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A Generalized Fuzzy Multiple-Layer NDEA: An Application to 

Performance-Based Budgeting 

Abstract 

Network data envelopment analysis (NDEA) is capable of considering operations and interdependence 

of a system’s component processes to measure efficiencies. There are numerous performance 

evaluation applications in which some indicators have hierarchical structures with a considerable 

number of sub-indicators. This problem of ignoring the hierarchical structure of indicators weakens 

the discrimination power of NDEA models and may result in inaccurate efficiency scores. In this paper 

we propose a generalized fuzzy Multiple-Layer NDEA (GFML-NDEA) model and GFML-NDEA-

based composite indicators (GFML-NDEA-CI) to incorporate the hierarchical structures of indicators 

in the ambit of the particular two-stage NDEA models. To demonstrate the usefulness of the GFML-

NDEA-CI model proposed, its application was tested by evaluating the efficiency of the performance-

based budgeting (PBB) system in 14 governmental agencies in Iran. The comparative analysis results 

obtained from the GFML-NDEA-CI (multi-layer) model with those from the single-layer fuzzy 

NDEA-CI model indicate that the number of efficient decision-making units (DMUs) in the one-layer 

model is eight, whereas it is solely one DMU in the multi-layer model. The discrimination power of 

the multi-layer model proposed is significantly increased by observing that standard deviation of 

efficiency scores are increased by 41%, 61%, and 84% for possibility levels 0, 0.5, and 1, respectively. 

This is obtained while reducing information entropy, thus suggesting that the proposed model yields 

more reliable scores. 

Keywords: DEA; Fuzzy logic; Performance-based budgeting; Maturity model; Network structure; 

Hierarchical structure. 

Graphical abstract 

 

 

Acquire and load data

Indicators & sub-
indicators

Indicators with 
hierarchical 

structure

n DMUs

FML-NDEA model

Fuzziness

Efficiency & 
Ranking 
AnalysisMultiple-layer network DEA model

+
+



2 
 

1. Introduction 
Data envelopment analysis (DEA) was initially proposed by Farrell [1] to measure the efficiency 

of a system as a black box with a single process, ignoring its internal structure. However, many 

empirical studies indicate that to evaluate the performance of a system, it is important to consider the 

operations of its component processes. Network DEA (NDEA) models consider the entire system 

composed of different component processes or stages with intermediate flows among the processes 

and their own inputs and outputs. For studies that discuss NDEA models, one can refer to Kao [2,3]. 

Some works introduce new NDEA models to measure efficiencies under given conditions or present 

the technical properties of such models, while others apply the current models to real-world 

performance evaluation problems [2]. 

There are a large number of performance evaluation applications such as of banking systems [4–

6], the insurance industry [7,8], airline industry [9,10], health care sector [11], road safety performance 

[12], green supply chain management [13], sustainable supply chain management [14,15], tourist hotel 

economic efficiency [16], and the performance-based budgeting (PBB) maturity model [17] that deal 

with many input and/or output indicators belonging to different categories. In addition, there are 

indicators that are highly correlated or have similar properties. In these applications, the high 

dimensionality of indicators weakens the discrimination power of the DEA models [18]. 

This problem of ignoring the hierarchical structure of indicators is addressed in traditional DEA 

models by initially introducing two-level DEA models by Meng et al. [19] and after by introducing a 

generalized Multilayer DEA (MLDEA) model by Shen et al. [12]. Nevertheless, the research papers 

mentioned above (i.e., [12,19]) are only limited to the traditional black box, single-process DEA 

models that do not necessarily meet the needs of today's performance evaluation applications taking 

into account the system's internal structure.  

Practitioners often wish to consider many indicators in the network structure of their underlying 

system to carry out a relatively comprehensive performance evaluation in real world applications 

without losing the discrimination power of the model by removing less important indicators. Instead 

of aggregating or ignoring some indicators and their hierarchical structures in an NDEA model, it is 

reasonable to take a holistic approach by developing a Multiple-Layer NDEA model considering 

influential indicators and hierarchies with their sub-indicators. 

For example, in banking system evaluations [4,6], as long as the deposits indicator is considered 

as a consolidation of four different sub-indicators (consumer checking, consumer saving, business 

checking, and business savings) by Wang et al. [6], it is recommended that other researchers 

disaggregate this indicator to identify inefficiencies better and understand how to improve banking 

efficiency. In performance evaluation of tourist hotels [20], considering only the number of rooms 

provided for rent to guests while ignoring the size and quality of the rooms may give us misleading 
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results. In supply chain management evaluation [13,14], consolidating all types of products with 

different sizes and prices as one indicator (known as the number of products transported from supplier 

to manufacturer, from manufacturer to distributer, and from distributer to customer) is an 

oversimplified consideration that may result in inaccurate efficiency scores for ranking Decision-

Making Units (DMUs). This is actually the case when we attempt to evaluate the PBB system of 

governmental agencies in Iran. In the PBB maturity model presented by Amini et al. [17], many 

different outputs should be measured in the evaluation process to provide relatively comprehensive 

budgeting system profiles of these agencies. 

In this paper, we depart from previous researches and develop a generalized fuzzy Multiple-Layer 

NDEA model to handle vagueness nested in performance indicators within the ambit of hierarchical 

structures where a given indicator is a composite index of its respective sub-indicators and so on. While 

applied to the particular case of a two-stage NDEA within the ambit of Iranian agencies, two distinct 

and comprehensive fuzzy modeling approaches are presented: (i) the generalized fuzzy Multiple-Layer 

NDEA (GFML-NDEA) and (ii) the GFML-NDEA based Composite Indicators (GFML-NDEA-CI). 

While the first model addresses the traditional network issue where outputs from the previous stages 

serve as inputs for the subsequent ones observing the productive structure logic, the second one is 

focused on constructing a composite indicator (CI) by adding-up sub-indicators from previous stages 

observing specific weights at each layer. In other words, while the first model unveils the network 

productive process in an exhaustive fashion by detailing its tree structure as formed by numerous 

micro-activities either linked in series or parallel, the second model allows the aggregation of 

individual indicators computed in parallel at a given layer into a CI that represents the subsequent level 

while observing a series perspective. To demonstrate the applicability of the GFML-NDEA-CI model, 

a PBB application is performed for evaluating the efficiencies of 14 governmental agencies in Iran. 

Specifically within the ambit of this application of observing a PBB maturity model, the particular 

case of two stages is addressed, namely PBB system capabilities and PBB system results. These stages 

or processes are formed by the aggregation of individual indicators that observe a tree structure with 

branches and leaves. 

The remainder of the paper is organized as follows. After a brief review of the DEA-based CI, 

NDEA, MLDEA, and fuzzy DEA models in Section 2, the mathematical formulation of the GFML-

NDEA model and the GFML-NDEA-CI model are presented in Section 3. We apply the proposed 

GFML-NDEA-CI model to a PBB problem in Section 4. The experimental results from the fuzzy 

GFML-NDEA-CI model and its comparison with the fuzzy NDEA-based CI model with a single layer 

are discussed in Section 5. Managerial implications are presented in Section 6 and, finally, Section 7 

concludes the paper. 
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2. Literature Review 

2.1. Performance Measurement by the DEA-Based CI Model 

Recent progress in the development of CIs includes both decision-matrix methods for supervised 

or unsupervised data reduction (e.g., principal component analysis, independent component analysis, 

factor analysis, non-linear matrix factorization, neural networks, and rough set theory) and pairwise 

comparison methods to derive the partial relative importance of CIs (e.g., analytical hierarchy process 

and fair-share ratios). A common feature among these methods is the assumption of uniform indicator 

weights for all DMUs under study, thus ignoring that indicator weights may vary among DMUs for 

the purpose of performance improvement. While uniform indicator weights help establish an unbiased 

DMU rank, they make it difficult to ascertain about unit-specific performance predictors. 

In this respect, DEA, a data-oriented linear programming method, offers several advantages over 

other CI methods. First, DEA can be used to combine multiple indicators without a priori knowledge 

about their weight trade-offs at the DMU level. Second, DEA evaluates the relative performance of 

DMUs to ensure that each unit obtains the best possible set of indicator weights [21]. Any other 

possible set of weights would produce a lower (i.e., less favorable) composite indicator score. 

Basic DEA models have traditionally been used to evaluate the relative performance of a set of 

DMUs based on multiple inputs and outputs capable of describing a productive process. However, 

DEA has also been applied more generally as a tool for multi-dimensional comparisons of DMUs. 

Thus, to use DEA for CI construction, i.e., combining a set of individual indicators into one overall 

indicator, the basic DEA optimization is constrained to have constant or equal inputs with different 

outputs or indicators as follows [22]. 

𝐶𝐶𝐶𝐶𝑜𝑜 = max �𝑢𝑢𝑟𝑟𝑌𝑌𝑟𝑟𝑟𝑟

𝑠𝑠

𝑟𝑟=1

 

s.t.   ∑ 𝑢𝑢𝑟𝑟𝑌𝑌𝑟𝑟𝑟𝑟𝑠𝑠
𝑟𝑟=1 ≤ 1 , 𝑗𝑗 = 1, … ,𝑛𝑛    

𝑢𝑢𝑟𝑟 ≥ 𝜀𝜀, r = 1, …, s 

(1) 

The subscript, o, refers to the DMU whose relative efficiency is to be evaluated. 𝑌𝑌𝑟𝑟𝑟𝑟(𝑟𝑟 =

1, … , 𝑠𝑠) ∈ ℝ+
𝑠𝑠  is the rth output of the jth DMU, 𝑢𝑢𝑟𝑟 is considered as non-negative weights of 𝑌𝑌𝑟𝑟𝑟𝑟, and 𝜀𝜀 

is a small non-Archimedean number. 

2.2. Network DEA 

In many applications, the computational scheme for efficiency measurement must be addressed 

as multi-stages such as network structures [23]. Conventional DEA models generally treat the DMUs 

without considering their internal structure [23]. Therefore, numerous network DEA models have been 
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presented in the literature to measure the efficiency of DMUs by taking the internal structure into 

account [23].  

The computational structure of a closed two-stage serial NDEA model presented by Wanke & 

Barros [24] is depicted in Figure 1. 

 

Figure 1. Closed two-stage serial NDEA model 

Wanke & Barros [24] assumed a closed two-stage serial system in their NDEA model where 

𝑋𝑋𝑖𝑖𝑖𝑖(𝑖𝑖 = 1,2, … ,𝑚𝑚) ∈ ℝ+
𝑚𝑚 and 𝑌𝑌𝑟𝑟𝑟𝑟(𝑟𝑟 = 1,2, … , 𝑠𝑠) ∈ ℝ+

𝑠𝑠  stand for the first stage inputs and the second 

stage outputs, respectively, and 𝑍𝑍𝑑𝑑𝑑𝑑(𝑑𝑑 = 1,2, … , 𝑐𝑐) ∈ ℝ+
𝑐𝑐  is intermediate measures for the 𝑗𝑗𝑡𝑡ℎ DMU. 

Also, 𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑑𝑑 ,𝑢𝑢𝑟𝑟 are considered as non-negative weights of 𝑋𝑋𝑖𝑖𝑖𝑖,𝑍𝑍𝑑𝑑𝑑𝑑 ,𝑌𝑌𝑟𝑟𝑟𝑟, respectively. Mathematically, 

the efficiency score of a particular DMUo, i.e. 𝐸𝐸𝑜𝑜, is obtained by solving the following basic two-

stage serial NDEA model: 

𝐸𝐸𝑜𝑜 = max∑ 𝑢𝑢𝑟𝑟𝑌𝑌𝑟𝑟𝑟𝑟𝑠𝑠
𝑟𝑟=1

s. t.
∑ 𝑣𝑣𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=1 𝑖𝑖 = 1, … ,𝑚𝑚

∑ 𝑤𝑤𝑑𝑑𝑍𝑍𝑑𝑑𝑑𝑑 − ∑ 𝑣𝑣𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1  ≤ 0  𝑐𝑐

𝑑𝑑=1 𝑗𝑗 = 1, … ,𝑛𝑛
∑ 𝑢𝑢𝑟𝑟𝑌𝑌𝑟𝑟𝑟𝑟 − ∑ 𝑤𝑤𝑑𝑑𝑍𝑍𝑑𝑑𝑑𝑑𝑐𝑐

𝑑𝑑=1  ≤ 0𝑠𝑠
𝑟𝑟=1 𝑗𝑗 = 1, … ,𝑛𝑛

𝑢𝑢𝑟𝑟, 𝑣𝑣𝑖𝑖 ≥ 0

  (2) 

2.3. Multiple-Layer DEA (MLDEA) 

The evolution of DEA models over time has pushed researchers to develop various models with 

hierarchical or the so-called “Multiple-Layer” structures [12]. Meng et al. [19] developed a non-linear 

two-layer DEA approach for the performance evaluation of research institutes and then introduced a 

two-layer structure for the research outputs. For the linearization of such a model, pairwise decision-

making techniques are used such as AHP for weighting the internal weights within categories. Later 

on Kao [25] defined new variables to propose a linear two-layer DEA model. However, Meng et al.’s 

and Kao’s models only include two layers of indicators without providing a solution for modeling 

general structures with more than two layers [12]. Shen, Ruan et al.[12] introduced the generalized 

linear MLDEA model by studying the models proposed by Meng et al. [19] and Kao [25]. The 

advantage of this MLDEA model is the endogenous determination of the indicator weights [12]. The 

hierarchical structure of Shen et al.'s MLDEA model is depicted in Figure 2. 
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Figure 2. An MLDEA hierarchical structure [12] 

The mathematical model of Shen et al.'s generalized MLDEA approach [12] is given in (3). 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸0 = ∑ 𝑢𝑢�𝑓𝑓1
𝑌𝑌𝑓𝑓10

𝑠𝑠
𝑓𝑓1=1

𝑠𝑠. 𝑡𝑡.
∑ 𝑣𝑣�𝑔𝑔1

𝑋𝑋𝑔𝑔10
𝑚𝑚
𝑔𝑔1=1 = 1,

∑ 𝑢𝑢�𝑓𝑓1
𝑌𝑌𝑓𝑓1𝑗𝑗 −

𝑆𝑆
𝑓𝑓1=1 ∑ 𝑣𝑣�𝑔𝑔1

𝑋𝑋𝑔𝑔1𝑗𝑗  ≤ 0,𝑚𝑚
𝑔𝑔1=1     𝑗𝑗 = 1, … ,𝑛𝑛

∑ 𝑢𝑢�𝑓𝑓1
= 𝑢𝑢𝑓𝑓𝑘𝑘

𝑠𝑠(𝑘𝑘)

𝑓𝑓1∈𝐴𝐴𝑓𝑓𝑘𝑘
(𝑘𝑘) ,     𝑓𝑓1 = 1, … ,   𝑠𝑠,           𝑓𝑓𝑘𝑘 = 1, …,   𝑠𝑠(𝑘𝑘)

∑ 𝑣𝑣�𝑔𝑔1
= 𝑣𝑣𝑔𝑔𝐿𝐿

𝑚𝑚(𝐿𝐿)

𝑔𝑔1∈𝐵𝐵𝑔𝑔𝐿𝐿
(𝐿𝐿) ,     𝑔𝑔1 = 1, … ,   𝑚𝑚,           𝑔𝑔𝐿𝐿 = 1, …,   𝑚𝑚(𝑙𝑙)

∑ 𝑢𝑢�𝑓𝑓1𝑓𝑓1∈𝐴𝐴𝑓𝑓𝑘𝑘
(𝑘𝑘)

∑ 𝑢𝑢�𝑓𝑓1
= 𝑝𝑝

𝑓𝑓𝑘𝑘  𝑓𝑓𝑘𝑘 ∈𝐴𝐴𝑓𝑓𝑘𝑘+1
(𝑘𝑘+1)

(𝑘𝑘)
𝑓𝑓1∈𝐴𝐴𝑓𝑓𝑘𝑘+1

(𝑘𝑘+1)
�     𝑓𝑓𝑘𝑘 = 1, …,   𝑠𝑠(𝑘𝑘) , 𝑘𝑘 = 1, … ,𝐾𝐾− 1

∑ 𝑣𝑣�𝑔𝑔1𝑔𝑔1∈𝐵𝐵𝑔𝑔𝐿𝐿
(𝐿𝐿)

∑ 𝑣𝑣�𝑔𝑔1
= 𝑞𝑞

𝑔𝑔𝑙𝑙  𝑔𝑔𝑙𝑙 ∈𝐵𝐵𝑔𝑔𝑙𝑙+1
(𝐿𝐿+1)

(𝑙𝑙)
𝑔𝑔1∈𝐵𝐵𝑔𝑔𝐿𝐿+1

(𝐿𝐿+1)
�    𝑔𝑔𝑙𝑙 = 1, …,   𝑚𝑚(𝑙𝑙) , 𝑙𝑙 = 1, … ,𝐿𝐿− 1

𝑢𝑢𝑓𝑓𝑘𝑘 ,𝑣𝑣𝑔𝑔𝐿𝐿 ≥ 𝜀𝜀, 𝑓𝑓𝑘𝑘 = 1, …,   𝑠𝑠(𝑘𝑘), 𝑔𝑔𝐿𝐿 = 1, …,   𝑚𝑚(𝑙𝑙) 

𝑝𝑝
𝑓𝑓𝑘𝑘  𝑓𝑓𝑘𝑘 ∈𝐴𝐴𝑓𝑓𝑘𝑘+1

(𝑘𝑘+1)
(𝑘𝑘) ≥ 𝜉𝜉, 𝑓𝑓𝑘𝑘 = 1, …,   𝑠𝑠(𝑘𝑘) , 𝑘𝑘 = 1, … ,𝐾𝐾− 1

𝑞𝑞
𝑔𝑔𝑙𝑙  𝑔𝑔𝑙𝑙 ∈𝐵𝐵𝑔𝑔𝑙𝑙+1

(𝐿𝐿+1)
(𝑙𝑙) ≥ 𝜉𝜉,   𝑔𝑔𝑙𝑙 = 1, …,   𝑚𝑚(𝑙𝑙) , 𝑙𝑙 = 1, … ,𝐿𝐿 − 1

𝑢𝑢�𝑓𝑓1
 ,𝑣𝑣�𝑔𝑔1

≥ 𝜉𝜉(𝑘𝑘−1)𝜀𝜀,   𝑓𝑓𝑘𝑘 = 1, … , 𝑠𝑠(𝑘𝑘),   𝑔𝑔1 = 1, … ,𝑚𝑚

  (3) 

Where 𝑌𝑌𝑓𝑓𝑘𝑘𝑗𝑗 and 𝑋𝑋𝑔𝑔𝑙𝑙𝑗𝑗 are the 𝑓𝑓𝑡𝑡ℎ output and the 𝑔𝑔𝑡𝑡ℎ input, respectively, for the 𝑗𝑗𝑡𝑡ℎ DMU. A system 

is assumed with hierarchical structure which includes 𝐾𝐾 and 𝐿𝐿 layers of outputs and inputs, 

respectively, as shown in Figure 2. Let 𝑠𝑠𝑘𝑘 be the number of output categories in the 𝑘𝑘𝑡𝑡ℎ layer (𝑘𝑘 =

1, 2, . . . ,𝐾𝐾), where 𝑠𝑠(1) = 𝑠𝑠, and 𝑚𝑚(𝑙𝑙) is the number of input categories in the 𝑙𝑙𝑡𝑡ℎ layer (𝑙𝑙 = 1,2, . . . , 𝐿𝐿), 

where 𝑚𝑚(1) = 𝑚𝑚 [12].  𝑝𝑝𝑓𝑓𝑘𝑘  

(𝑘𝑘) and 𝑞𝑞𝑔𝑔𝑙𝑙  
(𝑙𝑙)  are the internal weights related to the indicators of the 𝑓𝑓𝑡𝑡ℎ and 

𝑔𝑔𝑡𝑡ℎ categories in the 𝑘𝑘𝑡𝑡ℎ output and 𝑙𝑙𝑡𝑡ℎ input layers, respectively. 𝑢𝑢𝑓𝑓𝑘𝑘is the weight given to the 𝑓𝑓𝑡𝑡ℎ 
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output in the 𝐾𝐾𝑡𝑡ℎ layer, 𝑓𝑓𝐾𝐾 = 1, . . . , 𝑠𝑠(𝐾𝐾), and 𝑣𝑣𝑔𝑔𝑙𝑙 is the weight given to the 𝑔𝑔𝑡𝑡ℎ input in the 𝐿𝐿𝑡𝑡ℎ layer, 

𝑔𝑔𝐿𝐿 =  1, . . . ,𝑚𝑚(𝐿𝐿). Accordingly, 𝑢𝑢𝑓𝑓𝑘𝑘 = ∑ 𝑢𝑢�𝑓𝑓1
𝑠𝑠
𝑓𝑓1∈𝐴𝐴𝑓𝑓𝑘𝑘

(𝑘𝑘)  and ∑ 𝑣𝑣�𝑔𝑔1 = 𝑣𝑣𝑔𝑔𝐿𝐿
𝑚𝑚
𝑔𝑔1∈𝐵𝐵𝑔𝑔𝐿𝐿

(𝐿𝐿)  are achieved by summing 

up the weights of the indicators in each category of each layer (i.e., 𝑝𝑝𝑓𝑓𝑘𝑘  

(𝑘𝑘) and 𝑞𝑞𝑔𝑔𝑙𝑙  
(𝑙𝑙) ) [12]. 

2.4. Fuzzy DEA 

2.4.1. Preliminaries   

In this subsection, several definitions are given in relation to the fuzzy set theory that will be 

applied in the rest of the paper. 

Definition 1. [26] A triangular fuzzy number (TFN) 𝐴̃𝐴 = (𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑚𝑚,𝑎𝑎𝑢𝑢) is a non-negative if and 

only if 𝑎𝑎𝑙𝑙 ≥ 0. The set of all these TFNs is denoted by 𝑇𝑇𝑇𝑇(𝑅𝑅)+. 

Definition 2. Suppose 𝐹𝐹(𝑅𝑅) be the set of all fuzzy numbers, 𝐴̃𝐴 be a fuzzy number, and [𝐴𝐴𝛼𝛼𝐿𝐿 ,𝐴𝐴𝛼𝛼𝑈𝑈] 

be the 𝛼𝛼-cut of fuzzy number 𝐴̃𝐴. The following linear ranking function is proposed by Pourmahmoud 

& Bafekr Sharak [27]: 

𝐹𝐹:𝐹𝐹(𝑅𝑅) → 𝑅𝑅

𝐹𝐹�𝐴̃𝐴� =
1
2
� (𝐴𝐴𝛼𝛼𝐿𝐿 + 𝐴𝐴𝛼𝛼𝑈𝑈)
1

0
𝑑𝑑𝑑𝑑.

 (4) 

If 𝐴̃𝐴 = (𝑎𝑎𝑙𝑙; 𝑎𝑎𝑚𝑚;  𝑎𝑎𝑢𝑢) is a TFN, then 𝐹𝐹�𝐴̃𝐴� = 𝑎𝑎𝑙𝑙+ 2𝑎𝑎𝑚𝑚+ 𝑎𝑎𝑢𝑢

4
. 

Definition 3. Let 𝐴̃𝐴 be a TFN in the form of 𝐴̃𝐴 = (𝑎𝑎𝑙𝑙;𝑎𝑎𝑚𝑚;  𝑎𝑎𝑢𝑢). Therefore it will be a symmetrical 

triangular fuzzy number if and only if  𝑎𝑎𝑚𝑚 − 𝑎𝑎𝑙𝑙 = 𝑎𝑎𝑢𝑢 − 𝑎𝑎𝑚𝑚 = 𝛼𝛼. Also, 𝐴̃𝐴 could be defined with center 

𝐴𝐴 = 𝑎𝑎𝑚𝑚 and spread 𝛼𝛼. 

2.4.2. Dealing with uncertain data 

Addressing uncertain data in DEA has been a challenge for many researchers. In standard DEA 

models it is assumed that the indicator data collected are certain. If some indicator data are uncertain 

or vague, then it is no longer possible to use standard DEA models. By investigating the theoretical 

background of DEA models, two approaches are found to handle uncertain indicator data: imprecise 

DEA and fuzzy DEA [28]. Guo & Tanaka [29] and Guo [30] defined a fuzzy DEA model by 

considering both the input and output as follows: 
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𝑀𝑀𝑀𝑀𝑀𝑀   𝜆𝜆1�𝑢𝑢𝑟𝑟(𝑌𝑌𝑟𝑟𝑟𝑟 − (1 − 𝑝𝑝𝑝𝑝)𝛼𝛼𝑟𝑟𝑟𝑟

𝑠𝑠

𝑟𝑟=1

) + 𝜆𝜆2�𝑢𝑢𝑟𝑟(𝑌𝑌𝑟𝑟𝑟𝑟 + (1 − 𝑝𝑝𝑝𝑝)𝛼𝛼𝑟𝑟𝑟𝑟

𝑠𝑠

𝑟𝑟=1

)

𝑠𝑠. 𝑡𝑡.

�𝑣𝑣𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≥ 𝑔𝑔𝑜𝑜 𝑖𝑖 = 1, … ,𝑚𝑚

�𝑢𝑢𝑟𝑟(𝑌𝑌𝑟𝑟𝑟𝑟 − (1 − 𝑝𝑝𝑝𝑝)𝛼𝛼𝑟𝑟𝑟𝑟

𝑠𝑠

𝑟𝑟=1

) ≤�𝑣𝑣𝑖𝑖(𝑋𝑋𝑖𝑖𝑖𝑖 − (1 − 𝑝𝑝𝑝𝑝)𝑏𝑏𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

) 𝑗𝑗 = 1, … ,𝑛𝑛

�𝑢𝑢𝑟𝑟(𝑌𝑌𝑟𝑟𝑟𝑟 + (1 − 𝑝𝑝𝑝𝑝)𝛼𝛼𝑟𝑟𝑟𝑟

𝑠𝑠

𝑟𝑟=1

) ≤�𝑣𝑣𝑖𝑖(𝑋𝑋𝑖𝑖𝑖𝑖 + (1 − 𝑝𝑝𝑝𝑝)𝑏𝑏𝑖𝑖𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑗𝑗 = 1, … ,𝑛𝑛

𝑢𝑢𝑟𝑟 , 𝑣𝑣𝑖𝑖 ≥ 𝜀𝜀 𝑖𝑖 = 1, … ,𝑚𝑚; 𝑟𝑟 = 1, … , 𝑠𝑠

 

(5) 

Therefore, 𝜆𝜆1 and 𝜆𝜆2 are defined for providing pessimistic, indifferent, and optimistic situations 

with 𝜆𝜆1 ≥ 0, 𝜆𝜆2 ≥ 0 and 𝜆𝜆1 +  𝜆𝜆2 = 1. Three situations are usually considered, which are pessimistic 

if 𝜆𝜆1 = 1, optimistic if 𝜆𝜆2 = 1, and indifferent if 𝜆𝜆1 = 𝜆𝜆2 = 0.5. 

Since 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑏𝑏01
𝑋𝑋01

, … , 𝑏𝑏0𝑠𝑠
𝑋𝑋0𝑠𝑠
� ≤  𝑒𝑒, then 𝑏𝑏0𝑘𝑘

𝑋𝑋0𝑘𝑘
≤ 𝑒𝑒 holds. Considering 𝑛𝑛 DMUs, 𝑒𝑒 is taken as 𝑒𝑒 =

𝑀𝑀𝑀𝑀𝑥𝑥𝑗𝑗=1,…,𝑛𝑛 (𝑀𝑀𝑀𝑀𝑥𝑥𝑘𝑘=1,…,𝑠𝑠 𝑏𝑏𝑗𝑗𝑗𝑗 / 𝑋𝑋𝑗𝑗𝑗𝑗). Then, by substituting 𝑒𝑒 in the following model, go is calculated 

for each DMU as follows [30]: 

𝑔𝑔𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚    �𝑣𝑣𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1
𝑠𝑠. 𝑡𝑡.

�𝑣𝑣𝑖𝑖(𝑋𝑋𝑖𝑖𝑖𝑖 − (1 − 𝑝𝑝𝑝𝑝)𝑏𝑏𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

) = 1 − (1 − 𝑝𝑝𝑝𝑝) ∗ 𝑒𝑒

�𝑣𝑣𝑖𝑖(𝑋𝑋𝑖𝑖𝑖𝑖 + (1 − 𝑝𝑝𝑝𝑝)𝑏𝑏𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

) ≤ 1 + (1 − 𝑝𝑝𝑝𝑝) ∗ 𝑒𝑒 

𝑣𝑣𝑖𝑖 ≥ 𝜀𝜀 𝑖𝑖 = 1, … ,𝑚𝑚

 

(6) 

In Model (5), pl is a parameter in [0,1] which indicates the uncertainty level of the decision maker 

where the smaller pl means more uncertainty. For more detail refer to [30].  

3. A Fuzzy Multiple-Layer Two-Stage Serial NDEA-based CI 

In this section, first the particular two-stage NDEA model was developed, which is applicable for 

measuring the efficiency of any two-stage serial system in which some indicators present hierarchical 

structures with Multilayers. Fuzzy logic is then introduced into the modeling to deal with vagueness 

in variable measurements such as those derived from managerial perceptions or preferences. 

Subsequently, the GFML-NDEA applied for the particular two-stage structure is presented for the case 

where it is necessary to aggregate CIs. This was done by imposing a specific set of weight constraints 

as shown in Section 3.4. 
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3.1. A Multiple-Layer Two-Stage Serial NDEA Model 
Given the two-stage serial NDEA model proposed by Wanke & Barros [24] and taking advantage 

of the DEA model logic with the Multiple-Layer structure proposed by Shen et al. [12], the generalized  

Multiple-Layer NDEA (GML-NDEA) model can be developed as Figure 3. 

Process 1 Process 2

...𝑍𝑍1𝑛𝑛  ...

... ... ...
...

𝑋𝑋𝑚𝑚𝑙𝑙  

𝑋𝑋12  

𝑋𝑋1𝑙𝑙  

𝑋𝑋2𝑙𝑙  

𝑋𝑋𝑚𝑚2  

𝑋𝑋𝑚𝑚1  

𝑋𝑋11  

𝑋𝑋21  

𝑍𝑍γ𝑛𝑛  𝑍𝑍2𝑛𝑛  

𝑍𝑍12  𝑍𝑍γ2 

𝑍𝑍11  𝑍𝑍21  𝑍𝑍γ1  

𝑌𝑌1𝐾𝐾  

𝑌𝑌2𝐾𝐾  

𝑌𝑌𝑠𝑠𝐾𝐾  

𝑌𝑌12  

𝑌𝑌𝑠𝑠2  

𝑌𝑌11  

𝑌𝑌21  

𝑌𝑌𝑠𝑠1  

Figure 3. A hierarchical structure of the GML-NDEA model 

In a system with a hierarchical structure with G layers of inputs, 𝛤𝛤 layers of intermediates, and F 

layers of outputs as depicted in Figure 3, in the GML-NDEA model, 𝑋𝑋𝑔𝑔𝑙𝑙𝑗𝑗 ,𝑍𝑍γ𝑛𝑛𝑗𝑗, and 𝑌𝑌𝑓𝑓𝑘𝑘𝑗𝑗 are the 𝑔𝑔𝑡𝑡ℎ, 

γ𝑡𝑡ℎ, and 𝑓𝑓𝑡𝑡ℎ input, intermediate and output indicators in DMU𝑗𝑗 on the 𝑙𝑙𝑡𝑡ℎ, 𝑛𝑛𝑡𝑡ℎ, and 𝑘𝑘𝑡𝑡ℎ layers of 

hierarchy, respectively. Furthermore, 𝑞𝑞𝑔𝑔𝑙𝑙  
(𝑙𝑙) , 𝑜𝑜γ𝑛𝑛  

(𝑛𝑛), and 𝑝𝑝𝑓𝑓𝑘𝑘  

(𝑘𝑘) are the internal weights related to the 

indicators of the 𝑔𝑔𝑡𝑡ℎ, γ𝑡𝑡ℎ, and 𝑓𝑓𝑡𝑡ℎ categories on the 𝑙𝑙𝑡𝑡ℎ, 𝑛𝑛𝑡𝑡ℎ, and 𝑘𝑘𝑡𝑡ℎ layers of hierarchy for the input, 

intermediate, and output indicators, respectively. Where 𝑢𝑢𝑓𝑓𝑘𝑘  is the weight given to the 𝑓𝑓𝑡𝑡ℎ output in 

the 𝑘𝑘𝑡𝑡ℎ layer (i.e., the final layer), 𝑓𝑓𝐾𝐾 = 1, . . . , 𝑠𝑠(𝐾𝐾), 𝑣𝑣𝑔𝑔𝑙𝑙 is the weight given to the 𝑔𝑔𝑡𝑡ℎ input in the 𝑙𝑙𝑡𝑡ℎ 

layer, 𝑔𝑔𝐿𝐿 =  1, . . . ,𝑚𝑚(𝐿𝐿), and 𝑤𝑤γ𝑛𝑛 is the weight given to the γ𝑡𝑡ℎ intermediate indicator in the 𝑛𝑛𝑡𝑡ℎ layer 

and γ𝑁𝑁 = 1, . . . ,𝛽𝛽(𝑛𝑛). 

By summing up the weights of the indicators in each category of each layer (i.e., 𝑝𝑝𝑓𝑓𝑘𝑘  

(𝑘𝑘), 𝑜𝑜γ𝑛𝑛  
(𝑛𝑛), and 

𝑞𝑞𝑔𝑔𝑙𝑙  
(𝑙𝑙) ), we get 𝑢𝑢𝑓𝑓𝑘𝑘 = ∑ 𝑢𝑢�𝑓𝑓1

𝑠𝑠
𝑓𝑓1∈𝐴𝐴𝑓𝑓𝑘𝑘

(𝑘𝑘) , 𝑤𝑤𝛾𝛾𝑛𝑛 = ∑ 𝑤𝑤�𝛾𝛾1
𝛽𝛽
𝛾𝛾1∈𝐶𝐶𝛾𝛾𝑛𝑛

(𝑛𝑛)  and 𝑣𝑣𝑔𝑔𝐿𝐿 = ∑ 𝑣𝑣�𝑔𝑔1
𝑚𝑚
𝑔𝑔1∈𝐵𝐵𝑔𝑔𝐿𝐿

(𝐿𝐿) . Accordingly, Model (7) 

depicts the GML-NDEA model. 
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𝐸𝐸𝑜𝑜 = 𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑢𝑢�𝑓𝑓1
𝑌𝑌𝑓𝑓1𝑜𝑜

𝑆𝑆

𝑓𝑓1=1

𝑠𝑠. 𝑡𝑡.

� 𝑣𝑣�𝑔𝑔1
𝑋𝑋𝑔𝑔1𝑜𝑜 = 1

𝑚𝑚

𝑔𝑔1=1
(7i)

� 𝑢𝑢�𝑓𝑓1
𝑌𝑌𝑓𝑓1𝑗𝑗 − � 𝑣𝑣�𝑔𝑔1

𝑋𝑋𝑔𝑔1𝑗𝑗

𝑚𝑚

𝑔𝑔1=1
 ≤ 0 

𝑠𝑠

𝑓𝑓1=1
 𝑗𝑗 = 1, … ,𝑛𝑛 (7ii)

� 𝑢𝑢�𝑓𝑓1
𝑌𝑌𝑓𝑓1𝑗𝑗 − � 𝑤𝑤�𝛾𝛾1

𝑍𝑍𝛾𝛾1𝑗𝑗

𝛽𝛽

𝛾𝛾1=1
 ≤ 0 

𝑠𝑠

𝑓𝑓1=1
𝑗𝑗 = 1, … ,𝑛𝑛 (7iii)

� 𝑤𝑤�𝛾𝛾1
𝑍𝑍𝛾𝛾1𝑗𝑗 − � 𝑣𝑣�𝑔𝑔1

𝑋𝑋𝑔𝑔1𝑗𝑗

𝑚𝑚

𝑔𝑔1=1
 ≤ 0    

𝛽𝛽

𝛾𝛾1=1
𝑗𝑗 = 1, … ,𝑛𝑛 (7iv)

𝑝𝑝
𝑓𝑓𝑘𝑘  𝑓𝑓𝑘𝑘 ∈𝐴𝐴𝑓𝑓𝑘𝑘+1

(𝑘𝑘+1)
(𝑘𝑘) =

∑ 𝑢𝑢�𝑓𝑓1
𝑆𝑆
𝑓𝑓1∈𝐴𝐴𝑓𝑓𝑘𝑘

(𝑘𝑘)

∑ 𝑢𝑢�𝑓𝑓1
𝑆𝑆
𝑓𝑓1∈𝐴𝐴𝑓𝑓𝑘𝑘+1

(𝑘𝑘+1)

𝑓𝑓𝑘𝑘 = 1, …,   𝑠𝑠(𝑘𝑘),   𝑘𝑘 = 1, … ,𝐾𝐾 − 1 (7v)

𝑞𝑞
𝑔𝑔𝐿𝐿   𝑔𝑔𝐿𝐿 ∈𝐵𝐵𝑔𝑔𝐿𝐿+1

(𝐿𝐿+1)
(𝐿𝐿) =

∑ 𝑣𝑣�𝑔𝑔1
𝑚𝑚
𝑔𝑔1∈𝐵𝐵𝑔𝑔𝐿𝐿

(𝐿𝐿)

∑ 𝑣𝑣�𝑔𝑔1
𝑚𝑚
𝑔𝑔1∈𝐵𝐵𝑔𝑔𝐿𝐿+1

(𝐿𝐿+1)
𝑔𝑔𝑙𝑙 = 1, …,   𝑚𝑚(𝑙𝑙) , 𝑙𝑙 = 1, … , 𝐿𝐿 − 1 (7vi)

𝑜𝑜
𝛾𝛾𝑛𝑛   𝛾𝛾𝑛𝑛 ∈𝐶𝐶𝛾𝛾𝑛𝑛+1

(𝑛𝑛+1)
(𝑛𝑛) =

∑ 𝑤𝑤�𝛾𝛾1
𝛽𝛽
𝛾𝛾1∈𝐶𝐶𝛾𝛾𝑛𝑛

(𝑛𝑛)

∑ 𝑤𝑤�𝛾𝛾1
𝛽𝛽
𝛾𝛾1∈𝐶𝐶𝛾𝛾𝑛𝑛+1

(𝑛𝑛+1)

 𝛾𝛾𝑛𝑛 = 1, … ,𝛽𝛽(𝑛𝑛)      𝑛𝑛 = 1, … ,𝑁𝑁− 1 (7vii)

� 𝑢𝑢�𝑓𝑓1
= 𝑢𝑢𝑓𝑓𝑘𝑘

𝑠𝑠

𝑓𝑓1∈𝐴𝐴𝑓𝑓𝑘𝑘
(𝑘𝑘)

𝑓𝑓𝑘𝑘 = 1, …,   𝑠𝑠(𝑘𝑘) , 𝑘𝑘 = 1, … ,𝐾𝐾 − 1 (7viii)

� 𝑣𝑣�𝑔𝑔1
= 𝑣𝑣𝑔𝑔𝐿𝐿

𝑚𝑚

𝑔𝑔1∈𝐵𝐵𝑔𝑔𝐿𝐿
(𝐿𝐿)

𝑔𝑔𝑙𝑙 = 1, …,   𝑚𝑚(𝑙𝑙) , 𝑙𝑙 = 1, … , 𝐿𝐿 − 1 (7ix)

� 𝑤𝑤�𝛾𝛾1
= 𝑤𝑤𝛾𝛾𝑛𝑛

𝛽𝛽

𝛾𝛾1∈𝐶𝐶𝛾𝛾𝑛𝑛
(𝑛𝑛)

 𝛾𝛾𝑛𝑛 = 1, … ,𝛽𝛽(𝑛𝑛)      𝑛𝑛 = 1, … ,𝑁𝑁− 1 (7x)

𝑢𝑢𝑓𝑓𝑘𝑘 ,𝑣𝑣𝑔𝑔𝑙𝑙 ,𝑤𝑤𝛾𝛾𝑛𝑛 ≥ 𝜀𝜀 (7xi)

𝑝𝑝
𝑓𝑓𝑘𝑘  𝑓𝑓𝑘𝑘 ∈𝐴𝐴𝑓𝑓𝑘𝑘+1

(𝑘𝑘+1)
(𝑘𝑘) ≥ 𝜉𝜉 (7xii)

𝑞𝑞
𝑔𝑔𝑙𝑙  𝑔𝑔𝑙𝑙 ∈𝐵𝐵𝑔𝑔𝑙𝑙+1

(𝐿𝐿+1)
(𝑙𝑙) ≥ 𝜉𝜉 (7xiii)

𝑜𝑜
𝛾𝛾𝑛𝑛  𝛾𝛾𝑛𝑛 ∈𝐶𝐶𝛾𝛾𝑛𝑛+1

(𝑛𝑛+1)
(𝑛𝑛) ≥ 𝜉𝜉 (7xiv)

𝑢𝑢�𝑓𝑓1
 ,𝑣𝑣�𝑔𝑔1

,𝑤𝑤�𝛾𝛾1
≥ 𝜉𝜉(𝑘𝑘−1)𝜀𝜀 (7xv)

 

(7) 

Where constraint (7ii) corresponds to the system as redundant and can be omitted. Constraints (7iii) 

and (7iv) correspond to first and second processes, respectively. Constraints (7v − 7vii) show the 

layer weights of each indicator category, and constraints (7viii− 7x) represent the sum of indicator 

weights of each category associated with the corresponding layer. The 𝜀𝜀 and 𝜉𝜉 in constraints (7xi-7xv) 

are small non-Archimedean numbers that are imposed to model for preventing the DMU to assign a 

weight of zero to unfavorable indicators. 

Where 𝐸𝐸𝑜𝑜 is the overall efficiency level of two-stage process for 𝐷𝐷𝐷𝐷𝑈𝑈𝑜𝑜. Assuming that Model (7) 

yields a unique solution, the efficiencies for the first and second stages are 𝐸𝐸𝑜𝑜1 = ∑ 𝑤𝑤�𝛾𝛾1
𝑍𝑍𝛾𝛾1𝑜𝑜

𝛽𝛽
𝛾𝛾1=1  and 
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𝐸𝐸𝑜𝑜2 = ∑ 𝑢𝑢�𝑓𝑓1
𝑌𝑌𝑓𝑓1𝑜𝑜

/∑ 𝑤𝑤�𝛾𝛾1
𝑍𝑍𝛾𝛾1𝑜𝑜

𝛽𝛽
𝛾𝛾1=1  𝑠𝑠

𝑓𝑓1=1 , respectively. The overall efficiency level could be calculated by 

product of the individual efficiency levels for each stage, i.e.  𝐸𝐸𝑜𝑜 = 𝐸𝐸𝑜𝑜1 × 𝐸𝐸𝑜𝑜2. 

3.2. A Fuzzy GML-NDEA Model 

The input and output indicators in Model (7) are assumed to be a set of quantitative data for the 

performance assessment process. However, in many applications some indicators are uncertain or 

vague, and in this case the fuzzy set theory, as briefly explained in Section 2.4, has been found as a 

valuable approach to tackle imprecision and vagueness in a DEA framework. The approach proposed 

by Shen et al. [34] is employed in this paper in order to deal with the uncertain data. Model (8) is 

similar to Model 7 with the exception that in Model 8 each indicator is presented as a fuzzy number. 

In developing a fuzzy GML-NDEA (GFML-NDEA) model, the qualitative indicator data are 

represented as fuzzy numerical values by simply considering the crisp indicators 𝑋𝑋𝑔𝑔𝑙𝑙𝑗𝑗 ,𝑍𝑍γ𝑛𝑛𝑗𝑗, and 𝑌𝑌𝑓𝑓𝑘𝑘𝑗𝑗 

as fuzzy indicators 𝑋𝑋�𝑔𝑔𝑙𝑙𝑗𝑗 ,𝑍𝑍�γ𝑛𝑛𝑗𝑗, and 𝑌𝑌�𝑓𝑓𝑘𝑘𝑗𝑗, respectively. Where they are assumed to be symmetrical 

triangular fuzzy numbers as represented by pairs with corresponding centers and spreads, 𝑋𝑋�𝑔𝑔𝑙𝑙𝑗𝑗 =

(𝑋𝑋𝑔𝑔1𝑗𝑗
, 𝑏𝑏𝑔𝑔1𝑗𝑗

), 𝑍𝑍�γ𝑛𝑛𝑗𝑗 = (𝑍𝑍𝛾𝛾1𝑗𝑗
, 𝑑𝑑𝛾𝛾1𝑗𝑗

) and 𝑌𝑌�𝑓𝑓𝑘𝑘𝑗𝑗 = (𝑌𝑌𝑓𝑓1𝑗𝑗
, 𝛼𝛼𝑓𝑓1𝑗𝑗

) where 𝑋𝑋𝑔𝑔1𝑗𝑗, 𝑍𝑍𝛾𝛾1𝑗𝑗 and 𝑌𝑌𝑓𝑓1𝑗𝑗 are the normalized value for 

related indicators and 𝑏𝑏𝑔𝑔1𝑗𝑗, 𝑑𝑑𝛾𝛾1𝑗𝑗  and 𝛼𝛼𝑓𝑓1𝑗𝑗 are their spread, respectively. The rest of the parameters and 

variables are similar to Model 7. The resulted GFML-NDEA model has the form of a fuzzy linear 

programming problem with fuzzy coefficients both in the objective function and in the constraints. 

Considering Model (7), the GFML-NDEA model is transformed to the following crisp linear 

programming problem. 

𝐸𝐸𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝜆𝜆1 � 𝑢𝑢�𝑓𝑓1(𝑌𝑌𝑓𝑓1𝑜𝑜 − (1 − 𝑝𝑝𝑝𝑝)𝛼𝛼𝑓𝑓1𝑜𝑜

𝑆𝑆

𝑓𝑓1=1

) + 𝜆𝜆2 � 𝑢𝑢�𝑓𝑓1(𝑌𝑌𝑓𝑓1𝑜𝑜 + (1 − 𝑝𝑝𝑝𝑝)𝛼𝛼𝑓𝑓1𝑜𝑜

𝑆𝑆

𝑓𝑓1=1

)

𝑠𝑠. 𝑡𝑡.

� 𝑣𝑣�𝑔𝑔1𝑋𝑋𝑔𝑔1𝑜𝑜

𝑚𝑚

𝑔𝑔1=1

≥ 𝑔𝑔𝑜𝑜

� 𝑢𝑢�𝑓𝑓1(𝑌𝑌𝑓𝑓1𝑗𝑗 + (1 − 𝑝𝑝𝑝𝑝)𝑎𝑎𝑓𝑓1𝑗𝑗) −
𝑆𝑆

𝑓𝑓1=1

� 𝑣𝑣�𝑔𝑔1(𝑋𝑋𝑔𝑔1𝑗𝑗 + (1 − 𝑝𝑝𝑝𝑝)𝑏𝑏𝑔𝑔1𝑗𝑗

𝑚𝑚

𝑔𝑔1=1

) ≤ 0  𝑗𝑗 = 1, … ,𝑛𝑛

� 𝑤𝑤�𝛾𝛾1(𝑍𝑍𝛾𝛾1𝑗𝑗 + (1 − 𝑝𝑝𝑝𝑝)𝑑𝑑𝛾𝛾1𝑗𝑗) −
𝛽𝛽

𝛾𝛾1=1

� 𝑣𝑣�𝑔𝑔1(𝑋𝑋𝑔𝑔1𝑗𝑗 + (1 − 𝑝𝑝𝑝𝑝)𝑏𝑏𝑔𝑔1𝑗𝑗

𝑚𝑚

𝑔𝑔1=1

) ≤ 0  𝑗𝑗 = 1, … ,𝑛𝑛

� 𝑢𝑢�𝑓𝑓1(𝑌𝑌𝑓𝑓1𝑗𝑗 + (1 − 𝑝𝑝𝑝𝑝)𝑎𝑎𝑓𝑓1𝑗𝑗) −
𝑆𝑆

𝑓𝑓1=1

� 𝑤𝑤�𝛾𝛾1(𝑍𝑍𝛾𝛾1𝑗𝑗 + (1 − 𝑝𝑝𝑝𝑝)𝑑𝑑𝛾𝛾1𝑗𝑗)
𝛽𝛽

𝛾𝛾1=1

≤ 0  𝑗𝑗 = 1, … ,𝑛𝑛

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 7v 𝑡𝑡𝑡𝑡 7xii

 

(8) 

 

Here, 𝑝𝑝𝑝𝑝 is the possibility level that is determined by the decision-makers, so naturally 𝑝𝑝𝑝𝑝 ∈ [0,1] 

is expected. In practice, the given possibility level by decision-makers represents their attitude toward 

uncertainty. When 𝑝𝑝𝑝𝑝 = 1, the fuzzy data are supposed to be treated as crisp and the same indicator 
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scores are obtained for each DMU regardless of whether the decision-makers take a pessimistic, 

indifferent, or optimistic consideration. When the given value to 𝑝𝑝𝑝𝑝 becomes lower than 1, the decision-

makers are supposed to be more cautious with respect to data ambiguity and vagueness. As a 

consequence, a wider range of indicator scores can be derived. In such a way, the uncertainties or 

vagueness related to the indicators measured are captured by the model. The fuzzy indicator scores are 

achieved in accordance with the various possibility levels (𝑝𝑝𝑝𝑝) using the symmetric triangular fuzzy 

output vector 𝑌𝑌𝑜𝑜 = (𝑦𝑦𝑜𝑜,𝑑𝑑𝑜𝑜)𝐿𝐿. 𝜆𝜆1 and 𝜆𝜆2 are defined for providing pessimistic, indifferent, and 

optimistic situations with 𝜆𝜆1 ≥ 0, 𝜆𝜆2 ≥ 0 and 𝜆𝜆1 +  𝜆𝜆2 = 1. Three situations are usually considered, 

which are pessimistic if 𝜆𝜆1 = 1, optimistic if 𝜆𝜆2 = 1, and indifferent if 𝜆𝜆1 = 𝜆𝜆2 = 0.5. The fuzzy 

efficiency score of DMUo can then be defined as {∑ 𝑢𝑢�∗𝑓𝑓1(𝑌𝑌𝑓𝑓1𝑜𝑜 − (1 − 𝑝𝑝𝑝𝑝)𝛼𝛼𝑓𝑓1𝑜𝑜
𝑆𝑆
𝑓𝑓1=1 , ∑ 𝑢𝑢�∗𝑓𝑓1𝑌𝑌𝑓𝑓1𝑜𝑜

𝑆𝑆
𝑓𝑓1=1 , 

∑ 𝑢𝑢�∗𝑓𝑓1(𝑌𝑌𝑓𝑓1𝑜𝑜 + (1 − 𝑝𝑝𝑝𝑝)𝛼𝛼𝑓𝑓1𝑜𝑜
𝑆𝑆
𝑓𝑓1=1 }, which again represents pessimistic, indifferent, and optimistic scenarios. 

To calculate the value of go in the above serial network model, as in the case of [30], first 𝑒𝑒 is 

taken as 𝑒𝑒 = 𝑀𝑀𝑀𝑀𝑥𝑥𝑗𝑗=1,…,𝑛𝑛 (𝑀𝑀𝑀𝑀𝑀𝑀 𝑏𝑏𝑔𝑔1𝑗𝑗 / 𝑋𝑋𝑔𝑔1𝑗𝑗). Then, by substituting 𝑒𝑒 in the following model, 𝑔𝑔𝑜𝑜 is 

calculated for each DMU as follows: 

𝑔𝑔𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚    � 𝑣𝑣�𝑔𝑔1𝑏𝑏𝑔𝑔1𝑜𝑜

𝑚𝑚

𝑔𝑔1=1

s. t.

� 𝑣𝑣�𝑔𝑔1(𝑋𝑋𝑔𝑔1𝑜𝑜 − (1 − 𝑝𝑝𝑝𝑝)𝑏𝑏𝑔𝑔1𝑜𝑜

𝑚𝑚

𝑔𝑔1=1

) = 1 − (1 − 𝑝𝑝𝑝𝑝) ∗ 𝑒𝑒

� 𝑣𝑣�𝑔𝑔1(𝑋𝑋𝑔𝑔1𝑜𝑜 + (1 − 𝑝𝑝𝑝𝑝)𝑏𝑏𝑔𝑔1𝑜𝑜

𝑚𝑚

𝑔𝑔1=1

) ≤ 1 + (1 − 𝑝𝑝𝑝𝑝) ∗ 𝑒𝑒 

𝑣𝑣�𝑔𝑔1 ≥ 𝜀𝜀 𝑔𝑔1 = 1, … ,𝑚𝑚

 

(9) 

The optimization problem (9) is used to seek the maximum Z = 𝑣𝑣�𝑔𝑔1𝑏𝑏𝑔𝑔1𝑜𝑜 constrained by 𝑣𝑣�𝑔𝑔1𝑏𝑏𝑔𝑔1𝑜𝑜 ≲

1�  with the same left endpoint as fuzzy number 1�  in 𝑝𝑝𝑝𝑝-level sets. This approach can be regarded as a 

generalization of the procedure in which seeking a value 𝑥𝑥 such that 𝑥𝑥 = 1 is equivalent to finding out 

the biggest 𝑥𝑥 subject to 𝑥𝑥 ≤ 1. For more details refer to [29]. 

3.3. A GFML-NDEA-based CI Model 

Model (8) represents a general situation in which all processes have both inputs and outputs when 

there is a situation where you are looking to construct an aggregated index, or in other words, there is 

no input, or there is a constant or equal input (i.e. ∑ 𝑣𝑣�𝑔𝑔1𝑋𝑋𝑔𝑔1𝑜𝑜
𝑚𝑚
𝑔𝑔1=1  is equivalent with 1 and the spread of 

𝑋𝑋𝑔𝑔1𝑗𝑗, i.e. 𝑏𝑏𝑔𝑔1𝑗𝑗, is equal to zero). Taking the Shen’s DEA-CI model [22] into consideration, for all 𝑝𝑝𝑝𝑝 ∈

[0, 1] we have ∑ (𝑣𝑣�𝑔𝑔1𝑋𝑋𝑔𝑔1𝑗𝑗 + (1 − 𝑝𝑝𝑝𝑝)𝑏𝑏𝑔𝑔1𝑗𝑗)𝑚𝑚
𝑔𝑔1=1 = 1. Accordingly, the GFML-NDEA model can be 

converted to a GFML-NDEA-based CI (GFML-NDEA-CI) model as follows: 
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𝐶𝐶𝐶𝐶𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝜆𝜆1 ∑ 𝑢𝑢�𝑓𝑓1(𝑌𝑌𝑓𝑓1𝑜𝑜 − (1 − 𝑝𝑝𝑝𝑝)𝛼𝛼𝑓𝑓1𝑜𝑜
𝑆𝑆
𝑓𝑓1=1 ) + 𝜆𝜆2 ∑ 𝑢𝑢�𝑓𝑓1(𝑌𝑌𝑓𝑓1𝑜𝑜 + (1 − 𝑝𝑝𝑝𝑝)𝛼𝛼𝑓𝑓1𝑜𝑜

𝑆𝑆
𝑓𝑓1=1 )

𝑠𝑠. 𝑡𝑡.
∑ 𝑢𝑢�𝑓𝑓1

(𝑌𝑌𝑓𝑓1𝑗𝑗
+ (1 − 𝑝𝑝𝑝𝑝)𝑎𝑎𝑓𝑓1𝑗𝑗

)𝑆𝑆
𝑓𝑓1=1 ≤ 1

∑ 𝑤𝑤�𝛾𝛾1(𝑍𝑍𝛾𝛾1𝑗𝑗 + (1 − 𝑝𝑝𝑝𝑝)𝑑𝑑𝛾𝛾1𝑗𝑗)
𝛽𝛽
𝛾𝛾1=1 ≤ 1

∑ 𝑢𝑢�𝑓𝑓1
(𝑌𝑌𝑢𝑢𝑓𝑓1𝑗𝑗

+ (1 − 𝑝𝑝𝑝𝑝)𝑎𝑎𝑓𝑓1𝑗𝑗
) −𝑆𝑆

𝑓𝑓1=1 ∑ 𝑤𝑤�𝛾𝛾1(𝑍𝑍𝛾𝛾1𝑗𝑗 + (1 − 𝑝𝑝𝑝𝑝)𝑑𝑑𝛾𝛾1𝑗𝑗)
𝛽𝛽
𝛾𝛾1=1 ≤ 0

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 7v, 7vii, 7viii, 7x, 7xi, 7xii, 7xiv, and 7xv 

  

(10) 

Where the fuzzy index score of DMUo, i.e. 𝐶𝐶𝐼𝐼𝑜𝑜, it can then be defined as {∑ 𝑢𝑢�∗𝑓𝑓1(𝑌𝑌𝑓𝑓1𝑜𝑜 −
𝑆𝑆
𝑓𝑓1=1

(1 − 𝑝𝑝𝑝𝑝)𝛼𝛼𝑓𝑓1𝑜𝑜, ∑ 𝑢𝑢�∗𝑓𝑓1𝑌𝑌𝑓𝑓1𝑜𝑜
𝑆𝑆
𝑓𝑓1=1 , ∑ 𝑢𝑢�∗𝑓𝑓1(𝑌𝑌𝑓𝑓1𝑜𝑜 + (1 − 𝑝𝑝𝑝𝑝)𝛼𝛼𝑓𝑓1𝑜𝑜

𝑆𝑆
𝑓𝑓1=1 }, which again represents pessimistic, indifferent, 

and optimistic scenarios. 

Definition 4. The relative efficiency score for each 𝐷𝐷𝐷𝐷𝑈𝑈𝑜𝑜 is a triangular fuzzy number in a 

possibility level 𝑝𝑝𝑝𝑝 that can be defined in three pessimistic, indifferent, and optimistic modes as 

follows: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐼𝐼𝑜𝑜
𝑝𝑝𝑝𝑝 = [Pes, Ind, Opt ] = �� 𝑢𝑢�∗𝑓𝑓1�𝑌𝑌𝑓𝑓1𝑜𝑜 − (1 − 𝑝𝑝𝑝𝑝)𝑎𝑎𝑓𝑓1𝑜𝑜�

𝑆𝑆

𝑓𝑓1=1

, � 𝑢𝑢�∗𝑓𝑓1𝑌𝑌𝑓𝑓1𝑜𝑜

𝑆𝑆

𝑓𝑓1=1

 , � 𝑢𝑢�∗𝑓𝑓1�𝑌𝑌𝑓𝑓1𝑜𝑜 + (1 − 𝑝𝑝𝑝𝑝)𝑎𝑎𝑓𝑓1𝑜𝑜�
𝑆𝑆

𝑓𝑓1=1

� (11) 

Definition 5. If 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐼𝐼𝑜𝑜
𝑝𝑝𝑝𝑝 be the triangular fuzzy score of 𝐷𝐷𝐷𝐷𝑈𝑈𝑜𝑜 in possibility level 𝑝𝑝𝑝𝑝, based 

on Definition 3, Ag Fuzzy 𝐶𝐶𝐼𝐼𝑜𝑜
𝑝𝑝𝑝𝑝 can be defined as an aggregated fuzzy score for 𝐷𝐷𝐷𝐷𝑈𝑈𝑜𝑜 in possibility 

level 𝑝𝑝𝑝𝑝 as follows: 

𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐼𝐼𝑜𝑜
𝑝𝑝𝑝𝑝

=
∑ 𝑢𝑢�𝑓𝑓1�𝑌𝑌𝑓𝑓1𝑜𝑜 − (1 − 𝑝𝑝𝑝𝑝)𝑎𝑎𝑓𝑓1𝑜𝑜�
𝑆𝑆
𝑓𝑓1=1 + 2 ∑ 𝑢𝑢�𝑓𝑓1𝑌𝑌𝑓𝑓1𝑜𝑜

𝑆𝑆
𝑓𝑓1=1 +  ∑ 𝑢𝑢�𝑓𝑓1�𝑌𝑌𝑓𝑓1𝑜𝑜 + (1 − 𝑝𝑝𝑝𝑝)𝑎𝑎𝑓𝑓1𝑜𝑜�

𝑆𝑆
𝑓𝑓1=1

4
 

(12) 

3.4. Imposing some restrictions on weights 

DEA research has suggested a wide variety of weight restriction methods (e.g., [21,31]). The four 

commonly applied techniques of weight restrictions include "absolute weight restrictions", "relative 

weight restrictions", and "ordinal weight restrictions" [12]. 

In this research, we added absolute weight restrictions, i.e., 𝐿𝐿𝑓𝑓𝑘𝑘
(𝑘𝑘) ≤ 𝑝𝑝𝑓𝑓𝑘𝑘 

(𝑘𝑘) ≤ 𝑈𝑈𝑓𝑓𝑘𝑘
(𝑘𝑘), where 𝑓𝑓𝑘𝑘 ∈

𝐴𝐴𝑓𝑓𝑘𝑘+1
(𝑘𝑘+1), 𝑘𝑘 = 1, … ,𝐾𝐾 + 1, 𝐿𝐿 and 𝑈𝑈 represent the lower and upper bounds of the internal weights, 

respectively [12], and further incorporated them into the model. 

4. Application in PBB 
There are many reasons why governments want to measure performance and allocate budget 

based on performance. The most important reason is probably the decision to allocate scarce state 

resources based on which government programs yield better results and therefore deserve increases in 
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the budget. However, the public sector is not inherently intended to achieve profitability, so without 

the profitability driver it is challenging to identify which programs produce benefits and which do not 

[32]. Performance measurements would address this problem by providing quantitative evidence 

demonstrating that programs serve their purposes and to what extent. Performance-based budgeting 

uses the performance measurement output in the budgeting process, preferably reflected in budget 

allocations that more precisely represent the program's relative value [32]. 

As a result of pressure from the central government, the PBB is often used to boost performance 

[33]. The Plan and Budget Organization (PBO) of Iran has also established a PBB program and in 

accordance with the annex to the 2013 budget deficit, it advised all entities of this program. Although 

organizations are showing the expected motivation to move towards the PBB model, they are 

progressing slowly and behind the planned schedule. It is necessary to identify, assess, and recognize 

the organizations that have begun using the PBB program to promote the change while also identifying 

good practices and share successful experiences with other organizations. To this purpose, the progress 

of implementing PBB in different organizations should be monitored and evaluated. 

4.1. PBB Maturity Model Hierarchy 

Maturity models can be used to evaluate the ability of a system in performance measurement. The 

PBB maturity model proposed by Amini et al. [17] is an evaluation model that seeks to assess the 

progress of organizations in establishing and implementing a successful budgeting system and consists 

of “capabilities” and “results” processes while a set of indicators is defined for each process as shown 

in Figure 4.  

The first process assesses the capabilities of PBB sub-systems. It evaluates six main sub-systems 

of the budgeting system including "planning, information management, process management & 

documentation, costing system, performance management, and control & monitoring". The second 

process assesses the results of a successful deployment of a PBB system. In addition to evaluating all 

capabilities of a budgeting system, the extent to which the goals of that system are achieved is also 

considered. When defining the results indicators, the focus must be on the expectations of benefits that 

each organization has in the event of a full and correct implementation of the PBB systems. 

Accordingly, by reviewing the literature and interviewing the budgeting experts, four main result 

indicators were defined: "transparency & accountability”, “budget discipline”, “applying performance 

information”, and “applying costing information”[17].  

PBB maturity measurement in Iran is usually conducted in two phases. In order to evaluate the 

organization's budget maturity, a PBB rating was designed by the advisory committee of the 

International Conference on PBB held in 2018 in Tehran, Iran. Initially, all organizations, agencies, 

and institutions that claimed to deploy and implement a PBB system in their organization were invited 
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to participate in the process of evaluating their budget maturity. Accordingly, the process of assessing 

the maturity of the budgeting system began with announcing the readiness of 20 organizations. 

In the first phase, self-declaration forms were filled out by the organizations regarding the 

activities carried out in the field of the budget. The forms filled out were evaluated by several trained 

auditors, including a few representatives from the PBO of Iran, the Supreme Audit Court (SAC) of 

Iran, and some budget experts in Iran. Based on the initial evaluation, only 14 organizations from 

different sectors, including electric energy, tourism, banking, economic planning, and social security, 

were able to attain the minimum standards required to enter the final evaluation stage of the budget 

maturity rating. 

In the second phase, evaluation forms containing both qualitative and quantitative indicators were 

used in two parts. The first part was devoted to assessing the capabilities of a mature system 

complemented by a Likert-based questionnaire (six main criteria and twelve sub-criteria for each 

criterion) through a review of the documentation and systems as well as interviews. The second part 

was related to evaluating the results of a mature PBB system. Its quantitative indicators were collected 

through the SAC of Iran and quality indicators were filled in using the form of a questionnaire through 

observations and interviews. 
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Figure 4. The hierarchal structure of the PBB maturity model proposed by Amini et al. [17]
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4.2. Available Data 

The data collected described above was prepared by organizing the qualitative data based on the 

logic introduced by [22] as a triangular fuzzy number. Accordingly, the center and spread of each piece 

of qualitative data 𝑌𝑌�𝑟𝑟𝑟𝑟 = (𝑌𝑌𝑟𝑟𝑟𝑟 ,𝛼𝛼𝑟𝑟𝑟𝑟) are listed in Table 1. Descriptive statistics and raw data for all sub-

indicators are provided in Appendix A and Supplementary material, respectively. 

Table 1. The symmetrical triangular fuzzy numbers for the Likert-based qualitative data 

Qualitative data 1 2 3 4 5 

Fuzzy number �𝑌𝑌𝑟𝑟𝑟𝑟 ,𝛼𝛼𝑟𝑟𝑟𝑟� �
1
5 ,

1
5� �

2
5 ,

1
5� �

3
5 ,

1
5� �

4
5 ,

1
5� �

5
5 ,

1
5� 

The raw data should be normalized in order to eliminate the scale differences among the sub-

indicators. A considerable number of normalization methods have been introduced in the literature 

including rescaling, standardization, and ranking [34]. Therefore, in our study, the distance to a 

reference approach [35] is applied.  

4.3. Weight Restrictions 

The following formulas are defined to determine the lower and upper bounds of the interval 

weights of sub-indicators into their indicator: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓 interval weights 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1

Number of sub indicators in 𝑓𝑓𝑡𝑡ℎ indicator
× 0.5 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓 interval weights 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1

Number of sub indicators in 𝑓𝑓𝑡𝑡ℎ indicator
× 2 

As for the above restrictions, all 12 sub-indicators in each capability indicator should be in the 

range of [0.041667, 0.16667]. Likewise, the interval weights of all the three sub-indicators in the first 

and second indicators should be in the range of [0.16667, 0.6667], and the share of all sub-indicators 

in the third and fourth indicators should be in the ranges of [0.25, 1] and [0.125, 0.5], respectively. 

Also, 𝜀𝜀 = 0.01, 𝜉𝜉 = 0.1, and  𝜉𝜉 × 𝜀𝜀 = 0.001 are imposed to avoid assigning zero weights. 

5. Experimental Results 
Composite efficiency scores of the PBB maturity indicator for 14 governmental agencies were 

computed by applying the GFML-NDEA-CI model (10), and the results are presented in Table 2. As 

seen, the model is solved for each possibility level 𝑝𝑝𝑝𝑝 ∈ {0, 0.5, 1}. Based on the defuzzification of the 

model, triangular fuzzy efficiency scores are calculated for each level of 𝑝𝑝𝑝𝑝 in Table 2.  

Table 2. Composite efficiency indicator scores of 14 governmental agencies based on the GFML-NDEA-CI 
model 

DMUs Sector 
Composite Indicator (CI) 

pl = 0 pl = 0.5 pl = 1 
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DMU01 Banking  {0.483, 0.605, 0.806} {0.574, 0.651, 0.787} {0.763, 0.763, 0.763} 

DMU02 Economic planning  {0.515, 0.605, 0.817} {0.562, 0.679, 0.799} {0.779, 0.779, 0.779} 

DMU03 Social security  {0.405, 0.592, 0.784} {0.549, 0.655, 0.762} {0.733, 0.733, 0.733} 

DMU04 Electric energy  {0.256, 0.407, 0.688} {0.345, 0.476, 0.647} {0.589, 0.589, 0.589} 

DMU05 Economic planning  {0.652, 0.823, 1} {0.806, 0.902, 1} {1, 1, 1} 

DMU06 Economic planning  {0.514, 0.613, 0.824} {0.571, 0.688, 0.807} {0.786, 0.786, 0.786} 

DMU07 Banking  {0.508, 0.630, 0.821} {0.592, 0.694, 0.804} {0.785, 0.785, 0.785} 

DMU08 Tourism  {0.509, 0.679, 0.816} {0.649, 0.727, 0.793} {0.766, 0.766, 0.766} 

DMU09 Tourism  {0.273, 0.538, 0.808} {0.473, 0.631, 0.789} {0.765, 0.765, 0.765} 

DMU10 Banking  {0.640, 0.820, 0.997} {0.801, 0.898, 0.994} {0.987, 0.987, 0.987} 

DMU11 Social security  {0.434, 0.597, 0.799} {0.557, 0.653, 0.778} {0.753, 0.753, 0.753} 

DMU12 Social security  {0.523, 0.712, 0.902} {0.683, 0.788, 0.893} {0.881, 0.881, 0.881} 

DMU13 Banking  {0.539, 0.665, 0.836} {0.633, 0.722, 0.817} {0.795, 0.795, 0.795} 

DMU14 Electric energy  {0.305, 0.443, 0.712} {0.387, 0.510, 0.676} {0.625, 0.625, 0.625} 

 

The model results can be reported and analyzed for different levels of 𝑝𝑝𝑝𝑝 and for three maturity 

scores, namely the pessimistic, indifferent, and optimistic situations. As seen in Table 2, DMU05 is 

considered the top unit followed by DMU10, DMU12, DMU13, respectively. As the value of reliability 

𝑝𝑝𝑝𝑝 rises from 0 to 1, the fuzzy score interval (distance between the pessimistic and optimistic scores) 

decreases. Looking at the fifth column, for 𝑝𝑝𝑝𝑝 = 1, which represents complete reliability, the interval 

approaches zero. 

5.1. Aggregating the Triple Fuzzy Scores of PBB Maturity Indicator 

With regard to Definition 2, three pessimistic, indifferent, and optimistic fuzzy numbers are 

calculated as the final scores of the DMUs. As shown in Table 2, there are lots of PBB maturity 

indicator scores related to different possibility levels (𝑝𝑝𝑝𝑝) and three fuzzy scores for pessimistic, 

indifferent, and optimistic situations. To better analyze the PBB maturity indicator, according to 

Definition 5, the aggregated fuzzy scores of the DMUs are calculated as presented in Table 3. The 

aggregated fuzzy efficiency scores of overall PBB maturity indicator (Composite Indicator or CI) as 

well as its two processes, i.e. capabilities and results as illustrated in Section 4.1 and Figure 4, for each 

possibility level 𝑝𝑝𝑝𝑝 ∈ {0, 0.5, 1} are depicted in Table 3.  

Table 3. The aggregated fuzzy efficiency scores of overall PBB maturity indicator and its two processes, 
capabilities and results. 

DMUs Sector 
Overall CI Capabilities' CI Results' CI 

pl = 0 pl =0.5 pl = 1 pl = 0 pl = 0.5 pl = 1 pl = 0 pl = 0.5 pl = 1 

𝐃𝐃𝐃𝐃𝐔𝐔𝟎𝟎𝟎𝟎 Banking 0.625 0.666 0.764 0.766 0.841 0.989 0.819 0.792 0.772 

𝐃𝐃𝐃𝐃𝐔𝐔𝟎𝟎𝟎𝟎 Economic 
planning 0.636 0.68 0.78 0.671 0.737 0.875 0.95 0.924 0.892 
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DMUs Sector 
Overall CI Capabilities' CI Results' CI 

pl = 0 pl =0.5 pl = 1 pl = 0 pl = 0.5 pl = 1 pl = 0 pl = 0.5 pl = 1 

𝐃𝐃𝐃𝐃𝐔𝐔𝟎𝟎𝟎𝟎 Social 
security 0.594 0.656 0.734 0.594 0.656 0.734 1 1 1 

𝐃𝐃𝐃𝐃𝐔𝐔𝟎𝟎𝟎𝟎 Electric 
energy 0.44 0.486 0.59 0.806 0.893 1 0.53 0.538 0.59 

𝐃𝐃𝐃𝐃𝐔𝐔𝟎𝟎𝟎𝟎 Economic 
planning 0.825 0.903 1 0.825 0.903 1 1 1 1 

𝐃𝐃𝐃𝐃𝐔𝐔𝟎𝟎𝟎𝟎 Economic 
planning 0.642 0.689 0.787 0.649 0.698 0.787 0.987 0.985 1 

𝐃𝐃𝐃𝐃𝐔𝐔𝟎𝟎𝟎𝟎 Banking 0.647 0.696 0.785 0.806 0.893 1 0.804 0.779 0.785 

𝐃𝐃𝐃𝐃𝐔𝐔𝟎𝟎𝟎𝟎 Tourism 0.672 0.725 0.766 0.677 0.73 0.788 0.993 0.994 0.972 

𝐃𝐃𝐃𝐃𝐔𝐔𝟎𝟎𝟎𝟎 Tourism 0.54 0.631 0.765 0.62 0.683 0.765 0.843 0.918 1 

𝐃𝐃𝐃𝐃𝐔𝐔𝟏𝟏𝟏𝟏 Banking 0.82 0.898 0.988 0.82 0.898 0.988 1 1 1 

𝐃𝐃𝐃𝐃𝐔𝐔𝟏𝟏𝟏𝟏 Social 
security 0.607 0.661 0.753 0.607 0.661 0.753 1 1 1 

𝐃𝐃𝐃𝐃𝐔𝐔𝟏𝟏𝟏𝟏 Social 
security 0.713 0.788 0.882 0.713 0.788 0.882 1 1 1 

𝐃𝐃𝐃𝐃𝐔𝐔𝟏𝟏𝟏𝟏 Banking 0.677 0.724 0.796 0.677 0.724 0.796 1 1 1 

𝐃𝐃𝐃𝐃𝐔𝐔𝟏𝟏𝟏𝟏 Electric 
energy 0.476 0.521 0.626 0.616 0.688 0.784 0.762 0.75 0.798 

 

The aggregated score of overall CI indicates that DMU05 has the highest maturity. Then DMU10, 

DMU12, and DMU13 are in the following ranks, respectively. 

5.2. Comparing GFML-NDEA-CI Model with alternative Models 

Efficiency measurement is a key business area surrounded by epistemic uncertainty with respect 

to the dual formed by the object under study and the chosen method to measure 

performance. Epistemic uncertainty is lack of knowledge on underlying fundamentals or total 

ignorance of, for example, a possible alternative scenario. This epistemic uncertainty is inherent to the 

delimitation of the object-method pair under study and manifests itself regardless the identified 

literature gap, the scale used to measure variables, the variable (input/output) selection and the 

reproducibility conditions that are intrinsic, to some extent, to the economic sector, industry or DMU 

set of the application. While the proper identification of a literature gap is relevant for advancing the 

body of knowledge, especially in DEA-based models, where a plethora of methods are designed to 

treat specific aspects of a productive network, or in what scales their inputs/outputs are measured, 

research gaps and measurement scales do not themselves mitigate epistemic uncertainty, only assuring 

the aspects of internal validity - in light of the current body of knowledge - and scale validity - the 

proper analytical models were developed to adequately handle the specific nature of what is being 

measured. Similarly, the choice of economic sector and the selection of key variables are relevant 
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issues for assuring research reproducibility as respect to similar contexts, where generalization of 

results can be developed with more certainty. 

Hence, as regards this paper, epistemic uncertainty can be conceptualized as the scientific 

uncertainty in the process of modelling. It is due to limited data and knowledge, and possible tools to 

mitigate epistemic uncertainty in the field of soft computing are the execution of sensitivity analysis, 

not only by running alternative models, but also using different parameters into the proposed model; 

and the apprehension of information entropy principles, for improving decision-making as regards 

whether or not a given model in contributing to reduce epistemic uncertainty. Information entropy is 

the cornerstone of information theory, providing a constructive criterion for setting up probability 

distributions of computed scores on the basis of partial knowledge, while enabling a type of statistical 

inference based on the heterogeneity or dispersion of the scores where no extra  biases  or uncalled 

assumptions can enter into the analysis. 

Given that in this paper there are at least three distinctive features of our proposed model - serial 

structure, constant input (composite indicator), and hierarchical structure (multiple-layer) - it would 

be desirable to find previous papers that, as using composite index measurements, also had a single-

layer series network structure. However, to the best of our knowledge, no article with these 

characteristics has been published so far. Hence, the basic two-stage DEA model of Wanke and Barros 

[24], after becoming a composite index structure in both deterministic and fuzzy situations were 

defined as alternative models which used for the sake of comparison using the same dataset presented 

here. Tables 4 report on the respective scores and entropies for the alternative models considered in 

the epistemic uncertainty analysis. Note that the Fuzzy CI counterpart of two-stage DEA model of 

Wanke and Barros [24], i.e. fuzzy NDEA-CI model, is developed by removing the generalized 

Multiple-Layer property incorporated into the GFML-NDEA-CI model and deterministic two-stage 

DEA-based CI model, i.e. deterministic NDEA-based CI model, is developed by incorporating pl=1 

into Fuzzy NDEA-CI model. 

Considering Definition 5, the aggregated fuzzy CI score of PBB maturity for three 𝑝𝑝𝑝𝑝 𝜖𝜖{0, 0.5, 1} 

for Fuzzy NDEA-CI and GFML-NDEA-CI model are presented in Table 4. In addition, last column 

of Table 4 indicated the score of deterministic NDEA-based CI model. The numbers in parentheses 

given in Table 4 are the ranks of the 14 governmental agencies according to their overall efficiency 

scores for three possibility levels pl for the fuzzy NDEA-CI model, multi-layer GFML-NDEA-CI 

model and deterministic NDEA-based CI model. 
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Table 4. Comparing the overall efficiency scores of 14 governmental agencies based on the fuzzy one-layer 

NDEA-CI model and multi-layer GFML-NDEA-CI model. 

DMUs Sector 

pl=0 pl=0.5 pl=1 Deterministic 
CI 

counterpart 
of two-stage 
DEA ([24]) 

Fuzzy CI 
counterpart 
of two-stage 

DEA [24] 

Proposed 
model  

Fuzzy CI 
counterpart 
of two-stage 

DEA [24] 

Proposed 
model  

Fuzzy CI 
counterpart 
of two-stage 

DEA [24] 

Proposed 
model 

DMU01 Banking 0.826 (6) 0.625 (9)  0.902 (6) 0.666 (9)  1 (1) 0.764 (10) 1 (1) 

DMU02 Economic 
planning 0.826 (6) 0.636 (8)  0.901 (7) 0.68 (8)  1 (1) 0.780 (7) 1 (1) 

DMU03 Social 
security 0.768 (10) 0.594 (11)  0.858 (10) 0.656 (11)  0.971 (10) 0.734 (12) 1 (1) 

DMU04 Electric 
energy 0.599 (14) 0.44 (14)  0.681 (14) 0.486 (14)  0.790 (14) 0.590 (14) 0.796 (14) 

DMU05 Economic 
planning 0.832 (1) 0.825 (1)  0.908 (1) 0.903 (1)  1 (1) 1 (1) 1 (1) 

DMU06 Economic 
planning 0.829 (4) 0.642 (7)  0.907 (3) 0.689 (7)  1 (1) 0.787 (5) 1 (1) 

DMU07 Banking 0.831 (2) 0.647 (6)  0.908 (1) 0.696 (6)  1 (1) 0.785 (6) 1 (1) 

DMU08 Tourism 0.805 (9) 0.672 (5)  0.879 (9) 0.725 (4)  0.979 (9) 0.766 (8) 1 (1) 

DMU09 Tourism 0.698 (12) 0.54 (12)  0.795 (12) 0.631 (12)  0.926 (11) 0.765 (9) 0.942 (11) 

DMU10 Banking 0.83 (3) 0.82 (2)  0.907 (3) 0.898 (2)  1 (1) 0.988 (2) 1 (1) 

DMU11 Social 
security 0.721 (11) 0.607 (10)  0.798 (11) 0.661 (10)  0.896 (13) 0.753 (11) 0.909 (13) 

DMU12 Social 
security 0.828 (5) 0.713 (3)  0.906 (5) 0.788 (3)  1 (1) 0.882 (3) 1 (1) 

DMU13 Banking 0.821 (8) 0.677 (4)  0.90 (8) 0.724 (5)  1 (1) 0.796 (4) 1 (1) 

DMU14 Electric 
energy 0.654 (13) 0.476 (13)  0.752 (13) 0.521 (13)  0.924 (12) 0.626 (13) 0.933 (12) 

NEDa  0 0  0 0  8 1 10 

SDSb  0.0745 0.105  0.0699 0.1123  0.0589 0.1086 0.0568 

DSc  0.232 0.385  0.228 0.417  0.21 0.41 0.2039 

Max  0.832 0.825  0.908 0.903  1 1 1 

Min  0.599 0.440  0.681 0.486  0.79 0.59 0.7961 

Entropy 
index  0.9982 0.9948  0.9987 0.9950  0.9993 0.9964 0.9993 

Mean  0.7763 0.6367  0.8573 0.6946  0.9633 0.7869 0.97 

a NED: The number of efficient DMUs; b SDS: Standard deviation of scores; c DS: Domain of scores 
 

Table 4 indicates that the discriminative power of the GFML-NDEA-CI model is stronger than 

that of its one-layer counterpart. The number of efficient DMUs (NED), the standard deviation of 

scores (SDS), domain of scores (DS) of DMUs, and information entropy are four main measures 

presented to prove the above claim. 

The first measure is NED. The results at 𝑝𝑝𝑝𝑝 = 1 indicate that NED in the fuzzy two-stage DEA  

and deterministic two-stage DEA model are 8 and 10, respectively. This means that due to the large 

number of sub-indicators, the one-layer models was not able to discriminate among DMUs, while in 

the multi-layer model, only one DMU is efficient and the rest are inefficient, which is due to the 
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hierarchical structure of the indicators, as well as imposing upper and lower bounds on the weights of 

each sub-indicator. 

The SDS among DMUs is the second measure to evaluate the discriminative power of the model 

such that when the SDS is higher, it means that the model has been able to make a greater 

discrimination among DMUs. As shown in Table 4, the SDS of the multi-layer model at all levels of 

𝑝𝑝𝑝𝑝 is higher than that of the one-layer model. For instance, for 𝑝𝑝𝑝𝑝 =1, the SDS in the multi-layer model 

is 10.86 while it is 5.89 in the one-layer model. 

The third measure is the DS, which is the difference between the maximum and minimum scores. 

Accordingly, the DS of the two models indicates that the discriminative power of the multi-layer model 

is more than that of the one-layer model. For example, for 𝑝𝑝𝑝𝑝 = 1, the DS of the one-layer model is 

21, while it is 41 in the multi-layer model. This point is indicated as a graphical comparison. As shown 

in Figure 5, the score dispersion of the multi-layer model is higher than that of the one-layer, which 

indicates the higher resolution of the multilayer model as the highest score of both models (for pl=1) 

are equal to 100% and the lowest score for the multi-layer and one-layer are 59% and 79%, 

respectively. The following figure also indicates the density of DMU scores in the one-layer model are 

around 1, while for the multiple layer they are between [0.7, 0.8]. 

 

Figure 5. The spread of composite efficiency scores among DMUs for 𝑝𝑝𝑝𝑝 = 1 in one-layer vs. multi-layer 

models 

The fourth measure is information entropy, which is an important metric of information theory 

discipline and captures uncertainty in terms of the distributional shape rather than in terms of the 

probability mass concentration around the mean, which are captured by statistical moments. Lower 

information entropy are preferable [36]. Depending on the entropy characteristics, the randomness and 

dispersion of a criterion/construct can be determined by calculating the information entropy. In this 

article, information entropy is used to analyze the distribution of the CI score (efficiency score). As 

shown in Table 4, the efficiency scores obtained using the developed multi-layer models for all three 
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𝑝𝑝𝑝𝑝 are distinct from their respective deterministic two-stage DEA and fuzzy two-stage NDEA models 

in terms of information entropy. 

Comparing the rankings obtained from the GFML-NDEA-CI model with those obtained from the 

conventional fuzzy NDEA-CI model, there are a couple of points that are worth discussing briefly. 

Spearman’s correlation coefficient is a measure of the linear association between two variables 

that are available in the ordinal scale. That is, this coefficient measures the strength of the association 

between two ranked variables [37,38]. Based on the Spearman rank correlation coefficient test with 

the critical statistic value of 0.645 for a significance level α=0.01, the rankings of the 14 agencies 

obtained from these two alternative models are not significantly different for all three pessimistic, 

indifferent, and optimistic situations with different possibility levels, pl. Applying the Spearman rank 

correlation test, the test statistics 𝑟𝑟s (and the corresponding p-values) for the GFML-NDEA-CI model 

and conventional fuzzy NDEA-CI model are 0.840 (𝑝𝑝 < 0.001), 0.813 (𝑝𝑝 < 0.001), and 0.825 (𝑝𝑝 <

0.001) for  possibility levels 𝑝𝑝𝑝𝑝 = 0, 𝑝𝑝𝑝𝑝 = 0.5, and 𝑝𝑝𝑝𝑝 = 1, respectively.  

By examining the aggregated fuzzy efficiency scores obtained from both models, it is recognized 

that the discrimination power of GFML-NDEA-CI model is much higher than that of the conventional 

fuzzy NDEA-CI model. This realization indicates a merit of the GFML-NDEA-CI model that it reports 

more informative results and more accurate rankings. 

6. Managerial Implications 
The managerial implications of this research are threefold. First of all, a comprehensive multiple-

layer NDEA model is provided to decision-makers for structuring different indicators in a flexible 

hierarchic framework. While these indicators can be organized in series or in parallel, score 

discrimination remains high in comparison to single-layer models as long as the multiple hierarchic 

layers help in mitigating the curse of dimensionality imposed by small number of DMUs in comparison 

to a large number of indicators. Secondly, as long as indicator weights are determined endogenously 

by the MLNDEA model in a fashion that the overall performance of each DMU is attained, possible 

improvement paths in the budgetary process can be derived specifically for each unit, drawing the 

decision-maker’s attention to the capability weakness that should be improved and result strengths that 

should be replicated in different units. Third, the use of fuzzy numbers as a means for handling the 

surrounding vagueness with respect to indicator measurement and overall knowledge of decision-

makers with respect to environment allows drawing different performance scenarios that could be 

explored by decision-makers in terms of minimal performance requirements (pessimistic) or superior 

performance achievement (optimistic). 

Figure 7 presents the average aggregated efficiency scores of 14 agencies, which are grouped into 

five sectors including tourism, electric energy, banking, social security, and economic planning. 
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Results obtained from a small number of agencies working towards establishing and implementing a 

PBB system revealed that relevant maturity is the highest in agencies involved in the economic 

planning (CI score of 0.757) and banking (CI score of 0.746) sectors, respectively. The CI scores for 

agencies involved in social security and tourism are 0.702 and 0.678, respectively, which are close to 

the average CI score for all agencies, i.e., 0.690 (presented by the dotted line). Agencies involved in 

the electric energy sector have a CI score of 0.504, which is much lower than the average CI score. 

 
Figure 6. Average aggregated efficiency scores for five different sectors 

As noted by [12], the weights to each indicator can be interpreted as the importance of that 

indicator for the corresponding DMU score. Looking at the assigned weights (shares) provided in the 

Supplementary Material, it is possible to note that all 14 agencies are in a poor situation in three 

indicators including "information management", "performance management", and "control & 

monitoring" due to receiving the lowest weights, and also all 14 agencies are in a strong position in 

"planning" due to receiving the highest weights. The weights assigned to the other capability indicators 

including "costing system" and "process management & documentation" vary among DMUs. For 

instance, in the banking agencies (DMU01, DMU07, and DMU13), after "planning", the "costing 

system" has been considered more important than other indicators. However, in economic planning 

agencies (DMU02, DMU05, and DMU06) and social security agencies (DMU03, DMU11 and DMU12), 

after “planning”, their performance in the "process management & documentation" were better ranked 

than the other indicators. 

These results appear to be consistent with empirical evidence. Being ahead in planning could be 

interpreted that even though many years have passed since the PBO of Iran implemented the PBB 

system in 2013, only very recently has this planning activity received serious attention. Such recent 

attention emanates from the fact that in order to renew a budget agreement, the PBO requires all 

agencies to redefine the planning subsystem in accordance with the PBB system's executive guidelines, 

otherwise the PBO will not allocate funds to them. Also, according to budget experts in Iran, one of 
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the most important challenges faced in establishing the PBB system in Iran is the lack of 

comprehensive information systems in many agencies together with the existence of dispersed 

financial and non-financial indicators. 

Similar to information management, "performance management" and "control & monitoring" 

have also received less attention. Apart from organizational ability, one of the reasons for paying less 

attention to these two capability indicators can be traced back to the assessment focus adopted by the 

SAC of Iran. In recent years, the SAC has focused more on financial audit and less on performance 

audit, therefore different organizations were not required to pay attention to the performance dimension 

of the budgeting system. However, since 2018 the SAC's approach has been revised from financial 

auditing to both financial and performance auditing. This has driven organizations to pay more 

attention to the performance aspect of their budget. 

With the same approach, the weights assigned to "result" indicators show that most agencies are 

in a strong position with respect to "budget discipline" and most agencies are in a poor situation in 

"applying performance information". The weights assigned to the two other result indicators including 

"transparency & accountability" and "applying costing information" vary among DMUs. Being ahead 

in “budget discipline”, in addition to its many organizational benefits, can be attributed to the 

regulatory role of organizations such as the SAC. As noted earlier, as the SAC focuses on compliance 

with laws and regulations (i.e., financial audit) and less on performance audit, the "applying 

performance information" indicator is less favored by organizations. 

7. Conclusion 
To analyze a large amount of information, it is easier to look at the different indicators as an 

integrated construction than to find a specific pattern to analyze the indicators separately. 

Composite indicators are increasingly considered as a valuable tool for policy analysis and public 

communication. Therefore, in this study we investigated applying the two-stage data 

envelopment analysis for building composite indicators. 

A number of practical implications can be derived. First, when the modeler is faced with a large 

number of indicators in different categories, instead of aggregating or ignoring some indicators, 

applying a multi-layered approach can achieve more reliable results (i.e. lower information entropy). 

Note that the high similarity of the ranking result based on these two models verified its 

robustness. Secondly, non-parametric optimization was implemented upon a comprehensive 

Multiple-Layer hierarchic structure, thus providing an alternative model to pairwise comparisons in 
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some other comparison methods (e.g. Analytic Network Process1 or even to the statistical modeling 

within the ambit of Structural Equation Modeling2). Thirdly, applying a multilayer DEA approach 

through intra-category weighting represents important content about strong and poor status of 

indicators in each DMU, which provides insights into ways to improve the system’s efficiency. 

Fourthly, applying fuzzy logic to deal with uncertain data on some indicators and sub-indicators allows 

the desired flexibility to handle indicators of different scales such as metric, ordinal, or even nominal, 

as well as when decisions are made under uncertainty/vagueness, such as in the case of PBB in Iran. 

Further research venues could consider not only different approaches for modeling data 

uncertainty such as Z-numbers or interval data, but also data randomness by incorporating stochastic 

performance elements over the course of time by adding a temporal dimension in the multiple-layer 

network DEA model via links and carry-overs. Two-Dimensional Fuzzy-Monte Carlo approaches 

could be employed to identify which performance components are most subject to vagueness to the 

detriment of randomness, and vice-versa, as capabilities and results may be influenced differently from 

these different uncertainty sources. Improvement programs could be designed in terms of quality 

control tools for those indicators subjected the most to randomness, while online or real-time database 

capture and measurement could be implemented for those indicators subject to vagueness, for instance. 

In addition, incorporating the multiple-layer concept into other Network DEA models is worthwhile. 
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