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1  | INTRODUC TION

Understanding species’ niche characteristics is essential to predict 
the consequences of biological invasions (Korsu et al., 2007), but re-
quires being able to accurately identify particular species and their 
distributions (Darling & Blum, 2007). Species identification can be 
difficult if they are threatened, at low densities (Jerde et al., 2011) 
and/or morphologically cryptic (Bickford et al., 2006). This is import-
ant because the establishment and dispersal of non-native species 
often impact native fauna through increased predation, competi-
tion for resources, and disease transmission (Ellender & Weyl, 2014; 

Gozlan et al., 2010). Competition for resources and/or predation 
can result in the displacement of native species and introgression/
hybridization with introduced species, potentially leading to their 
decline, extirpation or extinction (Huxel, 1999). These negative 
impacts can be particularly severe for endemic species, especially 
those found in low abundance and having limited geographic range 
(Burlakova et al., 2011; Hobbs et al., 2011), and particularly in fresh-
water ecosystems where invasive species are one of the main drivers 
of biodiversity loss (Dudgeon et al., 2006; Reid et al., 2019).

The introduction and spread of non-native fishes in freshwa-
ter ecosystems have often been attributed to aquaculture and 
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recreational fishing, particularly in the case of salmonid fishes 
(Garcia de Leaniz et al., 2010), one of the most widespread groups 
of introduced fishes (Rahel, 2007). Although, few species are known 
to have become extinct due to the effects of introduced salmo-
nids, declines in abundance and distribution of native and endemic 
fishes are evident in many countries (Habit et al., 2010; Kadye 
et al., 2013; McIntosh et al., 2010; Woodford & Impson, 2004; Young 
et al., 2010). In New Zealand for example, the extinction of the native 
grayling Prototroctes oxyrhynchus has been attributed in part to the 
introduction of brown trout Salmo trutta (McDowall, 2006). Galaxiid 
fishes, endemic of the Southern Hemisphere, constitute one of the 
freshwater fish families most seriously threatened by salmonid ex-
pansions (Garcia de Leaniz et al., 2010; Habit et al., 2010). Invasive 
salmonids exert strong selection pressure upon native galaxiids 
across their ranges, including New Zealand (McIntosh et al., 2010), 
Chile (Habit et al., 2010), and Australia (Hardie et al., 2006), mainly 
through predation and competition (Arismendi et al., 2009; Macchi 
et al., 2007; Penaluna et al., 2009; Soto et al., 2006).

In Chile and the Falkland Islands, the distribution of galaxiids 
(Aplochiton spp.) is determined by historical colonization but also 
shows strong population structuring, isolation, and reduced genetic 
diversity in areas affected by salmonids (Vanhaecke et al., 2015). In 
particular, brown trout have caused widespread ecological damage 
to areas they have been introduced, and as a result, they have been 
classified as one of the “100 of the world's worst invasive species” 
(Lowe et al., 2000). In the Falkland Islands, since its introduction in 
1947–1962, brown trout has spread around East and West Falkland 
(Arrowsmith & Pentelow, 1965; Stewart, 1973), resulting in the 
once-common native galaxiid, zebra trout (Aplochiton zebra) to be 
classed as threatened, and limited to refuges uninvaded by brown 
trout south of the islands (McDowall et al., 2001; Ross, 2009). 
Conservation of Aplochiton spp. is complicated because the two 
known species (A. zebra and A. taeniatus) are ecologically and mor-
phologically similar and include resident and migratory ecotypes that 
may confound identification (McDowall, 2006). In fact, until recently 
both species had been misidentified as A. zebra in the Falklands 
(Vanhaecke et al., 2012). The small sizes of A. zebra and A. taenia-
tus juveniles make them particularly susceptible to salmonid preda-
tion and displacement (Arismendi et al., 2009; Macchi et al., 2007), 
which also potentially increases inbreeding and hybridization as a 
result of population reductions and limited suitable habitat unin-
vaded by brown trout (Vanhaecke et al., 2012; Wolf et al., 2001). In 
contrast, the abundance of salmonids seems to be related to prop-
agule pressure (Consuegra et al., 2011) and habitat connectivity 
(Habit et al., 2012). Previous studies conducted 10 and 20 years ago 
to assess the distribution of brown trout and native galaxiids in the 
Falklands (Fowler, 2013; McDowall et al., 2001; Ross, 2009) showed 
marked reduction in the abundance and distribution of zebra trout 
since the introduction of brown trout. However, traditional moni-
toring exercises based on electrofishing are limited by their cost and 
by the protected and rare nature of Aplochiton spp. Electrofishing 
of rare species often requires increased effort, possibly reducing 
the number of reaches that can be sampled (Reynolds et al., 2003) 

and increasing the cost of sampling each reach (Evans et al., 2017). 
In addition, electrofishing can reduce survival in embryos (Bohl 
et al., 2009) as well as cause stress, injury and mortality (Miranda & 
Kidwell, 2010; Panek & Densmore, 2011), which could impact rare 
and threatened populations.

Environmental DNA (eDNA) released from organisms through 
blood, urine, skin, mucus, and feces increasingly is used to detect 
aquatic species that are difficult to locate, identify, and/or are in 
low abundance, and is particularly useful for conservation programs 
(Biggs et al., 2015; Robinson, Garcia de Leaniz & Consuegra, 2019). 
While eDNA metabarcoding is used to target multiple species and 
often to assess the biodiversity of a system (Deiner et al., 2015; 
Lacoursière-Roussel et al., 2018), quantitative PCR (qPCR) targets 
single species and constitutes a reliable method for detecting en-
dangered and invasive species when combined with in vitro con-
trols and amplicon sequencing (Carlsson et al., 2017; Díaz-Ferguson 
et al., 2014). qPCR in combination with high-resolution melt (HRM) 
curve analysis allows single-base variations in DNA sequences to be 
detected based on the DNA product melt temperature in water sam-
ples (Ramón-Laca et al., 2014; Robinson et al., 2018; Wittwer, 2009) 
and has been used with environmental DNA as a sensitive method 
to detect individual or multiple species, including fishes (Behrens-
Chapuis et al., 2018; Robinson, Garcia de Leaniz, Rolla et al., 2019), 
invertebrates (Robinson, Garcia de Leaniz & Consuegra, 2019; 
Robinson et al., 2018), and sea turtles (Harper et al., 2020) and plants 
(Emenyeonu et al., 2018). Here, we developed eDNA-HRM curve 
analysis assays to map the current distribution of brown trout and 
both Aplochiton species in the Falkland Islands in a non-destructive 
way, to identify refuges for zebra trout, which then can be prioritized 
for conservation.

2  | MATERIAL AND METHODS

2.1 | qPCR primer design and optimization

Aplochiton zebra and A. taeniatus qPCR primers (AzebAtaeCytbF: 
5’-ATGAAATTTTGGCTCTCT-3’ and AzebAtaeCytbR: 
5’-GAAATATCGGAGGTGTAG-3’) were designed to amplify an 
89 bp fragment of the cytochrome b region of the mitochondrial 
(mt) genome (product melt temperature 77.8°C and 79.2°C for A. 
zebra and A. taeniatus, respectively). Species-specific qPCR primers 
(StruttaCytbF: 5’-TATCCTCCATACCTCTAA-3’ and StruttaCytbR: 
5’-GACCGATGATAATGAATG-3’) were designed for Salmo trutta 
to amplify a 139 bp fragment of the mitochondrial cytochrome b 
region. Both sets of primers were designed using OligoArchitect 
Primer and Probe Design online software and checked in silico for 
cross-amplification using NCBI Primer-BLAST (Ye et al., 2012). Both 
AzebAtaeCytb- and StruttaCytb-qPCR primers were tested in vitro 
for non-specific amplification against all freshwater fishes present in 
the Falklands (A. zebra, A. taeniatus, Galaxias maculatus, and S. trutta, 
except Geotria australis that may occur intermittently) (McDowall 
et al., 2001; Vanhaecke et al., 2012).
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Primers were assessed using positive tissue controls (fin clips 
and muscle tissue) from 12 different A. zebra and A. taeniatus in-
dividuals. DNA was extracted using Qiagen DNeasy Blood and 
Tissue Kit (Qiagen, UK). A 10-fold dilution series using pools of 
DNA from each species (consisting of DNA from six A. zebra and six 
A. taeniatus) ranging from 19.7 ng/µl to 1.97 × 10−4 ng/µl and 14.8 
ng/µl to 1.48 × 10−4 ng/µl, respectively was conducted in order to 
determine the limit of detection (LOD) and the limit of quantifica-
tion (LOQ) as in Robinson et al., (2018). Amplification efficiency, 
also estimated from the dilution curve, was 79.5% for A. zebra 
and 84.6% for A. taeniatus (Bio-Rad, 2013). The annealing tem-
perature for AzebAtaeCytb primers was optimized at 61.5°C. The 
AzebAtaeCytb-qPCR protocol began with a two min denaturation 
step at 95°C, followed by 45 cycles of 95°C for 10 s and 61.5°C 
for 30 s. A HRM step was applied at the end of the real-time PCR 
reaction, ranging from 65°C to 95°C in 0.1°C increments to test the 
consistency of amplicon melt temperatures (tm) for each species. 
To account for any potential intraspecific variation in qPCR product 
tm, six individuals from five A. zebra populations and six from three 
A. taeniatus populations were used for HRM analysis. To assess 

the ability to detect A. zebra and A. taeniatus in the same reaction, 
equal volumes of both species’ DNA were pooled from six different 
individuals of both species at various concentration ratios ranging 
from 10:90 to 50:50 (e.g., 30:70 dilutions represented in Figure S1).

StruttaCytb-qPCR primers were assessed in vitro using positive 
tissue controls (fin clips) from nine individual brown trout from a range 
of populations. DNA was extracted using the Qiagen Blood and Tissue 
Kit (Qiagen, UK), and amplified in real-time PCR-HRM analysis using 
the following StruttaCytb protocol: 95°C for 3 min, followed by 40 
cycles of 95°C for 10 s and 60°C for 30 s, a HRM step was applied 
to the end of the real-time PCR reaction, ranging from 65°C to 95°C 
in 0.1°C increments. The annealing temperature for the StruttaCytb 
primers was optimized at 60°C resulting in an efficiency of 89.4%. A 
10-fold dilution series was also carried out ranging from 35.4 ng/µl to 
3.54 × 10−4ng/µl to determine the LOD and LOQ.

AzebAtaeCytb and StruttaCytb primers also were tested using 
positive eDNA controls (sites where species had been seen during 
the sampling period) to ensure that the primers would amplify envi-
ronmental DNA (Figure 2). eDNA samples (nine samples from three 
different sites × three technical PCR replicates) were spiked with 

F I G U R E  1   eDNA sampling locations in the Falkland Islands. Current eDNA sampling locations (black circles), previously sampled 
sites where only zebra trout were present (white circles) and previously sampled sites with zebra trout and brown trout present (white 
triangle), previous sampled data obtained from McDowall et al. (2001), Ross (2009) and Fowler (2013)
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positive control DNA (1 µl of A. zebra DNA from six individuals, 9.85 
ng/µl) to test for possible inhibition in separate reactions.

2.2 | Study populations and eDNA sample collection

We sampled 19 rivers and ponds across the Falkland Islands 
(Figure 1), eight on East Falkland (five in the North and three in the 
South), and 11 on West Falkland (five in the North and six in the 
South). Locations were chosen based on information from monitor-
ing studies conducted 10 and 20 years ago (Fowler, 2013; McDowall 
et al., 2001; Ross, 2009). Zebra trout had previously been detected 
at seven of the 19 locations, co-occurring with brown trout at only 
two locations. Six locations solely supported brown trout popula-
tions. The remaining seven rivers had not been surveyed previously 
(N = 5) or were rivers that had been surveyed but where zebra trout 
or brown trout had not been recorded.

We sampled two sites per river/pond except for R19 Neil Clark 
Nature Reserve where we sampled three sites; at each site, two 
water samples were collected from the surface of the water in 
areas of low flow near the bank of the river, taking precautions to 
avoid contamination following Robinson, Garcia de Leaniz, Rolla 
et al. (2019). Three water replicates of 100–200 ml (the final volume 
depending on the level of particulate organic matter present in the 
waterbody) were filtered at each site (Table 1). Water was pushed 
through a syringe filter containing a polyethersulfone (PES) filter 
membrane with a 0.45 µm pore size using a sterile 50 ml disposable 
syringe. Filters were then dried by pushing through air before being 
preserved in 95% ethanol and stored at −20°C until further analyses. 
To prevent contamination, water sampling bags, syringes, and gloves 
were disposed of between sites. Negative controls consisting of au-
toclaved or ultrapure water were filtered instead of river/pond water Sa
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F I G U R E  2   qPCR product melt curve profile for positive tissue 
controls for Aplochiton zebra and Aplochiton taeniatus and eDNA 
sample amplifications. Red and blue peaks correspond to positive 
A. zebra and A. taeniatus tissue samples respectively, the black peak 
is from an eDNA sample amplifying both A. zebra and A. taeniatus 
simultaneously, and orange and pink peaks correspond to eDNA 
samples amplifying A. zebra and A. taeniatus, respectively
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before sampling at each site. River width, temperature, shade cover, 
pH, total dissolved solids, and electrical conductivity were mea-
sured at each sampling site where possible (Table 1). Due to time and 
weather constraints, sampling was conducted over two field seasons 
April-May (Autumn) and September-October (Spring) in 2018, three 
additional waterbodies were sampled by local citizens, two in May 
(Autumn) 2019, and a final site sampled in December 2019 (Table 1).

2.3 | eDNA extraction and amplification

eDNA was extracted from 273 field samples (19 waterbodies, 39 
sites × two water samples × three replicates and one blank per site, 
Table 1) using the Qiagen DNeasy PowerSoil Kit (Qiagen, UK), fol-
lowing the manufacturer's instructions. DNA extractions took place 
in a dedicated eDNA area within an extraction cabinet equipped with 
a flow-through air system and UV light to minimize the risk of con-
tamination. Extracted DNA was quantified with a Qubit 3.0 fluorom-
eter. Six technical PCR replicates of each sample were amplified in 
a Bio-Rad CFX96 Touch Real-Time PCR Detection System (Bio-Rad, 
UK), in 10µl reaction consisting of 5µl of iTaq Universal SYBR Green 
Supermix (Bio-Rad, UK), 0.25µl (10µM) of each AzebAtaeCytbF and 
AzebAtaeCytbR, 2.5µl of ultrapure water, and 2µl of extracted DNA. 
Amplifications were carried out using the standard AzebAtaeCytb-
qPCR protocol as described above, only samples which consistently 
amplified in at least two technical PCR replicates per site at the tar-
get DNA product tm (either 77.8°C ± 0.2 or 79.2°C ± 0.2) were con-
sidered to be a positive result (Table S2). Reactions of 10µl also were 
carried out using the StruttaCytb primers consisting of 5 µl of iTaq 
Universal SYBR Green Supermix (Bio-Rad, UK), 0.25 µl (10 µM) of 
each forward and reverse primer, 1.5µl of ultrapure water, and 3µl of 
DNA. Amplification was carried out using the standard StruttaCytb-
qPCR protocol (described above) and only samples that amplified 
consistently in at least two technical PCR replicates per site at the 
target DNA product tm (78.7°C ± 0.1) were considered a positive 
result (Table S2). qPCR reactions were carried out in a dedicated 
eDNA area; reaction mix was loaded in a DNA-free PCR hood with 
a flow-through air system and UV light before being transferred to a 
separate PCR hood to load DNA. Once all eDNA samples had been 
loaded and sealed two positive controls (one for each species) and 
a negative control consisting of brown trout or Galaxias maculatus 
DNA also was loaded to control for false positives. Negative filter 
and extraction controls were run throughout the process. Three ad-
ditional negative amplification controls consisting of ultrapure water 
were also added to test for contamination during the entire process 
(both with eDNA and positive control samples). To confirm primer 
specificity, a subset of eDNA samples (N = 4 brown trout and N = 9 
Aplochiton spp.) was amplified with the qPCR primers using end-
point PCR and cloned into a pCR 4-TOPO plasmid cloning vector 
(TOPO TA Cloning Kit for Sequencing, Invitrogen). In total, 10–25 
clones were sequenced per sample using T3 and T7 primers. All 
samples were cleaned using a sodium acetate/EtOH solution, resus-
pended in 10 µl HiDi Formamide (Applied Biosystems) and analyzed 

using Sanger Sequencing on an ABI 3,730 DNA Analyser (Applied 
Biosystems). Resulting sequences were aligned in BioEdit (v 7.2.5) 
(Hall, 1999), and input to BLAST (Ye et al., 2006) to confirm species 
identity.

To determine whether sampling conditions (volume filtered, sea-
son, temperature, shade, and total dissolved solids, Table 1) affected 
amplifications, a generalized linear model using binomial error family 
was performed in R3.5.3. Using the drop1 function, individual pre-
dictors were dropped from the model until the optimal model based 
on AIC was obtained.

3  | RESULTS

AzebAtaeCytb and StruttaCytb assays were tested in silico for cross-
amplification using NCBI Primer-BLAST (Ye et al., 2012) (Table S1), 
and we found no cross amplifications with any species present in the 
Falkland Islands. Primers were also tested in vitro against S. trutta 
and G. maculatus, and both species of zebra trout and G. maculatus, 
respectively; no cross amplifications were detected. A 10-fold dilu-
tion series of positive control A. taeniatus and A. zebra DNA (from six 
individuals respectively) revealed that for A. taeniatus, the limit of 
detection (LOD) was 1.97 × 10−4 ng/µl and for A. zebra the LOD was 
1.48 × 10−4 ng/µl. The detection threshold for both species of zebra 
trout at the lowest LOD was 42 cycles and the product melting tem-
peratures (tm) were consistent throughout the dilution series. qPCR 
product tm showed no overlap between the two species of zebra 
trout (77.8°C and 79.2°C ± 0.2 for A. zebra and A. taeniatus respec-
tively; these might vary in zebra trout from different regions, if there 
were polymorphisms in the amplified region). Using the diagnostic 
melt curve produced, it was possible to detect the presence of both 
species when combining varying ratios of pooled DNA (Figure 2). 
Results from a 10-fold dilution series revealed that the LOD for 
brown trout was 3.54 × 10−4 ng/µl for the S. trutta qPCR assay with 
a detection threshold of 37 cycles. The nine eDNA samples spiked 
with positive control A. zebra DNA amplified with qPCR product tm 
at 77.8°C, indicating no signs of inhibition.

We extracted 273 eDNA samples from 19 rivers and ponds in 
the Falklands retrieving DNA concentrations between 0 and 15 ng/
µl across all sites (57 samples had no detectable DNA). Zebra trout 
DNA was successfully detected in three of the 19 rivers sampled 
(Table 2), Aplochiton zebra in two rivers and Aplochiton taeniatus in 
three, whereas brown trout DNA was detected in six out of 19 rivers 
(Table 2), three of being the first time. Previously, brown trout and 
zebra trout had been found together in two of the rivers, R4 (Findley 
Creek Stream) and R9 (House Creek); however, we found no indi-
cation of either species in those. Brown trout and zebra trout DNA 
were detected at sites where they had been previously found (N = 3 
in each case) and also at sites where there was visual confirmation 
eDNA collection (Table 2), supporting the effectiveness of these as-
says in the field. All negative controls (sampling blanks, extraction 
blanks, and PCR blanks) failed to amplify for both zebra trout species 
and brown trout.
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Cloning of four brown trout samples resulted in 58 success-
fully transformed clones whose sequences matched 97.89%–
100% S. trutta sequences in BLAST (Ye et al., 2006). Aplochiton 
spp. cloning resulted in the successful transformation of 84 
clones from nine eDNA samples (N = 2 A. zebra, N = 3 A. tae-
niatus, and N = 2 mixed samples), 78 matching 89.66%–100% 
A. zebra, and six matching 91.67%–100% A. taeniatus in BLAST, 
confirming the species identity of the peaks at each of the melt-
ing temperatures. Only A. zebra sequences were identified in the 
mixed samples, and non-specific amplification was observed in 
the remaining clones.

In the final model of the GLM, analyzing potential factors af-
fecting amplification success total water volume sampled was the 
sole significant predictor (estimate = 0.005, SE = 0.002, t = 2.293, 
p = .022, AIC = 49.586), indicating that larger volumes of water were 
more likely to yield successful amplifications (see Table S3 for inter-
mediate model outputs and AICs).

4  | DISCUSSION

The application of our novel AzebAtaeCytb assay allowed us to detect 
the presence of two threatened galaxiids, which coexisted in some of 
the sampling locations, and confirmed their presence at three rivers 
where they had previously been detected with conventional sampling. 
In addition, using our StruttaCytb assay, we detected brown trout DNA 
in six rivers, including three where they had not previously been sam-
pled. The assays were validated by sequencing and visual identification.

We failed to detect zebra trout in three rivers where they had previ-
ously been identified, including two where the species previously were 
found to coexist with brown trout. This failure to detect coexistence 
could be due to brown trout outcompeting native zebra trout, as seen 
in other streams throughout the Falklands and other counties (Garcia 
de Leaniz et al., 2010; Valiente et al., 2010). It is possible that the trout 
caught in Findley Creek Stream and House Creek were new invaders 
into these areas during the first sampling and, therefore, coexistence 

TA B L E  2   Previous and current presence/absence data for the three study species at all sampling sites based on previous sampling using 
electrofishing and on current sampling using eDNA

Waterbody
Site. 
No

Previously 
sampled

Zebra trout 
previously present

Zebra trout current 
presence

Salmo trutta 
previously present

Salmo trutta 
current presence

Aplochiton 
zebra

Aplochiton 
taeniatus

Johns Brook R1 NA NA N N NA Y

Monty Deans 
Creek

R2 1999 N N N N N

Spots Arroyo R3 2009 Y N Y N N

Findley Creek 
Stream

R4 2011 Y N N Y N

North West Arm 
House Streama 

R5 2012 Y Y Y N N

Fish Creek (2) R6 2012 Y Y Y N N

Fish Creek (1) R8 2012 Y N N N N

House Creek R9 1999 Y N N Y N

San Carlosb  R10 1999 N N N Y Y

Elephant Beach 
Pond Stream

R11 1999 N N N Y Y

Estancia Creek R13 2008 N N N Y N

Herbert Streamb  R14 1999 N N N Y N

Teal House River R15 NA NA N N NA Y

Chartres River R16 1999 N N N Y N

Doctors Creekb  R17 2012 N N N Y Y

Malo Arroyob  R18 NA NA N N NA N

Neil Clark Nature 
Reserve

R19 NA NA N N NA Y

Spring Point R20 NA NA N N NA N

Whiskey Creek 
Stream

R22 2009 Y N N N N

Abbreviations: N, Species not present/detected; Y, species present.
aZebra trout seen during eDNA sampling. 
bBrown trout caught/seen during eDNA sampling period. 
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between these species may have been short-lived. However, failure 
to detect brown trout and zebra trout at rivers where they had previ-
ously been found using traditional methods also could be due to low 
filtration volume, as filtering larger volumes of water increases eDNA 
capture (Deiner et al., 2015; Muha et al., 2019) and may facilitate de-
tection of rare species and populations (Turner et al., 2014). Although 
we were able to detect all target species using relatively small volumes 
of water (100–200 ml per replicate), which were previously shown to 
be sensitive enough to detect rare species (Robinson, Garcia de Leaniz, 
Rolla et al., 2019), our analysis indicated that amplifications were af-
fected by the total volume filtered, with detections being more likely 
with higher volumes (Egeter et al., 2018; Schultz & Lance, 2015; Turner 
et al., 2014). Therefore, we suggest filtering larger water volumes, at 
least 1 L per replicate, to maximize detection of rarer target species 
(Capo et al., 2019; Mächler et al., 2016).

Weather conditions might also have played a role in the detec-
tion rates, as sampling was carried out across two field seasons, the 
first April-May 2018 (Autumn) and the second September-October 
2018 (Spring), coinciding with high volume of rain and snowmelt, 
resulting in more water and faster flowing rivers than in the first 
sampling season. These high/fast flowing conditions could have led 
to DNA being flushed out/downstream more quickly, potentially 
reducing the probability of detecting target species’ DNA (Laramie 
et al., 2015; Pilliod et al., 2014). In addition, seasonal changes in 
eDNA concentration can occur with breeding, whereby DNA is re-
leased into the environment with gametes (Buxton et al., 2017; Doi 
et al., 2017). Environmental factors such as temperature also can 
have seasonal impacts, with temperature not only influencing the 
release of DNA through increased activity, but also impacting its 
degradation rates (Buxton et al., 2017; Lacoursière-Roussel, Rosabal 
et al., 2016). However, statistical analyses indicated that season had 
no effect on amplification, so sampling in two different seasons did 
not seem to have affected the detection probability in this case. In 
addition, the spatial distribution and densities of individuals in a river 
could affect the detection of target DNA, if animals congregated in a 
specific area and water movement resulted in the clumping of DNA 
(Furlan et al., 2016). Finally, it is possible that we were not able to 
detect the presence of brown trout and zebra trout in some streams 
because they no longer inhabited those areas.

Our analyses distinguished between the morphologically simi-
lar A. zebra and A. taeniatus, enabling the determination of species 
assemblages when either or both species are present, highlighting 
the sensitivity of qPCR-based methods over traditional approaches 
(Evans et al., 2017; Wilcox et al., 2013). Previously, morphological 
identification was mainly based on stomach size and length, and 
dorsal spots; however, individuals can lack color patterns especially 
when small and this colouration should be interpreted with caution 
(Alò et al., 2013). In addition, identifying species through stom-
ach size and length (Mcdowall & Nakaya, 1988) requires destruc-
tive sampling, which is not ideal when working with a threatened 
species (Barnett et al., 2010; Jardine et al., 2011). Although it is 
possible to identify Aplochiton spp. though DNA barcoding of tis-
sue samples (e.g., fin clips and muscle), this type of sampling could 

increase mortality as it requires capturing and handling individuals 
(Vanhaecke et al., 2012), it is more time consuming than collecting 
water, particularly for rare species such as zebra trout (Reynolds 
et al., 2003), and is not appropriate endangered species (Falkland 
Islands Government, 1999;Sanderson et al., 2009).

The introduction of brown trout to the Falkland Islands has 
posed many risks to the native galaxiids, and the impacts can be seen 
in all three native species (Galaxias maculatus and both Aplochiton 
species) (McDowall et al., 2001; Ross, 2009). Since the introduction 
of brown trout, zebra trout abundance and distribution have shown 
a marked decline that resulted in the species being considered 
threatened in the Falklands (Falkland Islands Government, 1999; 
McDowall et al., 2001; Ross, 2009). Although we did not detect 
any coexistence of brown trout and zebra trout in our study, their 
co-occurrence had been previously observed in the Falkland Islands 
(McDowall et al., 2001) and in Patagonia, where brown trout has 
caused dietary changes and decreased body condition in both spe-
cies of zebra trout (Elgueta et al., 2013).

We also found eDNA from both Aplochiton species in two 
locations where their coexistence had not been previously ob-
served (Vanhaecke et al., 2012). Such species mixing could lead 
to increased hybridization, known to occur at very low frequen-
cies (Vanhaecke et al., 2012), potentially resulting in outbreeding 
depression, demographic swamping, and/or genetic assimilation 
(Esa et al., 2000; Wolf et al., 2001). Hybridization effects of inva-
sions have been observed in pupfish (Cyprinodon bovinus) in Texas 
and Mozambique tilapia (Oreochromis mossambicus) in southern 
Africa where native and invasive species are hybridizing (Echelle & 
Echelle, 1997; Firmat et al., 2013), and also in New Zealand where 
introgression between two species of native galaxiid (Galaxias 
depressiceps and Galaxias sp D) has been human induced (Esa 
et al., 2000). It is unknown whether hybrids between A. zebra and 
A. taeniatus would be viable, but further research on the potential 
risks is needed.

To protect the native galaxiids in the Southern Hemisphere, it 
is important to determine their current distribution and that of in-
vasive salmonids, for which eDNA provides an efficient and cost 
effective non-invasive tool, as in many recent conservation and 
monitoring programs (Jerde et al., 2011; Rees et al., 2014). This is 
particularly valuable in remote/inaccessible areas (Lacoursière-
Roussel et al., 2018), such as the Falklands, where it can be very dif-
ficult and costly to access and sample using traditional methods due 
to the limited road network. Information on remaining refugia for 
galaxiids can be used to prioritize sites for conservation (McGeoch 
et al., 2016), for example in designating nature reserves and/or 
Ramsar sites, implementing semi-permeable fish barriers that allow 
movement of only small native fishes or physically removing brown 
trout from galaxiid refuges (Chadderton, 2001).

In summary, using newly developed non-destructive eDNA as-
says, we identified brown trout in locations where it had previously 
been undetected, suggesting potential expansion of the species in 
the Falklands, and also detected the coexistence of both Aplochiton 
species. With further optimization, such as using synthetic genes at 
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known concentrations (Wilcox et al., 2013), it may be possible to gain 
relative estimates of species abundance using qPCR (Lacoursière-
Roussel, Côté et al., 2016; Lodge et al., 2012), although our results 
indicate that water volume is critical for the detection sensitivity. 
These tools can be used to monitor both threatened galaxiids and 
invasive brown trout and have the potential to inform conservation 
managers on their range expansion or contraction to better target 
areas for intervention (Rees et al., 2014).
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