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Abstract 

In this work, a new displacement-based Trefftz plate element is developed for size-dependent 

bending analysis of the thin plate structures in the context of the modified couple stress theory. This 

is achieved via two steps. First, the Trefftz functions, that are derived by introducing the thin plate 

bending assumptions into the three-dimensional governing equations of the modified couple stress 

elasticity, are adopted as the basis functions for designing the element’s displacement interpolations. 

Second, the generalized conforming theory is employed to meet the interelement compatibility 

requirements in weak sense for ensuring the convergence property. The resulting 4-node 

displacement-based plate element performs like nonconforming models on coarse meshes and 

gradually converges into a conforming one with the mesh refinement. Numerical tests reveal that 

the new element can efficiently capture the size-dependent mechanical responses of thin microplates 

and exhibits satisfactory numerical accuracy and distortion tolerance. Moreover, as the element has 

only three degrees of freedom (DOF) per node, it can be easily incorporated into the commonly 

available finite element programs. 

 

Keywords: Trefftz finite element; thin plate; generalized conforming theory; size effect; modified 

couple stress theory  
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1. Introduction 

Microplate structures have been widely used in various modern engineering applications. Numerous 

experimental observations have shown that their mechanical behaviors are size dependent, and the 

classical continuum theory is insufficient for capturing the size effect. Therefore, for well 

understanding and effectively designing such structures, the high-order continuum theories 

containing additional internal material length scale parameters have been developed, including the 

strain gradient theories [1-3], the couple stress theories [4-6] and the non-local elastic theories [7, 

8], to name a few. Based on these high-order continuum theories, diverse non-classical plate models 

have been successfully established during the past decades. For instance, Tsiatas [9], Ma et al. [10] 

and Gao et al. [11] respectively proposed the non-classical Kirffchoff plate model, the Mindlin plate 

model and the third order shear deformation plate model based on the modified couple stress theory; 

Thai et al. [12] developed a microplate model based on the modified couple stress theory and the 

refined higher order shear deformation theory; Khakalo and Niiranen [13] and Mirsalehi et al. [14] 

respectively proposed the non-classical Mindlin plate and Kirffchoff plate models based on the 

strain gradient theory; Reddy and Berry [15] studied the nonlinear axisymmetric bending behaviors 

of circular plates based on the modified couple stress theory. For keen readers, a comprehensive 

literature review can be found in Thai et al [16].  

However, as these size-dependent plate models are much more mathematically complicated than 

those based on the classical continuum theory, only restricted problems with simple geometries and 

certain boundary conditions can be analytically or semi-analytically solved [17]. Consequently, 

developing reliable numerical approaches with high accuracy and efficiency is of great importance. 

The finite element method (FEM) is commonly recognized as the most efficient and convenient 

numerical tool for analysis of plate structures. In recent years, many efforts have been devoted to 

developing three-dimensional (3D) solid elements based on the non-classical high-order continuum 

theories. For example, Torabi et al. [18] formulated a 4-node non-conforming tetrahedral element 

for the strain gradient elasticity; Kwon and Lee [19] developed hexahedral elements with rotation 

DOFs and Lagrange multiplier DOFs based on the mixed formulation; Shang et al. [20] proposed a 

penalty 8-node 48 DOF hexahedral element based on the modified couple stress theory and the 

unsymmetric FEM [21-23]. Compared with solid elements, the plate elements are generally more 
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preferred in analysis of plate-like structures because of efficiency. But there are only limited studies 

of size-dependent plate elements in the literature. The major challenge encountered in developing 

advanced microplate elements is that the numerical implementation of the size-dependent plate 

models may lead to even higher continuity requirements than solid element models, with the 

standard FEM generally suffering from insufficient continuity. It should be emphasized that, the 

construction of strictly higher-order continuous interpolations is far from a trivial task. 

The most straightforward way for solving this problem is to increase the node number and the 

degrees of freedom (DOFs) used for the element construction. For example, Zhang et al. [24] 

developed a 4-node 60-DOF non-classical Mindlin plate element based on the modified couple 

stress theory but its shape is restricted to rectangle; Ansari et al. [25] proposed a 9-node quadrilateral 

Mindlin microplate element based on the micromorphic theory which has 13 DOFs per node; 

Dadgar-Rad [26] proposed a 4-node 36-DOF microplate element based on the strain gradient 

elasticity which was reduced from a parent 8-node 72-DOF element through a very complicated 

derivation. It should be noted that, this method not only makes the element construction procedure 

and final formulation quite tedious but it also dramatically increases the computational cost. In 

addition, the isogeometric analysis (IGA) [27] which adopts the non-uniform rational B-splines 

(NURBS) functions as the shape functions to approximate both the geometric model and the 

analysis model is an effective approach to circumvent this obstacle. For instance, Liu et al. [28, 29] 

studied the size and surface effects on mechanical behavior of thin nanoplates using the isogeometric 

finite element; Natarajan et al. [30] investigated the size-dependent vibration analysis of nanoplate 

using the isogeometric based FEM; Thanh et al. [31, 32] proposed finite element model for analysis 

of composite laminated and functionally graded microplates based on the IGA and the modified 

couple stress theory; Thai et al. [33] performed the size-dependent analysis of functionally graded 

microplates based on the IGA and the strain gradient theory. Despite the advantages of generating 

highly continuous basis functions, the computational cost of the isogeometric finite elements is often 

significantly higher than the standard FEM.  

Another deficiency caused by the higher-order continuity requirements is that the performance of 

FEM is very susceptible to mesh distortion [34, 35]. The mesh distortion, which typically occurs in 

meshing complex geometries or simulating large deformations, may substantially deteriorate the 

numerical accuracy and in worst cases, even lead to abnormal termination of simulation. Indeed, 
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developing distortion-insensitive finite elements has always been an important and challenging topic 

in the community of computation engineering, and it has drawn considerable attentions from the FE 

scholars [36-38]. 

The generalized conforming Trefftz finite element method [39, 40] which successfully blends the 

attributes of the hybrid-Trefftz FEM [41-44] with the usual displacement-based FEM is a promising 

approach to effectively overcome the above problems. In the Trefftz-type element formulations, the 

Trefftz functions that can a priori satisfy the related governing equations are adopted as the basic 

functions for constructing element interpolations. As a result, better numerical accuracy and 

distortion tolerance than the usual FEM can be achieved. However, as these Trefftz functions are in 

general not compatible across the interface between two adjacent elements, special treatments 

should be employed for the enforcement of the compatibility conditions, which play a key role for 

the FEM convergence. The generalized conforming theory [45] is a novel technique to make the 

non-conforming displacement-based element meet the requirement of interelement compatibility in 

weak sense. The resulting generalized conforming element is a kind of limiting conforming element 

which performs like non-conforming models on coarse meshes but tends to be conforming with the 

mesh refinement. 

The aim of this work is to propose a simple and robust 4-node 12-DOF generalized conforming 

Trefftz plate element for size-dependent bending analysis of thin plates. To this end, the modified 

couple stress theory [5] which requires just one additional material parameter to represent the size 

effect of microstructures is adopted as the theoretical basis, and then the polynomial Trefftz 

functions that correspond to the non-classical thin microplate are derived. Next, these Trefftz 

functions are employed as the basis functions for designing the new element’s deflection and 

rotation interpolations in a straightforward manner, while the compatibility requirements are 

enforced in week sense by using the generalized conforming conditions. Several benchmark tests 

are examined to validate the proposed element’s capability in predicting the size-dependent 

mechanical behaviors of thin microplates. The numerical results show that the element can 

efficiently capture the size effects, exhibiting satisfactory numerical accuracy and good robustness 

to the gross mesh distortion. Besides, the element can also reproduce the results of the classical 

Kirchhoff plate model when the plate thickness is far greater than the material length scale parameter. 

Moreover, as the new 4-node plate element has only three conventional DOFs per node, it can be 
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easily incorporated into commonly available FE programs. 

  

 

2. Governing Equations and Trefftz Functions 

2.1. The basic governing equations in modified couple stress elasticity 

The modified couple stress theory [5] has been increasingly popular in the FE implementation in 

recent years due to its verifiability and simplicity. In this size-dependent continuum theory, the strain 

tensor components ij  and the physical rotation vector components ij  are defined as the first-

order spatial derivatives of the displacements iu : 
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and the symmetric curvature tensor components ij  are given by   
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where 
ijke  is the Levi-Civita symbol.  

  For the linear elastic isotropic materials, the stress tensor components ij  and the couple stress 

tensor components ijm , which respectively are the conjugate pairs of the strain and curvature, can 

be calculated using the constitutive equations: 

 22 , 2ij kk ij ij ij ijG m Gl    = + = , (3) 

in which 
ij  is the Kronecker delta,   and G  are the two Lamé constants and l  denotes the 

additional material length scale parameter. 

Considering that the external body couple force can be decomposed into an equivalent system of 

body forces and surface forces [4], the equilibrium equations are given by  

 , ,

1
0

2
 ij j i ijk jm mkf e m + − = , (4) 

where if  represents the component of the external body force vector.    

 

2.2. The governing equations for thin microplates 

The typical model of a thin flat microplate subjected to a transverse distributed load q on the top 
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surface is illustrated in Figure 1. The mid-surface of the plate is defined as the x-y plane whilst z 

denotes the plate thickness direction 
2 2

h h
z

 
−   

 
. For the bending behavior of the thin microplate 

in the absence of in-plane external loads, the three displacement components can be expressed by  

 ( ), , ,  x yu z v z w w x y = − = − = , (5) 

in which the plate rotations x   and 
y   are determined in accordance with the Kirchhoff thin 

plate assumptions: 

 , x y

w w

x y
 

 
= =

 
. (6) 

Then, by substituting Equations (5) and (6) into the kinematic equations given in Section 2.1, the 

non-zero components of the strain and physical rotation are expressed as  

 

2 2 2

2 2
, , 2  2xx yy xy xy

w w w
z z z

x y x y
   
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, (7) 

 , x y

w w

y x
 

 
= = −

 
, (8) 

and the non-zero components of the curvature can be further obtained by   

 

2 2 2 2

2 2
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w w w w

x y x y y x
  
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= = − = −
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. (9) 

  In general, the stress and couple stress, which are directly calculated by substituting Equations (7) 

and (9) back into the three-dimensional constitutive Equation (3), cannot satisfy the equilibrium 

equations and the stress boundary conditions. Therefore, an alternative approach to derive the stress 

and couple stress is employed in this work.  

The three in-plane stress components are determined by using the reduced constitutive 

relationship of the plane stress state, as follows: 

 ( )
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in which E  and   are the Young’s modulus and Poisson’s ratio that can be deduced from the 

Lamé constants; ( )2 1G E = +   is the shear modulus. Meanwhile, the couple stresses are still 

calculated using Equation (3): 

 
2 2 2 2

2 2 2

2 2
2 , 2 , xx yy xy

w w w w
m Gl m Gl m Gl

x y x y y x
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= = − = − 
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. (13) 

Substitutions of Equations (10) to (13) back into the first two equilibrium equations given in 

Equation (4) yield  

 ( )2

, 21
 xz z

zE
w

x





= 

− 
, (14) 

 ( )2
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 xz z
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w

x
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
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− 
, (15) 

in which 2   is the Laplace operator. Then, by integrating them along the plate thickness and 

applying the zero-value boundary conditions at the top and bottom surfaces, the transverse shear 

stresses are given by   
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Next, by inserting Equations (13), (16) and (17) into the last equilibrium equation in Equation (4), 

we can obtain  
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2
2 2 2 2 2 2
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  zz z

E h
z w Gl w 


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Also, by integrating Equation (18) along the plate thickness and considering the zero-value 

boundary condition at the plate’s bottom surface, the following expression of zz  is delivered: 
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2 2 2 2 2 3
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1 1
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2
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. (19) 

Finally, by imposing the condition that zz  should be equal to the external transverse distributed 

load q at the plate’s top surface, we can obtain  

 2 2 eD w q  = , with  e lD D D= + , (20) 

in which 
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It can be easily observed that Equation (20) can directly degenerate into the classical Kirffchoff 

plate model when the material length scale parameter is neglected. 

It is noted that although the above out-plane stress components given by Equations (16), (17) and 

(19) violate the constitutive equations, the induced errors are almost negligible because the thin 

plate’s thickness is far less than the other two dimensions.  

 

2.3. The Trefftz functions for thin microplates 

  The solution of plate governing Equation (20) consists of two parts, the homogeneous solution 

0w  and the particular solution *w , which should respectively satisfy  

 2 2 0  0eD w  = , (22) 

and 

 2 2 * eD w q  = . (23) 

The solution of homogeneous Equation (22) yields to fourteen linearly independent polynomial 

functions and the dependent rotation, strain and curvature solutions can further be derived. For 

brevity, they are directly summarized in Table 1 while their derivation procedures are given in 

Appendix. On the other hand, the particular solution part should be determined in accordance with 

the external load. For instance, when the plate is subjected to a uniformly distributed transverse load 

q, the particular solution can be simply set as  

 ( )* 4 4
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8 e

q
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Correspondingly, the plate rotations are  
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12 12
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e e
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while the strains and curvatures are  
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3. Finite Element Formulations 

3.1. The variational principle 

For ensuring the computation convergence, the derivation of the non-conforming element should 

start with the sub-region potential energy principle [45], in which the energy functional is given by  

   +He e

mP P ic =  . (28) 

In the above equation,  e

P  is the conventional potential energy functional. With respect to the 

present size-dependent thin microplate in the absence of the external couple force loads, it can be 

expressed in the following matrix form: 

 ( )T T T T2 2

2 2

1
d d d  d d

2

h h

e

h hP z z
  − −

 = +  −  −     ε σ χ m u f u t , (29) 

in which z represents the plate thickness direction and varies from 
2

h
−   to 

2

h
 ;    and    

respectively denote the domain and boundary of the plate’s mid-surface ( 0z = ); ε  and χ  are the 

strain and curvature produced by the displacement u , while σ  and m  are the work-conjugated 

stress and couple stress; f  and t  are the external forces imposed on the plate’s top surface and 

lateral boundaries.  

    icH  in Equation (28) is the additional energy produced by the interelement incompatibilities. As 

discussed previously, the generalized conforming theory is an effective method to make the non-

conforming displacement-based element meet the compatibility requirements in weak sense, in 

which the key idea is to ensure   0icH →  as the mesh refined. Thereby, the effects of   icH  can be 

neglected for the sake of simplicity in the development of the generalized conforming element 

models, whist the convergence property can still be guaranteed.  

 

3.2. The general element formulations 

In the generalized conforming Trefftz element formulations, the displacement interpolations are 

constructed at the base of the Trefftz functions. With respect to the thin microplate element based 

on the modified couple stress theory, the transverse deflection field and the corresponding plate 
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rotation fields are initially approximated as the linear combination of k groups of the homogeneous 

Trefftz functions which are listed in Table 1 with the addition of the particular solution part, as 

follows: 

 
0 * 0 * 0 *

1 1 1

,  ,
k k k

i i x xi i x y yi i y

i i i

w w w        
= = =

= + = + = +   . (30) 

It is worth to mention that k should be no less than the number of the element’s DOFs. Accordingly, 

the displacement vector u  can be expressed as  

 * 

u

v

w

 
 

= = + 
 
 

u Uα u , (31) 

in which α  is the coefficient vector 

  
T

1 2 3 ...  k   =α , (32) 

while the components of the matrix U  are determined by the Trefftz solutions listed in Table 1: 
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. .

  ..

.
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 − − − −
 
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 
 

U , (33) 

Then, the strain and curvature vectors can be expressed in the similar form  

 
*

2

 

xx
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





 
 

= = + 
 
 

ε Eα ε , (34) 
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in which the matrices E  and X  are given by 
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and 
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 
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where the detailed components can also be founded in Table 1. When the element is subjected to an 

element-wise constant load q, the particular solutions, the vectors * u  , * ε   and *
χ  , can be 

determined by Equations (24), (26) and (27). 

  Then, to get the relationship between the introduced unknowns ( ), 1~i i k =  and the element 

nodal DOF vector  e
q , a proper set of the generalized conforming conditions will be imposed to the 

above assumed displacement fields, and consequently the following expression can be deduced: 

 ( )1 e−= −α λ Λq Η , (38) 

in which the components of the matrices λ , Λ  and H  will be discussed in details in Section 

3.3.  

Next, by substituting Equation (38) back into Equations (31), (34) and (35), we can obtain 

 * 1 * * 1, ,e

u u u u

− −= + = = −u N q N N Uλ Λ N u Uλ Η , (39) 

and 

 * 1 * * 1, ,e

   

− −= + = = −ε B q B B Eλ Λ B ε Eλ Η , (40) 

 * 1 * * 1, ,e

   

− −= + = = −χ B q B B Χλ Λ B χ Χλ Η . (41) 

The stress σ  and couple stress m  are calculated using the constitutive equations:  

 

( ) ( )

( ) ( )

2 2

2 2

1 1 0

, 1 1 0

0 0

xx

yy

xy

E E

E E

G

 

  

   



 − −   
   = = = − − 

  
  
 

σ D ε D , (42) 

 

2

2

2

2 0 0

, 0 2 0

0 0

xx

yy

xy

m Gl

m Gl

m Gl

 

  
  

= = =   
   
   

m D χ D . (43) 

Moreover, the corresponding bending moments and couple moments of the thin microplate are 

defined by 

 2 2 2

2 2 2

d , d , d
h h h

h h hxx xx yy yy xy xyM z z M z z M z z  
− − −

= = =   , (44) 

 2 2 2

2 2 2

d , d , d
h h h

h h hxx xx yy yy xy xyY m z Y m z Y m z
− − −

= = =   . (45) 
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  Finally, by substituting Equations (39) to (43) back into Equation (29) and applying the stationary 

condition of functional, we can obtain the element stiffness matrix 

 ( )T T2

2

d d
h

e

h z     
−

= +  K B D B B D B , (46) 

and the element nodal equivalent load vector 

 ( )T T T * T *2 2

2 2

d d d d d
h h

e

h hu u z z     
  − −

=  +  − +     Q N f N t B D B B D B , (47) 

in which uN  is given by Equation (39). 

 

3.3. The new 4-node thin microplate element 

The schematic representation of the new quadrilateral 4-node 12-DOF thin microplate element is 

illustrated in Figure 2, in which 1~4 are the element’s four nodes whilst the mid-side points 

( )1 2 3 4, , ,M M M M  and the Gauss points ( )1 1 2 2 3 3 4 4, , , , , , ,A B A B A B A B  with the Gauss parametric 

coordinates 3 3 =    are for imposing the generalized conforming conditions. The element 

nodal DOF vector can be given by  

 
T

1 1 1 2 2 2 3 3 3 4 4 4 e

x y x y x y x yw w w w        =  q . (48) 

To ensure the fourth-order completeness of the deflection field in Cartesian coordinates, 

fourteen groups of the homogeneous Trefftz functions as listed in Table 1 are employed for 

constructing the new element, i.e., k in Equation (30) is equal to 14. Accordingly, fourteen 

generalized conforming conditions are used for obtaining Equation (38) in this new element. These 

fourteen generalized conforming conditions can be divided into three groups. First, the transverse 

deflections calculated by Equation (30) at the element’s four nodes should be equal to the 

corresponding nodal deflection DOF: 

 ( ) ( ), , 1~ 4  i i iw x y w i= = , (49) 

in which ( )  ,i ix y  is the Cartesian coordinates of the node i.  

Second, at the eight Gauss points ( )1 1 2 2 3 3 4 4, , , , , , ,A B A B A B A B  as shown in Figure 2, the normal 

rotations along the edges obtained from Equation (30) should be equal to the ones which are 
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interpolated by 

 ( ) ( )1 , 12, 23, 3  ,  4 41nij ni njs s ij  = − + = , (50) 

where the local coordinate s   is determined from the Gauss parametric coordinate    using

( )1 2s = +  ; ni   and nj   are the nodal normal rotations along the element edge ij that are 

transformed from the nodal DOFs. 

Finally, the following two compatibility conditions for deflections at the element’s mid-side 

points are considered: 

 
1 1 3 3 1 3

( , ) ( , )  M M M M M Mw x y w x y w w+ = + , (51) 

 
2 2 4 4 2 4

( , ) ( , )M M M M M Mw x y w x y w w+ = + , (52) 

in which ( ) ( ), 1~ 4  ,Mi Miw x y i =  are also calculated by substituting the Cartesian coordinates 

into Equation (30) whilst ( )1~  , 4Miw i =  are determined using the following equation which 

is deduced from the locking-free Timoshenko’s beam function by suppressing the transverse 

shear deformations [46]: 

 ( )
1 1

, 12, 23, 34, 41
2 2 8 8

ij ij

Mi i j si sj

l l
w w w ij = + + − = , (53) 

where iw  and jw  are the nodal deflection DOFs; si  and sj  are the nodal tangential rotations 

along the element edge ij which are derived from the nodal rotation DOFs; ijl  is the edge length. 

  According to the above mentioned fourteen generalized conforming conditions, the matrix λ   

in Equation (38) can be expressed as  

 

mid

w

w



 
 

=  
 
 

λ

λ λ

λ

, (54) 

in which 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 0

1 1 1 2 1 1 14 1 1

0 0 0

1 2 2 2 2 2 14 2 2

0 0 0

1 3 3 2 3 3 14 3 3

0 0 0

1 4 4 2 4 4 14 4 4

, , ... ,

, , ... ,

, , ... ,

, , ... ,

w

w x y w x y w x y

w x y w x y w x y

w x y w x y w x y

w x y w x y w x y

 
 
 =
 
 
  

λ , (55) 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 3 3 1 1 3 3

2 2 4 4 2 2 4 4

0 0 0 0

1 1 14 14

mid
0 0 0 0

1 1 14 14

, , ... , ,

, , ... , ,

M M M M M M M M
w

M M M M M M M M

w x y w x y w x y w x y

w x y w x y w x y w x y

 + +
 =
 + +
 

λ , (56) 

 
n

 =λ TΦ , (57) 

with 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 0

1 1 1 2 1 1 14 1 1

0 0 0

1 1 1 2 1 1 14 1 1

0 0 0

1 4 4 2 4 4 14 4 4

0 0 0

1 4 4 2 4 4 14 4 4

, , ... ,

, , ... ,

... ... ...

, , ... ,

, , ... ,

x A A x A A x A A

y A A y A A y A A

x B B x B B x B B

y B B y B B y B B

x y x y x y

x y x y x y

x y x y x y

x y x y x y

  

  

  

  

 
 
 
 =
 
 
 
 

Φ , (58) 

 ( )

1

2

3

4

, , 12, 23, 34, 41   

ij ij

ij ij

n i

ij ij

ij ij

y x

l l
ij

y x

l l

  
−  

  = = =
  
 − 
    

T

T
T T

T

T

, (59) 

where ij i jx x x= −  and ij i jy y y= − .  

Besides, the matrix H  in Equation (38) is given by 

 

mid

 

w

w



 
 

=  
 
 

Η

Η Η

Η

, (60) 

in which 

 

( )

( )

( )

( )

*

1 1

*

2 2

*

3 3

*

4 4

,

,

,

,

  w

w x y

w x y

w x y

w x y

 
 
 =
 
 
  

Η , (61) 

 
( ) ( )

( ) ( )
1 1 3 3

2 2 4 4

* *

mid
* *

, ,

, ,
 

M M M M
w

M M M M

w x y w x y

w x y w x y

 +
 =
 +
 

Η , (62) 

 
*  n

 =Η TΦ , (63) 

with 

 

( )

( )

( )

( )

*

1 1

*

1 1

*

*

4 4

*

4 4

,

,

...

,

,

 

x A A

y A A

x B B

y B B

x y

x y

x y

x y









 
 
 
 =
 
 
 
 

Φ . (64) 



15 

 

  The matrix Λ  in Equation (38) can also be divided into three parts: 

 

mid

 

w

w



 
 

=  
 
 

Λ

Λ Λ

Λ

, (65) 

in which 

 

1 0 0

1 0 0

1 0 0

1 0

 

0

w

 
 
 =
 
 
 

Λ , (66) 

 

34 34 34 3412 12 12 12

mid

23 23 23 2341 41 41 41

1 1 1 1

2 8 8 2 8 8 2 8 8 2 8 8

1 1 1 1

2 8 8 2 8 8 2 8 8 2 8 8

 w

x y x yx y x y

x y x yx y x y

 
− − − − 

=  
 

− − − −
  

Λ , (67) 

and 
Λ  has the following expression 

 

11 12

22 23

33 34

41 44

  

 

 


 

 

 
 
 =
 
 
  

Λ Λ

Λ Λ
Λ

Λ Λ

Λ Λ

, (68) 

with 

 

1 1 3 1 1 3 1 1 3 1 1 3
0 0

2 2 2 2
,

1 1 3 1 1 3 1 1 3 1 1 3
0 0

2 2 2 2

    

ij ij ij ij

ij ij ij ij

ii ij

ij ij ij ij

ij ij ij ij

y x y x
l l l l

y x y x
l l l l

 

   + + + +
− −   

   
= =   

− − − −   − −
   
   

Λ Λ , (69) 

where 12, 23, 34, 41ij = .  

   Now that the detailed expressions of the related matrices and vectors in Equations (46) and (47) 

have been determined, the final element formulation of the new generalized conforming Trefftz-

type 4-node plate element based on the couple stress theory, which is named as GCTP4-CS, is 

obtained. In this paper, the proposed element is implemented in an in-house computer code and a 

standard 4×4 Gauss quadrature scheme is employed for calculating the integrals. 

 

 

4. Numerical Examples 

The newly developed plate element is applied to several numerical benchmarks for validating its 
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capabilities. Due to the absence of the analytical solutions of size-dependent plate bending problems, 

the tests are first analyzed based on the classical elasticity in which the analytical reference solutions 

are available in [47-49] for assessing the element’s convergence properties. Then, the tests are 

evaluated again in the context of the modified couple stress elasticity for checking the element’s 

effectiveness in simulating the size-dependent bending behaviors of microplate structures, in that 

the numerical results obtained by using the refined meshes are employed as the reference values. 

 

4.1. The patch test 

Figure 3 illustrates the typical meshes used for the patch test which contain severely distorted 

elements whose shapes degenerate into triangular or concave quadrilateral. The plate thickness is 

h=0.02mm and the material properties are defined as E =1.092Gpa,  =0.3 and l=20m.  

To validate the convergence property of the new element, the following deformation mode is 

considered: 

 2 21 ,  1 2 , 1 2x yw x y x y xy x y y x = + + + + + = + + = + + , (70) 

in which both the bending moments and couple bending moments are constant. The deflections and 

rotations at the outer nodes 1~4 calculated by Equation (70) are imposed to the rectangular plate as 

the prescribed boundary conditions, while the values at the inner nodes 5~8 are monitored. The 

numerical results given in Table 2 show that, no matter the elements’ shapes are convex quadrilateral, 

concave quadrilateral or degenerated trilateral, the exact results can always be delivered, 

demonstrating that the convergence can be guaranteed. 

 

4.2. The square microplate  

  As shown in Figure 4, this test involves the size-dependent bending behavior of a thin square 

microplate in which the four edges are all clamped or simply supported. First, the plate subjected to 

a uniformly distributed load q is analyzed, and only one quarter of the plate is modeled because of 

symmetry. The deflections and bending moments for five different ratios of the material length scale 

parameter to the plate thickness (l/h=0, 0.1, 0.2, 0.3, 0.4) calculated at the central point are 

summarized in Figures 5 and 6, while their distributions along the x-axis calculated using the mesh 

1616 are illustrated in Figures 7 and 8. Additionally, the square plate under a central concentrated 
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load Q is also considered, and the numerical results of the deflections are given in Figures 9 and 10. 

It is noted that the analytical reference solutions for the case l/h=0 which corresponds to the classical 

elasticity are provided in [47], whilst for the other cases, the overkill numerical solutions are 

employed as the reference values.  

One can clearly see that the proposed new element exhibits good convergence and effectively 

captures the size effect. Besides, it can be observed that the results of the displacements have better 

convergence rates than that of the stresses. Moreover, the material length scale parameter does not 

have obvious effects on the convergence rates of the displacements, but has some influences on the 

stress results. As the material length scale parameter decreases, the numerical results of the stresses 

converge more rapidly. 

 

4.3. The test for sensitivity to mesh distortions  

  To assess the new element’s sensitivity to the gross mesh distortion, the clamped square plate 

subjected to a uniformly distributed load q in previous test is analyzed once again by using two 

different coarse meshes which consist of only 22 distorted elements. As shown in Figure 11, in 

these two meshes, the central mesh node is moved respectively along the diagonal to the corner and 

vertically to the edge. Figure 12 depicts the variation of the central deflections versus the distortion 

parameter   in which the results are normalized by 0w= . The maximum deviation is less than 

5%, revealing that the new element has quite good tolerance to the mesh distortion. Moreover, the 

numerical results also show that the material length scale parameter does not have significant 

influences on the new element’s sensitivity to the mesh distortion. 

 

4.4. The circular microplate 

Figure 13 shows a clamped circular thin microplate subjected to a uniformly distributed load q or 

a central concentrated load Q [47]. Due to symmetry, only one quarter of the plate is modeled. The 

model is divided into three parts, and then each part is successively meshed by using 1×1, 2×2, 4×4, 

8×8 elements. The non-dimensional central deflections and bending moments of the plates for 

different material length scale parameters are listed in Tables 3 and 4. Additionally, the distributions 

of the deflections along the x-axis are given in Figure 14. This test reveals once again that the new 
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element has good numerical accuracy and can simulate the size-dependent mechanical behaviors 

well. 

 

4.5. The equilateral triangular plate 

Figure 15 depicts the simply supported equilateral triangular thin plate subjected to a uniformly 

distributed load q or a central concentrated load Q in which the point C is the plate’s centroid. The 

computations are operated by successively refining the basic mesh shown in Figure 15. The 

numerical results of the deflections calculated at the centroid C are summarized in Figure 16, in 

which the reference values for the case l/h=0 are obtained from [47] whilst that for the other cases 

are determined by the overkill numerical results. In addition, the distributions of deflections along 

the y-axis calculated by using 192 elements are presented in Figure 17. It can be observed that the 

new element can also converge rapidly and capture the size effects well in irregular shapes. 

 

4.6. The skew plate 

As shown in Figure 18, this test is concerned with the bending behaviors of rhombic plates 

subjected to a uniformly distributed load q for further checking the new element’s performance in 

skew shapes. First, the 60° thin plate in which the top and bottom edges are simply supported 

whereas the other two edges are free, which is originally proposed in [48], is investigated. Second, 

the 30° thin plate with all edges simply supported, which is a more critical case because of the 

singularity of bending moment at the obtuse corner [49], is analyzed. The transverse deflections and 

bending moments calculated at the node C of the two rhombic plates are respectively summarized 

in Tables 5 and 6. Besides, the distributions of the deflections along the path EF of these two cases 

are given in Figure 19. One can observe that the new element produces excellent results for both 

deflection and stress. 

 

 

5. Conclusions  

This work proposes a novel quadrilateral 4-node 12-DOF generalized conforming plate element for 

size-dependent bending analysis of microplate structures in the context of the modified couple stress 

theory. The new element is constructed via two main steps. Firstly, the Trefftz functions that are 
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derived by introducing the thin plate bending assumptions into the three-dimensional governing 

equations of the modified couple stress elasticity are adopted as the basis functions for formulating 

the element’s deflection and rotation fields. Afterwards, the generalized conforming theory is 

employed to meet the interelement compatibility requirements in weak sense for ensuring the 

convergence. The proposed new displacement-based plate element has the following characteristics: 

(i) The new plate element is a kind of limiting conforming element that performs like non-

conforming models on coarse meshes but tends to be conforming with the mesh refinement. 

As a result, the difficulties in interpolation caused by the higher-order continuity requirements 

are effectively circumvented. Since the new quadrilateral 4-node element still uses only three 

DOFs per node, it can be readily incorporated into the commonly available finite element 

program frameworks for practical engineering applications. 

(ii) Different with the hybrid-Trefftz elements which also adopt the Trefftz functions as the basis 

functions for interpolations, the new element is a displacement-only model that is directly 

derived from the potential energy principle. Thus, the new element can be extended to the 

dynamic cases and the geometric nonlinear cases more easily. 

(iii) The numerical tests prove that the new element can efficiently predict the size-dependent 

bending responses of the thin microplate structures, exhibiting satisfactory numerical accuracy 

and high tolerance to the gross mesh distortion. Besides, it can also reproduce the results of the 

classical Kirchhoff plate model when the plate thickness is far greater than the material length 

scale parameter. In particular, the numerical results reveal that the element can always strictly 

pass the patch test no matter the element’s shape is convex quadrilateral, concave quadrilateral 

or degenerated trilateral, demonstrating that the convergence property of the new generalized 

conforming element can always be guaranteed. 
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Appendix 

In this section, the derivations of the Trefftz solutions of Equation (22) are briefly discussed.  

It can be easily proven that, the monomials of degree zero (1), one (x, y), two (x2, xy, y2) and three 

(x3, x2y, xy2, y3), i.e. the first ten functions listed in Table 1, can automatically satisfy Equation (22) 

which is a fourth-order differential equation. Thus, each of them can be employed as the Trefftz 

solution of Equation (22).  

To derive the linearly independent Trefftz functions of degree four, the following function which 

is the linear combination of the monomials (x4, x3y, x2y2, xy3, y4) is considered: 

 4 3 2 2 3 4

1 2 3 4 5 w a x a x y a x y a xy a y= + + + + , (A1) 

in that 1 2 3 4 5, , , ,a a a a a   are the coefficients. By substituting it into Equation (22), the coming 

relation is delivered: 

 
1 3 5 24 8 24 0a a a+ + = . (A2) 

Then, we can obtain  

 
3 1 5  3 3a a a= − − . (A3) 

Next, substitution of Equation (A3) back into Equation (A1) yields  

 ( ) ( )4 2 2 3 3 4 2 2

1 2 4 5   3 3w a x x y a x y a xy a y x y= − + + + − . (A4) 

Considering the fact that 1 2 4 5, , ,a a a a  are the arbitrary undetermined coefficients, Equation (22) 

has four linearly independent Trefftz functions of degree four, i.e. 4 2 23x x y−  , 3x y  , 3xy   and 

4 2 23y x y− .  

Finally, to make the physical implications of the corresponding rotations and strains’ expressions 

more intuitive, the polynomials 4 2 23x x y−   and 4 2 23y x y−   are further replaced by their linear 

combinations in this work, without the loss of completeness and linear independence: 

 ( ) ( )4 2 2 4 2 2 4 4  3 3x x y y x y x y− − − = − , (A5) 

and 

 ( ) ( )4 2 2 4 2 2 2 2 4 43 6  3x x y y x y x y x y− − − = − −− . (A6) 
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Table 1. Trefftz functions for homogeneous solution of the thin plate based on the modified couple 

stress elasticity   

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0

iw   1 x y x2
 xy y2

 x3
 x2y xy2

 y3
 x3y xy3

 x4–y4
 6x2y2–x4–y4

 

0

xi   0 1 0 2x y 0 3x2 2xy y2 0 3x2y y3
 4x3

 12xy2–4x3 

0

yi   0 0 1 0 x 2y 0 x2 2xy 3y2 x3 3xy2
 –4y3

 12x2y–4y3
 

0

xxi  0 0 0 –2z 0 0 –6zx –2zy 0 0 –6zxy 0 –12zx2 12zx2–12zy2 

0

yyi  0 0 0 0 0 –2z 0 0 –2zx –6zy 0 –6zxy 12zy2 12zy2–12zx2 

02 xyi  0 0 0 0 –2z 0 0 –4zx –4zy 0 –6zx2 –6zy2 0 –48zxy 

0

xxi  0 0 0 0 1 0 0 2x 2y 0 3x2 3y2 0 24xy 

0

yyi  0 0 0 0 –1 0 0 –2x –2y 0 –3x2 –3y2 0 –24xy 

02 xyi  0 0 0 –2 0 2 –6x –2y 2x 6y –6xy 6xy –12y2–12x2 24x2–24y2 
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Table 2. The results of the patch test   

Node 
   Mesh A   Mesh B 

   Exact  Numerical results   Exact  Numerical results 

 w  (mm)   125 125.0   125 125.0 

5 x    21 21.0   21 21.0 

 y    17 17.0   17 17.0 

 w (mm)   691 691.0   673 673.0 

6 x    50 50.0   48 48.0 

 y    39 39.0   41 41.0 

 w (mm)   1715 1715.0   1715 1715.0 

7 x    79 79.0   79 79.0 

 y    61 61.0   61 61.0 

 w (mm)   707 707.0   707 707.0 

8 x    47 47.0   47 47.0 

 y    45 45.0   45 45.0 
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Table 3. The results of the clamped circular plate subjected to a uniformly distributed load   

Mesh 311 322 344 388 Reference 

The central deflections ( )4 100w qL D  

l/h=0 0.08032 0.09287 0.09642 0.09734  0.0977 [47] 

l/h=0.1 0.07710 0.08913 0.09253 0.09342  

l/h=0.2 0.06885 0.07952 0.08255 0.08334  

l/h=0.3 0.05843 0.06741 0.06997 0.07064  

l/h=0.4 0.04821 0.05556 0.05767 0.05822  

The central bending moments ( )2 10rM qL  

l/h=0 0.18016 0.19782 0.20184 0.20280 0.2031 [47] 

l/h=0.1 0.17230 0.18969 0.19366 0.19461  

l/h=0.2 0.15223 0.16885 0.17267 0.17359  

l/h=0.3 0.12719 0.14265 0.14623 0.14711  

l/h=0.4 0.10307 0.11712 0.12040 0.12121  
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Table 4. The results of the clamped circular plate subjected to a central concentrated load   

Mesh 311 322 344 388 Reference 

The central deflections ( )2 100w QL D  

l/h=0 0.42829 0.47876 0.49263 0.49617 0.4974 [47] 

l/h=0.1 0.41124 0.45949 0.47278 0.47617  

l/h=0.2 0.36735 0.41000 0.42179 0.42480  

l/h=0.3 0.31189 0.34759 0.35752 0.36007  

l/h=0.4 0.25748 0.28654 0.29467 0.29676  
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Table 5. The results of the 60° Razzaque’s skew plate subjected to a uniformly distributed load   

Mesh 22 44 88 1616 Reference 

The central deflections ( )4 100w qL D  

l/h=0 0.76245 0.78859 0.79078 0.79107  0.7945 [48] 

l/h=0.1 0.72553 0.74708 0.74893 0.74919  

l/h=0.2 0.64105 0.65358 0.65474 0.65495  

l/h=0.3 0.54721 0.55202 0.55256 0.55269  

l/h=0.4 0.46148 0.46119 0.46122 0.46127  

The central bending moments ( )2 10yM qL  

l/h=0 0.93976 0.97325 0.96075 0.96015 0.9589 [48] 

l/h=0.1 0.90267 0.92799 0.91616 0.91554  

l/h=0.2 0.81290 0.82274 0.81255 0.81195  

l/h=0.3 0.70526 0.70316 0.69483 0.69431  

l/h=0.4 0.60061 0.59198 0.58526 0.58484  
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Table 6. The results of the 30° Morley’s skew plate subjected to a uniformly distributed load   

Mesh 44 88 1616 3232 Reference 

The central deflections ( )4 100w qL D  

l/h=0 0.04583 0.04262 0.04193 0.04160 0.0408 [49] 

l/h=0.1 0.04428 0.04108 0.04037 0.04001  

l/h=0.2 0.04021 0.03705 0.03631 0.03592  

l/h=0.3 0.03490 0.031885 0.03112 0.03071  

l/h=0.4 0.02950 0.02670 0.02596 0.02554  

The central maximum principle bending moments ( )2

max 10M qL  

l/h=0 0.21711 0.19001 0.19417 0.19305 0.191 [49] 

l/h=0.1 0.20963 0.18272 0.18668 0.18553  

l/h=0.2 0.19008 0.16390 0.16736 0.16616  

l/h=0.3 0.16467 0.13998 0.14282 0.14158  

l/h=0.4 0.13887 0.11631 0.11856 0.11736  
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Figure 1. The schematic representation of the thin microplate 
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Figure 2. The 4-node generalizing conforming microplate element  
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(a)  Mesh A 

5: (8, 4) 

6: (20, 9) 

7: (32, 14) 

8: (16, 14) 

1 (0, 0) 2 (40, 0) 

4 (0, 20) 3 (40, 20) 

5 6 

7 8 

(b)  Mesh B 
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Figure 3. Two distorted meshes for the patch test (unit: mm) 
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Figure 4. The model and basic mesh 22 of the square thin microplate 
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h E=1.092GPa, =0.3 
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Figure 5. The convergences of the deflections and bending moments at the central 

point of the square plate subjected to a uniformly distributed load (Clamped case) 
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Figure 6. The convergences of the deflections and bending moments at the central point 

of the square plate subjected to a uniformly distributed load (Simply supported case) 
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Figure 7. The distributions of the deflections and bending moments along the x-axis 

of the square plate subjected to a uniformly distributed load (Clamped case) 
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Figure 8. The distributions of the deflections and bending moments along the x-axis of the 

square plate subjected to a uniformly distributed load (Simply supported case) 
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Figure 9. The convergences of the deflections at the central point of the square 

plate subjected to a central concentrated load 

(a) Clamped case (b) Simple supported case 
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Figure 10. The distributions of the deflections along the x-axis of the square plate 

subjected to a central concentrated load 

(a) Clamped case (b) Simple supported case 
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Figure 11. Two typical distorted meshes 22 for the sensitivity test to distortion  

(a) Distorted Mesh A (b) Distorted Mesh B 
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Figure 12. The variations of the normalized deflections versus the distortion parameter  

(b) Distorted Mesh B (a) Distorted Mesh A 
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Figure 13. The typical meshes for the circular thin plate 
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Figure 14. The distributions of deflections along the x-axis of the clamped circular plate 

(a) Distributed load case (b) Concentrated load case 
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Figure 15. The typical mesh 3×2×2 for the equilateral triangular plate 
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Figure 16. The convergences of the deflections at the centroid of the equilateral triangular plate 

(a) Distributed load case (b) Concentrated load case 
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Figure 17. The distributions of deflections along the y-axis of the equilateral triangular plate  

(a) Distributed load case (b) Concentrated load case 
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Figure 18. The skew thin plate subjected to a uniformly distributed load 
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Figure 19. The distributions of deflections along the path EF of the skew plates 

(a) 60° Razzaque’s skew plate (b) 30° Morley’s skew plate 
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