
R E S E A R CH A R T I C L E

The use of benchmark dose uncertainty measurements for
robust comparative potency analyses

Ryan P. Wheeldon1 | Stephen D. Dertinger2 | Steven M. Bryce2 |

Jeffrey C. Bemis2 | George E. Johnson1

1Institute of Life Science, Swansea University

Medical School, Swansea University,

Swansea, UK

2Litron Laboratories, Rochester, New York

Correspondence

Ryan P. Wheeldon, Swansea University

Medical School, Swansea University, Swansea

SA2 8PP, UK.

Email: r.wheeldon.702067@swansea.ac.uk

Funding information

National Institute of Environmental Health

Sciences, Grant/Award Number:

R44ES029014

Accepted by: P. White

Abstract

The Benchmark Dose (BMD) method is the favored approach for quantitative dose–

response analysis where uncertainty measurements are delineated between the upper

(BMDU) and lower (BMDL) confidence bounds, or confidence intervals (CIs). Little has

been published on the accurate interpretation of uncertainty measurements for potency

comparative analyses between different test conditions. We highlight this by revisiting a

previously published comparative in vitro genotoxicity dataset for human lymphoblastoid

TK6 cells that were exposed to each of 10 clastogens in the presence and absence (+/−)

of low concentration (0.25%) S9, and scored for p53, γH2AX and Relative Nuclei Count

(RNC) responses at two timepoints (Tian et al., 2020). The researchers utilized BMD point

estimates in potency comparative analysis between S9 treatment conditions. Here we

highlight a shortcoming that the use of BMD point estimates can mischaracterize potency

differences between systems. We reanalyzed the dose responses by BMD modeling

using PROAST v69.1. We used the resulting BMDL and BMDU metrics to calculate “S9
potency ratio confidence intervals” that compare the relative potency of compounds +/−

S9 as more statistically robust metrics for comparative potency measurements compared

to BMD point estimate ratios. We performed unsupervised hierarchical clustering that

identified four S9-dependent groupings: high and low-level potentiation, no effect, and

diminution. This work demonstrates the importance of using BMD uncertainty measure-

ments in potency comparative analyses between test conditions. Irrespective of the

source of the data, we propose a stepwise approach when performing BMD modeling in

comparative potency analyses between test conditions.
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1 | INTRODUCTION

An appreciation of dose–response analysis of genotoxicity data has

accompanied a shift from a hazard identification testing approach, toward

quantitative assessment of genotoxicity for risk assessment purposes

(Macgregor et al., 2015; Dearfield et al., 2017). Under the auspices of the

Quantitative Analysis Workgroup (QAW) of the Health and Environmen-

tal Sciences Institute Genetic Toxicology Technical Committee (HESI

GTTC), different statistical methods for assessing dose–response relation-

ships in genetic toxicology studies have been evaluated (Gollapudi

et al., 2013). An overall conclusion was that the benchmark dose (BMD)

approach for analyzing dose–response data derived from genotoxicity
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studies exhibits the most favorable characteristics. The BMD for continu-

ous data is defined as the dose that results in a predetermined change,

typically ranging between 1 and 10% in the response rate of an adverse

effect relative to existing background incidence (Macgregor et al., 2015).

Unlike other dose–response analysis methods such as the No Observed

Genotoxic Effect Level (NOGEL) approach, the BMD method is advanta-

geous since it is not restricted to the study concentration/dose selection.

The BMD method evaluates the entire range of concentrations/doses

within the dataset while providing measures of uncertainty such as confi-

dence limits (Crump, 1984; Slob, 2002). The uncertainty in the estimation

of the BMD is defined as the range delineated between the upper

(BMDU) and the lower (BMDL) confidence bounds.

BMDs and their associated confidence intervals (CIs) can be inter-

preted in a manner that conveys the potency of the studied test article.

For example, CIs have been plotted to illustrate compound potency

ranking from in vivo carcinogenicity and genotoxicity studies, as well as

providing empirical comparisons across endpoints. Additionally, com-

bined analysis can be performed for multiple dose–response datasets

for a shared endpoint differentiated by one or more covariates (Slob

and Setzer, 2014). This is known as the BMD combined covariate

approach. A prominent study by Wills and colleagues (Wills et al., 2016)

applied the BMD combined covariate approach to in vitro genotoxicity

data and demonstrated that the precision of the BMD increases when

compound, or another condition that pertains to mode of action (MoA),

serves as the covariate. The precision of the BMD is defined by the

ratio of the BMDL to the BMDU and has potential implications for reg-

ulatory decision making when used to define a Point of Departure

(PoD) for extrapolation to a human exposure limit (White et al., 2020).

Wills et al. (2016) states that as CIs represent the range in which

the true BMD lies, potency differences are only statistically defend-

able when there is no apparent overlap between intervals. Thus, eval-

uation of the entire BMD CI (BMDL and BMDU) is imperative to

drawing potency conclusions from BMD analysis of dose–response

datasets. Researchers have used BMD CIs of chemical classes of inter-

est to plot compound genotoxic and/or carcinogenic potency in rank

order (Hernández et al., 2011; Soeteman-Hernández et al., 2015a;

Soeteman-Hernández et al., 2015b; Wills et al., 2016, 2017). Some

prominent examples where BMD CIs were used in comparative gen-

otoxicity potency analyses include studies by Allemang et al. (2018)

and Wheeldon et al. (2020). Allemang et al. (2018) performed BMD

analyses to evaluate the relative genotoxic potency of 15 pyrrolizidine

alkaloids (PAs) via in vitro micronuclei formation in HepaRG cells.

Wheeldon et al. (2020) performed BMD analyses to evaluate the com-

parative genotoxic potency of 8 Topoisomerase II poisons studied in

human lymphoblastoid TK6 cells using the MultiFlow DNA damage

response assay. Both publications identified the utility of BMD CIs in

compound comparative genotoxicity potency analyses to support read

across and MoA determination for a limited number of compounds of

interest. In all of the aforementioned studies, compound potency

comparisons within and between genotoxicity endpoints were always

performed by scrutinizing the shape and steepness of the underlying

dose–response curve, and by graphically representing the BMD CIs.

Potency comparisons and measures of correlation were consistently

evaluated by CIs spanning orders of magnitude versus deriving

numerical values for comparison purposes.

Herein we consider a previously published in vitro genotoxicity

dataset where the authors performed BMD analyses and drew conclu-

sions without considering the uncertainty associated with the BMD

measurements. Tian et al. (2020) investigated the use of phenobarbital/

β-napthoflavone-induced rat liver S9 at maximal non-cytotoxic concen-

tration (0.25% vol/vol final) in a flow cytometry based multiplexed DNA

damage response assay. The laboratory was able to maintain the S9

enzyme/co-factor mix with cells and test compound for the entire expo-

sure period of 24 hr in the TK6-based assay. The investigators focused

on 15 chemicals: 8 of which are clastogens that are known to require

metabolic activation to maximize formation of DNA-reactive metabo-

lites; 5 are cytotoxicants; and 2 are direct acting clastogens that do not

require metabolic activation. In addition to determining compound MoA

through the use of biomarker responses, the authors applied the BMD

approach with the aim of calculating a numerical “S9 potentiation ratio”
value, which served as a comparison metric obtained by division of the

BMD value in the absence of S9 by the BMD value in the presence of

S9. Upon further consideration of this approach, we believe that there

are significant shortcomings in the use of solely a BMD point estimate in

their comparative potency analysis. Using the same logic highlighted by

Wills et al. (2016); it is irreconcilable to rely upon a BMD point estimate

to robustly compare potencies, since the BMD CI represents the range

in which the true BMD lies. To our knowledge, there are no published

reports that critique the use of a BMD point estimate, and how this dif-

fers from use of BMD CIs in comparative analysis between experimental

conditions. Herein, the Tian et al. (2020) data is re-analyzed to further

inform use of the same in vitro genotoxicity/low concentration S9

dataset. Primarily, we stress that the use of a BMD point estimate value

does not provide an accurate representation of the likely potency range

of the test compound. Said another way, the BMD point estimates and

associated “S9 potentiation ratio” comparison metrics did not convey

information about the uncertainty of the measurements that are consis-

tent with the BMD uncertainty measurement approach that is advocated

in the scientific literature.

This current report focuses on reanalysis and augmentation of the

previously published Tian et al. (2020) dataset. Specifically, we convey the

BMD uncertainty measurements that relate to the relative genotoxic

potency of the 10 clastogenic compounds. To this end, we calculate “S9
potency ratio CIs” using the BMD uncertainty measurements (BMDL and

BMDU) between S9 exposure conditions (the presence and absence of

S9) and utilize said ratios to derive robust potency conclusions as a follow

up to the Tian et al. (2020) work. Readers are encouraged to refer to the

original Tian and colleagues' article for further context (Tian et al., 2020).

2 | MATERIALS AND METHODS

2.1 | In vitro genotoxicity dataset

The data were derived from a previously published article in which

15 compounds were studied using the in vitro MultiFlow® DNA
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Damage Assay in the presence and absence of low dose (0.25%

vol/vol) S9 (Tian et al. 2020). The in vitro MultiFlow DNA Damage

Assay multiplexes several biomarkers that are responsive to diverse forms

of DNA damage into a single flow cytometric analysis. The multiplexed

biomarkers include: (a) phosphorylation of H2AX at serine 139 (γH2AX)

for the detection of DNA double strand breaks, (b) phosphorylation of

histone H3 at serine 10 (p-H3) to identify mitotic cells, (c) nuclear p53

content as an indicator of p53 activation, (d) frequency of 8n+ cells to

monitor polyploidization, and (e) relative nuclei counts (RNC) to provide

information about treatment related cytotoxicity (Bryce et al., 2016). A

detailed description of the assay falls out of scope of this article; thus,

interested readers are encouraged to refer to several publications that

describe the MultiFlow assay (Bryce et al., 2016; Bryce et al., 2017; Bryce

et al., 2018; Dertinger et al., 2019). As previously mentioned, the Tian

et al. (2020) data included 8 direct acting clastogens that require meta-

bolic activation, 5 cytotoxicants and 2 direct acting clastogens that do not

require metabolic activation. In this reanalysis, we focused on the

10 clastogens, since this is where Tian et al. (2020) suggested the greatest

differences in potency between S9 exist. The raw data were provided by

Litron Laboratories and included 4 and 24 hr p53, γH2AX, and 24 hr

RNC responses for the 10 clastogens: 2-acetylaminofluorene, 2-

aminoanthracene, 7,12-dimethylbenzanthracene, benzo[a]pyrene, cyclo-

phosphamide, dibenzo[a,l]pyrene (also known as dibenzo[def,p]chrysene),

diethylnitrosamine, mitomycin C, 2-amino-1-methyl-6-phenylimidazo

[4,5-b]pyridine (PhIP), and resorcinol.

2.2 | BMD analyses

Tian et al. (2020), performed BMD analysis on individual compounds

with the S9 exposure (with or without [+/−] 0.25% vol/vol S9) condi-

tion serving as the covariate. Hence, individual dose–response curves

on a compound basis already existed for this dataset. Here, the indi-

vidual dose–response curves were scrutinized so that compounds and/or

endpoints with little to no evidence of a dose–response could be dis-

qualified from reanalysis. Hence, we excluded 4 hr p53 dose responses

for diethylnitrosamine; 24 hr p53 dose–responses for diethylnitrosamine;

and 24 hr γH2AX dose responses for 7,12-dimethylbenzanthracene.

PROAST version 69.1 operating in R 4.0.2 was used to analyze

the continuous dose–response data (http://www.proast.nl) for the

4 hr and 24 hr γH2AX, 4 hr and 24 hr p53, and 24 hr RNC endpoints.

We applied the exponential model as a sequence of nested models

with increasing number of parameters (EFSA 2009; Slob and

Setzer 2014; EFSA 2017). In this reanalysis, compound was selected

as the covariate—differing from Tian et al. (2020) where S9 condition

was the covariate—since this includes more dose–responses in a sin-

gle analysis to increase the precision of the BMDs. PROAST provided

the option to select model 3 or 5 from the family of models. In doing

so, the number of parameters were increased to test whether the

associated log likelihood is significantly increased, thus informing if

the additional parameters were required for describing the dose–

response (Slob, 2002; EFSA, 2009; Slob and Setzer, 2014; EFSA,

2017). Either model 3 or 5 was finally automatically selected as the

most appropriate model to describe the shape of the dose–response

curve. Readers are advised to refer to Slob and Setzer (2014) for

detailed information about the dose response models (including

models 3 and 5) and their algorithms.

Consistent with the approach utilized by Tian et al. (2020), an

arbitrary critical effect size (CES) of 0.3 was selected for this

reanalysis. A CES of 0.3 represents a 30% change in response com-

pared to the concomitant control. CES −0.3 for the RNC endpoint

represents a 30% decrease in response for this endpoint analyses.

There is a lack of consensus on the appropriate choice of CES

reported in the literature for in vivo endpoints (White et al., 2020),

thus a lengthy discussion on CES falls outside the scope of this report.

In any event, we justify the use of CES 0.3 for these in vitro endpoints

since the resulting BMDs do not lie in the extremities of the dose

response curves where the associated uncertainties could be

relatively high.

The value of the BMD is a point estimate with an associated

level of precision (the ratio between the BMDL and BMDU), thus

90% BMD CIs were obtained for each compound and endpoint com-

bination in the presence and absence of S9 and were graphically

plotted.

2.3 | Unsupervised clustering

Lower and upper values of the “S9 potency ratio CIs” (algorithm

described in the results and discussion section) were evaluated using

JMP software's unsupervised clustering platform (JMP, v12.0.1). Lower

and upper “S9 potency ratio CI” values associated with the following

5 biomarkers were used as variables: 4 hr p53, 24 hr p53, 4 hr γH2AX,

24 hr γH2AX, and 24 hr RNC. The analysis options were set as follows:

clustering method = hierarchical; method for calculating distances

between clusters = “Ward”; data as usual = “Standardize Robustly”;
data visualization = “Dendrogram,” with “two-way clustering.”

3 | RESULTS AND DISCUSSION

3.1 | BMD confidence intervals

Values of the BMD, BMDL, and BMDU were estimated and collated

for all compounds (+/− S9) and endpoints that were included in the

BMD analysis. The BMD CIs were plotted for each compound with

+/−S9 CIs side-by-side (Figures 1–10). The BMD point estimates are

included in the comparative potency plots to aid in graphical represen-

tation of the BMD point estimate relative to the corresponding BMDL

and BMDU. This is important since some individuals misinterpret the

BMD to be at the midpoint (or geometric mean) between the BMDL

and BMDU. This is a misconception as evident by the differing lengths

of the CIs either side of each BMD point estimate displayed in

Figures 1–10.

CIs that span a maximum of approximately 1–2 Log units (i.e.,

1–2 orders of magnitude) are considered good quality and consistent
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with other BMD CI spans that are reported in the literature for

other in vitro genotoxicity systems (Soeteman-Hernández

et al., 2015a; Bemis et al., 2016; Wills et al., 2016; Allemang

et al., 2018). While most compound's BMD analysis yielded tightly

bound CIs, some displayed wide CIs or dose responses with

unbound upper confidence limits. Specifically, the 4 hr p53 end-

point for 2-acetylaminofluorene −S9 yielded an infinite BMDU

(BMD 3.88 Log10 μM, BMDL 3.42 Log10 μM, BMDU Infinite

Log10 μM) (Figure 1). Second, both the 4 hr and 24 hr p53

(Figure 9) endpoints for PhIP -S9 yielded unbound BMDUs (BMD

4.39 Log10 μM, BMDL 3.03 Log10 μM, BMDU Infinite Log10 μM;

BMD 5.20 Log10 μM, BMDL 3.22 Log10 μM, BMDU Infinite

Log10 μM, respectively). The 4 hr γH2AX endpoint for

7,12-dimethylbenzanthracene returned a zero BMDL value

F IGURE 1 BMD confidence intervals for 2-acetylaminofluorene. 4 hr p53 endpoint with S9 infinite BMDU indicated with dashed positive
direction lines. BMD point estimates are displayed as data points

F IGURE 2 BMD confidence intervals for 2-aminoanthracene. 4 hr p53 endpoint without S9 infinite BMDU indicated with dashed positive
direction lines. BMD point estimates are displayed as data points

4 WHEELDON ET AL.



indicating that the lower bound of the BMD is not significant from

zero. We considered these limited instances where dose–response

analyses yielded infinite BMDUs to have exhibited no evidence of

dose–response relationships, and hence are unsuitable for drawing

statistically robust conclusions from the analyses. In the single

instance of a zero BMDL, the resulting BMDL to BMDU ratio is

unobtainable (problems associated with division by 0), and hence

justifies omission of this compound/endpoint combination from

further analysis.

In addition to having unbound BMDUs, some compounds also

displayed BMD estimates that are grossly disproportionate to the

BMDs from other endpoints or S9 condition for the same compound.

The BMD CIs for these instances were not plotted, since the relative

disproportionality would make the other CIs appear comparatively

small. These instances are indicated in the comparative potency plots

with dashed lines spanning the entire graph range. Specifically, the

24 hr RNC endpoint −S9 for benzo[a]pyrene [BMD 12.33 Log10 μM]

(Figure 4), the 24 hr RNC endpoint −S9 for dibenzo[a,l]pyrene [BMD

F IGURE 3 BMD confidence intervals for 7,12-dimethylbenzanthracene. 4 hr γH2AX endpoint with S9 yielded a zero value lower confidence
bound. BMD point estimates are displayed as data points

F IGURE 4 BMD confidence intervals for benzo[a]pyrene. 24 hr RNC endpoint without S9 yielded a disproportionately high BMD with

infinite BMDU: indicated as a dashed line spanning the width of the plot. BMD point estimates are displayed as data points
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11.99 Log10 μM] (Figure 6), and the 24 hr γH2AX endpoint −S9 for

diethylnitrosamine [BMD 20.74 Log10 μM] (Figure 7). These endpoints

also yielded infinite BMDUs, and consequently displayed no evidence of

a dose response upon which one can then accurately define potency.

Visual scrutiny of each compound's BMD potency plot allows

efficient visual discrimination of the potency difference of each end-

point that results from S9 exposure. Endpoints where the S9 exposure

condition yielded BMD CIs that largely overlap results in potency dif-

ferences that are statistically insignificant. Conversely, non-

overlapping CIs are statistically significantly different and show that

the S9 condition exerts an impact on the compounds potency in the

same in vitro system.

For the most part, as one would expect, the tested clastogens

that require metabolic activation to exert genotoxic effects show an

increase in potency when exposed to the low concentration S9 sys-

tem. This is evidenced by +S9 CIs that reside in more potent regions

of the comparative potency plot by several orders of magnitude com-

pared to −S9 CIs. An outlier is 2-acetylaminofluorene where all

F IGURE 5 BMD confidence intervals for cyclophosphamide. Two-sided confidence intervals were obtained for all endpoint's BMD analyses.
BMD point estimates are displayed as data points

F IGURE 6 BMD confidence intervals for dibenzo[a,l]pyrene. 24 hr RNC endpoint without S9 yielded a disproportionately high BMD with
infinite BMDU: BMD restricted and only displaying the BMDL. BMD point estimates are displayed as data points
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endpoints except for 24 hr γH2AX and 24 hr RNC display CIs that

reside in the same order of magnitude (Figure 1). This suggests that

S9's potentiating effect was restricted to these endpoint/timepoint

combinations. The comparative potency plots also show that the

direct acting clastogens, mitomycin C and resorcinol, were not poten-

tiated by S9—rather, to a certain extent, the presence of S9 slightly

decreased their genotoxic potency.

3.2 | S9 potency ratio CIs

Tian et al. (2020) derived S9 potentiation ratios by comparative analysis

of the BMD point estimates across the S9 exposure conditions for each

compound and endpoint. There is a concern that the use of BMD point

estimates can misrepresent the potency effect of S9 in this in vitro sys-

tem since the BMD measure of uncertainty is disregarded.

F IGURE 7 BMD confidence intervals for diethylnitrosamine. 24 hr γH2AX endpoint without S9 yielded a disproportionately high BMD with
infinite BMDU: indicated as a dashed line spanning the width of the plot. BMD point estimates are displayed as data points

F IGURE 8 BMD confidence intervals for mitomycin C. Two-sided confidence intervals were obtained for all endpoint's BMD analyses. BMD
point estimates are displayed as data points
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Tian et al. (2020) correctly pointed out that the BMD estimate

can be beyond the top concentration used in the benchtop experi-

ment. In these instances, the authors calculated the “S9 potentiation

ratio” by restricting the BMD to the top concentration (denoted with

a greater than [>] symbol in the tabulated results section of their arti-

cle). However, these tight BMD restrictions led to mischaracterization

of the true BMD ratio. We contend that one should only limit BMD

values for graphical display where the value is disproportionately

larger than other endpoints and S9 conditions for the same com-

pound. In the BMD analysis reported in this re-analysis, disproportion-

ately high BMD values also coincided with unbound BMDUs.

The BMD CIs obtained in this re-analysis were used to calculate

an “S9 potency ratio CI” that is derived for each compound and end-

point BMD analysis that returned a dose response by comparing the

F IGURE 9 BMD confidence intervals for PhIP. 24 hr p53 endpoint without S9 and 4 hr p53 without S9 infinite BMDUs indicated with
dashed positive direction lines. BMD point estimates are displayed as data points

F IGURE 10 BMD confidence intervals for resorcinol. Two-sided confidence intervals were obtained for all endpoint's BMD analyses. BMD
point estimates are displayed as data points
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TABLE 1 Compound/endpoint combination BMD ratios and “S9 potency ratio CIs” (original and log scale) compared with the Tian
et al. (2020) “S9 potentiation ratios”

Compound Endpoint

S9 potentiation

ratio from Tian
et al. (2020) (μM) BMD-BMD ratioa

S9 potency
ratio CI range (μM)b

S9 potency ratio
CI range (Log10 μM)c

2-Acetylaminofluorine 4 hr p53 NC No DR No DR No DR

24 hr p53 NC 1.89 0 0

4 hr γH2AX >2.6d 1.14 0 0

24 hr γH2AX >8.9 34.23 8.53–704.02 0.93 to 2.85

24 hr RNC 0.53 0.33 0.18–0.55 −0.74 to −0.26

2-Aminoanthracene 4 hr p53 >7 No DR No DR No DR

24 hr p53 >22 108.72 57.26–278.80 1.76 to 2.45

4 hr γH2AX 167 74.55 46.03–126.81 1.66 to 2.10

24 hr γH2AX 16.3 8.95 2.51–21.59 0.40 to 1.33

24 hr RNC >26.2 295.11 79.87–3,004.35 1.90 to 3.48

7,12-Dimethylbenzanthracene 4 hr p53 >32.9 49.90 16.63–418.60 1.22 to 2.62

24 hr p53 23.7 18.06 9.52–34.87 0.98 to 1.54

4 hr γH2AX 88.7 28.07 No DR No DR

24 hr γH2AX NC No DR No DR No DR

24 hr RNC 21.8 24.43 8.59–73.37 0.93 to 1.87

Benzo[a]pyrene 4 hr p53 NC 3.06 1.54–7.23 0.19 to 0.86

24 hr p53 >80 9.14 4.98–17.88 0.70 to 1.25

4 hr γH2AX >463 1,357.44 629.63–3,448.28 2.80 to 3.54

24 hr γH2AX 1.8 x 106 11.18 3.47–34.73 0.54 to 1.54

24 hr RNC >31.4 No DR No DR No DR

Cyclophosphamide 4 hr p53 NC No DR No DR No DR

24 hr p53 870 702.02 535.64–923.65 2.93 to 2.97

4 hr γH2AX >101 158.03 115.69–227.54 2.06 to 2.36

24 hr γH2AX 3,249 1,589.81 305.34–5,922.33 2.48 to 3.77

24 hr RNC 797 963.44 466.40–2,405.30 2.67 to 3.38

Dibenzo[a,l]pyrene 4 hr p53 >56 148.74 88.94–316.87 1.95 to 2.50

24 hr p53 >962 1,162.83 50.24–1,578.48 1.70 to 3.20

4 hr γH2AX 22,727 4,666.876 24.49–6,967.37 1.39 to 3.84

24 hr γH2AX >38,462 22,167.08 6,325.46–130,672.27 3.80 to 5.12

24 hr RNC >1,220 No DR No DR No DR

Diethylnitrosamine 4 hr p53 NC No DR No DR No DR

24 hr p53 NC No DR No DR No DR

4 hr γH2AX >3.5 5.90 3.64–10.47 0.56 to 1.02

24 hr γH2AX >10 No DR No DR No DR

24 hr RNC NC 3.58 1.53–9.10 0.18 to 0.96

Mitomycin C 4 hr p53 0.51 0.52 0.37–1.06 −0.43 to 0.03

24 hr p53 0.73 0.27 0.20–0.36 −0.70 to −0.44

4 hr γH2AX 0.82 0.44 0.31–0.62 −0.51 to −0.21

24 hr γH2AX 0.25 0.07 0.01–0.19 −2.00 to −0.72

24 hr RNC 0.31 0.21 0.12–0.36 −0.92 to −0.44

PhIP 4 hr p53 >3.1 No DR No DR No DR

24 hr p53 >34.6 No DR No DR No DR

4 hr γH2AX >1,633 4,719.67 1,436.10–33,246.07 3.16 to 4.52

24 hr γH2AX >781 2067.12 336.19–189,075,630.25 2.53 to 8.28

24 hr RNC >18.2 703.43 230.83–6,142.75 2.36 to 3.79

(Continues)
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BMDU +S9 to BMDL −S9, to the BMDL +S9 to BMDU −S9. The “S9
potency ratio CI” is synonymous with the magnitude of the potency

difference (range) exhibited for each compound/endpoint combina-

tion after exposure to S9. Although there were only 2 experimental

conditions (+/− S9) included here, the same algorithm could apply to

2 or more experimental conditions where one potency is compared to

another potency of interest. The “S9 potency ratio CIs” were calcu-

lated in the original scale so that the values can be compared to the

“S9 potentiation ratios” values obtained from BMD-BMD ratios by

Tian et al. (2020). Values greater than 1 represent increased com-

pound potency for a particular endpoint after S9 exposure, whilst

values less than 1 confer the inverse. 0 values represent CIs that over-

lap and hence potency differences are statistically indefensible. The

BMD-BMD ratios from our analysis are also shown for comparative

purposes. We have also displayed the S9 potency ratios in the Log

scale for the sole purpose of aiding in demonstration of differences in

orders of magnitude. The values are displayed in Table 1 in compari-

son with the S9 potentiation ratios from Tian et al. (2020).

Comparing our “S9 potency ratio CIs” with the S9 potentiation

ratio obtained by Tian et al. (2020) shows that in almost all cases, the

“S9 potentiation ratio” that was derived from BMD point estimates is

either mischaracterized through tight restrictions on the BMD (where

the researchers denoted these ratios with a > sign) or is in the upper

range of our “S9 potency ratio CI” range, indicating a tendency for

over estimation of the S9 bioactivation effect.

Calculating an “S9 potency ratio CI” for these experiments accu-

rately conveys the uncertainty measurements which should be

accounted for when assessing potency comparisons across conditions.

We can summarize the “S9 potency ratio CIs” calculated here by stat-

ing that S9 increases the potency of the compounds ranging from

approximately 1–2 orders of magnitude (Log10 μM) for lower potency

differences, to approximately 3–5 orders of magnitude (Log10 μM) for

higher potency differences. The effect of S9 is statistically insignifi-

cant for some compound/endpoint combinations where BMD CIs

overlap. In other instances, S9 exposure decreased potency

(expressed as negative values) of compounds by approximately 0.4 to

2.0 orders of magnitude.

3.3 | S9 potency ratio CI range

As previously mentioned, the “S9 potency ratio CI” values span sev-

eral orders of magnitude. In order to objectively define the range of

“S9 potency ratio CIs” obtained, we analyzed the lower and upper

values (Log scale) of each “S9 potency ratio CI” via unsupervised hier-

archical clustering. The clustering was based on squared Euclidean dis-

tance “Ward's method” (Ward and Hook 1963) between points. The

resulting groups are presented in Figure 11 in the form of a two-

dimensional dendrogram with accompanying heat map. The upper and

lower values of the “S9 potency ratio CIs” associated with the in vitro

biomarkers (4 hr p53, 24 hr p53, 4 hr γH2AX, 24 hr γH2AX, and 24 hr

RNC) are displayed on the X axis. Compounds are plotted on the

Y axis. The heat map represents the order of magnitude difference in

“S9 potency ratio CIs.” Compound/endpoint combinations where S9

exposure increased genotoxic potency are displayed with varying

intensities of red on the heat map, whereas compounds and endpoints

where S9 exposure decreased potency are displayed with varying

intensities of blue on the heat map. Compound/endpoint combina-

tions where the dose–response following S9 exposure was not statis-

tically significantly different were plotted as zero values and displayed

as gray-blue on the heatmap. Additionally, the clustering platform

could not accommodate missing values for compounds/endpoint

combinations that showed no dose–response. In these instances, a

zero value was entered to accommodate the clustering method.

TABLE 1 (Continued)

Compound Endpoint

S9 potentiation

ratio from Tian
et al. (2020) (μM) BMD-BMD ratioa

S9 potency
ratio CI range (μM)b

S9 potency ratio
CI range (Log10 μM)c

Resorcinol 4 hr p53 NC 0.22 0 0

24 hr p53 0.11 0.07 0.0498–0.0937 −1.30 to −1.03

4 hr γH2AX 0.26 0.23 0.1502–0.3594 −0.82 to −0.44

24 hr γH2AX 0.05 0.03 0.0026–0.0659 −2.59 to −1.18

24 hr RNC 0.047 0.04 0.0202–0.0645 −1.69 to −1.19

aThe BMD-BMD ratio is presented to compare with the “S9 potentiation ratio” from Tian et al. (2020). In essence, the Tian et al. (2020) “S9 potentiation

ratio” is a BMD-BMD ratio. The majority of BMD-BMD ratios from the re-analysis are similar to the Tian et al. (2020) “S9 potentiation ratios” showing

that the BMD analyses do not differ significantly (same order of magnitude). One outlier is the analysis of the benzo[a]pyrene 24 hr γH2AX endpoint

where the BMD-BMD ratio is significantly smaller than the “S9 potentiation ratio.” This is likely due to increased precision resulting from combined

covariate analysis of the clastogen compounds in the reanalysis of this endpoint. The significant difference between “S9 potentiation ratios” and the BMD-

BMD ratios is the tight restrictions placed on the BMDs to calculate the “S9 potentiation ratio” denoted by the greater than symbol (>). This restriction

resulted in mischaracterized comparison of potency.
bThe S9 potency ratio CIs ranges are provided in the original scale to provide a like-for-like comparison with the Tian et al. (2020) “S9 potentiation ratio”
presented in the original scale.
cThe S9 potency ratio CI ranges are provided in the log scale to provide a like-for-like comparison with the comparative potency plots (Figures 1–10)
presented in this article in the log scale.
dGreater than sign (>) from Tian et al. (2020) where tight restrictions were place on the BMD based on the upper concentration tested.
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There are 4 distinct clades identified in the dendrogram:

(a) Chemicals whose genotoxic potency was dramatically increased in

the presence of S9 (dibenzo[a,l]pyrene, cyclophosphamide, 2-amino

anthracene, and PhIP); (b) chemicals whose genotoxic potency was

increased in the presence of S9 (dimethylbenzanthracene, benzo[a]

pyrene, and 2-acetylaminofluorene); (c) chemicals whose genotoxic

potency was not increased in the presence of S9 (mitomycin c, resor-

cinol, and diethylnitrosamine); and (d) a subset of clade 3, clade 4, whose

genotoxic potency was reduced in the presence of S9 (mitomycin c, and

resorcinol; indicated by a strong dark blue in the heat map).

The clustering results demonstrate that distinct groups exist that

best describe the range of S9-dependent effects into high, low, zero

and negative categories. The division of the S9 potency ratio CIs into

groups follows application of quantitative metrics allowing objective

interpretation in a hazard-based scale context. It is likely that when a

more diverse set of clastogens are analyzed, it will be possible to

detect further subdivisions of potency effect (e.g., low, medium, high,

very high). The same clustering method could be applied to other

dose–response comparative analyses. Several examples are

envisioned, for instance the study of compound potency effects

between different exposure durations (subchronic vs. chronic dosing

regimens), between different target tissues (liver vs. bone marrow), or

between different in vitro cell lines (liver HepaRG vs. HepG2, or V79

vs. CHO).

4 | CONCLUSIONS

The results of the data analysis presented here illustrate the necessity

to utilize the full BMD CIs to draw conclusions from dose–response

datasets. We have demonstrated that in comparative potency analy-

sis, use of BMD point estimates can yield mischaracterized or over-

estimated potency ratios during instances where the width of the CIs

varies considerably between conditions.

Interpretation of BMD CIs relies upon visual scrutiny by the eval-

uating scientist, and we speculate that one could be overwhelmed

with the results from hundreds of compounds from in vitro screening

experiments. Therefore, the evaluating scientist may wish to use sta-

tistical methods such as hierarchical clustering to aid in data interpre-

tation. When objectively considering the range of “S9 potency ratio

CIs” presented in our analysis, one is provided with a scale of high to

low, zero, and negative S9 potency effects. While we illustrated the

potency effect of S9 in an in vitro genotoxicity test system, the same

approach can be applied to any comparative genotoxicity potency

analysis. We propose that investigators apply the following stepwise

approach when performing comparative potency analysis of 2 or more

experimental conditions using the BMD methodology:

1. Utilize the results of combined covariate BMD analyses to plot

BMD CIs that represent potency across the endpoints evaluated

F IGURE 11 Unsupervised hierarchical clustering results are shown as a two-dimensional dendrogram with heatmap for the 10 clastogens
“S9 potency ratio CIs.” The values of the lower and upper confidence limits of the “S9 potency ratio CIs” were included in the analysis. The lower
and upper bound of the “S9 potency ratio S9 CIs” are plotted on the X-axis per endpoint combination. Compounds are plotted on the Y-axis.
Increasing intensities of red indicate a strong tendency for S9 exposure to increase the genotoxic potency of a compound for a specific endpoint.
An increasing intensity of blue indicates the converse, where the presence of S9 decreases the genotoxic potency of a compound for a specific
endpoint. Gray-blue represents compound/endpoint combinations where the dose–response following S9 exposure was not statistically
significantly different (overlapping CIs), or where a zero value was included to accommodate the clustering method in instances where no S9
potency ratio CIs were obtained (infinite BMDUs). There are 4 distinct clades that group compounds into (1) high, (2) low, (3) zero, and
(4) negative (as a subset of clade 3), effects on potency as a result of S9 exposure. Abbreviation: DMBA = 7,12-dimethylbenzanthracene

WHEELDON ET AL. 11



under different dependent variables. For graphical purposes only,

limit disproportionately high BMDs that display infinite BMDU

values.

2. Derive the lower and upper values of “potency ratio CIs” between

conditions by comparing BMDU condition 1 to BMDL condition

2, and BMDL condition 1 to BMDU condition 2 (ad infinitum),

respectively.

3. Objectively identify groups in the data that best describe the mag-

nitude of the difference in potency observed between conditions.

While a scientist can successfully identify patterns in CI plots of a

few experimental conditions (a small number of compounds, ani-

mal sex, limited number of cell lines, etc.) via visual techniques, we

contend that hierarchical clustering may add significant value to

the interpretation of large datasets, particularly those from in vitro

screening experiments of large numbers of compounds and bio-

marker combinations.
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