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Abstract—In this paper, we propose a novel learning and
near-optimal control approach for underactuated surface vessels
with unknown mismatched periodic external disturbances and
unknown hydrodynamic parameters. Given a prior knowledge
of the periods of the disturbances, an analytical near-optimal
control law is derived through approximation of the integral-
type quadratic performance index with respect to the tracking
error, where the equivalent unknown parameters are generated
online by an auxiliary system that can learn the dynamics of the
controlled system. It is proved that the state differences between
the auxiliary system and the corresponding controlled underac-
tuated surface vessel are globally asymptotically convergent to
zero. Besides, the approach theoretically guarantees asymptotic
optimality of the performance index. The efficacy of the method
is demonstrated via simulations based on the real parameters of
an underactuated surface vessel.

Index Terms—Learning and near-optimal control, underactu-
ated surface vessel, mismatched periodic disturbances, auxiliary
system.

I. INTRODUCTION

C
ONTROLLING underactuated surface vessels (USVs) is

a challenging issue due to the nonlinearity of the system

model and the fact that they own three degrees of freedom

but only two control inputs are available [1], [2]. In practice,

autonomous USVs are widely adopted to various missions,

such as ocean surveillance and rescue, for which a fundamental

task is to automatically track a given reference trajectory with

high accuracy. Thus, investigations on the problem are of both

theoretical and practical significance.

In recent years, many control methods have been proposed

for solving the control problem of USVs. For example, via

a global state transformation, Dong and Guo [3] proposed

time-varying control laws to achieve the global stabilization.

Inspired by Chen et al. [4], Zhang and Li [5] proposed a

projection neural network approach to deal with the input

constraint for the near-optimal control of USVs. Serrano et al.

[6] proposed a linear algebra approach for the tracking control

of USVs. Yan and Wang [7] proposed a neural-network-based

model predictive control method for the tracking control of

USVs with simplified dynamics and known system parameters.

However, the control laws in [3]–[7] require full knowledge
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of the system dynamics. In practice, there exists parameter

uncertainty in the model of USVs, where we may only have

nominal values of the system parameters. To handle this issue,

Zhang et al. [8] proposed an adaptive near-optimal control

approach for USVs with a simplified model of hydrodynamic

damping effects, where external disturbances were not explic-

itly considered. It should be noted that external disturbances

are unavoidable in the dynamics of USVs, which become more

significant when USVs work on the sea, such as waves and

ocean currents.

By considering the above factors, sliding-mode control,

which is known for its robustness to external disturbances and

system uncertainty, was applied to USVs [9]–[13]. For exam-

ple, Ashrafiuon et al. [10] proposed a sliding-mode tracking

control law for USVs, where a first-order sliding surface about

the surge tracking error and a second-order sliding surface with

respect to the sway tracking error are adopted. Sliding-mode

control laws have good robustness to matched disturbances

but are limited by the chattering phenomenon in practice,

cannot handle mismatched disturbances, and cannot be directly

extended to optimal control.

The backstepping technique was also adopted in the control

of USVs for which the combinations with the sliding mode

control were further proposed [14]–[21]. For example, Zheng

and Feroskhan [18] proposed a backstepping control law for

USVs subject to input saturation and external disturbances,

where the system parameters are assumed to be known and

the external disturbance is handled via a nonlinear disturbance

observers. Through a proper error transformation in the control

design process, the method in [18] can guarantee that the track-

ing errors are always bounded by prescribed error boundary

trajectories. Chen et al. [20] proposed a radial basis function

(RBF) neural network based adaptive backstepping control

approach for USVs subject to general external disturbance for

which the bounded transient tracking errors are theoretically

guaranteed. It should be noted that the setting of parameters of

RBFs in neural network based control is not straightforward.

Zhang and Yang [22] proposed a fault-tolerant control law

for USVs subject to model uncertainty and actuator faults,

which can guarantee the convergence of tracking errors to an

error bound in finite time given that some requirements on

the initial states of the controlled USV are satisfied. Chwa

[24] proposed a dynamic surface control law for the tracking

control of USVs with input and velocity constraints. The

dynamic surface control law adopts the idea of backstepping

but remedies for the design complexity called the explosion
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of complexity problem, by applying the low-pass filters in the

control law design process. Park et al. [23] proposed a neural

network-based output feedback control method for the tracking

control of underactuated surface vessels subject to unknown

system parameters and external disturbances, where bounded

tracking errors can be guaranteed. However, similar to the

backstepping control laws, in [23], [24], reference trajectories

of all the state variables should be generated by a virtual ship,

which may hinder their applications in general tasks where

we may only have the desired trajectories of vessel positions.

While the above works are related to general disturbances,

which can only guarantee bounded tracking errors, to our

knowledge, the investigation on the control of USVs under

periodic disturbances has not been reported.

The optimal control problem of nonlinear systems gen-

erally requires solving a Hamilton-Jacobian-Bellman (HJB)

equation, which is a partial differential equation. For most

nonlinear systems, the analytical solution of the associated

HJB equation is difficult or even impossible to find, for which

researchers try to find an approximate optimal solution by

using methods like adaptive dynamic programming [25]–[31].

The optimal control of nonlinear systems subject to periodic

external disturbances is a challenging issue, for which only

a few results have been reported [32], [33]. Tang and Gao

[32] proposed an optimal control method for nonlinear systems

with fully known sinusoidal disturbances and system dynam-

ics, which transforms the original problem into a sequence of

nonhomogeneous linear two-point boundary value problems.

However, the methods in [32], [33] require that the system

parameters are fully known.

Motivated by the above discussions, in this paper, we

investigate the optimal tracking control problem of USVs with

unknown hydrodynamic parameters and unknown mismatched

periodic external disturbances. Particularly, we require that the

control law is explicit so as to facilitate the implementation and

save computational resources, the tracking errors are globally

asymptotically convergent to zero, and the performance index

with respect to the tracking error is asymptotically optimal.

Owing to the above factors, the results in repetitive control,

such as [34]–[39], do not apply. To solve the problem, we

first design an auxiliary system which is able to learn the

dynamics of the controlled USV through state feedback and

parameter adaptation. Then, based on the theoretical analysis

on the performance of the auxiliary system, we employe the

Taylor expansion based approach to derive an explicit control

law, of which some parameters are generated online by the

auxiliary system. The main contributions of this work are

summarized in the following.

1) To our knowledge, for the first time, a learning and

near-optimal control method is proposed for USVs with

unknown periodic external disturbances and unknown

hydrodynamic parameters.

2) The proposed near-optimal control method for USVs

gives an analytical control law, can handle mismatched

periodic external disturbances, and does not need solving

the HJB equation by numerical methods.

3) Unlike the methods in [14]–[24], the proposed method

does not need a virtual ship to generate reference trajec-

tories for all the state variables.

4) Theoretical analysis shows that the proposed method

can guarantee globally asymptotic convergence of the

output tracking error of the controlled USV to zero and

asymptotic optimality of the performance index.

The rest of this paper is organized as follows. In Section II,

the problem investigated in this paper is formulated. Then, the

design and analysis of the proposed learning and near-optimal

control scheme is illustrated in Section III, followed by the

simulation verification in Section IV. The concluding remarks

are given in Section V.

II. PROBLEM FORMULATION

In this section, we present the model of a USV with

unknown hydrodynamic parameters and unknown mismatched

periodic external disturbances, and formulate the optimal

tracking control problem for the system.

A. USV model

Under external disturbances, a USV actuated by only one

propeller and one rudder with diagonal inertia and damping

matrices can be modeled as follows [21]:

ẋ = u cos(φ) − v sin(φ),

ẏ = u sin(φ) + v cos(φ),

φ̇ = r,

u̇ =
m22

m11

vr −
du

m11

u −
du2

m11

|u|u −
du3

m11

u3 +
τu

m11

+ ωu(t),

v̇ = −
m11

m22

ur −
dv

m22

v −
dv2

m22

|v|v −
dv3

m22

v3 + ωv(t),

ṙ =
m11 − m22

m33

uv −
dr

m33

r −
dr2

m33

|r|r −
dr3

m33

r3 +
τr

m33

+ ωr(t),
(1)

where (x, y) denote the coordinate of the mass center of the

vessel in the earth-fixed frame; φ denotes the yaw angle in

the earth-fixed frame; u, v, and r denote the surge, sway and

yaw velocities, respectively, in the body-fixed frame; mii with

i = 1, 2, 3 denote the accurately known inertia parameters;

du, dui, dv , dvi, dr and dri with i = 2, 3 denote unknown

hydrodynamic damping coefficients; τu and τr denoting surge

force and yaw moment, respectively, are the two control

inputs; ωu, ωv, and ωr are the mismatched unknown external

disturbances.

In this paper, we focus on the case that the external

disturbances are periodic, for which we have the following

assumption.

Assumption 1: The unknown external disturbances are peri-

odic with known periods, i.e., ωu(t) = ωu(t − Tu), ωv(t) =
ωv(t − Tv), and ωr(t) = ωr(t − Tr) where positive constants

Tu, Tv, and Tr are known. Besides, the external disturbances

are with bounded first-order derivatives with respect to time t.
To handle the control singularity problem, we define the

position of interest of the vessel as pi = [xi, yi]
T, where

xi = x + L cos(φ),

yi = y + L sin(φ),
(2)

where L > 0 ∈ R is a small constant.
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B. Adaptive Optimal Dynamic Tracking Problem

In this paper, we are concerned with the optimal dynamic

tracking control problem of the USV (1) with the output

defined in (2). Specifically, we aim at finding a pair of control

laws τu and τr that can minimize the following performance

index in real time under unknown periodic external distur-

bances and unknown hydrodynamic damping coefficients:

J =

∫ T

0

(pi(t + h)−pd(t + h))TQ(pi(t +h)−pd(t +h))dh,

(3)

where T > 0 ∈ R is a design coefficient, and Q ∈ R
2×2

is a symmetric and positive definite coefficient matrix of the

performance index; pd(t) = [xd(t), yd(t)]
T denotes the desired

USV position at time instant t.

Assumption 2: The desired trajectory function pd(t) is

bounded and sufficiently smooth with respect to t.

With the above description, the adaptive optimal dynamic

tracking problem can be written as the following constrained

dynamic optimization problem:

min
τu,τr

J,

subject to (1),

where J is defined in (3), for which pi is defined in (2). The

challenges of the problem lie in the following aspects.

1) There are parameter uncertainty and unknown mis-

matched periodic external disturbances on the controlled

USV (1).

2) This is an optimal control problem of nonlinear under-

actuated systems, for which the analytical solution is

difficult to find, and the numerical approximation for the

solution of the associated HJB equation is computation-

ally intensive.

III. CONTROL DESIGN

In this section, we illustrate the control law design process

for solving the above problem. The proposed learning and

near-optimal control method contains two parts, i.e., an aux-

iliary system and an explicit control law, both of which are

theoretically analyzed.

A. Auxiliary System

We design an auxiliary system, which adaptively updates

its parameters such that the errors between the states of the

auxiliary system and the corresponding states of the USV

asymptotically converges to zero. In this way, the auxiliary

system learns the dynamics of the controlled USV. Different

from the traditional neural network control approaches, we do

not require parameter convergence of the auxiliary system to

the actual parameters of the controlled USV.

The auxiliary system is described as follows:

˙̂u =
m22

m11

vr − d̂11u − d̂12|u|u − d̂13u
3 +

τu

m11

+ ω̂u(t)

− kx(û − u),

˙̂v = −
m11

m22

ur − d̂21v − d̂22|v|v − d̂23v
3 + ω̂v(t)

− kx(v̂ − v),

˙̂r =
m11 − m22

m33

uv − d̂31r − d̂32|r|r − d̂33r
3 +

τr

m33

+ ω̂r(t) − kx(r̂ − r),

˙̂
d11 = kuu(û − u),

˙̂
d12 = ku|u|u(û − u),

˙̂
d13 = kuu3(û − u),

˙̂
d21 = kvv(v̂ − v),

˙̂
d22 = kv|v|v(v̂ − v),

˙̂
d23 = kvv

3(v̂ − v),

˙̂
d31 = krr(r̂ − r),

˙̂
d32 = kr|r|r(r̂ − r),

˙̂
d33 = krr

3(r̂ − r),

ω̂u(t) = ω̂u(t − Tu) − kω(û − u),

ω̂v(t) = ω̂v(t − Tv) − kω(v̂ − v),

ω̂r(t) = ω̂r(t − Tr) − kω(r̂ − r),
(4)

where kx, ku, kv , kr, and kω are positive design constants;

û, v̂, and r̂ are state variables of the auxiliary system while

d̂ij (with i = 1, 2, 3 and j = 1, 2, 3), ω̂u, ω̂v, and ω̂r are the

learning parameters. Without generality, we set ω̂u(t) = 0,

ω̂v(t) = 0, and ω̂r(t) = 0 for t ≤ 0.

Let d11 = du/m11, d12 = du2/m11, d13 = du3/m11, d21 =
dv/m22, d22 = dv2/m22, d23 = dv3/m22, d31 = dr/m33,

d32 = dr2/m33, and d33 = dr3/m33. Let ũ = û−u, ṽ = v̂−v,

r̃ = r̂ − r, d̃ij = d̂ij − dij with i = 1, 2, 3 and j = 1, 2, 3,

ω̃u = ω̂u − ωu, ω̃v = ω̂v − ωv , and ω̃r = ω̂r − ωr.

We have the following lemma regarding the learning per-

formance of the proposed auxiliary system (4) for the USV

(1).

Lemma 1: If Assumption 1 holds, for the USV (1) and

the auxiliary system (4), given that the external disturbance

is bounded and the initial states of the USV (1) and the

auxiliary system (4) are bounded, we have limt→+∞ ũ(t) = 0,

limt→+∞ ṽ(t) = 0, limt→+∞ r̃(t) = 0, limt→+∞
˙̃u(t) = 0,

limt→+∞
˙̃v(t) = 0, and limt→+∞

˙̃r(t) = 0.

Proof: The proof is given in the appendix. �

Lemma 1 shows that the auxiliary system (4) can asymptoti-

cally reconstruct the dynamics of the USV (1). In other words,

through state feedback, the auxiliary system (4) adaptively

updates its parameters such that, under the same control

inputs, the evolutions of state variables u, v, r, and their

first-order derivatives are captured. Thus, the control design

with respect to the parts about u, v, and r with unknown

hydrodynamic parameters and unknown external disturbances
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Fig. 1. Block diagram of the proposed method for the learning and near-optimal control (LNOC) of the USV (1) with unknown hydrodynamic parameters
and unknown periodic external disturbances, where x, y, φ, u, v, and r are state variables of the USV; τu and τr are inputs of the USV; ωu, ωv , and ωr

are periodic external disturbances; xd, ẋd, ẍd, yd, ẏd, and ÿd describe the desired trajectory of the point of interest in the USV, which is defined in (2) with

parameter L; T is the parameter of the performance index (3); d̂ij (with i = 1, 2, 3 and j = 1, 2, 3), ω̂u, ω̂v , and ω̂r are output of the auxiliary system,
which reconstruct the dynamics of the USV (1).

can be performed via the online updated parameters of the

auxiliary system (4).

B. Explicit Control Law

In the following, we design explicit near-optimal control

law according to Lemma 1 for the case that t → +∞, i.e.,

the difference between the auxiliary system (4) and the USV

(1) approaches zero. With the auxiliary system (4), when t →
+∞, for the USV (1), we have

ẋ = u cos(φ) − v sin(φ),

ẏ = u sin(φ) + v cos(φ),

φ̇ = r,

u̇ =
m22

m11

vr − d̂11u − d̂12|u|u − d̂13u
3 +

τu

m11

+ ω̂u(t)

= f̂u +
τu

m11

v̇ = −
m11

m22

ur − d̂21v − d̂22|v|v − d̂23v
3 + ω̂v(t)

= f̂v,

ṙ =
m11 − m22

m33

uv − d̂31r − d̂32|r|r − d̂33r
3 +

τr

m33

+ ω̂r(t)

= f̂r +
τr

m33

,

(5)

which serves as an equivalent system for the USV (1) at the

equilibrium and is employed in the following to design an

explicit near-optimal control law for the USV (1). Let

cφ = cos(φ),

sφ = sin(φ).

From (5) and (2), when t → +∞, we have

ẋi = ucφ − vsφ − Lsφr,

ẏi = usφ + vcφ + Lcφr,

ẍi = u̇cφ − usφφ̇ − v̇sφ − vcφφ̇ − Lcφφ̇r − Lsφṙ

= (f̂u +
τu

m11

)cφ − usφr − f̂vsφ − vcφr − Lcφr2

− Lsφ(f̂r +
τr

m33

)

= f̂ucφ − usφr − f̂vsφ − vcφr − Lcφr2 − Lsφf̂r +
τu

m11

cφ

− Lsφ

τr

m33

,

ÿi = u̇sφ + ucφφ̇ + v̇cφ − vsφφ̇ − Lsφφ̇r + Lcφṙ

= (f̂u +
τu

m11

)sφ + ucφr + f̂vcφ − vsφr − Lsφr2 + Lcφ(f̂r

+
τr

m33

)

= f̂usφ + ucφr + f̂vcφ − vsφr − Lsφr2 + Lcφf̂r +
τu

m11

sφ

+ Lcφ

τr

m33

.

(6)

Thus, when t → +∞,

ṗi =

[

ucφ − vsφ − Lsφr
usφ + vcφ + Lcφr

]

,

p̈i =

[

f̂τu

f̂τr

]

+ Sτ,

where τ = [τu, τr]
T,

f̂τu = f̂ucφ − usφr − f̂vsφ − vcφr − Lcφr2 − Lsφf̂r,

f̂τr = f̂usφ + ucφr + f̂vcφ − vsφr − Lsφr2 + Lcφf̂r,
(7)
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and

S =







cφ

m11

−
Lsφ

m33
sφ

m11

Lcφ

m33






. (8)

Thus, by using the Taylor expansion, when t → +∞, we have

pi(t + h) ≈ pi(t) + hṗi(t) +
h2

2
p̈i(t)

= P̂i(t)w +
h2

2
S(t)τ(t),

pd(t + h) ≈ Pd(t)w,

where
w(h) = [1, h, h2/2]T,

f̂τ = [f̂τu, f̂τr]
T,

P̂i = [pi, ṗi, f̂τ ],

Pd = [pd, ṗd, p̈d].

(9)

It follows that, when t → +∞, the performance index J
shown in equation (3) can be approximated as

J ≈

∫ T

0

(

P̂iw(h) +
h2

2
Sτ − Pdw(h)

)T

Q

(

P̂iw(h) +
h2

2
Sτ

− Pdw(h)

)

dh

=

∫ T

0

(

P̂ew(h) +
h2

2
Sτ

)T

Q

(

P̂ew(h) +
h2

2
Sτ

)

dh

=

∫ T

0

(

wT(h)P̂ T
e QP̂ew(h) + h2wT(h)P̂ T

e QSτ

+
h4

4
τTSTQSτ

)

dh

=

∫ T

0

h2wT(h)dhP̂ T
e QSτ +

∫ T

0

h4

4
dhτTSTQSτ

+

∫ T

0

wT(h)P̂ T
e QP̂ew(h)dh

=
T 5

20
τTSTQSτ + ηTP̂ T

e QSτ

+

∫ T

0

wT(h)P̂ T
e QP̂ew(h)dh,

(10)

where

P̂e = P̂i − Pd (11)

and

η =

∫ T

0

h2w(h)dh =

[

T 3

3
,
T 4

4
,
T 5

10

]T

.

Because the decision variable is the input τ , minimizing

T 5τTSTQSτ/20 + ηTP̂ T
e QSτ +

∫ T

0
wT(h)P̂ T

e QP̂ew(h)dh is

equivalent to minimizing

Ĵ = T 5τTSTQSτ/20 + ηTP̂ T
e QSτ.

Note that STQS is at least positive semidefinite, owing to

the fact that Q is symmetric and positive definite. From the

definition of S shown in (8), the determinant of S is

det(S) =
Lc2

φ

m11m33

+
Ls2

φ

m11m33

=
L

m11m33

> 0.

Because Q is symmetric and positive definite, we have

det(Q) > 0. It follows that

det(STQS) = det(S) × det(Q) × det(S) > 0. (12)

Recalling that STQS ∈ R
2×2 is at least positive semidef-

inite, for which the eigenvalues are not less than 0, i.e.,

λ1(S
TQS) ≥ 0 and λ2(S

TQS) ≥ 0. Then, from (12) and the

fact that det(STQS) = λ1(S
TQS) × λ2(S

TQS), we further

have λ1(S
TQS) > 0 and λ2(S

TQS) > 0. Thus, the matrix

STQS is positive definite, and Ĵ is convex with respect to τ .

Then, the learning and near-optimal control law is derived by

solving ∂Ĵ/∂τ = 0, i.e.,

T 5STQSτ

10
+ STQP̂eη = 0,

which yields

τ = −
10

T 5
(STQS)−1STQP̂eη

= −
10

T 5
S−1Q−1(ST)−1STQP̂eη

= −
10

T 5
S−1P̂eη.

(13)

Then, it follows from (13), and the definitions of S, P̂e, and η
that, the learning and near-optimal control laws for the surge

force and yaw moment are

τu = m11(−ω̂u + d̂11u + rv + Lr2 + ẍdcφ + d̂13u
3 + ÿdsφ

+ d̂12u|u|) +
10m11

3T 2
(xdcφ − xcφ − L − ysφ + ydsφ)

+
5

2T
(ẋdm11cφ − m11u + ẏdm11sφ) − m22rv

τr =
m33

L
(d̂21v − ω̂v − ru + ÿdcφ + d̂23v

3 − ẍdsφ − Lω̂r

+ Ld̂31r + Ld̂33r
3 + d̂22v|v| + Ld̂32r|r|) + m22uv

− m11uv +
m11m33ru

Lm22

−
5m33

2LT
(v − ẏdcφ + Lr)

−
10m33

3LT 2
(ycφ − ydcφ − xsφ + xdsφ)

(14)

where sφ = sin(φ) and cφ = cos(φ). The information flow in

the proposed control structure is shown in Fig. 1.

C. Theoretical Results

In this subsection, theoretical results are given about the

closed-loop performance of the USV (1) synthesized by the

proposed auxiliary system (4) and the LNOC law (13), i.e.,

(14).

Theorem 1: If Assumption 1 and Assumption 2 hold, the

tracking error e(t) = pi(t) − pd(t), with pi defined in (2), of

the USV (1) synthesized by the LNOC law (13), i.e., (14), and

the auxiliary system (4) is globally asymptotically convergent

to zero.

Proof: From equations (1) and (2), we have

p̈i = fτ + Sτ (15)

with fτ = [fτu, fτr]
T, where

fτu = fucφ − usφr − fvsφ − vcφr − Lcφr − Lsφfr,

fτr = fusφ + ucφr + fvcφ − vsφr − Lsφr2 + Lcφfr

(16)
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with fu, fv and fr defined as follows:

fu =
m22

m11

vr − d11u − d12|u|u − d13u
3 + ωu,

fv = −
m11

m22

ur − d21v − d22|v|v − d23v
3 + ωv,

fr =
m11 − m22

m33

uv − d31r − d32|r|r − d33r
3 + ωr.

(17)

Substituting the control law (13) into (15) yields

p̈i = fτ −
10

T 5
P̂eη,

which, together with equations (11) and (9), gives

p̈i = fτ −
10

T 5
(
T 3

3
(pi − pd) +

T 4

4
(ṗi − ṗd) +

T 5

10
(f̂τ − p̈d)).

(18)

Let f̃τ = f̂τ − fτ . With e = pi − pd and δ = T 5f̃τ/10, from

(18), the closed-loop error dynamics is derived as follows:

T 5

10
ë +

T 4

4
ė +

T 3

3
e = δ, (19)

The characteristic equation of (19) is

T 5

10
σ2 +

T 4

4
σ +

T 3

3
= 0,

of which the roots are σ = 5(−T 4/4 ±
√

T 8/16 − 2T 8/15)/T 5. Obviously, both roots are located

on the left-hand side of the complex plane. Thus, if δ(t) ≡ 0,

e is globally exponentially convergent to zero.

Let f̃u = f̂u − fu, f̃v = f̂v − fv, and f̃r = f̂r − fr. From

(7) and (16), we have

f̃τu = f̃ucφ − f̃vsφ − Lsφf̃r,

f̃τr = f̃usφ + f̃vcφ + Lcφf̃r.

Based on equations (17) and (6), According to Lemma

1, we have limt→+∞ f̃u(t) = 0, limt→+∞ f̃v(t) = 0,

limt→+∞ f̃r(t) = 0. It follows that limt→+∞ f̃τu(t) = 0 and

limt→+∞ f̃τr(t) = 0. Consequently, in view of δ = T 5f̃τ/10
and fτ = [fτu, fτr]

T, we further have

lim
t→+∞

δ(t) = 0,

by which and the bounded-input-bounded-output (BIBO)

property [40] we further conclude that e of the closed-loop

error dynamics (19) is globally asymptotically convergent to

zero. The proof is complete. �

Theorem 2: If Assumption 1 and Assumption 2 hold, when

t → +∞, the LNOC law (13), i.e., (14), aided by the auxiliary

system (4), is optimal for the performance index (3) of the

USV (1).

Proof: From (10) and the design process of the LNOC law

(13), (13) is optimal for the following performance index:

Ja =

∫ T

0

(

P̂iw(h) +
h2

2
Sτ − Pdw(h)

)T

Q

(

P̂iw(h) +
h2

2
Sτ

− Pdw(h)

)

dh

TABLE I
PARAMETERS OF THE USV ADOPTED IN THE SIMULATION

Parameters Values Units

m11 1.2 × 105 kg

m22 1.779 × 105 kg

m33 6.36 × 107 kg

du 2.15 × 104 kg/s

du2 4.3 × 103 kg/m

du3 2.15 × 103 kg/m2

dv 1.47 × 105 kg/s

dv2 2.94 × 104 kg/m

dv3 1.47 × 10
4 kg · s/m2

dr 8.02 × 10
6 kg · m2/s

dr2 1.604 × 10
6 kg · m2

dr3 8.02 × 10
5 kg · m2s

In view of the definition of the performance index (3), the

output (2), and the USV dynamics (1), taking the residual

term of the Taylor expansion into account, we have

J =

∫ T

0

(

P̂iw(h) − P̃iw(h) +
h2

2
Sτ − Pdw(h) + ν(t)

)T

Q

·

(

P̂iw(h) − P̃iw(h) +
h2

2
Sτ − Pdw(h) + ν(t)

)

dh

where P̃i = [0,0, f̃τ ] and ν(t) = h2/2(ë(t + γh)− ë(t)) with

0 ∈ R
2 and γ ∈ (0, 1). From the proof of Theorem 1, we have

limt→+∞ f̃τ (t) = 0, by which we have limt→+∞ P̃i(t) = 0.

Meanwhile, from Theorem 1, we have limt→+∞ e(t) = 0,

by which and Barbalat’s lemma [40], we conclude that

limt→+∞ ë(t) = 0. It follows that, limt→+∞ ν(t) = 0.

Let the difference between the above two performance in-

dices be denoted by Je = J − Ja. From the above analy-

sis, we have limt→+∞ Je(t) = limt→+∞(J(t) − Ja(t)) =
limt→+∞(Ja(t) − Ja(t)) = 0. Thus, when t → +∞, the

control law (13), i.e., (14), aided by the auxiliary system (4),

is optimal for the performance index (3) of the USV (1). The

proof is complete. �

IV. SIMULATION VALIDATION

In this section, simulation results based on the parameters of

a USV are given to validate the performance of the proposed

method. Specifically, we consider a monohull surface vessel

equipped with one propeller and one rudder, which is a typical

USV. The length of the vessel is 38 m and its mass is 1.18×105

kg. The parameters of the model (1) for the USV is obtained

from [41] and are shown in Table I. In terms of the output

parameter defined in (2), we set L = 0.01 m. The parameters

of the performance index is set to T = 0.2 s and Q = I ,

where I is a 2-by-2 identity matrix. The parameters of the

auxiliary system (4) is set to kx = 50, ku = kv = kω = 5,

and kr = 100ku = 500 in view of the large difference between

m33 and m11. The desired trajectory is given as follows:

xd(t) = 100 sin(0.05t) + 1.2,

yd(t) = 100 cos(0.05t)− 99.
(20)
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Fig. 2. Data profiles regarding the state variables and tracking performance of the USV during the tracking control process of the USV synthesized by the
proposed control law (14) with saturation, i.e., (22), and the proposed auxiliary system (4) under mismatched periodic external disturbances shown in equation
(21) and hydrodynamic parameter uncertainty for the desired trajectory (20).
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Fig. 3. Profiles regarding the learning performance of the auxiliary system (4) during the tracking control process of the USV synthesized by the proposed
control law (14) with saturation, i.e., (22), under mismatched periodic external disturbances shown in equation (21) and hydrodynamic parameter uncertainty
for the desired trajectory (20), where ũ = û − u, ṽ = v̂ − v, and r̃ = r̂ − r.

The external periodic disturbances are described as follows:

ωu(t) = 1.2 sin

(

2πt

Tu

+
π

6

)

+ 0.4,

ωv(t) = 1.4 sin

(

2πt

Tv

+
π

6

)

+ 0.2,

ωr(t) = 0.8 sin

(

2πt

Tr

+
π

8

)

+ 0.5,

(21)

where the known periods are Tu = 0.01 s, Tv = 0.03 s, and

Tr = 0.05 s.

Without loss of generality, the initial values of the state

variables of the USV is set to x(0) = y(0) = φ(0) =
u(0) = v(0) = r(0) = 0, and accordingly, for the auxiliary

system (4), û(0) = v̂(0) = r̂(0) = 0. The initial values

of d̂ij with i = 1, 2, 3 and j = 1, 2, 3 of the auxiliary

system (4) are set to randomly generated positive values, while

ω̂u(0) = ω̂v(0) = ω̂r(0) = 0. Considering the actuator

constraint, the actual control inputs applied to the USV are

set as follows:
τua = PS(τu),

τra = PS(τr),
(22)

where τu and τr are calculated according to the proposed

control law (14) with the parameters updated online via the

auxiliary system (4), and PS(·) denotes the projection operator

on the set S = {x|−5×109 ≤ x ≤ 5×109}. As seen from Fig.

3, ũ(t), ṽ(t), r̃(t), ˙̃u(t), ˙̃v(t), and ˙̃r(t) asymptotically converge

to zero, indicating that the auxiliary system (1) reconstructs

the dynamics of the controlled USV, which validates Lemma

1. From Fig. 2, the state variables of the USV are bounded

during the control process, and with the aid of the proposed

control law (14) with saturation, i.e., (22), and the auxiliary

system (1), the tracking errors ex = xi − xd and ey = yi − yd

asymptotically converge to zero with fast convergence and low

overshooting, which validates Theorem 1. According to Fig.
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4, the performance index J(t) is asymptotically convergent

to zero, which validates Theorem 2. As seen from Fig. 5,

the control inputs are bounded. Note that the chartering in

the control inputs is needed for the purpose of completely

eliminating the effects of periodic external disturbances. These

results shows the effectiveness of the proposed method for the

near-optimal control of USVs (1) under unknown mismatched

periodic external disturbances and unknown hydrodynamic

parameters.

V. CONCLUSIONS

In this paper, for the first time, a novel learning and

near-optimal control method has been proposed for USVs

with unknown hydrodynamic parameters and unknown mis-

matched periodic external disturbances. The method consists

of an auxiliary system to reconstruct the dynamics of the

controlled USV via state feedback, of which the adaptively

updated parameters are employed in an explicit control law

for the controlled USV. Theoretical analysis has shown that

the proposed method can guarantee the global asymptotic

convergence of the tracking error to zero and the asymptotic

optimality of the performance index for USVs with unknown

hydrodynamic parameters and unknown mismatched periodic

external disturbances. Simulation results based on the parame-

ters of a USV have validated the performance of the proposed

method, including fast tracking error convergence and low

overshooting.

APPENDIX

The proof of Lemma 1 is given as follow.

Proof: Recalling Assumption 3 and that fact that the pa-

rameters of the USV are constants, from the USV (1) and the

auxiliary system (4), we have

˙̃u = −d̃11u − d̃12|u|u − d̃13u
3 + ω̃u(t) − kxũ,

˙̃v = −d̃21v − d̃22|v|v − d̃23v
3 + ω̃v(t) − kxṽ,

˙̃r = −d̃31r − d̃32|r|r − d̃33r
3 + ω̃r(t) − kxr̃,

˙̃
d11 = kuuũ,

˙̃
d12 = ku|u|uũ,

˙̃
d13 = kuu3ũ,

˙̃
d21 = kvvṽ,

˙̃d22 = kv|v|vṽ,

˙̃d23 = kvv3ṽ,

˙̃d31 = krrr̃,

˙̃
d32 = kr|r|rr̃,

˙̃
d33 = krr

3r̃,

ω̃u(t) = ω̃u(t − Tu) − kωũ,

ω̃v(t) = ω̃v(t − Tv) − kω ṽ,

ω̃r(t) = ω̃r(t − Tr) − kω r̃,
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from which we further have

ω̃2
u(t) − ω̃2

u(t − Tu)

= (ω̃u(t) + ω̃u(t − Tu))(ω̃u(t) − ω̃u(t − Tu))

= −kωũ(ω̃u(t) + ω̃u(t − Tu)).

(23)

Accordingly, we have

ω̃2
v(t) − ω̃2

v(t − Tv) = −kωṽ(ω̃v(t) + ω̃v(t − Tv)),

ω̃2
r(t) − ω̃2

r(t − Tr) = −kω r̃(ω̃r(t) + ω̃r(t − Tr)).
(24)

Consider the following Lyapunov candidate function:

V =

3
∑

j=1

d̃2
1j

2ku

+

3
∑

j=1

d̃2
2j

2kv

+

3
∑

j=1

d̃2
3j

2kr

+
ũ2

2
+

ṽ2

2
+

r̃2

2

+

∫ t

t−Tu

ω̃2
u(τ)dτ

2kω

+

∫ t

t−Tv

ω̃2
v(τ)dτ

2kω

+

∫ t

t−Tr

ω̃2
r(τ)dτ

2kω

.

Together with equations (23) and (24), the time derivative of

V along the state trajectory of the USV (1) and the auxiliary

system (4) is obtained as follows:

V̇ =
3

∑

j=1

˙̃d1jd1j

ku

+
3

∑

j=1

˙̃d2jd2j

kv

+
3

∑

j=1

˙̃d3jd3j

kr

+ ˙̃uũ + ˙̃vṽ + ˙̃rr̃

+
ω̃2

u(t) − ω̃2
u(t − Tu)

2k3

+
ω̃2

v(t) − ω̃2
v(t − Tv)

2k3

+
ω̃2

r(t) − ω̃2
r(t − Tr)

2k3

= d̃11uũ + d̃12|u|uũ + d̃13u
3ũ + d̃21vṽ + d̃22|v|vṽ

+ d̃23v
3ṽ + ˜d31rr̃ + d̃32|r|rr̃ + d̃33r

3r̃ − d̃11uũ

− d̃12|u|uũ − d̃13u
3ũ + ω̃u(t)ũ − kxũ2 − d̃21vṽ

− d̃22|v|vṽ − d̃23v
3ṽ + ω̃v(t)ṽ − kxṽ2 − d̃31rr̃

− d̃32|r|rr̃ − d̃33r
3r̃ + ω̃r(t)r̃ − kxr̃2

−
(ω̃u(t) + ω̃u(t − Tu))ũ

2
−

(ω̃v(t) + ω̃v(t − Tv))ṽ

2

−
(ω̃r(t) + ω̃r(t − Tr))r̃

2

= −kxũ2 − kxṽ2 − kxr̃2 +
(ω̃u(t) − ω̃u(t − Tu))ũ

2

+
(ω̃v(t) − ω̃v(t − Tv))ṽ

2
+

(ω̃r(t) − ω̃r(t − Tr))r̃

2

= −kxũ2 − kxṽ2 − kxr̃2 −
1

2
kωũ2 −

1

2
kω ṽ2 −

1

2
kω r̃2

≤ 0.
(25)

From (25), we have

V̈ = −(2kx + kω)ũ ˙̃u − (2kx + kω)ṽ ˙̃v − (2kx + kω)r̃ ˙̃r

= (2kx + kω)ũ(d̃11u + d̃12|u|u + d̃13u
3 − ω̃u(t) + kxũ)

+ (2kx + kω)ṽ(d̃21v + d̃22|v|v + d̃23v
3 − ω̃v(t) + kxṽ)

+ (2kx + kω)r̃(d̃31r + d̃32|r|r + d̃33r
3 − ω̃r(t) + kxr̃).

Meanwhile, from (25), we also have 0 ≤ V (t) ≤ V (0),
∀t > 0. Thus, d̃ij (with i = 1, 2, 3 and j = 1, 2, 3), ũ,

ṽ, r̃, ω̃u, ω̃v , and ω̃r are bounded, ∀t > 0, starting from

bounded initial values. It follows that V̈ is bounded, by which

we conclude that V̇ is uniformly continuous. Besides, the

above analysis also shows that that V (t) is lower bounded and

V̇ (t) is negative semi-definite. Thus, according to Barbalat’s

lemma [40], we have limt→+∞ V̇ (t) = 0, which, together

with (25), yields limt→+∞ ũ(t) = 0, limt→+∞ ṽ(t) = 0,
and limt→+∞ r̃(t) = 0. Then, by following the the above

analysis, according to Barbalat’s lemma [40], we can further

conclude that limt→+∞
˙̃u(t) = 0, limt→+∞

˙̃v(t) = 0, and

limt→+∞
˙̃r(t) = 0. The proof is complete. �

REFERENCES

[1] C. Yang, Z. Li, R. Cui, and B. Xu, “Neural network-based motion
control of underactuated wheeled inverted pendulum models,” IEEE

Trans. Neurl Netw. Learn. Syst., vol. 25, no. 11, pp. 2004–2016, Nov.
2014.

[2] Y.-L. Wang and Q.-L. Han, “Network-based fault detection filter and
controller coordinated design for unmanned surface vehicles in network
environments,” IEEE Trans. Ind. Inform., vol. 12, no. 5, pp. 1753–1765,
Oct. 2016.

[3] W. Dong and Y. Guo, “Global time-varying stabilization of underactu-
ated surface vessel,” IEEE Trans. Autom. Control, vol. 50, no. 6, pp.
859–864, Jun. 2005.

[4] W. H. Chen, D. J. Ballance, and P. J. Gawthrop, “Optimal control of
nonlinear systems: A predictive control approach,” Automatica, vol. 39,
no. 4, pp. 633–641, Apr. 2003.

[5] Y. Zhang and S. Li, “Time-scale expansion based approximated optimal
control for underactuated systems using projection neural networks,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 11, pp. 1957–1967,
Nov. 2018.

[6] M. E. Serrano, G. J. E. Scaglia, S. A. Godoy, V. Mut, and O. A. Ortiz,
“Trajectory tracking of underactuated surface vessels: A linear algebra
approach,” IEEE Trans. Control Syst. Techonol., vol. 22, no. 3, pp. 1103–
1111, May 2014.

[7] Z. Yan and J. Wang, “Model predictive control for tracking of under-
actuated vessels based on recurrent neural networks,” IEEE J. Ocean.

Eng., vol. 37, no. 4, pp. 717–726, Oct. 2012.
[8] Y. Zhang, S. Li, and X. Liu, “Adaptive near-optimal control of uncertain

systems with application to underactuated surface vessels,” IEEE Trans.

Control Syst. Technol., vol. 26, no. 4, pp. 1204–1218, Jul. 2018.
[9] B. Xu , X. Wang, and Z. Shi, “Robust adaptive neural control of

nonminimum phase hypersonic vehicle model,” IEEE Trans. Syst., Man,

Cybern., Syst., in press, doi: 10.1109/TSMC.2019.2894916.
[10] H. Ashrafiuon, K. R. Muske, L. C. McNinch, and R. A. Soltan, “Sliding-

mode tracking control of surface vessels,” IEEE Trans. Ind. Electron.,
vol. 55, no. 11, pp. 4004–4012, Nov. 2008.

[11] B. Xu, R. Zhang, S. Li, W. He, and Z. Shi, “Composite neural
learning-based nonsingular terminal sliding mode control of MEMS
gyroscopes,” IEEE Trans. Neural Netw. Learn. Syst., in press, doi:
10.1109/TNNLS.2019.2919931.

[12] R.Yu, Q. Zhu, G. Xia, and Z. Liu, “Sliding mode tracking control of an
underactuated surface vessel,” IET Control Theory Appl., vol. 6, no. 3,
pp. 461–466, Mar. 2012.

[13] L. C. McNinch, H. Ashrafiuon, and K. R. Muske, “Optimal specifica-
tion of sliding mode control parameters for unmanned surface vessel
systems,” Proc. ACC, Hyatt Regency Riverfront, St. Louis, MO, USA,
Jun., 2009, pp. 2350–2355.

[14] H. Wang, P. Shi, H. Li, and Q. Zhou, “Adaptive neural tracking control
for a class of nonlinear systems with dynamic uncertainties,” IEEE

Trans. Cybern., vol. 47, no. 10, pp. 3075–3087, Oct. 2017.
[15] Y. J. Liu, M. Gong, L. Liu, S. Tong, and C. L. P. Chen, “Fuzzy observer

constraint based on adaptive control for uncertain nonlinear MIMO
systems with time-varying state constraints,” IEEE Trans. Cybern., in
press, doi: 10.1109/TCYB.2019.2933700.

[16] Y. J. Liu, Q. Zeng, S. Tong, C. L. P. Chen, and L. Liu, “Actuator failure
compensation-based adaptive control of active suspension systems with
prescribed performance,” IEEE Trans. Ind. Electron., in press, doi:
10.1109/TIE.2019.2937037.

[17] C. Yang, Y. Jiang, Z. Li, W. He, and C. Y. Su, “Neural control of
bimanual robots with guaranteed global stability and motion precision,”
IEEE Trans. Ind. Electron., vol. 13, no. 3, pp. 1162–1171, Jun. 2017.

[18] Z. Zheng and M. Feroskhan, “Path following of a surface vessel with
prescribed performance in the presence of input saturation and external
disturbances,” IEEE Trans. Ind. Electron., vol. 22, no. 6, pp. 2564–2575,
Dec. 2017.

Page 9 of 10 Transactions on Cybernetics

http://code-industry.net/


IEEE TRANSACTIONS ON CYBERNETICS 10

[19] Z. Sun, G. Zhang, B. Yi, and W. Zhang, “Practical proportional integral
sliding mode control for underactuated surface ships in the fields of
marine practice,” Ocean Eng., vol. 142, pp. 217-223, Sep. 2017.

[20] L. Chen, R. Cui, C. Yang, and W. Yan, “Adaptive neural network control
of underactuated surface vessels with guaranteed transient performance:
Theory and experimental results,” IEEE Trans. Ind. Electron., vol. 67,
no. 5, pp. 4024–4035, May. 2020.

[21] S. L. Dai, S. He, M. Wang, and C. Yuan, “Adaptive neural control of
underactuated surface vessels with prescribed performance guarantees,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3686–3698,
Dec. 2019.

[22] J. X. Zhang and G. H. Yang, “Fault-tolerant fixed-time trajectory
tracking control of autonomous surface vessels with specified accuracy,”
IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 4889–4899, Jun. 2020.

[23] B. S. Park, J. W. Kwon, and H. Kim, “Neural network-based output
feedback control for reference tracking of underactuated surface vessels,”
Automatica, vol. 77, pp. 353–359, 2017.

[24] D. Chwa, “Global tracking control of underactuated ships with input and
velocity constraints using dynamic surface control method,” IEEE Trans.

Control Syst. Techonol., vol. 19, no. 6, pp. 1357–1370, Nov. 2011.
[25] B. Zhao, D. Liu, and C. Alippi, “Sliding-mode surface-based approx-

imate optimal control for uncertain nonlinear systems with asymp-
totically stable critic structure,” IEEE Trans. Cybern., in press, doi:
10.1109/TCYB.2019.2962011.

[26] B. Luo, D. Liu, H. Wu, D. Wang, and F. L. Lewis, “Policy gradient
adaptive dynamic programming for data-based optimal control,” IEEE

Trans. Cybern., vol. 47, no. 10, pp. 3341–3354, Oct. 2017.
[27] Y. J. Liu, L. Tang, S. Tong, C. L. P. Chen, and D. J. Li, “Reinforce-

ment learning design-based adaptive tracking control with less learning
parameters for nonlinear discrete-time MIMO systems,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 26, no. 1, pp. 165–176, Jan. 2015.
[28] Q. Z, H. Xu, and S. Jagannathan, “Near optimal output feedback

control of nonlinear discrete-time systems based on reinforcement neural
network learning,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 4, pp. 372–
384, Oct. 2014.

[29] V. Narayanan and S. Jagannathan, “Event-triggered distributed control
of nonlinear interconnected systems using online reinforcement learning
with exploration,” IEEE Trans. Cybern., vol. 48, no. 9, pp. 2510–2519,
Sep. 2018.

[30] Y. Wen, J. Si, X. Gao, and H. Huang, “A new powered lower limb
prosthesis control framework based on adaptive dynamic programming,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 9, pp. 2215–2220,
Sep. 2017.

[31] A. Sahoo, H. Xu, and S. Jagannathan, “Approximate optimal control of
affine nonlinear continuous-time systems using event-sampled neurody-
namic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28,
no. 3, pp. 639–652, Mar. 2017.

[32] G. Y. Tang and D. X. Gao, “Approximation design of optimal controllers
for nonlinear systems with sinusoidal disturbances,” Nonlinear Ana.,

Theory Method Appl., vol. 66, no. 2, pp. 403–414, Jan. 2007.
[33] S. Kang, J. Wang, C. Li, and J. Shan, “Nonlinear optimal control with

disturbance rejection for asteroid landing,” J. Frankl. Inst., vol. 355, no.
16, pp. 8027–8048, Nov. 2018.

[34] K. Abidi and J. X. Xu, “A discrete-time periodic adaptive control
approach for time-varying parameters with known periodicity,” IEEE

Trans. Autom. Control, vol. 53, no. 2, pp. 575–581, Mar. 2008.
[35] J. X. Xu, S. K. Panda, Y. J. Pan, T. H. Lee, and B. H. Lam, “A

modular control scheme for PMSM speed control with pulsating torque
minimization,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 526–536,
Jun. 2004.

[36] W. Chen, L. Jiao, R. Li, and J. Li, “Adaptive backstepping fuzzy control
for nonlinearly parameterized systems with periodic disturbances,” IEEE

Trans. Fuzzy Syst., vol. 18, no. 4, pp. 674–685, Aug. 2010.
[37] Y. Wang, L. Zheng, H. Zhang, and W. X. Zheng, “Fuzzy observer-based

repetitive tracking control for nonlinear systems,” IEEE Trans. Fuzzy

Syst., in press, doi: 10.1109/TFUZZ.2019.2936808.
[38] E. Tatlicioglu, N. Cobanoglu, and E. Zergeroglu, “Neural network-based

repetitive learning control of euler lagrange systems: An output feedback
approach,” IEEE Control Syst. Lett., vol. 2, no. 1, pp. 13–18, Jan. 2018.

[39] Y. Zhang, S. Li, S. Kadry, and B. Liao, “Recurrent neural network
for kinematic control of redundant manipulators with periodic input
disturbance and physical constraints,” IEEE Trans. Cybern., vol. 49, no.
12, pp. 4194–4205, Dec. 2019.

[40] H. K. Khalil, Nonlinear Systems. 3nd ed., NJ, USA: Prentice-Hall, 2002.
1993.

[41] K. D. Do, Z. P. Jiang, and J. Pan, “Robust adaptive path following of
underactuated ships,” Automatica, vol. 40, no. 6, pp. 929–944, Jun. 2004.

Page 10 of 10Transactions on Cybernetics

http://code-industry.net/

