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Abstract

This work proposes a novel multi-output neural network for the prediction of

aerodynamic coefficients of aerofoils in two dimensions and wings in three dimen-

sions. Contrary to existing neural networks that are often designed to predict

aerodynamic quantities of interest, the proposed network considers as output

the pressure at a number of selected points on the aerodynamic shape. The pro-

posed multi-output neural network is compared with other approaches found in

the literature. Furthermore, a detailed comparison of the proposed neural net-

work with the popular proper orthogonal decomposition method is presented.

The numerical results, involving high dimensional problems with flow and geo-

metric parameters, show the benefits of the proposed approach.

Keywords: neural network, proper orthogonal decomposition, CFD, NURBS,

aerofoil, wing.

1. Introduction

Computational fluid dynamics (CFD) is heavily used to approximate the

aerodynamic forces on aerofoils in different engineering applications [1, 2, 3].

During the design and optimisation stages of aerodynamic components, the

simulations to be performed involve a large number of parameters related to
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the geometry and flow conditions. In this scenario, the simulation of all pos-

sible configurations is not affordable. In addition, it is worth noting that the

parameters involved in the simulations often contain a certain level of uncer-

tainty [4, 5].

The use of reduced order models (ROM) has become a popular alternative to

alleviate the computational burden associated to CFD simulations involving a

large number of parameters [6]. Some of the more popular ROMs are the reduced

basis method [7], the proper orthogonal decomposition (POD) [8, 9, 10, 11, 12],

the non-linear kernel principal component analysis (kPCA) [13, 14] and the

proper generalised decomposition (PGD) [15, 16, 17]. Although non-intrusive

approaches exist [18, 19, 20], the applicability of the PGD is often limited by

the number of parameters to be considered.

Artificial neural networks (NN) have also been successfully employed as a

ROM in many areas of science and engineering, including CFD [21, 22]. One

of the first applications of NNs as a data-driven approach for the design of

aerofoils can be found in [23]. One of the first applications of NN to study

geometrically parametrised aerofoils was presented in the 1990s [24]. Physics-

based NNs have also become another popular option in the field of aerodynamic

modelling. The authors in [25] employ supervised NNs that respect any given

laws of physics described by generalised non-linear partial differential equations.

Researchers have also integrated the physical laws of the Navier-Stokes equations

in NNs [26, 27].

Physics-inspired NN models have also been built in which NN is used to

map the explanatory variables to the POD coefficients such that for a new set

of inputs, the POD coefficients are obtained in the lower dimensional space of the

reduced order model [28, 29, 30]. The kPCA, a non-linear projection method

to a higher dimensional space, has mainly been used as a feature extraction

method in the explanatory variables and an alternative regression method is

used to map these feature variables, expressed in higher dimensions, to the

response variables [14, 31]. The reconstruction from its principal components

to the feature space is always possible, however the authors in [32, 33] underlines
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the difficulties in the reconstruction to the input space.

In the last two decades, the use of NNs in CFD applications has grown

significantly. In [34], the authors use NNs to predict the pressure over a geo-

metrically parametrised wing. The use of the so-called PARSEC aerofoil repre-

sentation [35] has also been extensive employed to train NNs for the prediction

of aerodynamic coefficients [36, 37, 38]. In [39], an extension to hybrid geo-

metric parametrisations using the PARSEC representation and Bezier curves is

presented. More recently, approaches based on aerofoil images, rather than a

mathematical description, have also been considered [40].

One of the most attractive properties of ROMs and NNs is that, once the

ROM or NN is built, predictions can be performed in almost real time. This

enables the use of such models for the fast evaluations of an objective function

in optimisation and inverse problems. The use of NNs to perform directly the

optimisation has also been considered in the literature [41, 39, 42].

In this work, a multi-output NN is proposed to predict the aerodynamic

coefficients of aerofoils and wings using inviscid compressible CFD data. The

output consists of the pressure evaluated at a number of points on the aerofoil

surface. Here this is done using a single NN, rather than as many NNs as

the number of points on the surface, as performed in [34]. The performance

of the proposed NN is compared with the most common approach found in

the literature, where a NN with a single output, corresponding to the lift, is

considered [43, 36, 44, 37, 24, 40]. The proposed approach is also compared to

the POD in the numerical examples in two dimensions.

The numerical examples presented consider parameters corresponding to in-

flow conditions and geometries. For problems with parametrised inflow condi-

tions, the selected range for the angle of attack and the Mach number leads to

subsonic and transonic flow regimes. This situation is known to be challenging

as some ROMs have shown difficulties in accurately predicting the flow fea-

tures across different regimes. For problems involving parametrised geometries,

non-uniform rational B-Splines [45] are considered as the geometric represen-

tation. The control points of the NURBS curves or surfaces are considered to
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be the parameters. Detailed numerical studies are also presented to select the

optimal hyperparameters of the various configurations of NN employed and the

numerical parameters of the POD.

The remainder of the paper is structured as follows. Section 2 briefly re-

calls the Euler equations for an inviscid compressible flow and the finite volume

scheme used here to obtain the CFD data. In sections 3 and 4 the fundamentals

of NNs and the POD are presented, respectively. In section 5 three numeri-

cal examples in two dimensions are presented. The first example considers a

problem where the angle of attack and the Mach number are the parameters.

The proposed multi-output NN is built and compared against traditional NNs

predicting the aerodynamic coefficients. Numerical studies are also presented

to show the influence of the NN hyperparameters on the accuracy of the pre-

dictions. The second example compares the proposed NN to the POD for a

problem where the angle of attack and the Mach number are the parameters.

The last example of section 5 compares the proposed NN and the POD for

a problem with 25 geometric parameters corresponding to the position of the

NURBS control points defining the aerofoil. Both subsonic and transonic cases

are analysed. In section 6, three examples in three dimensions are also pre-

sented. The proposed multi-output NN is compared against two other NNs

predicting the aerodynamic coefficients directly, the single output NN and the

three outputs NN. The first example considers a problem where the angle of at-

tack and Mach number are varied and shows the influence of the accuracy of the

CFD data on the accuracy of the NN predictions. The second example involves

the NN predictions on a geometrically parametrised wing with 50 geometric

parameters. The last example of section 6 uses NN to perform predictions on a

deforming wing, in which the Mach number, angle of attack, geometric twist in

the spanwise direction and wingtip deflection in the z-plane are varied.
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2. Finite volume solution of inviscid compressible flows

2.1. Governing equations

The fluid flow problems considered in this work are governed by the Euler

equations for an inviscid compressible fluid. The strong form of the problem, in

a computational domain Ω ⊂ Rd and in the absence of external volume forces,

can be written as

U t + ∇ · F (U) = 0 in Ω× ( 0, T ]

U = U0 in Ω× {0}

B(U ,U∞) = 0 in ∂Ω× ( 0, T ].

(1)

The vector of conservation variables, U , and the flux tensor, F , are given by

U :=


ρ

ρv

ρE

 , F :=


ρvT

ρv ⊗ v + pId

(ρE + p)vT

 , (2)

U0 denotes the initial condition, T is the final time and B is the generic flux

used to define the boundary conditions. In the above expressions ρ is the density,

ρv is the momentum, ρE is the total energy per unit volume, p is the pressure

and Id is the identity matrix of dimension d.

The Euler equations are closed with the equation of state for a perfect poly-

tropic gas, in the form

p = (γ − 1)ρ

(
E − 1

2
‖v‖2

)
, (3)

where γ = 1.4, is the ratio of the specific heats for air.

2.2. Vertex-centred finite volume method

Vertex-centred finite volume (FV) methods form the basis of many industrial

and research codes and have proved to be competitive when simulating steady

flows [46, 47].

In the FV context, a control volume Ωi, associated to a node xi, is formed

by joining the edge midpoints and the element centroids of the edges connected

to the node xi and the elements sharing xi respectively.
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The spatial discretisation of the vertex-centred FV method employs a con-

stant approximation of the solution in each control volume, Ωi. Second-order

convergence is achieved by re-constructing a linear approximation to the fluxes

on each edge of the control volume. More information about the solver utilised

in this work to produce the CFD data can be found in [48].

2.3. Computation of the aerodynamic coefficients

The calculations of the lift, drag and moment coefficients for a given config-

uration are written as

CL =
1

q∞SΓ

∫
Γ

p(nw · n∞)dΓ, (4)

CD =
1

q∞SΓ

∫
Γ

p(nw · t∞)dΓ, (5)

CM =
1

q∞SΓl

∫
Γ

p(r × nw)dΓ, (6)

where Γ is the integration surface, SΓ is the reference area, taken to be the

chord length in two dimensions or the planform area in three dimensions, q∞

is the free-stream dynamic pressure, p is the static pressure, nw denotes the

outward unit normal vector to the wall surface, t∞ and n∞ are the tangential

and normal unit vectors with respect to the direction of the free-stream velocity.

The vector obtained in equation 6 represents the moments in the x, y and z

directions. In this work, only the pitching moment is reported, corresponding

to the moment about the y-axis in three dimensions. A length scale, l, is

introduced and this is usually taken to be the chord length of the aerofoil in two

dimensions or the chord length of mid-span aerofoil cross section of the wing in

three dimensions. The vector r denotes the position of a point, x, on Γ with

respect to a reference point xref, namely r = x − xref. The reference point is

taken as the aerodynamic centre in two dimensions or the centre of gravity in

three dimensions, unless stated otherwise.
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3. Artificial neural networks

Artificial NNs are an arrangement of neurons organised by layers. In the

networks considered here, the neurons of each layer are connected to the neurons

of the previous and subsequent layers. Each neuron has an associated value and

each connection has an associated weight. This particular case is also referred

to as multi-layer perceptron, which is a class of feed-forward NN. The first and

the last layers correspond to the inputs and outputs, and the remaining layers,

called hidden layers, are numbered from l = 1 to l = nL, with nL being the

number of hidden layers [49].

During the so-called forward propagation, the value associated to each neu-

ron is computed by using the values associated to the connected neurons in the

previous layer, the weights of the connections and an activation function F l.

More precisely, the value of the j-th neuron in the layer l+ 1, denoted by zl+1
j ,

is computed as

zl+1
j = F l

 nlN∑
i=1

θlijz
l
i + blj

 , (7)

where blj is a bias that is introduced to enhance the approximation properties of

the network, θlij denotes the weight of the connection between the i-th neuron

of the layer l and the j-th neuron of the layer l + 1 and nlN is the number of

neurons in the layer l. An illustration of a generic multi-layer perceptron NN is

shown in figure 1.

A training case is defined by a vector of N inputs, x = {x1, . . . , xN}T , and a

vector of M outputs, y(x) = {y1(x), . . . , yM (x)}T . Given a set of nTr training

cases, xk = {xk1 , . . . , xkN} and yk = {yk1 , . . . , ykM}, for k = 1, . . . , nTr, the cost

function is defined as

C(θ) =
1

MnTr

nTr∑
k=1

n
nL+1
N∑
i=1

[
yki (xk)− hki (θ)

]2
+

λ

2nTr

nL∑
l=0

nl+1
N∑
i=1

nlN∑
j=1

(θlij)
2. (8)

The values hki correspond to the predicted outputs, computed using a forward

propagation, starting from the input values z0
i = xki for k = 1, . . . , nTr and

7



Figure 1: Schematic representation of a multi-layer perceptron NN.

i = 1, . . . , n0
N. The number of neurons in the input layer is taken as n0

N = N and,

similarly, the number of neurons in the output layer is taken as nnL+1
N = M .

The first term of equation (8) is the mean square error and it measures the

discrepancy between the outputs and the NN predictions. The second term of

equation (8) is a penalty term and it corresponds to one of the most popular

techniques used in NNs to avoid overfitting [50, 51]. The bias is not employed

within the second term as it has been shown that this usually has a negative

effect on the NN approximation properties [52].

The goal of the so-called training stage is to obtain the weights associated to

all the connections of the NN that minimise the cost function of equation (8). In

this work a backpropagation gradient descent search algorithm is employed [53].

A low pass filter is applied to alleviate the common difficulty of gradient based

methods to reach a global minimum in problems where multiple local mini-

mums are present. More precisely, the momentum gradient descent approach is

employed, where the iterative process to compute the optimum weights at the

iteration r + 1 is given by

θl,r+1
ij = (1 + η)θl,rij − ηθ

l,r−1
ij − τ(1− η)

∂C

∂θl,rij
, (9)

where η ∈ [0, 1) is the momentum coefficient of the first order smoothing filter

and τ is the step length to move in the direction of the gradient.
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Although other minimisation algorithms have proven advantageous in some

situations [54], the backpropagation approach employed here has demonstrated

a good performance for training NNs of moderate size [55].

The design of the NN implemented in this work requires the choice of an

activation function in each layer, the number of hidden layers, the number of

neurons in each hidden layer and the overfitting parameter λ. Among all the

possible options, two classes of functions are considered, namely a sigmoid func-

tion and a linear function, given by

S(x) =
1

1 + e−x
and L(x) = x, (10)

respectively. When the NN is designed as a function approximant, the activation

functions are selected as F l = S for l = 0, . . . nL−1 and F nL = L. In contrast, for

NN designed as classifiers, all the activation functions are taken as the sigmoid,

F l = S for l = 0, . . . nL.

The cost function of equation (8) is used when the NN is designed as a

function approximant, whereas for NNs designed as classifiers, the cost function

is taken as

C(θ) =− 1

MnTr

nTr∑
k=1

n
nL+1
N∑
i=1

{
yki (xk) log

[
hki (θ)

]
+ [1− yki (xk)] log

[
1− hki (θ)

] }

+
λ

2nTr

nL∑
l=0

nl+1
N∑
i=1

nlN∑
j=1

(θlij)
2.

(11)

The remaining parameters involved in the network design are known to be

problem dependent. The numerical examples in sections 5 and 6 will show the

influence of these parameters on the approximation properties of the NNs for

the problems under consideration.

The algorithm to compute the optimum weights of the NN also requires the

choice of the parameters η and τ as well as an initial guess for the iterative

process given by equation (9). This choice is usually based on numerical exper-

iments and some recommendations can be found in the literature [49]. Follow-

ing [56], the initialisation of the weights for a layer l uses a uniform distribution

9



within the interval [−
√
al,
√
al], with al = 6/(nlN + nl+1

N ).

4. Proper orthogonal decomposition

Proper orthogonal decomposition (POD) is a popular model order reduction

technique that has been successfully applied in many areas of science and en-

gineering. The most common applications in CFD are found in transient fluid

flow problems where the POD produces surrogate models [8, 9, 11, 10]. The

application of POD to CFD parametric problems, as considered here, is more

recent and some examples can be found in [57, 58, 12].

Let us consider a set of nTr training cases, or snapshots, defined by a set of

inputs and outputs, xk = {xk1 , . . . , xkN} and yk(xk) = {yk1 (xk), . . . , ykM (xk)},

respectively, for k = 1, . . . , nTr. The matrix of snapshots is formed with all the

available outputs as

Y(x1,x2, . . . ,xnTr) =


y1

1(x1) y2
1(x2) · · · ynTr1 (xnTr)

y1
2(x1) y2

2(x2) · · · ynTr2 (xnTr)
...

...
...

y1
M (x1) y2

M (x2) · · · ynTrM (xnTr)

 . (12)

The singular value decomposition of the snapshot matrix is given by

Y = VΣW∗, (13)

where V is a unitary matrix of dimension M × M , whose columns, Vj for

j = 1, . . . ,M , are the left singular vectors of Y, Σ is a rectangular diagonal

matrix of dimension M × nTr whose entries, αj for j = 1, . . . ,min{M, nTr}, are

the singular values of Y, W is a unitary matrix of dimension nTr × nTr, whose

columns, Wj for j = 1, . . . , nTr, are the right singular vectors of Y and the

superscript ∗ denotes the conjugate transpose.

Since the columns of V form an orthonormal basis, each column of the

snapshot matrix Y, corresponding to a set of inputs xk, for k = 1, . . . , nTr, can

be reconstructed using

yk(xk) =

M∑
j=1

αkj (xk)Vj , (14)
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where αkj are the POD coefficients and the vectors Vj are referred to as POD

modes.

After the POD coefficients and modes are computed, the outputs, y, for

a given set of inputs, x, not present in the set of training examples, can be

approximated by

y(x) ≈
M∑
j=1

αj(x)Vj , (15)

where the coefficients αj are obtained by interpolating the POD coefficients.

In practice, the number of modes selected to construct the approximation y(x)

is lower than M . However, in the examples shown in this work all the POD

modes are considered to ensure that the accuracy of the POD approximation is

not influences by the number of modes considered.

Following the work in [11], a radial basis function (RBF) interpolation is

considered here, which is suitable for problems involving a large number of

inputs. The interpolation is given by

αj(x) =

nTr∑
k=1

wkjΘ(‖x− xk‖), (16)

for j = 1, . . . ,M , where wkj , for k = 1, . . . , nTr, is the set of unknown coefficients

and Θ is a radial basis function. The multi-quadric function

Θ(r) =
√
r2 + ε2 (17)

is considered, where ε is a numerical parameter that dictates the radius of

influence of the data.

The coefficients wkj in equation (16) are computed by solving a set of inde-

pendent linear system of equations,

Awj = f j (18)

for j = 1, . . . ,M , with AIJ = Θ(‖xI − xJ‖) and f jI = αIj (x
I).
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5. Numerical examples in two dimensions

5.1. Aerodynamic predictions on a NACA0012 aerofoil at various inflow condi-

tions

The first example considers the computation of the aerodynamic coefficients

of a NACA0012 aerofoil at a free stream Mach number, M∞, and an angle of

attack, α, in predefined intervals IM = (0.3, 0.9) and Iα = (−5◦, 11◦), respec-

tively. This range of the inflow conditions leads to both subsonic and transonic

flows.

Three NNs are considered and compared. The first network considers M∞

and α as inputs and, the lift, drag or moment coefficient as a single output.

The second NN also considers M∞ and α as inputs and has three outputs, cor-

responding to the three aerodynamic coefficients. The third network considers

M∞ and α as inputs and the output is the pressure at a user defined set of

points on the aerofoil. The set of points considered corresponds to the 300

mesh nodes used to discretise the aerofoil. The first and second networks has

previously been considered [43, 36, 44, 37, 24, 40], whereas the third network,

to the authors’ best knowledge, has not been investigated previously.

All three networks are trained using a dataset of nTr = 40 simulations per-

formed with the vertex-centred finite volume method [48]. The training set is

selected by using the latin hypercube sampling [59] in IM×Iα. The test set con-

sists of nTe = 119 cases in IM×Iα and employs an equally-spaced distribution in

ĪM with step 0.1. Similarly, an equally-spaced distribution in Iα with step 1◦ is

considered for each value of M∞. Figure 2 shows the design sampling space used

to define the training and test data. It can be observed that the test set contains

a number of points that will induce an extrapolation, i.e. they are outside of the

convex hull defined by the training set. Therefore, this example is also useful to

evaluate the performance of the different networks when the predictions involve

extrapolation. The learning rate and the momentum coefficient of the networks

considered in this work, are taken as τ ∈ [0.005, 0.5] and η = 0.9 respectively.

These two parameters have been obtained after performing experiments with
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(a) Training set (b) Test set

Figure 2: The sampling space used to define the training and test dataset using nTr = 40 and

nTe = 119 cases respectively.

the two networks considered, and are similar to the parameters used in other

studies [49].

The first numerical experiment explores the accuracy of the predicted aero-

dynamic coefficients as a function of the number of hidden neurons, nN, and the

number of hidden layers, nL, for the three networks considered and for different

values of the over-fitting parameter, λ. The cost function is implemented with

the regularisation term to avoid the need to divide the dataset into validation

and training cases. This choice implies that the over-fitting parameter has to

be tuned, but it ensures that the whole set of available data can be used for

training. The error in the lift prediction of the k-th test case, measured in lift

counts, is defined as

εCL,k = |CL(k)− C?L(k)| × 103, (19)

where CL is the lift coefficient from the CFD solver and C?L is the lift coefficient

predicted by the ROM or NN. In the case when the drag or moment coefficient

is predicted, the error measured in drag counts or moment counts is calculated

in the ten thousandths decimal. It should also be noted that the third network

outputs the pressure on the aerofoil and the computation of the lift is performed

after the pressure distribution is predicted. In the numerical examples, two error

measures are considered to assess the overall performance of the neural networks,
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(a) Network 1 (b) Network 2 (c) Network 3

Figure 3: Mean value of the error measured in lift counts, εCL
, as a function of the number

of hidden neurons, nN, and the number of hidden layers, nL.

namely the mean value of the error measured in the test set, defined as

εCL
=

1

nTe

nTe∑
k=1

εCL,k, (20)

and the maximum value of the error measured in the test set, defined as

εCL,max = max
k=1,...,nTe

{εCL,k} . (21)

Figure 3 shows the mean value of the error, measured in lift counts, as a function

of the number of hidden neurons, nN, and the number of hidden layers, nL.

The results in figure 3(a) show that for the first network, with a single output

corresponding to the lift, the highest accuracy is obtained with one hidden layer

and a large number of neurons, namely nN ∈ [20, 30] and nN ∈ [170, 200]. The

best accuracy obtained with this network is εCL
= 55. Similar accuracy is

also provided by using three hidden layers and 200 hidden neurons. However,

the results show that a small variation in the number of neurons can lead to a

substantial increase in the error, suggesting a lack of robustness.

The second network, with three aerodynamic coefficients as outputs, provide

more accurate results with two or three hidden layers over the range of number

of neurons covered, nN = [60, 70, 170, 190], however, higher deviations from the

mean error are observed in the first network. This indicates that this network

has a high dependence on the number of hidden layers and neurons.

The results for the third network, with multiple outputs corresponding to

the pressure on the aerofoil, are shown in figure 3(c). It can be observed that
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(a) Network 1 (b) Network 2 (c) Network 3

Figure 4: Mean value of the error measured in drag counts, εCD
, as a function of the number

of hidden neurons, nN, and the number of hidden layers, nL.

the accuracy is less dependent on the number of neurons in the hidden layers

and the mean error has a tendency to decrease as the number of neurons is

increased. The best accuracy obtained with this network is εCL
= 31, when one

hidden layer with 70 hidden neurons is used. There are no significant differences

in the accuracy provided by the network with one hidden layer and a number

of neurons nN ∈ [120, 180] or with three hidden layer and a number of neurons

in a similar range. This illustrates its robustness when compared to the first

two networks. For the third network, there is no advantage in using more than

one hidden layer. This shows that the level of non-linearity required to model

the pressure on the aerofoil is lower than the level of non-linearity required to

directly model the lift as an output.

Figure 4 shows the mean value of the error, measured in drag counts, as

a function of the number of hidden neurons, nN, and the number of hidden

layers, nL for the three different NNs. The first NN provides less accurate

results, whereas the proposed NN provides the most accurate results and is less

sensitive to the choice of the hyperparameters. The second NN is also capable

of providing accurate results if only two and three hidden layers are used.

Finally, figure 5 shows the mean value of the error, measured in moment

counts, as a function of the number of hidden neurons, nN, and the number of

hidden layers, nL for the three different NNs. For this aerodynamic quantity of

interest, the superiority of the proposed NN is clearly observed. The first and
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(a) Network 1 (b) Network 2 (c) Network 3

Figure 5: Mean value of the error measured in moment counts, εCM
, as a function of the

number of hidden neurons, nN, and the number of hidden layers, nL.

(a) Network 1 (b) Network 2 (c) Network 3

Figure 6: Regression plot for the lift coefficient as a function of the free-stream Mach number

M∞.

second NNs are not able to provide a single case where the prediction provides

an error below 150 counts, whereas the proposed NN is consistently providing

much lower errors. For this quantity of interest it seems advantageous to employ

more than one hidden layer.

As the numerical experiments performed on the predictions of the drag and

moment produced similar deductions to the predictions of the lift, only the lift

quantity will be presented in the remaining examples in two dimensions.

To illustrate the performance of the networks in the different flow regimes

considered, figure 6 shows the regression plots for the lift coefficient using the

three types of network employed. Different symbols are used for different free-

stream Mach numbers to show the accuracy of the predictions in terms of the

flow regime. The results shown correspond to the best accuracy measured in
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the mean value of the error in lift counts obtained with the networks considered.

The first network employs one hidden layer and 20 hidden neurons, the second

network has two hidden layers and 60 hidden neurons, and finally, the third

network is selected to have one hidden layer and 70 hidden neurons. The results

for the first and second networks, reported in figures 6(a), and 6(b), show a

large deviation for M∞ = 0.8 and M∞ = 0.9. The higher accuracy of the third

network is clearly observed in figure 3(c), with a much lower deviation in all

cases. The results also show that the only sizeable deviation in the predictions

with the proposed NN are observed for M∞ = 0.9. This corresponds to cases

which contains strong shocks and where an extrapolation is performed, as seen

in figures 2.

5.2. Lift prediction on an RAE2822 aerofoil at various inflow conditions

The second example considers the prediction of the lift on the RAE2822

aerofoil at a free stream Mach number, M∞, and an angle of attack, α, in

predefined intervals IM = (0.3, 0.9) and Iα = (−5◦, 12◦) respectively. The flow

in this range will be either subsonic or transonic.

This example compares the performance of the multi-output NN against a

traditional reduced order modelling technique used in aerodynamic modelling,

the POD [60]. The influence of the number of training cases considered on the

accuracy of the predictions is also studied by considering training sets ranging

from nTr = 20 up to nTr = 160 cases.

The performance of the POD method with RBFs used to perform the in-

terpolation [11], is evaluated. In all cases, POD modes are computed from the

training cases, corresponding to the pressure over the 300 points describing the

aerofoil, rather than estimating the value of the lift directly. To predict the

value of the pressure for a given test case, the RBF interpolation requires the

selection of the radius of influence, that is the parameter ε in the multi-quadric

function of equation (17). To study the effect of this numerical parameter, fig-

ure 7 shows the evolution of the mean and maximum error, measured in lift

counts, as a function of the number of cases that are included in the interpola-
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(a) Mean error (b) Maximumn error

Figure 7: Evolution of the mean and maximum error on the test set, measured in lift counts,

as a function of the number of cases used to perform the interpolation with RBFs, nRBF.

tion, nRBF, for an increased value of the radius of influence. The results show that

the optimal value of the radius, when the number of snapshots is large enough,

i.e. nTr = 160, is such that the RBFs use the values of the closest eight cases

to perform the interpolation. Larger values of the radius do not significantly

affect the mean value of the error, as shown in figure 7(a), but lead to a loss of

accuracy when the maximum error is considered, as shown in figure 7(b).

Next, the best accuracy of the proposed NN and the POD with RBFs is

compared in the test dataset when using dataset of size ranging from nTr = 20

to nTr = 160 cases in the training. The NN employed has one hidden layer and

98 neurons and the over-fitting parameter is set to λ = 0. For the POD, eight

cases are considered to perform the interpolation using the RBFs. In both cases,

the prediction of the pressure is performed at the 300 points used to discretise

the aerofoil and the lift coefficient is computed after the chosen reduced order

model is employed.

Figure 8 compares the performance of the reduced order models considered,

the NN and POD, by reporting the mean and maximum error as a function

of the number of training cases. The results show that NN provides the best

accuracy in all cases when the accuracy is measured as the mean error. The
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(a) Mean error (b) Maximumn error

Figure 8: Evolution of the mean and maximum error on the test set, measured in lift counts,

as a function of the number of training cases, or snapshots, for the two reduced order models

employed.

trained NN model can provide a mean error of seven lift counts when using

nTr = 160 training examples. In contrast with the NN, POD follows a similar

variation of the mean error as the number of training examples is increased,

with a higher mean error of 12 lift counts, measured in the test set, for the same

number of training data. Figure 8(b) compares the maximum error measured

in lift counts and it shows that for almost any number of training samples, the

maximum error of the POD is more than twice that of the NN, except when

using nTr = 40 cases where the results are comparable. NN has a maximum

error of 29 lift counts and POD has 68 lift counts when using nTr = 160 cases

in the training.

Figure 9 compares the accuracy of the proposed NN and the POD. The

histogram represents the relative frequency of the error, measured in lift counts,

for all the test cases. The results show that both approaches are able to provide

an error below 10 lift counts for almost 70% of the test cases, with the NN

achieving a marginally higher percentage. The first significant difference is that

the NN provides a prediction with an error below 20 lift counts for almost 30%

of the test cases, whereas the POD provides the same accuracy for less than
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Figure 9: Relative frequency of the error on the test set, measured in lift counts, for the

proposed NN and the POD.

(a) M∞ = 0.33, α = −3.5◦ (b) M∞ = 0.81, α = 10.0◦

Figure 10: Comparison of the pressure coefficient, Cp, obtained with the CFD solver and the

predicted Cp using NN and the POD.

20% of the test cases. In addition, the worst prediction for the NN is below 30

lift counts, whereas the POD provides an error on the lift higher than 60 lift

counts.

To further illustrate the comparison on the performance of the proposed NN

and the POD, figure 10 shows the plot of the pressure coefficient, Cp, obtained

with the CFD solver and the predicted pressure distributions, Cp. The two

different cases considered correspond to a subsonic and a transonic case. The

results show that both methods provide an accurate prediction of the pressure
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i 1 2 3 4 5 6 7 8

xi 0.500 0.297 −0.003 −0.317 −0.437 −0.474 −0.496 −0.500

y+
i 0.000 0.030 0.061 0.062 0.040 0.030 0.013 0.000

Table 1: Control points of the top curve of the base geometry approximating a NACA0012

aerofoil.

coefficient for the subsonic case. The prediction for the transonic case is sub-

stantially more challenging. The approaches employed show a deviation with

respect to the reference CFD results in the region near the strong shock on the

upper surface of the aerofoil. The POD shows a more pronounced oscillatory

solution near the strong shock and also near the weaker shock on the lower sur-

face around x/c = 0.6. This comparison shows the robustness of the NN near

highly non-linear shock region.

5.3. Lift prediction on a geometrically parametrised aerofoil

The last example in two dimensions involves the prediction of the lift coeffi-

cient for an aerofoil that is parametrised using the control points of the NURBS

curves describing the aerofoil. The base geometry corresponds to an approxi-

mation of the NACA0012 aerofoil using two cubic B-splines with eight control

points each to define the top and bottom surface of the aerofoil respectively, as

proposed in [61]. The knot vector of both NURBS is given by

Λ = {0, 0, 0, 0, 0.615, 0.904, 0.941, 0.979, 1.019, 1.019, 1.019, 1.019} (22)

and the set of control points for the top curve {P+
i = (xi, y

+
i )}i=1,...,8 are

detailed in table 1. The control points for the bottom curve are symmetrically

located with respect to the x axis and are defined as, P−i = (xi, y
−
i ) with

y−i = −y+
i , for i = 1, . . . , 8.

The end control points of both NURBS curves are fixed, i.e. P−1 = P+
1 =

(0.5, 0) and P−8 = P+
8 = (−0.5, 0). In addition, the control point P−2 is restricted

to be aligned with P−1 = P+
1 and P+

2 . More precisely, it is assumed that

P−2 = P+
1 + µ(P+

1 − P+
2 ) with µ being a parameter defined in [0.5, 1.5]. This
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restriction ensures G1 continuity of the aerofoil geometry and leads to a problem

with 25 independent geometric parameters. The variation of the position of

the control points with respect to the base geometry, namely (±δxi,±δyi) is

considered to be the input of the neural network, where (δxi, δyi) ∈ [0, 0.1c]2

and c denotes the chord of the aerofoil.

Two flow conditions are considered to explore the performance of the pro-

posed NN and the POD approach for subsonic and transonic flows. The subsonic

case corresponds to a free-stream Mach number M∞ = 0.4 and an angle of at-

tack α = 2◦, whereas the transonic case corresponds to M∞ = 0.8 and α = 2◦.

The number of training cases, nTr, varies from 400 to 1,600 and 200 test cases

are considered. Both the training and test sets are obtained by using the latin

hypercube sampling. Following the conclusions from the previous examples, the

NN employs a single hidden layer with 98 neurons and the over-fitting parameter

is selected as λ = 0. For the POD approach, all the snapshots are used in the

interpolation. Contrary to the findings in the previous example, this option

leads to the most accurate results here. This is attributed to the fact that the

training cases do not contain a change of regime from subsonic to transonic flow.

Figure 11 compares the performance of the proposed NN and the POD

with RBFs for both subsonic and transonic flows. The histograms compare the

relative frequency of the error, measured in lift counts, for all the test cases.

In all the experiments performed, the proposed NN outperforms the POD with

RBFs.

For the subsonic example and using nTr = 400 cases, the lift is predicted with

an error below 10 lift counts in 96% of cases with the NN and in 89% of cases

with the POD. When the number of training cases or snapshots is increased to

nTr = 1, 600, the lift is predicted with an error below 10 lift counts in 99% of

cases with the NN and in 98% of cases with the POD. In both cases, the worst

predictions made by both the NN and the POD correspond to cases with an

error below 20 lift counts.

The transonic example is much more challenging, as it requires an accurate

prediction of the shock position. Using nTr = 400 cases, the lift is predicted
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(a) Subsonic, nTr = 400 (b) Subsonic, nTr = 1, 600

(c) Transonic, nTr = 400 (d) Transonic, nTr = 1, 600

Figure 11: Relative frequency of the error on the test set, measured in lift counts, for the

proposed NN and the POD for subsonic and transonic flows and with different number of

training cases, nTr.

with an error below 10 lift counts in 60% of cases with the NN and in 43%

of cases with the POD. The number of cases that are predicted with an error

between 10 and 30 lift counts with both the NN and the POD are 37% and

47% respectively. The main difference between the NN and POD approaches is

that, with the NN only 6 predictions have an error higher than 30 lift counts,

whereas with the POD, 20 predictions have an error higher than 30 lift counts.

In addition, with the POD the maximum error is 20 lift counts higher than the

maximum error of the NN. Using nTr = 1, 600 cases, the lift is predicted with

an error below 10 lift counts in 68% of cases with the NN and in 58% of cases
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(a) Subsonic, nTr = 400 (b) Subsonic, nTr = 1, 600

(c) Transonic, nTr = 400 (d) Transonic, nTr = 1, 600

Figure 12: Pressure coefficient over the aerofoil of figure 13 compared to the predictions by

the NN and the POD.

with the POD. Once more, the main difference is that the maximum error is 37

and 58 lift counts for the NN and the POD approaches respectively.

To illustrate the performance of the NN and POD approaches, figure 12 com-

pares the predicted pressure distribution over the aerofoil configuration shown

in figure 13 for a subsonic and a transonic case, both using the proposed NN and

the POD and for different number of training cases. The results in figures 12(a)

and 12(b) clearly show that both the NN and POD approaches are capable of

producing accurate predictions of the pressure coefficient in a subsonic regime.

For the transonic regime when nTr = 400, there is considerable difference be-

tween the POD results and the reference results. This is particularly noticeable
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Figure 13: Geometry of the aerofoil chosen to compare the NN and POD prediction capability

in figure 12. The squares denote the control points of the NURBS and the discontinuous line

is the control polygon.

in the oscillatory character of the prediction near the strong shock on the upper

curve. The discrepancy is also visible in the pressure coefficient distribution over

the upper curve near the leading edge. The NN provides a better prediction of

the shock without showing oscillations and it also produces a better approxima-

tion of the pressure coefficient distribution near the leading edge. Both the NN

and the POD show some discrepancies with respect to the reference results for

the pressure coefficient distribution over the lower curve near the leading edge.

When the number of training cases is increased to nTr = 1, 600, the POD still

shows a poor approximation near the strong shock on the top curve as well as

near the weaker shock in the bottom curve, whereas the NN shows a very good

agreement with respect to the reference results.

6. Numerical examples in three dimensions

The multi-output NN outperformed the POD employed in all the examples

considered in two dimensions. This shows the superiority of the proposed multi-

output NN against the POD. As a result, only NNs of different configurations

are employed in the examples in three dimensions.

6.1. Aerodynamic predictions on the ONERA M6 wing at various inflow condi-

tions

The first example considers the computation of the aerodynamic coefficients

of the ONERA M6 wing [62] at a free stream Mach number, M∞, and an angle

of attack, α, in predefined intervals IM = (0.3, 0.9) and Iα = (0◦, 12◦), respec-
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tively. The range of the inflow conditions considered leads to both subsonic and

transonic flows.

This example is used to compare the accuracy of the predictions made by

three NNs. The first network considers M∞ and α as inputs and one aerody-

namic coefficient, the lift, drag or moment, as a single output. The second NN

also considers M∞ and α as inputs and the three aerodynamic coefficients as

outputs. The third network considers the same inputs as the other two networks

and the output is the pressure at a user defined set of points on the wing. The

set of points considered corresponds to the mesh nodes used to discretise the

wing.

The networks are trained using a dataset of nTr = 160 simulations performed

with the vertex-centred finite volume method [48]. Every trained network is then

tested using a dataset of nTe = 100 simulations. Both dataset is selected by using

the latin hypercube sampling [59] in IM × Iα. Figure 14 shows the sampling

space of the training and the test sets. In contrast to figures 2, more training

data is used to ensure the sampling space is well covered. Moreover, the test

set is defined using a smaller interval as IM = (0.35, 0.85) and Iα = (1◦, 11◦), so

that there is no extrapolation. The volume mesh used in this example consists

of 167,824 elements and 29,025 nodes. Figure 15 shows the surface mesh used

in this analysis, which consists of 1,977 nodes and 3,900 triangles.

The first numerical experiment explores the accuracy of the predicted aero-

dynamic quantities as a function of the number of hidden neurons, nN, and

the number of hidden layers, nL, for all the three networks considered and for

different values of the over-fitting parameter, λ.

Figure 16 shows the evolution of the mean error in the lift as a function of

the number of hidden layer, nL, and hidden neurons, nN. The results show that

the accuracy of the first two networks is comparable, with an error between 10

to 15 lift counts in the majority of cases. The second network is able to provide

higher accuracy, with an error near five lift counts, with one hidden layer and

nN = 180. Finally, the third network provides the most accurate results, with

an error below three lift counts for any combination of the values of nL and nN.
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(a) Training set (b) Test set

Figure 14: The sampling space used to define the training and test dataset using nTr = 160

and nTe = 100 simulations respectively

Figure 15: The surface mesh used to obtain CFD data in IM × Iα, consisting of 1,977 nodes

and 3,900 triangles.

(a) Network 1 (b) Network 2 (c) Network 3

Figure 16: Mean value of the lift counts, εCL
, measured in the test set as a function of the

number of hidden neurons, nN, and the number of hidden layers, nL.

This experiment shows the robustness of the third NN model.
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(a) Network 1 (b) Network 2 (c) Network 3

Figure 17: Mean value of the drag counts, εCD
, measured in the test set as a function of the

number of hidden neurons, nN, and the number of hidden layers, nL.

Figure 17 shows the mean value of the errors of the three types of trained

NNs, measured in drag counts, as function of hidden layers, nL and hidden

neurons, nN. The first two networks are observed to have a higher level of oscil-

lations, indicating a strong dependence on the number of hidden neurons and

layers. The networks are not able to produce an accuracy lower than 15 drag

counts, both achieved with three hidden layers and a comparatively larger num-

ber of neurons, namely nN ∈ [120, 200]. The third network provides again the

most accurate results and it also shows a weak dependence on the hyperparam-

eters.

Finally, figure 18 shows the mean value of the error, measured in moment

counts, as a function of the number of hidden layers, nL and the number of

hidden neurons, nN for the three different types of networks considered. Similar

conclusions can be drawn as both the first and second networks are observed to

have more oscillations with a maximum accuracy of no less than 50 counts for

any combination of hyperparameters. In this figure, the superiority of the third

network is clearer with a marginally lower error measured in the test set. The

highest accuracy for this network leads to an error of only six moment counts,

achieved with three hidden layers and nN = 220 neurons. This corresponds to

the same configuration used to predict the lift and drag coefficients.

It is worth noting that the network proposed in this work provides greater

accuracy for this three dimensional example, compared to the two dimensional
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(a) Network 1 (b) Network 2 (c) Network 3

Figure 18: Mean value of the moment counts, εCM
, measured in the test set as a function of

the number of hidden neurons, nN, and the number of hidden layers, nL.

results of previous examples. To better understand this phenomenon, two stud-

ies are performed. First, the influence of the accuracy of the CFD data on

the accuracy of the NN predictions is studied. Next, the flow features present

in the two and three dimensional cases are analysed and compared to a three

dimensional example that considers an extruded wing, rather than the Onera

M6 swept wing. Only the third network is used because, as previously shown,

it provides the most accurate results.

To study the influence of the accuracy of the CFD data on the accuracy of

the NN predictions, three levels of mesh refinement are considered in two and

three dimensions. Figure 19 shows the meshes employed in this example. There

are approximately the same number of mesh nodes across any xz-plane in the

spanwise direction of the ONERA M6 wing as in the corresponding meshes in

two dimensions.

The two dimensional meshes have 1,936, 5,810 and 12,964 elements, and 51,

101 and 167 nodes are used to discretise the aerofoil surface, respectively. The

three dimensional volume mesh used previously in this example, represents the

coarse mesh. The medium and fine volume meshes in three dimensions have

1,304,444 and 4,485,190 elements, and 7,307 and 16,259 nodes, respectively.

For each mesh a set of nTr = 160 training cases and a set of nTe = 100 test

cases are generated. The pressure at the nodes used to discretise the aerofoil

and wing, in two and three dimensions respectively, is used as the output of the
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(a) Mesh 1, 2D (b) Mesh 2, 2D (c) Mesh 3, 2D

(d) Mesh 1, 3D (e) Mesh 2, 3D (f) Mesh 3, 3D

Figure 19: Detailed view of the three meshes used for the NACA 0012 aerofoil (top) and on

the symmetry plane for the ONERA M6 wing (bottom).

NN model.

To measure the accuracy of the NNs, the relative error of the pressure coef-

ficient, defined as

εr =


∫

Γ

([
Cp(x

+)− C?p (x+)
]2

+
[
Cp(x

−)− C?p (x−)
]2)

dΓ∫
Γ

([
Cp(x

+)
]2

+
[
Cp(x

−)
]2)

dΓ


1/2

, (23)

where Cp(x
+) and Cp(x

−) denote the target pressure coefficient distribution

over the top and bottom surface describing the aerofoil/wing, C?p denotes the

corresponding predicted pressure coefficient and Γ is the surface of the aero-

foil/wing. In addition, the accuracy on the three aerodynamic quantities of

interest is also considered. To offer a better comparison between the two and

three dimensional results, the moment coefficient in three dimensions is com-

puted about the aerodynamic centre of each section.

Figure 20 shows the comparison of the mean value of the errors in the test

dataset. Every point in this figure represents the lowest error obtained by

selecting the number of hidden layers, nL, the number of hidden neurons, nN and

the over-fitting parameter, λ, as done in previous experiments.

The results show that the accuracy of the networks when predicting values

of the pressure over the aerodynamic shape is almost identical in two and three
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(a) Relative error in Cp (b) Error in CL

(c) Error in CD (d) Error in CM

Figure 20: Mean value of the errors, measured in the test set, for the three levels of mesh

refinement in two and three dimensions.

dimensions. Moreover, it is observed that the error in the prediction increases as

the mesh is refined. This behaviour is attributed to the fact that coarser meshes

tend to smooth sharp gradients in the solution, such as shocks. As shown in

previous studies of sections 5.2 and 5.3, NN produces more accurate predictions

when the flow field is smooth (e.g subsonic flow), compared to cases with sharp

gradients, (e.g transonic flow).

To further illustrate the difference between the predictions in two and three

dimensions, figure 21 shows a comparison of the pressure coefficient, Cp, ob-

tained with the CFD solver and the predicted Cp using NN for a test case in

the transonic regime, highlighted with a cross in figure 14(b). The results show
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(a) Mesh 1, 2D (b) Mesh 2, 2D (c) mesh 3, 2D

(d) Mesh 1, 3D (e) Mesh 2, 3D (f) Mesh 3, 3D

Figure 21: Comparison of the pressure coefficient, Cp, obtained with the CFD solver and the

predicted Cp using NN for a transonic test case at a free stream Mach number, M∞ = 0.71

and an angle of attack, α = 9.1◦, for the meshes employed in two and three dimensions.

how the shock is smeared leading to a smooth variation of the pressure that is

accurately predicted by the NN. As the level of mesh refinement is increased,

the shock becomes sharper and the prediction made by the NN presents some

overshoots and undershoots near the shock. It can therefore be deduced that as

the meshes become finer, the predicted solution from the trained models may

contain oscillations near regions of sharp gradients, such as shocks. However

this may or may not affect the results measured in the count metrics as it is a

calculated integral computed on the surface of the aerofoil or wing.

When the error is measured in the lift, drag or moment, the results of fig-

ure 20 show that more accurate predictions are obtained in three dimensions.

This behaviour is attributed to the different flow features induced by the two

dimensional NACA0012 aerofoil (equivalent to an extruded three dimensional

wing) and the Onera M6, which is a swept wing.

To confirm this hypothesis, the second level of mesh refinement is considered
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Mesh εr εCL
εCD

εCM

2D 0.041 2.5 4.3 6.0

3D-X 0.042 2.6 4.4 6.1

3D 0.036 1.6 1.6 1.7

Table 2: Mean value of the errors, measured in the test dataset, for the medium level of mesh

refinement when nTr = 160 simulations are used in the training of the third network.

and the NACA0012 profile is used to built an extruded wing in three dimensions.

The generated mesh maintains the same spacing over the wing to ensure that

the results between the extruded geometry and the two dimensional case can

be compared.

Table 2 shows the comparison of the mean value of the errors obtained from

three meshes when the same training and test datasets, as shown in figure 14,

are employed. The results show that the accuracy of the predictions for the

two dimensional case is almost identical to the three dimensional case with the

extruded wing (3D-X). For the three dimensional swept wing, the accuracy is

higher. A further analysis of the flow features indicates that the strength of

the shock in the simulation with the Onera M6 wing is not as strong as in

the two dimensional and three dimensional extruded wing. In addition, the

higher accuracy obtained in the Onera M6 predictions is also attributed to that

swept wings are known to delay the appearance of shocks. Hence, more cases

in the datasets contain smoother solutions for the wide range of flow conditions

considered in this example and thus lower mean values of the errors in the

predictions are obtained.

6.2. Aerodynamic predictions on a geometrically parametrised wing

This example involves the prediction of the aerodynamic coefficients on a

wing that is parametrised using the control points of the NURBS describing the

surface. The base geometry corresponds to an approximation of the ONERA

M6 wing [62] and consists of two surfaces, the top and bottom surface, each

using six cubic B-splines with eight control points to define the surface. In this
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i 1 2 3 4 5 6 7 8

xi,1 0.0 0.0 31.8 136.9 332.6 571.0 738.1 805.9

yi,1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

z+
i,1 0.0 9.5 26.3 34.6 43.9 26.6 8.4 0.0

xi,6 690.6 690.6 708.5 767.6 877.7 1011.8 1105.8 1143.9

yi,6 1196.3 1196.3 1196.3 1196.3 1196.3 1196.3 1196.3 1196.3

z+
i,6 0.0 5.3 14.8 19.4 24.7 14.9 4.7 0.0

Table 3: Control points of the top curve at the root and tip aerofoil section of the base

geometry approximating the ONERA M6 wing.

example, a planar surface is considered at the wingtip. The knot vectors of

NURBS curves representing the surfaces are given by

Λu = {0, 0, 0, 0, 0.031, 0.126, 0.384, 0.749, 1, 1, 1, 1}

Λv = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1}
(24)

and the set of control points for the top curve {P+
i,j = (xi,j , yi,j , z

+
i,j)}i=1,...,8, j=1,6

are detailed in table 3. The control points for the bottom surface are sym-

metrically located with respect to the xy-plane and are defined as, P−i,j =

(xi,j , yi,j , z
−
i,j) with z−i,j = −z+

i,j , for i = 1, . . . , 8.

The control points on the leading and trailing edges are fixed, i.e. P−1,j = P+
1,j

and P−8,j = P+
8,j . In addition, the control point P−2,j is restricted to be aligned

with P−1,j = P+
1,j and P+

2,j . More precisely, it is assumed that P−2,j = P+
1,j +

µ(P+
1,j − P+

2,j) with µ being a parameter defined in [0.5, 1.5]. This restriction

ensures G1 continuity at the leading edge of the wing and leads to a problem

with 25 independent geometric parameters in one aerofoil section. Figure 22

shows the 96 control points in the parametrised geometry used to approximate

the ONERA M6 wing. However, in this example, only the control points in the

root and tip chord of the wing, coloured red in figure 22 are varied in the xz-

plane, that is, δyi,j = 0. This amounts to a total of 50 independent geometric

parameters in the analysis. The variation of the positions of these control points
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Figure 22: The ONERA M6 wing used as the base geometry and parametrised using the

control points of the NURBS, denoted by circles. The lines represent the control polygon.

The independent variables are coloured in red and the dependent variables in blue.

with respect to the base geometry, namely (±δxi,j ,±δzi,j)), is considered to be

the inputs to the neural network, where (δxi,j , δzi,j) ∈ [0, 0.1c]2 and c denotes

the chord of the aerofoil. To ensure that the variation of the control points

does not lead to unrealistic geometries with very localised sudden change on the

surface definition, the control points located in between the root and tip chord,

coloured in blue in figure 22 are linearly displaced and follow the relationship

x∗i,j = xi,j + δxi,1(1− yi,j
b

) + δxi,6
yi,j
b
, i = 1, . . . , 8, j = 1, . . . , 6 (25)

where xi,j denotes the coordinate vector of i-th control points in the j-th aero-

foil section, x∗i,j represents the moved coordinate vector and b is the wingspan.

The surface triangulation of the base geometry is generated using the advancing

front method. The Cartesian coordinates of surface mesh nodes are projected to

obtain the corresponding parametric coordinates of the NURBS surface. Given

a new set of control points, obtained from design of experiment [59], the same

parametric coordinates are evaluated to obtain a new set of Cartesian coordi-

nates for the new geometry. This allows the designer to use the same number

of nodes to discretise the geometry in the surface mesh. The coordinates on

the planar wingtip surface and the symmetry boundary wall surface are then

updated using the Laplacian smoothing technique [63]. A new volume mesh is

generated for each new surface mesh using the Delaunay meshing scheme and

the nodes are placed according to a specified background mesh and user defined

sources [64]. There are 11,283 nodes used to discretise the wing geometry in the
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surface mesh and around 1.34 million elements in the volume meshes.

In this example, the training and test cases are of size nTr = 1600 and

nTe = 400 respectively. Both data sets are obtained by using the latin hypercube

sampling. Steady Euler calculations are performed in the transonic regime at a

free-stream Mach number, M∞ = 0.84 and an angle of attack, α = 3.06◦.

Three types of neural networks, similar to the previous example are em-

ployed. All the three NNs consider the 50 geometric parameters representing

the locations of the control points of the root and the tip aerofoil chord of the

wing as inputs. The same three NN model described in section 6.1 are used.

To illustrate the resulting performance of the three NN employed, figure 23

quantifies the accuracies for the three aerodynamic quantities of interest, mea-

sured in counts. The histograms represent the relative frequency of the error

for all test cases. In figure 23(a), the first NN employs a single hidden layer

with nN = 40 and the over-fitting parameter is selected as λ = 10, the second

NN employs a single hidden layer with 10 hidden neurons and the over-fitting

parameter is selected as λ = 1, and finally the third NN employs one hidden

layer with nN = 290 and the over-fitting parameter is set as λ = 10. The results

show the first and second NNs predict only 63% and 56% of the test cases with

an error below five lift counts respectively. The third NN, however, provides the

most accurate predictions with an error below five lift counts for almost 85% of

the test cases. This represents a significant difference of about 20%. Moreover,

both the first and second NN are able to produce an error below 10 lift counts

for almost 80% of the test cases, while the third NN is observed to achieve a

marginally higher performance, with 100% of the test cases falling below 10 lift

counts. The maximum error measured in the test dataset for the three NNs are

36, 26 and 9 lift counts respectively.

Figure 23(b) shows the relative frequency of the error, measured in drag

counts. A different set of hyperparameters with the best accuracy is used for

first NN, while the same configuration is maintained for the second and third

NN. Here, the first NN employs a single hidden layer with 20 neurons and the

over-fitting parameter is set as λ = 10. The third network produces a prediction
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(a) Lift counts (b) Drag counts (c) Moment counts

Figure 23: Relative frequency of the error on the test set for the three neural networks

employed, measured in counts.

with an error below 5 drag counts for almost 83% of the test cases compared to

the first and second network with only 30% and 40% of the cases, respectively.

This represents a considerable difference of about 40% of the cases with better

predictions. The maximum drag counts achieved for the three networks are 39,

38 and 11 drag counts, respectively.

Lastly, the histogram of figure 23(c) represents the relative frequency of

the error, measured in moment counts. Here, the first two NNs have similar

performance with almost 60% of the cases falling below 50 moments counts and

about 25-30% of the cases below 100 moment counts. On the other hand, the

third network provides a marginally higher accuracy of almost 85% of the cases

below 50 moment counts and 100% below 100 moment counts. The maximum

accuracies for the three networks employed are, 345, 326 and 96 moment counts.

This shows the robustness of the third network for the use as an aerodynamic

predictor for highly parametrised geometry.

Figure 24 shows a test case to further illustrate the comparison on the per-

formance of the full order model and the output of the proposed NN model.

Figure 24(a) shows the surface pressure contours of the full order and the corre-

sponding NN prediction. The results show that, visually, there is no significant

difference between the CFD data and the NN predictions. Figures 24(b), 24(c)

and 24(d) show the aerofoil cross section and their corresponding pressure dis-

tributions for the full order and NN predictions at 20%, 50% and 80% in the

spanwise direction, respectively. It can be observed how the geometry changes
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(a) Surface pressure contour

(b) Predictions at 20% (c) Predictions at 50% (d) Predictions at 80%

Figure 24: Comparison of the pressure coefficients, Cp, obtained with the CFD solver and

NN predictions using the third network for a test case at different locations in the spanwise

direction of the wing.

across the cross section, from a comparatively blunt leading edge and an almost

symmetric trailing edge at 20% to a more rounded leading edge, a flattened top

and a comparatively higher cambered aft section at 80%, some of which are

characteristics of supercritical aerofoils [65]. Figure 24(b) shows that NN pre-

dicts well and captures both shocks at the right position on the upper surface.

Minor discrepancies in predicting the position of the second shock are observed

in figure 24(c). Closer to the wingtip in figure 24(d), the reference result shows

that there is no shock and the NN model is capable of capturing this behaviour

well.

6.3. Aerodynamic predictions of a deforming wing

The last example considers the computation of the aerodynamic coefficients

for a deforming wing at a free stream Mach number, M∞, and an angle of attack,
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α, in predefined intervals, IM = (0.5, 0.9) and Iα = (0◦, 10◦). The ONERA

M6 wing is used as the baseline geometry and it undergoes a geometric twist

along the y-axis and a wingtip deflection in the z-axis, in predefined intervals,

Iβ = (0◦, 10◦) and Iκ = (0 m, 1 m). The range of inflow conditions considered

leads to the subsonic and transonic transonic regime.

A geometric twist about the y-axis [66] can be written as

x?i = Ry(xi − xACi ) + xACi , Ry =


cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ

 , (26)

for i = 1, . . . , N , where xi represents a Cartesian coordinate on the wing, xACi

is the reference aerodynamic centre to which the rotation is performed and x?i is

the transformed coordinate. Ry denotes the rotation matrix about the y-axis,

N is the total number of points used to discretise the geometry and β is the

angle of twist, measured in degrees.

The wing is deflected from the xy-plane assuming the wing acts as a uni-

formly loaded cantilever beam, with one end fixed, that is the root of the wing,

and a free end, here the wingtip. The deflection [67] can be written as

δzi =
κ

3

[
y4
i

b4
− 4y3

i

b3
+

6y2
i

b2

]
, (27)

for i = 1, . . . , N , where δzi denotes the amplitude for i-th coordinate in the z

direction, yi is the initial length in the spanwise direction, b is the wingspan

and κ is the maximum deflection at the wingtip. Moreover, it is ensured that

for every transformed coordinate, the length in the spanwise direction is kept

constant. The formulation of the arc length by integration is given as

b̃i =

∫ y?i

0

√
1 +

(
dz

dyi

)2

dy, (28)

for i = 1, . . . , N , where b̃i is the arc length of the i-th coordinate on the wing

and is equal to yi in the baseline geometry. y?i represents the new y coordinate

for which the length is kept constant.
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A reference volume mesh is generated around the ONERA M6 wing and the

Delaunay graph method [68] is used to update the nodes of the transformed

geometry. This mesh morphing scheme ensures that the primary mesh topol-

ogy is maintained. Large displacements can be applied at the boundaries in a

single step without the mesh entanglement that generally affect standard mesh

movement procedures [68]. In this example, it was found that there is no neg-

ative volume and mesh entanglement moving from the primary mesh in one

single step for a geometric twist of up to β = 11◦ and a maximum deflection of

κ = 1.1m at the wingtip.

The latin hypercube sampling is used to design the training and test dataset

of size nTr = 100 and nTe = 75, respectively. The reference volume mesh consists

of 1,071,457 elements and 16,240 nodes are used to discretise the geometry. In

this example, the three different types of neural network employed considers

M∞, α, β, and κ, as inputs. The first network has one single aerodynamic

output, the lift, drag or moment coefficient. The second network has three

aerodynamic coefficients as outputs and finally the third network considers the

pressure defined at the 16,240 nodes used to discretise the geometry in the

volume mesh, as outputs. As in previous examples, numerical experiment is

performed to explore the accuracy of the predicted aerodynamics coefficients,

measured in counts in the test set, as a function of the number of hidden layers,

nL, the number of hidden neurons, nN, and various values of the over-fitting

parameter, λ for the three types of NN considered.

Figure 25 shows the comparison of the relative frequency of the error, mea-

sured in counts in the test dataset for the three types of NNs employed. Fig-

ure 25(a) shows the relative frequency of the error measured in the prediction

of the lift. Following the numerical experiment carried out in this example, the

first network is selected to have three hidden layers and nN = 140, the second NN

has three hidden layers and 190 hidden neurons, and finally the third network

employs one hidden layer with nN = 270. All the selected network configura-

tions employ an over-fitting parameter of λ = 0.01. The same configuration is

maintained in the analysis of the drag and moment for the second and third
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(a) Lift counts (b) Drag counts (c) Moment counts

Figure 25: Relative frequency of the error on the test set for the three neural networks

employed, measured in counts.

networks. The results show that both the first and second NNs achieve about

60% of the test cases below five lift counts while the third network achieves a

marginal 88% of the test cases in the same range. The first noticeable difference

is that the third network has almost 100% of the cases with an error less than

10 lift counts in the test set and the maximum error obtained with this NN is 11

lift counts. The second and third network provide a prediction with a maximum

error of 33 and 36 lift counts, respectively. Figure 25(b) represents the relative

frequency of the error, measured in drag counts. The first network provides a

much lower accuracy of 55% of the cases below 10 drag counts, as opposed to

70% and 82% for the second and third networks. The three NNs have a maxi-

mum error of 98, 94 and 51 drag counts, all of which corresponds to the same

case in the test dataset. Lastly, Figure 25(c) describes the relative frequency

of the error in the test set, measured in the test set. The first NN achieves

46% of the cases below 50 moment counts, which is comparatively lower to the

second and third NN, with 72% and 83% of the cases. The third network has a

maximum error of 127 moment counts, while the first and second NNs provide

an error of more than double of that, 400 and 270 moment counts respectively.

Figure 26 illustrates the comparison between the performance of the full

order model and the output of the chosen NN model. Figure 26(a) shows the

deformed geometry of the test case, with an amplification factor of 10. The

CFD simulation corresponds to a free-stream Mach number, M∞ = 0.83 and an

angle of attack, α = 5.4◦, which leads to a transonic flow. Figure 26(b) shows
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(a) β = 3.0◦, κ = 0.86m (b) Surface pressure contour

(c) Predictions at 20% (d) Predictions at 50% (e) Predictions at 80%

Figure 26: Comparison of the pressure coefficients, Cp, obtained with the CFD solver and NN

predictions using the third network for a test case with inflow conditions, M∞ = 0.83 and

α = 5.4◦, at different locations in the spanwise direction of the wing.

the surface pressure contours of the full order on the left and the corresponding

NN predictions on the right. The surface contour plots compare well with each

other visually. Figures 26(c), 26(d) and 26(e) show the comparison of the

surface pressure distributions for the full order and NN at 20%, 50% and 80%

of the wing in the spanwise direction, respectively. Figure 26(c) shows that

NN predicts well and captures both shocks at the right position on the upper

surface. Minor discrepancies are observed over the top surface, at x/c = 0.9c.

More oscillations are observed in the prediction over the top surface in both

the 50% and 80% sectional pressure plots. The NN model captures the shocks

relatively well and shows good agreement with the reference CFD results.

7. Concluding remarks

The paper presents a new multi-output NN methodology for the prediction

of aerodynamic coefficients of aerofoils in two dimensions and wings in three
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dimensions. The proposed multi-output NN predicts the pressure distribution

on the surface of aerofoils and wings by using inviscid compressible data from

a vertex-centred CFD solver. The aerodynamic coefficients are computed after

a pressure distribution is predicted.

The accuracy of the predictions using the proposed multi-output NN has

been shown to be higher when compared to a NN where the three aerodynamic

coefficients are predicted. The results also show the superiority when compared

to a NN where only one aerodynamic coefficient is predicted. The superior per-

formance has been demonstrated for both two and three dimensional examples

involving free stream Mach number and the angle of attack as the inputs of the

NNs.

In addition, the proposed NN has also been compared to the POD and

the results shown the better performance of the NN, specially when predicting

flows that involve shocks. The superior accuracy of the proposed NN has been

shown for problems where the parameters involve flow conditions and for more

challenging scenarios where the parameters are the control points of the NURBS

that describe the geometry of the aerodynamic shape.

An extensive set of numerical studies has been presented to show the effect of

the NN hyperparameters and numerical parameters of the POD on the accuracy

of the predictions. Furthermore, the effect of increasing the number of cases in

the training set in the accuracy of both the NNs and the POD has also been

studied. The

The potential of the proposed NN has also been demonstrated for three

dimensional examples involving flow conditions and geometric parameters. It is

worth noting that examples involving up to 50 parameters have been considered

in three dimensions. The influence of the accuracy of the CFD data into the

accuracy of the NN predictions has been studied in two and three dimensions. It

was found that the higher the accuracy in the CFD data, the more challenging is

for the NNs to perform accurate predictions. This is attributed to the stronger

shocks present in finer meshes due to the increased resolution of the flow field.

The accuracy of the predictions in two and three dimensions have also been
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compared. It has been shown that for a swept wing the NN offer a greater

accuracy when compared to a two dimensional aerofoil. This is explained by

the lower strength of the shocks in three dimensions and the delayed appearance

of shocks in swept wings, leading to a greater set of training cases containing

smooth solutions.

The proposed NN enables the fast prediction of aerodynamic quantities of

interest and can be applied to speed up the design and optimisation of aerody-

namic shapes.
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