
q(t)
kT

at 1 < ξ < M, η = 1, for t > 0 (8)

(
1

J
√
γ

(
γ
∂T(ξ, η, t)

∂η
− β

∂T(ξ, η, t)
∂ξ

))
Γ2

= −
h2

kT
(T(ξ, η, t) − T∞2) at 1 < ξ < M, η = N, for t > 0 (9)

(
−1

J
√
α

(
α
∂T(ξ, η, t)

∂ξ
− β

∂T(ξ, η, t)
∂η

))
Γ3

= −
h3

kT
(T(ξ, η, t) − T∞3) at 1 < η < N, ξ = 1, for t > 0 (10)

(
1

J
√
α

(
α
∂T(ξ, η, t)

∂ξ
− β

∂T(ξ, η, t)
∂η

))
Γ4

= −
h4

kT
(T(ξ, η, t) − T∞4) at 1 < η < N, ξ = M, for t > 0 (11)

T(ξ, η, 0) = T∗0(ξ, η) in 1 < ξ < M, 1 < η < N, for t = 0 (12)
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where T∗0(ξ, η) is the initial condition T0(x, y) rewritten in terms of the variables ξ and η. The derivatives
appearing in the transformed heat conduction equation, Equation (6) can be discretized in the regular
computational domain using the finite-difference method, as follows

(assuming ∆ξ = ∆η = 1)
fξ = 1

2 ( fi+1, j − fi−1, j)

fη = 1
2 ( fi, j+1 − fi, j−1)

fξξ = fi+1, j − 2 fi, j + fi−1, j
fηη = fi, j+1 − 2 fi, j + fi, j−1

fξη = 1
4 ( fi+1, j+1 − fi−1, j+1 − fi+1, j−1 + fi−1, j−1)

(13)

where f ≡ x, y, T. For the discretization of the boundary condition equations, one-sided forward and
one-sided backward relations should be used.

The transformed differential equation, Equation (6), can be approximated by the finite-difference
method using the explicit method. Using forward-time-central-space (FTCS) discretization and the
relations in Equation (13), we get

1
J2

(
α(Tn

i+1, j − 2Tn
i, j + Tn

i−1, j) − 2β 1
4 (T

n
i+1, j+1 − Tn

i−1, j+1 − Tn
i+1, j−1 + Tn

i−1, j−1) + γ(Tn
i, j+1 − 2Tn

i, j + Tn
i, j−1)

)
=

ρc
kT

Tn+1
i, j −Tn

i, j

∆t , i = 2, M− 1, j = 2, N − 1 for t > 0
(14)

where ∆t is the time step. Considering stability criterion, Equation (14) can be solved using the
time-marching procedure to obtain Tn+1

i, j . In other words, the nodal temperatures at the time level

n + 1, Tn+1
i, j , can be determined from the knowledge of nodal temperatures at the previous time level n,

Tn
i, j, as follows

Tn+1
i, j = Tn

i, j+

kT∆t
ρcJ2

(
α(Tn

i+1, j − 2Tn
i, j + Tn

i−1, j) − 2β 1
4 (T

n
i+1, j+1 − Tn

i−1, j+1 − Tn
i+1, j−1 + Tn

i−1, j−1) + γ(Tn
i, j+1 − 2Tn

i, j + Tn
i, j−1)

) (15)

3. The Inverse Analysis

3.1. Objective Function

The aim of this study is to estimate the timewise varying heat flux applied at the time ti and the
surface Γ1,

.
q(ti),i = 1, f using the transient readings of a single sensor S placed at the point (Si, Sj)

inside the body. To do so, an inverse analysis is used so that the square of the difference between the
estimated temperatures at the sensor place, Te(Si, Sj, ti), computed from the solution of the direct heat
conduction problem using the estimated heat flux

.
q(ti) and the measured temperatures Tm(Si, Sj, ti)

over the time domain 0 < t < t f is minimized. This can be mathematically expressed as

min

 J
.
q at Γ1

:= ‖Te(Si, Sj, t) −Tm(Si, Sj, t)‖2 : Equation (1) in Ω, BCs and IC in Equations (2)–(4)

 (16)

where
.
q =

[ .
q(t1),

.
q(t2),

.
q(t3), . . . ,

.
q(t f )

]T
. The inverse analysis is used to minimize the following

objective function expression:

J =
f∑

i=1

[Te(Si, Sj, ti) − Tm(Si, Sj, ti)]
2 (17)
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3.2. Sensitivity Analysis

The inverse problem is concerned with the calculation of the gradient of the objective function J
defined by Equation (17) with respect to

.
q(ti),i = 1, f . Thus, we can write

∂J
∂

.
q(ti′)

= 2
f∑

i=1

[Te(Si, Sj, ti) − Tm(Si, Sj, ti)]
∂Te(Si, Sj, ti)

∂
.
q(ti′)

(18)

In Equation (18), ∂Te(Si,Sj,ti)

∂
.
q(ti′ )

(i = 1, f , i′ = 1, f ) are called the sensitivity coefficients and can be
explicitly expressed using the chain rule (using the constant thermal conductivity kT) as follows

∂Te(Si, Sj, ti)

∂
.
q(ti′)

=

∂Te(Si,Sj,ti)
∂kT

∂
.
q(ti′ )
∂kT

(19)

The term in the numerator of Equation (19), ∂Te(Si,Sj,ti)
∂kT

, can be obtained by taking the derivative of

the solution of Equation (15), Tn+1
i, j , with respect to kT,as follows

∂Tn+1
e (Si,Sj,ti)
∂kT

= ∆t
ρcJ2

(
α(Tn

Si+1,Sj − 2Tn
Si,Sj + Tn

Si−1,Sj)

−2β 1
4 (T

n
Si+1,Sj+1 − Tn

Si−1,Sj+1 − Tn
Si+1,Sj−1 + Tn

Si−1,Sj−1) + γ(Tn
Si,Sj+1 − 2Tn

Si,Sj + Tn
Si,Sj−1)

) (20)

The term in the denominator of Equation (19),∂
.
q(ti′ )
∂kT

, can be obtained from the boundary condition
involving the applied heat flux, Equation (8), as follows

.
q(t) = kT

(
−1

J
√
γ

(
γ
∂T(ξ, η, t)

∂η
− β

∂T(ξ, η, t)
∂ξ

))
Γ1

(21)

therefore, we get
∂

.
q(ti′)

∂kT
=

(
−1

J
√
γ

(
γ
∂T(ξ, η, t)

∂η
− β

∂T(ξ, η, t)
∂ξ

))
Γ1

(22)

where the terms Tξ, Tη, J, γ, and β are computed using the finite-difference expressions associated with
the surface Γ1.

Therefore, the expression in Equation (19) can be computed by dividing the expression in Equation
(20) by the one in Equation (22).

∂Te(Si,Sj,ti)

∂
.
q(ti′ )

= 1(
−1

J
√
γ

(
γ
∂T(ξ,η,t)

∂η −β
∂T(ξ,η,t)

∂ξ

))
Γ1

∆t
ρcJ2

(
α(Tn

Si+1,Sj − 2Tn
Si,Sj + Tn

Si−1,Sj)

−2β 1
4 (T

n
Si+1,Sj+1 − Tn

Si−1,Sj+1 − Tn
Si+1,Sj−1 + Tn

Si−1,Sj−1) + γ(Tn
Si,Sj+1 − 2Tn

Si,Sj + Tn
Si,Sj−1)

) (23)
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Therefore, the sensitivity coefficients ∂Te(Si,Sj,ti)

∂
.
q(ti′ )

can be computed in only one single direct problem
solution (during the transient solution) without the need for solving sensitivity and adjoint problems.
The sensitivity matrix Ja can be explicitly written as

Ja .
q(t) =



∂Te(Si,Sj,t1)

∂
.
q(t1)

∂Te(Si,Sj,t1)

∂
.
q(t2)

∂Te(Si,Sj,t1)

∂
.
q(t3)

. . .
∂Te(Si,Sj,t1)

∂
.
q(t f )

∂Te(Si,Sj,t2)

∂
.
q(t1)

∂Te(Si,Sj,t2)

∂
.
q(t2)

∂Te(Si,Sj,t2)

∂
.
q(t3)

. . .
∂Te(Si,Sj,t2)

∂
.
q(t f )

∂Te(Si,Sj,t3)

∂
.
q(t1)

∂Te(Si,Sj,t3)

∂
.
q(t2)

∂Te(Si,Sj,t3)

∂
.
q(t3)

. . .
∂Te(Si,Sj,t3)

∂
.
q(t f )

...
∂Te(Si,Sj,t f )

∂
.
q(t1)

...
∂Te(Si,Sj,t f )

∂
.
q(t2)

...
∂Te(Si,Sj,t f )

∂
.
q(t3)

. . .

. . .

...
∂Te(Si,Sj,t f )

∂
.
q(t f )


f× f

(24)

However, the temperature estimated at any time is independent of a yet-to-occur future heat flux
component [1,14] and the sensitivity matrix is a lower-triangular one. In other words, for i′ > i (the

terms above the main diagonal of the sensitivity matrix), ∂Te(Si,Sj,ti)

∂
.
q(ti′ )

= 0. Thus, we get

Ja .
q(t) =



∂Te(Si,Sj,t1)

∂
.
q(t1)

0 0 . . . 0
∂Te(Si,Sj,t2)

∂
.
q(t1)

∂Te(Si,Sj,t2)

∂
.
q(t2)

0 . . . 0
∂Te(Si,Sj,t3)

∂
.
q(t1)

∂Te(Si,Sj,t3)

∂
.
q(t2)

∂Te(Si,Sj,t3)

∂
.
q(t3)

. . . 0
...

∂Te(Si,Sj,t f )

∂
.
q(t1)

...
∂Te(Si,Sj,t f )

∂
.
q(t2)

...
∂Te(Si,Sj,t f )

∂
.
q(t3)

. . .

. . .

...
∂Te(Si,Sj,t f )

∂
.
q(t f )


f× f

(25)

3.3. The Steepest-Descent Method

In this study, the steepest-descent optimization method is used to solve the inverse heat transfer
problem. In this method, the objective function given by Equation (17) is minimized by searching
along the direction of descent d(k) using a search step length β(k).

.
q(k+1)

=
.
q(k)
− β(k)d(k) (26)

The direction of descent is obtained from the gradient direction ∇J(k), as follows

d(k) = ∇J(k) (27)

The search step-length is given as follows [2]

β(k) =
[Ja(k)d(k)]

T
[Te −Tm]

[Ja(k)d(k)]
T
[Ja(k)d(k)]

(28)

Optimization Algorithm

The following algorithm presents the direct and inverse analysis steps used to estimate the
timewise varying heat flux applied at the boundary surface Γ1:

1. Specify the physical domain, the boundary and initial conditions, and the measured temperatures

at the sensor place SSi,Sj and the time ti(i = 1, f ), Tm(Si, Sj, ti).
2. Generate the boundary-fitted grid over the heat conducting body using the elliptic grid

generation method.
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3. Solve the direct problem to obtain the temperature values at the sensor place and the time

ti(i = 1, f ), Te(Si, Sj, ti), through solving Equations (6)–(12).
4. Using Equation (17), compute the objective function (J(k)).
5. If value of the objective function obtained in step 4 is less than the specified stopping criterion,

the optimization is finished. Otherwise, go to step 6.
6. Compute the sensitivity matrix Ja .

q(t) from Equation (25).

7. Compute the gradient directions ∇J(k) from Equation (18).

8. Compute the directions of descent d(k) from Equation (27).

9. Compute the search step lengths β(k) from Equation (28).

10. From Equation (26), evaluate the new values for
.
q, namely

.
q(k+1).

11. Set the next iteration (k = k + 1) and return to step 2.

3.4. Stopping Criterion

Without measurement errors, the inverse problem can be terminated if

J(k) < ε (29)

where ε is a small specified number chosen based on obtaining stable and appropriate results. In
this study, for the case of no measurement error, ε = 0.5. For the temperature measurements with
error, the discrepancy principle is used to terminate the iterative procedure. In the discrepancy principle,
if the difference between estimated and measured temperatures is of the order of magnitude of the
measurement errors, then the solution is assumed to be sufficiently accurate, that is,∣∣∣Te(Si, Sj, t) −Tm(Si, Sj, t)

∣∣∣ ≈ σ (30)

where σ is the standard deviation of the measurement errors and is assumed constant in this study
(σ = 0.1, σ = 0.5, and σ = 1.0). We can obtain the following value for ε by substituting Equation (30)
into Equation (17) (objective function definition)

ε = fσ2 (31)

Then, the iterative procedure is terminated when the following criterion is satisfied

J(k) < ε (32)

here the measured temperatures containing random errors, Tmeas(Si, Sj, ti), (i = 1, f ), are generated by
adding an error term ωσ to the exact temperatures Texact(Si, Sj, ti) to give

Tmeas(Si, Sj, ti) = Texact(Si, Sj, ti) +ωσ (33)

where ω is a random variable with normal (Gaussian) distribution, zero mean, and unitary standard
deviation. Assuming 99% confidence for the measured temperature, ω lies in the range −2.576 ≤ ω ≤
2.576 and it is randomly generated by using MATLAB.

4. Results

Three test cases are presented to investigate the accuracy and efficiency of the proposed sensitivity
analysis method to estimate the timewise varying heat flux applied on part of the boundary of a heat
conducting body. Initially, it is assumed that the heat flux is known, and the transient heat conduction
problem is then solved to estimate the temperature at the sensor place at times ti (i = 1, f ). Then,
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the estimated temperatures are used as simulated measured ones to recover the initially used heat flux.
Three different forms of timewise variation are considered for the heat flux, as follows

(1) A step-function in Test case 1:
.
qstep =


3000, 0 < t < 700s

7000, 700s ≤ t ≤ 1400s
5000, 1400s <t ≤ 2000s

(2) A sinusoidal function in Test case 2:
.
qsinusoidal = 5000 + 400 sin( πti

180 ), 0 <t ≤ 2000s
(3) A triangular function in Test case 3:

.
qtriangular =


3000, 0 < t < 700s

7000−3000
1000−700 (t− 700) + 3000, 700s ≤ t ≤ 1000s

3000−7000
1300−1000 (t− 1000) + 7000, 1000s <t ≤ 1300s
3000, 1300s <t ≤ 2000s

The heat-conducting body is made of stainless steel (type 304). The numerical values of the
coefficients involved in the test cases are listed in Table 1.

Table 1. Data used for the heat conduction problem (the body is made of stainless steel (type 304)).

Test Case kT(
W

m.◦C ) ρ( kg
m3 ) c( J

kg.◦C )
.
q( W

m2 )
hi(

W
m2.◦C )

i=2,3,4
T∞i (

◦C)
i=2,3,4

(1) 14.9 7900 477
.
qstep 5 30

(2) 14.9 7900 477
.
qsin usoidal 5 30

(3) 14.9 7900 477
.
qtriangular 5 30

The grid size is M ×N = 20 × 20, the sensor is placed at the node (Si, Sj) = (M
2 , 5) (Figure 2),

the initial temperature is T(x, y, 0) = T0(x, y) = 20◦C, the final time is t f = 2000s, and the time step is

∆t = 0.2s. Thus, the number of transient readings of the single sensor S is f =
t f
∆t = 2000s

0.2s = 10000.
This implies that the number of unknown parameters is 10000. Thus, the parameter estimation
approach used so far in the literature is not feasible to estimate this extremely large number of unknown
parameters. However, it will be shown that using the proposed sensitivity analysis, the estimation of
such a large number of unknown parameters is feasible in an accurate and efficient manner.
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2 , 5), used to measure the temperature at time ti.
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In this study, three different measurement errors of σ = 0.1, 0.5, 1.0 are considered. The stopping
criteria (Equation (31)) for the test cases with these measurement errors are

σ = 0.1⇒ ε = σ2 f = 0.12(10000) = 100
σ = 0.5⇒ ε = σ2 f = 0.52(10000) = 2500
σ = 1.0⇒ ε = σ2 f = 1.02(10000) = 10000

Since the size of the Jacobian matrix is f × f , we will deal here with a Jacobian matrix of size
10000× 10000. As soon as the nodal temperature at the sensor place is calculated at each time ti, the
Jacobian matrix coefficients can be immediately calculated during the transient solution using the
explicit expression for the sensitivity coefficients; that is, during the transient solution of the direct

problem, the terms TkT (i, 1) = ∂Te(Si,Sj,ti)
∂kT

, i = 1, . . . , f and
.
qkT

( j, 1) =
∂

.
q(t j)

∂kT
, j = 1, . . . , f are computed

from Equations (20) and (22), respectively, and then the sensitivity coefficients can be obtained from

do i = 1, f
do j = 1, f

if (i.LT. j) then
Ja(i, j) = 0.0

else

Ja(i, j) =
TkT (i,1).
qkT

( j,1)

endif
enddo

enddo

This means that the proposed sensitivity analysis scheme is very efficient and does not contribute
significantly to the computational cost of the solution. If we assume that the computational cost of the
expression given by Equation (15) at any node (i, j) and time ti is equal to a, then the computational cost
of the entire transient heat conduction solution for M×N nodes at the final time t f is approximately
equal to M ×N × f × a. On the other hand, the computational cost of Equation (23) for a single
sensor placed at only one node, S(Si, Sj), at the final time t f is approximately equal to 1 × f × a.
Therefore, the computational cost of the computation of Jacobian matrix at each iteration is 1

M×N of
the computational cost of the direct problem solution. In this study, since M ×N = 20 × 20 = 400,
the computational cost of the computation of Jacobian matrix is 1

400 = 0.0025 of the computational cost
of the direct problem solution.

The initial guesses used for the estimation of the unknown timewise varying heat fluxes in the
test cases are as follows:

.
qinitialTest case 1

(t) = 6000.0(
W
m2 )

.
qinitialTest case 2

(t) = 4000.0(
W
m2 )

.
qinitialTest case 3

(t) = 4500.0(
W
m2 )

Initially, the temperature distribution for the heat conducting body used in one of the test cases
(Test case 2) is compared to the temperature distribution obtained from the commercial finite element
software COMSOL to validate the implementation of the direct problem solution. To do so, the timewise
varying heat flux given in Test case 2 (5000 + 400 sin( πti

180 ), 0 <t ≤ 2000s) is considered. The grid and the
temperature distribution obtained by the explicit solver, Equation (15), using the problem data given
in Table 1, a grid size of 20 × 20, and the time step ∆t = 0.2s are shown in Figure 3a,b, respectively,
and the temperature distribution obtained by the finite element software COMSOL is depicted in
Figure 3c. The temperature history of the place of the sensor, S(M

2 , 5), obtained by the explicit solver
and the software COMSOL is depicted in Figure 4. Moreover, the temperature distribution at the final
time t f = 2000s at a given line, here along the nodes (i, j), i = 1, . . . , M, j = 12, obtained by the explicit
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solver and the software COMSOL is shown in Figure 5. The comparison between the results shows
very good agreement, thereby confirming the correct implementation of the explicit solver.
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Figure 5. Comparison of temperature at nodes (i, j), i = 1, . . . , M; j = 12 at the final time t f = 2000s
obtained from the explicit solver and the finite-element software COMSOL. The position of nodes (a)
and the temperature comparison (b).

Three different functions (step, sinusoidal, and triangular function) are considered for the timewise
variation of the applied heat flux to investigate the inverse analysis presented here. These different
functions are selected so that they can reflect the accuracy and efficiency of the inverse analysis as they
involve sharp comers and discontinuities, which are the most difficult to be recovered by an inverse
analysis [2]. Considering the three different functions, a comparison of the initial (guessed), optimal,
and desired heat fluxes is shown in Figure 6a, Figure 7a, Figure 8a (for the case of no measurement
error, σ = 0), Figure 6c, Figure 7c, Figure 8c (for the measurement error of σ = 0.1), Figure 6e,
Figure 7e, Figure 8e (for the measurement error of σ = 0.5), and Figure 6g, Figure 7g, Figure 8g (for the
measurement error of σ = 1.0). It can be seen that very accurate results are obtained for both cases
of no measurement error and the measurement error, even for functions containing sharp comers
and discontinuities.
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Figure 6. Estimation of the timewise varying heat flux
.
qstep using an initial guess

.
qinitialTest case 1

(t) =

6000.0( W
m2 ) and objective function versus iteration number (Test case 1) for cases of no measurement

error (a,b) and measurement error of σ = 0.1 (c,d), σ = 0.5 (e,f), and σ = 1.0 (g,h). (a) σ = 0;
(b) ε = 0.5; (c) σ = 0.1; (d) ε = (0.12)10000 = 100; (e) σ = 0.5; (f)ε = (0.52)10000 = 2500; (g) σ = 1.0;
(h) ε = (1.02)10000 = 10000.
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Figure 7. Estimation of the timewise varying heat flux
.
qsin usoidal using an initial guess

.
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(t) =
4000.0( W

m2 ) and objective function versus iteration number (Test case 2) for cases of no measurement
error (a,b) and measurement error of σ = 0.1 (c,d), σ = 0.5 (e,f), and σ = 1.0 (g,h). (a) σ = 0.0;
(b) ε = 0.5; (c) σ = 0.1; (d) ε = (0.12)10000 = 100; (e) σ = 0.5; (f) ε = (0.52)10000 = 2500; (g) σ = 1.0;
(h) ε = (1.02)10000 = 10000.
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Figure 8. Estimation of the timewise varying heat flux
.
qtriangular using an initial guess

.
qinitialTest case 3

(t) =

4500.0( W
m2 ) and objective function versus iteration number (Test case 3) for cases of no measurement

error (a,b) and measurement error of σ = 0.1 (c,d), σ = 0.5 (e,f), and σ = 1.0 (g,h). (a) σ = 0.0;
(b) ε = 0.5; (c)σ = 0.1; (d) ε = (0.12)10000 = 100; (e) σ = 0.5; (f)ε = (0.52)10000 = 2500; (g) σ = 1.0;
(h) ε = (1.02)10000 = 10000.

The convergence histories of the objective function for Test cases 1–3 and cases of no measurement
error and the measurement errors of σ = 0.1, σ = 0.5, and σ = 1.0 are shown in Figure 6b, Figure 7b,
Figure 8b (for the case of no measurement error, σ = 0), Figure 6d, Figure 7d, Figure 8d (for the
measurement error of σ = 0.1), Figure 6f, Figure 7f, Figure 8f (for the measurement error of σ = 0.5),
and Figure 6h, Figure 7h, Figure 8h (for the measurement error of σ = 1.0), respectively. Without
the measurement error, a 100% reduction in the objective function and complete recovering of the
unknown heat flux are achieved in all test cases, which shows the accuracy of the proposed sensitivity
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analysis scheme. Moreover, an acceptable recovering of unknown heat flux even in the presence
of large measurement errors and a significant reduction in the objective function value implies that
the proposed inverse analysis is not strongly affected by the errors involved in the temperature
measurements. In addition, in all test cases with and without measurement error, a high convergence
rate can be seen and an approximately 99% reduction in the objective function value takes place in
the first ten iterations. As can be seen in the figures, the number of required iterations to obtain a
stable solution using the discrepancy principle in recovering the unknown heat flux is decreased by
increasing the measurement error. The only exception is the case of the measurement error of σ = 0.1
in Test case 2 in which the number of iterations is 467 (larger than 401 for σ = 0.0). The reason is that
the iterative process for the case of the measurement error of σ = 0.1 could be terminated much sooner
because the discrepancy principle, Equation (30), is an approximation expression. The value of the
objective function at iteration 314 is 101.007 and the value of the objective function at iteration 467 is
99.999. The objective function is decreased from 101.007 to 99.999 in 154 iterations. In other words,
one could terminate the iterative process at iteration 314 instead of iteration 467 to get a stable solution.
In the case of the measurement error, some oscillatory behaviors are observed around the exact values
due to the ill-posed nature of the inverse heat transfer problem. The details of the results, including the
initial and desired values for the variable heat flux, the initial and final values of the objective function,
the computation time, the number of iterations, and the percentage of the decrease in the objective
function, are given in Table 2 (for cases of no measurement error and the measurement errors of σ = 0.1,
σ = 0.5, and σ = 1.0). As can be seen in Table 2, in spite of large unknown variables (10000 in these test
cases) and large final time, (t f = 2000s), the short computation time in the test cases confirms that the
employed inverse analysis based on the proposed sensitivity analysis is very efficient. The results are
obtained by a FORTRAN compiler and computations are run on a PC with Intel Core i5 and 6G RAM.

Table 2. A summary of results for the estimation of the timewise varying heat flux
.
q(t).

Test
Case

Desired Heat
Flux

Initial Heat
Flux Temperature

Measurement Error
Initial Value

of J
Minimum
Value of J

Reduction in Objective Function
& Computation time

( W
m2 ) ( W

m2 )

(1)
.
qstep 6000.0 σ = 0.0 245,874.155 0.499

~100%
68 min

(427 iterations)

σ = 0.1 246,030.055 99.989
~100%
56 min

(343 iterations)

σ = 0.5 248,653.454 2498.254
99%

23 min
(137 iterations)

σ = 1.0 256,432.253 9999.998
96.1%
9 min

(58 iterations)

(2)
.
qsinusoidal 4000.0 σ = 0.0 146,727.537 0.498

~100%
64 min

(401 iterations)

σ = 0.1 146,826.545 99.999
99.9%
74 min

(467 iterations)

σ = 0.5 149,222.374 2499.896
98.3%
33 min

(206 iterations)

σ = 1.0 156,716.711 9999.977
93.6%
20 min

(126 iterations)

(3)
.
qtriangular 4500.0 σ = 0.0 109,715.236 0.419

100%
16 min

(102 iterations)

σ = 0.1 109,841.079 99.962
99.9%
16 min

(101 iterations)

σ = 0.5 112,344.252 2496.899
97.8%
7 min

(42 iterations)

σ = 1.0 119,972.769 9997.296
91.7%
4 min

(26 iterations)
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It can also be seen that in a neighborhood of t f the estimated heat flux deviates from the exact one
and approaches the initial heat flux. One method to overcome this drawback and reduce the effects of
the initial heat flux on the solution in the time interval of interest is to consider a final time larger than
that of interest. From Equation (18) we can write the gradient of the objective function J with respect to
.
q as

∂J
∂

.
q
= 2JaT[Te −Tm] (34)

By approaching the final time t f , the elements with zero value in the column vectors of the Jacobian
matrix Ja increase and there is only one nonzero element in the last column vector (see Equation (25))
because the Jacobian matrix is a lower-triangular matrix. For example, the gradient of the objective
function J with respect to the heat flux at the final time,

.
q(t f ), is

∂J
∂

.
q(t f )

= 2



0

0

0
...

0
∂Te(Si,Sj,t f )

∂
.
q(t f )



T

Te(Si, Sj, t1) − Tm(Si, Sj, t1)

Te(Si, Sj, t2) − Tm(Si, Sj, t2)

Te(Si, Sj, t3) − Tm(Si, Sj, t3)

...

Te(Si, Sj, t f−1) − Tm(Si, Sj, t f−1)

Te(Si, Sj, t f ) − Tm(Si, Sj, t f )


= 2

∂Te(Si, Sj, t f )

∂
.
q(t f )

[
Te(Si, Sj, t f ) − Tm(Si, Sj, t f )

]
(35)

which is a very small number. Substituting a very small value for ∇J(k).
q(t f )

into Equation (27), d(k).
q(t f )

=

∇J(k).
q(t f )

, gives a very small value for d(k).
q(t f )

. Likewise, substituting a very small number for d(k).
q(t f )

into

Equation (26),
.
q(t f )

(k+1) =
.
q(t f )

(k)
− β(k)d(k).

q(t f )
, results in

.
q(t f )

(k+1)
≈

.
q(t f )

(k), as observed.

5. Conclusions

An explicit sensitivity analysis scheme was developed in this study to estimate the unknown
functional form of the timewise varying heat flux applied on part of the boundary of a heat-conducting
body subjected to specified initial and boundary conditions through transient readings of a single
sensor placed inside the body. There was no prior information available on the functional form of
the unknown heat flux. Unlike the function estimation approach which is the widespread approach
to address this problem, in this study a parameter estimation approach was used for the first time
to estimate the unknown functional form accurately and efficiently through demonstrating three
test cases. The transient heat conduction equation was solved using an explicit scheme. Initially,
the two-dimensional irregular domain was transformed into a regular computational domain and all
computations needed to solve the direct and inverse problem equations were carried out in the regular
computational domain. The elliptic grid generation method was used to mesh the physical domain and
the finite-difference method was used to approximate the derivatives of the field variable (temperature)
at the grid nodes by algebraic ones. A novel, efficient, accurate, and very easy to implement sensitivity
analysis scheme was developed by using the chain rule to obtain an explicit relation between the
temperature at the sensor place and the timewise varying wall heat flux applied on the part of the
domain boundary which allowed for the calculation of the sensitivity coefficients at each time step
during the transient solution. Thus, the inverse analysis using the proposed sensitivity analysis
scheme is not involved with sensitivity and adjoint equations. The main novelty is that all sensitivity
coefficients can be computed efficiently in only one direct problem solution (during the transient
solution), without the need for the solution of the sensitivity and adjoint equations (to compute the
gradient of the objective function with respect to the variables). The steepest-descent method with an
appropriate stopping criterion specified by the discrepancy principle was used to minimize the objective
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function and recover the unknown functional form accurately. The accuracy and efficiency of the
proposed numerical procedure were demonstrated through presenting three test cases.
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