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OBJECTIVE 

To investigate physiological responses to cardio-pulmonary exercise testing in adults 

with recent-onset type 1 diabetes compared to age, sex and BMI-matched healthy 

controls. 

RESEARCH DESIGN AND METHODS 

In this pooled analysis we compared cardio-pulmonary exercise (CPX) tests on a cycle 

ergometer in individuals with type 1 diabetes and healthy controls matched for age, 

body mass index (BMI) and sex. Main outcome parameters were peak and threshold 

variables of oxygen uptake, heart rate and power output. Differences between groups 

were investigated via restricted maximum likelihood modelling and post-hoc tests. 

Main differences between groups were explained by stepwise linear regression 

modelling (p<0.05).  

RESULTS 

Among 303 individuals with type 1 diabetes, peak oxygen uptake (32.55 [26.49; 38.72] 

vs. 42.67 ± 10.44) (mL/kg/min), peak heart rate (179 [170; 187] vs. 184 [175; 191]) 

(bpm) and peak power (216 [171; 253] vs. 245 [200; 300]) (Watt) were lower in 

comparison to 308 healthy individuals (all p<0.0001). Furthermore, power output at the 

anaerobic threshold was decreased in individuals with type 1 diabetes compared to 

healthy individuals (p<0.0001). Stepwise linear regression modelling showed that none 

of exercise physiological responses to CPX testing were associated with HbA1c in 

individuals with type 1 diabetes. 

CONCLUSIONS 



Individuals with recent-onset type 1 diabetes have altered physiological response to 

CPX testing when compared to healthy individuals, which cannot be explained by 

HbA1c. 

 



INTRODUCTION 1 

Type 1 Diabetes (T1D) is an autoimmune disease characterized by a destruction of 2 

pancreatic beta cells, resulting in hypoinsulinemia with subsequent hyperglycemia and 3 

diabetic ketoacidosis (1). People with T1D can feature cardiac autonomic neuropathy 4 

(2) and cardiomyopathy (3), already soon after diagnosis. However, neither the 5 

etiology nor the mechanisms behind the occurrence of these cardiac diseases are yet 6 

fully understood in individuals with T1D.  7 

Although the Diabetes Control and Complications Trial (DCCT) and the Epidemiology 8 

of Diabetes Interventions and Complications (EDIC) trial provided compelling evidence 9 

that a glycated hemoglobin (HbA1c) of ≤7% (53 mmol/mol) reduces the risk of 10 

cardiovascular diseases (4,5), it is unclear if T1D per se, independent of specific 11 

diabetes– and anthropometric characteristics alters cardiovascular function in such 12 

way that functional capacity during progressive exercise to exhaustion is impaired. 13 

Cardio-pulmonary exercise (CPX) testing may offer insights into the origin and 14 

complexity of acute cardio-vascular and respiratory impairments, since it provides 15 

information about the course of cardio-pulmonary and circulatory responses to physical 16 

stress (6). This functional assessment has often been advocated as initial non-invasive 17 

choice in testing for cardiovascular disease due to its high sensitivity, cost-18 

effectiveness and widespread availability (7). Additionally, CPX testing provides 19 

information about general health status of individuals, as peak oxygen consumption 20 

expressed relative to body mass (VO2peak, [mL.kg.min-1]) is associated with morbidity 21 

status and mortality risk in healthy and individuals with chronic conditions (8–10). 22 

Furthermore, submaximal aerobic and anaerobic markers of performance derived from 23 

CPX testing serve as a tool to accurately prescribe exercise intensity in both healthy 24 

individuals and those with T1D (11–13). 25 



As studies have shown that regular physical activity and exercise are associated with 26 

reduced risk of mortality (14), retinopathy, hypertension and dyslipidemia (15), the 27 

question arises if subclinical alterations of cardiac-pulmonary function can already be 28 

detected during CPX testing. Individuals with T1D showed decreased peak oxygen 29 

uptake (16) and lower oxygen economy at submaximal metabolic thresholds when 30 

compared to healthy individuals (17). Also, previous research investigating cardiac 31 

responses to CPX testing showed that individuals with T1D had linear heart rate 32 

dynamics with increasing exercise intensity, which is contrary to healthy individuals 33 

(17). This may propose that independent of T1D per se, specific diabetes 34 

characteristics such as elevated HbA1c levels, diabetes duration, low c-peptide levels 35 

and high doses of total daily insulin might be detrimental for functional capacity. Yet, 36 

most of the aforementioned studies were limited by their sample size and/or a missing 37 

or not accurately matched healthy control group. 38 

Consequently, a comprehensive assessment of the impact of T1D and its associated 39 

specific diabetes characteristics on functional capacity is missing. In particular in 40 

recent-onset T1D, it is hypothesized that the impact of T1D on alterations to functional 41 

and physiological capacity might be low, due to lower incidences of micro- and 42 

macrovascular complications in this cohort (18). Therefore, the aim of this study was 43 

to investigate acute physiological responses to CPX testing in individuals with T1D 44 

when compared to matched healthy controls. Furthermore, we sought to investigate if 45 

submaximal and peak responses to CPX testing are associated with HbA1c and other 46 

diabetes characteristics.   47 



RESEARCH DESIGN AND METHODS 48 

This study was performed as a prospective pooled analysis, in which data from CPX 49 

testing until maximal exhaustion were assessed in individuals with T1D and matched 50 

healthy controls. After contacting other researchers, data from research institutions 51 

across Europe, North America and South America were included (Supplemental 52 

Material Fig. S1). The study protocol was approved by the ethics committee of the 53 

Medical University of Graz (32-381 ex 19/20) and registered at the German Clinical 54 

Trials Register (drks.de; DRKS00022106). Furthermore, the study was conducted in 55 

full conformity with the 1964 declaration of Helsinki and all subsequent revisions, as 56 

well as in accordance with the guidelines provided by the International Conference on 57 

Harmonization for Good Clinical Practice (ICH GCP E6 guidelines). 58 

 59 

Study Population 60 

All participants received a medical examination prior to each CPX assessment. 61 

Eligibility criteria were defined as follows: clinical diagnosis of T1D according to country 62 

specific guidelines, age 18 to 65 years (both inclusive) at the time of CPX testing and 63 

availability of age and body mass index (BMI). Additionally, HbA1c, diabetes duration 64 

and total daily insulin dose were included. C-peptide levels were included if available. 65 

Individuals with T1D and healthy controls were matched 1:1 for age, body mass index 66 

(BMI) and sex. No specific health parameters were obtained from the healthy controls 67 

except body weight and BMI. 68 

 69 



Assessment of CPX data 70 

Prior to the start of the analysis, CPX testing data were screened for eligibility. All CPX 71 

tests were conducted on cycle ergometers. Main eligibility criteria were the provision 72 

of the CPX testing protocol (wattage increase/time), heart rate (HR; bpm), absolute 73 

oxygen consumption (VO2; L/min), absolute carbon dioxide production (VCO2; L/min), 74 

ventilation (VE; L/min) and power output (W) throughout the entire CPX measurement. 75 

Pulmonary gas-exchange variables were provided in the form of breath-by-breath 76 

measurement, averaged over 5- or 10 seconds. Heart rate variables were measured 77 

via chest belt telemetry or electrocardiography (ECG) and were provided in 5 or 10 78 

seconds averages. Data were excluded if submaximal ventilatory thresholds or peak 79 

values were not reached or not detectable due to low data quality, as assessed by a 80 

certified exercise physiologist.  81 

Following the assessment of eligibility and quality, data were randomized by a 82 

statistician. The pre-exercise resting period, submaximal aerobic ventilatory threshold 83 

1 (VT1), anaerobic ventilatory threshold 2 (VT2) and peak performance were 84 

determined by one researcher. Pre-CPX testing resting values were considered as the 85 

last 30 seconds on the cycle ergometer prior to the start of CPX testing. The VT1 was 86 

defined as the first increase in VE accompanied by an increase in VE/VO2 without an 87 

increase in VE/VCO2. The VT2 was defined as the second abrupt increase in VE 88 

accompanied by an increase in both VE/VO2 and VE/VCO2 (13).  89 

All research groups terminated CPX testing if participants reached volitional maximal 90 

exhaustion. Contrary to guidelines by the American College of Sports Medicine 91 

(ACSM) for the general population, reaching a plateau in VO2 was not a criterion for 92 

peak performance in our analysis, since patients as well as exercise inexperienced 93 

healthy individuals often do not achieve a plateau in oxygen uptake during maximum 94 

CPX testing, particularly with cycling exercise (19). Therefore, volitional exhaustion 95 



was defined as the point when the HR failed to rise with increasing exercise intensity 96 

≥85% age-predicted HRpeak and reaching a respiratory exchange ratio (RER) of ≥ 1.10. 97 

Peak values were calculated as the mean value over the last 30 seconds prior to 98 

termination of the CPX test (19). If these criteria were not met, data was excluded from 99 

the analysis. 100 

Additionally, the degree and direction of the deflection (kHR) of the HR to performance 101 

curve was calculated by a second-degree polynomial function between VT1 and the 102 

maximum power output (20,21). With this function two slopes of two tangents were 103 

calculated between VT1 and maximum power output by applying the formula of factor 104 

k (k= (k1-k2)/(1+k1*k2)). k-values were classified as linear deflection (−0.1 ≤ k ≤ 0.1), 105 

downward deflection (k > 0.1) (regular) and upward deflection (k < −0.1) (atypical) 106 

(Fig.1) (22). The CPX data were analyzed via Vienna CPX-Tool (Vienna University, 107 

Vienna, Austria) and results were reviewed independently by two investigators for 108 

consistency (23). Inclusion and exclusion of data is shown in Supplemental Material 109 

Fig. S1. 110 

 111 

Figure 1: Schematic presentation of the calculation of the degree and the direction of the HR to performance curve 112 
(kHR) for individuals with type 1 diabetes and healthy controls.  113 

 114 

  115 



Statistical analyses 116 

Data were tested for normal distribution by Kolmogorov-Smirnov test. Data are 117 

presented according to their distribution as mean ± standard deviation (SD) or median 118 

[interquartile range] for participant’s anthropometric data, specific diabetes 119 

characteristics and performance data (Table 1). Performance data for pre-CPX testing, 120 

VT1, VT2 and peak values were compared for differences over time and between 121 

groups via restricted maximum likelihood model (REML) with post-hoc testing (Sidak’s 122 

multiple comparisons test). Sex-specific differences were calculated via Fisher’s exact 123 

test for each group. 124 

A stepwise linear regression approach was used to explore relationships when 125 

significant differences were found between groups for kHR, VT1, VT2 and peak 126 

parameters of relative VO2, HR and Power (P) (dependent variables) against 127 

anthropometric (sex, BMI, age) and specific diabetes characteristics (diabetes 128 

duration, total daily insulin dose, HbA1c, c-peptide) as independent variables. Stepwise 129 

linear regressions were adjusted for anthropometric variables if not included in the 130 

regression model. 131 

If data were non-normally distributed, logarithmic transformations were performed. 132 

Statistics was performed via SPSS 26 (IBM Corporation, USA) and a standard software 133 

package Prism 8.0 (GraphPad, USA). Statistical significance was accepted at p<0.05. 134 

  135 



RESULTS 136 

A total of 303 individuals with T1D and 308 healthy individuals were included in the 137 

final analysis. Baseline characteristics prior to the CPX testing are shown in Table 1. 138 

Table 1–Baseline characteristics of the study cohort 

Characteristics 
Healthy Control 

(n=308) 
Type 1 Diabetes 

(n=303) 
P-Value 

Age (years) 32 [26; 41] 33 [22; 43] 0.88 

BMI (kg/m2) 24.1 [22; 26] 23.6 [22; 26] 0.21 

Males/Females (n) 220/88 210/93 0.59 

Diabetes duration (years)  0.8 [0.4; 12.3]  

Total daily insulin dose (IU)  30 [14; 50]  

HbA1c (%)  6.9 [6.2; 7.7]  

HbA1c (mmol/mol)  52 [44; 61]  

C-peptide (nmol/L)  0.27 [0.14; 0.43]  

Data are shown as median (quartiles, n or (%) unless otherwise indicated. 
 139 

CPX testing 140 

Sixty-two participants performed stepwise test protocols with 180 seconds increments 141 

with either 30 W (female) or 40 W (male). A ramp protocol was performed by 242 142 

participants, in which the workload increased linearly every minute between 8 W and 143 

60 W dependent on the expected performance as determined by experienced exercise 144 

physiologists. A quasi-ramp protocol was performed by 307 participants, in which the 145 

workload increased by 15 W (female) or 20 W (male) per minute.  146 

In total, 50 quasi-ramp protocols, 191 ramp protocols and 62 step protocols were 147 

conducted in the T1D group while 257 quasi-ramp protocols and 51 ramp tests were 148 

conducted in the healthy control group. Test protocols increased the workload by 7% 149 

[6; 8] of the individual peak power (Ppeak) per minute in healthy individuals while by 8% 150 

[7; 10] in individuals with T1D. 151 

 152 



Physiological Response 153 

Oxygen consumption 154 

Relative VO2 was lower in individuals with T1D compared to healthy controls at the 155 

aerobic (VT1) (13.41 [11.18; 15.95] vs 16.49 [14.00; 19.47]) and anaerobic (VT2) 156 

threshold (23.33 [19.34; 28.73] vs. 31.20 ± 7.82) and also at VO2peak (32.55 [26.49; 157 

38.72] vs. 42.67 ± 10.44) (mL/kg/min) (all p<0.0001). Absolute VO2 was lower in 158 

individuals with T1D compared to healthy controls at VT1 (1.00 [0.79; 1.29] vs.1.23 159 

[0.99; 1.52]), VT2 (1.69 [1.39; 2.16] vs. 2.32 [1.81; 2.81]) and VO2peak (2.41 [1.87; 3.01] 160 

vs. 3.22 [2.43; 3.83]) (L/min) (all p<0.0001). Measured VO2 Reserve (VO2R) was lower 161 

in individuals with T1D compared to healthy controls at VT1 (7.80 [5.73; 9.99] vs 11.61 162 

[8.91; 14.41]), VT2 (17.82 [13.68; 22.37] vs. 26.17 ± 7.60) and peak (27.10 [21.01; 163 

32.94] vs. 37.65 ± 10.33) (mL/kg/min) (all p<0.0001). Oxygen pulse was lower in 164 

individuals with T1D compared to healthy controls at VT1 (9.60 [7.25; 11.40] vs. 12.49 165 

[9.84; 15.41]), VT2 (12.30 [9.50; 15.30] vs. 17.61 ± 5.58) and peak (14.14 [11.19; 17.27] 166 

vs. 20.36 ± 6.07) (mL O2/beat) (all p<0.0001) compared to healthy controls (Fig. 2). 167 

 168 

Heart Rate 169 

The HR to performance curve increased linearly in individuals with T1D detailing a 170 

median kHR of 0.07 [-0.75; 1.09] while in healthy individuals a kHR of 0.66 [-0.28; 1.45] 171 

was present (p<0.0001) (Fig. 2). 172 

In individuals with T1D HR was significantly lower when compared to healthy controls 173 

at VT1 (109 [101; 118] vs. 115 ± 15) (p<0.01), VT2 (149 ± 15 vs. 156 [144; 167]) 174 

(p<0.001) and HRpeak (179 [170; 187] vs. 184 [175; 191]) (bpm) (p<0.01). Measured 175 

heart rate reserve (HRR) was also lower in individuals with T1D at VT1 (25 [19; 30] vs. 176 



29 ± 10) (p<0.001), VT2 (64 ± 14 vs. 69 ± 14) (p<0.0001) and peak (93 ± 14 vs. 98 [88; 177 

108]) (p<0.01) (Fig. 1 and 2). 178 

 179 

Power output 180 

Relative power output was lower in individuals with T1D compared to healthy 181 

individuals at VT2 (1.95 [1.64; 2.33]) vs. 2.31 ± 0.60) and peak (2.78 [2.35; 3.32] vs. 182 

3.33 ± 0.83) (W/kg) (p<0.0001) but not at VT1 (0.93 [0.79; 1.07] vs. 1.03 ± 0.30) 183 

(p=0.14). Absolute power output was also lower in individuals with T1D at VT2 (155 184 

[120; 180] vs. 170 [140; 200]) and peak (216 [171; 253] vs. 245 [200; 300]) (W) 185 

(p<0.0001) with no significant difference at VT1 (72 [56; 89] vs. 80 [65; 100]) (W) 186 

(p=0.22) (Fig. 2). Additional parameters of performance for both groups are presented 187 

in Supplemental Material Tables 1-3.  188 

 189 



 190 

Figure 2: Physiological responses to cardio-pulmonary exercise testing. Black circles represent healthy individuals. 191 
Open circles represent individuals with T1D. Stars indicate significant differences between groups. * indicates 192 
p<0.05. ** indicates p<0.01. *** indicates p<0.001. **** indicates p<0.0001. 193 



Association between diabetes characteristics and functional capacity 

We found statistically significant associations between anthropometric and specific diabetes characteristics with physiological 

parameters of submaximal and peak performance in individuals with T1D (Table 2). Furthermore, significant relationships between 

physiological parameters of exercise performance and anthropometric variables for healthy controls are shown in Table 3. 

Table 2–Associations for submaximal and peak parameters in individuals with type 1 diabetes 

 VO2VT1 VO2VT2 VO2peak HRVT1 HRVT2 HRpeak PVT1 PVT2 Ppeak kHR 

 β 

Age  -0.17**  -0.48**** -0.57**** -0.63****  -0.14***  0.24*** 

BMI -0.37**** -0.28**** -0.19**    0.22** 0.24***   

Male sex -0.16* -0.46**** -0.52****    -0.57**** -0.64**** -0.60****  

Female sex    0.18**       

HbA1c           

TDD  -0.27**** -0.23***     -0.18**  0.20* 

DD      0.15**     

C-peptide  -0.29**** -0.32****    -0.21*** -0.26****   

R 0.38 0.65 0.64 0.51 0.57 0.67 0.62 0.68 0.59 0.28 
R2 0.15 0.42 0.41 0.26 0.33 0.45 0.39 0.46 0.36 0.08 
Adjusted R 0.32 0.65 0.64 0.44 0.46 0.59 0.64 0.68 0.63 0.29 
Adjusted R2 0.10 0.42 0.41 0.19 0.21 0.34 0.41 0.46 0.40 0.09 
p-value 
(both) 

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

TDD: Total daily dose. DD: Diabetes duration. Stars indicate level of significance. *p<0.05. **p<0.01. ***p<0.001. ****p<0.0001.  

 

 

 



 

 

Table 3–Associations for submaximal and peak parameters in healthy controls 

 VO2VT1 VO2VT2 VO2peak HRVT1 HRVT2 HRpeak PVT1 PVT2 Ppeak kHR 

 β 

Age -0.28**** -0.36**** -0.42**** -0.36**** -0.42**** -0.53**** -0.44**** -0.39**** -0.39**** -0.18**** 

BMI -0.33**** -0.31**** -0.33****  -0.17     -0.33**** 

Male sex -0.35**** -0.45**** -0.56****    -0.62**** -0.72**** -0.73****  

Female sex    0.16***       

R 0.53 0.61 0.72 0.43 0.53 0.53 0.68 0.74 0.75 0.45 
R2 0.28 0.38 0.53 0.18 0.28 0.28 0.46 0.55 0.56 0.20 
Adjusted R    0.43 0.53 0.54 0.68 0.74 0.75 0.45 
Adjusted R2    0.18 0.28 0.29 0.46 0.55 0.56 0.20 
p-value 
(both) 

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Stars indicate level of significance. *p<0.05. **p<0.01. ***p<0.001. ****p<0.0001. 



Discussion 203 

Our study showed that individuals with recent-onset T1D have impaired submaximal- 204 

and peak responses for VO2, HR and power output to CPX testing when compared to 205 

matched healthy controls. These alterations in functional capacity coincide with data 206 

by Turinese et al. showing lower relative VO2peak in individuals with T1D (16). However, 207 

they disagree partly with results by Moser et al. that did not find any differences in 208 

HRpeak but in kHR between groups (17) and are contrary to what was shown by 209 

Nascimento et al. where no difference in functional capacity between individuals with 210 

T1D and healthy controls during exercise testing was evident (24).  211 

There are several potential explanations for these equivocal findings in comparison to 212 

other researchers: firstly, in contrast to our study, where diabetes duration was <1 year 213 

diabetes duration was usually longer in previous studies (16,17). Secondly, age is a 214 

major influencing factor when assessing exercise capacity, due to its inverse 215 

relationship to Ppeak, HRpeak and VO2peak, and this may complicate findings and prevent 216 

comparisons if not accommodated by statistical evaluation in some studies (22). 217 

Furthermore, cohorts that are being investigated in different studies tend to be much 218 

smaller in sample size and the cohort examined often varies in glycemic control, which 219 

may further have a deteriorating impact on the physiological exercise response as 220 

shown by Moser et al. (17). 221 

In our study, it was shown that relative VO2 was up to 30% lower in individuals with 222 

T1D at submaximal thresholds and about 20% lower at peak performance compared 223 

to healthy individuals although body mass was not significantly different between 224 

individuals with T1D and healthy controls. Values of VO2peak in our healthy control 225 

group are similar to data from the Fitness Registry and the Importance of Exercise: A 226 

national database (FRIEND) (26), which implies that our included cohort is 227 



representative which rejects the idea of an increased level of physical activity/training 203 

status. 204 

Previously, it has been shown that poor glycemic control is detrimental for oxygen 205 

economy during CPX testing (27). However, this might not apply to our study cohort as 206 

the HbA1c averaged 6.9% (52 mmol/mol), which is in line with recommendations by the 207 

American Diabetes Association (ADA) to help prevent micro- and macro-vascular 208 

disease (28). Since there was no relationship in glycemic control and oxygen uptake 209 

and economy in our study, it may be speculated that endothelial dysfunction might 210 

already be present early after the diagnosis with T1D, even in the absence of visible 211 

changes (29). Additionally it may also be speculated that levels of physical activity are 212 

reduced in our cohort, since early after diagnosis of T1D the attitude towards regular 213 

physical activity changes due to several barriers to physical exercise (30). In our study 214 

a higher VO2peak was associated with a lower total daily insulin dose, which is not 215 

surprising, since regular physical activity reflected by a higher VO2peak necessitates 216 

reduction in insulin due to improved insulin sensitivity by elevated glucose transporter 217 

type 4 activity (31).  218 

Interestingly, VO2peak was associated with lower c-peptide levels. This is a rather 219 

contradictory finding (32,33), which however, might be ascribed to the short diabetes 220 

duration of <1 year in our cohort. A detectable c-peptide level and hence endogenous 221 

insulin production is advantageous for individuals with T1D to maintain the inverse 222 

relationship between insulin and glucagon secretion (34). It has been shown that 223 

individuals with T1D and higher c-peptide levels are less prone to exercise-induced 224 

hypoglycemia (35). Nonetheless, the clinical importance of our finding in regard to 225 

endogenous insulin production is still unclear and suggests that this finding does not 226 

play a causal role. 227 



The HR response to CPX testing was lower at submaximal and also peak parameters 203 

in individuals with T1D compared to healthy controls. An often overlooked complication 204 

in diabetes is cardiovascular autonomic neuropathy, known to impair exercise 205 

intolerance blunting heart rate responses, which may also be present at diagnosis of 206 

T1D (36). Another contributing factor is hyperglycemia leading to chronically elevated 207 

adrenaline and noradrenaline levels that potentially induce β1-adrenoreceptor 208 

insensitivity as shown in adolescent girls with T1D (37), subsequently leading to 209 

chronotropic incompetence (38). In line with the impaired HR responses to increasing 210 

physiological demands, kHR detailed an atypical HR to performance curve in the T1D 211 

group. As shown in healthy individuals (39) and those with a chronic disease (20), only 212 

a small proportion of individuals shows a linear (6%) or inverted (8%) HR response 213 

during incremental exercise testing, which might be a first indication of myocardial 214 

function alterations. Interestingly, also in adults with long standing T1D and poorer 215 

glycemic control (HbA1c ~7.8% [62 mmol/mol]), the HR to performance curve shifts 216 

towards a linear or inverted curve and inadequate response of the HR to exercise 217 

demands (20). Moser et al. postulated that this chronotropic incompetence reflects 218 

dysregulated cardiac muscle contractions during CPX testing (17). From our point of 219 

view, this assumption is questionable and contrary to our findings, since a linear curve 220 

may not lead to a reduction of cardiac performance. Previous studies have shown that 221 

newly diagnosed individuals with T1D showed a higher proinflammatory cytokine 222 

response compared to age-matched healthy controls at rest (40), similar to what was 223 

shown in sedentary individuals when reaching VO2max during exercise testing (41).  224 

While in healthy individuals the proinflammatory cytokine response fades after several 225 

hours, the proinflammatory state in individuals with T1D, independent of exercise, 226 

remains elevated due to increased glucose levels (40). Chronic hyperglycemia has 227 

been shown to be responsible for the formation of advanced glycation end (AGE) 228 



products, which have a crucial role in the development of cardiovascular and renal 203 

complications (42). It may be able to activate the mitogen-activated protein kinase 204 

(MAPK) pathway, which interacts with the cell surface receptors inducing reactive 205 

oxygen species production. This plays a pivotal role in the development of 206 

cardiovascular complications and is also suspected to be present during higher-207 

intensity exercise (31,43). The AGE-induced pathway, responsible for micro- and 208 

macrovascular complications detrimental to organs of the human body, is a 209 

physiological response to prolonged hyperglycemia, which is not reflected by our 210 

cohort with an HbA1c of 6.9% (52 mmol/mol). However, in comparison to healthy 211 

controls this still may be considered as a hyperglycemic and proinflammatory status, 212 

potentially detrimental and responsible for the overall reduced physiological 213 

performance in individuals with T1D during CPX testing. The responsible pathways 214 

require additional research to elucidate the underlying mechanisms in recent-onset 215 

T1D. However, it is challenging to draw overall conclusions, since the alterations in the 216 

HR to performance curve were neither in previous research nor in our study 217 

investigated by means of stress echocardiography.  218 

Relative and absolute PVT2 and Ppeak was lower in individuals with T1D compared to 219 

healthy controls. These findings coincide with a reduced cardio-pulmonary response 220 

throughout the CPX test. We did not find a significant difference at PVT1 between 221 

groups, which indicates a regular aerobic energy supply at low intensity exercise in 222 

individuals with T1D. It appears that with increasing exercise intensity the metabolic 223 

demand needed for corresponding muscular performance cannot be covered 224 

sufficiently by the cardio-pulmonary system as shown by our previous results (17). 225 

No specific diabetes characteristic was associated with Ppeak, while submaximal PVT1 226 

and PVT2 both were negatively associated with c-peptide, which we consider as a 227 



random result. A lower PVT2 was associated with a higher total daily insulin dose. It is 203 

of interest that submaximal parameters of power output are associated with specific 204 

diabetes characteristics, whereas Ppeak is not. Anaerobic PVT2 is reached earlier during 205 

CPX testing in individuals with T1D, which is potentially due to higher mismatch in 206 

metabolic demand leading to an overall decreased Ppeak. 207 

A major, and yet surprising finding of our study is that HbA1c was not associated with 208 

any of the main physiological outcomes measured during CPX testing. The 209 

development of cardiovascular comorbidities has often been attributed to long periods 210 

of poor glycemic control, which deteriorates functional capacity independent of acute 211 

glycemia (44). In addition, we suspect that the short duration of diabetes in our study 212 

cohort is the reason why the influence of HbA1c has not come into effect yet. 213 

Our study is not without any limitation, as data on HbA1c levels and c-peptide status 214 

are missing in the healthy control group, hence a comparison between groups is not 215 

applicable even though we tried to match them as tightly as possible via sex, age and 216 

BMI. An additional limitation is the lack of data on the habitual physical activity 217 

behavior, which could be different between healthy individuals and those with T1D 218 

potentially influencing our results.  219 

The findings of our study may have implications for the future use of CPX testing in 220 

individuals with T1D. The necessity of testing cardio-pulmonary performance shortly 221 

after the diagnosis of T1D is important, since independent of glycemic control, human 222 

physiology seems to change early in individuals with T1D. However, living with T1D is 223 

not detrimental to functional capacity, since small specific cohorts including 224 

recreationally active adults and athletes with T1D, showed up to a 2-fold higher VO2peak 225 

than that in our cohort (17,25). 226 



Physical activity and exercise have become an integral component in the therapy of 203 

T1D within the recent decades of fighting this condition. CPX testing is a very helpful 204 

method to accurately prescribe exercise as a therapy and gives further insight into early 205 

physiological alterations. Nevertheless, our study has shown that the responses to 206 

CPX testing are impaired in individuals with recent-onset diabetes independent of 207 

HbA1c compared to matched healthy controls. Health care professionals should 208 

therefore be vigilant when recommending exercise at specific intensities in T1D and 209 

regularly conduct CPX tests to monitor cardio-pulmonary changes and respond 210 

accordingly if deemed necessary. 211 
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