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Chickens are the most common birds on Earth and colibacillosis is among the most common

diseases affecting them. This major threat to animal welfare and safe sustainable food pro-

duction is difficult to combat because the etiological agent, avian pathogenic Escherichia coli

(APEC), emerges from ubiquitous commensal gut bacteria, with no single virulence gene

present in all disease-causing isolates. Here, we address the underlying evolutionary

mechanisms of extraintestinal spread and systemic infection in poultry. Combining popula-

tion scale comparative genomics and pangenome-wide association studies, we compare

E. coli from commensal carriage and systemic infections. We identify phylogroup-specific and

species-wide genetic elements that are enriched in APEC, including pathogenicity-associated

variation in 143 genes that have diverse functions, including genes involved in metabolism,

lipopolysaccharide synthesis, heat shock response, antimicrobial resistance and toxicity. We

find that horizontal gene transfer spreads pathogenicity elements, allowing divergent clones

to cause infection. Finally, a Random Forest model prediction of disease status (carriage vs.

disease) identifies pathogenic strains in the emergent ST-117 poultry-associated lineage with

73% accuracy, demonstrating the potential for early identification of emergent APEC in

healthy flocks.
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A seemingly insatiable human appetite for poultry meat
and eggs has resulted in modern livestock farming on a
colossal scale. Today there are over 26 billion chickens

worldwide, with poultry constituting around 70% of all bird
biomass on earth1. Advances in selective breeding and husbandry
have greatly increased productivity in the last 50 years but this
level of agricultural intensification brings significant challenges
for animal health, welfare and safe sustainable food production.
Of particular concern are the opportunities created for the spread
of livestock diseases and the emergence of zoonotic pathogens2,3.

Among the most common bacterial diseases of chickens reared
for egg and meat production is colibacillosis4 caused by avian
pathogenic Escherichia coli (APEC). Like other forms of extra-
intestinal pathogenic E. coli (ExPEC)5, APEC exists as a com-
mensal component of the avian gut microbiota but emerges to
cause a variety of systemic infections. Diseases of chickens and
other birds range from epidermal, yolk sac and common
respiratory tract (aerosacculitis) infections, to severe pericarditis,
perihepatitis, omphalitis and septicaemia6,7. In some cases mor-
tality can reach 20%, condemning whole flocks, leading to suf-
fering for millions of farmed birds and multimillion pound losses
to the worldwide poultry industry4,6. The problem is exacerbated
by the rise of antimicrobial resistance occurring across global
transmission networks8–12, and the recognition that APEC may
cause human infections13–16 highlights the need to control this
bacterium for both animal and human health.

Risk factors for colibacillosis have been identified, and include
chicken immunological immaturity and stress17, but the disease
has proved difficult to control, not least because no single gene,
plasmid, phage or pathogenicity island has been exclusively
associated with the emergence of virulent APEC from a back-
ground of harmless gut-dwelling E. coli18,19. Technical advances
in high-throughput whole-genome sequencing offer opportunities
to investigate the population genomics of pathogen evolution20

but understanding the spread of APEC remains challenging for
two reasons. First, there is uncertainty about the extent to which
disease results from the transmission of a few globally distributed
epidemic clones4,6,7 or a diverse assemblage of disease-causing
lineages21,22. Second, while a considerable body of knowledge has
been gathered10,23–26, the genes contributing to APEC virulence
are less well described than in human ExPEC pathotypes27,28.
Pathogenicity is often linked to the presence of plasmids that
confer a range of virulence-associated traits10,23–26, such as
aerobactin production, complement resistance and iron acquisi-
tion7,10,22. However, no one gene is known to be essential for the
development of extraintestinal infection in birds10,29–31 and
pathogenicity appears to be linked to a heterogenous mix of
plasmid and chromosomal genes involved in bacterial adhesion,
invasion, toxicity, antibiotic resistance, survival and metabolism
under stress22,31–33.

With colibacillosis set to increase in line with expanding
poultry production there is a pressing need to monitor the
emergence of APEC within genetically diverse commensal
populations and identify strains that are predisposed to patho-
genicity because of the genetic elements harboured in their gen-
ome. Here we take a large-scale comparative genomics approach
to investigate the genetic basis of APEC pathogenicity that is
agnostic to pre-existing assumptions about putative virulence
determinants. Using a genome-wide association study (GWAS)
approach34,35, we analyse 568 E. coli genomes from commercial
poultry farms, including isolates from healthy chickens and those
from various systemic infection body sites, and identify genes and
genetic elements associated with avian pathogenicity (Fig. 1).
Finally, having described an evolutionary context for under-
standing pathogen emergence, we use a machine learning
approach to identify risk genotypes, that with further validation,

could form a basis of diagnostics and interventions to improve
animal health.

Results
Core and accessory genome variation in avian E. coli. The
pangenome of the 568 avian E. coli isolate dataset (309 disease-
associated and 234 asymptomatic carriage strains) comprised
15,281 unique genes, with an average of 4115 genes per isolate.
These included 3094 genes present in at least 95% of the dataset,
which corresponded to 75% of the average genome size, con-
sistent with previous E. coli core genome estimates28,36. The rate
of accessory gene discovery did not plateau as the sampling
increased (Supplementary Fig. 1), consistent with widespread
acquisition of genes through horizontal gene transfer (HGT).
While only 15.5% of all annotated genes from the reference avian
E. coli strain APEC_O1 were of unknown function, this number
increased to 65.8% for the whole pangenome. All the assembled
genomes analysed in this study are available via Figshare (https://
doi.org/10.6084/m9.figshare.12011811) and raw sequence data
has been deposited in the sequence read archive (SRA) associated
with BioProject PRJNA592536.

Quantitative analysis of APEC plasmid genes does not fully
explain pathogenicity. The emergence of APEC has been widely
linked to the acquisition of plasmids containing virulence
genes10,24–26,32. Therefore, we first quantified the presence of
putative plasmid genes in isolates associated with disease and
asymptomatic carriage using a gene-by-gene approach37,38.
Putative plasmid genes were widely distributed among APEC and
commensal E. coli strains in chickens and there was evidence that
the average number of plasmid genes per isolate was greater
among commensal strains (Supplementary Fig. 2). These results
provide initial evidence that emergence of APEC virulence is not
entirely dependent on the presence of specific defined plasmids,
as in some E. coli pathotypes39. In fact, rather than a pattern of
complete plasmid (as detailed in the reference sequences) pre-
sence/absence, there was evidence for mosaicism of plasmid genes
found together in different combinations. Furthermore, these
analyses do not discriminate the context of putative plasmid-
associated genes that may be plasmid-borne or integrated in the
chromosome. One explanation for the high numbers of putative
plasmid genes harboured among commensal isolates is that some
contribute to avian adaptation rather than sensu stricto virulence.
For example, plasmid-borne antimicrobial resistance genes40 may
promote persistence in intensive livestock systems, where anti-
microbials may have been used for prophylaxis or treatment, but
are not directly associated with invasive disease. However, while
some putative plasmid genes were more common in APEC
compared to other E. coli, there was little evidence of complete
segregation that would be indicative of direct causation (Fig. 2
and Supplementary Fig. 2). These findings suggest that a full
understanding of the genetic determinants of APEC emergence
requires consideration of homologous sequence variation rather
than simple plasmid gene presence/absence analysis.

Avian pathogenic strains emerge from multiple E. coli lineages.
A maximum-likelihood phylogeny constructed from a con-
catenated gene-by-gene core genome alignment (3,094 genes)
revealed a highly structured population (Fig. 3a). Inclusion of
isolates from the well-described ECOR collection allowed con-
textualisation of avian isolates among known E. coli phylogroups
and multi-locus sequence types (STs)41,42. Poultry isolates from
our dataset (Supplementary Data 1) clustered within six out of the
eight known E. coli phylogroups (A, B1, B2, D, E, F)43, and were
absent in phylogroups C and G44,45. There was evidence for
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variation in the distribution of poultry strains among lineages.
For example, 211 isolates (39%) belonged to a single sequence
type (ST-117) which, together with isolates in the B2, B1 and A
phylogroups, constituted 93% of the poultry isolates in our
dataset. Of the remaining isolates, the most common STs were:
ST-1618, ST-95, ST-919 and ST-429 (phylogroup B2); ST-101,
ST-155 and ST-469 (phylogroup B1); ST-38 and ST-69 (phy-
logroup D); and ST-10 (phylogroup A). Phylogroups E and F
were exclusively populated with ST-350 and ST-648 strains
respectively. While variation in the frequency of poultry isolates
in different lineages may reflect natural abundance within host
populations, this does not necessarily indicate pathogenicity. To
assess this, the ratio of invasive to commensal strains in the
common lineages was determined for each common phylogroup
and ranged from 61% (B2) to 31% (E). While it remains possible
that lineages with enhanced pathogenicity may exist or emerge in
the future, among known E. coli diversity, isolates from all major
phylogenetic groups were represented in both the asymptomatic
and the disease isolate collections. This reflects the emergence of
pathogenic clones from multiple genetic backgrounds.

Pangenome-wide association study reveals pathogenicity-
associated genes. GWAS was performed for each of the four

most common lineages in the dataset, namely on phylogroups A,
B1, B2 and ST-117. In each case, disease isolates were compared
to those from asymptomatic carriage within the same phy-
logroup. The GWAS approach incorporated a ClonalFrameML
phylogeny that accounts for the impact of recombination, thereby
reducing the effect of population structure and maximising the
chance of identifying elements associated with a switch from
commensal to pathogenic lifestyle. These independent GWAS
analyses identified 11,947, 15,670, 43,980 and 7110 associated
genetic elements with a p-value < 0.05, that mapped to 1925,
2099, 3946 and 554 infection-associated genes in phylogroup A,
B1, B2 and the ST-117 lineage respectively. Nonetheless, only 896
genes contained associated genetic elements with p-value < 0.01
(dots on Fig. 3b) and only these were considered for further
downstream analysis. Out of the 896 pathogenicity-associated
genes, 753 were phylogroup- or lineage-specific, suggesting
multiple independent pathways to pathogenicity (Supplementary
Fig. 3), with some variation in prevalence based upon extra-
intestinal isolation source (Supplementary Fig. 5a/Supplementary
Data 7). However, 143 genes were flagged as pathogenicity-
associated in all four GWAS analyses (Supplementary Data 2 and
Supplementary Fig. 3). Of these, 65 were core genes (45.5%) and
78 accessory genes (54.5%), and had diverse predicted functions,
including genes involved in metabolism, lipopolysaccharide

Fig. 1 Avian Pathogenic E. coli (APEC) GWAS and risk prediction. Genome-wide association studies (GWAS) can identify multiple genetic variants
associated with complex traits but these can be difficult to interpret. For example, pathogenicity is a multifactorial phenotype, potentially involving genes
that affect phenotypes like toxicity, antimicrobial resistance, immune evasion etc. Furthermore, the role of certain genes may be poorly defined, especially
in bacteria with large accessory genomes. We developed a method in which 4 GWAS experiments (carriage vs. disease isolates) were conducted and the
disease-associated genetic variants (core genome SNPs, accessory genes, fission/fusion, duplications and accessory gene alleles) were mapped to genes
within the pan genome. Disease-associated elements identified in all four lineage-specific GWAS (phylogroups A, B1, B2 and ST-117) included 143 genes,
containing 79 species-wide genetic variants. Patterns of presence and absence of these variants were used as classifiers in two different random forest
models to identify the best predictors of APEC disease.
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Fig. 2 Segregation of genes in six known APEC plasmids among carriage and disease isolates. For every gene (represented with a dot) within six known
APEC plasmids, we calculated the prevalence (%) among carriage (n= 234) and disease-associated (n= 309) E. coli genomes. The dashed line represents
equal prevalence in each population. Source data are provided as a Source Data file.

Fig. 3 Population structure and genome-wide association study of avian E. coli. a Phylogenetic tree of 568 avian E. coli strains, reconstructed using a
maximum-likelihood algorithm (IQ-TREE) from a core genome alignment (n= 3094 genes shared at least by 95% of all the isolates). Isolates are labelled
according to source: disease isolates (white); carriage isolates (black); ECOR collection (grey). The letters designate the different E. coli phylogroups.
b Pangenomic position of GWAS results. The outer ring represents the pangenomic position of genes in the E. coli reference strain APEC_O1, the rest of the
pangenome inferred in this study and a group of low frequency accessory genes that were excluded from the GWAS. Black ticks in the second ring show
the position of genes containing disease-associated genetic variants in all four distinct GWAS. Coloured circles are shown for the most statistically
associated (lowest p-value) elements in a given gene for GWAS in phylogroups A (green), B1 (pink), B2 (yellow), ST-117 complex (blue) and species-wide
disease-associated elements (black). The threshold for significance was p-value= 0.01 (inner circle). Statistical significance was determined by the
treeWAS algorithm. Concentric rings emanating from this threshold correspond to incremental reductions to a p-value of 0.000001 (outer ring). The
numbers in the outer ring denote the length of the pangenome in Mbp. Source data are provided as a Source Data file.
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synthesis, heat shock response, antimicrobial resistance and
toxicity. A total of 58 (74.4%) of the accessory genes were puta-
tively of plasmid or phage origin (Supplementary Data 2). Finally,
within the 143 species-wide pathogenicity-associated genes, we
identified 79 genetic elements that segregated by disease/carriage
(p-value < 0.05) in all the GWAS, including 66 core genome
SNPs, 3 accessory genes, 1 fission/fusion, 4 duplications and
5 accessory gene alleles (Supplementary Data 3). These strin-
gently defined elements constitute robust candidates for disease
risk prediction.

Pathogenicity-associated genes recombine among E. coli
lineages. The acquisition of pathogenicity-associated elements
among divergent lineages and the importance of potentially mobile
elements (plasmid and phage genes) suggest a role for HGT in the
emergence of avian pathogenicity. There was a significant increase
(Mann–Whitney test; U= 80516, p-value < 0.0001) in allelic varia-
tion among genes associated with pathogenicity (Fig. 4a), with an
average of 0.156 (±0.106) unique alleles per locus for the 143
pathogenicity-associated genes, and 0.08 (±0.035) for 3094 core
genes. This could be due to the accumulation of deleterious
mutations resulting from E. coli range expansion into the patho-
genic niche46 but an equally likely explanation is that these sub-
stitutions result from elevated recombination among pathogenicity-
associated genes. Evidence for this comes from calculation of the
mean consistency index (CI) that was significantly lower

(Mann–Whitney test; U= 11,366, p-value < 0.0001) among
pathogenicity-associated genes (0.2226 ± 0.2037) compared with
other core genes (0.3895 ± 0.01186; Fig. 4b). This suggests that the
clonal mode of descent is disrupted in pathogenicity-associated
genes consistent with elevated HGT.

Machine learning identifies disease risk genotypes. Quantitative
determination of species-wide pathogenicity risk markers was
carried out using a Random Forest (RF) classifier approach based
on the presence/absence of the 79 genomic variants, that were
associated with disease isolates in all four lineage-specific GWAS
analyses (Supplementary Data 3). Using disease-associated ele-
ments found in all major phylogroups maximised the likelihood
of capturing generalised predictors of APEC pathogenesis and
limited the possible linage specific effects. The estimated risk
score was defined as the probability of an isolate coming from
disease given a certain profile of the 79 genetic elements. The
relative predictive power of each of these elements was estimated
by ranking them according to their estimated importance as
classifiers in the model (Fig. 5a). Next, the diagnostic ability of the
classifier system at varying discrimination thresholds (receiver
operating characteristic - ROC curves) and the importance of the
10 highest ranked predictors were investigated in two analyses
(Fig. 5b–e). In the first analysis, in which the training data con-
tained all isolates from the four phylogroups, the RF model
reached an out-of-sample classification accuracy of 76.9% for
predicting infection status of E. coli strains (healthy carriage vs.
disease). SNPs within the gnd gene, involved in inter-strain
transfer and recombination47, accounted for 4 of the 10 most
important predictors. These 10 predictors achieved a classifica-
tion accuracy of 73.5% on their own, potentially offering simple
targets for investigation of E. coli pathogenicity risk.

In a second analysis, we tested the ability of the model trained
on data from phylogroup A, B1 and B2 isolates, to predict
infection status (healthy carriage vs. disease) in the emergent ST-
117 lineage that is thought to be virulent in birds and hold
zoonotic potential48–50. Replicate analyses with ST-117 isolates
included (‘Train’) and excluded (‘Test’) from the training data
returned seven of the same top ten ranked predictors as in the
first analysis (Fig. 5c, e) and gave average RF out-of-sample
accuracy of 75% and 73% respectively. The slight reduction in the
accuracy when moving outside the training domain of the RF
model (area under the ROC 0.79 to 0.76, Fig. 5d), indicated that
the model may generalise to other E. coli data using existing
predictors. Achieving this level of prediction accuracy has clear
potential for the development of pathogenicity biomarkers in a
farm setting, particularly as the power of the model is limited by
the input data. Specifically, as samples from asymptomatic
chicken may include strains that have the potential to cause
future infection (as well as those that do not), the commensal
strain training dataset likely includes some pathogenicity
elements. While it is difficult to predict which strains these are,
especially as host factors may influence infection, broader
sampling may increase the numbers of representative commensal
strains that do not have the potential to cause disease, and elevate
prediction accuracy beyond 75–77%.

Prevalence of APEC-associated genetic variants in E. coli iso-
lates from different infection sites and other host sources. The
prevalence of APEC-associated variants, used in the RF model,
was investigated in isolates sampled from other host niches.
Specifically, we analysed the E. coli reference collection (ECOR)42,
175 human ExPEC strains28, 14 disease-associated strains from
dogs51 and 521 strains from healthy cattle52. The APEC-
associated genetic variants also occurred in humans and other

Fig. 4 Comparison of allelic variation and consistency index for core
genes and genes containing disease-associated elements. a The average
number of alleles per locus and b consistency indices to a core phylogeny,
were calculated for each gene alignment for core genes and 143 genes
containing pathogenicity-associated elements using R and the phangorn
package. The left y-axis indicates the number of core genes (black line), the
right y-axis indicates the number of genes containing pathogenicity-
associated elements (blue line). For the consistency index, the two
distributions were significantly different (two-tailed Mann–Whitney test; p-
value= 0.0001, Mann–Whitney U= 11,366). Source data are provided as a
Source Data file.
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animals implying that host species does not constitute a complete
gene-pool barrier between the niches. A Kruskal–Wallis test
identified significant differences in the prevalence of genetic
markers in human ExPEC compared to the ECOR collection (p-
value < 0.0001) and healthy bovine isolates (p-value < 0.0001),
indicating that APEC-associated genetic variants can be found in
other animals but overall they are significantly less abundant in
human ExPEC strains (Supplementary Fig. 5b). However, ana-
lysing the individual prevalence of specific APEC-associated
genetic variants in each of these additional E. coli groups

(Supplementary Data 6) revealed that many of the APEC-
associated elements were also common among human ExPEC
(Supplementary Fig. 5c/Supplementary Data 6). This may suggest
shared adaptations to establishing extraintestinal infection in both
avian and human hosts13.

Additionally, we investigated the prevalence of the same
genetic variants in isolates from different infection sites within
our dataset (Supplementary Fig. 5a/Supplementary Data 7). A
Kruskal–Wallis test revealed significant differences
between asymptomatic carriage and bone marrow samples

Fig. 5 Identification of predictive genotypes for pathogenicity in avian E. coli using random forest (RF) models. a The importance of the predictors
derived from the four GWAS using the primary classifier model (trained using data from the four lineages A, B1, B2, ST-117); b Receiver operating
characteristic (ROC) curve showing the overall performance of the primary classifier model; c Importance of the top 10 predictors in the primary classifier
model; d ROC curve showing the overall performance of the follow-up classifier model (trained using data from the four phylogroups A, B1, B2 and
predicting in ST-117); e The importance of the top 10 predictors in the follow-up classifier model. Data are presented as mean values ± SD from n= 10
repeated analyses. Source data are provided as a Source Data file.
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(p-value < 0.0001), between asymptomatic carriage and liver
isolates (p-value = 0.0003) and between bone marrow and heart
isolates (p-value= 0.009). While prevalence is distinct from
GWAS-association, this suggests differences between infection
types and provides evidence that the elements that underly
pathogenicity may vary with different pathologies.

Discussion
E. coli are simultaneously ubiquitous in healthy animal guts and a
major cause of diverse intestinal and extraintestinal infections.
Clearly, interpreting these contrasting lifestyles requires an
understanding of the factors that promote pathogenicity in this,
typically commensal, bacterium. By definition, extraintestinal
disease requires migration from the gut and proliferation within
the pathogenic niche. While host factors and dysbiosis may be
important for this27, disease also depends on the ability of the
invasive strains to colonise a new habitat where the conditions are
different.

Sampling E. coli from both healthy chicken guts and infected
systemic tissues (APEC) allowed characterisation of the genotypes
and gene pools associated with different sites, and health states. It
is therefore possible to consider different evolutionary scenarios
for the migration of pathogenic strains from the commensal gut
niche and proliferation in extraintestinal tissues (Fig. 6). First, the
emergence of dominant pathogenic APEC clones from the
background gut population. Second, host-mediated pathogenicity,
where all poultry-associated E. coli are able to cause extra-
intestinal infection. Third, plasmid-mediated virulence in which
multiple lineages proliferate extraintestinally as a result of the
acquisition of specific plasmid-borne virulence genes. Finally, a

divided genome scenario53, where HGT introduces disease-
associated chromosomal and plasmid genes into multiple genetic
backgrounds allowing colonisation of the extraintestinal niche.

It is known that certain E. coli lineages are predisposed to
extraintestinal pathogenicity, as evidenced by the global spread of
pandemic ExPEC clones5. In a simple infection model, where
only dominant clones can cause disease, all isolates recovered
from infected tissues will belong to discrete clusters of genetically
related pathogenicity-associated strains (Fig. 6a). This was not
observed among APEC isolates. In fact, disease isolates were
distributed across the phylogeny within all six previously
described phylogroups and the ST-117 complex lineage (Fig. 3a).
One interpretation of this genetic structuring is that given par-
ticular host factors, such as gut perturbation or dysbiosis, all
E. coli lineages are equally able to cause disease by mass action
rather than specific pathogenicity5 (Fig. 6a). If this were the case,
then genome analyses would not identify enrichment of
pathogenicity-associated elements within the genome of disease
strains. However, the GWAS identified numerous pathogenicity-
associated elements which mapped to genes known to be asso-
ciated with pathogenicity. This is consistent with enrichment for
sequence that encodes traits associated with pathogenicity.

Plasmid carriage is an important factor in the emergence of E.
coli pathotypes39. The mobility of these elements makes them
ideal candidates for spreading pathogenicity genes among APEC,
potentially conferring multiple virulence phenotypes in a single
evolutionary step. This could explain the emergence of pathogenic
strains from divergent genetic backgrounds (Fig. 6c). However,
our population-scale analysis revealed that known APEC plasmid
genes were no more abundant in disease compared to commensal
isolates from poultry (Supplementary Fig. 2). Furthermore, rather
than containing a discrete compendium of genes associated with a
given plasmid, genes were present at varying frequencies sug-
gesting a mosaic of putative plasmid elements found in different
combinations in the genome (Fig. 2 and Supplementary Fig. 2).
While these findings are inconsistent with a simple model of
plasmid-mediated virulence (Fig. 6c), the ubiquity of plasmid
genes implies a role in poultry adaptation or the emergence of
APEC as described in various studies32,40,54.

Investigating the genetic basis of pathogenicity beyond the role
of plasmids requires consideration of the putative function of all
core and accessory genes. Pathogenicity is multifactorial and
there is evidence that different traits can contribute in different E.
coli lineages (Supplementary Fig. 3). Population-wide genomic
screening and analysis approaches, such as GWAS and machine
learning, deliver a deluge of potentially useful information
describing the genetic basis of complex traits. If correctly inte-
grated with laboratory microbiology, this can underpin rigorous
confirmatory tests of gene function that satisfy Molecular Koch’s
postulates55. While functional genomic genotype–phenotype
maps are required for a full understanding of pathogenicity,
evidence for common APEC disease determinants comes from
genes that are enriched in APEC strains from all E. coli phy-
logroups – consistent with convergent evolution of pathogenicity
traits. Species-wide pathogenicity-associated genes included those
associated with generic Gram-negative virulence factors, such as
O-antigen chain length regulation (wzzB56) and a host killing
toxins (hokA and hokC57), as well as known avian virulence
factors including outer membrane proteins (ompT58,59), pilus
chaperones (papD and fimD60–62), cell envelope integrity (wcaJ),
and general secretory pathways (gspO) responsible for transport
of toxins from the periplasm to the extracellular medium63.
Antimicrobial resistance (YeeO64 and evgS65) and central meta-
bolism (gnd47, gltS66 and hisBCDGH67) genes also contained
pathogenicity-associated elements, potentially conferring a sur-
vival advantage in the stress conditions of the infection niche68.

Fig. 6 Evolutionary scenarios for APEC infection and predicted variation
in isolate phylogenies and disease-associated elements. Panels
summarise models for the spread of E. coli from the primary commensal gut
niche (black circle) to extraintestinal tissue, and the effect on the
population of E. coli clones (blue, red, green and yellow circles) and their
genomes (internal circles) which may be enriched for putative
pathogenicity-associated genes (red). Conceptual genealogies are given for
isolates sampled from extraintestinal disease sites and the estimated
prevalence of chromosomal (white) and plasmid (grey) disease
determinants in the genome of isolates from the gut and systemic infection
are shown. Evolutionary scenarios include: a extraintestinal spread of
pathogenic clones with genomes enriched for disease elements, seen as
one (or few) lineages on the tree; b host-mediated pathogenicity in which
multiple diverse clones spread systemically as a result of host factors,
irrespective of disease elements (no significant difference); c plasmids
transfer between lineages (dashed black arrow) and clones harbouring
plasmids spread extraintestinally; d Horizontal gene transfer reassorts
plasmid and chromosomal disease elements into multiple genomic
backgrounds leading to the emergence of multiple APEC clones.
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Bacterial GWAS relies on whole-genome sequencing rather
that standardised genotyping arrays and therefore typically has
lower sample size than human GWAS (often >100,000 sam-
ples69). This can impact on the statistical ability to detect rare
associated variants, but also on the ability to generalise results
outside of the sampled dataset. Because of the lack of standar-
disation of bacterial GWAS results70, and the scarcity of other
comparable bacterial GWAS results, replication meta-analyses
can be extremely challenging. Nevertheless, as for human GWAS,
robustly associated variants in one study can always potentially
highlight important functions and mechanisms associated with a
trait71,72, here pathogenicity in APEC. Therefore, any comparison
with previously described virulence determinants can provide
useful confirmatory evidence of a potential role for APEC asso-
ciated genetic variation.

Cross-referencing with a recent authoritative review73, identi-
fied GWAS associations in genes that have been linked to
pathogenicity in other studies. For example, eae - an attaching
and effacing gene that encodes intimin, and ompT - that encodes
a protease able to cleave colicin. However, there was little overlap
with some other studies30. It is inevitable that the findings of our
population-wide approach will not exactly match data from
existing microbiology studies for three important reasons. First,
pathogenicity-associated elements are ranked based upon a sig-
nificance score. With experimental design targeting ubiquitous
APEC genomic signatures, this will inevitably flag pathogenicity
elements found in multiple lineages and pathologies. Therefore,
variation associated with a specific infection type may have lower
significance. For example, while the hokA and hokC genes
encoding components of toxin-antitoxin systems are not APEC
virulence determinants in the strict sense, they may indicate the
importance of wide-spread mobile genetic elements that are
linked to virulence genes that vary by infection type. Second,
many of the most significant hits were SNPs in core genes that
may be linked to other genes (Supplementary Data 3). For
example, while the chaperone-encoding genes papD and fimD are
among the pathogenicity-associated genes, other P and type 1
fimbrial determinants are not, despite their likely role in viru-
lence74. The reason for this is that the variation within the genes
encoding fimbrial determinants does not segregate as strongly as
the chaperone genes based on the binary pathogenicity phenotype
in this study. This suggests that multiple homologous sequence
variations within these genes can underlie pathogenicity when
particular SNPs are present in the chaperone genes. Finally, fac-
tors promoting host colonisation, such as adhesion, can benefit
commensal strains as well as representing a step towards bacterial
pathogenicity in ExPEC75–77. In this case, while there may be a
specific role in extraintestinal spread, the underlying genomic
signature may not achieve statistical significance. For these rea-
sons, the population-wide GWAS approach can be considered a
platform on which to develop further functional genomic char-
acterisation rather than a definitive road-map to pathogenicity,
highlighting segregating variation in genes, such as fimD, that are
linked to operons or pathways that are known to relate to E. coli
virulence61,73,74.

The enrichment of putative virulence determinants among
disease isolates suggests that pathogenic strains are a subset of the
commensal gut population that possess genetic elements that may
promote migration and colonisation of extraintestinal sites
(Fig. 6d). This presents something of a theoretical conundrum.
Specifically, within the competitive milieu of the gut microbiota
(primary niche), genes that are only beneficial in the secondary
(extraintestinal) niche will impose a fitness cost on the
bacterium. Therefore, strains with many pathogenicity adapta-
tions will be less competitive than those with few. A clue to
explaining this comes from the observation that 74% of the

pathogenicity-associated accessory genes were putatively of
plasmid or phage origin and are therefore mobile among lineages.
HGT is known to be a major force in E. coli evolution78,79, with
the acquisition of genes through recombination potentially con-
ferring adaptations associated with pathogenicity80. Therefore,
virulence genes that are maintained at low frequencies in different
lineages in the primary niche can be reassorted and come together
in a common genetic background, potentially allowing successful
extraintestinal colonisation.

Evidence of the importance of HGT in APEC comes from the
divergent position of strains across the population phylogeny
(Fig. 3a), as well as the lower mean consistency index of indivi-
dual pathogenicity-associated gene trees compared with core
genes. This suggests homoplasy and the horizontal spread of
adaptive genes through the population, consistent with a gene-
specific selective sweep, or divided genome, model of bacterial
evolution53,81,82. In this scenario, as migration from the gut
occurs, HGT will increase the rate at which positively selected
genes sweep through the invasive population. The speed and
efficiency of adaptation are therefore increased by recombination
combining multiple selected plasmid and chromosomal genes
into a common genomic background (Fig. 6d). For diverse
commensal E. coli populations this can potentially promote the
emergence of pathogens at the boundary between commensal and
extraintesinal niches and rapid adaptation to life in the extra-
intestinal environment. Furthermore, studies of in vivo bacterial
populations have demonstrated recombination among strains
within the gut of humans and chickens83,84. Knowing that E. coli
can be found at high concentrations in chickens (mean log10E.
coli of 4.15 colony forming units per ml of faeces85), with an
estimated doubling time of around 3 to 15 h in natural popula-
tions86,87, it is also possible that in chronic APEC infections,
lasting more than 2 days from experimental infection to the death
of the bird88, virulence determinants could accumulate and re-
assort among strains.

In an animal health setting, early identification of pathogens
has great potential to improve livestock welfare and reduce eco-
nomic losses resulting from disease. It is evident that targeting
individual clones based upon traditional molecular typing
methods89 has limitations because the putative virulence deter-
minants are mobile between lineages. It follows, therefore, that
quantifying pathogenicity-associated genes may allow the iden-
tification of carriage strains that pose a disease risk. However, this
is complicated by two factors. First, there is evidence of lineage-
specific and species-wide pathogenicity-associated genes so sim-
ple diagnosis may be challenging. Second, extraintestinal spread
and systemic infection involves numerous colonisation and
virulence factors that may be associated with progression of dif-
ferent types of infection, such as common respiratory tract
infections and septicaemia. Statistically significant GWAS corre-
lation with different infection types would require larger numbers
of samples from each extraintestinal source but varying pre-
valence of pathogenicity-associated elements among isolation
sources was consistent with multiple pathways to infection.

To achieve more accurate risk prediction of this complex dis-
ease, we developed a Random Forest machine learning approach
to quantify the power of different combinations of pathogenicity-
associated elements (classifiers) to predict the source of isolates
(carriage/disease) from their genome. A simple analysis, in which
all isolates were used to train the model, achieved a classification
accuracy of 76.9%. Among the classifiers that provided the most
accurate prediction were elements in a gene associated with
polymyxin resistance (ugd90) and a gene participating in the
oxidative pentose phosphate metabolic pathway (gnd47,91) located
in the highly recombinant rfb region associated with the avoid-
ance of host defence systems92. This may be explained by the use
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of polymyxin in the treatment of colibacillosis in poultry pro-
duction93 and HGT among strains, and provides clues about the
functional basis of the pathogenicity-associated elements. How-
ever, as APEC emerges in multiple E. coli lineages, generalising
the risk prediction method required that the training and test
datasets were phylogenetically distinct. Focussing on the ST-117
lineage, that is thought to be an emergent bird pathogen49

achieved a risk prediction accuracy of 72.7% when the model was
trained on phylogroups A, B1 and B2. This suggests that relatively
few ‘global’ pathogenicity markers may provide a basis for risk
prediction and that model training on ever larger reference
genome datasets may have potential for early identification
emergent APEC in healthy flocks to inform targeted
interventions.

Pathogens remain a major threat to sustainable livestock
production. Control of highly pathogenic avian influenza is
typically achieved through early diagnosis, flock isolation and
bird culling. However, these measures are not applicable for
some common diseases, such as colibacillosis, because E. coli
are found in all chicken guts and a full understanding of the
factors responsible for the emergence of APEC has remained
elusive. Population-scale comparative genomic analyses take us
a step closer to characterising the differences between com-
mensal gut E. coli and APEC that have acquired genetic ele-
ments that promote extraintestinal infection. Untangling the
web of interacting genes that underly pathogenicity is extremely
difficult without full functional genomic characterisation and it
is inevitable that some lineage- or pathology-specific genetic
variation is missed when targeting species-wide markers of
infection. However, there is clear utility for the development of
APEC molecular diagnostics and targeted antibiotic therapy -
where pathogens have a different resistance profile94,95. Among
the most promising applications are those involving the
development of guided antimicrobials that can selectively target
a gene, cellular process, or strain of choice. Where the pathogen
sequence is known, nucleic acid-based antibacterials, peptides,
bacteriophage therapies, bacteriocins, and anti-virulence com-
pounds may be able to exclusively target disease-causing bac-
teria94,96. For example, CRISPR-Cas technology can be used for
sequence-specific bacterial killing through guided nucleases
that recognise known DNA sequences97,98. Despite the com-
plexity of pathogenicity phenotypes, and the mobility of the
underlying genes, these techniques show considerable potential.
With further functional genomic validation, a firm under-
standing of the genetics of pathogenicity could pave the way to
early diagnosis of risk, more effective control and improved
animal welfare.

Methods
Bacterial sampling. The isolate collection comprised 568 avian E. coli isolates
sampled from a variety of sources (Supplementary Data 1). These included 152
previously published isolates50,58,99, 414 isolates sequenced as part of this study and
the reference strains APECO1100 and APECO78101. In total, 482 isolates were
sampled at slaughter from broiler chicken (Gallus gallus domesticus), 44 isolates
were from commercial turkey (Meleagris sp.), 12 isolates were from avian wildfowl
and 5 isolates were from gulls. A total of 234 faecal isolates were from asympto-
matic carriage, sampled post mortem from the gut when no symptoms could be
observed in the bird, and 309 isolates were considered disease-associated APEC
based on their extraintestinal site of isolation, and/or symptoms in the bird at
autopsy. Specifically, out of the disease-associated isolates 35 were isolated from the
bone marrow, 70 from the liver (perihepatitis), 23 from the heart (pericarditis), 40
from the peritoneum (peritonitis), 26 from blood (septicaemia), 19 from yolk sac
infections and 96 from various other infection sites. Finally, 25 isolates were not
phenotypically characterised as they were isolated from the poultry farm envir-
onment. Isolates from the poultry farm environment were only used for the
phylogenetic and pangenome analysis of this study.

Genomic DNA extraction, sequencing and archiving. DNA was extracted using
the QIAamp DNA Mini Kit (QIAGEN; cat. number: 51306), using

manufacturer’s instructions. DNA was quantified using a Nanodrop spectro-
photometer, as well as the Quant-iT DNA Assay Kit (Life Technologies, Paisley,
UK). High-throughput genome sequencing was performed on a MiSeq (Illu-
mina, San Diego, CA, USA), using the Nextera XT Library Preparation Kit with
standard protocols. Libraries were sequenced using 2 × 250 bp paired end v3
reagent kit (Illumina), following manufacturer’s protocols. Short read paired-
end data was assembled using the de novo assembly algorithm, SPAdes (version
3.10.0)102. The average number of contigs was 336 (range: 11–1373) for an
average total assembled sequence size of 5.16 Mbp (range: 4.42–5.79). All 414
genomes sequenced in this study have been deposited in GenBank, associated
with BioProject PRJNA592536. Accession numbers for all genomes, including
those previously sequenced can be found in Supplementary Data 1. Genome
assemblies for the entire collection 568 can be downloaded from figshare: https://
doi.org/10.6084/m9.figshare.12011811. An overview of the assembly information
is provided on Supplementary Data 4.

Core and accessory genome characterisation. All unique genes present in at
least one isolate (the pangenome) were identified by automated annotation using
PROKKA (version 1.13)103 and PIRATE104 - a pangenomics tool which allows
for orthologue gene clustering in divergent bacterial species. We defined genes in
PIRATE using a wide range of amino acid percentage sequence identity
thresholds for Markov Cluster algorithm (MCL) clustering (45, 50, 60, 70, 80, 90,
95, 98). Additional APEC reference genomes and APEC associated plasmids
were included in the pangenome to maintain locus nomenclature and identify
plasmid carriage, including APEC_O1 (accession: GCA_000014845.1)[6],
APEC_O78 (accession: GCF_000332755.1)[26], APEC_IMT5155 (accession;
GCF_000813165.1)[32] and E. coli 789 (accession: GCF_000819645.1)[25].
Genes in the pangenome were ordered initially using the APEC_O1 reference
followed by the order defined in PIRATE based on gene synteny and frequency.
To perform core and accessory pangenome variation analyses a matrix was
produced summarising the presence/absence and allelic diversity of every gene
in the pangenome list105,106. Core genes were defined as present in 95% of the
genomes and accessory genes were present in at least one isolate. The number of
genes detected in each strain was calculated by PIRATE and can be found in
Supplementary Data 4. Using this approach, the amount of coding sequences
detected per strain were not significantly affected by the quality of the assembled
genomes (Supplementary Fig. 4).

Phylogenetic analysis. Phylogenies were constructed by mapping pseudoreads
simulated from assembled genomes to the E. coli_O157 RefSeq reference genome
(accession: NZ_CP015831.1; 5,831,209 bp)107 using snippy108.

This well-characterised closed reference genome, from Phylogroup E, was
absent from the collection under investigation. This minimised and standardised
bias caused by reference strain selection109. As all isolates were mapped to a single
reference, this also allowed for a tree to be constructed from all isolates and
comparison of genomic/alignment regions used for tree building during the
recombination analysis. Other references, including APEC_01, were included in the
pan genome analysis in order to provide points of reference for comparison of
genes to well-characterised reference genomes. Pseudo-reads were created as a part
of the SNIPPY pipeline used for variant calling. Contigs passed to SNIPPY were
split into 250 bp single-end read pairs at a simulated ~20x coverage of the reference
genome. These pseudo-reads were mapped against the reference genome O157 in
the same manner as trimmed reads to retain order and ensure all data were
comparable. Maximum-likelihood phylogenies were constructed separately for
phylogroups A, B1, B2 and ST117, and the complete collection using a GTR+ I+
G substitution model and ultra-fast bootstrapping (1000 bootstraps) implemented
in IQtree (version 1.6.8)110 and visualised on Microreact111. Putative
recombination sites were inferred using ClonalFrameML112 and masked using
cfml-maskrc (https://github.com/kwongj/cfml-maskrc). Recombination-masked
alignments were used to build midpoint rooted trees, which were used in treeWAS
to weight associations, accounting for lineage effects113 (Supplementary Fig. 3).

Pangenome-wide association study of infection-associated genes. Four GWAS
analyses were performed to identify pathogenicity-associated core and accessory
genome variation in the most common E. coli lineages, specifically phylogroups A
(n= 71), B1 (n= 85) and B2 (n= 152), and the ST-117 lineage (n= 220). The
remaining phylogroups contained too few isolates for reliable GWAS analysis.
GWAS were performed using treeWAS35 incorporating core and accessory genome
variation identified by PIRATE104. We used the core and accessory genes to
investigate associations representing segregation (disease vs. carriage isolates) of: (i)
core SNPs; (ii) accessory gene presence/absence; (iii) gene fissions/fusions; (iv) gene
duplications; (v) accessory gene alleles. Fission/fusion genes are identified by
PIRATE104 as genes which, due to nonsense mutation or frameshifts, comprise a
single ORF in at least one isolate but two or more distinct ORFs in other isolates
within the collection. Variants with an allele frequency <0.01 were excluded from
the GWAS. The treeWAS algorithm performs three statistical association tests to
calculate terminal, simultaneous and subsequent association scores. Infection-
associated variants (p-value < 0.05) in any of these three tests were further
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investigated114, and elements that were significantly associated in all four GWAS
experiments (p-value < 0.01) were identified35.

Quantitative analysis of putative plasmid genes. Plasmid-associated genes are
known to be important in APEC virulence31–33. We therefore identified putative
plasmid replicon sequences in all the isolates using PlasmidFinder 2.1115 (Sup-
plementary Data 5). However, these genes can be located on a plasmid or the
bacterial chromosome, for example in genomic islands. This means that analyses
that focus on entire plasmids may miss the mosaic of possible plasmid and
chromosomal genes that are known to recombine extensively in avian E. coli116.
Confirmation of the plasmidic context of specific genes may require that ana-
lyses are performed separately on miniprep plasmid extractions or the use of
long read sequencing117. However, the prevalence of putative APEC plasmid
genes among isolates from carriage and invasive disease can be determined using
the gene-by-gene approach37,38,118 employed here. Additionally, annotated gene
lists were obtained for the following plasmids: pAPEC-O1-R119; pAPEC-O2-
R120; pAPEC-O2-211A-ColV121; pAPEC-O1-ColBM54; p1ColV5155122;
pAPEC-O2-ColV10. To detect additional genes of plasmid origin among the
infection-associated genes we used the PlasmidSeeker database (latest update on
12/07/2017)123. Specifically, all plasmid genes were annotated for putative
function using the PlasmidSeeker database and PROKKA 1.13103 to create a
database compatible with Abricate 0.8.13124, which was interrogated in relation
to the list of the GWAS infection-associated genes. Putative plasmid genes were
identified in all isolate genomes as a BLAST match of >70% over >50% of the
gene length. For every plasmid, the number of genes present in each isolate was
quantified and the distribution among asymptomatic and disease isolates was
compared using an unpaired t-test.

Horizontal gene transfer among infection-associated genes. Population genetic
analyses was undertaken to compare molecular variation among the 143 genes that
contained infection-associated elements and the core genome of the dataset in this
study. The number of alleles per locus was determined using a whole-genome
MLST approach37, and the consistency of the phylogenetic trees to patterns of
variation in sequence alignments for each gene was calculated125,126 to infer the
minimum amount of homoplasy in infection-associated and core genome genes.
We defined the number of alleles per locus as the number of unique alleles per gene
divided by the total number of isolates. Consistency indices (CI) for each single-
gene alignment of 143 infection-associated genes to a phylogeny constructed using
an alignment of 3094 core genes shared by 570 isolates, were calculated using the
CI function of the R Phangorn package127. The average CI of these shared genes
was compared with the CI of the genes containing pathogenicity-associated
elements.

Risk calculation. Invasive infections caused by APEC are associated with mul-
tiple factors and large numbers of disease-associated elements within the bac-
terial genome. Therefore, while GWAS improves understanding of genome
evolution and pathogen emergence, translating these findings for practical risk
prediction models can be challenging. To achieve this, we trained a Random
Forest (RF) classifier128 using the GWAS output. This allowed us to capture the
potentially complex, non-linear relationship between presence/absence patterns
of disease-associated elements and phenotype, and rank the features according
to their power to predict the isolate source (invasive disease vs. carriage).
Analyses were conducted in R129 using RandomForest130, ROCR131 and
ggplot2132 software using the 510 isolates (291 invasive disease, 219 carriage)
used in the GWAS with 79 binary presence/absence species-wide predictors used
to train the RF model (Supplementary Data 3). In separate RF analyses, the
classifiers were trained with (i) all 510 isolates and (ii) 294 isolates from phy-
logroups A (n= 70), B1 (n= 80) and B2 (n= 144) with ST-117 (n= 216) iso-
lates as a test set. Based on the training data, a RF model with 1000 trees
estimated the importance of the predictors with model criteria for feature
selection. To estimate the out-of-sample accuracy of the model within its
training domain (as specified by the phylogroups), the out-of-bag (OOB) pre-
dictions were used. In addition, in the second analysis the model was evaluated
on the test set, which contained isolates from outside the training domain of the
RF model. The predictive performance of the models was evaluated by predictive
accuracy and area under the receiver operating characteristic (ROC) curve. Each
analysis was repeated ten times and the reported results are the average over the
ten independent runs. To investigate the prevalence of the APEC-associated
genetic variants used in the RF model, in isolates sampled from other host niches
we used four additional E. coli collections. Specifically, we analysed the E. coli
reference collection (ECOR)42, 175 human ExPEC strains28, 14 disease-
associated strains from dogs51 and 521 strains from healthy cattle52. Published
genomes were uploaded to BIGSdb133 and presence-absence matrices were
created for the APEC-associated SNPs and accessory genes (excluding fission/
fusion and accessory gene alleles). The number and prevalence (%) of APEC-
associated variants were compared for the four additional groups (Supplemen-
tary Fig. 5).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Short-read sequence data for all isolates sequenced in this study are deposited in the
sequence read archive (SRA) and can be found associated with BioProject
#PRNJA592536. Assembled genomes are also available on Figshare (https://doi.org/
10.6084/m9.figshare.12011811). NCBI genome accession numbers for isolates in the
validation dataset are included in Supplementary Data 1. Source data are provided for
this paper.
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