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Abstract. An algebraic system consisting of a set together with an associative
binary and a ternary heap operations is studied. Such a system is termed a pre-truss
and if a binary operation distributes over the heap operation on one side one speaks
about a near-truss. If the binary operation in a near-truss is a group operation,
then it can be specified or retracted to a skew brace, the notion introduced in [L.
Guarnieri & L. Vendramin, Math. Comp. 86 (2017), 2519–2534]. On the other hand
if the binary operation in a near-truss has identity, then it gives rise to a skew-ring
as introduced in [W. Rump, J. Algebra Appl. 18 (2019), 1950145]. Congruences in
pre- and near-trusses are shown to arise from normal sub-heaps with an additional
closure property of equivalence classes that involves both the ternary and binary
operations. Such sub-heaps are called paragons. A necessary and sufficient criterion
on paragons under which the quotient of a unital near-truss corresponds to a skew
brace is derived. Regular elements in a pre-truss are defined as elements with left
and right cancellation properties; following the ring-theoretic terminology pre-trusses
in which all non-absorbing elements are regular are termed domains. The latter are
described as quotients by completely prime paragons, also defined hereby. Regular
pre-trusses and near-trusses as domains that satisfy the Ore condition are introduced
and the pre-trusses of fractions are constructed through localisation. In particular,
it is shown that near-trusses of fractions without an absorber correspond to skew
braces.

1. Introduction

In the 1920s H. Prüfer and R. Baer defined a heap as an algebraic system consisting
of a set with a ternary operation which fulfils conditions that allow one to associate
an isomorphic group to every element; conversely, every group gives rise to a heap
by taking the operation (a, b, c) 7→ ab−1c (see [Ba29] and [Pr24]). In 2007 W. Rump
introduced braces as algebraic systems corresponding to set-theoretic solutions of the
Yang-Baxter equation [Ru07]. A brace is a triple (G,+, ·) where (G,+) is an Abelian
group, (G, ·) is a group and the following distributive law holds, for all a, b, c ∈ G,

a · (b+ c) = a · b− a+ a · c;
see [CJO14]. Through their connection with set-theoretical solutions of the Yang-
Baxter equation, braces have become an intensive field of studies. In particular it
has been shown that a brace allows one to construct a non-degenerate involutive
set-theoretic solution of the Yang-Baxter equation (see for example, [CJO14], [Ru07],
[CG-IS17] and [Sm18]). In 2017 L. Guarnieri and L. Vendramin introduced the notion
of a skew brace. This is a generalisation of a brace in which (G,+) is not required
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to be Abelian [GV17]. It has been shown to correspond closely to non-degenerate
set-theoretic solutions of the Yang-Baxter equation; one can construct such a solution
from any skew brace, while to any non-degenerate bijective solution one can associate
a skew brace that satisfies a universal property (see [GV17], [ESS99], [Sol00], [LYZ00],
[SV18] or [Ba18]). In recent years there has been a vast progress in the research on
set-theoretic solutions of the Yang-Baxter equation, but, even though we know that
every skew brace provides us with such a solution, it is not an easy task to construct
skew braces (for a list of problems on skew braces and a literature review see [Ve19]).
In 2018 the first author observed that it is possible to unify the distributive laws of
rings and braces in a single more general algebraic structure which he called a truss
[Br19]. A skew left truss T is a heap (T, [−,−,−]) with an additional binary operation
· : T × T → T which is associative and which distributes over the ternary operation
from the left, i.e., for all a, b, c, d ∈ T ,

a · [b, c, d] = [a · b, a · c, a · d].

Every skew brace can be associated with an appropriate skew left truss: in this text
we will call such trusses brace-type trusses. This leads to the main questions that
motivated the present article. What are exactly brace-type trusses? How to construct
them starting from a not necessarily brace-type truss? When is such a construction
possible? In the paper we present two approaches to answer questions of this kind.
The first approach is to take quotients of trusses by some special congruence and the
second one relies on a localisation procedure. The paper is organised as follows.

Section 2 contains definitions and facts about near-rings, skew braces and heaps
which we believe to be necessary to make the paper self-contained. The section con-
cludes with Lemma 2.1 which describes fully all equivalence classes for a sub-heap
relation ∼S as mutually isomorphic heaps with an explicitly given isomorphism in each
case.

Section 3 starts with the introduction of pre-trusses, near-trusses and skew trusses.
A pre-truss is a heap with an additional semigroup operation. A near-truss is a pre-
truss in which the semigroup operation distributes over the ternary operation from the
left. The best known examples of these objects are near-trusses with left absorbers
associated with near-rings (see Example 3.4) or unital near-trusses which can be as-
sociated to recently introduced skew-rings [Ru19] (see Example 3.5). The notion of
near-truss was introduced in [Br19, Definition 2.1] under the name of a skew left truss;
the present terminology is intended to be coherent with that of the near-ring theory.
Another example of a near-truss which is of particular interest is a near-truss associ-
ated with a skew brace (see Example 3.8); these near-trusses are said to be brace-type.
Finally, a skew truss is a near-truss for which the right distributive law holds. The
first part of Section 3 is focused on the characterisation of algebraic structures that
correspond to congruences in a pre-truss. For that, we give the definition of a paragon
as a normal sub-heap, the equivalence classes of which have a particular closure prop-
erty, and in Theorem 3.14 we show that paragons fully describe all the congruences in
a pre-truss. We conclude this theorem with Corollary 3.15 and Corollary 3.17 which
tell us that congruence equivalence classes in near-rings and skew braces are in fact
paragons in the associated near-trusses. After that, we introduce the definition of an
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ideal to determine whether a unital near-truss is associated with a skew brace or a
near-ring, Proposition 3.22.

Combining the most natural concept of a maximal paragon with the analysis of the
ideal structure of a truss we give a full description of those paragons whose quotient
is a brace-type near-truss. More precisely in Theorem 3.28 we show that a quotient
near-truss is brace-type if and only if all equivalence classes are not subsets of any ideal
in a near-truss. We conclude this section with two examples of paragons that fulfil the
hypothesis of the theorem.

Section 4 focuses on the study of domains. We start with the definition of a regular
element in a pre-truss, then we define a domain as a pre-truss for which all elements
except the absorbers are regular. In Lemma 4.5 we justify the definition by showing
that domains are exactly pre-trusses for which the cancellation property holds. After
that, we introduce the notion of completely prime paragon. Since the definition of
a completely prime ideal in a ring depends on an absorber and near-trusses do not
necessarily have an absorber, one should expect that the definition of a completely
prime paragon does not depend on it. Therefore, we fix the absence of an absorber
by using ideals in the quotient, see Definition 4.6. The most important result of this
section is Theorem 4.10 stating that the quotient of a pre-truss by a paragon is a
domain if and only if the paragon is completely prime. We conclude this section with
an example of a completely prime paragon in the truss of polynomials with integer
coefficients summing up to an odd number.

The aim of Section 5 is to devise a method of constructing brace-type near-trusses
by localisation. We start the section with Definition 5.1 of a left regular pre-truss.
Then we describe localisation of pre-trusses. Perhaps, the most important result of
this section is Corollary 5.5 which states that if we localise a regular near-truss with
no absorbers we will obtain a skew brace. This is supplemented with an example: the
localisation of a non-commutative truss of square integer matrices with odd diagonal
and even off-diagonal entries.

2. Near-rings, skew-rings, skew braces and heaps

In this section we gather preliminary information and fix the notation and conven-
tions on near-rings, skew braces and heaps.

2.1. Near-rings, skew-rings and skew braces. A near-ring (see [Pi83]) is a set
N with two associative binary operations +, ·, such that (N,+) is a group and, for all
n,m,m′ ∈ N ,

n(m+m′) = nm+ nm′.

Analogously to the case of rings a near-field is a near-ring such that (N \ {0}, ·) is a
group, where 0 is the neutral element for +.

A homomorphism of near-rings is a function f : N → N ′ that commutes with
both near-ring operations, that is, for all a, b ∈ N ,

f(ab) = f(a)f(b) & f(a+ b) = f(a) + f(b).
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A skew-ring [Ru19, Definition 3 & Corollary] is a triple (B,+, ·), where (B,+) is a
group (B, ·) is a monoid and the following distributive law holds

a(b+ c) = ab− a+ ac,

for all a, b, c ∈ B. A skew-ring (B,+, ·) in which (B, ·) is a group is called a skew left
brace [GV17]. A homomorphism of skew braces is a function that commutes with
both group operations. A close connection between skew left braces and near-rings is
revealed in [SV18, Proposition 2.20], which states that any construction subgroup of a
near-ring is a skew left brace. In what follows, we drop the adjective ‘left’, and hence
skew brace means skew left brace1. An ideal in a skew brace B is a subset B′ ⊂ B
such that (B′,+) is a normal subgroup, aB′ = B′a and ab− a ∈ B′, for all a ∈ B and
b ∈ B′.

2.2. Heaps. A heap is a set H together with a ternary operation,

[−,−,−] : H ×H ×H −→ H,

that is associative and satisfies Mal’cev identities. Explicitly this means that, for all
a1, a2, a3, a4, a5 ∈ H,

[a1, a2, [a3, a4, a5]] = [[a1, a2, a3], a4, a5] & [a1, a1, a2] = a2 = [a2, a1, a1].

These conditions imply that, for all a1, a2, a3, a4, a5 ∈ H,

[[a1, a2, a3], a4, a5] = [a1, [a4, a3, a2], a5]. (2.1)

We say that H is an Abelian heap if, for all a, b, c ∈ H, [a, b, c] = [c, b, a].
A homomorphism of heaps is a map that commutes with the ternary operations,

that is, f : H −→ H ′ is a heap morphism if, for all a, b, c ∈ H,

f([a, b, c]) = [f(a), f(b), f(c)].

Every non-empty heap can be associated with a group by fixing the middle entry of
the ternary operation, that is, for all a ∈ H, +a := [−, a,−] is a group operation on
H. This group is called a retract of H at a and is denoted by G(H; a). Retracts at
two different elements are isomorphic. Starting with a group G one can assign a heap
to it by setting [a, b, c] := ab−1c, for all a, b, c ∈ G. This heap associated to a group
G will be denoted by H(G).

A subset S of a heap H is a sub-heap if it is closed under the heap operation of
H. A non-empty sub-heap S of a heap H is said to be normal if there exists e ∈ S
such that, for all a ∈ H and s ∈ S, there exists t ∈ S such that [a, e, s] = [t, e, a].
This is equivalent to say that for all a ∈ H and e, s ∈ S, [[a, e, s], a, e] ∈ S. Every
non-empty sub-heap of an Abelian heap is normal. The retract of a normal sub-heap
at an element e is a normal subgroup of the retract of the heap at the same element e.
Furthermore, for any heap homomorphism f : H −→ H ′ and any b ∈ Imf , f−1(b) is a
normal sub-heap of H; see e.g. [Br20, Lemma 2.12].

If S is a sub-heap of H, then the relation ∼S on H given by

a ∼S b ⇐⇒ ∃s ∈ S [a, b, s] ∈ S ⇐⇒ ∀s ∈ S [a, b, s] ∈ S
1Obviously, ‘right’ versions of all the notions discussed in this text can be defined and developed

symmetrically, and in fact in [Ru19] Rump gives the definition of a skew-ring in the right-sided
convention.
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is an equivalence relation. The set of equivalence classes is denoted by H/S. The
equivalence class of any s ∈ S is equal to S. If S is a normal sub-heap, then ∼S is a
congruence and thus the canonical map π : H −→ H/S is a heap epimorphism; see
[Br20, Proposition 2.10].

The following lemma summarises properties of the sub-heap equivalence relation and
gives an explicit description of all equivalence classes and relations between them.

Lemma 2.1. Let S be a non-empty sub-heap of (H, [−,−,−]), and consider the sub-
heap relation ∼S.

(1) For all a, b ∈ H, define the translation map:

τ ba : H −→ H, z 7−→ [z, a, b]. (2.2)

(i) The map τ ba is an isomorphism of heaps.

(ii) The equivalence classes of ∼S are related by the formula:

b̄ = τ ba(ā) = {[z, a, b] | z ∼S a}.

(iii) For all e ∈ S and a ∈ H, set Sae := τae (S). Then ā = Sae .

(2) For all a ∈ H, the equivalence class ā is a sub-heap of H. Furthermore, if S is a
normal sub-heap of H, then so are the ā.

(3) Equivalence classes of ∼S are mutually isomorphic as heaps.

(4) For all a ∈ H, the sub-heap equivalence relation ∼S coincides with the sub-heap
equivalence relation ∼ā. Consequently H/S = H/ā.

Proof. (1) (i) First we need to check that τ ba preserves the ternary operation. Using
the associativity and Mal’cev identities, we can compute, for all z, z′, z′′ ∈ H,[

τ ba(z), τ ba(z′), τ ba(z′′)
]

= [[z, a, b], [z′, a, b], [z′′, a, b]] = [z, a, [b, [z′, a, b], [z′′, a, b]]]

= [z, a, [[b, b, a], z′, [z′′, a, b]]] (by equation (2.1))

= [[z, z′, z′′], a, b] = τ ba([z, z′, z′′]).

Therefore, the τ ba preserve ternary operations and thus each one of them is a homo-
morphism of heaps. The inverse of τ ba is τab .

(1)(ii) Assume that z ∼S a, that is, that [z, a, s] ∈ S, for all s ∈ S. If z′ = τ ba(z) =
[z, a, b], then [z′, b, s] = [z, a, s], by the associativity and the Mal’cev property. Hence
z′ ∼S b, that is, τ ba(ā) ⊆ b̄. On the other hand, if z′ ∈ b̄, then set z = τab (z′) = [z′, b, a].
Since τab is the inverse of τ ba, z′ = τ ba(z). Furthermore, for all s ∈ S, [z, a, s] = [z′, b, s],
and so [z, a, s] ∈ S, since z′ ∼S b. This proves the second inclusion b̄ ⊆ τ ba(ā), and
hence the required equality.

Assertion (1)(iii) follows by 1(ii) and the fact that ē = S.
Statement (2) follows by (1) and the observation that heap isomorphisms preserve

the normality. Statement (3) is a straightforward consequence of (1) and (2).
(4) Using (1)(iii) we can argue as follows: b ∼S c if, and only if, there exist s, s′ ∈ S

such that [b, c, s] = s′. This is equivalent to the equality [[b, c, s], e, a] = [s′, e, a], for
any a ∈ H and e ∈ S, which, by associativity, is equivalent to [b, c, [s, e, a]] = [s′, e, a].
The fact that ā = Sae implies that b ∼ā c. �



6 TOMASZ BRZEZIŃSKI, STEFANO MERETA, AND BERNARD RYBO LOWICZ

3. Quotient pre-trusses, near-trusses and skew braces

The aim of this section is to characterise heaps with an additional monoid operation
that yield skew braces. Let us first introduce the appropriate terminology.

Definition 3.1.

(1) A pre-truss is a heap (T, [−,−,−]) together with an associative binary operation
(denoted by juxtaposition of elements or by ·).

(2) A pre-truss T satisfying the left distributive law:

a[b, c, d] = [ab, ac, ad], for all a, b, c, d ∈ T ,
is called a near-truss.

(3) A near-truss T satisfying the right distributive law

[b, c, d]a = [ba, ca, da], for all a, b, c, d ∈ T ,
is called a skew truss.

(4) A skew truss such that the underlying heap is Abelian is called a truss.

Every one of the above notions is said to be unital provided the binary operation has
an identity (denoted by 1).

A homomorphism of (pre-, near-, skew) trusses is a homomorphism of heaps that is
also a homomorphism of semigroups (or monoids in the unital case).

It is clear from this definition that the image of a homomorphism of (pre-, near-,
skew) trusses is itself a (pre-, near-, skew) truss.

Remark 3.2. Except for a pre-truss all the notions listed in Definition 3.1 have been
introduced in [Br19] and [Br20]. Note, however, that the terminology introduced there
was motivated by braces, and thus what we call a near-truss here was named a skew
left truss there. In this paper we are adopting a terminology more aligned with the
ring (or near-ring) theory one. Of course, a right distributive version of a near-truss
can be considered, but in line with the convention of Section 2.1 we only consider the
left distributive version (with no qualifier).

A left (resp. right) absorber is an element a of a pre-truss T such that, for all
t ∈ T , ta = a (resp. at = a). We say that a is an absorber if it is a left and right
absorber. It is worth noting that if a pre-truss T has both a left and a right absorber,
then they necessarily coincide, in particular an absorber is unique. We denote by
TAbs := T \ {a}, if a is the unique absorber with tacit understanding that TAbs = T
when T has no absorbers. Furthermore, since homomorphisms of pre-trusses preserve
multiplication, if f : T −→ T ′ is a morphism and e is a left (resp. right) absorber in T ,
then f(e) is a left (resp. right) absorber in the pre-truss f(T ).

Example 3.3. If T is a truss that has an absorber, then T is a ring-type truss. This
means that by taking the retract of T at the absorber, say 0, we obtain a ring (T,+0, ·).

Conversely, if R is a ring then one can associate to it the truss (H(R), ·) with absorber
0. This truss is denoted by T(R). If R is unital, then T(R) is unital. Observe that if
we start with a ring R, we assign to it the truss T(R) and then take the retract we
necessarily obtain R again, since the absorber is unique.
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Example 3.4. Let T be a near-truss such that there exists a left absorber e. Then
a near-ring can be associated to T by taking the retract of the heap T at e to obtain
(T,+e, ·). We call such T a ring-type near-truss

Conversely, if N is a near-ring then one can associate to it the near-truss (H(N), ·)
which we will denote by T(N). In contrast to rings, since left absorbers are not unique,
if one associates a near-truss T(N) to N and then take the retract at a left absorber,
then not necessarily one obtains N .

Example 3.5. Let T be a unital near-truss. Then a skew-ring can be associated to
it by taking the retract of the heap T at the identity 1 of the multiplication, that is
(T,+1, ·) is a skew-ring.

Conversely, if B is a skew-ring, then one can assign to it the unital near-truss
(H(B), ·) which we will denote by T(B). Observe that if we start with a skew-ring
B, we assign to it the near-truss T(B) and then take the retract at the identity, we
obtain the same skew-ring as identity is unique.

Recall from [Ru19] that an element u in a skew-ring B is called a unit if, for all
a ∈ B,

a · u = a+ u+ a.

Lemma 3.6. Units in a skew-ring B are in one-to-one correspondence with left ab-
sorbers in the associated unital near-truss T(B).

Proof. The correspondence is given by u = [1, e, 1]. That is, u is a unit in B (resp.
absorber in T(B)) provided e is an absorber in T(B) (resp. unit in B). �

Remark 3.7. Combining Example 3.4 with Example 3.5 and Lemma 3.6 we are led
to the correspondence between skew-rings with units and unital near-rings. If u is a
unit in a skew-ring B, then (T (B),+[1,u,1], ·, 1) is a unital near-ring, and vice versa,
if (N,+, ·, 1) is a unital near-ring with zero e, then (T (N),+1, ·) is a skew-ring with
unit [1, e, 1] = −e (cf. [Ru19, Example 3]). This correspondence is seemingly different
from the one described in [Ru19, Proposition 2] as it changes the additive structure
keeping the multiplication fixed, while in [Ru19, Proposition 2] one considers a new
multiplication with addition unchanged. However, if e is a left absorber in a unital
near-truss (T, [−,−,−], ·, 1), then using the translation heap automorphism (2.2) one
can induce a new associative product on T by the formula:

a ∗e b = τ 1
e (τ e1 (a) · τ e1 (b)) , for all a, b ∈ T .

Then (T, [−,−,−], ∗e, [1, e, 1]) is a unital near-truss isomorphic to (T, [−,−,−], ·, 1)
in which 1 is a left absorber. Consequently, (T,+1, ∗e) is a unital near-ring corre-
sponding to the skew-ring (T,+1, ·). In particular, if B is a skew-ring with unit u,
then (T (B),+1, ∗[1,u,1], u) = (B,+, ∗−u, u) is the unital near-ring described in [Ru19,
Proposition 2].

Example 3.8. Let T be a near-truss such that (T, ·) is a group with neutral element
1. Then (T,+1, ·) is a skew brace. We call such T a brace-type near-truss.

Conversely, if B is a skew brace, then one can assign to it the near-truss (H(B), ·)
which we will denote by T(B). As was the case with the skew-rings, if we start with
a skew brace B, assign to it the near-truss T(B) and then take the retract at identity,
we obtain the same skew brace.
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Our goal is to describe the properties that a pre-truss T and a congruence ∼ on it
must have for the quotient near-truss T/∼ to be a brace-type near-truss, i.e. a near-truss
associated with a skew brace. The main theorem of this section is Theorem 3.28 which
states when a near-truss T/∼ can be associated with a skew brace. First we identify
those normal sub-heaps of a pre-truss T that faithfully correspond to congruences.

Definition 3.9. Let T be a pre-truss.

(1) A sub-heap S of T is said to be left-closed (resp. right-closed) if, for all s, s′ ∈ S
and t ∈ T ,

[ts′, ts, s] ∈ S (resp. [s′t, st, s] ∈ S). (3.1)

(2) A sub-heap S that is left- and right-closed is said to be closed.

(3) A normal sub-heap P of T such that every equivalence class of the sub-heap
relation ∼P is a closed (normal) sub-heap of T is called a paragon.

Observe that Lemma 2.1 implies that if P is a paragon in a pre-truss T , then all the
equivalence classes of ∼P are mutually isomorphic paragons as well.

Remark 3.10. In the case of a non-empty sub-heap S the quantifier ‘for all s ∈ S’ in
the definition of the left or right closure property (3.1) can be equivalently replaced
by the existential quantifier. Indeed, assume that there exists q ∈ S such that, for all
s′ ∈ S and t ∈ T , [ts′, tq, q] ∈ S. Then, for all s ∈ S,

[ts′, ts, s] = [[[ts′, tq, q], q, tq], ts, s] = [[ts′, tq, q], [ts, tq, q], s] ∈ S,

by the associativity, Mal’cev’s identities and (2.1), and since S is a sub-heap. Similarly
for the right closure property.

Lemma 3.11. A normal sub-heap P of a pre-truss T is a paragon if and only if, for
all a, b ∈ T and p, e ∈ P ,

[a[p, e, b], ab, e] ∈ P & [[p, e, b]a, ba, e] ∈ P.

Proof. By Lemma 2.1, the equivalence class of b ∈ T is b̄ = P b
e = {[p, e, b] | p ∈ P}, for

all e ∈ P . Hence b̄ is left-closed if and only if, for all p ∈ P and a ∈ T , there exists
q ∈ P such that

[a[p, e, b], ab, b] = [q, e, b],

that is, if and only if

[a[p, e, b], ab, e] = q ∈ P,
as required. By the same argument we obtain that b is right-closed. �

Corollary 3.12. A normal sub-heap P of a near-truss T is a paragon if and only if
P is left-closed and all equivalence classes of the induced sub-heap relation are right-
closed. In particular P is a paragon in a skew truss if and only if it is a closed normal
sub-heap.

Proof. Since in a near-truss the left distributivity law holds, the left-closure property
in Lemma 3.11 reduces to [ap, ae, e] ∈ P , that is, the left-closedness of P . In a skew
truss the right-closure property is treated symmetrically. �
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Corollary 3.12 shows that, in the case of skew trusses (and hence trusses) the notion
of a paragon introduced in Definition 3.9 reduces to the notion introduced in [Br20,
Definition 3.15].

Lemma 3.13. Let f : T −→ T ′ be a morphism of pre-trusses.

(1) For all z ∈ Imf , f−1(z) is a paragon in T . In particular, if P ′ is a paragon in
Imf , then f−1(P ′) is a paragon in T .

(2) If P is a paragon in T then f(P ) is a paragon in Imf .

Proof. (1) By [Br20, Lemma 2.12], f−1(z) is a normal sub-heap which is non-empty
(since z ∈ Imf). For all a, b ∈ T and p, e ∈ f−1(z),

f([a[p, e, b], ab, e]) = [f(a)[f(p), f(e), f(b)], f(a)f(b), f(e)]

= [f(a)[z, z, f(b)], f(a)f(b), z] = z,

since f preserves multiplication and ternary operations, and by Mal’cev identities.
Thus [a[p, e, b], ab, e] ∈ f−1(z). By the same arguments, [[p, e, b]a, ba, e] ∈ f−1(z). In
view of Lemma 3.11 this means that f−1(z) is a paragon.

Assume that P ′ is a paragon. That the pre-image of a normal sub-heap is a nor-
mal sub-heap follows by the standard group-theoretic arguments. Since f preserves
multiplication and heap operation, for all a, b ∈ T and p, q ∈ f−1(P ′),

f ([a[p, q, b], ab, q]) = [f(a)[f(p), f(q), f(b)], f(a)f(b), f(q)] &

f ([[p, q, b]a, ba, q]) = [[f(p), f(q), f(b)]f(a), f(b)f(a), f(q)] .

Since P ′ is a paragon, and f(p), f(q) ∈ P ′, both expressions are elements of P ′. There-
fore, [a[p, q, b], ab, q], [[p, q, b]a, ba, q] ∈ f−1(P ′), and hence f−1(P ′) is a paragon.

Statement (2) is proven by similar arguments. �

Theorem 3.14. Let P be a normal sub-heap of a pre-truss T . Then the canonical heap
map π : T → T/P is a homomorphism of pre-trusses if and only if P is a paragon.

Proof. Assume that π is a pre-truss homomorphism. Since P = π−1(P ), P is a paragon
by Lemma 3.13.

For the proof of the opposite implication assume that P is a paragon. Then ∼P is a
congruence on the heap T , so we only need to show that this relation is a congruence
on the pre-truss T as well. Let a, b ∈ T be such that a ∼P b, so that a, b ∈ π(b).
Since P is a paragon, for all t ∈ T , [ta, tb, b] ∈ π(b). Hence, [π(tb), π(ta), π(b)] = π(b),
that is, π(tb) = π(ta) or, equivalently, ta ∼P tb. In the same way one can prove that
a ∼P b implies at ∼P bt for all t ∈ T . Assume that a ∼P b and c ∼P d. Then
ac ∼P bc, bc ∼P bd and ac ∼P bd, since ∼P is an equivalence relation. Therefore, ∼P is
a congruence and the canonical map π : T → T/P is a homomorphism of pre-trusses.
This completes the proof. �

Corollary 3.15. Let N be a near-ring. Then P ⊆ N is an equivalence class for a
congruence on N if and only if P is a paragon in T(N)

Proof. Let us assume that P is an equivalence class for a congruence on N , let N̄
be the quotient near-ring with canonical homomorphism π : N −→ N̄ . Since π is
also a homomorphism of associated near-trusses, that is, π : T(N) −→ T(N̄), and
P = π−1(P ), P is a paragon in T(N) by Lemma 3.13.
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In the opposite direction, assume that P is a paragon in T(N). Then there ex-
ists a near-truss homomorphism π : T(N) → T(N)/P . Observe that the triple
(T(N)/P,+π(e), ·), where e is the neutral element of N , is a near-ring, since the image
of a left absorber through a near-truss homomorphism is a left absorber. Therefore π
is also a homomorphism of the retracted near-rings and P is an equivalence class of a
congruence given by π as P = π−1(P ). �

Lemma 3.16. Let T(B) be a near-truss associated to a skew brace B (with identity
1). Then P is a paragon in T(B) if and only if, for all p ∈ P , P 1

p is an ideal in B.

Proof. Assume that P is a paragon in T(B). Then 1 ∈ P 1
p , (P 1

p ,+1) is a normal

subgroup of (B,+) as P 1
p is a normal sub-heap and +1 = +. Since P 1

p is closed, for all

a ∈ B and b ∈ P 1
p ,

ab− a = [ab, a1, 1] ∈ P 1
p & ba− a = [ba, 1a, 1] ∈ P 1

p .

Therefore, ba− ab = c ∈ P 1
p , and, using the skew brace distributive law,

a−1ba = a−1(c+ ab) = a−1c− a−1 + b ∈ P 1
p ,

since P 1
p is left-closed. This implies that a−1P 1

p a = P 1
p , that is, aP 1

p = P 1
p a, and

completes the proof that P 1
p is an ideal in B.

Conversely, if P 1
p is an ideal in B, then B/P 1

p is a skew brace by [GV17, Lemma 2.3],

and the canonical skew brace epimorphism π : B −→ B/P 1
p induces a near-truss

morphism π : T(B) −→ T(B/P 1
p ). Since P 1

p = π−1(P 1
p ), P 1

p and consequently also

P =
(
P 1
p

)p
1

are paragons by Lemma 3.13. �

Corollary 3.17. Let B be a skew brace, then P ⊆ B is an equivalence class for some
congruence on B if and only if P is a paragon in T(B).

Proof. The proof of the left to right implication is the same as in Corollary 3.15. The
other implication follows by Lemma 3.16. �

To connect quotients of near-trusses with skew braces we need to determine which
paragons do not produce absorbers in the quotients. To this end we introduce the
notion of an ideal.

Definition 3.18. A normal sub-heap I of a pre-truss T is called a left (resp. right)
ideal if, for all t ∈ T and i ∈ I, ti ∈ I (resp. it ∈ I). If I is both left and right ideal,
then it is called an ideal. A proper left (resp. right) ideal is said to be maximal if it
is not strictly contained in any left (resp. right) proper ideal.

Note that an ideal is a closed sub-heap, but this does not yet make it into a paragon,
since the equivalence classes of the corresponding sub-heap relations need not be closed.
Also note that if f : T → T ′ is a homomorphism of pre-trusses, then the pre-image of
an ideal in Imf is an ideal in T and the image of an ideal in T is an ideal in Imf .

Lemma 3.19. If a left-closed normal sub-heap of a pre-truss contains a left ideal, then
it is a left ideal.

Proof. Let P be a left-closed normal sub-heap of T , and let I be a left ideal such that
I ⊆ P . Then, for all p ∈ P , t ∈ T and i ∈ I, tp = [[tp, ti, i], i, ti] ∈ P , since [tp, ti, i] ∈ P
and ti, i ∈ I ⊆ P . �
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Lemma 3.20. Let T be a pre-truss and P be a paragon. Then T/P has a left absorber
if and only if there exist a ∈ P and t ∈ T such that P t

a is a left ideal.

Proof. The assertion follows from the fact that for every a ∈ P and t ∈ T , P t
a = π(t),

where π is the canonical surjection onto the quotient T/P . �

Corollary 3.21. If I is a paragon that is a right ideal in a pre-truss T , then for all
e ∈ T \ I and all a ∈ I, Iea is not a left ideal.

Proof. We know from Lemma 2.1 that T/I = T/Iea. Assume that I is a right ideal and
suppose that Iea is a left ideal. Then, by Lemma 3.20, I is a right absorber in T/I and
Iea is a left absorber in T/Iea. Hence I = Iea. But e 6∈ I and e ∈ Iea, which yields a
required contradiction and completes the proof. �

Proposition 3.22. Let T be a unital near-truss.

(1) T is a near-truss associated with a skew brace if and only if T has exactly one
left ideal.

(2) T is a near-truss associated with a near-field if and only if T has a left absorber
and exactly two left ideals.

Proof. (1) Assume that T has exactly one left ideal. For all x ∈ T the left ideal
Tx := {tx | t ∈ T} has to be the whole of T (in particular if T has at least two
elements, then it has no left absorbers). Therefore, there exists y ∈ T such that yx = 1
and y is a left inverse to x. As x is an arbitrary element there exists x′ such that
x′y = 1. Thus (x′y)x = x and by associativity x′ = x. The conclusion is that y is the
two-sided inverse of x and the monoid (T, ·) is a group. Therefore, the near-truss T is
a brace-type near-truss (see [Br20, Corollary 3.10]).

Conversely, suppose that T = T(B) for a skew brace B and that there exists a left
ideal I ( T(B). Observe that if x ∈ I, then x−1x = 1 ∈ I, therefore I = T . This
contradicts the assumption that I 6= T . Thus T has exactly one left ideal.

(2) Let us assume that T has a left absorber and exactly two left ideals. Then there
exists a near-ring R such that T = T(R), to be precise R is the retract (T,+e, ·), where
e is the left absorber. Seeking contradiction, suppose that R is not a near-field. Then
there exists a left ideal {e} 6= I ( R; but I is also a left ideal of T(R), which contradicts
with the assumption that T has only two left ideals. Therefore, R is a near-field.

Assume that T = T(F ), where F is a near-field, then 0 (the neutral element for
the addition in F ) is a left absorber in T . Suppose by contradiction that T(F ) has a
left ideal {0} 6= I ( T(F ). Consider, for any a ∈ I the ideal I0

a := {[b, a, 0] | b ∈ I}.
The ideal I0

a is neither equal to {0} nor to T , since the map [−, a, 0] is a bijection.
Furthermore, I0

a is an ideal in F , and hence F is not a near-field. This contradicts with
the assumption that F is a near-field. �

Lemma 3.23. Let T be a near-truss. If I is a paragon in T that is a maximal left
ideal, then T/I has no ideals different from a singleton set and T/I.

Proof. Suppose that J 6= T/I is a left ideal in T/I that is not a singleton set. Since
I is a left absorber in T/I, for any element J ∈ J, JIJ is a left ideal in T/I by the
left distributive law. Hence, π−1(JIJ) is a left ideal in T , where π : T −→ T/I is
the canonical surjection. Moreover, I ⊂ π−1(JIJ), since I ∈ JIJ . Therefore, since I
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is a maximal left ideal, either I = π−1(JIJ), and hence JIJ = {I}, which implies that
J = {J}, or π−1(JIJ) = T , which implies in turn that J = T/I. Thus both cases lead
to a contradiction. �

Although dividing by a paragon which is a maximal left ideal yields a near-truss
without proper left ideals, this near-truss always has an absorber. Therefore it is never
a brace-type near-truss. The most straightforward idea to generalise maximality to
paragons leads us to the following definition:

Definition 3.24. Let T be a pre-truss. A left-closed (resp. right-closed) normal sub-
heap P ( T is said to be maximal if it is not contained in any left-closed (resp.
right-closed) sub-heap other than T . A paragon P is said to be left maximal (resp.
right-maximal, maximal) if it is a maximal left-closed (resp. right-closed, left- and
right-closed) sub-heap.

Lemma 3.25. Let T be a near-truss or a skew truss and P be a left-closed normal
sub-heap. Then P is maximal if and only if, for all a ∈ P and t ∈ T , P t

a is a maximal
left-closed normal sub-heap.

Proof. Note that by the normality of P and the left distributive law, all the P t
a are

left-closed normal sub-heaps. Seeking contradiction assume that P is maximal and
there exists a ∈ P and t ∈ T such that P t

a is not maximal. Then there exists a left-
closed normal sub-heap Q such that P t

a ( Q ( T . Since τ ta is an isomorphism with the
inverse τat , this implies that P ( Qa

t ( T . Hence P is not maximal, contrary to the
assumption.

The opposite implication is also easily deduced from the fact that P = (P t
a)
a
t . �

Remark 3.26. In the case of rings the notion of maximal ideals and maximal paragons
coincide as every paragon P in the ring can be associated with an ideal P 0

a for any
a ∈ P and an absorber 0.

Lemma 3.27. Let T be a near-truss or a skew truss and P ⊆ T a left maximal paragon,
then T/P has no proper (i.e. different from singletons and the whole of T/P ) left ideals.

Proof. By the definition of maximality of P , T/P has no proper left paragons. There-
fore it has no proper left ideals as a left ideal is a left paragon. �

Observe that by dividing a near-truss without left absorbers by a paragon which is
left-maximal one obtains a near-truss associated with a skew brace. If the quotient is
a skew brace, then it is a simple skew brace, that is, it has no ideals in the sense of
sub-braces different from the skew brace itself and singleton subsets of it. Maximal
paragons do not characterise all the quotients which are brace-type near-trusses, since
there exist skew braces that are non-simple.

Theorem 3.28. Let T be a unital near-truss and P be a paragon, and let πP : T −→
T/P be the canonical epimorphism. Then T/P is a brace-type near-truss if and only
if, for all left ideals I ( T and a ∈ T/P , π−1

P (a) 6⊆ I.

Proof. Let us assume that T/P is a brace-type near-truss. Observe that should π−1
P (a) ⊆

I for a left ideal I, then πP (I) would be a left ideal in T/P . Thus, πP (I) = T/P , since
T/P is a brace-type near-truss. On the other hand, if c ∈ T \ I then πP (c) 6∈ πP (I).



FROM PRE-TRUSSES TO SKEW BRACES 13

Indeed, should πP (c) ∈ πP (I), then there would exist i ∈ I and p ∈ P such that
[c, i, p] ∈ P . Thus, for all a ∈ π−1

P (a), [c, i, a] = [[c, i, p], p, a] ∈ π−1
P (a) ⊂ I and c ∈ I.

Therefore, I = T .
Now, assume that, for all left ideals I ( T and a ∈ T/P , π−1

P (a) 6⊆ I and T/P is
not a brace-type near-truss. Then there exists a left ideal J ( T/P . The pre-image
π−1
P (J) ( T is a left ideal in T and, obviously, for any j ∈ J, π−1

P (j) ⊆ π−1
P (J). This

contradicts the assumption that, for all a ∈ T/P , π−1
P (a) 6⊆ I, so T/P is a brace-type

near-truss. The proof is completed. �

Example 3.29. Let B be a skew brace and R a ring. One can consider the prod-
uct near-truss T(B) × T(R) with operation given by (b, r)(b′, r′) = (bb′, rr′), for all
(b, r), (b′, r′) ∈ T(B)×T(R). It is easy to check that, for any ideal I in R, T(B)× I is
an ideal in T(B) × T(R) and that for any paragon P in T(B), P × I is a paragon in
T(B)×T(R). Every paragon of the form P ×T(R) fulfills conditions in Theorem 3.28
and one easily finds that (T(B)× T(R))/(P × T(R)) ∼= T(B)/P

Example 3.30. Let T = 2Z + 1 be the sub-truss of T(Z). The set P = {2nm +
1 | m ∈ T} ⊂ T is a paragon and the quotient T/P is a brace-type truss isomorphic
to U(Z/2n+1Z), the sub-truss of all units in the quotient ring Z/2n+1Z. To prove
that this isomorphism holds it is first of all helpful to notice that |T/P | = 2n =
|U(Z/2n+1Z)|. Indeed, there are as many classes in the quotient as the odd numbers
between 2nm + 1 and 2n(m + 2) + 1 (it is important to notice that, if m is odd, then
m+1 is even), so exactly 2n. Then the isomorphism is given by sending 2m+ 1 ∈ T/P
to 2m + 1 mod 2n+1: this is evidently injective, so also surjective since the two sets
have the same size, and it is easily proven to be a homomorphism.

4. Domains and completely prime paragons

The aim of this section is to introduce the notion of a completely prime paragon.
This, in analogy to the case of rings, should lead to a quotient pre-truss that is a
domain, i.e. a pre-truss in which cancellation properties hold. After describing such
paragons, the next step is to consider the Ore localisation for pre-trusses, which is the
subject of the following section. By inverting all elements of a domain we should obtain
a pre-truss without proper left ideals and with no absorbers, so if the distributive law
holds this will be a near-truss associated with a skew brace. Let us start with the
definition of a domain. When working with rings, there is always an absorber which
in many cases allows for simplification of some conditions. Not all pre-trusses have an
absorber (in fact, having brace applications in mind, we are particularly interested in
those that do not have absorbers), so many of the well-known definitions need to be in
some sense generalised or stated without involving any absorber. We begin with the
definition of a regular element:

Definition 4.1. Let T be a pre-truss. An element a ∈ TAbs is said to be left regular
(resp. right regular) if, for all b 6= c,

ab 6= ac (resp. ba 6= ca). (4.1)

If a is both left and right regular element then it is said to be regular.
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Observe that conditions (4.1) can be written in a way that makes them reminiscent
of the closedness conditions (3.1) used in the definition of a paragon. The statement
that ac 6= ab is equivalent to saying that [ac, ab, b] 6= b. Similarly, ba 6= ca is equivalent
to say that [ca, ba, b] 6= b. This indicates that these conditions are closely related to
the definition of paragon.

Lemma 4.2. Let T be a near-truss. Then a ∈ T is a left regular element if and only
if there exists an element c such that, for all b ∈ T \ {c},

ab 6= ac. (4.2)

Proof. If a is left regular then, for all c ∈ T and all b ∈ T \ {c}, the inequality (4.2)
holds, which implies the existence of c.

Assume that there exists c ∈ T such that, for all b 6= c, ab 6= ac. Thus [ab, ac, ac′] =
a[b, c, c′] 6= ac′, for all c′ ∈ T . Note that, for all c, c′ ∈ T , the map

[−, c, c′] : T \ {c} −→ T \ {c′}, b 7−→ [b, c, c′],

is a bijection. Therefore, for all t ∈ T \ {c′}, at 6= ac′. By the arbitrariness of c′, a is a
left regular element. This completes the proof. �

Lemma 4.3. Let R be a ring. Then a ∈ R is a regular element if and only if a is a
regular element in T(R).

Proof. The equivalence will be proven for left regularity only, the right regularity case
in symmetric. Let us assume that a ∈ R is a regular element. Then there is no
b ∈ R \{0} such that ab = 0. Thus, by Lemma 4.2, if c = 0 in (4.2), then a is a regular
element in T(R), since a is regular in R.

Suppose that a is regular in T(R). Then ab 6= ac implies a(b− c) 6= 0. Therefore, by
substituting b = t+ c, at 6= 0 for all t ∈ R \ {0}, which completes the proof. �

Now we are ready to introduce the definition of a domain in clear analogy with the
usual notion for rings.

Definition 4.4. A pre-truss T is called a domain if all elements of TAbs are regular.

In view of Lemma 4.3, a ring R is a domain if and only if T(R) is a domain.

Lemma 4.5. A near-truss T is a domain if and only if it satisfies the cancellation
property, that is for all a ∈ TAbs and b, b′ ∈ T , each one of the equalities ab = ab′ or
ba = b′a implies that b = b′.

Proof. This follows immediately for the definitions of a regular element and a domain.
�

Definition 4.6. Let T be a pre-truss. A non-empty paragon P ⊆ T is said to be
completely prime if, for all p ∈ P , a, b, c ∈ T ,

[ab, ac, p] ∈ P =⇒ P a
p is an ideal or [b, c, p] ∈ P
and

[ba, ca, p] ∈ P =⇒ P a
p is an ideal or [b, c, p] ∈ P.

Lemma 4.7. Let T be a pre-truss and P be a non-empty paragon. Then P is completely
prime if and only if, for all p ∈ P and t ∈ T , P t

p is completely prime.
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Proof. Let us assume that P is a completely prime paragon and let p ∈ P and t ∈ T .
We know that P t

p is a paragon (see comment that follows Definition 3.9). Then, for all
a, b, c ∈ T and q ∈ P , [ab, ac, [q, p, t]] ∈ P t

p implies [[ab, ac, [q, p, t]], t, p] = [ab, ac, q] ∈ P ,
since (P t

p)
p
t = P . Thus, P a

q is an ideal or [b, c, q] ∈ P . In view of (P t
p)
a
[q,p,t] = P a

q , the

first option is equivalent to (P t
p)
a
[q,p,t] being an ideal and the second to [b, c, [q, p, t]] ∈ P t

p.

Hence P t
p fulfils the left condition to be a completely prime paragon. Analogously one

can prove that P t
p satisfies the right condition. Therefore, P t

p is a completely prime
paragon. �

Unsurprisingly, the distributive laws yield simplification of the definition of a com-
pletely prime paragon.

Lemma 4.8. Let T be a skew truss and P be a paragon. Then P is completely prime
if and only if there exists p ∈ P such that, for all a, d ∈ T ,

[ad, ap, p] ∈ P =⇒ P a
p is an ideal or d ∈ P

and

[da, pa, p] ∈ P =⇒ P a
p is an ideal or d ∈ P.

Proof. It is sufficient to observe that, for every b ∈ T , [b, c, p] can be substituted by some
d ∈ T since [−, c, p] : T −→ T is a bijection with the inverse given by [−, p, c] : T −→ T .
Hence, if b = [d, p, c], d = [[d, p, c], c, p], and so

[ab, ac, p] = [a[d, p, c], ac, p] = [ad, ap, p] & [ba, ca, p] = [[d, p, c]a, ca, p] = [da, pa, p],

by the distributive laws and the axioms of a heap. This completes the proof. �

Lemma 4.9. If P ( T is a completely prime paragon in a pre-truss T , then, for all
p ∈ P and for all left (right) absorbers a, a′ ∈ T , P a

p = P a′
p .

Proof. Let a be a left absorber. For all b, c ∈ T and p ∈ P , [ba, ca, p] = [a, a, p] = p ∈ P ,
so P a

p is an ideal or [b, c, p] ∈ P . The second option is equivalent to b ∼P c, for all
b, c ∈ T . Observe, though, that since P 6= T , there exist b, c ∈ T such that b 6∼P c.
Therefore, P a

p is an ideal and a ∈ T/P is an absorber. From the fact that if a truss

has an absorber then it has only one left absorber one concludes that P a
p = P a′

p , for all
left absorbers a, a′. �

Theorem 4.10. Let T be a pre-truss. Then P is a completely prime paragon if and
only if T/P is a domain.

Proof. We write a for the class of a in T/P . The pre-truss T/P is a domain if and only
if, for all a, b, c ∈ T/P , ab = ac implies that b = c or a is an absorber. The equality
ab = ac amounts to the existence of p ∈ P such that [ab, ac, p] ∈ P . Observe that b = c
if and only if [b, c, p] ∈ P , and a is an absorber if and only if P a

p is an ideal. The proof
proceeds analogously for the right cancellation property. �

Remark 4.11. Every paragon in a near-truss T(B) associated with a skew brace B is
completely prime.

Corollary 4.12. Let R be a ring. An ideal I is completely prime in R if and only if
I is a completely prime paragon in T(R).
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Proof. Let us assume that I is a completely prime ideal in R. Then, for all a, b ∈ R
and absorber 0 ∈ I,

[ab, a0, 0] = ab ∈ I =⇒ a ∈ I or b ∈ I.
Thus, if a ∈ I, then Ia0 = I is an ideal, and hence I is a completely prime ideal in
T(R).

Conversely, assume that I is a completely prime paragon in T(R). For all a, b ∈ T(R),

ab = [ab, a0, 0] ∈ I =⇒ Ia0 is an ideal or b ∈ I.
Observe that Ia0 is an ideal if and only if a ∈ I. Therefore, I is a completely prime
ideal in R. This completes the proof. �

Lemma 4.13. Let f : T → T ′ be a morphism of pre-trusses. If P is a completely
prime paragon in Imf , then f−1(P ) is a completely prime paragon in T .

Proof. By Lemma 3.13, f−1(P ) is a paragon. For all a, b, c ∈ T and p ∈ f−1(P ), if
[ab, ac, p] ∈ f−1(P ), then

f([ab, ac, p]) = [f(a)f(b), f(a)f(c), f(p)] ∈ P.

This implies that P
f(a)
f(p) is an ideal or f([b, c, p]) = [f(b), f(c), f(p)] ∈ P . Therefore,

[b, c, p] ∈ f−1(P ) or P
f(a)
f(p) is an ideal. Let us assume that

z ∈ f−1
(
P
f(a)
f(p)

)
= {x ∈ T | ∃q ∈ P s.t. f(z) = [q, f(p), f(a)]}.

Then f(z) = [q, f(p), f(a)], for some q ∈ P and f([z, a, p]) = [f(z), f(a), f(p)] = q ∈ P .

Hence z = [[z, a, p], p, a] ∈ f−1(P )ap and f−1(P
f(a)
f(p) ) ⊆ f−1(P )ap. Therefore, f−1(P )ap ⊆

f−1(P
f(a)
f(p) ) and by Lemma 3.19, f−1(P )ap is an ideal. This completes the proof. �

We conclude this section with an example of a completely prime paragon and the
corresponding quotient domain.

Example 4.14. Let O(x) be the set of all polynomials in Z[x] in which the sum of
coefficients is odd. One can easily check that O(x) is a sub-monoid of the multiplicative
monoid Z[x] and a sub-heap of Z[x] with the standard operation [p, q, r] = p − q + r.
All this means that O(x) is a (commutative) truss.

Take any t0, t1 ∈ O(x) and define

P (t0, t1) := {p ∈ O(x) | (t1 − t0) divides (p− t0)}.
Then P (t0, t1) is a paragon in O(x) and it is a completely prime paragon provided that
t1 − t0 is irreducible in Z[x].

Proof. Clearly, if p− t0, q− t0 and r− t0 are divisible by t1− t0, then so is [p, q, r]− t0 =
p − q + r − t0. Hence P (t0, t1) is a sub-heap of O(x). Note that t0 ∈ P (t0, t1), and
hence, for all p ∈ P (t0, t1) and q ∈ O(x),

[qp, qt0, t0]− t0 = qp− qt0 = q(p− t0).

Therefore, [qp, qt0, t0] = [pq, t0q, t0] ∈ P (t0, t1), which means that P (t0, t1) is a paragon.
Now assume that c = t1 − t0 is irreducible in Z[x], and take a, b ∈ O(x) for which

there exists p ∈ P (t0, t1) such that [ab, ap, p] ∈ P (t0, t1), that is c | a(b− t0). Since c is
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irreducible, then either c | (b − t0), in which case b ∈ P (t0, t1), or c | a, that is, there
exists q ∈ Z[x] such that a = cq. In this case,

P (t0, t1)ap = {r − p+ cq | r ∈ P (t0, t1)}.

Thus P (t0, t1)ap contains all elements of O(x) divisible by c (since c | (r − p), for all
r, p ∈ P (t0, t1)), and hence it is an ideal in O(x). Combined with the commutativity
of O(x), Lemma 4.8 yields that P (t0, t1) is a completely prime paragon. �

Note that in general in the situation described in Example 4.14,

a = b ∈ O(x)/P (t0, t1) if and only if (t1 − t0) | (a− b).
So, for example, take t0 = x and t1 = x2 + x + 1. Then c = t1 − t0 = x2 + 1 is
an irreducible polynomial in Z[x] and O(x)/P (x, x2 + x + 1) is a domain that can be
identified with the sub-truss O(i) of the truss (ring) of Gaussian integers Z[i], defined
as

O(i) = {m+ ni | m+ n is odd}.

5. Skew braces of fractions

To summarise, up to now we have introduced the notions of a domain and a com-
pletely prime paragon, so that as long as we start with a pre-truss that has a completely
prime paragon we can quotient out by it and obtain a domain. The next, and most
important step, is to introduce localisation for pre-trusses. As the main goal of this
section is to produce braces from near-trusses we will consider near-trusses without
left absorbers and we will focus on localisation in the entire near-truss (to construct
a “brace of fractions”) following Ore’s classic construction [Or31]. First observe that
since not every ring can be localised the same is true for trusses. Following [Or31] we
start by defining a regular pre-truss.

Definition 5.1. A pre-truss T is said to be left regular if T is a domain and it
satisfies the left Ore condition, that is, for all x, y ∈ TAbs, there exist r, s ∈ TAbs such
that rx = sy.

In other words, a pre-truss is left (resp. right) regular if and only if TAbs is a left Ore
set. Next, we define the fraction relation on TAbs × T , by

(b, a) ∼ (b′, a′) if and only if there exist β, β′ ∈ TAbs, s.t. βb = β′b′ and βa = β′a′.

This is an equivalence relation by the same arguments as in [Or31, Section 2]. The
equivalence class of (b, a) is denoted by a

b
and called a fraction, and the quotient set

TAbs × T/ ∼ is denoted by Q(T ).

Theorem 5.2. (Ore localisation for regular pre-trusses) Let T be a left regular pre-
truss. Then Q(T ) is a pre-truss with the following operations

(a) For all a
b
, a

′

b′
, a

′′

b′′
∈ Q(T ), the ternary operation is defined by[

a

b
,
a′

b′
,
a′′

b′′

]
:=

[β1a, β2a
′, β3a

′′]

β1b
=

[β1a, β2a
′, β3a

′′]

β2b′
=

[β1a, β2a
′, β3a

′′]

β3b′′
, (5.1)

where β1, β2, β3 are any elements of TAbs such that β1b = β2b
′ = β3b

′′.
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(b) For all a
b
, a

′

b′
∈ Q(T ),

a

b
· a
′

b′
:=

γa′

γ′b
, (5.2)

where γ, γ′ ∈ TAbs are such that γb′ = γ′a.

Furthermore, (Q(T )Abs, ·) is a group. We will call Q(T ) the pre-truss of (left)
fractions of T .

Proof. We follow closely the proof of [Or31, Theorem 1]. The multiplication of fractions
(5.2) is defined in such a way that a

b
can be interpreted as b−1a. Since it relies entirely on

the properties of the semigroup (T, ·), the arguments of the proof of [Or31, Theorem 1]
(with no modification, apart from the conventions) yield that (Q(T ), ·) is a semigroup.

It remains to be proven that Q(T ) is a heap. In fact, by the Ore condition we may
assume that all fractions in the definition of the ternary operation (5.1) on Q(T ) have
common denominator, so that[

a

b
,
a′

b
,
a′′

b

]
=

[βa, βa′, βa′′]

βb
, (5.3)

since in this case we can choose β := β1 = β2 = β3. Thus suffices it to prove that (5.3)
is well-defined, as then the heap axioms for T will imply the corresponding axioms
for the derived operation (5.3). We proceed in two steps. At first, we show that the
formula (5.3) does not depend on the choice of β; in the second stage we will prove
that it is also independent of the choice of the representatives a, b for the class a

b
.

Choose another element s ∈ TAbs such that[
a

b
,
a′

b
,
a′′

b

]
=

[sa, sa′, sa′′]

sb
.

There exist g, g′ ∈ TAbs such that gβb = g′sb, which implies

gβ = g′s,

since T is a domain. Therefore,

g[βa, βa′, βa′′] = g′[sa, sa′, sa′′], gβb = g′sb.

Consequently,
[βa, βa′, βa′′]

βb
=

[sa, sa′, sa′′]

sb
,

which shows the independence of the formula (5.3) of the the choice of β.
To prove that the ternary operation (5.1) does not depend on the choice of the rep-

resentatives in each equivalence class, let (b, a), (b′, a′), (b′′, a′′), (d, c), (d′, c′), (d′′, c′′) ∈
TAbs × T be such that

a

b
=
c

d
,
a′

b′
=
c′

d′
,
a′′

b′′
=
c′′

d′′
,

and consider[
a

b
,
a′

b′
,
a′′

b′′

]
=

[β1a, β2a
′, β3a

′′]

β1b
,

[
a

b
,
a′

b′
,
c′′

d′′

]
=

[s1a, s2a
′, s3c

′′]

s1b
, (5.4)

for suitable β1, β2, β3, s1, s2, s3 ∈ TAbs. Then there exist g, g′ ∈ T , such that

gβ1b = gβ2b
′ = gβ3b

′′ = g′s1b = g′s2b
′ = g′s3d

′′,



FROM PRE-TRUSSES TO SKEW BRACES 19

and, since T is a domain,

gβ1 = g′s1, gβ2 = g′s2.

Thus both fractions in the equation (5.4) are equal if and only if gβ3a
′′ = g′s3c

′′.
Observe, however, that since g′s3d

′′ = gβ3b
′′, gβ3a

′′ = g′s3c
′′ as a′′

b′′
= c′′

d′′
. Therefore,[

a

b
,
a′

b′
,
a′′

b′′

]
=

[
a

b
,
a′

b′
,
c′′

d′′

]
.

The remaining equalities[
a

b
,
a′

b′
,
c′′

d′′

]
=

[
a

b
,
c′

d′
,
c′′

d′′

]
and

[
a

b
,
c′

d′
,
c′′

d′′

]
=

[
c

d
,
c′

d′
,
c′′

d′′

]
,

are proven in a similar way. This completes the proof that the definition of the ternary
operation (5.1) does not depend on the choice of representatives.

Finally, observe that if a is an absorber, then the class a
b

is an absorber and it is

obviously unique. One can easily check that the class b
b

for b ∈ TAbs is a neutral

element of (Q(T )Abs, ·) and that if a ∈ TAbs then a
b

is a two-sided inverse to b
a
. Thus

(Q(T )Abs, ·) is a group. This completes the proof of the theorem. �

From the fact that one can find a common denominator to any system of fractions
one can observe that additional properties of T are carried over to Q(T ).

Proposition 5.3. Let T be a regular pre-truss.

(1) If T is Abelian, then so is Q(T ).

(2) If T is a near-truss, then Q(T ) is a near-truss.

(3) If T is a skew truss, then Q(T ) is a skew truss.

Proof. It is sufficient to consider heap operations of fractions with a common denom-
inator, that is, those given by the formula (5.3). Statement (1) follows immediately
from (5.3).

If T is a near-truss, then[
a

b
,
a′

b
,
a′′

b

]
=

[βa, βa′, βa′′]

βb
=
β[a, a′, a′′]

βb
=

[a, a′, a′′]

b
.

Take any c
d
, a
b
, a

′

b
, a

′′

b
∈ Q(T ) and γ, γ′ ∈ TAbs such that γb = γ′c, and compute

c

d
·
[
a

b
,
a′

b
,
a′′

b

]
=
c

d
· [a, a′, a′′]

b
=
γ[a, a′, a′′]

γ′d
=

[γa, γa′, γa′′]

γ′d

=

[
γa

γ′d
,
γa′

γ′d
,
γa′′

γ′d

]
=

[
c

d
· a
b
,
c

d
· a
′

b
,
c

d
· a
′′

b

]
.

Hence the left distributive law holds, and this proves statement (2).
To prove (3) we take c

d
, a
b
, a

′

b
, a

′′

b
∈ Q(T ) and γ, γ′ ∈ TAbs such that γd = γ′[a, a′, a′′].

Then [
a

b
,
a′

b
,
a′′

b

]
· c
d

=
[a, a′, a′′]

b
· c
d

=
γc

γ′b
.
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On the other hand, using the definitions (5.1) and (5.2) and the right distributivity in
T , we obtain[

a

b
· c
d
,
a′

b
· c
d
,
a′′

b
· c
d

]
=

[
γ1c

γ′1b
,
γ2c

γ′2b
,
γ3c

γ′3b

]
=

[s1γ1, s2γ2, s3γ3]c

s1γ′1b
,

where s1, s2, s3, γ1, γ2, γ3, γ
′
1, γ
′
2, γ
′
3 ∈ TAbs are such that

γ′1a = γ1d, γ
′
2a
′ = γ2d, γ

′
3a
′′ = γ3d, s1γ

′
1 = s2γ

′
2 = s3γ

′
3. (5.5)

Let h, h′ ∈ TAbs be such that
hγ′ = h′s1γ

′
1. (5.6)

Then, using the distributive laws in T , (5.5) and (5.6), we find

hγd = hγ′[a, a′, a′′] = [hγ′a, hγ′a′, hγ′a′′] = [h′s1γ
′
1a, h

′s1γ
′
1a
′, h′s1γ

′
1a
′′]

= h′[s1γ
′
1a, s2γ

′
2a
′, s3γ

′
3a
′′] = h′[s1γ1d, s2γ2d, s3γ3d] = h′[s1γ1, s2γ2, s3γ3]d.

The right cancellation property yields

hγ = h′[s1γ1, s2γ2, s3γ3],

which in view of (5.6) implies that

γc

γ′b
=

[s1γ1, s2γ2, s3γ3]c

s1γ′1b
.

Therefore, also the right distributive law holds in the near-truss Q(T ). �

The construction of the truss of quotients is universal in the following sense.

Proposition 5.4. Let T be a regular pre-truss. Then

(1) For any b ∈ TAbs,

ιb : T −→ Q(T ), a 7−→ ba

b
,

is a monomorphism of semigroups, and it is a monomorphism of trusses provided
T is a near- or skew truss.

(2) If T is a unital pre-truss then ι1 is a monomorphism of unital trusses. Fur-
thermore, for any brace-type near-truss B and any unital truss homomorphism
f : T −→ B, there exists a unique unital truss homomorphism f̂ : Q(T ) −→ B
rendering commutative the following diagram:

T
ι1 //

f ��

Q(T )

f̂||
B.

Proof. (1) Since T is regular, ιb is an injective map. For all a, a′ ∈ T ,

ιb (aa′) =
baa′

b
& ιb (a) · ιb (a′) =

ba

b
· ba

′

b
=
γba′

γ′b
,

where γ, γ′ are such that γb = γ′ba. Take any β, β′ ∈ T such that βb = β′γ′b. Then

βbaa′ = β′γ′baa′ = β′γba′,



FROM PRE-TRUSSES TO SKEW BRACES 21

which means that ιb (aa′) = ιb (a) · ιb (a′) as required.
In the case of a near- or skew truss, that ιb is a homomorphism of trusses follows by

(5.3) and the left distributive law.
(2) The monomorphism of semigroups ι1 preserves the heap operation since 1 is the

multiplicative identity in T .
Assume that f : T → B is a unital homomorphism of trusses and, for all fractions

a
b
∈ Q(T ), define

f̂ : Q(T ) −→ B,
a

b
7−→ f(b)−1f(a).

This is well defined since two fractions a
b

and a′

b′
are identical if and only if there are

β, β′ such that βa = β′a′ and βb = β′b′, in which case

f̂
(a
b

)
= f(b)−1f(a) = f(b)−1f(β)−1f(β)f(a)

= f(βb)−1f(βa) = f(β′b′)−1f(β′a′) = f(b′)−1f(a′) = f̂

(
a′

b′

)
,

by the multiplicativity of f . By the same token, for all a
b
, a

′

b′
∈ Q(T ),

f̂

(
a

b
· a
′

b′

)
= f̂

(
γa′

γ′b

)
= f(γ′b)−1f(γa′) = f(b)−1f(γ′)−1f(γ)f(a′),

where γ, γ′ ∈ T are such that γb′ = γ′a. Applying f to both sides of this equality and
using the multiplicative property to f we obtain

f(γ′)−1f(γ) = f(a)f(b′)−1,

and hence

f̂

(
a

b
· a
′

b′

)
= f(b)−1f(a)f(b′)−1f(a′) = f̂

(a
b

)
f̂

(
a′

b′

)
,

that is f̂ is a homomorphism of multiplicative groups. To check that f̂ is a heap
morphism it is enough to consider fractions with a common denominator and then

f̂

([
a

b
,
a′

b
,
a′′

b

])
= f(b)−1 [f(a), f(a′)f(a′′)]

=
[
f(b)−1f(a), f(b)−1f(a′)f(b)−1f(a′′)

]
=

[
f̂
(a
b

)
, f̂

(
a′

b

)
, f̂

(
a′′

b

)]
,

by the fact that f is a heap homomorphism and the left distributive law in B. That
f̂ ◦ ι1 = f follows by the unitality of f .

Suppose that there exists a unital truss homomorphism ĝ : Q(T ) −→ B such that
ĝ ◦ ι1 = f . Note that

a

b
=

1

b
· a

1
. (5.7)

In particular,

1 = ĝ

(
1

1

)
= ĝ

(
1

b
· b

1

)
= ĝ

(
1

b

)
f(b),
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where the last equality follows by the splitting assumption ĝ ◦ ι1 = f . Hence ĝ
(

1
b

)
=

f(b)−1 and the equality ĝ = f̂ follows by the multiplicativity of ĝ and equations (5.7).
�

The following corollary provides one with the method of constructing skew braces,
which might be considered as one of the main results of this paper.

Corollary 5.5. If T is a regular near-truss without an absorber, then Q(T ) is a brace-
type near-truss, that is, for all b ∈ T , the retract of Q(T ) at b

b
with the product (5.2)

is a skew brace.

Proof. Observe that if T has no absorbers then Q(T ) has no absorbers either. Indeed,
suppose that there exists a

b
∈ Q(T ) such that, for all c

d
∈ Q(T ), c

d
· a
b

= a
b
. Since T has

no absorbers, it has at least two elements, and hence, in particular we may consider
c 6= d. Then there exist γ, γ′ ∈ T , such that γa

γ′d
= γa

γb
and γ′c = γb. Thus γa

γ′d
= γa

γ′c
,

so there exist β, β′ ∈ T such that βγ′d = β′γ′c and βγa = β′γa. By regularity, β = β′

and c = d, which is the required contradiction. Therefore, a
b

is not an absorber for all

a, b ∈ T . Now, since Q(T ) is a group with multiplication and identity b
b
, the retract of

Q(T ) in b
b

is a skew brace by [Br20, Remark 3.13]. �

Note in passing that if T satisfies the same assumptions as in Corollary 5.5, but
there exists an absorber in T , then Q(T ) is associated with a near-field.

Example 5.6. Let us consider the sub-truss 2Z+ 1 of T(Z). It is a domain satisfying
the Ore condition, thus it is a regular truss and we can localise it in itself. Since 2Z+1
is commutative, the construction is much simpler than the one presented in the proof

of Theorem 5.2. One can easily check that Q(2Z+1) = 2Z+1
2Z+1

:=
{

2p+1
2q+1
| p, q ∈ Z

}
. The

two-sided brace associated with this truss is the retract in 1, i.e. the triple (Q(2Z +
1), [−, 1,−], ·).

Similarly, the truss O(x) of integer polynomials with coefficients summing up to odd
numbers considered in Example 4.14 is regular with no absorbers, and hence it can be
localised to a brace-type truss of the following rational functions

Q(O(x)) =
O(x)

O(x)
:=

{
p(x)

q(x)
| p(x), q(x) ∈ O(x)

}
.

As a yet another example we can consider the truss O(i) constructed as a special
case of Example 4.14. Again this is a commutative domain satisfying the Ore condition
and with no absorbers, and hence

Q(O(i)) =

{
m+ ni

p+ qi
| m+ n and p+ q are odd integers

}
=

{
m

2p+ 1
+

n

2q + 1
i | p, q ∈ Z, m+ n is an odd integer

}
.

The example of odd fractions described above is a special case of a more general
construction.
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Example 5.7. Let Tn(Z) denote the set of all n× n-matrices over Z with odd entries
on the diagonal and even off diagonal entries. That is,

Tn(Z) =
{

(aij)
n
i,j=1 | aii ∈ 2Z + 1 & aij ∈ 2Z, i 6= j

}
.

(1) Tn(Z) endowed with the matrix multiplication and the standard heap operation
[a,b, c] = a− b + c is a unital regular truss with no absorbers.

(2) The brace-type truss of fractions Q(Tn(Z)) can be identified with the set Tn(Q)
of n × n-matrices over the rational numbers with diagonal entries made by the
odd fractions (that is, fractions of both the numerator and denominator odd,
Q(2Z + 1)) and with fractions with even numerator and odd denominator as
off-diagonal entries. That is,

Q(Tn(Z)) ∼= Tn(Q) :=

{
(qij)

n
i,j=1 | qii ∈

2Z + 1

2Z + 1
& qij ∈

2Z
2Z + 1

, i 6= j

}
.

It is clear that the set Tn(Z) is closed under the described heap operation. That
it is closed also under the matrix multiplication follows from an observation that in
the product formula for the off-diagonal entries the sum involves the products of num-
bers of which at least one is even, while for the diagonal entry there is a single odd
summand made out of the product of matching diagonal entries. Obviously Tn(Z) has
no absorber, as the zero matrix is not an element of Tn(Z). Since the identity matrix
has the prescribed form, Tn(Z) is unital. The other statements of Example 5.7 can be
justified by the following (elementary) lemma.

Lemma 5.8. For all a ∈ Tn(Z),

(i) The determinant det(a) is an odd number.

(ii) The matrix of cofactors ā of a and hence also its transpose āt are elements of
Tn(Z).

Proof. Let ai,j denote the matrix obtained from a by removing of the i-th row and the
j-th column. Note that ai,i ∈ Tn−1(Z) and that ai,j, i 6= j has one row of even numbers.

The first statement is proven by induction on the size n of matrices. For n = 1 the
statement is obviously true. Assuming that the statement is true for k we calculate
the determinant of a ∈ Tk+1(Z) by expanding by the first row. Since a1,1 is an element
of Tk(Z), det(a1,1) is odd by inductive assumption. In the expansion of det(a) this is
multiplied by the first entry a11 of a and thus it gives an odd number. All the remaining
summands involve products of other entries of the first row, which are even. Hence the
sum of all terms in the expansion is odd as required.

The diagonal entries of ā are given by det(ai,i) which are odd by statement (i). Off-
diagonal entries (−1)i+j det(ai,j) are even since one row of each of ai,j, i 6= j consists
entirely of even numbers. The transposition statement is obvious. �

With this lemma at hand we can now prove that Tn(Z) is a domain satisfying the Ore
condition. Since we can embed Tn(Z) into a ring of matrices, the statement ab = ac,
for some a,b, c ∈ Tn(Z) is equivalent to the statement that a(b− c) = 0, hence

0 = a(b− c) = āta(b− c) = det(a)(b− c),

which implies that b = c, since det(a) 6= 0 by Lemma 5.8(i). The regularity of the
other side of each a ∈ Tn(Z) can be proven in a symmetric way.



24 TOMASZ BRZEZIŃSKI, STEFANO MERETA, AND BERNARD RYBO LOWICZ

To prove the Ore condition we take any a,b ∈ Tn(Z) and set

r = ab̄t & s = det(b)1.

Both these matrices are elements of Tn(Z) by Lemma 5.8, and they satisfy the Ore
condition sa = rb. Hence, Tn(Z) is a left regular (in fact also right regular by similar
arguments) truss.

For any element q ∈ Tn(Q) we write q for the product of all denominators in entries
of q. This is an odd number and thus obviously qq ∈ Tn(Z). In particular, in view
of Lemma 5.8, det(qq) is an odd number and its matrix of cofactors is an element of
Tn(Z). This in turn implies that the inverse of q is an element of Tn(Z) divided by an
odd number, hence an element of Tn(Q). Consequently, Tn(Q) is group with respect
to multiplication of matrices. In order to identify Tn(Q) with the truss of fractions
Q(Tn(Z)) we will explore the universal property described in Proposition 5.4(2). Thus
consider a brace-type skew truss B and a homomorphism of unital trusses f : Tn(Z) −→
B and set

f̂ : Tn(Q) −→ B, q 7−→ f(q1)−1f(qq).

Note that this definition does not depend on the way the fractions in q are represented,
as the multiplication of the numerator and a denominator of an entry by a common
(odd) factor results in multiplying both q and q by the same factor which will cancel

each other out in the formula for f̂ , by the multiplicative property of f . Since q1 is a
central element in Tn(Z), f(q1)−1 is central in the image of f and, combined with the

multiplicative property of f this implies that f̂ is a homomorphism of (multiplicative)

groups. That f̂ is a homomorphism of heaps follows by the distributivity. Obviously,
f̂ ◦ ι1 = f and is a unique such morphisms. By the uniqueness of universal objects,
Tn(Q) is isomorphic to the truss of fractions Q(Tn(Z)).
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